xref: /openbmc/linux/drivers/gpu/drm/i915/i915_drv.h (revision 93f5715e)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/mm_types.h>
44 #include <linux/perf_event.h>
45 #include <linux/pm_qos.h>
46 #include <linux/reservation.h>
47 #include <linux/shmem_fs.h>
48 
49 #include <drm/drmP.h>
50 #include <drm/intel-gtt.h>
51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
52 #include <drm/drm_gem.h>
53 #include <drm/drm_auth.h>
54 #include <drm/drm_cache.h>
55 
56 #include "i915_params.h"
57 #include "i915_reg.h"
58 #include "i915_utils.h"
59 
60 #include "intel_bios.h"
61 #include "intel_device_info.h"
62 #include "intel_display.h"
63 #include "intel_dpll_mgr.h"
64 #include "intel_lrc.h"
65 #include "intel_opregion.h"
66 #include "intel_ringbuffer.h"
67 #include "intel_uncore.h"
68 #include "intel_wopcm.h"
69 #include "intel_uc.h"
70 
71 #include "i915_gem.h"
72 #include "i915_gem_context.h"
73 #include "i915_gem_fence_reg.h"
74 #include "i915_gem_object.h"
75 #include "i915_gem_gtt.h"
76 #include "i915_gpu_error.h"
77 #include "i915_request.h"
78 #include "i915_scheduler.h"
79 #include "i915_timeline.h"
80 #include "i915_vma.h"
81 
82 #include "intel_gvt.h"
83 
84 /* General customization:
85  */
86 
87 #define DRIVER_NAME		"i915"
88 #define DRIVER_DESC		"Intel Graphics"
89 #define DRIVER_DATE		"20180719"
90 #define DRIVER_TIMESTAMP	1532015279
91 
92 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
93  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
94  * which may not necessarily be a user visible problem.  This will either
95  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
96  * enable distros and users to tailor their preferred amount of i915 abrt
97  * spam.
98  */
99 #define I915_STATE_WARN(condition, format...) ({			\
100 	int __ret_warn_on = !!(condition);				\
101 	if (unlikely(__ret_warn_on))					\
102 		if (!WARN(i915_modparams.verbose_state_checks, format))	\
103 			DRM_ERROR(format);				\
104 	unlikely(__ret_warn_on);					\
105 })
106 
107 #define I915_STATE_WARN_ON(x)						\
108 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
109 
110 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
111 
112 bool __i915_inject_load_failure(const char *func, int line);
113 #define i915_inject_load_failure() \
114 	__i915_inject_load_failure(__func__, __LINE__)
115 
116 bool i915_error_injected(void);
117 
118 #else
119 
120 #define i915_inject_load_failure() false
121 #define i915_error_injected() false
122 
123 #endif
124 
125 #define i915_load_error(i915, fmt, ...)					 \
126 	__i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
127 		      fmt, ##__VA_ARGS__)
128 
129 typedef struct {
130 	uint32_t val;
131 } uint_fixed_16_16_t;
132 
133 #define FP_16_16_MAX ({ \
134 	uint_fixed_16_16_t fp; \
135 	fp.val = UINT_MAX; \
136 	fp; \
137 })
138 
139 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
140 {
141 	if (val.val == 0)
142 		return true;
143 	return false;
144 }
145 
146 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
147 {
148 	uint_fixed_16_16_t fp;
149 
150 	WARN_ON(val > U16_MAX);
151 
152 	fp.val = val << 16;
153 	return fp;
154 }
155 
156 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
157 {
158 	return DIV_ROUND_UP(fp.val, 1 << 16);
159 }
160 
161 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
162 {
163 	return fp.val >> 16;
164 }
165 
166 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
167 						 uint_fixed_16_16_t min2)
168 {
169 	uint_fixed_16_16_t min;
170 
171 	min.val = min(min1.val, min2.val);
172 	return min;
173 }
174 
175 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
176 						 uint_fixed_16_16_t max2)
177 {
178 	uint_fixed_16_16_t max;
179 
180 	max.val = max(max1.val, max2.val);
181 	return max;
182 }
183 
184 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
185 {
186 	uint_fixed_16_16_t fp;
187 	WARN_ON(val > U32_MAX);
188 	fp.val = (uint32_t) val;
189 	return fp;
190 }
191 
192 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
193 					    uint_fixed_16_16_t d)
194 {
195 	return DIV_ROUND_UP(val.val, d.val);
196 }
197 
198 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
199 						uint_fixed_16_16_t mul)
200 {
201 	uint64_t intermediate_val;
202 
203 	intermediate_val = (uint64_t) val * mul.val;
204 	intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
205 	WARN_ON(intermediate_val > U32_MAX);
206 	return (uint32_t) intermediate_val;
207 }
208 
209 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
210 					     uint_fixed_16_16_t mul)
211 {
212 	uint64_t intermediate_val;
213 
214 	intermediate_val = (uint64_t) val.val * mul.val;
215 	intermediate_val = intermediate_val >> 16;
216 	return clamp_u64_to_fixed16(intermediate_val);
217 }
218 
219 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
220 {
221 	uint64_t interm_val;
222 
223 	interm_val = (uint64_t)val << 16;
224 	interm_val = DIV_ROUND_UP_ULL(interm_val, d);
225 	return clamp_u64_to_fixed16(interm_val);
226 }
227 
228 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
229 						uint_fixed_16_16_t d)
230 {
231 	uint64_t interm_val;
232 
233 	interm_val = (uint64_t)val << 16;
234 	interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
235 	WARN_ON(interm_val > U32_MAX);
236 	return (uint32_t) interm_val;
237 }
238 
239 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
240 						     uint_fixed_16_16_t mul)
241 {
242 	uint64_t intermediate_val;
243 
244 	intermediate_val = (uint64_t) val * mul.val;
245 	return clamp_u64_to_fixed16(intermediate_val);
246 }
247 
248 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
249 					     uint_fixed_16_16_t add2)
250 {
251 	uint64_t interm_sum;
252 
253 	interm_sum = (uint64_t) add1.val + add2.val;
254 	return clamp_u64_to_fixed16(interm_sum);
255 }
256 
257 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
258 						 uint32_t add2)
259 {
260 	uint64_t interm_sum;
261 	uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
262 
263 	interm_sum = (uint64_t) add1.val + interm_add2.val;
264 	return clamp_u64_to_fixed16(interm_sum);
265 }
266 
267 enum hpd_pin {
268 	HPD_NONE = 0,
269 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
270 	HPD_CRT,
271 	HPD_SDVO_B,
272 	HPD_SDVO_C,
273 	HPD_PORT_A,
274 	HPD_PORT_B,
275 	HPD_PORT_C,
276 	HPD_PORT_D,
277 	HPD_PORT_E,
278 	HPD_PORT_F,
279 	HPD_NUM_PINS
280 };
281 
282 #define for_each_hpd_pin(__pin) \
283 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
284 
285 #define HPD_STORM_DEFAULT_THRESHOLD 5
286 
287 struct i915_hotplug {
288 	struct work_struct hotplug_work;
289 
290 	struct {
291 		unsigned long last_jiffies;
292 		int count;
293 		enum {
294 			HPD_ENABLED = 0,
295 			HPD_DISABLED = 1,
296 			HPD_MARK_DISABLED = 2
297 		} state;
298 	} stats[HPD_NUM_PINS];
299 	u32 event_bits;
300 	struct delayed_work reenable_work;
301 
302 	u32 long_port_mask;
303 	u32 short_port_mask;
304 	struct work_struct dig_port_work;
305 
306 	struct work_struct poll_init_work;
307 	bool poll_enabled;
308 
309 	unsigned int hpd_storm_threshold;
310 
311 	/*
312 	 * if we get a HPD irq from DP and a HPD irq from non-DP
313 	 * the non-DP HPD could block the workqueue on a mode config
314 	 * mutex getting, that userspace may have taken. However
315 	 * userspace is waiting on the DP workqueue to run which is
316 	 * blocked behind the non-DP one.
317 	 */
318 	struct workqueue_struct *dp_wq;
319 };
320 
321 #define I915_GEM_GPU_DOMAINS \
322 	(I915_GEM_DOMAIN_RENDER | \
323 	 I915_GEM_DOMAIN_SAMPLER | \
324 	 I915_GEM_DOMAIN_COMMAND | \
325 	 I915_GEM_DOMAIN_INSTRUCTION | \
326 	 I915_GEM_DOMAIN_VERTEX)
327 
328 struct drm_i915_private;
329 struct i915_mm_struct;
330 struct i915_mmu_object;
331 
332 struct drm_i915_file_private {
333 	struct drm_i915_private *dev_priv;
334 	struct drm_file *file;
335 
336 	struct {
337 		spinlock_t lock;
338 		struct list_head request_list;
339 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
340  * chosen to prevent the CPU getting more than a frame ahead of the GPU
341  * (when using lax throttling for the frontbuffer). We also use it to
342  * offer free GPU waitboosts for severely congested workloads.
343  */
344 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
345 	} mm;
346 	struct idr context_idr;
347 
348 	struct intel_rps_client {
349 		atomic_t boosts;
350 	} rps_client;
351 
352 	unsigned int bsd_engine;
353 
354 /*
355  * Every context ban increments per client ban score. Also
356  * hangs in short succession increments ban score. If ban threshold
357  * is reached, client is considered banned and submitting more work
358  * will fail. This is a stop gap measure to limit the badly behaving
359  * clients access to gpu. Note that unbannable contexts never increment
360  * the client ban score.
361  */
362 #define I915_CLIENT_SCORE_HANG_FAST	1
363 #define   I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ)
364 #define I915_CLIENT_SCORE_CONTEXT_BAN   3
365 #define I915_CLIENT_SCORE_BANNED	9
366 	/** ban_score: Accumulated score of all ctx bans and fast hangs. */
367 	atomic_t ban_score;
368 	unsigned long hang_timestamp;
369 };
370 
371 /* Interface history:
372  *
373  * 1.1: Original.
374  * 1.2: Add Power Management
375  * 1.3: Add vblank support
376  * 1.4: Fix cmdbuffer path, add heap destroy
377  * 1.5: Add vblank pipe configuration
378  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
379  *      - Support vertical blank on secondary display pipe
380  */
381 #define DRIVER_MAJOR		1
382 #define DRIVER_MINOR		6
383 #define DRIVER_PATCHLEVEL	0
384 
385 struct intel_overlay;
386 struct intel_overlay_error_state;
387 
388 struct sdvo_device_mapping {
389 	u8 initialized;
390 	u8 dvo_port;
391 	u8 slave_addr;
392 	u8 dvo_wiring;
393 	u8 i2c_pin;
394 	u8 ddc_pin;
395 };
396 
397 struct intel_connector;
398 struct intel_encoder;
399 struct intel_atomic_state;
400 struct intel_crtc_state;
401 struct intel_initial_plane_config;
402 struct intel_crtc;
403 struct intel_limit;
404 struct dpll;
405 struct intel_cdclk_state;
406 
407 struct drm_i915_display_funcs {
408 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
409 			  struct intel_cdclk_state *cdclk_state);
410 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
411 			  const struct intel_cdclk_state *cdclk_state);
412 	int (*get_fifo_size)(struct drm_i915_private *dev_priv,
413 			     enum i9xx_plane_id i9xx_plane);
414 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
415 	int (*compute_intermediate_wm)(struct drm_device *dev,
416 				       struct intel_crtc *intel_crtc,
417 				       struct intel_crtc_state *newstate);
418 	void (*initial_watermarks)(struct intel_atomic_state *state,
419 				   struct intel_crtc_state *cstate);
420 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
421 					 struct intel_crtc_state *cstate);
422 	void (*optimize_watermarks)(struct intel_atomic_state *state,
423 				    struct intel_crtc_state *cstate);
424 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
425 	void (*update_wm)(struct intel_crtc *crtc);
426 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
427 	/* Returns the active state of the crtc, and if the crtc is active,
428 	 * fills out the pipe-config with the hw state. */
429 	bool (*get_pipe_config)(struct intel_crtc *,
430 				struct intel_crtc_state *);
431 	void (*get_initial_plane_config)(struct intel_crtc *,
432 					 struct intel_initial_plane_config *);
433 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
434 				  struct intel_crtc_state *crtc_state);
435 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
436 			    struct drm_atomic_state *old_state);
437 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
438 			     struct drm_atomic_state *old_state);
439 	void (*update_crtcs)(struct drm_atomic_state *state);
440 	void (*audio_codec_enable)(struct intel_encoder *encoder,
441 				   const struct intel_crtc_state *crtc_state,
442 				   const struct drm_connector_state *conn_state);
443 	void (*audio_codec_disable)(struct intel_encoder *encoder,
444 				    const struct intel_crtc_state *old_crtc_state,
445 				    const struct drm_connector_state *old_conn_state);
446 	void (*fdi_link_train)(struct intel_crtc *crtc,
447 			       const struct intel_crtc_state *crtc_state);
448 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
449 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
450 	/* clock updates for mode set */
451 	/* cursor updates */
452 	/* render clock increase/decrease */
453 	/* display clock increase/decrease */
454 	/* pll clock increase/decrease */
455 
456 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
457 	void (*load_luts)(struct drm_crtc_state *crtc_state);
458 };
459 
460 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
461 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
462 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
463 
464 struct intel_csr {
465 	struct work_struct work;
466 	const char *fw_path;
467 	uint32_t *dmc_payload;
468 	uint32_t dmc_fw_size;
469 	uint32_t version;
470 	uint32_t mmio_count;
471 	i915_reg_t mmioaddr[8];
472 	uint32_t mmiodata[8];
473 	uint32_t dc_state;
474 	uint32_t allowed_dc_mask;
475 };
476 
477 enum i915_cache_level {
478 	I915_CACHE_NONE = 0,
479 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
480 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
481 			      caches, eg sampler/render caches, and the
482 			      large Last-Level-Cache. LLC is coherent with
483 			      the CPU, but L3 is only visible to the GPU. */
484 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
485 };
486 
487 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
488 
489 enum fb_op_origin {
490 	ORIGIN_GTT,
491 	ORIGIN_CPU,
492 	ORIGIN_CS,
493 	ORIGIN_FLIP,
494 	ORIGIN_DIRTYFB,
495 };
496 
497 struct intel_fbc {
498 	/* This is always the inner lock when overlapping with struct_mutex and
499 	 * it's the outer lock when overlapping with stolen_lock. */
500 	struct mutex lock;
501 	unsigned threshold;
502 	unsigned int possible_framebuffer_bits;
503 	unsigned int busy_bits;
504 	unsigned int visible_pipes_mask;
505 	struct intel_crtc *crtc;
506 
507 	struct drm_mm_node compressed_fb;
508 	struct drm_mm_node *compressed_llb;
509 
510 	bool false_color;
511 
512 	bool enabled;
513 	bool active;
514 	bool flip_pending;
515 
516 	bool underrun_detected;
517 	struct work_struct underrun_work;
518 
519 	/*
520 	 * Due to the atomic rules we can't access some structures without the
521 	 * appropriate locking, so we cache information here in order to avoid
522 	 * these problems.
