1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hash.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/mm_types.h> 44 #include <linux/perf_event.h> 45 #include <linux/pm_qos.h> 46 #include <linux/reservation.h> 47 #include <linux/shmem_fs.h> 48 49 #include <drm/drmP.h> 50 #include <drm/intel-gtt.h> 51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 52 #include <drm/drm_gem.h> 53 #include <drm/drm_auth.h> 54 #include <drm/drm_cache.h> 55 56 #include "i915_params.h" 57 #include "i915_reg.h" 58 #include "i915_utils.h" 59 60 #include "intel_bios.h" 61 #include "intel_device_info.h" 62 #include "intel_display.h" 63 #include "intel_dpll_mgr.h" 64 #include "intel_lrc.h" 65 #include "intel_opregion.h" 66 #include "intel_ringbuffer.h" 67 #include "intel_uncore.h" 68 #include "intel_wopcm.h" 69 #include "intel_uc.h" 70 71 #include "i915_gem.h" 72 #include "i915_gem_context.h" 73 #include "i915_gem_fence_reg.h" 74 #include "i915_gem_object.h" 75 #include "i915_gem_gtt.h" 76 #include "i915_gpu_error.h" 77 #include "i915_request.h" 78 #include "i915_scheduler.h" 79 #include "i915_timeline.h" 80 #include "i915_vma.h" 81 82 #include "intel_gvt.h" 83 84 /* General customization: 85 */ 86 87 #define DRIVER_NAME "i915" 88 #define DRIVER_DESC "Intel Graphics" 89 #define DRIVER_DATE "20180719" 90 #define DRIVER_TIMESTAMP 1532015279 91 92 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 93 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 94 * which may not necessarily be a user visible problem. This will either 95 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 96 * enable distros and users to tailor their preferred amount of i915 abrt 97 * spam. 98 */ 99 #define I915_STATE_WARN(condition, format...) ({ \ 100 int __ret_warn_on = !!(condition); \ 101 if (unlikely(__ret_warn_on)) \ 102 if (!WARN(i915_modparams.verbose_state_checks, format)) \ 103 DRM_ERROR(format); \ 104 unlikely(__ret_warn_on); \ 105 }) 106 107 #define I915_STATE_WARN_ON(x) \ 108 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 109 110 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG) 111 112 bool __i915_inject_load_failure(const char *func, int line); 113 #define i915_inject_load_failure() \ 114 __i915_inject_load_failure(__func__, __LINE__) 115 116 bool i915_error_injected(void); 117 118 #else 119 120 #define i915_inject_load_failure() false 121 #define i915_error_injected() false 122 123 #endif 124 125 #define i915_load_error(i915, fmt, ...) \ 126 __i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \ 127 fmt, ##__VA_ARGS__) 128 129 typedef struct { 130 uint32_t val; 131 } uint_fixed_16_16_t; 132 133 #define FP_16_16_MAX ({ \ 134 uint_fixed_16_16_t fp; \ 135 fp.val = UINT_MAX; \ 136 fp; \ 137 }) 138 139 static inline bool is_fixed16_zero(uint_fixed_16_16_t val) 140 { 141 if (val.val == 0) 142 return true; 143 return false; 144 } 145 146 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val) 147 { 148 uint_fixed_16_16_t fp; 149 150 WARN_ON(val > U16_MAX); 151 152 fp.val = val << 16; 153 return fp; 154 } 155 156 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp) 157 { 158 return DIV_ROUND_UP(fp.val, 1 << 16); 159 } 160 161 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp) 162 { 163 return fp.val >> 16; 164 } 165 166 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1, 167 uint_fixed_16_16_t min2) 168 { 169 uint_fixed_16_16_t min; 170 171 min.val = min(min1.val, min2.val); 172 return min; 173 } 174 175 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1, 176 uint_fixed_16_16_t max2) 177 { 178 uint_fixed_16_16_t max; 179 180 max.val = max(max1.val, max2.val); 181 return max; 182 } 183 184 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val) 185 { 186 uint_fixed_16_16_t fp; 187 WARN_ON(val > U32_MAX); 188 fp.val = (uint32_t) val; 189 return fp; 190 } 191 192 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val, 193 uint_fixed_16_16_t d) 194 { 195 return DIV_ROUND_UP(val.val, d.val); 196 } 197 198 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val, 199 uint_fixed_16_16_t mul) 200 { 201 uint64_t intermediate_val; 202 203 intermediate_val = (uint64_t) val * mul.val; 204 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16); 205 WARN_ON(intermediate_val > U32_MAX); 206 return (uint32_t) intermediate_val; 207 } 208 209 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val, 210 uint_fixed_16_16_t mul) 211 { 212 uint64_t intermediate_val; 213 214 intermediate_val = (uint64_t) val.val * mul.val; 215 intermediate_val = intermediate_val >> 16; 216 return clamp_u64_to_fixed16(intermediate_val); 217 } 218 219 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d) 220 { 221 uint64_t interm_val; 222 223 interm_val = (uint64_t)val << 16; 224 interm_val = DIV_ROUND_UP_ULL(interm_val, d); 225 return clamp_u64_to_fixed16(interm_val); 226 } 227 228 static inline uint32_t div_round_up_u32_fixed16(uint32_t val, 229 uint_fixed_16_16_t d) 230 { 231 uint64_t interm_val; 232 233 interm_val = (uint64_t)val << 16; 234 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val); 235 WARN_ON(interm_val > U32_MAX); 236 return (uint32_t) interm_val; 237 } 238 239 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val, 240 uint_fixed_16_16_t mul) 241 { 242 uint64_t intermediate_val; 243 244 intermediate_val = (uint64_t) val * mul.val; 245 return clamp_u64_to_fixed16(intermediate_val); 246 } 247 248 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1, 249 uint_fixed_16_16_t add2) 250 { 251 uint64_t interm_sum; 252 253 interm_sum = (uint64_t) add1.val + add2.val; 254 return clamp_u64_to_fixed16(interm_sum); 255 } 256 257 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1, 258 uint32_t add2) 259 { 260 uint64_t interm_sum; 261 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2); 262 263 interm_sum = (uint64_t) add1.val + interm_add2.val; 264 return clamp_u64_to_fixed16(interm_sum); 265 } 266 267 enum hpd_pin { 268 HPD_NONE = 0, 269 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 270 HPD_CRT, 271 HPD_SDVO_B, 272 HPD_SDVO_C, 273 HPD_PORT_A, 274 HPD_PORT_B, 275 HPD_PORT_C, 276 HPD_PORT_D, 277 HPD_PORT_E, 278 HPD_PORT_F, 279 HPD_NUM_PINS 280 }; 281 282 #define for_each_hpd_pin(__pin) \ 283 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 284 285 #define HPD_STORM_DEFAULT_THRESHOLD 5 286 287 struct i915_hotplug { 288 struct work_struct hotplug_work; 289 290 struct { 291 unsigned long last_jiffies; 292 int count; 293 enum { 294 HPD_ENABLED = 0, 295 HPD_DISABLED = 1, 296 HPD_MARK_DISABLED = 2 297 } state; 298 } stats[HPD_NUM_PINS]; 299 u32 event_bits; 300 struct delayed_work reenable_work; 301 302 u32 long_port_mask; 303 u32 short_port_mask; 304 struct work_struct dig_port_work; 305 306 struct work_struct poll_init_work; 307 bool poll_enabled; 308 309 unsigned int hpd_storm_threshold; 310 311 /* 312 * if we get a HPD irq from DP and a HPD irq from non-DP 313 * the non-DP HPD could block the workqueue on a mode config 314 * mutex getting, that userspace may have taken. However 315 * userspace is waiting on the DP workqueue to run which is 316 * blocked behind the non-DP one. 317 */ 318 struct workqueue_struct *dp_wq; 319 }; 320 321 #define I915_GEM_GPU_DOMAINS \ 322 (I915_GEM_DOMAIN_RENDER | \ 323 I915_GEM_DOMAIN_SAMPLER | \ 324 I915_GEM_DOMAIN_COMMAND | \ 325 I915_GEM_DOMAIN_INSTRUCTION | \ 326 I915_GEM_DOMAIN_VERTEX) 327 328 struct drm_i915_private; 329 struct i915_mm_struct; 330 struct i915_mmu_object; 331 332 struct drm_i915_file_private { 333 struct drm_i915_private *dev_priv; 334 struct drm_file *file; 335 336 struct { 337 spinlock_t lock; 338 struct list_head request_list; 339 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 340 * chosen to prevent the CPU getting more than a frame ahead of the GPU 341 * (when using lax throttling for the frontbuffer). We also use it to 342 * offer free GPU waitboosts for severely congested workloads. 343 */ 344 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 345 } mm; 346 struct idr context_idr; 347 348 struct intel_rps_client { 349 atomic_t boosts; 350 } rps_client; 351 352 unsigned int bsd_engine; 353 354 /* 355 * Every context ban increments per client ban score. Also 356 * hangs in short succession increments ban score. If ban threshold 357 * is reached, client is considered banned and submitting more work 358 * will fail. This is a stop gap measure to limit the badly behaving 359 * clients access to gpu. Note that unbannable contexts never increment 360 * the client ban score. 361 */ 362 #define I915_CLIENT_SCORE_HANG_FAST 1 363 #define I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ) 364 #define I915_CLIENT_SCORE_CONTEXT_BAN 3 365 #define I915_CLIENT_SCORE_BANNED 9 366 /** ban_score: Accumulated score of all ctx bans and fast hangs. */ 367 atomic_t ban_score; 368 unsigned long hang_timestamp; 369 }; 370 371 /* Interface history: 372 * 373 * 1.1: Original. 374 * 1.2: Add Power Management 375 * 1.3: Add vblank support 376 * 1.4: Fix cmdbuffer path, add heap destroy 377 * 1.5: Add vblank pipe configuration 378 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 379 * - Support vertical blank on secondary display pipe 380 */ 381 #define DRIVER_MAJOR 1 382 #define DRIVER_MINOR 6 383 #define DRIVER_PATCHLEVEL 0 384 385 struct intel_overlay; 386 struct intel_overlay_error_state; 387 388 struct sdvo_device_mapping { 389 u8 initialized; 390 u8 dvo_port; 391 u8 slave_addr; 392 u8 dvo_wiring; 393 u8 i2c_pin; 394 u8 ddc_pin; 395 }; 396 397 struct intel_connector; 398 struct intel_encoder; 399 struct intel_atomic_state; 400 struct intel_crtc_state; 401 struct intel_initial_plane_config; 402 struct intel_crtc; 403 struct intel_limit; 404 struct dpll; 405 struct intel_cdclk_state; 406 407 struct drm_i915_display_funcs { 408 void (*get_cdclk)(struct drm_i915_private *dev_priv, 409 struct intel_cdclk_state *cdclk_state); 410 void (*set_cdclk)(struct drm_i915_private *dev_priv, 411 const struct intel_cdclk_state *cdclk_state); 412 int (*get_fifo_size)(struct drm_i915_private *dev_priv, 413 enum i9xx_plane_id i9xx_plane); 414 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 415 int (*compute_intermediate_wm)(struct drm_device *dev, 416 struct intel_crtc *intel_crtc, 417 struct intel_crtc_state *newstate); 418 void (*initial_watermarks)(struct intel_atomic_state *state, 419 struct intel_crtc_state *cstate); 420 void (*atomic_update_watermarks)(struct intel_atomic_state *state, 421 struct intel_crtc_state *cstate); 422 void (*optimize_watermarks)(struct intel_atomic_state *state, 423 struct intel_crtc_state *cstate); 424 int (*compute_global_watermarks)(struct drm_atomic_state *state); 425 void (*update_wm)(struct intel_crtc *crtc); 426 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 427 /* Returns the active state of the crtc, and if the crtc is active, 428 * fills out the pipe-config with the hw state. */ 429 bool (*get_pipe_config)(struct intel_crtc *, 430 struct intel_crtc_state *); 431 void (*get_initial_plane_config)(struct intel_crtc *, 432 struct intel_initial_plane_config *); 433 int (*crtc_compute_clock)(struct intel_crtc *crtc, 434 struct intel_crtc_state *crtc_state); 435 void (*crtc_enable)(struct intel_crtc_state *pipe_config, 436 struct drm_atomic_state *old_state); 437 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state, 438 struct drm_atomic_state *old_state); 439 void (*update_crtcs)(struct drm_atomic_state *state); 440 void (*audio_codec_enable)(struct intel_encoder *encoder, 441 const struct intel_crtc_state *crtc_state, 442 const struct drm_connector_state *conn_state); 443 void (*audio_codec_disable)(struct intel_encoder *encoder, 444 const struct intel_crtc_state *old_crtc_state, 445 const struct drm_connector_state *old_conn_state); 446 void (*fdi_link_train)(struct intel_crtc *crtc, 447 const struct intel_crtc_state *crtc_state); 448 void (*init_clock_gating)(struct drm_i915_private *dev_priv); 449 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 450 /* clock updates for mode set */ 451 /* cursor updates */ 452 /* render clock increase/decrease */ 453 /* display clock increase/decrease */ 454 /* pll clock increase/decrease */ 455 456 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); 457 void (*load_luts)(struct drm_crtc_state *crtc_state); 458 }; 459 460 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 461 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 462 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 463 464 struct intel_csr { 465 struct work_struct work; 466 const char *fw_path; 467 uint32_t *dmc_payload; 468 uint32_t dmc_fw_size; 469 uint32_t version; 470 uint32_t mmio_count; 471 i915_reg_t mmioaddr[8]; 472 uint32_t mmiodata[8]; 473 uint32_t dc_state; 474 uint32_t allowed_dc_mask; 475 }; 476 477 enum i915_cache_level { 478 I915_CACHE_NONE = 0, 479 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 480 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 481 caches, eg sampler/render caches, and the 482 large Last-Level-Cache. LLC is coherent with 483 the CPU, but L3 is only visible to the GPU. */ 484 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 485 }; 486 487 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ 488 489 enum fb_op_origin { 490 ORIGIN_GTT, 491 ORIGIN_CPU, 492 ORIGIN_CS, 493 ORIGIN_FLIP, 494 ORIGIN_DIRTYFB, 495 }; 496 497 struct intel_fbc { 498 /* This is always the inner lock when overlapping with struct_mutex and 499 * it's the outer lock when overlapping with stolen_lock. */ 500 struct mutex lock; 501 unsigned threshold; 502 unsigned int possible_framebuffer_bits; 503 unsigned int busy_bits; 504 unsigned int visible_pipes_mask; 505 struct intel_crtc *crtc; 506 507 struct drm_mm_node compressed_fb; 508 struct drm_mm_node *compressed_llb; 509 510 bool false_color; 511 512 bool enabled; 513 bool active; 514 bool flip_pending; 515 516 bool underrun_detected; 517 struct work_struct underrun_work; 518 519 /* 520 * Due to the atomic rules we can't access some structures without the 521 * appropriate locking, so we cache information here in order to avoid 522 * these problems. 523 */ 524 struct intel_fbc_state_cache { 525 struct i915_vma *vma; 526 unsigned long flags; 527 528 struct { 529 unsigned int mode_flags; 530 uint32_t hsw_bdw_pixel_rate; 531 } crtc; 532 533 struct { 534 unsigned int rotation; 535 int src_w; 536 int src_h; 537 bool visible; 538 /* 539 * Display surface base address adjustement for 540 * pageflips. Note that on gen4+ this only adjusts up 541 * to a tile, offsets within a tile are handled in 542 * the hw itself (with the TILEOFF register). 543 */ 544 int adjusted_x; 545 int adjusted_y; 546 547 int y; 548 } plane; 549 550 struct { 551 const struct drm_format_info *format; 552 unsigned int stride; 553 } fb; 554 } state_cache; 555 556 /* 557 * This structure contains everything that's relevant to program the 558 * hardware registers. When we want to figure out if we need to disable 559 * and re-enable FBC for a new configuration we just check if there's 560 * something different in the struct. The genx_fbc_activate functions 561 * are supposed to read from it in order to program the registers. 562 */ 563 struct intel_fbc_reg_params { 564 struct i915_vma *vma; 565 unsigned long flags; 566 567 struct { 568 enum pipe pipe; 569 enum i9xx_plane_id i9xx_plane; 570 unsigned int fence_y_offset; 571 } crtc; 572 573 struct { 574 const struct drm_format_info *format; 575 unsigned int stride; 576 } fb; 577 578 int cfb_size; 579 unsigned int gen9_wa_cfb_stride; 580 } params; 581 582 const char *no_fbc_reason; 583 }; 584 585 /* 586 * HIGH_RR is the highest eDP panel refresh rate read from EDID 587 * LOW_RR is the lowest eDP panel refresh rate found from EDID 588 * parsing for same resolution. 