1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hash.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/pm_qos.h> 44 #include <linux/reservation.h> 45 #include <linux/shmem_fs.h> 46 47 #include <drm/drmP.h> 48 #include <drm/intel-gtt.h> 49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 50 #include <drm/drm_gem.h> 51 #include <drm/drm_auth.h> 52 #include <drm/drm_cache.h> 53 54 #include "i915_params.h" 55 #include "i915_reg.h" 56 #include "i915_utils.h" 57 58 #include "intel_uncore.h" 59 #include "intel_bios.h" 60 #include "intel_dpll_mgr.h" 61 #include "intel_uc.h" 62 #include "intel_lrc.h" 63 #include "intel_ringbuffer.h" 64 65 #include "i915_gem.h" 66 #include "i915_gem_context.h" 67 #include "i915_gem_fence_reg.h" 68 #include "i915_gem_object.h" 69 #include "i915_gem_gtt.h" 70 #include "i915_gem_render_state.h" 71 #include "i915_gem_request.h" 72 #include "i915_gem_timeline.h" 73 74 #include "i915_vma.h" 75 76 #include "intel_gvt.h" 77 78 /* General customization: 79 */ 80 81 #define DRIVER_NAME "i915" 82 #define DRIVER_DESC "Intel Graphics" 83 #define DRIVER_DATE "20170818" 84 #define DRIVER_TIMESTAMP 1503088845 85 86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 87 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 88 * which may not necessarily be a user visible problem. This will either 89 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 90 * enable distros and users to tailor their preferred amount of i915 abrt 91 * spam. 92 */ 93 #define I915_STATE_WARN(condition, format...) ({ \ 94 int __ret_warn_on = !!(condition); \ 95 if (unlikely(__ret_warn_on)) \ 96 if (!WARN(i915.verbose_state_checks, format)) \ 97 DRM_ERROR(format); \ 98 unlikely(__ret_warn_on); \ 99 }) 100 101 #define I915_STATE_WARN_ON(x) \ 102 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 103 104 bool __i915_inject_load_failure(const char *func, int line); 105 #define i915_inject_load_failure() \ 106 __i915_inject_load_failure(__func__, __LINE__) 107 108 typedef struct { 109 uint32_t val; 110 } uint_fixed_16_16_t; 111 112 #define FP_16_16_MAX ({ \ 113 uint_fixed_16_16_t fp; \ 114 fp.val = UINT_MAX; \ 115 fp; \ 116 }) 117 118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val) 119 { 120 if (val.val == 0) 121 return true; 122 return false; 123 } 124 125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val) 126 { 127 uint_fixed_16_16_t fp; 128 129 WARN_ON(val >> 16); 130 131 fp.val = val << 16; 132 return fp; 133 } 134 135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp) 136 { 137 return DIV_ROUND_UP(fp.val, 1 << 16); 138 } 139 140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp) 141 { 142 return fp.val >> 16; 143 } 144 145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1, 146 uint_fixed_16_16_t min2) 147 { 148 uint_fixed_16_16_t min; 149 150 min.val = min(min1.val, min2.val); 151 return min; 152 } 153 154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1, 155 uint_fixed_16_16_t max2) 156 { 157 uint_fixed_16_16_t max; 158 159 max.val = max(max1.val, max2.val); 160 return max; 161 } 162 163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val) 164 { 165 uint_fixed_16_16_t fp; 166 WARN_ON(val >> 32); 167 fp.val = clamp_t(uint32_t, val, 0, ~0); 168 return fp; 169 } 170 171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val, 172 uint_fixed_16_16_t d) 173 { 174 return DIV_ROUND_UP(val.val, d.val); 175 } 176 177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val, 178 uint_fixed_16_16_t mul) 179 { 180 uint64_t intermediate_val; 181 182 intermediate_val = (uint64_t) val * mul.val; 183 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16); 184 WARN_ON(intermediate_val >> 32); 185 return clamp_t(uint32_t, intermediate_val, 0, ~0); 186 } 187 188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val, 189 uint_fixed_16_16_t mul) 190 { 191 uint64_t intermediate_val; 192 193 intermediate_val = (uint64_t) val.val * mul.val; 194 intermediate_val = intermediate_val >> 16; 195 return clamp_u64_to_fixed16(intermediate_val); 196 } 197 198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d) 199 { 200 uint64_t interm_val; 201 202 interm_val = (uint64_t)val << 16; 203 interm_val = DIV_ROUND_UP_ULL(interm_val, d); 204 return clamp_u64_to_fixed16(interm_val); 205 } 206 207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val, 208 uint_fixed_16_16_t d) 209 { 210 uint64_t interm_val; 211 212 interm_val = (uint64_t)val << 16; 213 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val); 214 WARN_ON(interm_val >> 32); 215 return clamp_t(uint32_t, interm_val, 0, ~0); 216 } 217 218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val, 219 uint_fixed_16_16_t mul) 220 { 221 uint64_t intermediate_val; 222 223 intermediate_val = (uint64_t) val * mul.val; 224 return clamp_u64_to_fixed16(intermediate_val); 225 } 226 227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1, 228 uint_fixed_16_16_t add2) 229 { 230 uint64_t interm_sum; 231 232 interm_sum = (uint64_t) add1.val + add2.val; 233 return clamp_u64_to_fixed16(interm_sum); 234 } 235 236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1, 237 uint32_t add2) 238 { 239 uint64_t interm_sum; 240 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2); 241 242 interm_sum = (uint64_t) add1.val + interm_add2.val; 243 return clamp_u64_to_fixed16(interm_sum); 244 } 245 246 static inline const char *yesno(bool v) 247 { 248 return v ? "yes" : "no"; 249 } 250 251 static inline const char *onoff(bool v) 252 { 253 return v ? "on" : "off"; 254 } 255 256 static inline const char *enableddisabled(bool v) 257 { 258 return v ? "enabled" : "disabled"; 259 } 260 261 enum pipe { 262 INVALID_PIPE = -1, 263 PIPE_A = 0, 264 PIPE_B, 265 PIPE_C, 266 _PIPE_EDP, 267 I915_MAX_PIPES = _PIPE_EDP 268 }; 269 #define pipe_name(p) ((p) + 'A') 270 271 enum transcoder { 272 TRANSCODER_A = 0, 273 TRANSCODER_B, 274 TRANSCODER_C, 275 TRANSCODER_EDP, 276 TRANSCODER_DSI_A, 277 TRANSCODER_DSI_C, 278 I915_MAX_TRANSCODERS 279 }; 280 281 static inline const char *transcoder_name(enum transcoder transcoder) 282 { 283 switch (transcoder) { 284 case TRANSCODER_A: 285 return "A"; 286 case TRANSCODER_B: 287 return "B"; 288 case TRANSCODER_C: 289 return "C"; 290 case TRANSCODER_EDP: 291 return "EDP"; 292 case TRANSCODER_DSI_A: 293 return "DSI A"; 294 case TRANSCODER_DSI_C: 295 return "DSI C"; 296 default: 297 return "<invalid>"; 298 } 299 } 300 301 static inline bool transcoder_is_dsi(enum transcoder transcoder) 302 { 303 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C; 304 } 305 306 /* 307 * Global legacy plane identifier. Valid only for primary/sprite 308 * planes on pre-g4x, and only for primary planes on g4x+. 309 */ 310 enum plane { 311 PLANE_A, 312 PLANE_B, 313 PLANE_C, 314 }; 315 #define plane_name(p) ((p) + 'A') 316 317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A') 318 319 /* 320 * Per-pipe plane identifier. 321 * I915_MAX_PLANES in the enum below is the maximum (across all platforms) 322 * number of planes per CRTC. Not all platforms really have this many planes, 323 * which means some arrays of size I915_MAX_PLANES may have unused entries 324 * between the topmost sprite plane and the cursor plane. 325 * 326 * This is expected to be passed to various register macros 327 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care. 328 */ 329 enum plane_id { 330 PLANE_PRIMARY, 331 PLANE_SPRITE0, 332 PLANE_SPRITE1, 333 PLANE_SPRITE2, 334 PLANE_CURSOR, 335 I915_MAX_PLANES, 336 }; 337 338 #define for_each_plane_id_on_crtc(__crtc, __p) \ 339 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \ 340 for_each_if ((__crtc)->plane_ids_mask & BIT(__p)) 341 342 enum port { 343 PORT_NONE = -1, 344 PORT_A = 0, 345 PORT_B, 346 PORT_C, 347 PORT_D, 348 PORT_E, 349 I915_MAX_PORTS 350 }; 351 #define port_name(p) ((p) + 'A') 352 353 #define I915_NUM_PHYS_VLV 2 354 355 enum dpio_channel { 356 DPIO_CH0, 357 DPIO_CH1 358 }; 359 360 enum dpio_phy { 361 DPIO_PHY0, 362 DPIO_PHY1, 363 DPIO_PHY2, 364 }; 365 366 enum intel_display_power_domain { 367 POWER_DOMAIN_PIPE_A, 368 POWER_DOMAIN_PIPE_B, 369 POWER_DOMAIN_PIPE_C, 370 POWER_DOMAIN_PIPE_A_PANEL_FITTER, 371 POWER_DOMAIN_PIPE_B_PANEL_FITTER, 372 POWER_DOMAIN_PIPE_C_PANEL_FITTER, 373 POWER_DOMAIN_TRANSCODER_A, 374 POWER_DOMAIN_TRANSCODER_B, 375 POWER_DOMAIN_TRANSCODER_C, 376 POWER_DOMAIN_TRANSCODER_EDP, 377 POWER_DOMAIN_TRANSCODER_DSI_A, 378 POWER_DOMAIN_TRANSCODER_DSI_C, 379 POWER_DOMAIN_PORT_DDI_A_LANES, 380 POWER_DOMAIN_PORT_DDI_B_LANES, 381 POWER_DOMAIN_PORT_DDI_C_LANES, 382 POWER_DOMAIN_PORT_DDI_D_LANES, 383 POWER_DOMAIN_PORT_DDI_E_LANES, 384 POWER_DOMAIN_PORT_DDI_A_IO, 385 POWER_DOMAIN_PORT_DDI_B_IO, 386 POWER_DOMAIN_PORT_DDI_C_IO, 387 POWER_DOMAIN_PORT_DDI_D_IO, 388 POWER_DOMAIN_PORT_DDI_E_IO, 389 POWER_DOMAIN_PORT_DSI, 390 POWER_DOMAIN_PORT_CRT, 391 POWER_DOMAIN_PORT_OTHER, 392 POWER_DOMAIN_VGA, 393 POWER_DOMAIN_AUDIO, 394 POWER_DOMAIN_PLLS, 395 POWER_DOMAIN_AUX_A, 396 POWER_DOMAIN_AUX_B, 397 POWER_DOMAIN_AUX_C, 398 POWER_DOMAIN_AUX_D, 399 POWER_DOMAIN_GMBUS, 400 POWER_DOMAIN_MODESET, 401 POWER_DOMAIN_INIT, 402 403 POWER_DOMAIN_NUM, 404 }; 405 406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A) 407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \ 408 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER) 409 #define POWER_DOMAIN_TRANSCODER(tran) \ 410 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \ 411 (tran) + POWER_DOMAIN_TRANSCODER_A) 412 413 enum hpd_pin { 414 HPD_NONE = 0, 415 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 416 HPD_CRT, 417 HPD_SDVO_B, 418 HPD_SDVO_C, 419 HPD_PORT_A, 420 HPD_PORT_B, 421 HPD_PORT_C, 422 HPD_PORT_D, 423 HPD_PORT_E, 424 HPD_NUM_PINS 425 }; 426 427 #define for_each_hpd_pin(__pin) \ 428 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 429 430 #define HPD_STORM_DEFAULT_THRESHOLD 5 431 432 struct i915_hotplug { 433 struct work_struct hotplug_work; 434 435 struct { 436 unsigned long last_jiffies; 437 int count; 438 enum { 439 HPD_ENABLED = 0, 440 HPD_DISABLED = 1, 441 HPD_MARK_DISABLED = 2 442 } state; 443 } stats[HPD_NUM_PINS]; 444 u32 event_bits; 445 struct delayed_work reenable_work; 446 447 struct intel_digital_port *irq_port[I915_MAX_PORTS]; 448 u32 long_port_mask; 449 u32 short_port_mask; 450 struct work_struct dig_port_work; 451 452 struct work_struct poll_init_work; 453 bool poll_enabled; 454 455 unsigned int hpd_storm_threshold; 456 457 /* 458 * if we get a HPD irq from DP and a HPD irq from non-DP 459 * the non-DP HPD could block the workqueue on a mode config 460 * mutex getting, that userspace may have taken. However 461 * userspace is waiting on the DP workqueue to run which is 462 * blocked behind the non-DP one. 463 */ 464 struct workqueue_struct *dp_wq; 465 }; 466 467 #define I915_GEM_GPU_DOMAINS \ 468 (I915_GEM_DOMAIN_RENDER | \ 469 I915_GEM_DOMAIN_SAMPLER | \ 470 I915_GEM_DOMAIN_COMMAND | \ 471 I915_GEM_DOMAIN_INSTRUCTION | \ 472 I915_GEM_DOMAIN_VERTEX) 473 474 #define for_each_pipe(__dev_priv, __p) \ 475 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) 476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \ 477 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \ 478 for_each_if ((__mask) & (1 << (__p))) 479 #define for_each_universal_plane(__dev_priv, __pipe, __p) \ 480 for ((__p) = 0; \ 481 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \ 482 (__p)++) 483 #define for_each_sprite(__dev_priv, __p, __s) \ 484 for ((__s) = 0; \ 485 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \ 486 (__s)++) 487 488 #define for_each_port_masked(__port, __ports_mask) \ 489 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \ 490 for_each_if ((__ports_mask) & (1 << (__port))) 491 492 #define for_each_crtc(dev, crtc) \ 493 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head) 494 495 #define for_each_intel_plane(dev, intel_plane) \ 496 list_for_each_entry(intel_plane, \ 497 &(dev)->mode_config.plane_list, \ 498 base.head) 499 500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \ 501 list_for_each_entry(intel_plane, \ 502 &(dev)->mode_config.plane_list, \ 503 base.head) \ 504 for_each_if ((plane_mask) & \ 505 (1 << drm_plane_index(&intel_plane->base))) 506 507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \ 508 list_for_each_entry(intel_plane, \ 509 &(dev)->mode_config.plane_list, \ 510 base.head) \ 511 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe) 512 513 #define for_each_intel_crtc(dev, intel_crtc) \ 514 list_for_each_entry(intel_crtc, \ 515 &(dev)->mode_config.crtc_list, \ 516 base.head) 517 518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \ 519 list_for_each_entry(intel_crtc, \ 520 &(dev)->mode_config.crtc_list, \ 521 base.head) \ 522 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base))) 523 524 #define for_each_intel_encoder(dev, intel_encoder) \ 525 list_for_each_entry(intel_encoder, \ 526 &(dev)->mode_config.encoder_list, \ 527 base.head) 528 529 #define for_each_intel_connector_iter(intel_connector, iter) \ 530 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter)))) 531 532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \ 533 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \ 534 for_each_if ((intel_encoder)->base.crtc == (__crtc)) 535 536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \ 537 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \ 538 for_each_if ((intel_connector)->base.encoder == (__encoder)) 539 540 #define for_each_power_domain(domain, mask) \ 541 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \ 542 for_each_if (BIT_ULL(domain) & (mask)) 543 544 #define for_each_power_well(__dev_priv, __power_well) \ 545 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \ 546 (__power_well) - (__dev_priv)->power_domains.power_wells < \ 547 (__dev_priv)->power_domains.power_well_count; \ 548 (__power_well)++) 549 550 #define for_each_power_well_rev(__dev_priv, __power_well) \ 551 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \ 552 (__dev_priv)->power_domains.power_well_count - 1; \ 553 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \ 554 (__power_well)--) 555 556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \ 557 for_each_power_well(__dev_priv, __power_well) \ 558 for_each_if ((__power_well)->domains & (__domain_mask)) 559 560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \ 561 for_each_power_well_rev(__dev_priv, __power_well) \ 562 for_each_if ((__power_well)->domains & (__domain_mask)) 563 564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \ 565 for ((__i) = 0; \ 566 (__i) < (__state)->base.dev->mode_config.num_total_plane && \ 567 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \ 568 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \ 569 (__i)++) \ 570 for_each_if (plane_state) 571 572 struct drm_i915_private; 573 struct i915_mm_struct; 574 struct i915_mmu_object; 575 576 struct drm_i915_file_private { 577 struct drm_i915_private *dev_priv; 578 struct drm_file *file; 579 580 struct { 581 spinlock_t lock; 582 struct list_head request_list; 583 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 584 * chosen to prevent the CPU getting more than a frame ahead of the GPU 585 * (when using lax throttling for the frontbuffer). We also use it to 586 * offer free GPU waitboosts for severely congested workloads. 587 */ 588 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 589 } mm; 590 struct idr context_idr; 591 592 struct intel_rps_client { 593 atomic_t boosts; 594 } rps; 595 596 unsigned int bsd_engine; 597 598 /* Client can have a maximum of 3 contexts banned before 599 * it is denied of creating new contexts. As one context 600 * ban needs 4 consecutive hangs, and more if there is 601 * progress in between, this is a last resort stop gap measure 602 * to limit the badly behaving clients access to gpu. 603 */ 604 #define I915_MAX_CLIENT_CONTEXT_BANS 3 605 atomic_t context_bans; 606 }; 607 608 /* Used by dp and fdi links */ 609 struct intel_link_m_n { 610 uint32_t tu; 611 uint32_t gmch_m; 612 uint32_t gmch_n; 613 uint32_t link_m; 614 uint32_t link_n; 615 }; 616 617 void intel_link_compute_m_n(int bpp, int nlanes, 618 int pixel_clock, int link_clock, 619 struct intel_link_m_n *m_n, 620 bool reduce_m_n); 621 622 /* Interface history: 623 * 624 * 1.1: Original. 