523 	 */
524 	struct intel_fbc_state_cache {
525 		struct i915_vma *vma;
526 		unsigned long flags;
527 
528 		struct {
529 			unsigned int mode_flags;
530 			uint32_t hsw_bdw_pixel_rate;
531 		} crtc;
532 
533 		struct {
534 			unsigned int rotation;
535 			int src_w;
536 			int src_h;
537 			bool visible;
538 			/*
539 			 * Display surface base address adjustement for
540 			 * pageflips. Note that on gen4+ this only adjusts up
541 			 * to a tile, offsets within a tile are handled in
542 			 * the hw itself (with the TILEOFF register).
543 			 */
544 			int adjusted_x;
545 			int adjusted_y;
546 
547 			int y;
548 		} plane;
549 
550 		struct {
551 			const struct drm_format_info *format;
552 			unsigned int stride;
553 		} fb;
554 	} state_cache;
555 
556 	/*
557 	 * This structure contains everything that's relevant to program the
558 	 * hardware registers. When we want to figure out if we need to disable
559 	 * and re-enable FBC for a new configuration we just check if there's
560 	 * something different in the struct. The genx_fbc_activate functions
561 	 * are supposed to read from it in order to program the registers.
562 	 */
563 	struct intel_fbc_reg_params {
564 		struct i915_vma *vma;
565 		unsigned long flags;
566 
567 		struct {
568 			enum pipe pipe;
569 			enum i9xx_plane_id i9xx_plane;
570 			unsigned int fence_y_offset;
571 		} crtc;
572 
573 		struct {
574 			const struct drm_format_info *format;
575 			unsigned int stride;
576 		} fb;
577 
578 		int cfb_size;
579 		unsigned int gen9_wa_cfb_stride;
580 	} params;
581 
582 	const char *no_fbc_reason;
583 };
584 
585 /*
586  * HIGH_RR is the highest eDP panel refresh rate read from EDID
587  * LOW_RR is the lowest eDP panel refresh rate found from EDID
588  * parsing for same resolution.
589  */
590 enum drrs_refresh_rate_type {
591 	DRRS_HIGH_RR,
592 	DRRS_LOW_RR,
593 	DRRS_MAX_RR, /* RR count */
594 };
595 
596 enum drrs_support_type {
597 	DRRS_NOT_SUPPORTED = 0,
598 	STATIC_DRRS_SUPPORT = 1,
599 	SEAMLESS_DRRS_SUPPORT = 2
600 };
601 
602 struct intel_dp;
603 struct i915_drrs {
604 	struct mutex mutex;
605 	struct delayed_work work;
606 	struct intel_dp *dp;
607 	unsigned busy_frontbuffer_bits;
608 	enum drrs_refresh_rate_type refresh_rate_type;
609 	enum drrs_support_type type;
610 };
611 
612 struct i915_psr {
613 	struct mutex lock;
614 	bool sink_support;
615 	struct intel_dp *enabled;
616 	bool active;
617 	struct work_struct work;
618 	unsigned busy_frontbuffer_bits;
619 	bool sink_psr2_support;
620 	bool link_standby;
621 	bool colorimetry_support;
622 	bool alpm;
623 	bool psr2_enabled;
624 	u8 sink_sync_latency;
625 	bool debug;
626 	ktime_t last_entry_attempt;
627 	ktime_t last_exit;
628 };
629 
630 enum intel_pch {
631 	PCH_NONE = 0,	/* No PCH present */
632 	PCH_IBX,	/* Ibexpeak PCH */
633 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
634 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
635 	PCH_SPT,        /* Sunrisepoint PCH */
636 	PCH_KBP,        /* Kaby Lake PCH */
637 	PCH_CNP,        /* Cannon Lake PCH */
638 	PCH_ICP,	/* Ice Lake PCH */
639 	PCH_NOP,	/* PCH without south display */
640 };
641 
642 enum intel_sbi_destination {
643 	SBI_ICLK,
644 	SBI_MPHY,
645 };
646 
647 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
648 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
649 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
650 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
651 #define QUIRK_INCREASE_T12_DELAY (1<<6)
652 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7)
653 
654 struct intel_fbdev;
655 struct intel_fbc_work;
656 
657 struct intel_gmbus {
658 	struct i2c_adapter adapter;
659 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
660 	u32 force_bit;
661 	u32 reg0;
662 	i915_reg_t gpio_reg;
663 	struct i2c_algo_bit_data bit_algo;
664 	struct drm_i915_private *dev_priv;
665 };
666 
667 struct i915_suspend_saved_registers {
668 	u32 saveDSPARB;
669 	u32 saveFBC_CONTROL;
670 	u32 saveCACHE_MODE_0;
671 	u32 saveMI_ARB_STATE;
672 	u32 saveSWF0[16];
673 	u32 saveSWF1[16];
674 	u32 saveSWF3[3];
675 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
676 	u32 savePCH_PORT_HOTPLUG;
677 	u16 saveGCDGMBUS;
678 };
679 
680 struct vlv_s0ix_state {
681 	/* GAM */
682 	u32 wr_watermark;
683 	u32 gfx_prio_ctrl;
684 	u32 arb_mode;
685 	u32 gfx_pend_tlb0;
686 	u32 gfx_pend_tlb1;
687 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
688 	u32 media_max_req_count;
689 	u32 gfx_max_req_count;
690 	u32 render_hwsp;
691 	u32 ecochk;
692 	u32 bsd_hwsp;
693 	u32 blt_hwsp;
694 	u32 tlb_rd_addr;
695 
696 	/* MBC */
697 	u32 g3dctl;
698 	u32 gsckgctl;
699 	u32 mbctl;
700 
701 	/* GCP */
702 	u32 ucgctl1;
703 	u32 ucgctl3;
704 	u32 rcgctl1;
705 	u32 rcgctl2;
706 	u32 rstctl;
707 	u32 misccpctl;
708 
709 	/* GPM */
710 	u32 gfxpause;
711 	u32 rpdeuhwtc;
712 	u32 rpdeuc;
713 	u32 ecobus;
714 	u32 pwrdwnupctl;
715 	u32 rp_down_timeout;
716 	u32 rp_deucsw;
717 	u32 rcubmabdtmr;
718 	u32 rcedata;
719 	u32 spare2gh;
720 
721 	/* Display 1 CZ domain */
722 	u32 gt_imr;
723 	u32 gt_ier;
724 	u32 pm_imr;
725 	u32 pm_ier;
726 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
727 
728 	/* GT SA CZ domain */
729 	u32 tilectl;
730 	u32 gt_fifoctl;
731 	u32 gtlc_wake_ctrl;
732 	u32 gtlc_survive;
733 	u32 pmwgicz;
734 
735 	/* Display 2 CZ domain */
736 	u32 gu_ctl0;
737 	u32 gu_ctl1;
738 	u32 pcbr;
739 	u32 clock_gate_dis2;
740 };
741 
742 struct intel_rps_ei {
743 	ktime_t ktime;
744 	u32 render_c0;
745 	u32 media_c0;
746 };
747 
748 struct intel_rps {
749 	/*
750 	 * work, interrupts_enabled and pm_iir are protected by
751 	 * dev_priv->irq_lock
752 	 */
753 	struct work_struct work;
754 	bool interrupts_enabled;
755 	u32 pm_iir;
756 
757 	/* PM interrupt bits that should never be masked */
758 	u32 pm_intrmsk_mbz;
759 
760 	/* Frequencies are stored in potentially platform dependent multiples.
761 	 * In other words, *_freq needs to be multiplied by X to be interesting.
762 	 * Soft limits are those which are used for the dynamic reclocking done
763 	 * by the driver (raise frequencies under heavy loads, and lower for
764 	 * lighter loads). Hard limits are those imposed by the hardware.
765 	 *
766 	 * A distinction is made for overclocking, which is never enabled by
767 	 * default, and is considered to be above the hard limit if it's
768 	 * possible at all.
769 	 */
770 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
771 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
772 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
773 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
774 	u8 min_freq;		/* AKA RPn. Minimum frequency */
775 	u8 boost_freq;		/* Frequency to request when wait boosting */
776 	u8 idle_freq;		/* Frequency to request when we are idle */
777 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
778 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
779 	u8 rp0_freq;		/* Non-overclocked max frequency. */
780 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
781 
782 	int last_adj;
783 
784 	struct {
785 		struct mutex mutex;
786 
787 		enum { LOW_POWER, BETWEEN, HIGH_POWER } mode;
788 		unsigned int interactive;
789 
790 		u8 up_threshold; /* Current %busy required to uplock */
791 		u8 down_threshold; /* Current %busy required to downclock */
792 	} power;
793 
794 	bool enabled;
795 	atomic_t num_waiters;
796 	atomic_t boosts;
797 
798 	/* manual wa residency calculations */
799 	struct intel_rps_ei ei;
800 };
801 
802 struct intel_rc6 {
803 	bool enabled;
804 	u64 prev_hw_residency[4];
805 	u64 cur_residency[4];
806 };
807 
808 struct intel_llc_pstate {
809 	bool enabled;
810 };
811 
812 struct intel_gen6_power_mgmt {
813 	struct intel_rps rps;
814 	struct intel_rc6 rc6;
815 	struct intel_llc_pstate llc_pstate;
816 };
817 
818 /* defined intel_pm.c */
819 extern spinlock_t mchdev_lock;
820 
821 struct intel_ilk_power_mgmt {
822 	u8 cur_delay;
823 	u8 min_delay;
824 	u8 max_delay;
825 	u8 fmax;
826 	u8 fstart;
827 
828 	u64 last_count1;
829 	unsigned long last_time1;
830 	unsigned long chipset_power;
831 	u64 last_count2;
832 	u64 last_time2;
833 	unsigned long gfx_power;
834 	u8 corr;
835 
836 	int c_m;
837 	int r_t;
838 };
839 
840 struct drm_i915_private;
841 struct i915_power_well;
842 
843 struct i915_power_well_ops {
844 	/*
845 	 * Synchronize the well's hw state to match the current sw state, for
846 	 * example enable/disable it based on the current refcount. Called
847 	 * during driver init and resume time, possibly after first calling
848 	 * the enable/disable handlers.
849 	 */
850 	void (*sync_hw)(struct drm_i915_private *dev_priv,
851 			struct i915_power_well *power_well);
852 	/*
853 	 * Enable the well and resources that depend on it (for example
854 	 * interrupts located on the well). Called after the 0->1 refcount
855 	 * transition.
856 	 */
857 	void (*enable)(struct drm_i915_private *dev_priv,
858 		       struct i915_power_well *power_well);
859 	/*
860 	 * Disable the well and resources that depend on it. Called after
861 	 * the 1->0 refcount transition.
862 	 */
863 	void (*disable)(struct drm_i915_private *dev_priv,
864 			struct i915_power_well *power_well);
865 	/* Returns the hw enabled state. */
866 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
867 			   struct i915_power_well *power_well);
868 };
869 
870 /* Power well structure for haswell */
871 struct i915_power_well {
872 	const char *name;
873 	bool always_on;
874 	/* power well enable/disable usage count */
875 	int count;
876 	/* cached hw enabled state */
877 	bool hw_enabled;
878 	u64 domains;
879 	/* unique identifier for this power well */
880 	enum i915_power_well_id id;
881 	/*
882 	 * Arbitraty data associated with this power well. Platform and power
883 	 * well specific.
884 	 */
885 	union {
886 		struct {
887 			enum dpio_phy phy;
888 		} bxt;
889 		struct {
890 			/* Mask of pipes whose IRQ logic is backed by the pw */
891 			u8 irq_pipe_mask;
892 			/* The pw is backing the VGA functionality */
893 			bool has_vga:1;
894 			bool has_fuses:1;
895 		} hsw;
896 	};
897 	const struct i915_power_well_ops *ops;
898 };
899 
900 struct i915_power_domains {
901 	/*
902 	 * Power wells needed for initialization at driver init and suspend
903 	 * time are on. They are kept on until after the first modeset.
904 	 */
905 	bool init_power_on;
906 	bool initializing;
907 	int power_well_count;
908 
909 	struct mutex lock;
910 	int domain_use_count[POWER_DOMAIN_NUM];
911 	struct i915_power_well *power_wells;
912 };
913 
914 #define MAX_L3_SLICES 2
915 struct intel_l3_parity {
916 	u32 *remap_info[MAX_L3_SLICES];
917 	struct work_struct error_work;
918 	int which_slice;
919 };
920 
921 struct i915_gem_mm {
922 	/** Memory allocator for GTT stolen memory */
923 	struct drm_mm stolen;
924 	/** Protects the usage of the GTT stolen memory allocator. This is
925 	 * always the inner lock when overlapping with struct_mutex. */
926 	struct mutex stolen_lock;
927 
928 	/* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
929 	spinlock_t obj_lock;
930 
931 	/** List of all objects in gtt_space. Used to restore gtt
932 	 * mappings on resume */
933 	struct list_head bound_list;
934 	/**
935 	 * List of objects which are not bound to the GTT (thus
936 	 * are idle and not used by the GPU). These objects may or may
937 	 * not actually have any pages attached.
938 	 */
939 	struct list_head unbound_list;
940 
941 	/** List of all objects in gtt_space, currently mmaped by userspace.
942 	 * All objects within this list must also be on bound_list.
943 	 */
944 	struct list_head userfault_list;
945 
946 	/**
947 	 * List of objects which are pending destruction.
948 	 */
949 	struct llist_head free_list;
950 	struct work_struct free_work;
951 	spinlock_t free_lock;
952 	/**
953 	 * Count of objects pending destructions. Used to skip needlessly
954 	 * waiting on an RCU barrier if no objects are waiting to be freed.
955 	 */
956 	atomic_t free_count;
957 
958 	/**
959 	 * Small stash of WC pages
960 	 */
961 	struct pagestash wc_stash;
962 
963 	/**
964 	 * tmpfs instance used for shmem backed objects
965 	 */
966 	struct vfsmount *gemfs;
967 
968 	/** PPGTT used for aliasing the PPGTT with the GTT */
969 	struct i915_hw_ppgtt *aliasing_ppgtt;
970 
971 	struct notifier_block oom_notifier;
972 	struct notifier_block vmap_notifier;
973 	struct shrinker shrinker;
974 
975 	/** LRU list of objects with fence regs on them. */
976 	struct list_head fence_list;
977 
978 	/**
979 	 * Workqueue to fault in userptr pages, flushed by the execbuf
980 	 * when required but otherwise left to userspace to try again
981 	 * on EAGAIN.