589 */ 590 enum drrs_refresh_rate_type { 591 DRRS_HIGH_RR, 592 DRRS_LOW_RR, 593 DRRS_MAX_RR, /* RR count */ 594 }; 595 596 enum drrs_support_type { 597 DRRS_NOT_SUPPORTED = 0, 598 STATIC_DRRS_SUPPORT = 1, 599 SEAMLESS_DRRS_SUPPORT = 2 600 }; 601 602 struct intel_dp; 603 struct i915_drrs { 604 struct mutex mutex; 605 struct delayed_work work; 606 struct intel_dp *dp; 607 unsigned busy_frontbuffer_bits; 608 enum drrs_refresh_rate_type refresh_rate_type; 609 enum drrs_support_type type; 610 }; 611 612 struct i915_psr { 613 struct mutex lock; 614 bool sink_support; 615 struct intel_dp *enabled; 616 bool active; 617 struct work_struct work; 618 unsigned busy_frontbuffer_bits; 619 bool sink_psr2_support; 620 bool link_standby; 621 bool colorimetry_support; 622 bool alpm; 623 bool psr2_enabled; 624 u8 sink_sync_latency; 625 bool debug; 626 ktime_t last_entry_attempt; 627 ktime_t last_exit; 628 }; 629 630 enum intel_pch { 631 PCH_NONE = 0, /* No PCH present */ 632 PCH_IBX, /* Ibexpeak PCH */ 633 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */ 634 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */ 635 PCH_SPT, /* Sunrisepoint PCH */ 636 PCH_KBP, /* Kaby Lake PCH */ 637 PCH_CNP, /* Cannon Lake PCH */ 638 PCH_ICP, /* Ice Lake PCH */ 639 PCH_NOP, /* PCH without south display */ 640 }; 641 642 enum intel_sbi_destination { 643 SBI_ICLK, 644 SBI_MPHY, 645 }; 646 647 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 648 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 649 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 650 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 651 #define QUIRK_INCREASE_T12_DELAY (1<<6) 652 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7) 653 654 struct intel_fbdev; 655 struct intel_fbc_work; 656 657 struct intel_gmbus { 658 struct i2c_adapter adapter; 659 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 660 u32 force_bit; 661 u32 reg0; 662 i915_reg_t gpio_reg; 663 struct i2c_algo_bit_data bit_algo; 664 struct drm_i915_private *dev_priv; 665 }; 666 667 struct i915_suspend_saved_registers { 668 u32 saveDSPARB; 669 u32 saveFBC_CONTROL; 670 u32 saveCACHE_MODE_0; 671 u32 saveMI_ARB_STATE; 672 u32 saveSWF0[16]; 673 u32 saveSWF1[16]; 674 u32 saveSWF3[3]; 675 uint64_t saveFENCE[I915_MAX_NUM_FENCES]; 676 u32 savePCH_PORT_HOTPLUG; 677 u16 saveGCDGMBUS; 678 }; 679 680 struct vlv_s0ix_state { 681 /* GAM */ 682 u32 wr_watermark; 683 u32 gfx_prio_ctrl; 684 u32 arb_mode; 685 u32 gfx_pend_tlb0; 686 u32 gfx_pend_tlb1; 687 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 688 u32 media_max_req_count; 689 u32 gfx_max_req_count; 690 u32 render_hwsp; 691 u32 ecochk; 692 u32 bsd_hwsp; 693 u32 blt_hwsp; 694 u32 tlb_rd_addr; 695 696 /* MBC */ 697 u32 g3dctl; 698 u32 gsckgctl; 699 u32 mbctl; 700 701 /* GCP */ 702 u32 ucgctl1; 703 u32 ucgctl3; 704 u32 rcgctl1; 705 u32 rcgctl2; 706 u32 rstctl; 707 u32 misccpctl; 708 709 /* GPM */ 710 u32 gfxpause; 711 u32 rpdeuhwtc; 712 u32 rpdeuc; 713 u32 ecobus; 714 u32 pwrdwnupctl; 715 u32 rp_down_timeout; 716 u32 rp_deucsw; 717 u32 rcubmabdtmr; 718 u32 rcedata; 719 u32 spare2gh; 720 721 /* Display 1 CZ domain */ 722 u32 gt_imr; 723 u32 gt_ier; 724 u32 pm_imr; 725 u32 pm_ier; 726 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 727 728 /* GT SA CZ domain */ 729 u32 tilectl; 730 u32 gt_fifoctl; 731 u32 gtlc_wake_ctrl; 732 u32 gtlc_survive; 733 u32 pmwgicz; 734 735 /* Display 2 CZ domain */ 736 u32 gu_ctl0; 737 u32 gu_ctl1; 738 u32 pcbr; 739 u32 clock_gate_dis2; 740 }; 741 742 struct intel_rps_ei { 743 ktime_t ktime; 744 u32 render_c0; 745 u32 media_c0; 746 }; 747 748 struct intel_rps { 749 /* 750 * work, interrupts_enabled and pm_iir are protected by 751 * dev_priv->irq_lock 752 */ 753 struct work_struct work; 754 bool interrupts_enabled; 755 u32 pm_iir; 756 757 /* PM interrupt bits that should never be masked */ 758 u32 pm_intrmsk_mbz; 759 760 /* Frequencies are stored in potentially platform dependent multiples. 761 * In other words, *_freq needs to be multiplied by X to be interesting. 762 * Soft limits are those which are used for the dynamic reclocking done 763 * by the driver (raise frequencies under heavy loads, and lower for 764 * lighter loads). Hard limits are those imposed by the hardware. 765 * 766 * A distinction is made for overclocking, which is never enabled by 767 * default, and is considered to be above the hard limit if it's 768 * possible at all. 769 */ 770 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 771 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 772 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 773 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 774 u8 min_freq; /* AKA RPn. Minimum frequency */ 775 u8 boost_freq; /* Frequency to request when wait boosting */ 776 u8 idle_freq; /* Frequency to request when we are idle */ 777 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 778 u8 rp1_freq; /* "less than" RP0 power/freqency */ 779 u8 rp0_freq; /* Non-overclocked max frequency. */ 780 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 781 782 int last_adj; 783 784 struct { 785 struct mutex mutex; 786 787 enum { LOW_POWER, BETWEEN, HIGH_POWER } mode; 788 unsigned int interactive; 789 790 u8 up_threshold; /* Current %busy required to uplock */ 791 u8 down_threshold; /* Current %busy required to downclock */ 792 } power; 793 794 bool enabled; 795 atomic_t num_waiters; 796 atomic_t boosts; 797 798 /* manual wa residency calculations */ 799 struct intel_rps_ei ei; 800 }; 801 802 struct intel_rc6 { 803 bool enabled; 804 u64 prev_hw_residency[4]; 805 u64 cur_residency[4]; 806 }; 807 808 struct intel_llc_pstate { 809 bool enabled; 810 }; 811 812 struct intel_gen6_power_mgmt { 813 struct intel_rps rps; 814 struct intel_rc6 rc6; 815 struct intel_llc_pstate llc_pstate; 816 }; 817 818 /* defined intel_pm.c */ 819 extern spinlock_t mchdev_lock; 820 821 struct intel_ilk_power_mgmt { 822 u8 cur_delay; 823 u8 min_delay; 824 u8 max_delay; 825 u8 fmax; 826 u8 fstart; 827 828 u64 last_count1; 829 unsigned long last_time1; 830 unsigned long chipset_power; 831 u64 last_count2; 832 u64 last_time2; 833 unsigned long gfx_power; 834 u8 corr; 835 836 int c_m; 837 int r_t; 838 }; 839 840 struct drm_i915_private; 841 struct i915_power_well; 842 843 struct i915_power_well_ops { 844 /* 845 * Synchronize the well's hw state to match the current sw state, for 846 * example enable/disable it based on the current refcount. Called 847 * during driver init and resume time, possibly after first calling 848 * the enable/disable handlers. 849 */ 850 void (*sync_hw)(struct drm_i915_private *dev_priv, 851 struct i915_power_well *power_well); 852 /* 853 * Enable the well and resources that depend on it (for example 854 * interrupts located on the well). Called after the 0->1 refcount 855 * transition. 856 */ 857 void (*enable)(struct drm_i915_private *dev_priv, 858 struct i915_power_well *power_well); 859 /* 860 * Disable the well and resources that depend on it. Called after 861 * the 1->0 refcount transition. 862 */ 863 void (*disable)(struct drm_i915_private *dev_priv, 864 struct i915_power_well *power_well); 865 /* Returns the hw enabled state. */ 866 bool (*is_enabled)(struct drm_i915_private *dev_priv, 867 struct i915_power_well *power_well); 868 }; 869 870 /* Power well structure for haswell */ 871 struct i915_power_well { 872 const char *name; 873 bool always_on; 874 /* power well enable/disable usage count */ 875 int count; 876 /* cached hw enabled state */ 877 bool hw_enabled; 878 u64 domains; 879 /* unique identifier for this power well */ 880 enum i915_power_well_id id; 881 /* 882 * Arbitraty data associated with this power well. Platform and power 883 * well specific. 884 */ 885 union { 886 struct { 887 enum dpio_phy phy; 888 } bxt; 889 struct { 890 /* Mask of pipes whose IRQ logic is backed by the pw */ 891 u8 irq_pipe_mask; 892 /* The pw is backing the VGA functionality */ 893 bool has_vga:1; 894 bool has_fuses:1; 895 } hsw; 896 }; 897 const struct i915_power_well_ops *ops; 898 }; 899 900 struct i915_power_domains { 901 /* 902 * Power wells needed for initialization at driver init and suspend 903 * time are on. They are kept on until after the first modeset. 904 */ 905 bool init_power_on; 906 bool initializing; 907 int power_well_count; 908 909 struct mutex lock; 910 int domain_use_count[POWER_DOMAIN_NUM]; 911 struct i915_power_well *power_wells; 912 }; 913 914 #define MAX_L3_SLICES 2 915 struct intel_l3_parity { 916 u32 *remap_info[MAX_L3_SLICES]; 917 struct work_struct error_work; 918 int which_slice; 919 }; 920 921 struct i915_gem_mm { 922 /** Memory allocator for GTT stolen memory */ 923 struct drm_mm stolen; 924 /** Protects the usage of the GTT stolen memory allocator. This is 925 * always the inner lock when overlapping with struct_mutex. */ 926 struct mutex stolen_lock; 927 928 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */ 929 spinlock_t obj_lock; 930 931 /** List of all objects in gtt_space. Used to restore gtt 932 * mappings on resume */ 933 struct list_head bound_list; 934 /** 935 * List of objects which are not bound to the GTT (thus 936 * are idle and not used by the GPU). These objects may or may 937 * not actually have any pages attached. 938 */ 939 struct list_head unbound_list; 940 941 /** List of all objects in gtt_space, currently mmaped by userspace. 942 * All objects within this list must also be on bound_list. 943 */ 944 struct list_head userfault_list; 945 946 /** 947 * List of objects which are pending destruction. 948 */ 949 struct llist_head free_list; 950 struct work_struct free_work; 951 spinlock_t free_lock; 952 /** 953 * Count of objects pending destructions. Used to skip needlessly 954 * waiting on an RCU barrier if no objects are waiting to be freed. 955 */ 956 atomic_t free_count; 957 958 /** 959 * Small stash of WC pages 960 */ 961 struct pagestash wc_stash; 962 963 /** 964 * tmpfs instance used for shmem backed objects 965 */ 966 struct vfsmount *gemfs; 967 968 /** PPGTT used for aliasing the PPGTT with the GTT */ 969 struct i915_hw_ppgtt *aliasing_ppgtt; 970 971 struct notifier_block oom_notifier; 972 struct notifier_block vmap_notifier; 973 struct shrinker shrinker; 974 975 /** LRU list of objects with fence regs on them. */ 976 struct list_head fence_list; 977 978 /** 979 * Workqueue to fault in userptr pages, flushed by the execbuf 980 * when required but otherwise left to userspace to try again 981 * on EAGAIN. 982 */ 983 struct workqueue_struct *userptr_wq; 984 985 u64 unordered_timeline; 986 987 /* the indicator for dispatch video commands on two BSD rings */ 988 atomic_t bsd_engine_dispatch_index; 989 990 /** Bit 6 swizzling required for X tiling */ 991 uint32_t bit_6_swizzle_x; 992 /** Bit 6 swizzling required for Y tiling */ 993 uint32_t bit_6_swizzle_y; 994 995 /* accounting, useful for userland debugging */ 996 spinlock_t object_stat_lock; 997 u64 object_memory; 998 u32 object_count; 999 }; 1000 1001 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */ 1002 1003 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */ 1004 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */ 1005 1006 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */ 1007 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */ 1008 1009 #define I915_ENGINE_WEDGED_TIMEOUT (60 * HZ) /* Reset but no recovery? */ 1010 1011 #define DP_AUX_A 0x40 1012 #define DP_AUX_B 0x10 1013 #define DP_AUX_C 0x20 1014 #define DP_AUX_D 0x30 1015 #define DP_AUX_E 0x50 1016 #define DP_AUX_F 0x60 1017 1018 #define DDC_PIN_B 0x05 1019 #define DDC_PIN_C 0x04 1020 #define DDC_PIN_D 0x06 1021 1022 struct ddi_vbt_port_info { 1023 int max_tmds_clock; 1024 1025 /* 1026 * This is an index in the HDMI/DVI DDI buffer translation table. 1027 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 1028 * populate this field. 1029 */ 1030 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 1031 uint8_t hdmi_level_shift; 1032 1033 uint8_t supports_dvi:1; 1034 uint8_t supports_hdmi:1; 1035 uint8_t supports_dp:1; 1036 uint8_t supports_edp:1; 1037 1038 uint8_t alternate_aux_channel; 1039 uint8_t alternate_ddc_pin; 1040 1041 uint8_t dp_boost_level; 1042 uint8_t hdmi_boost_level; 1043 int dp_max_link_rate; /* 0 for not limited by VBT */ 1044 }; 1045 1046 enum psr_lines_to_wait { 1047 PSR_0_LINES_TO_WAIT = 0, 1048 PSR_1_LINE_TO_WAIT, 1049 PSR_4_LINES_TO_WAIT, 1050 PSR_8_LINES_TO_WAIT 1051 }; 1052 1053 struct intel_vbt_data { 1054 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 1055 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 1056 1057 /* Feature bits */ 1058 unsigned int int_tv_support:1; 1059 unsigned int lvds_dither:1; 1060 unsigned int int_crt_support:1; 1061 unsigned int lvds_use_ssc:1; 1062 unsigned int int_lvds_support:1; 1063 unsigned int display_clock_mode:1; 1064 unsigned int fdi_rx_polarity_inverted:1; 1065 unsigned int panel_type:4; 1066 int lvds_ssc_freq; 1067 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 1068 1069 enum drrs_support_type drrs_type; 1070 1071 struct { 1072 int rate; 1073 int lanes; 1074 int preemphasis; 1075 int vswing; 1076 bool low_vswing; 1077 bool initialized; 1078 int bpp; 1079 struct edp_power_seq pps; 1080 } edp; 1081 1082 struct { 1083 bool enable; 1084 bool full_link; 1085 bool require_aux_wakeup; 1086 int idle_frames; 1087 enum psr_lines_to_wait lines_to_wait; 1088 int tp1_wakeup_time_us; 1089 int tp2_tp3_wakeup_time_us; 1090 } psr; 1091 1092 struct { 1093 u16 pwm_freq_hz; 1094 bool present; 1095 bool active_low_pwm; 1096 u8 min_brightness; /* min_brightness/255 of max */ 1097 u8 controller; /* brightness controller number */ 1098 enum intel_backlight_type type; 1099 } backlight; 1100 1101 /* MIPI DSI */ 1102 struct { 1103 u16 panel_id; 1104 struct mipi_config *config; 1105 struct mipi_pps_data *pps; 1106 u16 bl_ports; 1107 u16 cabc_ports; 1108 u8 seq_version; 1109 u32 size; 1110 u8 *data; 1111 const u8 *sequence[MIPI_SEQ_MAX]; 1112 u8 *deassert_seq; /* Used by fixup_mipi_sequences() */ 1113 } dsi; 1114 1115 int crt_ddc_pin; 1116 1117 int child_dev_num; 1118 struct child_device_config *child_dev; 1119 1120 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1121 struct sdvo_device_mapping sdvo_mappings[2]; 1122 }; 1123 1124 enum intel_ddb_partitioning { 1125 INTEL_DDB_PART_1_2, 1126 INTEL_DDB_PART_5_6, /* IVB+ */ 1127 }; 1128 1129 struct intel_wm_level { 1130 bool enable; 1131 uint32_t pri_val; 1132 uint32_t spr_val; 1133 uint32_t cur_val; 1134 uint32_t fbc_val; 1135 }; 1136 1137 struct ilk_wm_values { 1138 uint32_t wm_pipe[3]; 1139 uint32_t wm_lp[3]; 1140 uint32_t wm_lp_spr[3]; 1141 uint32_t wm_linetime[3]; 1142 bool enable_fbc_wm; 1143 enum intel_ddb_partitioning partitioning; 1144 }; 1145 1146 struct g4x_pipe_wm { 1147 uint16_t plane[I915_MAX_PLANES]; 1148 uint16_t fbc; 1149 }; 1150 1151 struct g4x_sr_wm { 1152 uint16_t plane; 1153 uint16_t cursor; 1154 uint16_t fbc; 1155 }; 1156 1157 struct vlv_wm_ddl_values { 1158 uint8_t plane[I915_MAX_PLANES]; 1159 }; 1160 1161 struct vlv_wm_values { 1162 struct g4x_pipe_wm pipe[3]; 1163 struct g4x_sr_wm sr; 1164 struct vlv_wm_ddl_values ddl[3]; 1165 uint8_t level; 1166 bool cxsr; 1167 }; 1168 1169 struct g4x_wm_values { 1170 struct g4x_pipe_wm pipe[2]; 1171 struct g4x_sr_wm sr; 1172 struct g4x_sr_wm hpll; 1173 bool cxsr; 1174 bool hpll_en; 1175 bool fbc_en; 1176 }; 1177 1178 struct skl_ddb_entry { 1179 uint16_t start, end; /* in number of blocks, 'end' is exclusive */ 1180 }; 1181 1182 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1183 { 1184 return entry->end - entry->start; 1185 } 1186 1187 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1188 const struct skl_ddb_entry *e2) 1189 { 1190 if (e1->start == e2->start && e1->end == e2->end) 1191 return true; 1192 1193 return false; 1194 } 1195 1196 struct skl_ddb_allocation { 1197 /* packed/y */ 1198 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1199 struct skl_ddb_entry uv_plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1200 u8 enabled_slices; /* GEN11 has configurable 2 slices */ 1201 }; 1202 1203 struct skl_ddb_values { 1204 unsigned dirty_pipes; 1205 struct skl_ddb_allocation ddb; 1206 }; 1207 1208 struct skl_wm_level { 1209 bool plane_en; 1210 uint16_t plane_res_b; 1211 uint8_t plane_res_l; 1212 }; 1213 1214 /* Stores plane specific WM parameters */ 1215 struct skl_wm_params { 1216 bool x_tiled, y_tiled; 1217 bool rc_surface; 1218 bool is_planar; 1219 uint32_t width; 1220 uint8_t cpp; 1221 uint32_t plane_pixel_rate; 1222 uint32_t y_min_scanlines; 1223 uint32_t plane_bytes_per_line; 1224 uint_fixed_16_16_t plane_blocks_per_line; 1225 uint_fixed_16_16_t y_tile_minimum; 1226 uint32_t linetime_us; 1227 uint32_t dbuf_block_size; 1228 }; 1229 1230 /* 1231 * This struct helps tracking the state needed for runtime PM, which puts the 1232 * device in PCI D3 state. Notice that when this happens, nothing on the 1233 * graphics device works, even register access, so we don't get interrupts nor 1234 * anything else. 1235 * 1236 * Every piece of our code that needs to actually touch the hardware needs to 1237 * either call intel_runtime_pm_get or call intel_display_power_get with the 1238 * appropriate power domain. 