625 * 1.2: Add Power Management 626 * 1.3: Add vblank support 627 * 1.4: Fix cmdbuffer path, add heap destroy 628 * 1.5: Add vblank pipe configuration 629 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 630 * - Support vertical blank on secondary display pipe 631 */ 632 #define DRIVER_MAJOR 1 633 #define DRIVER_MINOR 6 634 #define DRIVER_PATCHLEVEL 0 635 636 struct opregion_header; 637 struct opregion_acpi; 638 struct opregion_swsci; 639 struct opregion_asle; 640 641 struct intel_opregion { 642 struct opregion_header *header; 643 struct opregion_acpi *acpi; 644 struct opregion_swsci *swsci; 645 u32 swsci_gbda_sub_functions; 646 u32 swsci_sbcb_sub_functions; 647 struct opregion_asle *asle; 648 void *rvda; 649 void *vbt_firmware; 650 const void *vbt; 651 u32 vbt_size; 652 u32 *lid_state; 653 struct work_struct asle_work; 654 }; 655 #define OPREGION_SIZE (8*1024) 656 657 struct intel_overlay; 658 struct intel_overlay_error_state; 659 660 struct sdvo_device_mapping { 661 u8 initialized; 662 u8 dvo_port; 663 u8 slave_addr; 664 u8 dvo_wiring; 665 u8 i2c_pin; 666 u8 ddc_pin; 667 }; 668 669 struct intel_connector; 670 struct intel_encoder; 671 struct intel_atomic_state; 672 struct intel_crtc_state; 673 struct intel_initial_plane_config; 674 struct intel_crtc; 675 struct intel_limit; 676 struct dpll; 677 struct intel_cdclk_state; 678 679 struct drm_i915_display_funcs { 680 void (*get_cdclk)(struct drm_i915_private *dev_priv, 681 struct intel_cdclk_state *cdclk_state); 682 void (*set_cdclk)(struct drm_i915_private *dev_priv, 683 const struct intel_cdclk_state *cdclk_state); 684 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane); 685 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 686 int (*compute_intermediate_wm)(struct drm_device *dev, 687 struct intel_crtc *intel_crtc, 688 struct intel_crtc_state *newstate); 689 void (*initial_watermarks)(struct intel_atomic_state *state, 690 struct intel_crtc_state *cstate); 691 void (*atomic_update_watermarks)(struct intel_atomic_state *state, 692 struct intel_crtc_state *cstate); 693 void (*optimize_watermarks)(struct intel_atomic_state *state, 694 struct intel_crtc_state *cstate); 695 int (*compute_global_watermarks)(struct drm_atomic_state *state); 696 void (*update_wm)(struct intel_crtc *crtc); 697 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 698 /* Returns the active state of the crtc, and if the crtc is active, 699 * fills out the pipe-config with the hw state. */ 700 bool (*get_pipe_config)(struct intel_crtc *, 701 struct intel_crtc_state *); 702 void (*get_initial_plane_config)(struct intel_crtc *, 703 struct intel_initial_plane_config *); 704 int (*crtc_compute_clock)(struct intel_crtc *crtc, 705 struct intel_crtc_state *crtc_state); 706 void (*crtc_enable)(struct intel_crtc_state *pipe_config, 707 struct drm_atomic_state *old_state); 708 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state, 709 struct drm_atomic_state *old_state); 710 void (*update_crtcs)(struct drm_atomic_state *state, 711 unsigned int *crtc_vblank_mask); 712 void (*audio_codec_enable)(struct drm_connector *connector, 713 struct intel_encoder *encoder, 714 const struct drm_display_mode *adjusted_mode); 715 void (*audio_codec_disable)(struct intel_encoder *encoder); 716 void (*fdi_link_train)(struct intel_crtc *crtc, 717 const struct intel_crtc_state *crtc_state); 718 void (*init_clock_gating)(struct drm_i915_private *dev_priv); 719 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 720 /* clock updates for mode set */ 721 /* cursor updates */ 722 /* render clock increase/decrease */ 723 /* display clock increase/decrease */ 724 /* pll clock increase/decrease */ 725 726 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); 727 void (*load_luts)(struct drm_crtc_state *crtc_state); 728 }; 729 730 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 731 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 732 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 733 734 struct intel_csr { 735 struct work_struct work; 736 const char *fw_path; 737 uint32_t *dmc_payload; 738 uint32_t dmc_fw_size; 739 uint32_t version; 740 uint32_t mmio_count; 741 i915_reg_t mmioaddr[8]; 742 uint32_t mmiodata[8]; 743 uint32_t dc_state; 744 uint32_t allowed_dc_mask; 745 }; 746 747 #define DEV_INFO_FOR_EACH_FLAG(func) \ 748 func(is_mobile); \ 749 func(is_lp); \ 750 func(is_alpha_support); \ 751 /* Keep has_* in alphabetical order */ \ 752 func(has_64bit_reloc); \ 753 func(has_aliasing_ppgtt); \ 754 func(has_csr); \ 755 func(has_ddi); \ 756 func(has_dp_mst); \ 757 func(has_reset_engine); \ 758 func(has_fbc); \ 759 func(has_fpga_dbg); \ 760 func(has_full_ppgtt); \ 761 func(has_full_48bit_ppgtt); \ 762 func(has_gmbus_irq); \ 763 func(has_gmch_display); \ 764 func(has_guc); \ 765 func(has_guc_ct); \ 766 func(has_hotplug); \ 767 func(has_l3_dpf); \ 768 func(has_llc); \ 769 func(has_logical_ring_contexts); \ 770 func(has_overlay); \ 771 func(has_pipe_cxsr); \ 772 func(has_pooled_eu); \ 773 func(has_psr); \ 774 func(has_rc6); \ 775 func(has_rc6p); \ 776 func(has_resource_streamer); \ 777 func(has_runtime_pm); \ 778 func(has_snoop); \ 779 func(unfenced_needs_alignment); \ 780 func(cursor_needs_physical); \ 781 func(hws_needs_physical); \ 782 func(overlay_needs_physical); \ 783 func(supports_tv); 784 785 struct sseu_dev_info { 786 u8 slice_mask; 787 u8 subslice_mask; 788 u8 eu_total; 789 u8 eu_per_subslice; 790 u8 min_eu_in_pool; 791 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */ 792 u8 subslice_7eu[3]; 793 u8 has_slice_pg:1; 794 u8 has_subslice_pg:1; 795 u8 has_eu_pg:1; 796 }; 797 798 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu) 799 { 800 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask); 801 } 802 803 /* Keep in gen based order, and chronological order within a gen */ 804 enum intel_platform { 805 INTEL_PLATFORM_UNINITIALIZED = 0, 806 INTEL_I830, 807 INTEL_I845G, 808 INTEL_I85X, 809 INTEL_I865G, 810 INTEL_I915G, 811 INTEL_I915GM, 812 INTEL_I945G, 813 INTEL_I945GM, 814 INTEL_G33, 815 INTEL_PINEVIEW, 816 INTEL_I965G, 817 INTEL_I965GM, 818 INTEL_G45, 819 INTEL_GM45, 820 INTEL_IRONLAKE, 821 INTEL_SANDYBRIDGE, 822 INTEL_IVYBRIDGE, 823 INTEL_VALLEYVIEW, 824 INTEL_HASWELL, 825 INTEL_BROADWELL, 826 INTEL_CHERRYVIEW, 827 INTEL_SKYLAKE, 828 INTEL_BROXTON, 829 INTEL_KABYLAKE, 830 INTEL_GEMINILAKE, 831 INTEL_COFFEELAKE, 832 INTEL_CANNONLAKE, 833 INTEL_MAX_PLATFORMS 834 }; 835 836 struct intel_device_info { 837 u32 display_mmio_offset; 838 u16 device_id; 839 u8 num_pipes; 840 u8 num_sprites[I915_MAX_PIPES]; 841 u8 num_scalers[I915_MAX_PIPES]; 842 u8 gen; 843 u16 gen_mask; 844 enum intel_platform platform; 845 u8 ring_mask; /* Rings supported by the HW */ 846 u8 num_rings; 847 #define DEFINE_FLAG(name) u8 name:1 848 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG); 849 #undef DEFINE_FLAG 850 u16 ddb_size; /* in blocks */ 851 /* Register offsets for the various display pipes and transcoders */ 852 int pipe_offsets[I915_MAX_TRANSCODERS]; 853 int trans_offsets[I915_MAX_TRANSCODERS]; 854 int palette_offsets[I915_MAX_PIPES]; 855 int cursor_offsets[I915_MAX_PIPES]; 856 857 /* Slice/subslice/EU info */ 858 struct sseu_dev_info sseu; 859 860 struct color_luts { 861 u16 degamma_lut_size; 862 u16 gamma_lut_size; 863 } color; 864 }; 865 866 struct intel_display_error_state; 867 868 struct i915_gpu_state { 869 struct kref ref; 870 struct timeval time; 871 struct timeval boottime; 872 struct timeval uptime; 873 874 struct drm_i915_private *i915; 875 876 char error_msg[128]; 877 bool simulated; 878 bool awake; 879 bool wakelock; 880 bool suspended; 881 int iommu; 882 u32 reset_count; 883 u32 suspend_count; 884 struct intel_device_info device_info; 885 struct i915_params params; 886 887 /* Generic register state */ 888 u32 eir; 889 u32 pgtbl_er; 890 u32 ier; 891 u32 gtier[4], ngtier; 892 u32 ccid; 893 u32 derrmr; 894 u32 forcewake; 895 u32 error; /* gen6+ */ 896 u32 err_int; /* gen7 */ 897 u32 fault_data0; /* gen8, gen9 */ 898 u32 fault_data1; /* gen8, gen9 */ 899 u32 done_reg; 900 u32 gac_eco; 901 u32 gam_ecochk; 902 u32 gab_ctl; 903 u32 gfx_mode; 904 905 u32 nfence; 906 u64 fence[I915_MAX_NUM_FENCES]; 907 struct intel_overlay_error_state *overlay; 908 struct intel_display_error_state *display; 909 struct drm_i915_error_object *semaphore; 910 struct drm_i915_error_object *guc_log; 911 912 struct drm_i915_error_engine { 913 int engine_id; 914 /* Software tracked state */ 915 bool waiting; 916 int num_waiters; 917 unsigned long hangcheck_timestamp; 918 bool hangcheck_stalled; 919 enum intel_engine_hangcheck_action hangcheck_action; 920 struct i915_address_space *vm; 921 int num_requests; 922 u32 reset_count; 923 924 /* position of active request inside the ring */ 925 u32 rq_head, rq_post, rq_tail; 926 927 /* our own tracking of ring head and tail */ 928 u32 cpu_ring_head; 929 u32 cpu_ring_tail; 930 931 u32 last_seqno; 932 933 /* Register state */ 934 u32 start; 935 u32 tail; 936 u32 head; 937 u32 ctl; 938 u32 mode; 939 u32 hws; 940 u32 ipeir; 941 u32 ipehr; 942 u32 bbstate; 943 u32 instpm; 944 u32 instps; 945 u32 seqno; 946 u64 bbaddr; 947 u64 acthd; 948 u32 fault_reg; 949 u64 faddr; 950 u32 rc_psmi; /* sleep state */ 951 u32 semaphore_mboxes[I915_NUM_ENGINES - 1]; 952 struct intel_instdone instdone; 953 954 struct drm_i915_error_context { 955 char comm[TASK_COMM_LEN]; 956 pid_t pid; 957 u32 handle; 958 u32 hw_id; 959 int ban_score; 960 int active; 961 int guilty; 962 } context; 963 964 struct drm_i915_error_object { 965 u64 gtt_offset; 966 u64 gtt_size; 967 int page_count; 968 int unused; 969 u32 *pages[0]; 970 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page; 971 972 struct drm_i915_error_object **user_bo; 973 long user_bo_count; 974 975 struct drm_i915_error_object *wa_ctx; 976 977 struct drm_i915_error_request { 978 long jiffies; 979 pid_t pid; 980 u32 context; 981 int ban_score; 982 u32 seqno; 983 u32 head; 984 u32 tail; 985 } *requests, execlist[2]; 986 987 struct drm_i915_error_waiter { 988 char comm[TASK_COMM_LEN]; 989 pid_t pid; 990 u32 seqno; 991 } *waiters; 992 993 struct { 994 u32 gfx_mode; 995 union { 996 u64 pdp[4]; 997 u32 pp_dir_base; 998 }; 999 } vm_info; 1000 } engine[I915_NUM_ENGINES]; 1001 1002 struct drm_i915_error_buffer { 1003 u32 size; 1004 u32 name; 1005 u32 rseqno[I915_NUM_ENGINES], wseqno; 1006 u64 gtt_offset; 1007 u32 read_domains; 1008 u32 write_domain; 1009 s32 fence_reg:I915_MAX_NUM_FENCE_BITS; 1010 u32 tiling:2; 1011 u32 dirty:1; 1012 u32 purgeable:1; 1013 u32 userptr:1; 1014 s32 engine:4; 1015 u32 cache_level:3; 1016 } *active_bo[I915_NUM_ENGINES], *pinned_bo; 1017 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count; 1018 struct i915_address_space *active_vm[I915_NUM_ENGINES]; 1019 }; 1020 1021 enum i915_cache_level { 1022 I915_CACHE_NONE = 0, 1023 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 1024 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 1025 caches, eg sampler/render caches, and the 1026 large Last-Level-Cache. LLC is coherent with 1027 the CPU, but L3 is only visible to the GPU. */ 1028 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 1029 }; 1030 1031 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ 1032 1033 enum fb_op_origin { 1034 ORIGIN_GTT, 1035 ORIGIN_CPU, 1036 ORIGIN_CS, 1037 ORIGIN_FLIP, 1038 ORIGIN_DIRTYFB, 1039 }; 1040 1041 struct intel_fbc { 1042 /* This is always the inner lock when overlapping with struct_mutex and 1043 * it's the outer lock when overlapping with stolen_lock. */ 1044 struct mutex lock; 1045 unsigned threshold; 1046 unsigned int possible_framebuffer_bits; 1047 unsigned int busy_bits; 1048 unsigned int visible_pipes_mask; 1049 struct intel_crtc *crtc; 1050 1051 struct drm_mm_node compressed_fb; 1052 struct drm_mm_node *compressed_llb; 1053 1054 bool false_color; 1055 1056 bool enabled; 1057 bool active; 1058 1059 bool underrun_detected; 1060 struct work_struct underrun_work; 1061 1062 /* 1063 * Due to the atomic rules we can't access some structures without the 1064 * appropriate locking, so we cache information here in order to avoid 1065 * these problems. 1066 */ 1067 struct intel_fbc_state_cache { 1068 struct i915_vma *vma; 1069 1070 struct { 1071 unsigned int mode_flags; 1072 uint32_t hsw_bdw_pixel_rate; 1073 } crtc; 1074 1075 struct { 1076 unsigned int rotation; 1077 int src_w; 1078 int src_h; 1079 bool visible; 1080 } plane; 1081 1082 struct { 1083 const struct drm_format_info *format; 1084 unsigned int stride; 1085 } fb; 1086 } state_cache; 1087 1088 /* 1089 * This structure contains everything that's relevant to program the 1090 * hardware registers. When we want to figure out if we need to disable 1091 * and re-enable FBC for a new configuration we just check if there's 1092 * something different in the struct. The genx_fbc_activate functions 1093 * are supposed to read from it in order to program the registers. 1094 */ 1095 struct intel_fbc_reg_params { 1096 struct i915_vma *vma; 1097 1098 struct { 1099 enum pipe pipe; 1100 enum plane plane; 1101 unsigned int fence_y_offset; 1102 } crtc; 1103 1104 struct { 1105 const struct drm_format_info *format; 1106 unsigned int stride; 1107 } fb; 1108 1109 int cfb_size; 1110 } params; 1111 1112 struct intel_fbc_work { 1113 bool scheduled; 1114 u32 scheduled_vblank; 1115 struct work_struct work; 1116 } work; 1117 1118 const char *no_fbc_reason; 1119 }; 1120 1121 /* 1122 * HIGH_RR is the highest eDP panel refresh rate read from EDID 1123 * LOW_RR is the lowest eDP panel refresh rate found from EDID 1124 * parsing for same resolution. 1125 */ 1126 enum drrs_refresh_rate_type { 1127 DRRS_HIGH_RR, 1128 DRRS_LOW_RR, 1129 DRRS_MAX_RR, /* RR count */ 1130 }; 1131 1132 enum drrs_support_type { 1133 DRRS_NOT_SUPPORTED = 0, 1134 STATIC_DRRS_SUPPORT = 1, 1135 SEAMLESS_DRRS_SUPPORT = 2 1136 }; 1137 1138 struct intel_dp; 1139 struct i915_drrs { 1140 struct mutex mutex; 1141 struct delayed_work work; 1142 struct intel_dp *dp; 1143 unsigned busy_frontbuffer_bits; 1144 enum drrs_refresh_rate_type refresh_rate_type; 1145 enum drrs_support_type type; 1146 }; 1147 1148 struct i915_psr { 1149 struct mutex lock; 1150 bool sink_support; 1151 bool source_ok; 1152 struct intel_dp *enabled; 1153 bool active; 1154 struct delayed_work work; 1155 unsigned busy_frontbuffer_bits; 1156 bool psr2_support; 1157 bool aux_frame_sync; 1158 bool link_standby; 1159 bool y_cord_support; 1160 bool colorimetry_support; 1161 bool alpm; 1162 }; 1163 1164 enum intel_pch { 1165 PCH_NONE = 0, /* No PCH present */ 1166 PCH_IBX, /* Ibexpeak PCH */ 1167 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */ 1168 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */ 1169 PCH_SPT, /* Sunrisepoint PCH */ 1170 PCH_KBP, /* Kaby Lake PCH */ 1171 PCH_CNP, /* Cannon Lake PCH */ 1172 PCH_NOP, 1173 }; 1174 1175 enum intel_sbi_destination { 1176 SBI_ICLK, 1177 SBI_MPHY, 1178 }; 1179 1180 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 1181 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 1182 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 1183 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 1184 #define QUIRK_INCREASE_T12_DELAY (1<<6) 1185 1186 struct intel_fbdev; 1187 struct intel_fbc_work; 1188 1189 struct intel_gmbus { 1190 struct i2c_adapter adapter; 1191 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 1192 u32 force_bit; 1193 u32 reg0; 1194 i915_reg_t gpio_reg; 1195 struct i2c_algo_bit_data bit_algo; 1196 struct drm_i915_private *dev_priv; 1197 }; 1198 1199 struct i915_suspend_saved_registers { 1200 u32 saveDSPARB; 1201 u32 saveFBC_CONTROL; 1202 u32 saveCACHE_MODE_0; 1203 u32 saveMI_ARB_STATE; 1204 u32 saveSWF0[16]; 1205 u32 saveSWF1[16]; 1206 u32 saveSWF3[3]; 1207 uint64_t saveFENCE[I915_MAX_NUM_FENCES]; 1208 u32 savePCH_PORT_HOTPLUG; 1209 u16 saveGCDGMBUS; 1210 }; 1211 1212 struct vlv_s0ix_state { 1213 /* GAM */ 1214 u32 wr_watermark; 1215 u32 gfx_prio_ctrl; 1216 u32 arb_mode; 1217 u32 gfx_pend_tlb0; 1218 u32 gfx_pend_tlb1; 1219 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 1220 u32 media_max_req_count; 1221 u32 gfx_max_req_count; 1222 u32 render_hwsp; 1223 u32 ecochk; 1224 u32 bsd_hwsp; 1225 u32 blt_hwsp; 1226 u32 tlb_rd_addr; 1227 1228 /* MBC */ 1229 u32 g3dctl; 1230 u32 gsckgctl; 1231 u32 mbctl; 1232 1233 /* GCP */ 1234 u32 ucgctl1; 1235 u32 ucgctl3; 1236 u32 rcgctl1; 1237 u32 rcgctl2; 1238 u32 rstctl; 1239 u32 misccpctl; 1240 1241 /* GPM */ 1242 u32 gfxpause; 1243 u32 rpdeuhwtc; 1244 u32 rpdeuc; 1245 u32 ecobus; 1246 u32 pwrdwnupctl; 1247 u32 rp_down_timeout; 1248 u32 rp_deucsw; 1249 u32 rcubmabdtmr; 1250 u32 rcedata; 1251 u32 spare2gh; 1252 1253 /* Display 1 CZ domain */ 1254 u32 gt_imr; 1255 u32 gt_ier; 1256 u32 pm_imr; 1257 u32 pm_ier; 1258 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 1259 1260 /* GT SA CZ domain */ 1261 u32 tilectl; 1262 u32 gt_fifoctl; 1263 u32 gtlc_wake_ctrl; 1264 u32 gtlc_survive; 1265 u32 pmwgicz; 1266 1267 /* Display 2 CZ domain */ 1268 u32 gu_ctl0; 1269 u32 gu_ctl1; 1270 u32 pcbr; 1271 u32 clock_gate_dis2; 1272 }; 1273 1274 struct intel_rps_ei { 1275 ktime_t ktime; 1276 u32 render_c0; 1277 u32 media_c0; 1278 }; 1279 1280 struct intel_gen6_power_mgmt { 1281 /* 1282 * work, interrupts_enabled and pm_iir are protected by 1283 * dev_priv->irq_lock 1284 */ 1285 struct work_struct work; 1286 bool interrupts_enabled; 1287 u32 pm_iir; 1288 1289 /* PM interrupt bits that should never be masked */ 1290 u32 pm_intrmsk_mbz; 1291 1292 /* Frequencies are stored in potentially platform dependent multiples. 