982 	 */
983 	struct workqueue_struct *userptr_wq;
984 
985 	u64 unordered_timeline;
986 
987 	/* the indicator for dispatch video commands on two BSD rings */
988 	atomic_t bsd_engine_dispatch_index;
989 
990 	/** Bit 6 swizzling required for X tiling */
991 	uint32_t bit_6_swizzle_x;
992 	/** Bit 6 swizzling required for Y tiling */
993 	uint32_t bit_6_swizzle_y;
994 
995 	/* accounting, useful for userland debugging */
996 	spinlock_t object_stat_lock;
997 	u64 object_memory;
998 	u32 object_count;
999 };
1000 
1001 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
1002 
1003 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1004 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1005 
1006 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1007 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1008 
1009 #define I915_ENGINE_WEDGED_TIMEOUT  (60 * HZ)  /* Reset but no recovery? */
1010 
1011 #define DP_AUX_A 0x40
1012 #define DP_AUX_B 0x10
1013 #define DP_AUX_C 0x20
1014 #define DP_AUX_D 0x30
1015 #define DP_AUX_E 0x50
1016 #define DP_AUX_F 0x60
1017 
1018 #define DDC_PIN_B  0x05
1019 #define DDC_PIN_C  0x04
1020 #define DDC_PIN_D  0x06
1021 
1022 struct ddi_vbt_port_info {
1023 	int max_tmds_clock;
1024 
1025 	/*
1026 	 * This is an index in the HDMI/DVI DDI buffer translation table.
1027 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1028 	 * populate this field.
1029 	 */
1030 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
1031 	uint8_t hdmi_level_shift;
1032 
1033 	uint8_t supports_dvi:1;
1034 	uint8_t supports_hdmi:1;
1035 	uint8_t supports_dp:1;
1036 	uint8_t supports_edp:1;
1037 
1038 	uint8_t alternate_aux_channel;
1039 	uint8_t alternate_ddc_pin;
1040 
1041 	uint8_t dp_boost_level;
1042 	uint8_t hdmi_boost_level;
1043 	int dp_max_link_rate;		/* 0 for not limited by VBT */
1044 };
1045 
1046 enum psr_lines_to_wait {
1047 	PSR_0_LINES_TO_WAIT = 0,
1048 	PSR_1_LINE_TO_WAIT,
1049 	PSR_4_LINES_TO_WAIT,
1050 	PSR_8_LINES_TO_WAIT
1051 };
1052 
1053 struct intel_vbt_data {
1054 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1055 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1056 
1057 	/* Feature bits */
1058 	unsigned int int_tv_support:1;
1059 	unsigned int lvds_dither:1;
1060 	unsigned int int_crt_support:1;
1061 	unsigned int lvds_use_ssc:1;
1062 	unsigned int int_lvds_support:1;
1063 	unsigned int display_clock_mode:1;
1064 	unsigned int fdi_rx_polarity_inverted:1;
1065 	unsigned int panel_type:4;
1066 	int lvds_ssc_freq;
1067 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1068 
1069 	enum drrs_support_type drrs_type;
1070 
1071 	struct {
1072 		int rate;
1073 		int lanes;
1074 		int preemphasis;
1075 		int vswing;
1076 		bool low_vswing;
1077 		bool initialized;
1078 		int bpp;
1079 		struct edp_power_seq pps;
1080 	} edp;
1081 
1082 	struct {
1083 		bool enable;
1084 		bool full_link;
1085 		bool require_aux_wakeup;
1086 		int idle_frames;
1087 		enum psr_lines_to_wait lines_to_wait;
1088 		int tp1_wakeup_time_us;
1089 		int tp2_tp3_wakeup_time_us;
1090 	} psr;
1091 
1092 	struct {
1093 		u16 pwm_freq_hz;
1094 		bool present;
1095 		bool active_low_pwm;
1096 		u8 min_brightness;	/* min_brightness/255 of max */
1097 		u8 controller;		/* brightness controller number */
1098 		enum intel_backlight_type type;
1099 	} backlight;
1100 
1101 	/* MIPI DSI */
1102 	struct {
1103 		u16 panel_id;
1104 		struct mipi_config *config;
1105 		struct mipi_pps_data *pps;
1106 		u16 bl_ports;
1107 		u16 cabc_ports;
1108 		u8 seq_version;
1109 		u32 size;
1110 		u8 *data;
1111 		const u8 *sequence[MIPI_SEQ_MAX];
1112 		u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1113 	} dsi;
1114 
1115 	int crt_ddc_pin;
1116 
1117 	int child_dev_num;
1118 	struct child_device_config *child_dev;
1119 
1120 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1121 	struct sdvo_device_mapping sdvo_mappings[2];
1122 };
1123 
1124 enum intel_ddb_partitioning {
1125 	INTEL_DDB_PART_1_2,
1126 	INTEL_DDB_PART_5_6, /* IVB+ */
1127 };
1128 
1129 struct intel_wm_level {
1130 	bool enable;
1131 	uint32_t pri_val;
1132 	uint32_t spr_val;
1133 	uint32_t cur_val;
1134 	uint32_t fbc_val;
1135 };
1136 
1137 struct ilk_wm_values {
1138 	uint32_t wm_pipe[3];
1139 	uint32_t wm_lp[3];
1140 	uint32_t wm_lp_spr[3];
1141 	uint32_t wm_linetime[3];
1142 	bool enable_fbc_wm;
1143 	enum intel_ddb_partitioning partitioning;
1144 };
1145 
1146 struct g4x_pipe_wm {
1147 	uint16_t plane[I915_MAX_PLANES];
1148 	uint16_t fbc;
1149 };
1150 
1151 struct g4x_sr_wm {
1152 	uint16_t plane;
1153 	uint16_t cursor;
1154 	uint16_t fbc;
1155 };
1156 
1157 struct vlv_wm_ddl_values {
1158 	uint8_t plane[I915_MAX_PLANES];
1159 };
1160 
1161 struct vlv_wm_values {
1162 	struct g4x_pipe_wm pipe[3];
1163 	struct g4x_sr_wm sr;
1164 	struct vlv_wm_ddl_values ddl[3];
1165 	uint8_t level;
1166 	bool cxsr;
1167 };
1168 
1169 struct g4x_wm_values {
1170 	struct g4x_pipe_wm pipe[2];
1171 	struct g4x_sr_wm sr;
1172 	struct g4x_sr_wm hpll;
1173 	bool cxsr;
1174 	bool hpll_en;
1175 	bool fbc_en;
1176 };
1177 
1178 struct skl_ddb_entry {
1179 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1180 };
1181 
1182 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1183 {
1184 	return entry->end - entry->start;
1185 }
1186 
1187 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1188 				       const struct skl_ddb_entry *e2)
1189 {
1190 	if (e1->start == e2->start && e1->end == e2->end)
1191 		return true;
1192 
1193 	return false;
1194 }
1195 
1196 struct skl_ddb_allocation {
1197 	/* packed/y */
1198 	struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES];
1199 	struct skl_ddb_entry uv_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1200 	u8 enabled_slices; /* GEN11 has configurable 2 slices */
1201 };
1202 
1203 struct skl_ddb_values {
1204 	unsigned dirty_pipes;
1205 	struct skl_ddb_allocation ddb;
1206 };
1207 
1208 struct skl_wm_level {
1209 	bool plane_en;
1210 	uint16_t plane_res_b;
1211 	uint8_t plane_res_l;
1212 };
1213 
1214 /* Stores plane specific WM parameters */
1215 struct skl_wm_params {
1216 	bool x_tiled, y_tiled;
1217 	bool rc_surface;
1218 	bool is_planar;
1219 	uint32_t width;
1220 	uint8_t cpp;
1221 	uint32_t plane_pixel_rate;
1222 	uint32_t y_min_scanlines;
1223 	uint32_t plane_bytes_per_line;
1224 	uint_fixed_16_16_t plane_blocks_per_line;
1225 	uint_fixed_16_16_t y_tile_minimum;
1226 	uint32_t linetime_us;
1227 	uint32_t dbuf_block_size;
1228 };
1229 
1230 /*
1231  * This struct helps tracking the state needed for runtime PM, which puts the
1232  * device in PCI D3 state. Notice that when this happens, nothing on the
1233  * graphics device works, even register access, so we don't get interrupts nor
1234  * anything else.
1235  *
1236  * Every piece of our code that needs to actually touch the hardware needs to
1237  * either call intel_runtime_pm_get or call intel_display_power_get with the
1238  * appropriate power domain.
1239  *
1240  * Our driver uses the autosuspend delay feature, which means we'll only really
1241  * suspend if we stay with zero refcount for a certain amount of time. The
1242  * default value is currently very conservative (see intel_runtime_pm_enable), but
1243  * it can be changed with the standard runtime PM files from sysfs.
1244  *
1245  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1246  * goes back to false exactly before we reenable the IRQs. We use this variable
1247  * to check if someone is trying to enable/disable IRQs while they're supposed
1248  * to be disabled. This shouldn't happen and we'll print some error messages in
1249  * case it happens.
1250  *
1251  * For more, read the Documentation/power/runtime_pm.txt.
1252  */
1253 struct i915_runtime_pm {
1254 	atomic_t wakeref_count;
1255 	bool suspended;
1256 	bool irqs_enabled;
1257 };
1258 
1259 enum intel_pipe_crc_source {
1260 	INTEL_PIPE_CRC_SOURCE_NONE,
1261 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1262 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1263 	INTEL_PIPE_CRC_SOURCE_PF,
1264 	INTEL_PIPE_CRC_SOURCE_PIPE,
1265 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1266 	INTEL_PIPE_CRC_SOURCE_TV,
1267 	INTEL_PIPE_CRC_SOURCE_DP_B,
1268 	INTEL_PIPE_CRC_SOURCE_DP_C,
1269 	INTEL_PIPE_CRC_SOURCE_DP_D,
1270 	INTEL_PIPE_CRC_SOURCE_AUTO,
1271 	INTEL_PIPE_CRC_SOURCE_MAX,
1272 };
1273 
1274 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1275 struct intel_pipe_crc {
1276 	spinlock_t lock;
1277 	int skipped;
1278 	enum intel_pipe_crc_source source;
1279 };
1280 
1281 struct i915_frontbuffer_tracking {
1282 	spinlock_t lock;
1283 
1284 	/*
1285 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1286 	 * scheduled flips.
1287 	 */
1288 	unsigned busy_bits;
1289 	unsigned flip_bits;
1290 };
1291 
1292 struct i915_wa_reg {
1293 	u32 addr;
1294 	u32 value;
1295 	/* bitmask representing WA bits */
1296 	u32 mask;
1297 };
1298 
1299 #define I915_MAX_WA_REGS 16
1300 
1301 struct i915_workarounds {
1302 	struct i915_wa_reg reg[I915_MAX_WA_REGS];
1303 	u32 count;
1304 };
1305 
1306 struct i915_virtual_gpu {
1307 	bool active;
1308 	u32 caps;
1309 };
1310 
1311 /* used in computing the new watermarks state */
1312 struct intel_wm_config {
1313 	unsigned int num_pipes_active;
1314 	bool sprites_enabled;
1315 	bool sprites_scaled;
1316 };
1317 
1318 struct i915_oa_format {
1319 	u32 format;
1320 	int size;
1321 };
1322 
1323 struct i915_oa_reg {
1324 	i915_reg_t addr;
1325 	u32 value;
1326 };
1327 
1328 struct i915_oa_config {
1329 	char uuid[UUID_STRING_LEN + 1];
1330 	int id;
1331 
1332 	const struct i915_oa_reg *mux_regs;
1333 	u32 mux_regs_len;
1334 	const struct i915_oa_reg *b_counter_regs;
1335 	u32 b_counter_regs_len;
1336 	const struct i915_oa_reg *flex_regs;
1337 	u32 flex_regs_len;
1338 
1339 	struct attribute_group sysfs_metric;
1340 	struct attribute *attrs[2];
1341 	struct device_attribute sysfs_metric_id;
1342 
1343 	atomic_t ref_count;
1344 };
1345 
1346 struct i915_perf_stream;
1347 
1348 /**
1349  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1350  */
1351 struct i915_perf_stream_ops {
1352 	/**
1353 	 * @enable: Enables the collection of HW samples, either in response to
1354 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1355 	 * without `I915_PERF_FLAG_DISABLED`.
1356 	 */
1357 	void (*enable)(struct i915_perf_stream *stream);
1358 
1359 	/**
1360 	 * @disable: Disables the collection of HW samples, either in response
1361 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1362 	 * the stream.
1363 	 */
1364 	void (*disable)(struct i915_perf_stream *stream);
1365 
1366 	/**
1367 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1368 	 * once there is something ready to read() for the stream
1369 	 */
1370 	void (*poll_wait)(struct i915_perf_stream *stream,
1371 			  struct file *file,
1372 			  poll_table *wait);
1373 
1374 	/**
1375 	 * @wait_unlocked: For handling a blocking read, wait until there is
1376 	 * something to ready to read() for the stream. E.g. wait on the same
1377 	 * wait queue that would be passed to poll_wait().
1378 	 */
1379 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1380 
1381 	/**
1382 	 * @read: Copy buffered metrics as records to userspace
1383 	 * **buf**: the userspace, destination buffer
1384 	 * **count**: the number of bytes to copy, requested by userspace
1385 	 * **offset**: zero at the start of the read, updated as the read
1386 	 * proceeds, it represents how many bytes have been copied so far and
1387 	 * the buffer offset for copying the next record.
1388 	 *
1389 	 * Copy as many buffered i915 perf samples and records for this stream
1390 	 * to userspace as will fit in the given buffer.
1391 	 *
1392 	 * Only write complete records; returning -%ENOSPC if there isn't room
1393 	 * for a complete record.
1394 	 *
1395 	 * Return any error condition that results in a short read such as
1396 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1397 	 * returning to userspace.
1398 	 */
1399 	int (*read)(struct i915_perf_stream *stream,
1400 		    char __user *buf,
1401 		    size_t count,
1402 		    size_t *offset);
1403 
1404 	/**
1405 	 * @destroy: Cleanup any stream specific resources.
1406 	 *
1407 	 * The stream will always be disabled before this is called.