1239 * 1240 * Our driver uses the autosuspend delay feature, which means we'll only really 1241 * suspend if we stay with zero refcount for a certain amount of time. The 1242 * default value is currently very conservative (see intel_runtime_pm_enable), but 1243 * it can be changed with the standard runtime PM files from sysfs. 1244 * 1245 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1246 * goes back to false exactly before we reenable the IRQs. We use this variable 1247 * to check if someone is trying to enable/disable IRQs while they're supposed 1248 * to be disabled. This shouldn't happen and we'll print some error messages in 1249 * case it happens. 1250 * 1251 * For more, read the Documentation/power/runtime_pm.txt. 1252 */ 1253 struct i915_runtime_pm { 1254 atomic_t wakeref_count; 1255 bool suspended; 1256 bool irqs_enabled; 1257 }; 1258 1259 enum intel_pipe_crc_source { 1260 INTEL_PIPE_CRC_SOURCE_NONE, 1261 INTEL_PIPE_CRC_SOURCE_PLANE1, 1262 INTEL_PIPE_CRC_SOURCE_PLANE2, 1263 INTEL_PIPE_CRC_SOURCE_PF, 1264 INTEL_PIPE_CRC_SOURCE_PIPE, 1265 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1266 INTEL_PIPE_CRC_SOURCE_TV, 1267 INTEL_PIPE_CRC_SOURCE_DP_B, 1268 INTEL_PIPE_CRC_SOURCE_DP_C, 1269 INTEL_PIPE_CRC_SOURCE_DP_D, 1270 INTEL_PIPE_CRC_SOURCE_AUTO, 1271 INTEL_PIPE_CRC_SOURCE_MAX, 1272 }; 1273 1274 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1275 struct intel_pipe_crc { 1276 spinlock_t lock; 1277 int skipped; 1278 enum intel_pipe_crc_source source; 1279 }; 1280 1281 struct i915_frontbuffer_tracking { 1282 spinlock_t lock; 1283 1284 /* 1285 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1286 * scheduled flips. 1287 */ 1288 unsigned busy_bits; 1289 unsigned flip_bits; 1290 }; 1291 1292 struct i915_wa_reg { 1293 u32 addr; 1294 u32 value; 1295 /* bitmask representing WA bits */ 1296 u32 mask; 1297 }; 1298 1299 #define I915_MAX_WA_REGS 16 1300 1301 struct i915_workarounds { 1302 struct i915_wa_reg reg[I915_MAX_WA_REGS]; 1303 u32 count; 1304 }; 1305 1306 struct i915_virtual_gpu { 1307 bool active; 1308 u32 caps; 1309 }; 1310 1311 /* used in computing the new watermarks state */ 1312 struct intel_wm_config { 1313 unsigned int num_pipes_active; 1314 bool sprites_enabled; 1315 bool sprites_scaled; 1316 }; 1317 1318 struct i915_oa_format { 1319 u32 format; 1320 int size; 1321 }; 1322 1323 struct i915_oa_reg { 1324 i915_reg_t addr; 1325 u32 value; 1326 }; 1327 1328 struct i915_oa_config { 1329 char uuid[UUID_STRING_LEN + 1]; 1330 int id; 1331 1332 const struct i915_oa_reg *mux_regs; 1333 u32 mux_regs_len; 1334 const struct i915_oa_reg *b_counter_regs; 1335 u32 b_counter_regs_len; 1336 const struct i915_oa_reg *flex_regs; 1337 u32 flex_regs_len; 1338 1339 struct attribute_group sysfs_metric; 1340 struct attribute *attrs[2]; 1341 struct device_attribute sysfs_metric_id; 1342 1343 atomic_t ref_count; 1344 }; 1345 1346 struct i915_perf_stream; 1347 1348 /** 1349 * struct i915_perf_stream_ops - the OPs to support a specific stream type 1350 */ 1351 struct i915_perf_stream_ops { 1352 /** 1353 * @enable: Enables the collection of HW samples, either in response to 1354 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened 1355 * without `I915_PERF_FLAG_DISABLED`. 1356 */ 1357 void (*enable)(struct i915_perf_stream *stream); 1358 1359 /** 1360 * @disable: Disables the collection of HW samples, either in response 1361 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying 1362 * the stream. 1363 */ 1364 void (*disable)(struct i915_perf_stream *stream); 1365 1366 /** 1367 * @poll_wait: Call poll_wait, passing a wait queue that will be woken 1368 * once there is something ready to read() for the stream 1369 */ 1370 void (*poll_wait)(struct i915_perf_stream *stream, 1371 struct file *file, 1372 poll_table *wait); 1373 1374 /** 1375 * @wait_unlocked: For handling a blocking read, wait until there is 1376 * something to ready to read() for the stream. E.g. wait on the same 1377 * wait queue that would be passed to poll_wait(). 1378 */ 1379 int (*wait_unlocked)(struct i915_perf_stream *stream); 1380 1381 /** 1382 * @read: Copy buffered metrics as records to userspace 1383 * **buf**: the userspace, destination buffer 1384 * **count**: the number of bytes to copy, requested by userspace 1385 * **offset**: zero at the start of the read, updated as the read 1386 * proceeds, it represents how many bytes have been copied so far and 1387 * the buffer offset for copying the next record. 1388 * 1389 * Copy as many buffered i915 perf samples and records for this stream 1390 * to userspace as will fit in the given buffer. 1391 * 1392 * Only write complete records; returning -%ENOSPC if there isn't room 1393 * for a complete record. 1394 * 1395 * Return any error condition that results in a short read such as 1396 * -%ENOSPC or -%EFAULT, even though these may be squashed before 1397 * returning to userspace. 1398 */ 1399 int (*read)(struct i915_perf_stream *stream, 1400 char __user *buf, 1401 size_t count, 1402 size_t *offset); 1403 1404 /** 1405 * @destroy: Cleanup any stream specific resources. 1406 * 1407 * The stream will always be disabled before this is called. 1408 */ 1409 void (*destroy)(struct i915_perf_stream *stream); 1410 }; 1411 1412 /** 1413 * struct i915_perf_stream - state for a single open stream FD 1414 */ 1415 struct i915_perf_stream { 1416 /** 1417 * @dev_priv: i915 drm device 1418 */ 1419 struct drm_i915_private *dev_priv; 1420 1421 /** 1422 * @link: Links the stream into ``&drm_i915_private->streams`` 1423 */ 1424 struct list_head link; 1425 1426 /** 1427 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*` 1428 * properties given when opening a stream, representing the contents 1429 * of a single sample as read() by userspace. 1430 */ 1431 u32 sample_flags; 1432 1433 /** 1434 * @sample_size: Considering the configured contents of a sample 1435 * combined with the required header size, this is the total size 1436 * of a single sample record. 1437 */ 1438 int sample_size; 1439 1440 /** 1441 * @ctx: %NULL if measuring system-wide across all contexts or a 1442 * specific context that is being monitored. 1443 */ 1444 struct i915_gem_context *ctx; 1445 1446 /** 1447 * @enabled: Whether the stream is currently enabled, considering 1448 * whether the stream was opened in a disabled state and based 1449 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls. 1450 */ 1451 bool enabled; 1452 1453 /** 1454 * @ops: The callbacks providing the implementation of this specific 1455 * type of configured stream. 1456 */ 1457 const struct i915_perf_stream_ops *ops; 1458 1459 /** 1460 * @oa_config: The OA configuration used by the stream. 1461 */ 1462 struct i915_oa_config *oa_config; 1463 }; 1464 1465 /** 1466 * struct i915_oa_ops - Gen specific implementation of an OA unit stream 1467 */ 1468 struct i915_oa_ops { 1469 /** 1470 * @is_valid_b_counter_reg: Validates register's address for 1471 * programming boolean counters for a particular platform. 1472 */ 1473 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv, 1474 u32 addr); 1475 1476 /** 1477 * @is_valid_mux_reg: Validates register's address for programming mux 1478 * for a particular platform. 1479 */ 1480 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr); 1481 1482 /** 1483 * @is_valid_flex_reg: Validates register's address for programming 1484 * flex EU filtering for a particular platform. 1485 */ 1486 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr); 1487 1488 /** 1489 * @init_oa_buffer: Resets the head and tail pointers of the 1490 * circular buffer for periodic OA reports. 1491 * 1492 * Called when first opening a stream for OA metrics, but also may be 1493 * called in response to an OA buffer overflow or other error 1494 * condition. 1495 * 1496 * Note it may be necessary to clear the full OA buffer here as part of 1497 * maintaining the invariable that new reports must be written to 1498 * zeroed memory for us to be able to reliable detect if an expected 1499 * report has not yet landed in memory. (At least on Haswell the OA 1500 * buffer tail pointer is not synchronized with reports being visible 1501 * to the CPU) 1502 */ 1503 void (*init_oa_buffer)(struct drm_i915_private *dev_priv); 1504 1505 /** 1506 * @enable_metric_set: Selects and applies any MUX configuration to set 1507 * up the Boolean and Custom (B/C) counters that are part of the 1508 * counter reports being sampled. May apply system constraints such as 1509 * disabling EU clock gating as required. 1510 */ 1511 int (*enable_metric_set)(struct drm_i915_private *dev_priv, 1512 const struct i915_oa_config *oa_config); 1513 1514 /** 1515 * @disable_metric_set: Remove system constraints associated with using 1516 * the OA unit. 1517 */ 1518 void (*disable_metric_set)(struct drm_i915_private *dev_priv); 1519 1520 /** 1521 * @oa_enable: Enable periodic sampling 1522 */ 1523 void (*oa_enable)(struct drm_i915_private *dev_priv); 1524 1525 /** 1526 * @oa_disable: Disable periodic sampling 1527 */ 1528 void (*oa_disable)(struct drm_i915_private *dev_priv); 1529 1530 /** 1531 * @read: Copy data from the circular OA buffer into a given userspace 1532 * buffer. 1533 */ 1534 int (*read)(struct i915_perf_stream *stream, 1535 char __user *buf, 1536 size_t count, 1537 size_t *offset); 1538 1539 /** 1540 * @oa_hw_tail_read: read the OA tail pointer register 1541 * 1542 * In particular this enables us to share all the fiddly code for 1543 * handling the OA unit tail pointer race that affects multiple 1544 * generations. 1545 */ 1546 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv); 1547 }; 1548 1549 struct intel_cdclk_state { 1550 unsigned int cdclk, vco, ref, bypass; 1551 u8 voltage_level; 1552 }; 1553 1554 struct drm_i915_private { 1555 struct drm_device drm; 1556 1557 struct kmem_cache *objects; 1558 struct kmem_cache *vmas; 1559 struct kmem_cache *luts; 1560 struct kmem_cache *requests; 1561 struct kmem_cache *dependencies; 1562 struct kmem_cache *priorities; 1563 1564 const struct intel_device_info info; 1565 struct intel_driver_caps caps; 1566 1567 /** 1568 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and 1569 * end of stolen which we can optionally use to create GEM objects 1570 * backed by stolen memory. Note that stolen_usable_size tells us 1571 * exactly how much of this we are actually allowed to use, given that 1572 * some portion of it is in fact reserved for use by hardware functions. 1573 */ 1574 struct resource dsm; 1575 /** 1576 * Reseved portion of Data Stolen Memory 1577 */ 1578 struct resource dsm_reserved; 1579 1580 /* 1581 * Stolen memory is segmented in hardware with different portions 1582 * offlimits to certain functions. 1583 * 1584 * The drm_mm is initialised to the total accessible range, as found 1585 * from the PCI config. On Broadwell+, this is further restricted to 1586 * avoid the first page! The upper end of stolen memory is reserved for 1587 * hardware functions and similarly removed from the accessible range. 1588 */ 1589 resource_size_t stolen_usable_size; /* Total size minus reserved ranges */ 1590 1591 void __iomem *regs; 1592 1593 struct intel_uncore uncore; 1594 1595 struct i915_virtual_gpu vgpu; 1596 1597 struct intel_gvt *gvt; 1598 1599 struct intel_wopcm wopcm; 1600 1601 struct intel_huc huc; 1602 struct intel_guc guc; 1603 1604 struct intel_csr csr; 1605 1606 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 1607 1608 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 1609 * controller on different i2c buses. */ 1610 struct mutex gmbus_mutex; 1611 1612 /** 1613 * Base address of the gmbus and gpio block. 1614 */ 1615 uint32_t gpio_mmio_base; 1616 1617 /* MMIO base address for MIPI regs */ 1618 uint32_t mipi_mmio_base; 1619 1620 uint32_t psr_mmio_base; 1621 1622 uint32_t pps_mmio_base; 1623 1624 wait_queue_head_t gmbus_wait_queue; 1625 1626 struct pci_dev *bridge_dev; 1627 struct intel_engine_cs *engine[I915_NUM_ENGINES]; 1628 /* Context used internally to idle the GPU and setup initial state */ 1629 struct i915_gem_context *kernel_context; 1630 /* Context only to be used for injecting preemption commands */ 1631 struct i915_gem_context *preempt_context; 1632 struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1] 1633 [MAX_ENGINE_INSTANCE + 1]; 1634 1635 struct drm_dma_handle *status_page_dmah; 1636 struct resource mch_res; 1637 1638 /* protects the irq masks */ 1639 spinlock_t irq_lock; 1640 1641 bool display_irqs_enabled; 1642 1643 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 1644 struct pm_qos_request pm_qos; 1645 1646 /* Sideband mailbox protection */ 1647 struct mutex sb_lock; 1648 1649 /** Cached value of IMR to avoid reads in updating the bitfield */ 1650 union { 1651 u32 irq_mask; 1652 u32 de_irq_mask[I915_MAX_PIPES]; 1653 }; 1654 u32 gt_irq_mask; 1655 u32 pm_imr; 1656 u32 pm_ier; 1657 u32 pm_rps_events; 1658 u32 pm_guc_events; 1659 u32 pipestat_irq_mask[I915_MAX_PIPES]; 1660 1661 struct i915_hotplug hotplug; 1662 struct intel_fbc fbc; 1663 struct i915_drrs drrs; 1664 struct intel_opregion opregion; 1665 struct intel_vbt_data vbt; 1666 1667 bool preserve_bios_swizzle; 1668 1669 /* overlay */ 1670 struct intel_overlay *overlay; 1671 1672 /* backlight registers and fields in struct intel_panel */ 1673 struct mutex backlight_lock; 1674 1675 /* LVDS info */ 1676 bool no_aux_handshake; 1677 1678 /* protects panel power sequencer state */ 1679 struct mutex pps_mutex; 1680 1681 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 1682 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 1683 1684 unsigned int fsb_freq, mem_freq, is_ddr3; 1685 unsigned int skl_preferred_vco_freq; 1686 unsigned int max_cdclk_freq; 1687 1688 unsigned int max_dotclk_freq; 1689 unsigned int rawclk_freq; 1690 unsigned int hpll_freq; 1691 unsigned int fdi_pll_freq; 1692 unsigned int czclk_freq; 1693 1694 struct { 1695 /* 1696 * The current logical cdclk state. 