1293 * In other words, *_freq needs to be multiplied by X to be interesting. 1294 * Soft limits are those which are used for the dynamic reclocking done 1295 * by the driver (raise frequencies under heavy loads, and lower for 1296 * lighter loads). Hard limits are those imposed by the hardware. 1297 * 1298 * A distinction is made for overclocking, which is never enabled by 1299 * default, and is considered to be above the hard limit if it's 1300 * possible at all. 1301 */ 1302 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 1303 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 1304 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 1305 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 1306 u8 min_freq; /* AKA RPn. Minimum frequency */ 1307 u8 boost_freq; /* Frequency to request when wait boosting */ 1308 u8 idle_freq; /* Frequency to request when we are idle */ 1309 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 1310 u8 rp1_freq; /* "less than" RP0 power/freqency */ 1311 u8 rp0_freq; /* Non-overclocked max frequency. */ 1312 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 1313 1314 u8 up_threshold; /* Current %busy required to uplock */ 1315 u8 down_threshold; /* Current %busy required to downclock */ 1316 1317 int last_adj; 1318 enum { LOW_POWER, BETWEEN, HIGH_POWER } power; 1319 1320 bool enabled; 1321 struct delayed_work autoenable_work; 1322 atomic_t num_waiters; 1323 atomic_t boosts; 1324 1325 /* manual wa residency calculations */ 1326 struct intel_rps_ei ei; 1327 1328 /* 1329 * Protects RPS/RC6 register access and PCU communication. 1330 * Must be taken after struct_mutex if nested. Note that 1331 * this lock may be held for long periods of time when 1332 * talking to hw - so only take it when talking to hw! 1333 */ 1334 struct mutex hw_lock; 1335 }; 1336 1337 /* defined intel_pm.c */ 1338 extern spinlock_t mchdev_lock; 1339 1340 struct intel_ilk_power_mgmt { 1341 u8 cur_delay; 1342 u8 min_delay; 1343 u8 max_delay; 1344 u8 fmax; 1345 u8 fstart; 1346 1347 u64 last_count1; 1348 unsigned long last_time1; 1349 unsigned long chipset_power; 1350 u64 last_count2; 1351 u64 last_time2; 1352 unsigned long gfx_power; 1353 u8 corr; 1354 1355 int c_m; 1356 int r_t; 1357 }; 1358 1359 struct drm_i915_private; 1360 struct i915_power_well; 1361 1362 struct i915_power_well_ops { 1363 /* 1364 * Synchronize the well's hw state to match the current sw state, for 1365 * example enable/disable it based on the current refcount. Called 1366 * during driver init and resume time, possibly after first calling 1367 * the enable/disable handlers. 1368 */ 1369 void (*sync_hw)(struct drm_i915_private *dev_priv, 1370 struct i915_power_well *power_well); 1371 /* 1372 * Enable the well and resources that depend on it (for example 1373 * interrupts located on the well). Called after the 0->1 refcount 1374 * transition. 1375 */ 1376 void (*enable)(struct drm_i915_private *dev_priv, 1377 struct i915_power_well *power_well); 1378 /* 1379 * Disable the well and resources that depend on it. Called after 1380 * the 1->0 refcount transition. 1381 */ 1382 void (*disable)(struct drm_i915_private *dev_priv, 1383 struct i915_power_well *power_well); 1384 /* Returns the hw enabled state. */ 1385 bool (*is_enabled)(struct drm_i915_private *dev_priv, 1386 struct i915_power_well *power_well); 1387 }; 1388 1389 /* Power well structure for haswell */ 1390 struct i915_power_well { 1391 const char *name; 1392 bool always_on; 1393 /* power well enable/disable usage count */ 1394 int count; 1395 /* cached hw enabled state */ 1396 bool hw_enabled; 1397 u64 domains; 1398 /* unique identifier for this power well */ 1399 enum i915_power_well_id id; 1400 /* 1401 * Arbitraty data associated with this power well. Platform and power 1402 * well specific. 1403 */ 1404 union { 1405 struct { 1406 enum dpio_phy phy; 1407 } bxt; 1408 struct { 1409 /* Mask of pipes whose IRQ logic is backed by the pw */ 1410 u8 irq_pipe_mask; 1411 /* The pw is backing the VGA functionality */ 1412 bool has_vga:1; 1413 bool has_fuses:1; 1414 } hsw; 1415 }; 1416 const struct i915_power_well_ops *ops; 1417 }; 1418 1419 struct i915_power_domains { 1420 /* 1421 * Power wells needed for initialization at driver init and suspend 1422 * time are on. They are kept on until after the first modeset. 1423 */ 1424 bool init_power_on; 1425 bool initializing; 1426 int power_well_count; 1427 1428 struct mutex lock; 1429 int domain_use_count[POWER_DOMAIN_NUM]; 1430 struct i915_power_well *power_wells; 1431 }; 1432 1433 #define MAX_L3_SLICES 2 1434 struct intel_l3_parity { 1435 u32 *remap_info[MAX_L3_SLICES]; 1436 struct work_struct error_work; 1437 int which_slice; 1438 }; 1439 1440 struct i915_gem_mm { 1441 /** Memory allocator for GTT stolen memory */ 1442 struct drm_mm stolen; 1443 /** Protects the usage of the GTT stolen memory allocator. This is 1444 * always the inner lock when overlapping with struct_mutex. */ 1445 struct mutex stolen_lock; 1446 1447 /** List of all objects in gtt_space. Used to restore gtt 1448 * mappings on resume */ 1449 struct list_head bound_list; 1450 /** 1451 * List of objects which are not bound to the GTT (thus 1452 * are idle and not used by the GPU). These objects may or may 1453 * not actually have any pages attached. 1454 */ 1455 struct list_head unbound_list; 1456 1457 /** List of all objects in gtt_space, currently mmaped by userspace. 1458 * All objects within this list must also be on bound_list. 1459 */ 1460 struct list_head userfault_list; 1461 1462 /** 1463 * List of objects which are pending destruction. 1464 */ 1465 struct llist_head free_list; 1466 struct work_struct free_work; 1467 1468 /** Usable portion of the GTT for GEM */ 1469 dma_addr_t stolen_base; /* limited to low memory (32-bit) */ 1470 1471 /** PPGTT used for aliasing the PPGTT with the GTT */ 1472 struct i915_hw_ppgtt *aliasing_ppgtt; 1473 1474 struct notifier_block oom_notifier; 1475 struct notifier_block vmap_notifier; 1476 struct shrinker shrinker; 1477 1478 /** LRU list of objects with fence regs on them. */ 1479 struct list_head fence_list; 1480 1481 /** 1482 * Workqueue to fault in userptr pages, flushed by the execbuf 1483 * when required but otherwise left to userspace to try again 1484 * on EAGAIN. 1485 */ 1486 struct workqueue_struct *userptr_wq; 1487 1488 u64 unordered_timeline; 1489 1490 /* the indicator for dispatch video commands on two BSD rings */ 1491 atomic_t bsd_engine_dispatch_index; 1492 1493 /** Bit 6 swizzling required for X tiling */ 1494 uint32_t bit_6_swizzle_x; 1495 /** Bit 6 swizzling required for Y tiling */ 1496 uint32_t bit_6_swizzle_y; 1497 1498 /* accounting, useful for userland debugging */ 1499 spinlock_t object_stat_lock; 1500 u64 object_memory; 1501 u32 object_count; 1502 }; 1503 1504 struct drm_i915_error_state_buf { 1505 struct drm_i915_private *i915; 1506 unsigned bytes; 1507 unsigned size; 1508 int err; 1509 u8 *buf; 1510 loff_t start; 1511 loff_t pos; 1512 }; 1513 1514 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */ 1515 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */ 1516 1517 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */ 1518 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */ 1519 1520 struct i915_gpu_error { 1521 /* For hangcheck timer */ 1522 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */ 1523 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD) 1524 1525 struct delayed_work hangcheck_work; 1526 1527 /* For reset and error_state handling. */ 1528 spinlock_t lock; 1529 /* Protected by the above dev->gpu_error.lock. */ 1530 struct i915_gpu_state *first_error; 1531 1532 atomic_t pending_fb_pin; 1533 1534 unsigned long missed_irq_rings; 1535 1536 /** 1537 * State variable controlling the reset flow and count 1538 * 1539 * This is a counter which gets incremented when reset is triggered, 1540 * 1541 * Before the reset commences, the I915_RESET_BACKOFF bit is set 1542 * meaning that any waiters holding onto the struct_mutex should 1543 * relinquish the lock immediately in order for the reset to start. 1544 * 1545 * If reset is not completed succesfully, the I915_WEDGE bit is 1546 * set meaning that hardware is terminally sour and there is no 1547 * recovery. All waiters on the reset_queue will be woken when 1548 * that happens. 1549 * 1550 * This counter is used by the wait_seqno code to notice that reset 1551 * event happened and it needs to restart the entire ioctl (since most 1552 * likely the seqno it waited for won't ever signal anytime soon). 1553 * 1554 * This is important for lock-free wait paths, where no contended lock 1555 * naturally enforces the correct ordering between the bail-out of the 1556 * waiter and the gpu reset work code. 1557 */ 1558 unsigned long reset_count; 1559 1560 /** 1561 * flags: Control various stages of the GPU reset 1562 * 1563 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any 1564 * other users acquiring the struct_mutex. To do this we set the 1565 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset 1566 * and then check for that bit before acquiring the struct_mutex (in 1567 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a 1568 * secondary role in preventing two concurrent global reset attempts. 1569 * 1570 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the 1571 * struct_mutex. We try to acquire the struct_mutex in the reset worker, 1572 * but it may be held by some long running waiter (that we cannot 1573 * interrupt without causing trouble). Once we are ready to do the GPU 1574 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If 1575 * they already hold the struct_mutex and want to participate they can 1576 * inspect the bit and do the reset directly, otherwise the worker 1577 * waits for the struct_mutex. 1578 * 1579 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to 1580 * acquire the struct_mutex to reset an engine, we need an explicit 1581 * flag to prevent two concurrent reset attempts in the same engine. 1582 * As the number of engines continues to grow, allocate the flags from 1583 * the most significant bits. 1584 * 1585 * #I915_WEDGED - If reset fails and we can no longer use the GPU, 1586 * we set the #I915_WEDGED bit. Prior to command submission, e.g. 1587 * i915_gem_request_alloc(), this bit is checked and the sequence 1588 * aborted (with -EIO reported to userspace) if set. 1589 */ 1590 unsigned long flags; 1591 #define I915_RESET_BACKOFF 0 1592 #define I915_RESET_HANDOFF 1 1593 #define I915_RESET_MODESET 2 1594 #define I915_WEDGED (BITS_PER_LONG - 1) 1595 #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES) 1596 1597 /** Number of times an engine has been reset */ 1598 u32 reset_engine_count[I915_NUM_ENGINES]; 1599 1600 /** 1601 * Waitqueue to signal when a hang is detected. Used to for waiters 1602 * to release the struct_mutex for the reset to procede. 1603 */ 1604 wait_queue_head_t wait_queue; 1605 1606 /** 1607 * Waitqueue to signal when the reset has completed. Used by clients 1608 * that wait for dev_priv->mm.wedged to settle. 1609 */ 1610 wait_queue_head_t reset_queue; 1611 1612 /* For missed irq/seqno simulation. */ 1613 unsigned long test_irq_rings; 1614 }; 1615 1616 enum modeset_restore { 1617 MODESET_ON_LID_OPEN, 1618 MODESET_DONE, 1619 MODESET_SUSPENDED, 1620 }; 1621 1622 #define DP_AUX_A 0x40 1623 #define DP_AUX_B 0x10 1624 #define DP_AUX_C 0x20 1625 #define DP_AUX_D 0x30 1626 1627 #define DDC_PIN_B 0x05 1628 #define DDC_PIN_C 0x04 1629 #define DDC_PIN_D 0x06 1630 1631 struct ddi_vbt_port_info { 1632 /* 1633 * This is an index in the HDMI/DVI DDI buffer translation table. 1634 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 1635 * populate this field. 1636 */ 1637 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 1638 uint8_t hdmi_level_shift; 1639 1640 uint8_t supports_dvi:1; 1641 uint8_t supports_hdmi:1; 1642 uint8_t supports_dp:1; 1643 uint8_t supports_edp:1; 1644 1645 uint8_t alternate_aux_channel; 1646 uint8_t alternate_ddc_pin; 1647 1648 uint8_t dp_boost_level; 1649 uint8_t hdmi_boost_level; 1650 }; 1651 1652 enum psr_lines_to_wait { 1653 PSR_0_LINES_TO_WAIT = 0, 1654 PSR_1_LINE_TO_WAIT, 1655 PSR_4_LINES_TO_WAIT, 1656 PSR_8_LINES_TO_WAIT 1657 }; 1658 1659 struct intel_vbt_data { 1660 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 1661 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 1662 1663 /* Feature bits */ 1664 unsigned int int_tv_support:1; 1665 unsigned int lvds_dither:1; 1666 unsigned int lvds_vbt:1; 1667 unsigned int int_crt_support:1; 1668 unsigned int lvds_use_ssc:1; 1669 unsigned int display_clock_mode:1; 1670 unsigned int fdi_rx_polarity_inverted:1; 1671 unsigned int panel_type:4; 1672 int lvds_ssc_freq; 1673 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 1674 1675 enum drrs_support_type drrs_type; 1676 1677 struct { 1678 int rate; 1679 int lanes; 1680 int preemphasis; 1681 int vswing; 1682 bool low_vswing; 1683 bool initialized; 1684 bool support; 1685 int bpp; 1686 struct edp_power_seq pps; 1687 } edp; 1688 1689 struct { 1690 bool full_link; 1691 bool require_aux_wakeup; 1692 int idle_frames; 1693 enum psr_lines_to_wait lines_to_wait; 1694 int tp1_wakeup_time; 1695 int tp2_tp3_wakeup_time; 1696 } psr; 1697 1698 struct { 1699 u16 pwm_freq_hz; 1700 bool present; 1701 bool active_low_pwm; 1702 u8 min_brightness; /* min_brightness/255 of max */ 1703 u8 controller; /* brightness controller number */ 1704 enum intel_backlight_type type; 1705 } backlight; 1706 1707 /* MIPI DSI */ 1708 struct { 1709 u16 panel_id; 1710 struct mipi_config *config; 1711 struct mipi_pps_data *pps; 1712 u8 seq_version; 1713 u32 size; 1714 u8 *data; 1715 const u8 *sequence[MIPI_SEQ_MAX]; 1716 } dsi; 1717 1718 int crt_ddc_pin; 1719 1720 int child_dev_num; 1721 union child_device_config *child_dev; 1722 1723 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1724 struct sdvo_device_mapping sdvo_mappings[2]; 1725 }; 1726 1727 enum intel_ddb_partitioning { 1728 INTEL_DDB_PART_1_2, 1729 INTEL_DDB_PART_5_6, /* IVB+ */ 1730 }; 1731 1732 struct intel_wm_level { 1733 bool enable; 1734 uint32_t pri_val; 1735 uint32_t spr_val; 1736 uint32_t cur_val; 1737 uint32_t fbc_val; 1738 }; 1739 1740 struct ilk_wm_values { 1741 uint32_t wm_pipe[3]; 1742 uint32_t wm_lp[3]; 1743 uint32_t wm_lp_spr[3]; 1744 uint32_t wm_linetime[3]; 1745 bool enable_fbc_wm; 1746 enum intel_ddb_partitioning partitioning; 1747 }; 1748 1749 struct g4x_pipe_wm { 1750 uint16_t plane[I915_MAX_PLANES]; 1751 uint16_t fbc; 1752 }; 1753 1754 struct g4x_sr_wm { 1755 uint16_t plane; 1756 uint16_t cursor; 1757 uint16_t fbc; 1758 }; 1759 1760 struct vlv_wm_ddl_values { 1761 uint8_t plane[I915_MAX_PLANES]; 1762 }; 1763 1764 struct vlv_wm_values { 1765 struct g4x_pipe_wm pipe[3]; 1766 struct g4x_sr_wm sr; 1767 struct vlv_wm_ddl_values ddl[3]; 1768 uint8_t level; 1769 bool cxsr; 1770 }; 1771 1772 struct g4x_wm_values { 1773 struct g4x_pipe_wm pipe[2]; 1774 struct g4x_sr_wm sr; 1775 struct g4x_sr_wm hpll; 1776 bool cxsr; 1777 bool hpll_en; 1778 bool fbc_en; 1779 }; 1780 1781 struct skl_ddb_entry { 1782 uint16_t start, end; /* in number of blocks, 'end' is exclusive */ 1783 }; 1784 1785 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1786 { 1787 return entry->end - entry->start; 1788 } 1789 1790 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1791 const struct skl_ddb_entry *e2) 1792 { 1793 if (e1->start == e2->start && e1->end == e2->end) 1794 return true; 1795 1796 return false; 1797 } 1798 1799 struct skl_ddb_allocation { 1800 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */ 1801 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1802 }; 1803 1804 struct skl_wm_values { 1805 unsigned dirty_pipes; 1806 struct skl_ddb_allocation ddb; 1807 }; 1808 1809 struct skl_wm_level { 1810 bool plane_en; 1811 uint16_t plane_res_b; 1812 uint8_t plane_res_l; 1813 }; 1814 1815 /* 1816 * This struct helps tracking the state needed for runtime PM, which puts the 1817 * device in PCI D3 state. Notice that when this happens, nothing on the 1818 * graphics device works, even register access, so we don't get interrupts nor 1819 * anything else. 1820 * 1821 * Every piece of our code that needs to actually touch the hardware needs to 1822 * either call intel_runtime_pm_get or call intel_display_power_get with the 1823 * appropriate power domain. 