1408 	 */
1409 	void (*destroy)(struct i915_perf_stream *stream);
1410 };
1411 
1412 /**
1413  * struct i915_perf_stream - state for a single open stream FD
1414  */
1415 struct i915_perf_stream {
1416 	/**
1417 	 * @dev_priv: i915 drm device
1418 	 */
1419 	struct drm_i915_private *dev_priv;
1420 
1421 	/**
1422 	 * @link: Links the stream into ``&drm_i915_private->streams``
1423 	 */
1424 	struct list_head link;
1425 
1426 	/**
1427 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1428 	 * properties given when opening a stream, representing the contents
1429 	 * of a single sample as read() by userspace.
1430 	 */
1431 	u32 sample_flags;
1432 
1433 	/**
1434 	 * @sample_size: Considering the configured contents of a sample
1435 	 * combined with the required header size, this is the total size
1436 	 * of a single sample record.
1437 	 */
1438 	int sample_size;
1439 
1440 	/**
1441 	 * @ctx: %NULL if measuring system-wide across all contexts or a
1442 	 * specific context that is being monitored.
1443 	 */
1444 	struct i915_gem_context *ctx;
1445 
1446 	/**
1447 	 * @enabled: Whether the stream is currently enabled, considering
1448 	 * whether the stream was opened in a disabled state and based
1449 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1450 	 */
1451 	bool enabled;
1452 
1453 	/**
1454 	 * @ops: The callbacks providing the implementation of this specific
1455 	 * type of configured stream.
1456 	 */
1457 	const struct i915_perf_stream_ops *ops;
1458 
1459 	/**
1460 	 * @oa_config: The OA configuration used by the stream.
1461 	 */
1462 	struct i915_oa_config *oa_config;
1463 };
1464 
1465 /**
1466  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1467  */
1468 struct i915_oa_ops {
1469 	/**
1470 	 * @is_valid_b_counter_reg: Validates register's address for
1471 	 * programming boolean counters for a particular platform.
1472 	 */
1473 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1474 				       u32 addr);
1475 
1476 	/**
1477 	 * @is_valid_mux_reg: Validates register's address for programming mux
1478 	 * for a particular platform.
1479 	 */
1480 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1481 
1482 	/**
1483 	 * @is_valid_flex_reg: Validates register's address for programming
1484 	 * flex EU filtering for a particular platform.
1485 	 */
1486 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1487 
1488 	/**
1489 	 * @init_oa_buffer: Resets the head and tail pointers of the
1490 	 * circular buffer for periodic OA reports.
1491 	 *
1492 	 * Called when first opening a stream for OA metrics, but also may be
1493 	 * called in response to an OA buffer overflow or other error
1494 	 * condition.
1495 	 *
1496 	 * Note it may be necessary to clear the full OA buffer here as part of
1497 	 * maintaining the invariable that new reports must be written to
1498 	 * zeroed memory for us to be able to reliable detect if an expected
1499 	 * report has not yet landed in memory.  (At least on Haswell the OA
1500 	 * buffer tail pointer is not synchronized with reports being visible
1501 	 * to the CPU)
1502 	 */
1503 	void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
1504 
1505 	/**
1506 	 * @enable_metric_set: Selects and applies any MUX configuration to set
1507 	 * up the Boolean and Custom (B/C) counters that are part of the
1508 	 * counter reports being sampled. May apply system constraints such as
1509 	 * disabling EU clock gating as required.
1510 	 */
1511 	int (*enable_metric_set)(struct drm_i915_private *dev_priv,
1512 				 const struct i915_oa_config *oa_config);
1513 
1514 	/**
1515 	 * @disable_metric_set: Remove system constraints associated with using
1516 	 * the OA unit.
1517 	 */
1518 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1519 
1520 	/**
1521 	 * @oa_enable: Enable periodic sampling
1522 	 */
1523 	void (*oa_enable)(struct drm_i915_private *dev_priv);
1524 
1525 	/**
1526 	 * @oa_disable: Disable periodic sampling
1527 	 */
1528 	void (*oa_disable)(struct drm_i915_private *dev_priv);
1529 
1530 	/**
1531 	 * @read: Copy data from the circular OA buffer into a given userspace
1532 	 * buffer.
1533 	 */
1534 	int (*read)(struct i915_perf_stream *stream,
1535 		    char __user *buf,
1536 		    size_t count,
1537 		    size_t *offset);
1538 
1539 	/**
1540 	 * @oa_hw_tail_read: read the OA tail pointer register
1541 	 *
1542 	 * In particular this enables us to share all the fiddly code for
1543 	 * handling the OA unit tail pointer race that affects multiple
1544 	 * generations.
1545 	 */
1546 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1547 };
1548 
1549 struct intel_cdclk_state {
1550 	unsigned int cdclk, vco, ref, bypass;
1551 	u8 voltage_level;
1552 };
1553 
1554 struct drm_i915_private {
1555 	struct drm_device drm;
1556 
1557 	struct kmem_cache *objects;
1558 	struct kmem_cache *vmas;
1559 	struct kmem_cache *luts;
1560 	struct kmem_cache *requests;
1561 	struct kmem_cache *dependencies;
1562 	struct kmem_cache *priorities;
1563 
1564 	const struct intel_device_info info;
1565 	struct intel_driver_caps caps;
1566 
1567 	/**
1568 	 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1569 	 * end of stolen which we can optionally use to create GEM objects
1570 	 * backed by stolen memory. Note that stolen_usable_size tells us
1571 	 * exactly how much of this we are actually allowed to use, given that
1572 	 * some portion of it is in fact reserved for use by hardware functions.
1573 	 */
1574 	struct resource dsm;
1575 	/**
1576 	 * Reseved portion of Data Stolen Memory
1577 	 */
1578 	struct resource dsm_reserved;
1579 
1580 	/*
1581 	 * Stolen memory is segmented in hardware with different portions
1582 	 * offlimits to certain functions.
1583 	 *
1584 	 * The drm_mm is initialised to the total accessible range, as found
1585 	 * from the PCI config. On Broadwell+, this is further restricted to
1586 	 * avoid the first page! The upper end of stolen memory is reserved for
1587 	 * hardware functions and similarly removed from the accessible range.
1588 	 */
1589 	resource_size_t stolen_usable_size;	/* Total size minus reserved ranges */
1590 
1591 	void __iomem *regs;
1592 
1593 	struct intel_uncore uncore;
1594 
1595 	struct i915_virtual_gpu vgpu;
1596 
1597 	struct intel_gvt *gvt;
1598 
1599 	struct intel_wopcm wopcm;
1600 
1601 	struct intel_huc huc;
1602 	struct intel_guc guc;
1603 
1604 	struct intel_csr csr;
1605 
1606 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1607 
1608 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
1609 	 * controller on different i2c buses. */
1610 	struct mutex gmbus_mutex;
1611 
1612 	/**
1613 	 * Base address of the gmbus and gpio block.
1614 	 */
1615 	uint32_t gpio_mmio_base;
1616 
1617 	/* MMIO base address for MIPI regs */
1618 	uint32_t mipi_mmio_base;
1619 
1620 	uint32_t psr_mmio_base;
1621 
1622 	uint32_t pps_mmio_base;
1623 
1624 	wait_queue_head_t gmbus_wait_queue;
1625 
1626 	struct pci_dev *bridge_dev;
1627 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
1628 	/* Context used internally to idle the GPU and setup initial state */
1629 	struct i915_gem_context *kernel_context;
1630 	/* Context only to be used for injecting preemption commands */
1631 	struct i915_gem_context *preempt_context;
1632 	struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1633 					    [MAX_ENGINE_INSTANCE + 1];
1634 
1635 	struct drm_dma_handle *status_page_dmah;
1636 	struct resource mch_res;
1637 
1638 	/* protects the irq masks */
1639 	spinlock_t irq_lock;
1640 
1641 	bool display_irqs_enabled;
1642 
1643 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1644 	struct pm_qos_request pm_qos;
1645 
1646 	/* Sideband mailbox protection */
1647 	struct mutex sb_lock;
1648 
1649 	/** Cached value of IMR to avoid reads in updating the bitfield */
1650 	union {
1651 		u32 irq_mask;
1652 		u32 de_irq_mask[I915_MAX_PIPES];
1653 	};
1654 	u32 gt_irq_mask;
1655 	u32 pm_imr;
1656 	u32 pm_ier;
1657 	u32 pm_rps_events;
1658 	u32 pm_guc_events;
1659 	u32 pipestat_irq_mask[I915_MAX_PIPES];
1660 
1661 	struct i915_hotplug hotplug;
1662 	struct intel_fbc fbc;
1663 	struct i915_drrs drrs;
1664 	struct intel_opregion opregion;
1665 	struct intel_vbt_data vbt;
1666 
1667 	bool preserve_bios_swizzle;
1668 
1669 	/* overlay */
1670 	struct intel_overlay *overlay;
1671 
1672 	/* backlight registers and fields in struct intel_panel */
1673 	struct mutex backlight_lock;
1674 
1675 	/* LVDS info */
1676 	bool no_aux_handshake;
1677 
1678 	/* protects panel power sequencer state */
1679 	struct mutex pps_mutex;
1680 
1681 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1682 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1683 
1684 	unsigned int fsb_freq, mem_freq, is_ddr3;
1685 	unsigned int skl_preferred_vco_freq;
1686 	unsigned int max_cdclk_freq;
1687 
1688 	unsigned int max_dotclk_freq;
1689 	unsigned int rawclk_freq;
1690 	unsigned int hpll_freq;
1691 	unsigned int fdi_pll_freq;
1692 	unsigned int czclk_freq;
1693 
1694 	struct {
1695 		/*
1696 		 * The current logical cdclk state.
1697 		 * See intel_atomic_state.cdclk.logical
1698 		 *
1699 		 * For reading holding any crtc lock is sufficient,
1700 		 * for writing must hold all of them.
1701 		 */
1702 		struct intel_cdclk_state logical;
1703 		/*
1704 		 * The current actual cdclk state.
1705 		 * See intel_atomic_state.cdclk.actual
1706 		 */
1707 		struct intel_cdclk_state actual;
1708 		/* The current hardware cdclk state */
1709 		struct intel_cdclk_state hw;
1710 	} cdclk;
1711 
1712 	/**
1713 	 * wq - Driver workqueue for GEM.
1714 	 *
1715 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
1716 	 * locks, for otherwise the flushing done in the pageflip code will
1717 	 * result in deadlocks.
1718 	 */
1719 	struct workqueue_struct *wq;
1720 
1721 	/* ordered wq for modesets */
1722 	struct workqueue_struct *modeset_wq;
1723 
1724 	/* Display functions */
1725 	struct drm_i915_display_funcs display;
1726 
1727 	/* PCH chipset type */
1728 	enum intel_pch pch_type;
1729 	unsigned short pch_id;
1730 
1731 	unsigned long quirks;
1732 
1733 	struct drm_atomic_state *modeset_restore_state;
1734 	struct drm_modeset_acquire_ctx reset_ctx;
1735 
1736 	struct i915_ggtt ggtt; /* VM representing the global address space */
1737 
1738 	struct i915_gem_mm mm;
1739 	DECLARE_HASHTABLE(mm_structs, 7);
1740 	struct mutex mm_lock;
1741 
1742 	struct intel_ppat ppat;
1743 
1744 	/* Kernel Modesetting */
1745 
1746 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1747 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1748 
1749 #ifdef CONFIG_DEBUG_FS
1750 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1751 #endif
1752 
1753 	/* dpll and cdclk state is protected by connection_mutex */
1754 	int num_shared_dpll;
1755 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1756 	const struct intel_dpll_mgr *dpll_mgr;
1757 
1758 	/*
1759 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1760 	 * Must be global rather than per dpll, because on some platforms
1761 	 * plls share registers.
1762 	 */
1763 	struct mutex dpll_lock;
1764 
1765 	unsigned int active_crtcs;
1766 	/* minimum acceptable cdclk for each pipe */
1767 	int min_cdclk[I915_MAX_PIPES];
1768 	/* minimum acceptable voltage level for each pipe */
1769 	u8 min_voltage_level[I915_MAX_PIPES];
1770 
1771 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1772 
1773 	struct i915_workarounds workarounds;
1774 
1775 	struct i915_frontbuffer_tracking fb_tracking;
1776 
1777 	struct intel_atomic_helper {
1778 		struct llist_head free_list;
1779 		struct work_struct free_work;
1780 	} atomic_helper;
1781 
1782 	u16 orig_clock;
1783 
1784 	bool mchbar_need_disable;
1785 
1786 	struct intel_l3_parity l3_parity;
1787 
1788 	/* Cannot be determined by PCIID. You must always read a register. */
1789 	u32 edram_cap;
1790 
1791 	/*
1792 	 * Protects RPS/RC6 register access and PCU communication.
1793 	 * Must be taken after struct_mutex if nested. Note that
1794 	 * this lock may be held for long periods of time when
1795 	 * talking to hw - so only take it when talking to hw!
1796 	 */
1797 	struct mutex pcu_lock;
1798 
1799 	/* gen6+ GT PM state */
1800 	struct intel_gen6_power_mgmt gt_pm;
1801 
1802 	/* ilk-only ips/rps state. Everything in here is protected by the global
1803 	 * mchdev_lock in intel_pm.c */
1804 	struct intel_ilk_power_mgmt ips;
1805 
1806 	struct i915_power_domains power_domains;
1807 
1808 	struct i915_psr psr;
1809 
1810 	struct i915_gpu_error gpu_error;
1811 
1812 	struct drm_i915_gem_object *vlv_pctx;
1813 
1814 	/* list of fbdev register on this device */
1815 	struct intel_fbdev *fbdev;
1816 	struct work_struct fbdev_suspend_work;
1817 
1818 	struct drm_property *broadcast_rgb_property;
1819 	struct drm_property *force_audio_property;
1820 
1821 	/* hda/i915 audio component */
1822 	struct i915_audio_component *audio_component;
1823 	bool audio_component_registered;
1824 	/**
1825 	 * av_mutex - mutex for audio/video sync
1826 	 *
1827 	 */
1828 	struct mutex av_mutex;
1829 
1830 	struct {
1831 		struct list_head list;
1832 		struct llist_head free_list;
1833 		struct work_struct free_work;
1834 
1835 		/* The hw wants to have a stable context identifier for the
1836 		 * lifetime of the context (for OA, PASID, faults, etc).
1837 		 * This is limited in execlists to 21 bits.