1697 * See intel_atomic_state.cdclk.logical 1698 * 1699 * For reading holding any crtc lock is sufficient, 1700 * for writing must hold all of them. 1701 */ 1702 struct intel_cdclk_state logical; 1703 /* 1704 * The current actual cdclk state. 1705 * See intel_atomic_state.cdclk.actual 1706 */ 1707 struct intel_cdclk_state actual; 1708 /* The current hardware cdclk state */ 1709 struct intel_cdclk_state hw; 1710 } cdclk; 1711 1712 /** 1713 * wq - Driver workqueue for GEM. 1714 * 1715 * NOTE: Work items scheduled here are not allowed to grab any modeset 1716 * locks, for otherwise the flushing done in the pageflip code will 1717 * result in deadlocks. 1718 */ 1719 struct workqueue_struct *wq; 1720 1721 /* ordered wq for modesets */ 1722 struct workqueue_struct *modeset_wq; 1723 1724 /* Display functions */ 1725 struct drm_i915_display_funcs display; 1726 1727 /* PCH chipset type */ 1728 enum intel_pch pch_type; 1729 unsigned short pch_id; 1730 1731 unsigned long quirks; 1732 1733 struct drm_atomic_state *modeset_restore_state; 1734 struct drm_modeset_acquire_ctx reset_ctx; 1735 1736 struct i915_ggtt ggtt; /* VM representing the global address space */ 1737 1738 struct i915_gem_mm mm; 1739 DECLARE_HASHTABLE(mm_structs, 7); 1740 struct mutex mm_lock; 1741 1742 struct intel_ppat ppat; 1743 1744 /* Kernel Modesetting */ 1745 1746 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 1747 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 1748 1749 #ifdef CONFIG_DEBUG_FS 1750 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 1751 #endif 1752 1753 /* dpll and cdclk state is protected by connection_mutex */ 1754 int num_shared_dpll; 1755 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 1756 const struct intel_dpll_mgr *dpll_mgr; 1757 1758 /* 1759 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 1760 * Must be global rather than per dpll, because on some platforms 1761 * plls share registers. 1762 */ 1763 struct mutex dpll_lock; 1764 1765 unsigned int active_crtcs; 1766 /* minimum acceptable cdclk for each pipe */ 1767 int min_cdclk[I915_MAX_PIPES]; 1768 /* minimum acceptable voltage level for each pipe */ 1769 u8 min_voltage_level[I915_MAX_PIPES]; 1770 1771 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 1772 1773 struct i915_workarounds workarounds; 1774 1775 struct i915_frontbuffer_tracking fb_tracking; 1776 1777 struct intel_atomic_helper { 1778 struct llist_head free_list; 1779 struct work_struct free_work; 1780 } atomic_helper; 1781 1782 u16 orig_clock; 1783 1784 bool mchbar_need_disable; 1785 1786 struct intel_l3_parity l3_parity; 1787 1788 /* Cannot be determined by PCIID. You must always read a register. */ 1789 u32 edram_cap; 1790 1791 /* 1792 * Protects RPS/RC6 register access and PCU communication. 1793 * Must be taken after struct_mutex if nested. Note that 1794 * this lock may be held for long periods of time when 1795 * talking to hw - so only take it when talking to hw! 1796 */ 1797 struct mutex pcu_lock; 1798 1799 /* gen6+ GT PM state */ 1800 struct intel_gen6_power_mgmt gt_pm; 1801 1802 /* ilk-only ips/rps state. Everything in here is protected by the global 1803 * mchdev_lock in intel_pm.c */ 1804 struct intel_ilk_power_mgmt ips; 1805 1806 struct i915_power_domains power_domains; 1807 1808 struct i915_psr psr; 1809 1810 struct i915_gpu_error gpu_error; 1811 1812 struct drm_i915_gem_object *vlv_pctx; 1813 1814 /* list of fbdev register on this device */ 1815 struct intel_fbdev *fbdev; 1816 struct work_struct fbdev_suspend_work; 1817 1818 struct drm_property *broadcast_rgb_property; 1819 struct drm_property *force_audio_property; 1820 1821 /* hda/i915 audio component */ 1822 struct i915_audio_component *audio_component; 1823 bool audio_component_registered; 1824 /** 1825 * av_mutex - mutex for audio/video sync 1826 * 1827 */ 1828 struct mutex av_mutex; 1829 1830 struct { 1831 struct list_head list; 1832 struct llist_head free_list; 1833 struct work_struct free_work; 1834 1835 /* The hw wants to have a stable context identifier for the 1836 * lifetime of the context (for OA, PASID, faults, etc). 1837 * This is limited in execlists to 21 bits. 1838 */ 1839 struct ida hw_ida; 1840 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 1841 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */ 1842 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */ 1843 } contexts; 1844 1845 u32 fdi_rx_config; 1846 1847 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 1848 u32 chv_phy_control; 1849 /* 1850 * Shadows for CHV DPLL_MD regs to keep the state 1851 * checker somewhat working in the presence hardware 1852 * crappiness (can't read out DPLL_MD for pipes B & C). 1853 */ 1854 u32 chv_dpll_md[I915_MAX_PIPES]; 1855 u32 bxt_phy_grc; 1856 1857 u32 suspend_count; 1858 bool power_domains_suspended; 1859 struct i915_suspend_saved_registers regfile; 1860 struct vlv_s0ix_state vlv_s0ix_state; 1861 1862 enum { 1863 I915_SAGV_UNKNOWN = 0, 1864 I915_SAGV_DISABLED, 1865 I915_SAGV_ENABLED, 1866 I915_SAGV_NOT_CONTROLLED 1867 } sagv_status; 1868 1869 struct { 1870 /* 1871 * Raw watermark latency values: 1872 * in 0.1us units for WM0, 1873 * in 0.5us units for WM1+. 1874 */ 1875 /* primary */ 1876 uint16_t pri_latency[5]; 1877 /* sprite */ 1878 uint16_t spr_latency[5]; 1879 /* cursor */ 1880 uint16_t cur_latency[5]; 1881 /* 1882 * Raw watermark memory latency values 1883 * for SKL for all 8 levels 1884 * in 1us units. 1885 */ 1886 uint16_t skl_latency[8]; 1887 1888 /* current hardware state */ 1889 union { 1890 struct ilk_wm_values hw; 1891 struct skl_ddb_values skl_hw; 1892 struct vlv_wm_values vlv; 1893 struct g4x_wm_values g4x; 1894 }; 1895 1896 uint8_t max_level; 1897 1898 /* 1899 * Should be held around atomic WM register writing; also 1900 * protects * intel_crtc->wm.active and 1901 * cstate->wm.need_postvbl_update. 1902 */ 1903 struct mutex wm_mutex; 1904 1905 /* 1906 * Set during HW readout of watermarks/DDB. Some platforms 1907 * need to know when we're still using BIOS-provided values 1908 * (which we don't fully trust). 1909 */ 1910 bool distrust_bios_wm; 1911 } wm; 1912 1913 struct i915_runtime_pm runtime_pm; 1914 1915 struct { 1916 bool initialized; 1917 1918 struct kobject *metrics_kobj; 1919 struct ctl_table_header *sysctl_header; 1920 1921 /* 1922 * Lock associated with adding/modifying/removing OA configs 1923 * in dev_priv->perf.metrics_idr. 1924 */ 1925 struct mutex metrics_lock; 1926 1927 /* 1928 * List of dynamic configurations, you need to hold 1929 * dev_priv->perf.metrics_lock to access it. 1930 */ 1931 struct idr metrics_idr; 1932 1933 /* 1934 * Lock associated with anything below within this structure 1935 * except exclusive_stream. 1936 */ 1937 struct mutex lock; 1938 struct list_head streams; 1939 1940 struct { 1941 /* 1942 * The stream currently using the OA unit. If accessed 1943 * outside a syscall associated to its file 1944 * descriptor, you need to hold 1945 * dev_priv->drm.struct_mutex. 1946 */ 1947 struct i915_perf_stream *exclusive_stream; 1948 1949 struct intel_context *pinned_ctx; 1950 u32 specific_ctx_id; 1951 u32 specific_ctx_id_mask; 1952 1953 struct hrtimer poll_check_timer; 1954 wait_queue_head_t poll_wq; 1955 bool pollin; 1956 1957 /** 1958 * For rate limiting any notifications of spurious 1959 * invalid OA reports 1960 */ 1961 struct ratelimit_state spurious_report_rs; 1962 1963 bool periodic; 1964 int period_exponent; 1965 1966 struct i915_oa_config test_config; 1967 1968 struct { 1969 struct i915_vma *vma; 1970 u8 *vaddr; 1971 u32 last_ctx_id; 1972 int format; 1973 int format_size; 1974 1975 /** 1976 * Locks reads and writes to all head/tail state 1977 * 1978 * Consider: the head and tail pointer state 1979 * needs to be read consistently from a hrtimer 1980 * callback (atomic context) and read() fop 1981 * (user context) with tail pointer updates 1982 * happening in atomic context and head updates 1983 * in user context and the (unlikely) 1984 * possibility of read() errors needing to 1985 * reset all head/tail state. 1986 * 1987 * Note: Contention or performance aren't 1988 * currently a significant concern here 1989 * considering the relatively low frequency of 1990 * hrtimer callbacks (5ms period) and that 1991 * reads typically only happen in response to a 1992 * hrtimer event and likely complete before the 1993 * next callback. 1994 * 1995 * Note: This lock is not held *while* reading 1996 * and copying data to userspace so the value 1997 * of head observed in htrimer callbacks won't 1998 * represent any partial consumption of data. 1999 */ 2000 spinlock_t ptr_lock; 2001 2002 /** 2003 * One 'aging' tail pointer and one 'aged' 2004 * tail pointer ready to used for reading. 2005 * 2006 * Initial values of 0xffffffff are invalid 2007 * and imply that an update is required 2008 * (and should be ignored by an attempted 2009 * read) 2010 */ 2011 struct { 2012 u32 offset; 2013 } tails[2]; 2014 2015 /** 2016 * Index for the aged tail ready to read() 2017 * data up to. 2018 */ 2019 unsigned int aged_tail_idx; 2020 2021 /** 2022 * A monotonic timestamp for when the current 2023 * aging tail pointer was read; used to 2024 * determine when it is old enough to trust. 2025 */ 2026 u64 aging_timestamp; 2027 2028 /** 2029 * Although we can always read back the head 2030 * pointer register, we prefer to avoid 2031 * trusting the HW state, just to avoid any 2032 * risk that some hardware condition could 2033 * somehow bump the head pointer unpredictably 2034 * and cause us to forward the wrong OA buffer 2035 * data to userspace. 2036 */ 2037 u32 head; 2038 } oa_buffer; 2039 2040 u32 gen7_latched_oastatus1; 2041 u32 ctx_oactxctrl_offset; 2042 u32 ctx_flexeu0_offset; 2043 2044 /** 2045 * The RPT_ID/reason field for Gen8+ includes a bit 2046 * to determine if the CTX ID in the report is valid 2047 * but the specific bit differs between Gen 8 and 9 2048 */ 2049 u32 gen8_valid_ctx_bit; 2050 2051 struct i915_oa_ops ops; 2052 const struct i915_oa_format *oa_formats; 2053 } oa; 2054 } perf; 2055 2056 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 2057 struct { 2058 void (*resume)(struct drm_i915_private *); 2059 void (*cleanup_engine)(struct intel_engine_cs *engine); 2060 2061 struct list_head timelines; 2062 2063 struct list_head active_rings; 2064 struct list_head closed_vma; 2065 u32 active_requests; 2066 u32 request_serial; 2067 2068 /** 2069 * Is the GPU currently considered idle, or busy executing 2070 * userspace requests? Whilst idle, we allow runtime power 2071 * management to power down the hardware and display clocks. 2072 * In order to reduce the effect on performance, there 2073 * is a slight delay before we do so. 2074 */ 2075 bool awake; 2076 2077 /** 2078 * The number of times we have woken up. 2079 */ 2080 unsigned int epoch; 2081 #define I915_EPOCH_INVALID 0 2082 2083 /** 2084 * We leave the user IRQ off as much as possible, 2085 * but this means that requests will finish and never 2086 * be retired once the system goes idle. Set a timer to 2087 * fire periodically while the ring is running. When it 2088 * fires, go retire requests. 2089 */ 2090 struct delayed_work retire_work; 2091 2092 /** 2093 * When we detect an idle GPU, we want to turn on 2094 * powersaving features. So once we see that there 2095 * are no more requests outstanding and no more 2096 * arrive within a small period of time, we fire 2097 * off the idle_work. 2098 */ 2099 struct delayed_work idle_work; 2100 2101 ktime_t last_init_time; 2102 } gt; 2103 2104 /* perform PHY state sanity checks? */ 2105 bool chv_phy_assert[2]; 2106 2107 bool ipc_enabled; 2108 2109 /* Used to save the pipe-to-encoder mapping for audio */ 2110 struct intel_encoder *av_enc_map[I915_MAX_PIPES]; 2111 2112 /* necessary resource sharing with HDMI LPE audio driver. */ 2113 struct { 2114 struct platform_device *platdev; 2115 int irq; 2116 } lpe_audio; 2117 2118 struct i915_pmu pmu; 2119 2120 /* 2121 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2122 * will be rejected. Instead look for a better place. 2123 */ 2124 }; 2125 2126 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2127 { 2128 return container_of(dev, struct drm_i915_private, drm); 2129 } 2130 2131 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) 2132 { 2133 return to_i915(dev_get_drvdata(kdev)); 2134 } 2135 2136 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm) 2137 { 2138 return container_of(wopcm, struct drm_i915_private, wopcm); 2139 } 2140 2141 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2142 { 2143 return container_of(guc, struct drm_i915_private, guc); 2144 } 2145 2146 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc) 2147 { 2148 return container_of(huc, struct drm_i915_private, huc); 2149 } 2150 2151 /* Simple iterator over all initialised engines */ 2152 #define for_each_engine(engine__, dev_priv__, id__) \ 2153 for ((id__) = 0; \ 2154 (id__) < I915_NUM_ENGINES; \ 2155 (id__)++) \ 2156 for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) 2157 2158 /* Iterator over subset of engines selected by mask */ 2159 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \ 2160 for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \ 2161 (tmp__) ? \ 2162 ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \ 2163 0;) 2164 2165 enum hdmi_force_audio { 2166 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2167 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2168 HDMI_AUDIO_AUTO, /* trust EDID */ 2169 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2170 }; 2171 2172 #define I915_GTT_OFFSET_NONE ((u32)-1) 2173 2174 /* 2175 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2176 * considered to be the frontbuffer for the given plane interface-wise. This 2177 * doesn't mean that the hw necessarily already scans it out, but that any 2178 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2179 * 2180 * We have one bit per pipe and per scanout plane type. 2181 */ 2182 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2183 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \ 2184 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \ 2185 BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \ 2186 BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \ 2187 }) 2188 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2189 BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2190 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2191 GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \ 2192 INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2193 2194 /* 2195 * Optimised SGL iterator for GEM objects 2196 */ 2197 static __always_inline struct sgt_iter { 2198 struct scatterlist *sgp; 2199 union { 2200 unsigned long pfn; 2201 dma_addr_t dma; 2202 }; 2203 unsigned int curr; 2204 unsigned int max; 2205 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2206 struct sgt_iter s = { .sgp = sgl }; 2207 2208 if (s.sgp) { 2209 s.max = s.curr = s.sgp->offset; 2210 s.max += s.sgp->length; 2211 if (dma) 2212 s.dma = sg_dma_address(s.sgp); 2213 else 2214 s.pfn = page_to_pfn(sg_page(s.sgp)); 2215 } 2216 2217 return s; 2218 } 2219 2220 static inline struct scatterlist *____sg_next(struct scatterlist *sg) 2221 { 2222 ++sg; 2223 if (unlikely(sg_is_chain(sg))) 2224 sg = sg_chain_ptr(sg); 2225 return sg; 2226 } 2227 2228 /** 2229 * __sg_next - return the next scatterlist entry in a list 2230 * @sg: The current sg entry 2231 * 2232 * Description: 2233 * If the entry is the last, return NULL; otherwise, step to the next 2234 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2235 * otherwise just return the pointer to the current element. 