1824 * 1825 * Our driver uses the autosuspend delay feature, which means we'll only really 1826 * suspend if we stay with zero refcount for a certain amount of time. The 1827 * default value is currently very conservative (see intel_runtime_pm_enable), but 1828 * it can be changed with the standard runtime PM files from sysfs. 1829 * 1830 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1831 * goes back to false exactly before we reenable the IRQs. We use this variable 1832 * to check if someone is trying to enable/disable IRQs while they're supposed 1833 * to be disabled. This shouldn't happen and we'll print some error messages in 1834 * case it happens. 1835 * 1836 * For more, read the Documentation/power/runtime_pm.txt. 1837 */ 1838 struct i915_runtime_pm { 1839 atomic_t wakeref_count; 1840 bool suspended; 1841 bool irqs_enabled; 1842 }; 1843 1844 enum intel_pipe_crc_source { 1845 INTEL_PIPE_CRC_SOURCE_NONE, 1846 INTEL_PIPE_CRC_SOURCE_PLANE1, 1847 INTEL_PIPE_CRC_SOURCE_PLANE2, 1848 INTEL_PIPE_CRC_SOURCE_PF, 1849 INTEL_PIPE_CRC_SOURCE_PIPE, 1850 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1851 INTEL_PIPE_CRC_SOURCE_TV, 1852 INTEL_PIPE_CRC_SOURCE_DP_B, 1853 INTEL_PIPE_CRC_SOURCE_DP_C, 1854 INTEL_PIPE_CRC_SOURCE_DP_D, 1855 INTEL_PIPE_CRC_SOURCE_AUTO, 1856 INTEL_PIPE_CRC_SOURCE_MAX, 1857 }; 1858 1859 struct intel_pipe_crc_entry { 1860 uint32_t frame; 1861 uint32_t crc[5]; 1862 }; 1863 1864 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1865 struct intel_pipe_crc { 1866 spinlock_t lock; 1867 bool opened; /* exclusive access to the result file */ 1868 struct intel_pipe_crc_entry *entries; 1869 enum intel_pipe_crc_source source; 1870 int head, tail; 1871 wait_queue_head_t wq; 1872 int skipped; 1873 }; 1874 1875 struct i915_frontbuffer_tracking { 1876 spinlock_t lock; 1877 1878 /* 1879 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1880 * scheduled flips. 1881 */ 1882 unsigned busy_bits; 1883 unsigned flip_bits; 1884 }; 1885 1886 struct i915_wa_reg { 1887 i915_reg_t addr; 1888 u32 value; 1889 /* bitmask representing WA bits */ 1890 u32 mask; 1891 }; 1892 1893 /* 1894 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only 1895 * allowing it for RCS as we don't foresee any requirement of having 1896 * a whitelist for other engines. When it is really required for 1897 * other engines then the limit need to be increased. 1898 */ 1899 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS) 1900 1901 struct i915_workarounds { 1902 struct i915_wa_reg reg[I915_MAX_WA_REGS]; 1903 u32 count; 1904 u32 hw_whitelist_count[I915_NUM_ENGINES]; 1905 }; 1906 1907 struct i915_virtual_gpu { 1908 bool active; 1909 u32 caps; 1910 }; 1911 1912 /* used in computing the new watermarks state */ 1913 struct intel_wm_config { 1914 unsigned int num_pipes_active; 1915 bool sprites_enabled; 1916 bool sprites_scaled; 1917 }; 1918 1919 struct i915_oa_format { 1920 u32 format; 1921 int size; 1922 }; 1923 1924 struct i915_oa_reg { 1925 i915_reg_t addr; 1926 u32 value; 1927 }; 1928 1929 struct i915_oa_config { 1930 char uuid[UUID_STRING_LEN + 1]; 1931 int id; 1932 1933 const struct i915_oa_reg *mux_regs; 1934 u32 mux_regs_len; 1935 const struct i915_oa_reg *b_counter_regs; 1936 u32 b_counter_regs_len; 1937 const struct i915_oa_reg *flex_regs; 1938 u32 flex_regs_len; 1939 1940 struct attribute_group sysfs_metric; 1941 struct attribute *attrs[2]; 1942 struct device_attribute sysfs_metric_id; 1943 1944 atomic_t ref_count; 1945 }; 1946 1947 struct i915_perf_stream; 1948 1949 /** 1950 * struct i915_perf_stream_ops - the OPs to support a specific stream type 1951 */ 1952 struct i915_perf_stream_ops { 1953 /** 1954 * @enable: Enables the collection of HW samples, either in response to 1955 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened 1956 * without `I915_PERF_FLAG_DISABLED`. 1957 */ 1958 void (*enable)(struct i915_perf_stream *stream); 1959 1960 /** 1961 * @disable: Disables the collection of HW samples, either in response 1962 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying 1963 * the stream. 1964 */ 1965 void (*disable)(struct i915_perf_stream *stream); 1966 1967 /** 1968 * @poll_wait: Call poll_wait, passing a wait queue that will be woken 1969 * once there is something ready to read() for the stream 1970 */ 1971 void (*poll_wait)(struct i915_perf_stream *stream, 1972 struct file *file, 1973 poll_table *wait); 1974 1975 /** 1976 * @wait_unlocked: For handling a blocking read, wait until there is 1977 * something to ready to read() for the stream. E.g. wait on the same 1978 * wait queue that would be passed to poll_wait(). 1979 */ 1980 int (*wait_unlocked)(struct i915_perf_stream *stream); 1981 1982 /** 1983 * @read: Copy buffered metrics as records to userspace 1984 * **buf**: the userspace, destination buffer 1985 * **count**: the number of bytes to copy, requested by userspace 1986 * **offset**: zero at the start of the read, updated as the read 1987 * proceeds, it represents how many bytes have been copied so far and 1988 * the buffer offset for copying the next record. 1989 * 1990 * Copy as many buffered i915 perf samples and records for this stream 1991 * to userspace as will fit in the given buffer. 1992 * 1993 * Only write complete records; returning -%ENOSPC if there isn't room 1994 * for a complete record. 1995 * 1996 * Return any error condition that results in a short read such as 1997 * -%ENOSPC or -%EFAULT, even though these may be squashed before 1998 * returning to userspace. 1999 */ 2000 int (*read)(struct i915_perf_stream *stream, 2001 char __user *buf, 2002 size_t count, 2003 size_t *offset); 2004 2005 /** 2006 * @destroy: Cleanup any stream specific resources. 2007 * 2008 * The stream will always be disabled before this is called. 2009 */ 2010 void (*destroy)(struct i915_perf_stream *stream); 2011 }; 2012 2013 /** 2014 * struct i915_perf_stream - state for a single open stream FD 2015 */ 2016 struct i915_perf_stream { 2017 /** 2018 * @dev_priv: i915 drm device 2019 */ 2020 struct drm_i915_private *dev_priv; 2021 2022 /** 2023 * @link: Links the stream into ``&drm_i915_private->streams`` 2024 */ 2025 struct list_head link; 2026 2027 /** 2028 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*` 2029 * properties given when opening a stream, representing the contents 2030 * of a single sample as read() by userspace. 2031 */ 2032 u32 sample_flags; 2033 2034 /** 2035 * @sample_size: Considering the configured contents of a sample 2036 * combined with the required header size, this is the total size 2037 * of a single sample record. 2038 */ 2039 int sample_size; 2040 2041 /** 2042 * @ctx: %NULL if measuring system-wide across all contexts or a 2043 * specific context that is being monitored. 2044 */ 2045 struct i915_gem_context *ctx; 2046 2047 /** 2048 * @enabled: Whether the stream is currently enabled, considering 2049 * whether the stream was opened in a disabled state and based 2050 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls. 2051 */ 2052 bool enabled; 2053 2054 /** 2055 * @ops: The callbacks providing the implementation of this specific 2056 * type of configured stream. 2057 */ 2058 const struct i915_perf_stream_ops *ops; 2059 2060 /** 2061 * @oa_config: The OA configuration used by the stream. 2062 */ 2063 struct i915_oa_config *oa_config; 2064 }; 2065 2066 /** 2067 * struct i915_oa_ops - Gen specific implementation of an OA unit stream 2068 */ 2069 struct i915_oa_ops { 2070 /** 2071 * @is_valid_b_counter_reg: Validates register's address for 2072 * programming boolean counters for a particular platform. 2073 */ 2074 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv, 2075 u32 addr); 2076 2077 /** 2078 * @is_valid_mux_reg: Validates register's address for programming mux 2079 * for a particular platform. 2080 */ 2081 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr); 2082 2083 /** 2084 * @is_valid_flex_reg: Validates register's address for programming 2085 * flex EU filtering for a particular platform. 2086 */ 2087 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr); 2088 2089 /** 2090 * @init_oa_buffer: Resets the head and tail pointers of the 2091 * circular buffer for periodic OA reports. 2092 * 2093 * Called when first opening a stream for OA metrics, but also may be 2094 * called in response to an OA buffer overflow or other error 2095 * condition. 2096 * 2097 * Note it may be necessary to clear the full OA buffer here as part of 2098 * maintaining the invariable that new reports must be written to 2099 * zeroed memory for us to be able to reliable detect if an expected 2100 * report has not yet landed in memory. (At least on Haswell the OA 2101 * buffer tail pointer is not synchronized with reports being visible 2102 * to the CPU) 2103 */ 2104 void (*init_oa_buffer)(struct drm_i915_private *dev_priv); 2105 2106 /** 2107 * @enable_metric_set: Selects and applies any MUX configuration to set 2108 * up the Boolean and Custom (B/C) counters that are part of the 2109 * counter reports being sampled. May apply system constraints such as 2110 * disabling EU clock gating as required. 2111 */ 2112 int (*enable_metric_set)(struct drm_i915_private *dev_priv, 2113 const struct i915_oa_config *oa_config); 2114 2115 /** 2116 * @disable_metric_set: Remove system constraints associated with using 2117 * the OA unit. 2118 */ 2119 void (*disable_metric_set)(struct drm_i915_private *dev_priv); 2120 2121 /** 2122 * @oa_enable: Enable periodic sampling 2123 */ 2124 void (*oa_enable)(struct drm_i915_private *dev_priv); 2125 2126 /** 2127 * @oa_disable: Disable periodic sampling 2128 */ 2129 void (*oa_disable)(struct drm_i915_private *dev_priv); 2130 2131 /** 2132 * @read: Copy data from the circular OA buffer into a given userspace 2133 * buffer. 2134 */ 2135 int (*read)(struct i915_perf_stream *stream, 2136 char __user *buf, 2137 size_t count, 2138 size_t *offset); 2139 2140 /** 2141 * @oa_hw_tail_read: read the OA tail pointer register 2142 * 2143 * In particular this enables us to share all the fiddly code for 2144 * handling the OA unit tail pointer race that affects multiple 2145 * generations. 2146 */ 2147 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv); 2148 }; 2149 2150 struct intel_cdclk_state { 2151 unsigned int cdclk, vco, ref; 2152 }; 2153 2154 struct drm_i915_private { 2155 struct drm_device drm; 2156 2157 struct kmem_cache *objects; 2158 struct kmem_cache *vmas; 2159 struct kmem_cache *luts; 2160 struct kmem_cache *requests; 2161 struct kmem_cache *dependencies; 2162 struct kmem_cache *priorities; 2163 2164 const struct intel_device_info info; 2165 2166 void __iomem *regs; 2167 2168 struct intel_uncore uncore; 2169 2170 struct i915_virtual_gpu vgpu; 2171 2172 struct intel_gvt *gvt; 2173 2174 struct intel_huc huc; 2175 struct intel_guc guc; 2176 2177 struct intel_csr csr; 2178 2179 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 2180 2181 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 2182 * controller on different i2c buses. */ 2183 struct mutex gmbus_mutex; 2184 2185 /** 2186 * Base address of the gmbus and gpio block. 2187 */ 2188 uint32_t gpio_mmio_base; 2189 2190 /* MMIO base address for MIPI regs */ 2191 uint32_t mipi_mmio_base; 2192 2193 uint32_t psr_mmio_base; 2194 2195 uint32_t pps_mmio_base; 2196 2197 wait_queue_head_t gmbus_wait_queue; 2198 2199 struct pci_dev *bridge_dev; 2200 struct i915_gem_context *kernel_context; 2201 struct intel_engine_cs *engine[I915_NUM_ENGINES]; 2202 struct i915_vma *semaphore; 2203 2204 struct drm_dma_handle *status_page_dmah; 2205 struct resource mch_res; 2206 2207 /* protects the irq masks */ 2208 spinlock_t irq_lock; 2209 2210 bool display_irqs_enabled; 2211 2212 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 2213 struct pm_qos_request pm_qos; 2214 2215 /* Sideband mailbox protection */ 2216 struct mutex sb_lock; 2217 2218 /** Cached value of IMR to avoid reads in updating the bitfield */ 2219 union { 2220 u32 irq_mask; 2221 u32 de_irq_mask[I915_MAX_PIPES]; 2222 }; 2223 u32 gt_irq_mask; 2224 u32 pm_imr; 2225 u32 pm_ier; 2226 u32 pm_rps_events; 2227 u32 pm_guc_events; 2228 u32 pipestat_irq_mask[I915_MAX_PIPES]; 2229 2230 struct i915_hotplug hotplug; 2231 struct intel_fbc fbc; 2232 struct i915_drrs drrs; 2233 struct intel_opregion opregion; 2234 struct intel_vbt_data vbt; 2235 2236 bool preserve_bios_swizzle; 2237 2238 /* overlay */ 2239 struct intel_overlay *overlay; 2240 2241 /* backlight registers and fields in struct intel_panel */ 2242 struct mutex backlight_lock; 2243 2244 /* LVDS info */ 2245 bool no_aux_handshake; 2246 2247 /* protects panel power sequencer state */ 2248 struct mutex pps_mutex; 2249 2250 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 2251 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 2252 2253 unsigned int fsb_freq, mem_freq, is_ddr3; 2254 unsigned int skl_preferred_vco_freq; 2255 unsigned int max_cdclk_freq; 2256 2257 unsigned int max_dotclk_freq; 2258 unsigned int rawclk_freq; 2259 unsigned int hpll_freq; 2260 unsigned int czclk_freq; 2261 2262 struct { 2263 /* 2264 * The current logical cdclk state. 2265 * See intel_atomic_state.cdclk.logical 2266 * 2267 * For reading holding any crtc lock is sufficient, 2268 * for writing must hold all of them. 2269 */ 2270 struct intel_cdclk_state logical; 2271 /* 2272 * The current actual cdclk state. 2273 * See intel_atomic_state.cdclk.actual 2274 */ 2275 struct intel_cdclk_state actual; 2276 /* The current hardware cdclk state */ 2277 struct intel_cdclk_state hw; 2278 } cdclk; 2279 2280 /** 2281 * wq - Driver workqueue for GEM. 2282 * 2283 * NOTE: Work items scheduled here are not allowed to grab any modeset 2284 * locks, for otherwise the flushing done in the pageflip code will 2285 * result in deadlocks. 2286 */ 2287 struct workqueue_struct *wq; 2288 2289 /* Display functions */ 2290 struct drm_i915_display_funcs display; 2291 2292 /* PCH chipset type */ 2293 enum intel_pch pch_type; 2294 unsigned short pch_id; 2295 2296 unsigned long quirks; 2297 2298 enum modeset_restore modeset_restore; 2299 struct mutex modeset_restore_lock; 2300 struct drm_atomic_state *modeset_restore_state; 2301 struct drm_modeset_acquire_ctx reset_ctx; 2302 2303 struct list_head vm_list; /* Global list of all address spaces */ 2304 struct i915_ggtt ggtt; /* VM representing the global address space */ 2305 2306 struct i915_gem_mm mm; 2307 DECLARE_HASHTABLE(mm_structs, 7); 2308 struct mutex mm_lock; 2309 2310 /* Kernel Modesetting */ 2311 2312 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 2313 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 2314 2315 #ifdef CONFIG_DEBUG_FS 2316 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 2317 #endif 2318 2319 /* dpll and cdclk state is protected by connection_mutex */ 2320 int num_shared_dpll; 2321 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 2322 const struct intel_dpll_mgr *dpll_mgr; 2323 2324 /* 2325 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 2326 * Must be global rather than per dpll, because on some platforms 2327 * plls share registers. 