1838 		 */
1839 		struct ida hw_ida;
1840 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1841 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */
1842 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1843 	} contexts;
1844 
1845 	u32 fdi_rx_config;
1846 
1847 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1848 	u32 chv_phy_control;
1849 	/*
1850 	 * Shadows for CHV DPLL_MD regs to keep the state
1851 	 * checker somewhat working in the presence hardware
1852 	 * crappiness (can't read out DPLL_MD for pipes B & C).
1853 	 */
1854 	u32 chv_dpll_md[I915_MAX_PIPES];
1855 	u32 bxt_phy_grc;
1856 
1857 	u32 suspend_count;
1858 	bool power_domains_suspended;
1859 	struct i915_suspend_saved_registers regfile;
1860 	struct vlv_s0ix_state vlv_s0ix_state;
1861 
1862 	enum {
1863 		I915_SAGV_UNKNOWN = 0,
1864 		I915_SAGV_DISABLED,
1865 		I915_SAGV_ENABLED,
1866 		I915_SAGV_NOT_CONTROLLED
1867 	} sagv_status;
1868 
1869 	struct {
1870 		/*
1871 		 * Raw watermark latency values:
1872 		 * in 0.1us units for WM0,
1873 		 * in 0.5us units for WM1+.
1874 		 */
1875 		/* primary */
1876 		uint16_t pri_latency[5];
1877 		/* sprite */
1878 		uint16_t spr_latency[5];
1879 		/* cursor */
1880 		uint16_t cur_latency[5];
1881 		/*
1882 		 * Raw watermark memory latency values
1883 		 * for SKL for all 8 levels
1884 		 * in 1us units.
1885 		 */
1886 		uint16_t skl_latency[8];
1887 
1888 		/* current hardware state */
1889 		union {
1890 			struct ilk_wm_values hw;
1891 			struct skl_ddb_values skl_hw;
1892 			struct vlv_wm_values vlv;
1893 			struct g4x_wm_values g4x;
1894 		};
1895 
1896 		uint8_t max_level;
1897 
1898 		/*
1899 		 * Should be held around atomic WM register writing; also
1900 		 * protects * intel_crtc->wm.active and
1901 		 * cstate->wm.need_postvbl_update.
1902 		 */
1903 		struct mutex wm_mutex;
1904 
1905 		/*
1906 		 * Set during HW readout of watermarks/DDB.  Some platforms
1907 		 * need to know when we're still using BIOS-provided values
1908 		 * (which we don't fully trust).
1909 		 */
1910 		bool distrust_bios_wm;
1911 	} wm;
1912 
1913 	struct i915_runtime_pm runtime_pm;
1914 
1915 	struct {
1916 		bool initialized;
1917 
1918 		struct kobject *metrics_kobj;
1919 		struct ctl_table_header *sysctl_header;
1920 
1921 		/*
1922 		 * Lock associated with adding/modifying/removing OA configs
1923 		 * in dev_priv->perf.metrics_idr.
1924 		 */
1925 		struct mutex metrics_lock;
1926 
1927 		/*
1928 		 * List of dynamic configurations, you need to hold
1929 		 * dev_priv->perf.metrics_lock to access it.
1930 		 */
1931 		struct idr metrics_idr;
1932 
1933 		/*
1934 		 * Lock associated with anything below within this structure
1935 		 * except exclusive_stream.
1936 		 */
1937 		struct mutex lock;
1938 		struct list_head streams;
1939 
1940 		struct {
1941 			/*
1942 			 * The stream currently using the OA unit. If accessed
1943 			 * outside a syscall associated to its file
1944 			 * descriptor, you need to hold
1945 			 * dev_priv->drm.struct_mutex.
1946 			 */
1947 			struct i915_perf_stream *exclusive_stream;
1948 
1949 			struct intel_context *pinned_ctx;
1950 			u32 specific_ctx_id;
1951 			u32 specific_ctx_id_mask;
1952 
1953 			struct hrtimer poll_check_timer;
1954 			wait_queue_head_t poll_wq;
1955 			bool pollin;
1956 
1957 			/**
1958 			 * For rate limiting any notifications of spurious
1959 			 * invalid OA reports
1960 			 */
1961 			struct ratelimit_state spurious_report_rs;
1962 
1963 			bool periodic;
1964 			int period_exponent;
1965 
1966 			struct i915_oa_config test_config;
1967 
1968 			struct {
1969 				struct i915_vma *vma;
1970 				u8 *vaddr;
1971 				u32 last_ctx_id;
1972 				int format;
1973 				int format_size;
1974 
1975 				/**
1976 				 * Locks reads and writes to all head/tail state
1977 				 *
1978 				 * Consider: the head and tail pointer state
1979 				 * needs to be read consistently from a hrtimer
1980 				 * callback (atomic context) and read() fop
1981 				 * (user context) with tail pointer updates
1982 				 * happening in atomic context and head updates
1983 				 * in user context and the (unlikely)
1984 				 * possibility of read() errors needing to
1985 				 * reset all head/tail state.
1986 				 *
1987 				 * Note: Contention or performance aren't
1988 				 * currently a significant concern here
1989 				 * considering the relatively low frequency of
1990 				 * hrtimer callbacks (5ms period) and that
1991 				 * reads typically only happen in response to a
1992 				 * hrtimer event and likely complete before the
1993 				 * next callback.
1994 				 *
1995 				 * Note: This lock is not held *while* reading
1996 				 * and copying data to userspace so the value
1997 				 * of head observed in htrimer callbacks won't
1998 				 * represent any partial consumption of data.
1999 				 */
2000 				spinlock_t ptr_lock;
2001 
2002 				/**
2003 				 * One 'aging' tail pointer and one 'aged'
2004 				 * tail pointer ready to used for reading.
2005 				 *
2006 				 * Initial values of 0xffffffff are invalid
2007 				 * and imply that an update is required
2008 				 * (and should be ignored by an attempted
2009 				 * read)
2010 				 */
2011 				struct {
2012 					u32 offset;
2013 				} tails[2];
2014 
2015 				/**
2016 				 * Index for the aged tail ready to read()
2017 				 * data up to.
2018 				 */
2019 				unsigned int aged_tail_idx;
2020 
2021 				/**
2022 				 * A monotonic timestamp for when the current
2023 				 * aging tail pointer was read; used to
2024 				 * determine when it is old enough to trust.
2025 				 */
2026 				u64 aging_timestamp;
2027 
2028 				/**
2029 				 * Although we can always read back the head
2030 				 * pointer register, we prefer to avoid
2031 				 * trusting the HW state, just to avoid any
2032 				 * risk that some hardware condition could
2033 				 * somehow bump the head pointer unpredictably
2034 				 * and cause us to forward the wrong OA buffer
2035 				 * data to userspace.
2036 				 */
2037 				u32 head;
2038 			} oa_buffer;
2039 
2040 			u32 gen7_latched_oastatus1;
2041 			u32 ctx_oactxctrl_offset;
2042 			u32 ctx_flexeu0_offset;
2043 
2044 			/**
2045 			 * The RPT_ID/reason field for Gen8+ includes a bit
2046 			 * to determine if the CTX ID in the report is valid
2047 			 * but the specific bit differs between Gen 8 and 9
2048 			 */
2049 			u32 gen8_valid_ctx_bit;
2050 
2051 			struct i915_oa_ops ops;
2052 			const struct i915_oa_format *oa_formats;
2053 		} oa;
2054 	} perf;
2055 
2056 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2057 	struct {
2058 		void (*resume)(struct drm_i915_private *);
2059 		void (*cleanup_engine)(struct intel_engine_cs *engine);
2060 
2061 		struct list_head timelines;
2062 
2063 		struct list_head active_rings;
2064 		struct list_head closed_vma;
2065 		u32 active_requests;
2066 		u32 request_serial;
2067 
2068 		/**
2069 		 * Is the GPU currently considered idle, or busy executing
2070 		 * userspace requests? Whilst idle, we allow runtime power
2071 		 * management to power down the hardware and display clocks.
2072 		 * In order to reduce the effect on performance, there
2073 		 * is a slight delay before we do so.
2074 		 */
2075 		bool awake;
2076 
2077 		/**
2078 		 * The number of times we have woken up.
2079 		 */
2080 		unsigned int epoch;
2081 #define I915_EPOCH_INVALID 0
2082 
2083 		/**
2084 		 * We leave the user IRQ off as much as possible,
2085 		 * but this means that requests will finish and never
2086 		 * be retired once the system goes idle. Set a timer to
2087 		 * fire periodically while the ring is running. When it
2088 		 * fires, go retire requests.
2089 		 */
2090 		struct delayed_work retire_work;
2091 
2092 		/**
2093 		 * When we detect an idle GPU, we want to turn on
2094 		 * powersaving features. So once we see that there
2095 		 * are no more requests outstanding and no more
2096 		 * arrive within a small period of time, we fire
2097 		 * off the idle_work.
2098 		 */
2099 		struct delayed_work idle_work;
2100 
2101 		ktime_t last_init_time;
2102 	} gt;
2103 
2104 	/* perform PHY state sanity checks? */
2105 	bool chv_phy_assert[2];
2106 
2107 	bool ipc_enabled;
2108 
2109 	/* Used to save the pipe-to-encoder mapping for audio */
2110 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2111 
2112 	/* necessary resource sharing with HDMI LPE audio driver. */
2113 	struct {
2114 		struct platform_device *platdev;
2115 		int	irq;
2116 	} lpe_audio;
2117 
2118 	struct i915_pmu pmu;
2119 
2120 	/*
2121 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2122 	 * will be rejected. Instead look for a better place.
2123 	 */
2124 };
2125 
2126 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2127 {
2128 	return container_of(dev, struct drm_i915_private, drm);
2129 }
2130 
2131 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2132 {
2133 	return to_i915(dev_get_drvdata(kdev));
2134 }
2135 
2136 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2137 {
2138 	return container_of(wopcm, struct drm_i915_private, wopcm);
2139 }
2140 
2141 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2142 {
2143 	return container_of(guc, struct drm_i915_private, guc);
2144 }
2145 
2146 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2147 {
2148 	return container_of(huc, struct drm_i915_private, huc);
2149 }
2150 
2151 /* Simple iterator over all initialised engines */
2152 #define for_each_engine(engine__, dev_priv__, id__) \
2153 	for ((id__) = 0; \
2154 	     (id__) < I915_NUM_ENGINES; \
2155 	     (id__)++) \
2156 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2157 
2158 /* Iterator over subset of engines selected by mask */
2159 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2160 	for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \
2161 	     (tmp__) ? \
2162 	     ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2163 	     0;)
2164 
2165 enum hdmi_force_audio {
2166 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2167 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2168 	HDMI_AUDIO_AUTO,		/* trust EDID */
2169 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2170 };
2171 
2172 #define I915_GTT_OFFSET_NONE ((u32)-1)
2173 
2174 /*
2175  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2176  * considered to be the frontbuffer for the given plane interface-wise. This
2177  * doesn't mean that the hw necessarily already scans it out, but that any
2178  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2179  *
2180  * We have one bit per pipe and per scanout plane type.
2181  */
2182 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2183 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2184 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2185 	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2186 	BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2187 })
2188 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2189 	BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2190 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2191 	GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2192 		INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2193 
2194 /*
2195  * Optimised SGL iterator for GEM objects
2196  */
2197 static __always_inline struct sgt_iter {
2198 	struct scatterlist *sgp;
2199 	union {
2200 		unsigned long pfn;
2201 		dma_addr_t dma;
2202 	};
2203 	unsigned int curr;
2204 	unsigned int max;
2205 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2206 	struct sgt_iter s = { .sgp = sgl };
2207 
2208 	if (s.sgp) {
2209 		s.max = s.curr = s.sgp->offset;
2210 		s.max += s.sgp->length;
2211 		if (dma)
2212 			s.dma = sg_dma_address(s.sgp);
2213 		else
2214 			s.pfn = page_to_pfn(sg_page(s.sgp));
2215 	}
2216 
2217 	return s;
2218 }
2219 
2220 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2221 {
2222 	++sg;
2223 	if (unlikely(sg_is_chain(sg)))
2224 		sg = sg_chain_ptr(sg);
2225 	return sg;
2226 }
2227 
2228 /**
2229  * __sg_next - return the next scatterlist entry in a list
2230  * @sg:		The current sg entry
2231  *
2232  * Description:
2233  *   If the entry is the last, return NULL; otherwise, step to the next
2234  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2235  *   otherwise just return the pointer to the current element.
2236  **/
2237 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2238 {
2239 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2240 }
2241 
2242 /**
2243  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2244  * @__dmap:	DMA address (output)
2245  * @__iter:	'struct sgt_iter' (iterator state, internal)
2246  * @__sgt:	sg_table to iterate over (input)
2247  */
2248 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2249 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2250 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2251 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2252 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2253 
2254 /**
2255  * for_each_sgt_page - iterate over the pages of the given sg_table
2256  * @__pp:	page pointer (output)
2257  * @__iter:	'struct sgt_iter' (iterator state, internal)
2258  * @__sgt:	sg_table to iterate over (input)
2259  */
2260 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2261 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2262 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2263 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2264 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2265 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2266 
2267 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2268 {
2269 	unsigned int page_sizes;
2270 
2271 	page_sizes = 0;
2272 	while (sg) {
2273 		GEM_BUG_ON(sg->offset);
2274 		GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2275 		page_sizes |= sg->length;
2276 		sg = __sg_next(sg);
2277 	}
2278 
2279 	return page_sizes;
2280 }
2281 
2282 static inline unsigned int i915_sg_segment_size(void)
2283 {
2284 	unsigned int size = swiotlb_max_segment();
2285 
2286 	if (size == 0)
2287 		return SCATTERLIST_MAX_SEGMENT;
2288 
2289 	size = rounddown(size, PAGE_SIZE);
2290 	/* swiotlb_max_segment_size can return 1 byte when it means one page. */
2291 	if (size < PAGE_SIZE)
2292 		size = PAGE_SIZE;
2293 
2294 	return size;
2295 }
2296 
2297 static inline const struct intel_device_info *
2298 intel_info(const struct drm_i915_private *dev_priv)
2299 {
2300 	return &dev_priv->info;
2301 }
2302 
2303 #define INTEL_INFO(dev_priv)	intel_info((dev_priv))
2304 #define DRIVER_CAPS(dev_priv)	(&(dev_priv)->caps)
2305 
2306 #define INTEL_GEN(dev_priv)	((dev_priv)->info.gen)
2307 #define INTEL_DEVID(dev_priv)	((dev_priv)->info.device_id)
2308 
2309 #define REVID_FOREVER		0xff
2310 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2311 
2312 #define GEN_FOREVER (0)
2313 
2314 #define INTEL_GEN_MASK(s, e) ( \
2315 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2316 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2317 	GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2318 		(s) != GEN_FOREVER ? (s) - 1 : 0) \
2319 )
2320 
2321 /*
2322  * Returns true if Gen is in inclusive range [Start, End].