2236 **/ 2237 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2238 { 2239 return sg_is_last(sg) ? NULL : ____sg_next(sg); 2240 } 2241 2242 /** 2243 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2244 * @__dmap: DMA address (output) 2245 * @__iter: 'struct sgt_iter' (iterator state, internal) 2246 * @__sgt: sg_table to iterate over (input) 2247 */ 2248 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2249 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2250 ((__dmap) = (__iter).dma + (__iter).curr); \ 2251 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2252 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0) 2253 2254 /** 2255 * for_each_sgt_page - iterate over the pages of the given sg_table 2256 * @__pp: page pointer (output) 2257 * @__iter: 'struct sgt_iter' (iterator state, internal) 2258 * @__sgt: sg_table to iterate over (input) 2259 */ 2260 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2261 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2262 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2263 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2264 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2265 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0) 2266 2267 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg) 2268 { 2269 unsigned int page_sizes; 2270 2271 page_sizes = 0; 2272 while (sg) { 2273 GEM_BUG_ON(sg->offset); 2274 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE)); 2275 page_sizes |= sg->length; 2276 sg = __sg_next(sg); 2277 } 2278 2279 return page_sizes; 2280 } 2281 2282 static inline unsigned int i915_sg_segment_size(void) 2283 { 2284 unsigned int size = swiotlb_max_segment(); 2285 2286 if (size == 0) 2287 return SCATTERLIST_MAX_SEGMENT; 2288 2289 size = rounddown(size, PAGE_SIZE); 2290 /* swiotlb_max_segment_size can return 1 byte when it means one page. */ 2291 if (size < PAGE_SIZE) 2292 size = PAGE_SIZE; 2293 2294 return size; 2295 } 2296 2297 static inline const struct intel_device_info * 2298 intel_info(const struct drm_i915_private *dev_priv) 2299 { 2300 return &dev_priv->info; 2301 } 2302 2303 #define INTEL_INFO(dev_priv) intel_info((dev_priv)) 2304 #define DRIVER_CAPS(dev_priv) (&(dev_priv)->caps) 2305 2306 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen) 2307 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id) 2308 2309 #define REVID_FOREVER 0xff 2310 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision) 2311 2312 #define GEN_FOREVER (0) 2313 2314 #define INTEL_GEN_MASK(s, e) ( \ 2315 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \ 2316 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \ 2317 GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \ 2318 (s) != GEN_FOREVER ? (s) - 1 : 0) \ 2319 ) 2320 2321 /* 2322 * Returns true if Gen is in inclusive range [Start, End]. 2323 * 2324 * Use GEN_FOREVER for unbound start and or end. 2325 */ 2326 #define IS_GEN(dev_priv, s, e) \ 2327 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e)))) 2328 2329 /* 2330 * Return true if revision is in range [since,until] inclusive. 2331 * 2332 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2333 */ 2334 #define IS_REVID(p, since, until) \ 2335 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2336 2337 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p)) 2338 2339 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830) 2340 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G) 2341 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X) 2342 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G) 2343 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G) 2344 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM) 2345 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G) 2346 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM) 2347 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G) 2348 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM) 2349 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45) 2350 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45) 2351 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) 2352 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001) 2353 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011) 2354 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW) 2355 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33) 2356 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046) 2357 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE) 2358 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \ 2359 (dev_priv)->info.gt == 1) 2360 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW) 2361 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW) 2362 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL) 2363 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL) 2364 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE) 2365 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON) 2366 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE) 2367 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE) 2368 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE) 2369 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE) 2370 #define IS_ICELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ICELAKE) 2371 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile) 2372 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ 2373 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) 2374 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \ 2375 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \ 2376 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \ 2377 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)) 2378 /* ULX machines are also considered ULT. */ 2379 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \ 2380 (INTEL_DEVID(dev_priv) & 0xf) == 0xe) 2381 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ 2382 (dev_priv)->info.gt == 3) 2383 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \ 2384 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00) 2385 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ 2386 (dev_priv)->info.gt == 3) 2387 /* ULX machines are also considered ULT. */ 2388 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \ 2389 INTEL_DEVID(dev_priv) == 0x0A1E) 2390 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \ 2391 INTEL_DEVID(dev_priv) == 0x1913 || \ 2392 INTEL_DEVID(dev_priv) == 0x1916 || \ 2393 INTEL_DEVID(dev_priv) == 0x1921 || \ 2394 INTEL_DEVID(dev_priv) == 0x1926) 2395 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \ 2396 INTEL_DEVID(dev_priv) == 0x1915 || \ 2397 INTEL_DEVID(dev_priv) == 0x191E) 2398 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \ 2399 INTEL_DEVID(dev_priv) == 0x5913 || \ 2400 INTEL_DEVID(dev_priv) == 0x5916 || \ 2401 INTEL_DEVID(dev_priv) == 0x5921 || \ 2402 INTEL_DEVID(dev_priv) == 0x5926) 2403 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \ 2404 INTEL_DEVID(dev_priv) == 0x5915 || \ 2405 INTEL_DEVID(dev_priv) == 0x591E) 2406 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2407 (dev_priv)->info.gt == 2) 2408 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2409 (dev_priv)->info.gt == 3) 2410 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2411 (dev_priv)->info.gt == 4) 2412 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2413 (dev_priv)->info.gt == 2) 2414 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2415 (dev_priv)->info.gt == 3) 2416 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2417 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0) 2418 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2419 (dev_priv)->info.gt == 2) 2420 #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2421 (dev_priv)->info.gt == 3) 2422 #define IS_CNL_WITH_PORT_F(dev_priv) (IS_CANNONLAKE(dev_priv) && \ 2423 (INTEL_DEVID(dev_priv) & 0x0004) == 0x0004) 2424 2425 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support) 2426 2427 #define SKL_REVID_A0 0x0 2428 #define SKL_REVID_B0 0x1 2429 #define SKL_REVID_C0 0x2 2430 #define SKL_REVID_D0 0x3 2431 #define SKL_REVID_E0 0x4 2432 #define SKL_REVID_F0 0x5 2433 #define SKL_REVID_G0 0x6 2434 #define SKL_REVID_H0 0x7 2435 2436 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2437 2438 #define BXT_REVID_A0 0x0 2439 #define BXT_REVID_A1 0x1 2440 #define BXT_REVID_B0 0x3 2441 #define BXT_REVID_B_LAST 0x8 2442 #define BXT_REVID_C0 0x9 2443 2444 #define IS_BXT_REVID(dev_priv, since, until) \ 2445 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until)) 2446 2447 #define KBL_REVID_A0 0x0 2448 #define KBL_REVID_B0 0x1 2449 #define KBL_REVID_C0 0x2 2450 #define KBL_REVID_D0 0x3 2451 #define KBL_REVID_E0 0x4 2452 2453 #define IS_KBL_REVID(dev_priv, since, until) \ 2454 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2455 2456 #define GLK_REVID_A0 0x0 2457 #define GLK_REVID_A1 0x1 2458 2459 #define IS_GLK_REVID(dev_priv, since, until) \ 2460 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2461 2462 #define CNL_REVID_A0 0x0 2463 #define CNL_REVID_B0 0x1 2464 #define CNL_REVID_C0 0x2 2465 2466 #define IS_CNL_REVID(p, since, until) \ 2467 (IS_CANNONLAKE(p) && IS_REVID(p, since, until)) 2468 2469 #define ICL_REVID_A0 0x0 2470 #define ICL_REVID_A2 0x1 2471 #define ICL_REVID_B0 0x3 2472 #define ICL_REVID_B2 0x4 2473 #define ICL_REVID_C0 0x5 2474 2475 #define IS_ICL_REVID(p, since, until) \ 2476 (IS_ICELAKE(p) && IS_REVID(p, since, until)) 2477 2478 /* 2479 * The genX designation typically refers to the render engine, so render 2480 * capability related checks should use IS_GEN, while display and other checks 2481 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular 2482 * chips, etc.). 2483 */ 2484 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1))) 2485 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2))) 2486 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3))) 2487 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4))) 2488 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5))) 2489 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6))) 2490 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7))) 2491 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8))) 2492 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9))) 2493 #define IS_GEN11(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(10))) 2494 2495 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) 2496 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv)) 2497 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv)) 2498 2499 #define ENGINE_MASK(id) BIT(id) 2500 #define RENDER_RING ENGINE_MASK(RCS) 2501 #define BSD_RING ENGINE_MASK(VCS) 2502 #define BLT_RING ENGINE_MASK(BCS) 2503 #define VEBOX_RING ENGINE_MASK(VECS) 2504 #define BSD2_RING ENGINE_MASK(VCS2) 2505 #define BSD3_RING ENGINE_MASK(VCS3) 2506 #define BSD4_RING ENGINE_MASK(VCS4) 2507 #define VEBOX2_RING ENGINE_MASK(VECS2) 2508 #define ALL_ENGINES (~0) 2509 2510 #define HAS_ENGINE(dev_priv, id) \ 2511 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id))) 2512 2513 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) 2514 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) 2515 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) 2516 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) 2517 2518 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv) 2519 2520 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc) 2521 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop) 2522 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED)) 2523 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \ 2524 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv)) 2525 2526 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical) 2527 2528 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ 2529 ((dev_priv)->info.has_logical_ring_contexts) 2530 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \ 2531 ((dev_priv)->info.has_logical_ring_elsq) 2532 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \ 2533 ((dev_priv)->info.has_logical_ring_preemption) 2534 2535 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv) 2536 2537 #define USES_PPGTT(dev_priv) (i915_modparams.enable_ppgtt) 2538 #define USES_FULL_PPGTT(dev_priv) (i915_modparams.enable_ppgtt >= 2) 2539 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915_modparams.enable_ppgtt == 3) 2540 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \ 2541 GEM_BUG_ON((sizes) == 0); \ 2542 ((sizes) & ~(dev_priv)->info.page_sizes) == 0; \ 2543 }) 2544 2545 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay) 2546 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ 2547 ((dev_priv)->info.overlay_needs_physical) 2548 2549 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2550 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) 2551 2552 /* WaRsDisableCoarsePowerGating:skl,cnl */ 2553 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 2554 (IS_CANNONLAKE(dev_priv) || \ 2555 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv)) 2556 2557 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4) 2558 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \ 2559 IS_GEMINILAKE(dev_priv) || \ 2560 IS_KABYLAKE(dev_priv)) 2561 2562 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2563 * rows, which changed the alignment requirements and fence programming. 2564 */ 2565 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \ 2566 !