2328 */ 2329 struct mutex dpll_lock; 2330 2331 unsigned int active_crtcs; 2332 unsigned int min_pixclk[I915_MAX_PIPES]; 2333 2334 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 2335 2336 struct i915_workarounds workarounds; 2337 2338 struct i915_frontbuffer_tracking fb_tracking; 2339 2340 struct intel_atomic_helper { 2341 struct llist_head free_list; 2342 struct work_struct free_work; 2343 } atomic_helper; 2344 2345 u16 orig_clock; 2346 2347 bool mchbar_need_disable; 2348 2349 struct intel_l3_parity l3_parity; 2350 2351 /* Cannot be determined by PCIID. You must always read a register. */ 2352 u32 edram_cap; 2353 2354 /* gen6+ rps state */ 2355 struct intel_gen6_power_mgmt rps; 2356 2357 /* ilk-only ips/rps state. Everything in here is protected by the global 2358 * mchdev_lock in intel_pm.c */ 2359 struct intel_ilk_power_mgmt ips; 2360 2361 struct i915_power_domains power_domains; 2362 2363 struct i915_psr psr; 2364 2365 struct i915_gpu_error gpu_error; 2366 2367 struct drm_i915_gem_object *vlv_pctx; 2368 2369 /* list of fbdev register on this device */ 2370 struct intel_fbdev *fbdev; 2371 struct work_struct fbdev_suspend_work; 2372 2373 struct drm_property *broadcast_rgb_property; 2374 struct drm_property *force_audio_property; 2375 2376 /* hda/i915 audio component */ 2377 struct i915_audio_component *audio_component; 2378 bool audio_component_registered; 2379 /** 2380 * av_mutex - mutex for audio/video sync 2381 * 2382 */ 2383 struct mutex av_mutex; 2384 2385 struct { 2386 struct list_head list; 2387 struct llist_head free_list; 2388 struct work_struct free_work; 2389 2390 /* The hw wants to have a stable context identifier for the 2391 * lifetime of the context (for OA, PASID, faults, etc). 2392 * This is limited in execlists to 21 bits. 2393 */ 2394 struct ida hw_ida; 2395 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 2396 } contexts; 2397 2398 u32 fdi_rx_config; 2399 2400 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 2401 u32 chv_phy_control; 2402 /* 2403 * Shadows for CHV DPLL_MD regs to keep the state 2404 * checker somewhat working in the presence hardware 2405 * crappiness (can't read out DPLL_MD for pipes B & C). 2406 */ 2407 u32 chv_dpll_md[I915_MAX_PIPES]; 2408 u32 bxt_phy_grc; 2409 2410 u32 suspend_count; 2411 bool suspended_to_idle; 2412 struct i915_suspend_saved_registers regfile; 2413 struct vlv_s0ix_state vlv_s0ix_state; 2414 2415 enum { 2416 I915_SAGV_UNKNOWN = 0, 2417 I915_SAGV_DISABLED, 2418 I915_SAGV_ENABLED, 2419 I915_SAGV_NOT_CONTROLLED 2420 } sagv_status; 2421 2422 struct { 2423 /* 2424 * Raw watermark latency values: 2425 * in 0.1us units for WM0, 2426 * in 0.5us units for WM1+. 2427 */ 2428 /* primary */ 2429 uint16_t pri_latency[5]; 2430 /* sprite */ 2431 uint16_t spr_latency[5]; 2432 /* cursor */ 2433 uint16_t cur_latency[5]; 2434 /* 2435 * Raw watermark memory latency values 2436 * for SKL for all 8 levels 2437 * in 1us units. 2438 */ 2439 uint16_t skl_latency[8]; 2440 2441 /* current hardware state */ 2442 union { 2443 struct ilk_wm_values hw; 2444 struct skl_wm_values skl_hw; 2445 struct vlv_wm_values vlv; 2446 struct g4x_wm_values g4x; 2447 }; 2448 2449 uint8_t max_level; 2450 2451 /* 2452 * Should be held around atomic WM register writing; also 2453 * protects * intel_crtc->wm.active and 2454 * cstate->wm.need_postvbl_update. 2455 */ 2456 struct mutex wm_mutex; 2457 2458 /* 2459 * Set during HW readout of watermarks/DDB. Some platforms 2460 * need to know when we're still using BIOS-provided values 2461 * (which we don't fully trust). 2462 */ 2463 bool distrust_bios_wm; 2464 } wm; 2465 2466 struct i915_runtime_pm pm; 2467 2468 struct { 2469 bool initialized; 2470 2471 struct kobject *metrics_kobj; 2472 struct ctl_table_header *sysctl_header; 2473 2474 /* 2475 * Lock associated with adding/modifying/removing OA configs 2476 * in dev_priv->perf.metrics_idr. 2477 */ 2478 struct mutex metrics_lock; 2479 2480 /* 2481 * List of dynamic configurations, you need to hold 2482 * dev_priv->perf.metrics_lock to access it. 2483 */ 2484 struct idr metrics_idr; 2485 2486 /* 2487 * Lock associated with anything below within this structure 2488 * except exclusive_stream. 2489 */ 2490 struct mutex lock; 2491 struct list_head streams; 2492 2493 struct { 2494 /* 2495 * The stream currently using the OA unit. If accessed 2496 * outside a syscall associated to its file 2497 * descriptor, you need to hold 2498 * dev_priv->drm.struct_mutex. 2499 */ 2500 struct i915_perf_stream *exclusive_stream; 2501 2502 u32 specific_ctx_id; 2503 2504 struct hrtimer poll_check_timer; 2505 wait_queue_head_t poll_wq; 2506 bool pollin; 2507 2508 /** 2509 * For rate limiting any notifications of spurious 2510 * invalid OA reports 2511 */ 2512 struct ratelimit_state spurious_report_rs; 2513 2514 bool periodic; 2515 int period_exponent; 2516 int timestamp_frequency; 2517 2518 struct i915_oa_config test_config; 2519 2520 struct { 2521 struct i915_vma *vma; 2522 u8 *vaddr; 2523 u32 last_ctx_id; 2524 int format; 2525 int format_size; 2526 2527 /** 2528 * Locks reads and writes to all head/tail state 2529 * 2530 * Consider: the head and tail pointer state 2531 * needs to be read consistently from a hrtimer 2532 * callback (atomic context) and read() fop 2533 * (user context) with tail pointer updates 2534 * happening in atomic context and head updates 2535 * in user context and the (unlikely) 2536 * possibility of read() errors needing to 2537 * reset all head/tail state. 2538 * 2539 * Note: Contention or performance aren't 2540 * currently a significant concern here 2541 * considering the relatively low frequency of 2542 * hrtimer callbacks (5ms period) and that 2543 * reads typically only happen in response to a 2544 * hrtimer event and likely complete before the 2545 * next callback. 2546 * 2547 * Note: This lock is not held *while* reading 2548 * and copying data to userspace so the value 2549 * of head observed in htrimer callbacks won't 2550 * represent any partial consumption of data. 2551 */ 2552 spinlock_t ptr_lock; 2553 2554 /** 2555 * One 'aging' tail pointer and one 'aged' 2556 * tail pointer ready to used for reading. 2557 * 2558 * Initial values of 0xffffffff are invalid 2559 * and imply that an update is required 2560 * (and should be ignored by an attempted 2561 * read) 2562 */ 2563 struct { 2564 u32 offset; 2565 } tails[2]; 2566 2567 /** 2568 * Index for the aged tail ready to read() 2569 * data up to. 2570 */ 2571 unsigned int aged_tail_idx; 2572 2573 /** 2574 * A monotonic timestamp for when the current 2575 * aging tail pointer was read; used to 2576 * determine when it is old enough to trust. 2577 */ 2578 u64 aging_timestamp; 2579 2580 /** 2581 * Although we can always read back the head 2582 * pointer register, we prefer to avoid 2583 * trusting the HW state, just to avoid any 2584 * risk that some hardware condition could 2585 * somehow bump the head pointer unpredictably 2586 * and cause us to forward the wrong OA buffer 2587 * data to userspace. 2588 */ 2589 u32 head; 2590 } oa_buffer; 2591 2592 u32 gen7_latched_oastatus1; 2593 u32 ctx_oactxctrl_offset; 2594 u32 ctx_flexeu0_offset; 2595 2596 /** 2597 * The RPT_ID/reason field for Gen8+ includes a bit 2598 * to determine if the CTX ID in the report is valid 2599 * but the specific bit differs between Gen 8 and 9 2600 */ 2601 u32 gen8_valid_ctx_bit; 2602 2603 struct i915_oa_ops ops; 2604 const struct i915_oa_format *oa_formats; 2605 } oa; 2606 } perf; 2607 2608 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 2609 struct { 2610 void (*resume)(struct drm_i915_private *); 2611 void (*cleanup_engine)(struct intel_engine_cs *engine); 2612 2613 struct list_head timelines; 2614 struct i915_gem_timeline global_timeline; 2615 u32 active_requests; 2616 2617 /** 2618 * Is the GPU currently considered idle, or busy executing 2619 * userspace requests? Whilst idle, we allow runtime power 2620 * management to power down the hardware and display clocks. 2621 * In order to reduce the effect on performance, there 2622 * is a slight delay before we do so. 2623 */ 2624 bool awake; 2625 2626 /** 2627 * We leave the user IRQ off as much as possible, 2628 * but this means that requests will finish and never 2629 * be retired once the system goes idle. Set a timer to 2630 * fire periodically while the ring is running. When it 2631 * fires, go retire requests. 2632 */ 2633 struct delayed_work retire_work; 2634 2635 /** 2636 * When we detect an idle GPU, we want to turn on 2637 * powersaving features. So once we see that there 2638 * are no more requests outstanding and no more 2639 * arrive within a small period of time, we fire 2640 * off the idle_work. 2641 */ 2642 struct delayed_work idle_work; 2643 2644 ktime_t last_init_time; 2645 } gt; 2646 2647 /* perform PHY state sanity checks? */ 2648 bool chv_phy_assert[2]; 2649 2650 bool ipc_enabled; 2651 2652 /* Used to save the pipe-to-encoder mapping for audio */ 2653 struct intel_encoder *av_enc_map[I915_MAX_PIPES]; 2654 2655 /* necessary resource sharing with HDMI LPE audio driver. */ 2656 struct { 2657 struct platform_device *platdev; 2658 int irq; 2659 } lpe_audio; 2660 2661 /* 2662 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2663 * will be rejected. Instead look for a better place. 2664 */ 2665 }; 2666 2667 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2668 { 2669 return container_of(dev, struct drm_i915_private, drm); 2670 } 2671 2672 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) 2673 { 2674 return to_i915(dev_get_drvdata(kdev)); 2675 } 2676 2677 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2678 { 2679 return container_of(guc, struct drm_i915_private, guc); 2680 } 2681 2682 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc) 2683 { 2684 return container_of(huc, struct drm_i915_private, huc); 2685 } 2686 2687 /* Simple iterator over all initialised engines */ 2688 #define for_each_engine(engine__, dev_priv__, id__) \ 2689 for ((id__) = 0; \ 2690 (id__) < I915_NUM_ENGINES; \ 2691 (id__)++) \ 2692 for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) 2693 2694 /* Iterator over subset of engines selected by mask */ 2695 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \ 2696 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \ 2697 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; ) 2698 2699 enum hdmi_force_audio { 2700 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2701 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2702 HDMI_AUDIO_AUTO, /* trust EDID */ 2703 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2704 }; 2705 2706 #define I915_GTT_OFFSET_NONE ((u32)-1) 2707 2708 /* 2709 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2710 * considered to be the frontbuffer for the given plane interface-wise. This 2711 * doesn't mean that the hw necessarily already scans it out, but that any 2712 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2713 * 2714 * We have one bit per pipe and per scanout plane type. 2715 */ 2716 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5 2717 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2718 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \ 2719 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2720 #define INTEL_FRONTBUFFER_CURSOR(pipe) \ 2721 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2722 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \ 2723 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2724 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2725 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2726 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2727 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2728 2729 /* 2730 * Optimised SGL iterator for GEM objects 2731 */ 2732 static __always_inline struct sgt_iter { 2733 struct scatterlist *sgp; 2734 union { 2735 unsigned long pfn; 2736 dma_addr_t dma; 2737 }; 2738 unsigned int curr; 2739 unsigned int max; 2740 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2741 struct sgt_iter s = { .sgp = sgl }; 2742 2743 if (s.sgp) { 2744 s.max = s.curr = s.sgp->offset; 2745 s.max += s.sgp->length; 2746 if (dma) 2747 s.dma = sg_dma_address(s.sgp); 2748 else 2749 s.pfn = page_to_pfn(sg_page(s.sgp)); 2750 } 2751 2752 return s; 2753 } 2754 2755 static inline struct scatterlist *____sg_next(struct scatterlist *sg) 2756 { 2757 ++sg; 2758 if (unlikely(sg_is_chain(sg))) 2759 sg = sg_chain_ptr(sg); 2760 return sg; 2761 } 2762 2763 /** 2764 * __sg_next - return the next scatterlist entry in a list 2765 * @sg: The current sg entry 2766 * 2767 * Description: 2768 * If the entry is the last, return NULL; otherwise, step to the next 2769 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2770 * otherwise just return the pointer to the current element. 2771 **/ 2772 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2773 { 2774 #ifdef CONFIG_DEBUG_SG 2775 BUG_ON(sg->sg_magic != SG_MAGIC); 2776 #endif 2777 return sg_is_last(sg) ? NULL : ____sg_next(sg); 2778 } 2779 2780 /** 2781 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2782 * @__dmap: DMA address (output) 2783 * @__iter: 'struct sgt_iter' (iterator state, internal) 2784 * @__sgt: sg_table to iterate over (input) 2785 */ 2786 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2787 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2788 ((__dmap) = (__iter).dma + (__iter).curr); \ 2789 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \ 2790 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0)) 2791 2792 /** 2793 * for_each_sgt_page - iterate over the pages of the given sg_table 2794 * @__pp: page pointer (output) 2795 * @__iter: 'struct sgt_iter' (iterator state, internal) 2796 * @__sgt: sg_table to iterate over (input) 2797 */ 2798 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2799 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2800 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2801 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2802 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \ 2803 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0)) 2804 2805 static inline const struct intel_device_info * 2806 intel_info(const struct drm_i915_private *dev_priv) 2807 { 2808 return &dev_priv->info; 2809 } 2810 2811 #define INTEL_INFO(dev_priv) intel_info((dev_priv)) 2812 2813 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen) 2814 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id) 2815 2816 #define REVID_FOREVER 0xff 2817 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision) 2818 2819 #define GEN_FOREVER (0) 2820 /* 2821 * Returns true if Gen is in inclusive range [Start, End]. 2822 * 2823 * Use GEN_FOREVER for unbound start and or end. 2824 */ 2825 #define IS_GEN(dev_priv, s, e) ({ \ 2826 unsigned int __s = (s), __e = (e); \ 2827 BUILD_BUG_ON(!__builtin_constant_p(s)); \ 2828 BUILD_BUG_ON(!__builtin_constant_p(e)); \ 2829 if ((__s) != GEN_FOREVER) \ 2830 __s = (s) - 1; \ 2831 if ((__e) == GEN_FOREVER) \ 2832 __e = BITS_PER_LONG - 1; \ 2833 else \ 2834 __e = (e) - 1; \ 2835 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \ 2836 }) 2837 2838 /* 2839 * Return true if revision is in range [since,until] inclusive. 