2323  *
2324  * Use GEN_FOREVER for unbound start and or end.
2325  */
2326 #define IS_GEN(dev_priv, s, e) \
2327 	(!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2328 
2329 /*
2330  * Return true if revision is in range [since,until] inclusive.
2331  *
2332  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2333  */
2334 #define IS_REVID(p, since, until) \
2335 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2336 
2337 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2338 
2339 #define IS_I830(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I830)
2340 #define IS_I845G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I845G)
2341 #define IS_I85X(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I85X)
2342 #define IS_I865G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I865G)
2343 #define IS_I915G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915G)
2344 #define IS_I915GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915GM)
2345 #define IS_I945G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945G)
2346 #define IS_I945GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945GM)
2347 #define IS_I965G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965G)
2348 #define IS_I965GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965GM)
2349 #define IS_G45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G45)
2350 #define IS_GM45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GM45)
2351 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2352 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2353 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2354 #define IS_PINEVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2355 #define IS_G33(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G33)
2356 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2357 #define IS_IVYBRIDGE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2358 #define IS_IVB_GT1(dev_priv)	(IS_IVYBRIDGE(dev_priv) && \
2359 				 (dev_priv)->info.gt == 1)
2360 #define IS_VALLEYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2361 #define IS_CHERRYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2362 #define IS_HASWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_HASWELL)
2363 #define IS_BROADWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2364 #define IS_SKYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2365 #define IS_BROXTON(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROXTON)
2366 #define IS_KABYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2367 #define IS_GEMINILAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2368 #define IS_COFFEELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2369 #define IS_CANNONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2370 #define IS_ICELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2371 #define IS_MOBILE(dev_priv)	((dev_priv)->info.is_mobile)
2372 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2373 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2374 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2375 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2376 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2377 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2378 /* ULX machines are also considered ULT. */
2379 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2380 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2381 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2382 				 (dev_priv)->info.gt == 3)
2383 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2384 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2385 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2386 				 (dev_priv)->info.gt == 3)
2387 /* ULX machines are also considered ULT. */
2388 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2389 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2390 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2391 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2392 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2393 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2394 				 INTEL_DEVID(dev_priv) == 0x1926)
2395 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2396 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2397 				 INTEL_DEVID(dev_priv) == 0x191E)
2398 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2399 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2400 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2401 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2402 				 INTEL_DEVID(dev_priv) == 0x5926)
2403 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2404 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2405 				 INTEL_DEVID(dev_priv) == 0x591E)
2406 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2407 				 (dev_priv)->info.gt == 2)
2408 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2409 				 (dev_priv)->info.gt == 3)
2410 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2411 				 (dev_priv)->info.gt == 4)
2412 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2413 				 (dev_priv)->info.gt == 2)
2414 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2415 				 (dev_priv)->info.gt == 3)
2416 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2417 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2418 #define IS_CFL_GT2(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2419 				 (dev_priv)->info.gt == 2)
2420 #define IS_CFL_GT3(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2421 				 (dev_priv)->info.gt == 3)
2422 #define IS_CNL_WITH_PORT_F(dev_priv)   (IS_CANNONLAKE(dev_priv) && \
2423 					(INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2424 
2425 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2426 
2427 #define SKL_REVID_A0		0x0
2428 #define SKL_REVID_B0		0x1
2429 #define SKL_REVID_C0		0x2
2430 #define SKL_REVID_D0		0x3
2431 #define SKL_REVID_E0		0x4
2432 #define SKL_REVID_F0		0x5
2433 #define SKL_REVID_G0		0x6
2434 #define SKL_REVID_H0		0x7
2435 
2436 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2437 
2438 #define BXT_REVID_A0		0x0
2439 #define BXT_REVID_A1		0x1
2440 #define BXT_REVID_B0		0x3
2441 #define BXT_REVID_B_LAST	0x8
2442 #define BXT_REVID_C0		0x9
2443 
2444 #define IS_BXT_REVID(dev_priv, since, until) \
2445 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2446 
2447 #define KBL_REVID_A0		0x0
2448 #define KBL_REVID_B0		0x1
2449 #define KBL_REVID_C0		0x2
2450 #define KBL_REVID_D0		0x3
2451 #define KBL_REVID_E0		0x4
2452 
2453 #define IS_KBL_REVID(dev_priv, since, until) \
2454 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2455 
2456 #define GLK_REVID_A0		0x0
2457 #define GLK_REVID_A1		0x1
2458 
2459 #define IS_GLK_REVID(dev_priv, since, until) \
2460 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2461 
2462 #define CNL_REVID_A0		0x0
2463 #define CNL_REVID_B0		0x1
2464 #define CNL_REVID_C0		0x2
2465 
2466 #define IS_CNL_REVID(p, since, until) \
2467 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2468 
2469 #define ICL_REVID_A0		0x0
2470 #define ICL_REVID_A2		0x1
2471 #define ICL_REVID_B0		0x3
2472 #define ICL_REVID_B2		0x4
2473 #define ICL_REVID_C0		0x5
2474 
2475 #define IS_ICL_REVID(p, since, until) \
2476 	(IS_ICELAKE(p) && IS_REVID(p, since, until))
2477 
2478 /*
2479  * The genX designation typically refers to the render engine, so render
2480  * capability related checks should use IS_GEN, while display and other checks
2481  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2482  * chips, etc.).
2483  */
2484 #define IS_GEN2(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(1)))
2485 #define IS_GEN3(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(2)))
2486 #define IS_GEN4(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(3)))
2487 #define IS_GEN5(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(4)))
2488 #define IS_GEN6(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(5)))
2489 #define IS_GEN7(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(6)))
2490 #define IS_GEN8(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(7)))
2491 #define IS_GEN9(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(8)))
2492 #define IS_GEN10(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(9)))
2493 #define IS_GEN11(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(10)))
2494 
2495 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2496 #define IS_GEN9_LP(dev_priv)	(IS_GEN9(dev_priv) && IS_LP(dev_priv))
2497 #define IS_GEN9_BC(dev_priv)	(IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2498 
2499 #define ENGINE_MASK(id)	BIT(id)
2500 #define RENDER_RING	ENGINE_MASK(RCS)
2501 #define BSD_RING	ENGINE_MASK(VCS)
2502 #define BLT_RING	ENGINE_MASK(BCS)
2503 #define VEBOX_RING	ENGINE_MASK(VECS)
2504 #define BSD2_RING	ENGINE_MASK(VCS2)
2505 #define BSD3_RING	ENGINE_MASK(VCS3)
2506 #define BSD4_RING	ENGINE_MASK(VCS4)
2507 #define VEBOX2_RING	ENGINE_MASK(VECS2)
2508 #define ALL_ENGINES	(~0)
2509 
2510 #define HAS_ENGINE(dev_priv, id) \
2511 	(!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2512 
2513 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
2514 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
2515 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
2516 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
2517 
2518 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv)
2519 
2520 #define HAS_LLC(dev_priv)	((dev_priv)->info.has_llc)
2521 #define HAS_SNOOP(dev_priv)	((dev_priv)->info.has_snoop)
2522 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2523 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2524 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2525 
2526 #define HWS_NEEDS_PHYSICAL(dev_priv)	((dev_priv)->info.hws_needs_physical)
2527 
2528 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2529 		((dev_priv)->info.has_logical_ring_contexts)
2530 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2531 		((dev_priv)->info.has_logical_ring_elsq)
2532 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2533 		((dev_priv)->info.has_logical_ring_preemption)
2534 
2535 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2536 
2537 #define USES_PPGTT(dev_priv)		(i915_modparams.enable_ppgtt)
2538 #define USES_FULL_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt >= 2)
2539 #define USES_FULL_48BIT_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt == 3)
2540 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2541 	GEM_BUG_ON((sizes) == 0); \
2542 	((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
2543 })
2544 
2545 #define HAS_OVERLAY(dev_priv)		 ((dev_priv)->info.has_overlay)
2546 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2547 		((dev_priv)->info.overlay_needs_physical)
2548 
2549 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2550 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
2551 
2552 /* WaRsDisableCoarsePowerGating:skl,cnl */
2553 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2554 	(IS_CANNONLAKE(dev_priv) || \
2555 	 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2556 
2557 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2558 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \
2559 					IS_GEMINILAKE(dev_priv) || \
2560 					IS_KABYLAKE(dev_priv))
2561 
2562 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2563  * rows, which changed the alignment requirements and fence programming.
2564  */
2565 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2566 					 !(IS_I915G(dev_priv) || \
2567 					 IS_I915GM(dev_priv)))
2568 #define SUPPORTS_TV(dev_priv)		((dev_priv)->info.supports_tv)
2569 #define I915_HAS_HOTPLUG(dev_priv)	((dev_priv)->info.has_hotplug)
2570 
2571 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
2572 #define HAS_FBC(dev_priv)	((dev_priv)->info.has_fbc)
2573 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2574 
2575 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2576 
2577 #define HAS_DP_MST(dev_priv)	((dev_priv)->info.has_dp_mst)
2578 
2579 #define HAS_DDI(dev_priv)		 ((dev_priv)->info.has_ddi)
2580 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2581 #define HAS_PSR(dev_priv)		 ((dev_priv)->info.has_psr)
2582 
2583 #define HAS_RC6(dev_priv)		 ((dev_priv)->info.has_rc6)
2584 #define HAS_RC6p(dev_priv)		 ((dev_priv)->info.has_rc6p)
2585 #define HAS_RC6pp(dev_priv)		 (false) /* HW was never validated */
2586 
2587 #define HAS_CSR(dev_priv)	((dev_priv)->info.has_csr)
2588 
2589 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2590 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2591 
2592 #define HAS_IPC(dev_priv)		 ((dev_priv)->info.has_ipc)
2593 
2594 /*
2595  * For now, anything with a GuC requires uCode loading, and then supports
2596  * command submission once loaded. But these are logically independent
2597  * properties, so we have separate macros to test them.
2598  */
2599 #define HAS_GUC(dev_priv)	((dev_priv)->info.has_guc)
2600 #define HAS_GUC_CT(dev_priv)	((dev_priv)->info.has_guc_ct)
2601 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2602 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
2603 
2604 /* For now, anything with a GuC has also HuC */
2605 #define HAS_HUC(dev_priv)	(HAS_GUC(dev_priv))
2606 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2607 
2608 /* Having a GuC is not the same as using a GuC */
2609 #define USES_GUC(dev_priv)		intel_uc_is_using_guc()
2610 #define USES_GUC_SUBMISSION(dev_priv)	intel_uc_is_using_guc_submission()
2611 #define USES_HUC(dev_priv)		intel_uc_is_using_huc()
2612 
2613 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
2614 
2615 #define HAS_POOLED_EU(dev_priv)	((dev_priv)->info.has_pooled_eu)
2616 
2617 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
2618 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2619 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2620 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2621 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2622 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2623 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
2624 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
2625 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2626 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2627 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
2628 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
2629 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
2630 #define INTEL_PCH_ICP_DEVICE_ID_TYPE		0x3480
2631 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2632 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2633 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2634 
2635 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2636 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2637 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2638 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2639 #define HAS_PCH_CNP_LP(dev_priv) \
2640 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2641 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2642 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2643 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2644 #define HAS_PCH_LPT_LP(dev_priv) \
2645 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2646 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2647 #define HAS_PCH_LPT_H(dev_priv) \
2648 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2649 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2650 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2651 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2652 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2653 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2654 
2655 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2656 
2657 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2658 
2659 /* DPF == dynamic parity feature */
2660 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2661 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2662 				 2 : HAS_L3_DPF(dev_priv))
2663 
2664 #define GT_FREQUENCY_MULTIPLIER 50
2665 #define GEN9_FREQ_SCALER 3
2666 
2667 #include "i915_trace.h"
2668 
2669 static inline bool intel_vtd_active(void)
2670 {
2671 #ifdef CONFIG_INTEL_IOMMU
2672 	if (intel_iommu_gfx_mapped)
2673 		return true;
2674 #endif
2675 	return false;
2676 }
2677 
2678 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2679 {
2680 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2681 }
2682 
2683 static inline bool
2684 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2685 {
2686 	return IS_BROXTON(dev_priv) && intel_vtd_active();
2687 }
2688 
2689 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2690 				int enable_ppgtt);
2691 
2692 /* i915_drv.c */
2693 void __printf(3, 4)
2694 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2695 	      const char *fmt, ...);
2696 
2697 #define i915_report_error(dev_priv, fmt, ...)				   \
2698 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2699 
2700 #ifdef CONFIG_COMPAT
2701 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2702 			      unsigned long arg);
2703 #else
2704 #define i915_compat_ioctl NULL
2705 #endif
2706 extern const struct dev_pm_ops i915_pm_ops;
2707 
2708 extern int i915_driver_load(struct pci_dev *pdev,
2709 			    const struct pci_device_id *ent);
2710 extern void i915_driver_unload(struct drm_device *dev);
2711 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2712 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2713 
2714 extern void i915_reset(struct drm_i915_private *i915,
2715 		       unsigned int stalled_mask,
2716 		       const char *reason);
2717 extern int i915_reset_engine(struct intel_engine_cs *engine,
2718 			     const char *reason);
2719 
2720 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
2721 extern int intel_reset_guc(struct drm_i915_private *dev_priv);
2722 extern int intel_guc_reset_engine(struct intel_guc *guc,
2723 				  struct intel_engine_cs *engine);
2724 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2725 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2726 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2727 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2728 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2729 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2730 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2731 
2732 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2733 int intel_engines_init(struct drm_i915_private *dev_priv);
2734 
2735 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv);
2736 
2737 /* intel_hotplug.c */
2738 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2739 			   u32 pin_mask, u32 long_mask);
2740 void intel_hpd_init(struct drm_i915_private *dev_priv);
2741 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2742 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2743 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2744 				   enum port port);
2745 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2746 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2747 
2748 /* i915_irq.c */
2749 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2750 {
2751 	unsigned long delay;
2752 
2753 	if (unlikely(!i915_modparams.enable_hangcheck))
2754 		return;
2755 
2756 	/* Don't continually defer the hangcheck so that it is always run at
2757 	 * least once after work has been scheduled on any ring. Otherwise,
2758 	 * we will ignore a hung ring if a second ring is kept busy.