(IS_I915G(dev_priv) || \ 2567 IS_I915GM(dev_priv))) 2568 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv) 2569 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug) 2570 2571 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2) 2572 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc) 2573 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7) 2574 2575 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) 2576 2577 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst) 2578 2579 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi) 2580 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg) 2581 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr) 2582 2583 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6) 2584 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p) 2585 #define HAS_RC6pp(dev_priv) (false) /* HW was never validated */ 2586 2587 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr) 2588 2589 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm) 2590 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc) 2591 2592 #define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc) 2593 2594 /* 2595 * For now, anything with a GuC requires uCode loading, and then supports 2596 * command submission once loaded. But these are logically independent 2597 * properties, so we have separate macros to test them. 2598 */ 2599 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc) 2600 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct) 2601 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2602 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv)) 2603 2604 /* For now, anything with a GuC has also HuC */ 2605 #define HAS_HUC(dev_priv) (HAS_GUC(dev_priv)) 2606 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2607 2608 /* Having a GuC is not the same as using a GuC */ 2609 #define USES_GUC(dev_priv) intel_uc_is_using_guc() 2610 #define USES_GUC_SUBMISSION(dev_priv) intel_uc_is_using_guc_submission() 2611 #define USES_HUC(dev_priv) intel_uc_is_using_huc() 2612 2613 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer) 2614 2615 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu) 2616 2617 #define INTEL_PCH_DEVICE_ID_MASK 0xff80 2618 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2619 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2620 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2621 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2622 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2623 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80 2624 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80 2625 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2626 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2627 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280 2628 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300 2629 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80 2630 #define INTEL_PCH_ICP_DEVICE_ID_TYPE 0x3480 2631 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2632 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2633 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2634 2635 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type) 2636 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id) 2637 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP) 2638 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP) 2639 #define HAS_PCH_CNP_LP(dev_priv) \ 2640 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) 2641 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP) 2642 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT) 2643 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT) 2644 #define HAS_PCH_LPT_LP(dev_priv) \ 2645 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \ 2646 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) 2647 #define HAS_PCH_LPT_H(dev_priv) \ 2648 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \ 2649 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE) 2650 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT) 2651 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX) 2652 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP) 2653 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE) 2654 2655 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display) 2656 2657 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9) 2658 2659 /* DPF == dynamic parity feature */ 2660 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf) 2661 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 2662 2 : HAS_L3_DPF(dev_priv)) 2663 2664 #define GT_FREQUENCY_MULTIPLIER 50 2665 #define GEN9_FREQ_SCALER 3 2666 2667 #include "i915_trace.h" 2668 2669 static inline bool intel_vtd_active(void) 2670 { 2671 #ifdef CONFIG_INTEL_IOMMU 2672 if (intel_iommu_gfx_mapped) 2673 return true; 2674 #endif 2675 return false; 2676 } 2677 2678 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 2679 { 2680 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active(); 2681 } 2682 2683 static inline bool 2684 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv) 2685 { 2686 return IS_BROXTON(dev_priv) && intel_vtd_active(); 2687 } 2688 2689 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, 2690 int enable_ppgtt); 2691 2692 /* i915_drv.c */ 2693 void __printf(3, 4) 2694 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 2695 const char *fmt, ...); 2696 2697 #define i915_report_error(dev_priv, fmt, ...) \ 2698 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 2699 2700 #ifdef CONFIG_COMPAT 2701 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2702 unsigned long arg); 2703 #else 2704 #define i915_compat_ioctl NULL 2705 #endif 2706 extern const struct dev_pm_ops i915_pm_ops; 2707 2708 extern int i915_driver_load(struct pci_dev *pdev, 2709 const struct pci_device_id *ent); 2710 extern void i915_driver_unload(struct drm_device *dev); 2711 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask); 2712 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv); 2713 2714 extern void i915_reset(struct drm_i915_private *i915, 2715 unsigned int stalled_mask, 2716 const char *reason); 2717 extern int i915_reset_engine(struct intel_engine_cs *engine, 2718 const char *reason); 2719 2720 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv); 2721 extern int intel_reset_guc(struct drm_i915_private *dev_priv); 2722 extern int intel_guc_reset_engine(struct intel_guc *guc, 2723 struct intel_engine_cs *engine); 2724 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 2725 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv); 2726 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2727 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2728 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2729 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2730 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2731 2732 int intel_engines_init_mmio(struct drm_i915_private *dev_priv); 2733 int intel_engines_init(struct drm_i915_private *dev_priv); 2734 2735 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv); 2736 2737 /* intel_hotplug.c */ 2738 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, 2739 u32 pin_mask, u32 long_mask); 2740 void intel_hpd_init(struct drm_i915_private *dev_priv); 2741 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 2742 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 2743 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv, 2744 enum port port); 2745 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2746 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2747 2748 /* i915_irq.c */ 2749 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 2750 { 2751 unsigned long delay; 2752 2753 if (unlikely(!i915_modparams.enable_hangcheck)) 2754 return; 2755 2756 /* Don't continually defer the hangcheck so that it is always run at 2757 * least once after work has been scheduled on any ring. Otherwise, 2758 * we will ignore a hung ring if a second ring is kept busy. 2759 */ 2760 2761 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 2762 queue_delayed_work(system_long_wq, 2763 &dev_priv->gpu_error.hangcheck_work, delay); 2764 } 2765 2766 __printf(4, 5) 2767 void i915_handle_error(struct drm_i915_private *dev_priv, 2768 u32 engine_mask, 2769 unsigned long flags, 2770 const char *fmt, ...); 2771 #define I915_ERROR_CAPTURE BIT(0) 2772 2773 extern void intel_irq_init(struct drm_i915_private *dev_priv); 2774 extern void intel_irq_fini(struct drm_i915_private *dev_priv); 2775 int intel_irq_install(struct drm_i915_private *dev_priv); 2776 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 2777 2778 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 2779 { 2780 return dev_priv->gvt; 2781 } 2782 2783 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 2784 { 2785 return dev_priv->vgpu.active; 2786 } 2787 2788 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 2789 enum pipe pipe); 2790 void 2791 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2792 u32 status_mask); 2793 2794 void 2795 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2796 u32 status_mask); 2797 2798 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 2799 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 2800 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 2801 uint32_t mask, 2802 uint32_t bits); 2803 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 2804 uint32_t interrupt_mask, 2805 uint32_t enabled_irq_mask); 2806 static inline void 2807 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2808 { 2809 ilk_update_display_irq(dev_priv, bits, bits); 2810 } 2811 static inline void 2812 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2813 { 2814 ilk_update_display_irq(dev_priv, bits, 0); 2815 } 2816 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 2817 enum pipe pipe, 2818 uint32_t interrupt_mask, 2819 uint32_t enabled_irq_mask); 2820 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 2821 enum pipe pipe, uint32_t bits) 2822 { 2823 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 2824 } 2825 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 2826 enum pipe pipe, uint32_t bits) 2827 { 2828 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 2829 } 2830 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 2831 uint32_t interrupt_mask, 2832 uint32_t enabled_irq_mask); 2833 static inline void 2834 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2835 { 2836 ibx_display_interrupt_update(dev_priv, bits, bits); 2837 } 2838 static inline void 2839 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2840 { 2841 ibx_display_interrupt_update(dev_priv, bits, 0); 2842 } 2843 2844 /* i915_gem.c */ 2845 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 2846 struct drm_file *file_priv); 2847 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 2848 struct drm_file *file_priv); 2849 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 2850 struct drm_file *file_priv); 2851 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 2852 struct drm_file *file_priv); 2853 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2854 struct drm_file *file_priv); 2855 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 2856 struct drm_file *file_priv); 2857 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 2858 struct drm_file *file_priv); 2859 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2860 struct drm_file *file_priv); 2861 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 2862 struct drm_file *file_priv); 2863 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 2864 struct drm_file *file_priv); 2865 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 2866 struct drm_file *file); 2867 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 2868 struct drm_file *file); 2869 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 2870 struct drm_file *file_priv); 2871 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 2872 struct drm_file *file_priv); 2873 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, 2874 struct drm_file *file_priv); 2875 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, 2876 struct drm_file *file_priv); 2877 int i915_gem_init_userptr(struct drm_i915_private *dev_priv); 2878 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv); 2879 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 2880 struct drm_file *file); 2881 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 2882 struct drm_file *file_priv); 2883 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 2884 struct drm_file *file_priv); 2885 void i915_gem_sanitize(struct drm_i915_private *i915); 2886 int i915_gem_init_early(struct drm_i915_private *dev_priv); 2887 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv); 2888 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 2889 int i915_gem_freeze(struct drm_i915_private *dev_priv); 2890 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 2891 2892 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv); 2893 void i915_gem_object_free(struct drm_i915_gem_object *obj); 2894 void i915_gem_object_init(struct drm_i915_gem_object *obj, 2895 const struct drm_i915_gem_object_ops *ops); 2896 struct drm_i915_gem_object * 2897 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size); 2898 struct drm_i915_gem_object * 2899 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 2900 const void *data, size_t size); 2901 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); 2902 void i915_gem_free_object(struct drm_gem_object *obj); 2903 2904 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 2905 { 2906 if (!atomic_read(&i915->mm.free_count)) 2907 return; 2908 2909 /* A single pass should suffice to release all the freed objects (along 2910 * most call paths) , but be a little more paranoid in that freeing 2911 * the objects does take a little amount of time, during which the rcu 2912 * callbacks could have added new objects into the freed list, and 2913 * armed the work again. 2914 */ 2915 do { 2916 rcu_barrier(); 2917 } while (flush_work(&i915->mm.free_work)); 2918 } 2919 2920 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915) 2921 { 2922 /* 2923 * Similar to objects above (see i915_gem_drain_freed-objects), in 2924 * general we have workers that are armed by RCU and then rearm 2925 * themselves in their callbacks. To be paranoid, we need to 2926 * drain the workqueue a second time after waiting for the RCU 2927 * grace period so that we catch work queued via RCU from the first 2928 * pass. As neither drain_workqueue() nor flush_workqueue() report 2929 * a result, we make an assumption that we only don't require more 2930 * than 2 passes to catch all recursive RCU delayed work. 2931 * 2932 */ 2933 int pass = 2; 2934 do { 2935 rcu_barrier(); 2936 drain_workqueue(i915->wq); 2937 } while (--pass); 2938 } 2939 2940 struct i915_vma * __must_check 2941 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 2942 const struct i915_ggtt_view *view, 2943 u64 size, 2944 u64 alignment, 2945 u64 flags); 2946 2947 int i915_gem_object_unbind(struct drm_i915_gem_object *obj); 2948 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 2949 2950 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); 2951 2952 static inline int __sg_page_count(const struct scatterlist *sg) 2953 { 2954 return sg->length >> PAGE_SHIFT; 2955 } 2956 2957 struct scatterlist * 2958 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 2959 unsigned int n, unsigned int *offset); 2960 2961 struct page * 2962 i915_gem_object_get_page(struct drm_i915_gem_object *obj, 2963 unsigned int n); 2964 2965 struct page * 2966 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 2967 unsigned int n); 2968 2969 dma_addr_t 2970 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 2971 unsigned long n); 2972 2973 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 2974 struct sg_table *pages, 2975 unsigned int sg_page_sizes); 2976 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 2977 2978 static inline int __must_check 2979 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 2980 { 2981 might_lock(&obj->mm.lock); 2982 2983 if (atomic_inc_not_zero(&obj->mm.pages_pin_count)) 2984 return 0; 2985 2986 return __i915_gem_object_get_pages(obj); 2987 } 2988 2989 static inline bool 2990 i915_gem_object_has_pages(struct drm_i915_gem_object *obj) 2991 { 2992 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages)); 2993 } 2994 2995 static inline void 2996 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 2997 { 2998 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 2999 3000 atomic_inc(&obj->mm.pages_pin_count); 3001 } 3002 3003 static inline bool 3004 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj) 3005 { 3006 return atomic_read(&obj->mm.pages_pin_count); 3007 } 3008 3009 static inline void 3010 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3011 { 3012 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 3013 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 3014 3015 atomic_dec(&obj->mm.pages_pin_count); 3016 } 3017 3018 static inline void 3019 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3020 { 3021 __i915_gem_object_unpin_pages(obj); 3022 } 3023 3024 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */ 3025 I915_MM_NORMAL = 0, 3026 I915_MM_SHRINKER 3027 }; 3028 3029 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 3030 enum i915_mm_subclass subclass); 3031 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj); 3032 3033 enum i915_map_type { 3034 I915_MAP_WB = 0, 3035 I915_MAP_WC, 3036 #define I915_MAP_OVERRIDE BIT(31) 3037 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE, 3038 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE, 3039 }; 3040 3041 /** 3042 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 3043 * @obj: the object to map into kernel address space 3044 * @type: the type of mapping, used to select pgprot_t 3045 * 3046 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 3047 * pages and then returns a contiguous mapping of the backing storage into 3048 * the kernel address space. Based on the @type of mapping, the PTE will be 3049 * set to either WriteBack or WriteCombine (via pgprot_t). 