2840 * 2841 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2842 */ 2843 #define IS_REVID(p, since, until) \ 2844 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2845 2846 #define IS_I830(dev_priv) ((dev_priv)->info.platform == INTEL_I830) 2847 #define IS_I845G(dev_priv) ((dev_priv)->info.platform == INTEL_I845G) 2848 #define IS_I85X(dev_priv) ((dev_priv)->info.platform == INTEL_I85X) 2849 #define IS_I865G(dev_priv) ((dev_priv)->info.platform == INTEL_I865G) 2850 #define IS_I915G(dev_priv) ((dev_priv)->info.platform == INTEL_I915G) 2851 #define IS_I915GM(dev_priv) ((dev_priv)->info.platform == INTEL_I915GM) 2852 #define IS_I945G(dev_priv) ((dev_priv)->info.platform == INTEL_I945G) 2853 #define IS_I945GM(dev_priv) ((dev_priv)->info.platform == INTEL_I945GM) 2854 #define IS_I965G(dev_priv) ((dev_priv)->info.platform == INTEL_I965G) 2855 #define IS_I965GM(dev_priv) ((dev_priv)->info.platform == INTEL_I965GM) 2856 #define IS_G45(dev_priv) ((dev_priv)->info.platform == INTEL_G45) 2857 #define IS_GM45(dev_priv) ((dev_priv)->info.platform == INTEL_GM45) 2858 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) 2859 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001) 2860 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011) 2861 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_PINEVIEW) 2862 #define IS_G33(dev_priv) ((dev_priv)->info.platform == INTEL_G33) 2863 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046) 2864 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.platform == INTEL_IVYBRIDGE) 2865 #define IS_IVB_GT1(dev_priv) (INTEL_DEVID(dev_priv) == 0x0156 || \ 2866 INTEL_DEVID(dev_priv) == 0x0152 || \ 2867 INTEL_DEVID(dev_priv) == 0x015a) 2868 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW) 2869 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW) 2870 #define IS_HASWELL(dev_priv) ((dev_priv)->info.platform == INTEL_HASWELL) 2871 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.platform == INTEL_BROADWELL) 2872 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_SKYLAKE) 2873 #define IS_BROXTON(dev_priv) ((dev_priv)->info.platform == INTEL_BROXTON) 2874 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_KABYLAKE) 2875 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE) 2876 #define IS_COFFEELAKE(dev_priv) ((dev_priv)->info.platform == INTEL_COFFEELAKE) 2877 #define IS_CANNONLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_CANNONLAKE) 2878 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile) 2879 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ 2880 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) 2881 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \ 2882 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \ 2883 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \ 2884 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)) 2885 /* ULX machines are also considered ULT. */ 2886 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \ 2887 (INTEL_DEVID(dev_priv) & 0xf) == 0xe) 2888 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ 2889 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020) 2890 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \ 2891 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00) 2892 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ 2893 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020) 2894 /* ULX machines are also considered ULT. */ 2895 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \ 2896 INTEL_DEVID(dev_priv) == 0x0A1E) 2897 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \ 2898 INTEL_DEVID(dev_priv) == 0x1913 || \ 2899 INTEL_DEVID(dev_priv) == 0x1916 || \ 2900 INTEL_DEVID(dev_priv) == 0x1921 || \ 2901 INTEL_DEVID(dev_priv) == 0x1926) 2902 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \ 2903 INTEL_DEVID(dev_priv) == 0x1915 || \ 2904 INTEL_DEVID(dev_priv) == 0x191E) 2905 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \ 2906 INTEL_DEVID(dev_priv) == 0x5913 || \ 2907 INTEL_DEVID(dev_priv) == 0x5916 || \ 2908 INTEL_DEVID(dev_priv) == 0x5921 || \ 2909 INTEL_DEVID(dev_priv) == 0x5926) 2910 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \ 2911 INTEL_DEVID(dev_priv) == 0x5915 || \ 2912 INTEL_DEVID(dev_priv) == 0x591E) 2913 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2914 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010) 2915 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2916 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020) 2917 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2918 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030) 2919 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2920 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010) 2921 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2922 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020) 2923 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2924 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0) 2925 2926 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support) 2927 2928 #define SKL_REVID_A0 0x0 2929 #define SKL_REVID_B0 0x1 2930 #define SKL_REVID_C0 0x2 2931 #define SKL_REVID_D0 0x3 2932 #define SKL_REVID_E0 0x4 2933 #define SKL_REVID_F0 0x5 2934 #define SKL_REVID_G0 0x6 2935 #define SKL_REVID_H0 0x7 2936 2937 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2938 2939 #define BXT_REVID_A0 0x0 2940 #define BXT_REVID_A1 0x1 2941 #define BXT_REVID_B0 0x3 2942 #define BXT_REVID_B_LAST 0x8 2943 #define BXT_REVID_C0 0x9 2944 2945 #define IS_BXT_REVID(dev_priv, since, until) \ 2946 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until)) 2947 2948 #define KBL_REVID_A0 0x0 2949 #define KBL_REVID_B0 0x1 2950 #define KBL_REVID_C0 0x2 2951 #define KBL_REVID_D0 0x3 2952 #define KBL_REVID_E0 0x4 2953 2954 #define IS_KBL_REVID(dev_priv, since, until) \ 2955 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2956 2957 #define GLK_REVID_A0 0x0 2958 #define GLK_REVID_A1 0x1 2959 2960 #define IS_GLK_REVID(dev_priv, since, until) \ 2961 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2962 2963 #define CNL_REVID_A0 0x0 2964 #define CNL_REVID_B0 0x1 2965 2966 #define IS_CNL_REVID(p, since, until) \ 2967 (IS_CANNONLAKE(p) && IS_REVID(p, since, until)) 2968 2969 /* 2970 * The genX designation typically refers to the render engine, so render 2971 * capability related checks should use IS_GEN, while display and other checks 2972 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular 2973 * chips, etc.). 2974 */ 2975 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1))) 2976 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2))) 2977 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3))) 2978 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4))) 2979 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5))) 2980 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6))) 2981 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7))) 2982 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8))) 2983 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9))) 2984 2985 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) 2986 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv)) 2987 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv)) 2988 2989 #define ENGINE_MASK(id) BIT(id) 2990 #define RENDER_RING ENGINE_MASK(RCS) 2991 #define BSD_RING ENGINE_MASK(VCS) 2992 #define BLT_RING ENGINE_MASK(BCS) 2993 #define VEBOX_RING ENGINE_MASK(VECS) 2994 #define BSD2_RING ENGINE_MASK(VCS2) 2995 #define ALL_ENGINES (~0) 2996 2997 #define HAS_ENGINE(dev_priv, id) \ 2998 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id))) 2999 3000 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) 3001 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) 3002 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) 3003 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) 3004 3005 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc) 3006 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop) 3007 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED)) 3008 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \ 3009 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv)) 3010 3011 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical) 3012 3013 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ 3014 ((dev_priv)->info.has_logical_ring_contexts) 3015 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt) 3016 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2) 3017 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3) 3018 3019 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay) 3020 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ 3021 ((dev_priv)->info.overlay_needs_physical) 3022 3023 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 3024 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) 3025 3026 /* WaRsDisableCoarsePowerGating:skl,bxt */ 3027 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 3028 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv)) 3029 3030 /* 3031 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts 3032 * even when in MSI mode. This results in spurious interrupt warnings if the 3033 * legacy irq no. is shared with another device. The kernel then disables that 3034 * interrupt source and so prevents the other device from working properly. 3035 */ 3036 #define HAS_AUX_IRQ(dev_priv) ((dev_priv)->info.gen >= 5) 3037 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq) 3038 3039 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 3040 * rows, which changed the alignment requirements and fence programming. 3041 */ 3042 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \ 3043 !(IS_I915G(dev_priv) || \ 3044 IS_I915GM(dev_priv))) 3045 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv) 3046 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug) 3047 3048 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2) 3049 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr) 3050 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc) 3051 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7) 3052 3053 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) 3054 3055 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst) 3056 3057 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi) 3058 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg) 3059 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr) 3060 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6) 3061 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p) 3062 3063 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr) 3064 3065 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm) 3066 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc) 3067 3068 /* 3069 * For now, anything with a GuC requires uCode loading, and then supports 3070 * command submission once loaded. But these are logically independent 3071 * properties, so we have separate macros to test them. 3072 */ 3073 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc) 3074 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct) 3075 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 3076 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv)) 3077 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 3078 3079 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer) 3080 3081 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu) 3082 3083 #define INTEL_PCH_DEVICE_ID_MASK 0xff80 3084 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 3085 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 3086 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 3087 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 3088 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 3089 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80 3090 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80 3091 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 3092 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 3093 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280 3094 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300 3095 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80 3096 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 3097 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 3098 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 3099 3100 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type) 3101 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP) 3102 #define HAS_PCH_CNP_LP(dev_priv) \ 3103 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) 3104 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP) 3105 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT) 3106 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT) 3107 #define HAS_PCH_LPT_LP(dev_priv) \ 3108 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \ 3109 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) 3110 #define HAS_PCH_LPT_H(dev_priv) \ 3111 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \ 3112 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE) 3113 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT) 3114 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX) 3115 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP) 3116 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE) 3117 3118 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display) 3119 3120 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9) 3121 3122 /* DPF == dynamic parity feature */ 3123 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf) 3124 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 3125 2 : HAS_L3_DPF(dev_priv)) 3126 3127 #define GT_FREQUENCY_MULTIPLIER 50 3128 #define GEN9_FREQ_SCALER 3 3129 3130 #include "i915_trace.h" 3131 3132 static inline bool intel_vtd_active(void) 3133 { 3134 #ifdef CONFIG_INTEL_IOMMU 3135 if (intel_iommu_gfx_mapped) 3136 return true; 3137 #endif 3138 return false; 3139 } 3140 3141 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 3142 { 3143 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active(); 3144 } 3145 3146 static inline bool 3147 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv) 3148 { 3149 return IS_BROXTON(dev_priv) && intel_vtd_active(); 3150 } 3151 3152 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, 3153 int enable_ppgtt); 3154 3155 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value); 3156 3157 /* i915_drv.c */ 3158 void __printf(3, 4) 3159 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 3160 const char *fmt, ...); 3161 3162 #define i915_report_error(dev_priv, fmt, ...) \ 3163 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 3164 3165 #ifdef CONFIG_COMPAT 3166 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 3167 unsigned long arg); 3168 #else 3169 #define i915_compat_ioctl NULL 3170 #endif 3171 extern const struct dev_pm_ops i915_pm_ops; 3172 3173 extern int i915_driver_load(struct pci_dev *pdev, 3174 const struct pci_device_id *ent); 3175 extern void i915_driver_unload(struct drm_device *dev); 3176 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask); 3177 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv); 3178 3179 #define I915_RESET_QUIET BIT(0) 3180 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags); 3181 extern int i915_reset_engine(struct intel_engine_cs *engine, 3182 unsigned int flags); 3183 3184 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv); 3185 extern int intel_guc_reset(struct drm_i915_private *dev_priv); 3186 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 3187 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv); 3188 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 3189 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 3190 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 3191 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 3192 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 3193 3194 int intel_engines_init_mmio(struct drm_i915_private *dev_priv); 3195 int intel_engines_init(struct drm_i915_private *dev_priv); 3196 3197 /* intel_hotplug.c */ 3198 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, 3199 u32 pin_mask, u32 long_mask); 3200 void intel_hpd_init(struct drm_i915_private *dev_priv); 3201 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 3202 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 3203 enum