2759 	 */
2760 
2761 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2762 	queue_delayed_work(system_long_wq,
2763 			   &dev_priv->gpu_error.hangcheck_work, delay);
2764 }
2765 
2766 __printf(4, 5)
2767 void i915_handle_error(struct drm_i915_private *dev_priv,
2768 		       u32 engine_mask,
2769 		       unsigned long flags,
2770 		       const char *fmt, ...);
2771 #define I915_ERROR_CAPTURE BIT(0)
2772 
2773 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2774 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2775 int intel_irq_install(struct drm_i915_private *dev_priv);
2776 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2777 
2778 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2779 {
2780 	return dev_priv->gvt;
2781 }
2782 
2783 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2784 {
2785 	return dev_priv->vgpu.active;
2786 }
2787 
2788 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2789 			      enum pipe pipe);
2790 void
2791 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2792 		     u32 status_mask);
2793 
2794 void
2795 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2796 		      u32 status_mask);
2797 
2798 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2799 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2800 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2801 				   uint32_t mask,
2802 				   uint32_t bits);
2803 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2804 			    uint32_t interrupt_mask,
2805 			    uint32_t enabled_irq_mask);
2806 static inline void
2807 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2808 {
2809 	ilk_update_display_irq(dev_priv, bits, bits);
2810 }
2811 static inline void
2812 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2813 {
2814 	ilk_update_display_irq(dev_priv, bits, 0);
2815 }
2816 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2817 			 enum pipe pipe,
2818 			 uint32_t interrupt_mask,
2819 			 uint32_t enabled_irq_mask);
2820 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2821 				       enum pipe pipe, uint32_t bits)
2822 {
2823 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2824 }
2825 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2826 					enum pipe pipe, uint32_t bits)
2827 {
2828 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2829 }
2830 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2831 				  uint32_t interrupt_mask,
2832 				  uint32_t enabled_irq_mask);
2833 static inline void
2834 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2835 {
2836 	ibx_display_interrupt_update(dev_priv, bits, bits);
2837 }
2838 static inline void
2839 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2840 {
2841 	ibx_display_interrupt_update(dev_priv, bits, 0);
2842 }
2843 
2844 /* i915_gem.c */
2845 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2846 			  struct drm_file *file_priv);
2847 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2848 			 struct drm_file *file_priv);
2849 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2850 			  struct drm_file *file_priv);
2851 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2852 			struct drm_file *file_priv);
2853 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2854 			struct drm_file *file_priv);
2855 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2856 			      struct drm_file *file_priv);
2857 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2858 			     struct drm_file *file_priv);
2859 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2860 			      struct drm_file *file_priv);
2861 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2862 			       struct drm_file *file_priv);
2863 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2864 			struct drm_file *file_priv);
2865 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2866 			       struct drm_file *file);
2867 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2868 			       struct drm_file *file);
2869 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2870 			    struct drm_file *file_priv);
2871 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2872 			   struct drm_file *file_priv);
2873 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2874 			      struct drm_file *file_priv);
2875 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2876 			      struct drm_file *file_priv);
2877 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2878 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2879 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2880 			   struct drm_file *file);
2881 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2882 				struct drm_file *file_priv);
2883 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2884 			struct drm_file *file_priv);
2885 void i915_gem_sanitize(struct drm_i915_private *i915);
2886 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2887 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2888 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2889 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2890 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2891 
2892 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
2893 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2894 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2895 			 const struct drm_i915_gem_object_ops *ops);
2896 struct drm_i915_gem_object *
2897 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2898 struct drm_i915_gem_object *
2899 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2900 				 const void *data, size_t size);
2901 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2902 void i915_gem_free_object(struct drm_gem_object *obj);
2903 
2904 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2905 {
2906 	if (!atomic_read(&i915->mm.free_count))
2907 		return;
2908 
2909 	/* A single pass should suffice to release all the freed objects (along
2910 	 * most call paths) , but be a little more paranoid in that freeing
2911 	 * the objects does take a little amount of time, during which the rcu
2912 	 * callbacks could have added new objects into the freed list, and
2913 	 * armed the work again.
2914 	 */
2915 	do {
2916 		rcu_barrier();
2917 	} while (flush_work(&i915->mm.free_work));
2918 }
2919 
2920 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2921 {
2922 	/*
2923 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
2924 	 * general we have workers that are armed by RCU and then rearm
2925 	 * themselves in their callbacks. To be paranoid, we need to
2926 	 * drain the workqueue a second time after waiting for the RCU
2927 	 * grace period so that we catch work queued via RCU from the first
2928 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
2929 	 * a result, we make an assumption that we only don't require more
2930 	 * than 2 passes to catch all recursive RCU delayed work.
2931 	 *
2932 	 */
2933 	int pass = 2;
2934 	do {
2935 		rcu_barrier();
2936 		drain_workqueue(i915->wq);
2937 	} while (--pass);
2938 }
2939 
2940 struct i915_vma * __must_check
2941 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2942 			 const struct i915_ggtt_view *view,
2943 			 u64 size,
2944 			 u64 alignment,
2945 			 u64 flags);
2946 
2947 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
2948 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2949 
2950 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
2951 
2952 static inline int __sg_page_count(const struct scatterlist *sg)
2953 {
2954 	return sg->length >> PAGE_SHIFT;
2955 }
2956 
2957 struct scatterlist *
2958 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
2959 		       unsigned int n, unsigned int *offset);
2960 
2961 struct page *
2962 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
2963 			 unsigned int n);
2964 
2965 struct page *
2966 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
2967 			       unsigned int n);
2968 
2969 dma_addr_t
2970 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
2971 				unsigned long n);
2972 
2973 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2974 				 struct sg_table *pages,
2975 				 unsigned int sg_page_sizes);
2976 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2977 
2978 static inline int __must_check
2979 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2980 {
2981 	might_lock(&obj->mm.lock);
2982 
2983 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
2984 		return 0;
2985 
2986 	return __i915_gem_object_get_pages(obj);
2987 }
2988 
2989 static inline bool
2990 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
2991 {
2992 	return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
2993 }
2994 
2995 static inline void
2996 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2997 {
2998 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2999 
3000 	atomic_inc(&obj->mm.pages_pin_count);
3001 }
3002 
3003 static inline bool
3004 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3005 {
3006 	return atomic_read(&obj->mm.pages_pin_count);
3007 }
3008 
3009 static inline void
3010 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3011 {
3012 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3013 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3014 
3015 	atomic_dec(&obj->mm.pages_pin_count);
3016 }
3017 
3018 static inline void
3019 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3020 {
3021 	__i915_gem_object_unpin_pages(obj);
3022 }
3023 
3024 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3025 	I915_MM_NORMAL = 0,
3026 	I915_MM_SHRINKER
3027 };
3028 
3029 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3030 				 enum i915_mm_subclass subclass);
3031 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3032 
3033 enum i915_map_type {
3034 	I915_MAP_WB = 0,
3035 	I915_MAP_WC,
3036 #define I915_MAP_OVERRIDE BIT(31)
3037 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3038 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3039 };
3040 
3041 /**
3042  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3043  * @obj: the object to map into kernel address space
3044  * @type: the type of mapping, used to select pgprot_t
3045  *
3046  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3047  * pages and then returns a contiguous mapping of the backing storage into
3048  * the kernel address space. Based on the @type of mapping, the PTE will be
3049  * set to either WriteBack or WriteCombine (via pgprot_t).
3050  *
3051  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3052  * mapping is no longer required.
3053  *
3054  * Returns the pointer through which to access the mapped object, or an
3055  * ERR_PTR() on error.
3056  */
3057 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3058 					   enum i915_map_type type);
3059 
3060 /**
3061  * i915_gem_object_unpin_map - releases an earlier mapping
3062  * @obj: the object to unmap
3063  *
3064  * After pinning the object and mapping its pages, once you are finished
3065  * with your access, call i915_gem_object_unpin_map() to release the pin
3066  * upon the mapping. Once the pin count reaches zero, that mapping may be
3067  * removed.
3068  */
3069 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3070 {
3071 	i915_gem_object_unpin_pages(obj);
3072 }
3073 
3074 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3075 				    unsigned int *needs_clflush);
3076 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3077 				     unsigned int *needs_clflush);
3078 #define CLFLUSH_BEFORE	BIT(0)
3079 #define CLFLUSH_AFTER	BIT(1)
3080 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
3081 
3082 static inline void
3083 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3084 {
3085 	i915_gem_object_unpin_pages(obj);
3086 }
3087 
3088 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3089 int i915_gem_dumb_create(struct drm_file *file_priv,
3090 			 struct drm_device *dev,
3091 			 struct drm_mode_create_dumb *args);
3092 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3093 		      uint32_t handle, uint64_t *offset);
3094 int i915_gem_mmap_gtt_version(void);
3095 
3096 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3097 		       struct drm_i915_gem_object *new,
3098 		       unsigned frontbuffer_bits);
3099 
3100 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3101 
3102 struct i915_request *
3103 i915_gem_find_active_request(struct intel_engine_cs *engine);
3104 
3105 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3106 {
3107 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3108 }
3109 
3110 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3111 {
3112 	return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3113 }
3114 
3115 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3116 {
3117 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3118 }
3119 
3120 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3121 {
3122 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3123 }
3124 
3125 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3126 {
3127 	return READ_ONCE(error->reset_count);
3128 }
3129 
3130 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3131 					  struct intel_engine_cs *engine)
3132 {
3133 	return READ_ONCE(error->reset_engine_count[engine->id]);
3134 }
3135 
3136 struct i915_request *
3137 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3138 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3139 void i915_gem_reset(struct drm_i915_private *dev_priv,
3140 		    unsigned int stalled_mask);
3141 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3142 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3143 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3144 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3145 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3146 			   struct i915_request *request,
3147 			   bool stalled);
3148 
3149 void i915_gem_init_mmio(struct drm_i915_private *i915);
3150 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3151 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3152 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3153 void i915_gem_fini(struct drm_i915_private *dev_priv);
3154 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3155 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3156 			   unsigned int flags, long timeout);
3157 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3158 void i915_gem_suspend_late(struct drm_i915_private *dev_priv);
3159 void i915_gem_resume(struct drm_i915_private *dev_priv);
3160 vm_fault_t i915_gem_fault(struct vm_fault *vmf);
3161 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3162 			 unsigned int flags,
3163 			 long timeout,
3164 			 struct intel_rps_client *rps);
3165 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3166 				  unsigned int flags,
3167 				  const struct i915_sched_attr *attr);
3168 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3169 
3170 int __must_check
3171 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3172 int __must_check
3173 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3174 int __must_check
3175 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3176 struct i915_vma * __must_check
3177 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3178 				     u32 alignment,
3179 				     const struct i915_ggtt_view *view,
3180 				     unsigned int flags);
3181 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3182 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3183 				int align);
3184 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3185 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3186 
3187 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3188 				    enum i915_cache_level cache_level);
3189 
3190 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3191 				struct dma_buf *dma_buf);
3192 
3193 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3194 				struct drm_gem_object *gem_obj, int flags);
3195 
3196 static inline struct i915_hw_ppgtt *
3197 i915_vm_to_ppgtt(struct i915_address_space *vm)
3198 {
3199 	return container_of(vm, struct i915_hw_ppgtt, vm);
3200 }
3201 
3202 /* i915_gem_fence_reg.c */
3203 struct drm_i915_fence_reg *
3204 i915_reserve_fence(struct drm_i915_private *dev_priv);
3205 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3206 
3207 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3208 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3209 
3210 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3211 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3212 				       struct sg_table *pages);
3213 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3214 					 struct sg_table *pages);
3215 
3216 static inline struct i915_gem_context *
3217 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3218 {
3219 	return idr_find(&file_priv->context_idr, id);
3220 }
3221 
3222 static inline struct i915_gem_context *
3223 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3224 {
3225 	struct i915_gem_context *ctx;
3226 
3227 	rcu_read_lock();
3228 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3229 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3230 		ctx = NULL;
3231 	rcu_read_unlock();
3232 
3233 	return ctx;
3234 }
3235 
3236 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3237 			 struct drm_file *file);
3238 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3239 			       struct drm_file *file);
3240 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3241 				  struct drm_file *file);
3242 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3243 			    struct i915_gem_context *ctx,
3244 			    uint32_t *reg_state);
3245 
3246 /* i915_gem_evict.c */
3247 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3248 					  u64 min_size, u64 alignment,
3249 					  unsigned cache_level,
3250 					  u64 start, u64 end,
3251 					  unsigned flags);
3252 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3253 					 struct drm_mm_node *node,
3254 					 unsigned int flags);
3255 int i915_gem_evict_vm(struct i915_address_space *vm);
3256 
3257 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3258 
3259 /* belongs in i915_gem_gtt.h */
3260 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3261 {
3262 	wmb();
3263 	if (INTEL_GEN(dev_priv) < 6)
3264 		intel_gtt_chipset_flush();
3265 }
3266 
3267 /* i915_gem_stolen.c */
3268 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3269 				struct drm_mm_node *node, u64 size,
3270 				unsigned alignment);
3271 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3272 					 struct drm_mm_node *node, u64 size,
3273 					 unsigned alignment, u64 start,
3274 					 u64 end);
3275 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3276 				 struct drm_mm_node *node);
3277 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3278 void i915_gem_cleanup_stolen(struct drm_device *dev);
3279 struct drm_i915_gem_object *
3280 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3281 			      resource_size_t size);
3282 struct drm_i915_gem_object *
3283 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3284 					       resource_size_t stolen_offset,
3285 					       resource_size_t gtt_offset,
3286 					       resource_size_t size);
3287 
3288 /* i915_gem_internal.c */
3289 struct drm_i915_gem_object *
3290 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3291 				phys_addr_t size);
3292 
3293 /* i915_gem_shrinker.c */
3294 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3295 			      unsigned long target,
3296 			      unsigned long *nr_scanned,
3297 			      unsigned flags);
3298 #define I915_SHRINK_PURGEABLE 0x1
3299 #define I915_SHRINK_UNBOUND 0x2
3300 #define I915_SHRINK_BOUND 0x4
3301 #define I915_SHRINK_ACTIVE 0x8
3302 #define I915_SHRINK_VMAPS 0x10
3303 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3304 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3305 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3306 void i915_gem_shrinker_taints_mutex(struct mutex *mutex);
3307 
3308 /* i915_gem_tiling.c */
3309 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3310 {
3311 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3312 
3313 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3314 		i915_gem_object_is_tiled(obj);
3315 }
3316 