3050 * 3051 * The caller is responsible for calling i915_gem_object_unpin_map() when the 3052 * mapping is no longer required. 3053 * 3054 * Returns the pointer through which to access the mapped object, or an 3055 * ERR_PTR() on error. 3056 */ 3057 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 3058 enum i915_map_type type); 3059 3060 /** 3061 * i915_gem_object_unpin_map - releases an earlier mapping 3062 * @obj: the object to unmap 3063 * 3064 * After pinning the object and mapping its pages, once you are finished 3065 * with your access, call i915_gem_object_unpin_map() to release the pin 3066 * upon the mapping. Once the pin count reaches zero, that mapping may be 3067 * removed. 3068 */ 3069 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 3070 { 3071 i915_gem_object_unpin_pages(obj); 3072 } 3073 3074 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 3075 unsigned int *needs_clflush); 3076 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 3077 unsigned int *needs_clflush); 3078 #define CLFLUSH_BEFORE BIT(0) 3079 #define CLFLUSH_AFTER BIT(1) 3080 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER) 3081 3082 static inline void 3083 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj) 3084 { 3085 i915_gem_object_unpin_pages(obj); 3086 } 3087 3088 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 3089 int i915_gem_dumb_create(struct drm_file *file_priv, 3090 struct drm_device *dev, 3091 struct drm_mode_create_dumb *args); 3092 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3093 uint32_t handle, uint64_t *offset); 3094 int i915_gem_mmap_gtt_version(void); 3095 3096 void i915_gem_track_fb(struct drm_i915_gem_object *old, 3097 struct drm_i915_gem_object *new, 3098 unsigned frontbuffer_bits); 3099 3100 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); 3101 3102 struct i915_request * 3103 i915_gem_find_active_request(struct intel_engine_cs *engine); 3104 3105 static inline bool i915_reset_backoff(struct i915_gpu_error *error) 3106 { 3107 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags)); 3108 } 3109 3110 static inline bool i915_reset_handoff(struct i915_gpu_error *error) 3111 { 3112 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags)); 3113 } 3114 3115 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3116 { 3117 return unlikely(test_bit(I915_WEDGED, &error->flags)); 3118 } 3119 3120 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error) 3121 { 3122 return i915_reset_backoff(error) | i915_terminally_wedged(error); 3123 } 3124 3125 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3126 { 3127 return READ_ONCE(error->reset_count); 3128 } 3129 3130 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error, 3131 struct intel_engine_cs *engine) 3132 { 3133 return READ_ONCE(error->reset_engine_count[engine->id]); 3134 } 3135 3136 struct i915_request * 3137 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine); 3138 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv); 3139 void i915_gem_reset(struct drm_i915_private *dev_priv, 3140 unsigned int stalled_mask); 3141 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine); 3142 void i915_gem_reset_finish(struct drm_i915_private *dev_priv); 3143 void i915_gem_set_wedged(struct drm_i915_private *dev_priv); 3144 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv); 3145 void i915_gem_reset_engine(struct intel_engine_cs *engine, 3146 struct i915_request *request, 3147 bool stalled); 3148 3149 void i915_gem_init_mmio(struct drm_i915_private *i915); 3150 int __must_check i915_gem_init(struct drm_i915_private *dev_priv); 3151 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv); 3152 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv); 3153 void i915_gem_fini(struct drm_i915_private *dev_priv); 3154 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv); 3155 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, 3156 unsigned int flags, long timeout); 3157 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv); 3158 void i915_gem_suspend_late(struct drm_i915_private *dev_priv); 3159 void i915_gem_resume(struct drm_i915_private *dev_priv); 3160 vm_fault_t i915_gem_fault(struct vm_fault *vmf); 3161 int i915_gem_object_wait(struct drm_i915_gem_object *obj, 3162 unsigned int flags, 3163 long timeout, 3164 struct intel_rps_client *rps); 3165 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 3166 unsigned int flags, 3167 const struct i915_sched_attr *attr); 3168 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX 3169 3170 int __must_check 3171 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write); 3172 int __must_check 3173 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write); 3174 int __must_check 3175 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3176 struct i915_vma * __must_check 3177 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3178 u32 alignment, 3179 const struct i915_ggtt_view *view, 3180 unsigned int flags); 3181 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma); 3182 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3183 int align); 3184 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file); 3185 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3186 3187 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3188 enum i915_cache_level cache_level); 3189 3190 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3191 struct dma_buf *dma_buf); 3192 3193 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3194 struct drm_gem_object *gem_obj, int flags); 3195 3196 static inline struct i915_hw_ppgtt * 3197 i915_vm_to_ppgtt(struct i915_address_space *vm) 3198 { 3199 return container_of(vm, struct i915_hw_ppgtt, vm); 3200 } 3201 3202 /* i915_gem_fence_reg.c */ 3203 struct drm_i915_fence_reg * 3204 i915_reserve_fence(struct drm_i915_private *dev_priv); 3205 void i915_unreserve_fence(struct drm_i915_fence_reg *fence); 3206 3207 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv); 3208 void i915_gem_restore_fences(struct drm_i915_private *dev_priv); 3209 3210 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv); 3211 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 3212 struct sg_table *pages); 3213 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 3214 struct sg_table *pages); 3215 3216 static inline struct i915_gem_context * 3217 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id) 3218 { 3219 return idr_find(&file_priv->context_idr, id); 3220 } 3221 3222 static inline struct i915_gem_context * 3223 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3224 { 3225 struct i915_gem_context *ctx; 3226 3227 rcu_read_lock(); 3228 ctx = __i915_gem_context_lookup_rcu(file_priv, id); 3229 if (ctx && !kref_get_unless_zero(&ctx->ref)) 3230 ctx = NULL; 3231 rcu_read_unlock(); 3232 3233 return ctx; 3234 } 3235 3236 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3237 struct drm_file *file); 3238 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3239 struct drm_file *file); 3240 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3241 struct drm_file *file); 3242 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 3243 struct i915_gem_context *ctx, 3244 uint32_t *reg_state); 3245 3246 /* i915_gem_evict.c */ 3247 int __must_check i915_gem_evict_something(struct i915_address_space *vm, 3248 u64 min_size, u64 alignment, 3249 unsigned cache_level, 3250 u64 start, u64 end, 3251 unsigned flags); 3252 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, 3253 struct drm_mm_node *node, 3254 unsigned int flags); 3255 int i915_gem_evict_vm(struct i915_address_space *vm); 3256 3257 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv); 3258 3259 /* belongs in i915_gem_gtt.h */ 3260 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3261 { 3262 wmb(); 3263 if (INTEL_GEN(dev_priv) < 6) 3264 intel_gtt_chipset_flush(); 3265 } 3266 3267 /* i915_gem_stolen.c */ 3268 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3269 struct drm_mm_node *node, u64 size, 3270 unsigned alignment); 3271 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3272 struct drm_mm_node *node, u64 size, 3273 unsigned alignment, u64 start, 3274 u64 end); 3275 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3276 struct drm_mm_node *node); 3277 int i915_gem_init_stolen(struct drm_i915_private *dev_priv); 3278 void i915_gem_cleanup_stolen(struct drm_device *dev); 3279 struct drm_i915_gem_object * 3280 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, 3281 resource_size_t size); 3282 struct drm_i915_gem_object * 3283 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv, 3284 resource_size_t stolen_offset, 3285 resource_size_t gtt_offset, 3286 resource_size_t size); 3287 3288 /* i915_gem_internal.c */ 3289 struct drm_i915_gem_object * 3290 i915_gem_object_create_internal(struct drm_i915_private *dev_priv, 3291 phys_addr_t size); 3292 3293 /* i915_gem_shrinker.c */ 3294 unsigned long i915_gem_shrink(struct drm_i915_private *i915, 3295 unsigned long target, 3296 unsigned long *nr_scanned, 3297 unsigned flags); 3298 #define I915_SHRINK_PURGEABLE 0x1 3299 #define I915_SHRINK_UNBOUND 0x2 3300 #define I915_SHRINK_BOUND 0x4 3301 #define I915_SHRINK_ACTIVE 0x8 3302 #define I915_SHRINK_VMAPS 0x10 3303 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915); 3304 void i915_gem_shrinker_register(struct drm_i915_private *i915); 3305 void i915_gem_shrinker_unregister(struct drm_i915_private *i915); 3306 void i915_gem_shrinker_taints_mutex(struct mutex *mutex); 3307 3308 /* i915_gem_tiling.c */ 3309 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3310 { 3311 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3312 3313 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3314 i915_gem_object_is_tiled(obj); 3315 } 3316 3317 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, 3318 unsigned int tiling, unsigned int stride); 3319 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, 3320 unsigned int tiling, unsigned int stride); 3321 3322 /* i915_debugfs.c */ 3323 #ifdef CONFIG_DEBUG_FS 3324 int i915_debugfs_register(struct drm_i915_private *dev_priv); 3325 int i915_debugfs_connector_add(struct drm_connector *connector); 3326 void intel_display_crc_init(struct drm_i915_private *dev_priv); 3327 #else 3328 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} 3329 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3330 { return 0; } 3331 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {} 3332 #endif 3333 3334 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3335 3336 /* i915_cmd_parser.c */ 3337 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 3338 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine); 3339 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); 3340 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 3341 struct drm_i915_gem_object *batch_obj, 3342 struct drm_i915_gem_object *shadow_batch_obj, 3343 u32 batch_start_offset, 3344 u32 batch_len, 3345 bool is_master); 3346 3347 /* i915_perf.c */ 3348 extern void i915_perf_init(struct drm_i915_private *dev_priv); 3349 extern void i915_perf_fini(struct drm_i915_private *dev_priv); 3350 extern void i915_perf_register(struct drm_i915_private *dev_priv); 3351 extern void i915_perf_unregister(struct drm_i915_private *dev_priv); 3352 3353 /* i915_suspend.c */ 3354 extern int i915_save_state(struct drm_i915_private *dev_priv); 3355 extern int i915_restore_state(struct drm_i915_private *dev_priv); 3356 3357 /* i915_sysfs.c */ 3358 void i915_setup_sysfs(struct drm_i915_private *dev_priv); 3359 void i915_teardown_sysfs(struct drm_i915_private *dev_priv); 3360 3361 /* intel_lpe_audio.c */ 3362 int intel_lpe_audio_init(struct drm_i915_private *dev_priv); 3363 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv); 3364 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv); 3365 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv, 3366 enum pipe pipe, enum port port, 3367 const void *eld, int ls_clock, bool dp_output); 3368 3369 /* intel_i2c.c */ 3370 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv); 3371 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv); 3372 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3373 unsigned int pin); 3374 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter); 3375 3376 extern struct i2c_adapter * 3377 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3378 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3379 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3380 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3381 { 3382 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3383 } 3384 extern void intel_i2c_reset(struct drm_i915_private *dev_priv); 3385 3386 /* intel_bios.c */ 3387 void intel_bios_init(struct drm_i915_private *dev_priv); 3388 void intel_bios_cleanup(struct drm_i915_private *dev_priv); 3389 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3390 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3391 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3392 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3393 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3394 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3395 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3396 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3397 enum port port); 3398 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv, 3399 enum port port); 3400 3401 /* intel_acpi.c */ 3402 #ifdef CONFIG_ACPI 3403 extern void intel_register_dsm_handler(void); 3404 extern void intel_unregister_dsm_handler(void); 3405 #else 3406 static inline void intel_register_dsm_handler(void) { return; } 3407 static inline void intel_unregister_dsm_handler(void) { return; } 3408 #endif /* CONFIG_ACPI */ 3409 3410 /* intel_device_info.c */ 3411 static inline struct intel_device_info * 3412 mkwrite_device_info(struct drm_i915_private *dev_priv) 3413 { 3414 return (struct intel_device_info *)&dev_priv->info; 3415 } 3416 3417 /* modesetting */ 3418 extern void intel_modeset_init_hw(struct drm_device *dev); 3419 extern int intel_modeset_init(struct drm_device *dev); 3420 extern void intel_modeset_cleanup(struct drm_device *dev); 3421 extern int intel_connector_register(struct drm_connector *); 3422 extern void intel_connector_unregister(struct