port intel_hpd_pin_to_port(enum hpd_pin pin); 3204 enum hpd_pin intel_hpd_pin(enum port port); 3205 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 3206 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 3207 3208 /* i915_irq.c */ 3209 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 3210 { 3211 unsigned long delay; 3212 3213 if (unlikely(!i915.enable_hangcheck)) 3214 return; 3215 3216 /* Don't continually defer the hangcheck so that it is always run at 3217 * least once after work has been scheduled on any ring. Otherwise, 3218 * we will ignore a hung ring if a second ring is kept busy. 3219 */ 3220 3221 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 3222 queue_delayed_work(system_long_wq, 3223 &dev_priv->gpu_error.hangcheck_work, delay); 3224 } 3225 3226 __printf(3, 4) 3227 void i915_handle_error(struct drm_i915_private *dev_priv, 3228 u32 engine_mask, 3229 const char *fmt, ...); 3230 3231 extern void intel_irq_init(struct drm_i915_private *dev_priv); 3232 extern void intel_irq_fini(struct drm_i915_private *dev_priv); 3233 int intel_irq_install(struct drm_i915_private *dev_priv); 3234 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 3235 3236 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 3237 { 3238 return dev_priv->gvt; 3239 } 3240 3241 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 3242 { 3243 return dev_priv->vgpu.active; 3244 } 3245 3246 void 3247 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 3248 u32 status_mask); 3249 3250 void 3251 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 3252 u32 status_mask); 3253 3254 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 3255 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 3256 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 3257 uint32_t mask, 3258 uint32_t bits); 3259 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 3260 uint32_t interrupt_mask, 3261 uint32_t enabled_irq_mask); 3262 static inline void 3263 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 3264 { 3265 ilk_update_display_irq(dev_priv, bits, bits); 3266 } 3267 static inline void 3268 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 3269 { 3270 ilk_update_display_irq(dev_priv, bits, 0); 3271 } 3272 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 3273 enum pipe pipe, 3274 uint32_t interrupt_mask, 3275 uint32_t enabled_irq_mask); 3276 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 3277 enum pipe pipe, uint32_t bits) 3278 { 3279 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 3280 } 3281 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 3282 enum pipe pipe, uint32_t bits) 3283 { 3284 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 3285 } 3286 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 3287 uint32_t interrupt_mask, 3288 uint32_t enabled_irq_mask); 3289 static inline void 3290 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 3291 { 3292 ibx_display_interrupt_update(dev_priv, bits, bits); 3293 } 3294 static inline void 3295 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 3296 { 3297 ibx_display_interrupt_update(dev_priv, bits, 0); 3298 } 3299 3300 /* i915_gem.c */ 3301 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 3302 struct drm_file *file_priv); 3303 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 3304 struct drm_file *file_priv); 3305 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 3306 struct drm_file *file_priv); 3307 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 3308 struct drm_file *file_priv); 3309 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 3310 struct drm_file *file_priv); 3311 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 3312 struct drm_file *file_priv); 3313 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 3314 struct drm_file *file_priv); 3315 int i915_gem_execbuffer(struct drm_device *dev, void *data, 3316 struct drm_file *file_priv); 3317 int i915_gem_execbuffer2(struct drm_device *dev, void *data, 3318 struct drm_file *file_priv); 3319 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3320 struct drm_file *file_priv); 3321 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3322 struct drm_file *file); 3323 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3324 struct drm_file *file); 3325 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3326 struct drm_file *file_priv); 3327 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3328 struct drm_file *file_priv); 3329 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, 3330 struct drm_file *file_priv); 3331 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, 3332 struct drm_file *file_priv); 3333 int i915_gem_init_userptr(struct drm_i915_private *dev_priv); 3334 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv); 3335 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 3336 struct drm_file *file); 3337 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 3338 struct drm_file *file_priv); 3339 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 3340 struct drm_file *file_priv); 3341 void i915_gem_sanitize(struct drm_i915_private *i915); 3342 int i915_gem_load_init(struct drm_i915_private *dev_priv); 3343 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv); 3344 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 3345 int i915_gem_freeze(struct drm_i915_private *dev_priv); 3346 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 3347 3348 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv); 3349 void i915_gem_object_free(struct drm_i915_gem_object *obj); 3350 void i915_gem_object_init(struct drm_i915_gem_object *obj, 3351 const struct drm_i915_gem_object_ops *ops); 3352 struct drm_i915_gem_object * 3353 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size); 3354 struct drm_i915_gem_object * 3355 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 3356 const void *data, size_t size); 3357 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); 3358 void i915_gem_free_object(struct drm_gem_object *obj); 3359 3360 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 3361 { 3362 /* A single pass should suffice to release all the freed objects (along 3363 * most call paths) , but be a little more paranoid in that freeing 3364 * the objects does take a little amount of time, during which the rcu 3365 * callbacks could have added new objects into the freed list, and 3366 * armed the work again. 3367 */ 3368 do { 3369 rcu_barrier(); 3370 } while (flush_work(&i915->mm.free_work)); 3371 } 3372 3373 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915) 3374 { 3375 /* 3376 * Similar to objects above (see i915_gem_drain_freed-objects), in 3377 * general we have workers that are armed by RCU and then rearm 3378 * themselves in their callbacks. To be paranoid, we need to 3379 * drain the workqueue a second time after waiting for the RCU 3380 * grace period so that we catch work queued via RCU from the first 3381 * pass. As neither drain_workqueue() nor flush_workqueue() report 3382 * a result, we make an assumption that we only don't require more 3383 * than 2 passes to catch all recursive RCU delayed work. 3384 * 3385 */ 3386 int pass = 2; 3387 do { 3388 rcu_barrier(); 3389 drain_workqueue(i915->wq); 3390 } while (--pass); 3391 } 3392 3393 struct i915_vma * __must_check 3394 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 3395 const struct i915_ggtt_view *view, 3396 u64 size, 3397 u64 alignment, 3398 u64 flags); 3399 3400 int i915_gem_object_unbind(struct drm_i915_gem_object *obj); 3401 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 3402 3403 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); 3404 3405 static inline int __sg_page_count(const struct scatterlist *sg) 3406 { 3407 return sg->length >> PAGE_SHIFT; 3408 } 3409 3410 struct scatterlist * 3411 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 3412 unsigned int n, unsigned int *offset); 3413 3414 struct page * 3415 i915_gem_object_get_page(struct drm_i915_gem_object *obj, 3416 unsigned int n); 3417 3418 struct page * 3419 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 3420 unsigned int n); 3421 3422 dma_addr_t 3423 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 3424 unsigned long n); 3425 3426 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 3427 struct sg_table *pages); 3428 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 3429 3430 static inline int __must_check 3431 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3432 { 3433 might_lock(&obj->mm.lock); 3434 3435 if (atomic_inc_not_zero(&obj->mm.pages_pin_count)) 3436 return 0; 3437 3438 return __i915_gem_object_get_pages(obj); 3439 } 3440 3441 static inline void 3442 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3443 { 3444 GEM_BUG_ON(!obj->mm.pages); 3445 3446 atomic_inc(&obj->mm.pages_pin_count); 3447 } 3448 3449 static inline bool 3450 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj) 3451 { 3452 return atomic_read(&obj->mm.pages_pin_count); 3453 } 3454 3455 static inline void 3456 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3457 { 3458 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 3459 GEM_BUG_ON(!obj->mm.pages); 3460 3461 atomic_dec(&obj->mm.pages_pin_count); 3462 } 3463 3464 static inline void 3465 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3466 { 3467 __i915_gem_object_unpin_pages(obj); 3468 } 3469 3470 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */ 3471 I915_MM_NORMAL = 0, 3472 I915_MM_SHRINKER 3473 }; 3474 3475 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 3476 enum i915_mm_subclass subclass); 3477 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj); 3478 3479 enum i915_map_type { 3480 I915_MAP_WB = 0, 3481 I915_MAP_WC, 3482 #define I915_MAP_OVERRIDE BIT(31) 3483 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE, 3484 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE, 3485 }; 3486 3487 /** 3488 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 3489 * @obj: the object to map into kernel address space 3490 * @type: the type of mapping, used to select pgprot_t 3491 * 3492 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 3493 * pages and then returns a contiguous mapping of the backing storage into 3494 * the kernel address space. Based on the @type of mapping, the PTE will be 3495 * set to either WriteBack or WriteCombine (via pgprot_t). 3496 * 3497 * The caller is responsible for calling i915_gem_object_unpin_map() when the 3498 * mapping is no longer required. 3499 * 3500 * Returns the pointer through which to access the mapped object, or an 3501 * ERR_PTR() on error. 3502 */ 3503 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 3504 enum i915_map_type type); 3505 3506 /** 3507 * i915_gem_object_unpin_map - releases an earlier mapping 3508 * @obj: the object to unmap 3509 * 3510 * After pinning the object and mapping its pages, once you are finished 3511 * with your access, call i915_gem_object_unpin_map() to release the pin 3512 * upon the mapping. Once the pin count reaches zero, that mapping may be 3513 * removed. 3514 */ 3515 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 3516 { 3517 i915_gem_object_unpin_pages(obj); 3518 } 3519 3520 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 3521 unsigned int *needs_clflush); 3522 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 3523 unsigned int *needs_clflush); 3524 #define CLFLUSH_BEFORE BIT(0) 3525 #define CLFLUSH_AFTER BIT(1) 3526 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER) 3527 3528 static inline void 3529 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj) 3530 { 3531 i915_gem_object_unpin_pages(obj); 3532 } 3533 3534 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 3535 void i915_vma_move_to_active(struct i915_vma *vma, 3536 struct drm_i915_gem_request *req, 3537 unsigned int flags); 3538 int i915_gem_dumb_create(struct drm_file *file_priv, 3539 struct drm_device *dev, 3540 struct drm_mode_create_dumb *args); 3541 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3542 uint32_t handle, uint64_t *offset); 3543 int i915_gem_mmap_gtt_version(void); 3544 3545 void i915_gem_track_fb(struct drm_i915_gem_object *old, 3546 struct drm_i915_gem_object *new, 3547 unsigned frontbuffer_bits); 3548 3549 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); 3550 3551 struct drm_i915_gem_request * 3552 i915_gem_find_active_request(struct intel_engine_cs *engine); 3553 3554 void i915_gem_retire_requests(struct drm_i915_private *dev_priv); 3555 3556 static inline bool i915_reset_backoff(struct i915_gpu_error *error) 3557 { 3558 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags)); 3559 } 3560 3561 static inline bool i915_reset_handoff(struct i915_gpu_error *error) 3562 { 3563 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags)); 3564 } 3565 3566 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3567 { 3568 return unlikely(test_bit(I915_WEDGED, &error->flags)); 3569 } 3570 3571 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error) 3572 { 3573 return i915_reset_backoff(error) | i915_terminally_wedged(error); 3574 } 3575 3576 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3577 { 3578 return READ_ONCE(error->reset_count); 3579 } 3580 3581 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error, 3582 struct intel_engine_cs *engine) 3583 { 3584 return READ_ONCE(error->reset_engine_count[engine->id]); 3585 } 3586 3587 struct drm_i915_gem_request * 3588 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine); 3589 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv); 3590 void i915_gem_reset(struct drm_i915_private *dev_priv); 3591 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine); 3592 void i915_gem_reset_finish(struct drm_i915_private *dev_priv); 3593 void i915_gem_set_wedged(struct drm_i915_private *dev_priv); 3594 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv); 3595 void i915_gem_reset_engine(struct intel_engine_cs *engine, 3596 struct drm_i915_gem_request *request); 3597 3598 void i915_gem_init_mmio(struct drm_i915_private *i915); 3599 int __must_check i915_gem_init(struct drm_i915_private *dev_priv); 3600 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv); 3601 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv); 3602 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv); 3603 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, 3604 unsigned int flags); 3605 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv); 3606 void i915_gem_resume(struct drm_i915_private *dev_priv); 3607 int i915_gem_fault(struct vm_fault *vmf); 3608 int i915_gem_object_wait(struct drm_i915_gem_object *obj, 3609 unsigned int flags, 3610 long timeout, 3611 struct intel_rps_client *rps); 3612 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 3613 unsigned int flags, 3614 int priority); 3615 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX 3616 3617 int __must_check 3618 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write); 3619 int __must_check 3620 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write); 3621 int __must_check 3622 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3623 struct i915_vma * __must_check 3624 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3625 u32 alignment, 3626 const struct i915_ggtt_view *view); 3627 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma); 3628 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3629 int align); 3630 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file); 3631 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3632 3633 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3634 enum i915_cache_level cache_level); 3635 3636 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3637 struct dma_buf *dma_buf); 3638 3639 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3640 struct drm_gem_object *gem_obj, int flags); 3641 3642 static inline struct i915_hw_ppgtt * 3643 i915_vm_to_ppgtt(struct i915_address_space *vm) 3644 { 3645 return container_of(vm, struct i915_hw_ppgtt, base); 3646 } 3647 3648 /* i915_gem_fence_reg.c */ 3649 int __must_check i915_vma_get_fence(struct i915_vma *vma); 