3317 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3318 			unsigned int tiling, unsigned int stride);
3319 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3320 			     unsigned int tiling, unsigned int stride);
3321 
3322 /* i915_debugfs.c */
3323 #ifdef CONFIG_DEBUG_FS
3324 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3325 int i915_debugfs_connector_add(struct drm_connector *connector);
3326 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3327 #else
3328 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3329 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3330 { return 0; }
3331 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3332 #endif
3333 
3334 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3335 
3336 /* i915_cmd_parser.c */
3337 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3338 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3339 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3340 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3341 			    struct drm_i915_gem_object *batch_obj,
3342 			    struct drm_i915_gem_object *shadow_batch_obj,
3343 			    u32 batch_start_offset,
3344 			    u32 batch_len,
3345 			    bool is_master);
3346 
3347 /* i915_perf.c */
3348 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3349 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3350 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3351 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3352 
3353 /* i915_suspend.c */
3354 extern int i915_save_state(struct drm_i915_private *dev_priv);
3355 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3356 
3357 /* i915_sysfs.c */
3358 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3359 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3360 
3361 /* intel_lpe_audio.c */
3362 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3363 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3364 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3365 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3366 			    enum pipe pipe, enum port port,
3367 			    const void *eld, int ls_clock, bool dp_output);
3368 
3369 /* intel_i2c.c */
3370 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3371 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3372 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3373 				     unsigned int pin);
3374 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3375 
3376 extern struct i2c_adapter *
3377 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3378 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3379 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3380 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3381 {
3382 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3383 }
3384 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3385 
3386 /* intel_bios.c */
3387 void intel_bios_init(struct drm_i915_private *dev_priv);
3388 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3389 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3390 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3391 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3392 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3393 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3394 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3395 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3396 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3397 				     enum port port);
3398 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3399 				enum port port);
3400 
3401 /* intel_acpi.c */
3402 #ifdef CONFIG_ACPI
3403 extern void intel_register_dsm_handler(void);
3404 extern void intel_unregister_dsm_handler(void);
3405 #else
3406 static inline void intel_register_dsm_handler(void) { return; }
3407 static inline void intel_unregister_dsm_handler(void) { return; }
3408 #endif /* CONFIG_ACPI */
3409 
3410 /* intel_device_info.c */
3411 static inline struct intel_device_info *
3412 mkwrite_device_info(struct drm_i915_private *dev_priv)
3413 {
3414 	return (struct intel_device_info *)&dev_priv->info;
3415 }
3416 
3417 /* modesetting */
3418 extern void intel_modeset_init_hw(struct drm_device *dev);
3419 extern int intel_modeset_init(struct drm_device *dev);
3420 extern void intel_modeset_cleanup(struct drm_device *dev);
3421 extern int intel_connector_register(struct drm_connector *);
3422 extern void intel_connector_unregister(struct drm_connector *);
3423 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3424 				       bool state);
3425 extern void intel_display_resume(struct drm_device *dev);
3426 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3427 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3428 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3429 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3430 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3431 extern void intel_rps_mark_interactive(struct drm_i915_private *i915,
3432 				       bool interactive);
3433 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3434 				  bool enable);
3435 
3436 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3437 			struct drm_file *file);
3438 
3439 /* overlay */
3440 extern struct intel_overlay_error_state *
3441 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3442 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3443 					    struct intel_overlay_error_state *error);
3444 
3445 extern struct intel_display_error_state *
3446 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3447 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3448 					    struct intel_display_error_state *error);
3449 
3450 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3451 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3452 				    u32 val, int fast_timeout_us,
3453 				    int slow_timeout_ms);
3454 #define sandybridge_pcode_write(dev_priv, mbox, val)	\
3455 	sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3456 
3457 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3458 		      u32 reply_mask, u32 reply, int timeout_base_ms);
3459 
3460 /* intel_sideband.c */
3461 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3462 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3463 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3464 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3465 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3466 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3467 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3468 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3469 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3470 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3471 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3472 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3473 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3474 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3475 		   enum intel_sbi_destination destination);
3476 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3477 		     enum intel_sbi_destination destination);
3478 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3479 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3480 
3481 /* intel_dpio_phy.c */
3482 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3483 			     enum dpio_phy *phy, enum dpio_channel *ch);
3484 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3485 				  enum port port, u32 margin, u32 scale,
3486 				  u32 enable, u32 deemphasis);
3487 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3488 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3489 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3490 			    enum dpio_phy phy);
3491 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3492 			      enum dpio_phy phy);
3493 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count);
3494 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3495 				     uint8_t lane_lat_optim_mask);
3496 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3497 
3498 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3499 			      u32 deemph_reg_value, u32 margin_reg_value,
3500 			      bool uniq_trans_scale);
3501 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3502 			      const struct intel_crtc_state *crtc_state,
3503 			      bool reset);
3504 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3505 			    const struct intel_crtc_state *crtc_state);
3506 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3507 				const struct intel_crtc_state *crtc_state);
3508 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3509 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3510 			      const struct intel_crtc_state *old_crtc_state);
3511 
3512 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3513 			      u32 demph_reg_value, u32 preemph_reg_value,
3514 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3515 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3516 			    const struct intel_crtc_state *crtc_state);
3517 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3518 				const struct intel_crtc_state *crtc_state);
3519 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3520 			 const struct intel_crtc_state *old_crtc_state);
3521 
3522 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3523 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3524 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3525 			   const i915_reg_t reg);
3526 
3527 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3528 
3529 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3530 					 const i915_reg_t reg)
3531 {
3532 	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3533 }
3534 
3535 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3536 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3537 
3538 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3539 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3540 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3541 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3542 
3543 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3544 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3545 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3546 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3547 
3548 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3549  * will be implemented using 2 32-bit writes in an arbitrary order with
3550  * an arbitrary delay between them. This can cause the hardware to
3551  * act upon the intermediate value, possibly leading to corruption and
3552  * machine death. For this reason we do not support I915_WRITE64, or
3553  * dev_priv->uncore.funcs.mmio_writeq.
3554  *
3555  * When reading a 64-bit value as two 32-bit values, the delay may cause
3556  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3557  * occasionally a 64-bit register does not actualy support a full readq
3558  * and must be read using two 32-bit reads.
3559  *
3560  * You have been warned.
3561  */
3562 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3563 
3564 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
3565 	u32 upper, lower, old_upper, loop = 0;				\
3566 	upper = I915_READ(upper_reg);					\
3567 	do {								\
3568 		old_upper = upper;					\
3569 		lower = I915_READ(lower_reg);				\
3570 		upper = I915_READ(upper_reg);				\
3571 	} while (upper != old_upper && loop++ < 2);			\
3572 	(u64)upper << 32 | lower; })
3573 
3574 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
3575 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
3576 
3577 #define __raw_read(x, s) \
3578 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3579 					     i915_reg_t reg) \
3580 { \
3581 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3582 }
3583 
3584 #define __raw_write(x, s) \
3585 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3586 				       i915_reg_t reg, uint##x##_t val) \
3587 { \
3588 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3589 }
3590 __raw_read(8, b)
3591 __raw_read(16, w)
3592 __raw_read(32, l)
3593 __raw_read(64, q)
3594 
3595 __raw_write(8, b)
3596 __raw_write(16, w)
3597 __raw_write(32, l)
3598 __raw_write(64, q)
3599 
3600 #undef __raw_read
3601 #undef __raw_write
3602 
3603 /* These are untraced mmio-accessors that are only valid to be used inside
3604  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3605  * controlled.
3606  *
3607  * Think twice, and think again, before using these.
3608  *
3609  * As an example, these accessors can possibly be used between:
3610  *
3611  * spin_lock_irq(&dev_priv->uncore.lock);
3612  * intel_uncore_forcewake_get__locked();
3613  *
3614  * and
3615  *
3616  * intel_uncore_forcewake_put__locked();
3617  * spin_unlock_irq(&dev_priv->uncore.lock);
3618  *
3619  *
3620  * Note: some registers may not need forcewake held, so
3621  * intel_uncore_forcewake_{get,put} can be omitted, see
3622  * intel_uncore_forcewake_for_reg().
3623  *
3624  * Certain architectures will die if the same cacheline is concurrently accessed
3625  * by different clients (e.g. on Ivybridge). Access to registers should
3626  * therefore generally be serialised, by either the dev_priv->uncore.lock or
3627  * a more localised lock guarding all access to that bank of registers.
3628  */
3629 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3630 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3631 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3632 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3633 
3634 /* "Broadcast RGB" property */
3635 #define INTEL_BROADCAST_RGB_AUTO 0
3636 #define INTEL_BROADCAST_RGB_FULL 1
3637 #define INTEL_BROADCAST_RGB_LIMITED 2
3638 
3639 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3640 {
3641 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3642 		return VLV_VGACNTRL;
3643 	else if (INTEL_GEN(dev_priv) >= 5)
3644 		return CPU_VGACNTRL;
3645 	else
3646 		return VGACNTRL;
3647 }
3648 
3649 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3650 {
3651 	unsigned long j = msecs_to_jiffies(m);
3652 
3653 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3654 }
3655 
3656 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3657 {
3658 	/* nsecs_to_jiffies64() does not guard against overflow */
3659 	if (NSEC_PER_SEC % HZ &&
3660 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3661 		return MAX_JIFFY_OFFSET;
3662 
3663         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3664 }
3665 
3666 /*
3667  * If you need to wait X milliseconds between events A and B, but event B
3668  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3669  * when event A happened, then just before event B you call this function and
3670  * pass the timestamp as the first argument, and X as the second argument.
3671  */
3672 static inline void
3673 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3674 {
3675 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3676 
3677 	/*
3678 	 * Don't re-read the value of "jiffies" every time since it may change
3679 	 * behind our back and break the math.
3680 	 */
3681 	tmp_jiffies = jiffies;
3682 	target_jiffies = timestamp_jiffies +
3683 			 msecs_to_jiffies_timeout(to_wait_ms);
3684 
3685 	if (time_after(target_jiffies, tmp_jiffies)) {
3686 		remaining_jiffies = target_jiffies - tmp_jiffies;
3687 		while (remaining_jiffies)
3688 			remaining_jiffies =
3689 			    schedule_timeout_uninterruptible(remaining_jiffies);
3690 	}
3691 }
3692 
3693 static inline bool
3694 __i915_request_irq_complete(const struct i915_request *rq)
3695 {
3696 	struct intel_engine_cs *engine = rq->engine;
3697 	u32 seqno;
3698 
3699 	/* Note that the engine may have wrapped around the seqno, and
3700 	 * so our request->global_seqno will be ahead of the hardware,
3701 	 * even though it completed the request before wrapping. We catch
3702 	 * this by kicking all the waiters before resetting the seqno
3703 	 * in hardware, and also signal the fence.
3704 	 */
3705 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
3706 		return true;
3707 
3708 	/* The request was dequeued before we were awoken. We check after
3709 	 * inspecting the hw to confirm that this was the same request
3710 	 * that generated the HWS update. The memory barriers within
3711 	 * the request execution are sufficient to ensure that a check
3712 	 * after reading the value from hw matches this request.
3713 	 */
3714 	seqno = i915_request_global_seqno(rq);
3715 	if (!seqno)
3716 		return false;
3717 
3718 	/* Before we do the heavier coherent read of the seqno,
3719 	 * check the value (hopefully) in the CPU cacheline.
3720 	 */
3721 	if (__i915_request_completed(rq, seqno))
3722 		return true;
3723 
3724 	/* Ensure our read of the seqno is coherent so that we
3725 	 * do not "miss an interrupt" (i.e. if this is the last
3726 	 * request and the seqno write from the GPU is not visible
3727 	 * by the time the interrupt fires, we will see that the
3728 	 * request is incomplete and go back to sleep awaiting
3729 	 * another interrupt that will never come.)
3730 	 *
3731 	 * Strictly, we only need to do this once after an interrupt,
3732 	 * but it is easier and safer to do it every time the waiter
3733 	 * is woken.
3734 	 */
3735 	if (engine->irq_seqno_barrier &&
3736 	    test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
3737 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
3738 
3739 		/* The ordering of irq_posted versus applying the barrier
3740 		 * is crucial. The clearing of the current irq_posted must
3741 		 * be visible before we perform the barrier operation,
3742 		 * such that if a subsequent interrupt arrives, irq_posted
3743 		 * is reasserted and our task rewoken (which causes us to
3744 		 * do another __i915_request_irq_complete() immediately
3745 		 * and reapply the barrier). Conversely, if the clear
3746 		 * occurs after the barrier, then an interrupt that arrived
3747 		 * whilst we waited on the barrier would not trigger a
3748 		 * barrier on the next pass, and the read may not see the
3749 		 * seqno update.
3750 		 */
3751 		engine->irq_seqno_barrier(engine);
3752 
3753 		/* If we consume the irq, but we are no longer the bottom-half,
3754 		 * the real bottom-half may not have serialised their own
3755 		 * seqno check with the irq-barrier (i.e. may have inspected
3756 		 * the seqno before we believe it coherent since they see
3757 		 * irq_posted == false but we are still running).
3758 		 */
3759 		spin_lock_irq(&b->irq_lock);
3760 		if (b->irq_wait && b->irq_wait->tsk != current)
3761 			/* Note that if the bottom-half is changed as we
3762 			 * are sending the wake-up, the new bottom-half will
3763 			 * be woken by whomever made the change. We only have
3764 			 * to worry about when we steal the irq-posted for
3765 			 * ourself.
3766 			 */
3767 			wake_up_process(b->irq_wait->tsk);
3768 		spin_unlock_irq(&b->irq_lock);
3769 
3770 		if (__i915_request_completed(rq, seqno))
3771 			return true;
3772 	}
3773 
3774 	return false;
3775 }
3776 
3777 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3778 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3779 
3780 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3781  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3782  * perform the operation. To check beforehand, pass in the parameters to
3783  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3784  * you only need to pass in the minor offsets, page-aligned pointers are
3785  * always valid.
3786  *
3787  * For just checking for SSE4.1, in the foreknowledge that the future use
3788  * will be correctly aligned, just use i915_has_memcpy_from_wc().
3789  */
3790 #define i915_can_memcpy_from_wc(dst, src, len) \
3791 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3792 
3793 #define i915_has_memcpy_from_wc() \
3794 	i915_memcpy_from_wc(NULL, NULL, 0)
3795 
3796 /* i915_mm.c */
3797 int remap_io_mapping(struct vm_area_struct *vma,
3798 		     unsigned long addr, unsigned long pfn, unsigned long size,
3799 		     struct io_mapping *iomap);
3800 
3801 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3802 {
3803 	if (INTEL_GEN(i915) >= 10)
3804 		return CNL_HWS_CSB_WRITE_INDEX;
3805 	else
3806 		return I915_HWS_CSB_WRITE_INDEX;
3807 }
3808 
3809 #endif
3810