drm_connector *); 3423 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, 3424 bool state); 3425 extern void intel_display_resume(struct drm_device *dev); 3426 extern void i915_redisable_vga(struct drm_i915_private *dev_priv); 3427 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv); 3428 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 3429 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv); 3430 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 3431 extern void intel_rps_mark_interactive(struct drm_i915_private *i915, 3432 bool interactive); 3433 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3434 bool enable); 3435 3436 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3437 struct drm_file *file); 3438 3439 /* overlay */ 3440 extern struct intel_overlay_error_state * 3441 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); 3442 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3443 struct intel_overlay_error_state *error); 3444 3445 extern struct intel_display_error_state * 3446 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 3447 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3448 struct intel_display_error_state *error); 3449 3450 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3451 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox, 3452 u32 val, int fast_timeout_us, 3453 int slow_timeout_ms); 3454 #define sandybridge_pcode_write(dev_priv, mbox, val) \ 3455 sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0) 3456 3457 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, 3458 u32 reply_mask, u32 reply, int timeout_base_ms); 3459 3460 /* intel_sideband.c */ 3461 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3462 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3463 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3464 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 3465 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 3466 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3467 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3468 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3469 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3470 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3471 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3472 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 3473 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 3474 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3475 enum intel_sbi_destination destination); 3476 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3477 enum intel_sbi_destination destination); 3478 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3479 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3480 3481 /* intel_dpio_phy.c */ 3482 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 3483 enum dpio_phy *phy, enum dpio_channel *ch); 3484 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv, 3485 enum port port, u32 margin, u32 scale, 3486 u32 enable, u32 deemphasis); 3487 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3488 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3489 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 3490 enum dpio_phy phy); 3491 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 3492 enum dpio_phy phy); 3493 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count); 3494 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 3495 uint8_t lane_lat_optim_mask); 3496 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder); 3497 3498 void chv_set_phy_signal_level(struct intel_encoder *encoder, 3499 u32 deemph_reg_value, u32 margin_reg_value, 3500 bool uniq_trans_scale); 3501 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 3502 const struct intel_crtc_state *crtc_state, 3503 bool reset); 3504 void chv_phy_pre_pll_enable(struct intel_encoder *encoder, 3505 const struct intel_crtc_state *crtc_state); 3506 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3507 const struct intel_crtc_state *crtc_state); 3508 void chv_phy_release_cl2_override(struct intel_encoder *encoder); 3509 void chv_phy_post_pll_disable(struct intel_encoder *encoder, 3510 const struct intel_crtc_state *old_crtc_state); 3511 3512 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 3513 u32 demph_reg_value, u32 preemph_reg_value, 3514 u32 uniqtranscale_reg_value, u32 tx3_demph); 3515 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, 3516 const struct intel_crtc_state *crtc_state); 3517 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3518 const struct intel_crtc_state *crtc_state); 3519 void vlv_phy_reset_lanes(struct intel_encoder *encoder, 3520 const struct intel_crtc_state *old_crtc_state); 3521 3522 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3523 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3524 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv, 3525 const i915_reg_t reg); 3526 3527 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1); 3528 3529 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv, 3530 const i915_reg_t reg) 3531 { 3532 return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000); 3533 } 3534 3535 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 3536 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 3537 3538 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 3539 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 3540 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 3541 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 3542 3543 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 3544 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 3545 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 3546 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 3547 3548 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3549 * will be implemented using 2 32-bit writes in an arbitrary order with 3550 * an arbitrary delay between them. This can cause the hardware to 3551 * act upon the intermediate value, possibly leading to corruption and 3552 * machine death. For this reason we do not support I915_WRITE64, or 3553 * dev_priv->uncore.funcs.mmio_writeq. 3554 * 3555 * When reading a 64-bit value as two 32-bit values, the delay may cause 3556 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that 3557 * occasionally a 64-bit register does not actualy support a full readq 3558 * and must be read using two 32-bit reads. 3559 * 3560 * You have been warned. 3561 */ 3562 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 3563 3564 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 3565 u32 upper, lower, old_upper, loop = 0; \ 3566 upper = I915_READ(upper_reg); \ 3567 do { \ 3568 old_upper = upper; \ 3569 lower = I915_READ(lower_reg); \ 3570 upper = I915_READ(upper_reg); \ 3571 } while (upper != old_upper && loop++ < 2); \ 3572 (u64)upper << 32 | lower; }) 3573 3574 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 3575 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 3576 3577 #define __raw_read(x, s) \ 3578 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \ 3579 i915_reg_t reg) \ 3580 { \ 3581 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3582 } 3583 3584 #define __raw_write(x, s) \ 3585 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \ 3586 i915_reg_t reg, uint##x##_t val) \ 3587 { \ 3588 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3589 } 3590 __raw_read(8, b) 3591 __raw_read(16, w) 3592 __raw_read(32, l) 3593 __raw_read(64, q) 3594 3595 __raw_write(8, b) 3596 __raw_write(16, w) 3597 __raw_write(32, l) 3598 __raw_write(64, q) 3599 3600 #undef __raw_read 3601 #undef __raw_write 3602 3603 /* These are untraced mmio-accessors that are only valid to be used inside 3604 * critical sections, such as inside IRQ handlers, where forcewake is explicitly 3605 * controlled. 3606 * 3607 * Think twice, and think again, before using these. 3608 * 3609 * As an example, these accessors can possibly be used between: 3610 * 3611 * spin_lock_irq(&dev_priv->uncore.lock); 3612 * intel_uncore_forcewake_get__locked(); 3613 * 3614 * and 3615 * 3616 * intel_uncore_forcewake_put__locked(); 3617 * spin_unlock_irq(&dev_priv->uncore.lock); 3618 * 3619 * 3620 * Note: some registers may not need forcewake held, so 3621 * intel_uncore_forcewake_{get,put} can be omitted, see 3622 * intel_uncore_forcewake_for_reg(). 3623 * 3624 * Certain architectures will die if the same cacheline is concurrently accessed 3625 * by different clients (e.g. on Ivybridge). Access to registers should 3626 * therefore generally be serialised, by either the dev_priv->uncore.lock or 3627 * a more localised lock guarding all access to that bank of registers. 3628 */ 3629 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 3630 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 3631 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) 3632 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 3633 3634 /* "Broadcast RGB" property */ 3635 #define INTEL_BROADCAST_RGB_AUTO 0 3636 #define INTEL_BROADCAST_RGB_FULL 1 3637 #define INTEL_BROADCAST_RGB_LIMITED 2 3638 3639 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) 3640 { 3641 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3642 return VLV_VGACNTRL; 3643 else if (INTEL_GEN(dev_priv) >= 5) 3644 return CPU_VGACNTRL; 3645 else 3646 return VGACNTRL; 3647 } 3648 3649 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 3650 { 3651 unsigned long j = msecs_to_jiffies(m); 3652 3653 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3654 } 3655 3656 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 3657 { 3658 /* nsecs_to_jiffies64() does not guard against overflow */ 3659 if (NSEC_PER_SEC % HZ && 3660 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ) 3661 return MAX_JIFFY_OFFSET; 3662 3663 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 3664 } 3665 3666 /* 3667 * If you need to wait X milliseconds between events A and B, but event B 3668 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 3669 * when event A happened, then just before event B you call this function and 3670 * pass the timestamp as the first argument, and X as the second argument. 3671 */ 3672 static inline void 3673 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 3674 { 3675 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 3676 3677 /* 3678 * Don't re-read the value of "jiffies" every time since it may change 3679 * behind our back and break the math. 3680 */ 3681 tmp_jiffies = jiffies; 3682 target_jiffies = timestamp_jiffies + 3683 msecs_to_jiffies_timeout(to_wait_ms); 3684 3685 if (time_after(target_jiffies, tmp_jiffies)) { 3686 remaining_jiffies = target_jiffies - tmp_jiffies; 3687 while (remaining_jiffies) 3688 remaining_jiffies = 3689 schedule_timeout_uninterruptible(remaining_jiffies); 3690 } 3691 } 3692 3693 static inline bool 3694 __i915_request_irq_complete(const struct i915_request *rq) 3695 { 3696 struct intel_engine_cs *engine = rq->engine; 3697 u32 seqno; 3698 3699 /* Note that the engine may have wrapped around the seqno, and 3700 * so our request->global_seqno will be ahead of the hardware, 3701 * even though it completed the request before wrapping. We catch 3702 * this by kicking all the waiters before resetting the seqno 3703 * in hardware, and also signal the fence. 3704 */ 3705 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 3706 return true; 3707 3708 /* The request was dequeued before we were awoken. We check after 3709 * inspecting the hw to confirm that this was the same request 3710 * that generated the HWS update. The memory barriers within 3711 * the request execution are sufficient to ensure that a check 3712 * after reading the value from hw matches this request. 3713 */ 3714 seqno = i915_request_global_seqno(rq); 3715 if (!seqno) 3716 return false; 3717 3718 /* Before we do the heavier coherent read of the seqno, 3719 * check the value (hopefully) in the CPU cacheline. 3720 */ 3721 if (__i915_request_completed(rq, seqno)) 3722 return true; 3723 3724 /* Ensure our read of the seqno is coherent so that we 3725 * do not "miss an interrupt" (i.e. if this is the last 3726 * request and the seqno write from the GPU is not visible 3727 * by the time the interrupt fires, we will see that the 3728 * request is incomplete and go back to sleep awaiting 3729 * another interrupt that will never come.) 3730 * 3731 * Strictly, we only need to do this once after an interrupt, 3732 * but it is easier and safer to do it every time the waiter 3733 * is woken. 3734 */ 3735 if (engine->irq_seqno_barrier && 3736 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) { 3737 struct intel_breadcrumbs *b = &engine->breadcrumbs; 3738 3739 /* The ordering of irq_posted versus applying the barrier 3740 * is crucial. The clearing of the current irq_posted must 3741 * be visible before we perform the barrier operation, 3742 * such that if a subsequent interrupt arrives, irq_posted 3743 * is reasserted and our task rewoken (which causes us to 3744 * do another __i915_request_irq_complete() immediately 3745 * and reapply the barrier). Conversely, if the clear 3746 * occurs after the barrier, then an interrupt that arrived 3747 * whilst we waited on the barrier would not trigger a 3748 * barrier on the next pass, and the read may not see the 3749 * seqno update. 3750 */ 3751 engine->irq_seqno_barrier(engine); 3752 3753 /* If we consume the irq, but we are no longer the bottom-half, 3754 * the real bottom-half may not have serialised their own 3755 * seqno check with the irq-barrier (i.e. may have inspected 3756 * the seqno before we believe it coherent since they see 3757 * irq_posted == false but we are still running). 3758 */ 3759 spin_lock_irq(&b->irq_lock); 3760 if (b->irq_wait && b->irq_wait->tsk != current) 3761 /* Note that if the bottom-half is changed as we 3762 * are sending the wake-up, the new bottom-half will 3763 * be woken by whomever made the change. We only have 3764 * to worry about when we steal the irq-posted for 3765 * ourself. 3766 */ 3767 wake_up_process(b->irq_wait->tsk); 3768 spin_unlock_irq(&b->irq_lock); 3769 3770 if (__i915_request_completed(rq, seqno)) 3771 return true; 3772 } 3773 3774 return false; 3775 } 3776 3777 void i915_memcpy_init_early(struct drm_i915_private *dev_priv); 3778 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len); 3779 3780 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment, 3781 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot 3782 * perform the operation. To check beforehand, pass in the parameters to 3783 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits, 3784 * you only need to pass in the minor offsets, page-aligned pointers are 3785 * always valid. 3786 * 3787 * For just checking for SSE4.1, in the foreknowledge that the future use 3788 * will be correctly aligned, just use i915_has_memcpy_from_wc(). 3789 */ 3790 #define i915_can_memcpy_from_wc(dst, src, len) \ 3791 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0) 3792 3793 #define i915_has_memcpy_from_wc() \ 3794 i915_memcpy_from_wc(NULL, NULL, 0) 3795 3796 /* i915_mm.c */ 3797 int remap_io_mapping(struct vm_area_struct *vma, 3798 unsigned long addr, unsigned long pfn, unsigned long size, 3799 struct io_mapping *iomap); 3800 3801 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915) 3802 { 3803 if (INTEL_GEN(i915) >= 10) 3804 return CNL_HWS_CSB_WRITE_INDEX; 3805 else 3806 return I915_HWS_CSB_WRITE_INDEX; 3807 } 3808 3809 #endif 3810