3650 int __must_check i915_vma_put_fence(struct i915_vma *vma); 3651 3652 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv); 3653 void i915_gem_restore_fences(struct drm_i915_private *dev_priv); 3654 3655 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv); 3656 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 3657 struct sg_table *pages); 3658 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 3659 struct sg_table *pages); 3660 3661 static inline struct i915_gem_context * 3662 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id) 3663 { 3664 return idr_find(&file_priv->context_idr, id); 3665 } 3666 3667 static inline struct i915_gem_context * 3668 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3669 { 3670 struct i915_gem_context *ctx; 3671 3672 rcu_read_lock(); 3673 ctx = __i915_gem_context_lookup_rcu(file_priv, id); 3674 if (ctx && !kref_get_unless_zero(&ctx->ref)) 3675 ctx = NULL; 3676 rcu_read_unlock(); 3677 3678 return ctx; 3679 } 3680 3681 static inline struct intel_timeline * 3682 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx, 3683 struct intel_engine_cs *engine) 3684 { 3685 struct i915_address_space *vm; 3686 3687 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base; 3688 return &vm->timeline.engine[engine->id]; 3689 } 3690 3691 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3692 struct drm_file *file); 3693 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3694 struct drm_file *file); 3695 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3696 struct drm_file *file); 3697 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 3698 struct i915_gem_context *ctx, 3699 uint32_t *reg_state); 3700 3701 /* i915_gem_evict.c */ 3702 int __must_check i915_gem_evict_something(struct i915_address_space *vm, 3703 u64 min_size, u64 alignment, 3704 unsigned cache_level, 3705 u64 start, u64 end, 3706 unsigned flags); 3707 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, 3708 struct drm_mm_node *node, 3709 unsigned int flags); 3710 int i915_gem_evict_vm(struct i915_address_space *vm); 3711 3712 /* belongs in i915_gem_gtt.h */ 3713 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3714 { 3715 wmb(); 3716 if (INTEL_GEN(dev_priv) < 6) 3717 intel_gtt_chipset_flush(); 3718 } 3719 3720 /* i915_gem_stolen.c */ 3721 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3722 struct drm_mm_node *node, u64 size, 3723 unsigned alignment); 3724 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3725 struct drm_mm_node *node, u64 size, 3726 unsigned alignment, u64 start, 3727 u64 end); 3728 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3729 struct drm_mm_node *node); 3730 int i915_gem_init_stolen(struct drm_i915_private *dev_priv); 3731 void i915_gem_cleanup_stolen(struct drm_device *dev); 3732 struct drm_i915_gem_object * 3733 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size); 3734 struct drm_i915_gem_object * 3735 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv, 3736 u32 stolen_offset, 3737 u32 gtt_offset, 3738 u32 size); 3739 3740 /* i915_gem_internal.c */ 3741 struct drm_i915_gem_object * 3742 i915_gem_object_create_internal(struct drm_i915_private *dev_priv, 3743 phys_addr_t size); 3744 3745 /* i915_gem_shrinker.c */ 3746 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv, 3747 unsigned long target, 3748 unsigned long *nr_scanned, 3749 unsigned flags); 3750 #define I915_SHRINK_PURGEABLE 0x1 3751 #define I915_SHRINK_UNBOUND 0x2 3752 #define I915_SHRINK_BOUND 0x4 3753 #define I915_SHRINK_ACTIVE 0x8 3754 #define I915_SHRINK_VMAPS 0x10 3755 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); 3756 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv); 3757 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv); 3758 3759 3760 /* i915_gem_tiling.c */ 3761 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3762 { 3763 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3764 3765 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3766 i915_gem_object_is_tiled(obj); 3767 } 3768 3769 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, 3770 unsigned int tiling, unsigned int stride); 3771 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, 3772 unsigned int tiling, unsigned int stride); 3773 3774 /* i915_debugfs.c */ 3775 #ifdef CONFIG_DEBUG_FS 3776 int i915_debugfs_register(struct drm_i915_private *dev_priv); 3777 int i915_debugfs_connector_add(struct drm_connector *connector); 3778 void intel_display_crc_init(struct drm_i915_private *dev_priv); 3779 #else 3780 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} 3781 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3782 { return 0; } 3783 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {} 3784 #endif 3785 3786 /* i915_gpu_error.c */ 3787 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 3788 3789 __printf(2, 3) 3790 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...); 3791 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr, 3792 const struct i915_gpu_state *gpu); 3793 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb, 3794 struct drm_i915_private *i915, 3795 size_t count, loff_t pos); 3796 static inline void i915_error_state_buf_release( 3797 struct drm_i915_error_state_buf *eb) 3798 { 3799 kfree(eb->buf); 3800 } 3801 3802 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915); 3803 void i915_capture_error_state(struct drm_i915_private *dev_priv, 3804 u32 engine_mask, 3805 const char *error_msg); 3806 3807 static inline struct i915_gpu_state * 3808 i915_gpu_state_get(struct i915_gpu_state *gpu) 3809 { 3810 kref_get(&gpu->ref); 3811 return gpu; 3812 } 3813 3814 void __i915_gpu_state_free(struct kref *kref); 3815 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu) 3816 { 3817 if (gpu) 3818 kref_put(&gpu->ref, __i915_gpu_state_free); 3819 } 3820 3821 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915); 3822 void i915_reset_error_state(struct drm_i915_private *i915); 3823 3824 #else 3825 3826 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv, 3827 u32 engine_mask, 3828 const char *error_msg) 3829 { 3830 } 3831 3832 static inline struct i915_gpu_state * 3833 i915_first_error_state(struct drm_i915_private *i915) 3834 { 3835 return NULL; 3836 } 3837 3838 static inline void i915_reset_error_state(struct drm_i915_private *i915) 3839 { 3840 } 3841 3842 #endif 3843 3844 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3845 3846 /* i915_cmd_parser.c */ 3847 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 3848 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine); 3849 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); 3850 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 3851 struct drm_i915_gem_object *batch_obj, 3852 struct drm_i915_gem_object *shadow_batch_obj, 3853 u32 batch_start_offset, 3854 u32 batch_len, 3855 bool is_master); 3856 3857 /* i915_perf.c */ 3858 extern void i915_perf_init(struct drm_i915_private *dev_priv); 3859 extern void i915_perf_fini(struct drm_i915_private *dev_priv); 3860 extern void i915_perf_register(struct drm_i915_private *dev_priv); 3861 extern void i915_perf_unregister(struct drm_i915_private *dev_priv); 3862 3863 /* i915_suspend.c */ 3864 extern int i915_save_state(struct drm_i915_private *dev_priv); 3865 extern int i915_restore_state(struct drm_i915_private *dev_priv); 3866 3867 /* i915_sysfs.c */ 3868 void i915_setup_sysfs(struct drm_i915_private *dev_priv); 3869 void i915_teardown_sysfs(struct drm_i915_private *dev_priv); 3870 3871 /* intel_lpe_audio.c */ 3872 int intel_lpe_audio_init(struct drm_i915_private *dev_priv); 3873 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv); 3874 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv); 3875 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv, 3876 enum pipe pipe, enum port port, 3877 const void *eld, int ls_clock, bool dp_output); 3878 3879 /* intel_i2c.c */ 3880 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv); 3881 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv); 3882 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3883 unsigned int pin); 3884 3885 extern struct i2c_adapter * 3886 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3887 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3888 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3889 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3890 { 3891 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3892 } 3893 extern void intel_i2c_reset(struct drm_i915_private *dev_priv); 3894 3895 /* intel_bios.c */ 3896 void intel_bios_init(struct drm_i915_private *dev_priv); 3897 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3898 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3899 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3900 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3901 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3902 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3903 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3904 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3905 enum port port); 3906 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv, 3907 enum port port); 3908 3909 3910 /* intel_opregion.c */ 3911 #ifdef CONFIG_ACPI 3912 extern int intel_opregion_setup(struct drm_i915_private *dev_priv); 3913 extern void intel_opregion_register(struct drm_i915_private *dev_priv); 3914 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv); 3915 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv); 3916 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, 3917 bool enable); 3918 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv, 3919 pci_power_t state); 3920 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv); 3921 #else 3922 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; } 3923 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { } 3924 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { } 3925 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv) 3926 { 3927 } 3928 static inline int 3929 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable) 3930 { 3931 return 0; 3932 } 3933 static inline int 3934 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state) 3935 { 3936 return 0; 3937 } 3938 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev) 3939 { 3940 return -ENODEV; 3941 } 3942 #endif 3943 3944 /* intel_acpi.c */ 3945 #ifdef CONFIG_ACPI 3946 extern void intel_register_dsm_handler(void); 3947 extern void intel_unregister_dsm_handler(void); 3948 #else 3949 static inline void intel_register_dsm_handler(void) { return; } 3950 static inline void intel_unregister_dsm_handler(void) { return; } 3951 #endif /* CONFIG_ACPI */ 3952 3953 /* intel_device_info.c */ 3954 static inline struct intel_device_info * 3955 mkwrite_device_info(struct drm_i915_private *dev_priv) 3956 { 3957 return (struct intel_device_info *)&dev_priv->info; 3958 } 3959 3960 const char *intel_platform_name(enum intel_platform platform); 3961 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv); 3962 void intel_device_info_dump(struct drm_i915_private *dev_priv); 3963 3964 /* modesetting */ 3965 extern void intel_modeset_init_hw(struct drm_device *dev); 3966 extern int intel_modeset_init(struct drm_device *dev); 3967 extern void intel_modeset_gem_init(struct drm_device *dev); 3968 extern void intel_modeset_cleanup(struct drm_device *dev); 3969 extern int intel_connector_register(struct drm_connector *); 3970 extern void intel_connector_unregister(struct drm_connector *); 3971 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, 3972 bool state); 3973 extern void intel_display_resume(struct drm_device *dev); 3974 extern void i915_redisable_vga(struct drm_i915_private *dev_priv); 3975 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv); 3976 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 3977 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv); 3978 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 3979 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3980 bool enable); 3981 3982 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3983 struct drm_file *file); 3984 3985 /* overlay */ 3986 extern struct intel_overlay_error_state * 3987 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); 3988 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3989 struct intel_overlay_error_state *error); 3990 3991 extern struct intel_display_error_state * 3992 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 3993 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3994 struct intel_display_error_state *error); 3995 3996 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3997 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val); 3998 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, 3999 u32 reply_mask, u32 reply, int timeout_base_ms); 4000 4001 /* intel_sideband.c */ 4002 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 4003 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 4004 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 4005 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 4006 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 4007 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 4008 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 4009 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 4010 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 4011 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 4012 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 4013 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 4014 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 4015 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 4016 enum intel_sbi_destination destination); 4017 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 4018 enum intel_sbi_destination destination); 4019 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 4020 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 4021 4022 /* intel_dpio_phy.c */ 4023 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 4024 enum dpio_phy *phy, enum dpio_channel *ch); 4025 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv, 4026 enum port port, u32 margin, u32 scale, 4027 u32 enable, u32 deemphasis); 4028 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy); 4029 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy); 4030 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 4031 enum dpio_phy phy); 4032 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 4033 enum dpio_phy phy); 4034 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder, 4035 uint8_t lane_count); 4036 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 4037 uint8_t lane_lat_optim_mask); 4038 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder); 4039 4040 void chv_set_phy_signal_level(struct intel_encoder *encoder, 4041 u32 deemph_reg_value, u32 margin_reg_value, 4042 bool uniq_trans_scale); 4043 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 4044 bool reset); 4045 void chv_phy_pre_pll_enable(struct intel_encoder *encoder); 4046 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder); 4047 void chv_phy_release_cl2_override(struct intel_encoder *encoder); 4048 void chv_phy_post_pll_disable(struct intel_encoder *encoder); 4049 4050 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 4051 u32 demph_reg_value, u32 preemph_reg_value, 4052 u32 uniqtranscale_reg_value, u32 tx3_demph); 4053 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder); 4054 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder); 4055 void vlv_phy_reset_lanes(struct intel_encoder *encoder); 4056 4057 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 4058 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 4059 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv, 4060 const i915_reg_t reg); 4061 4062 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 4063 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 4064 4065 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 4066 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 4067 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 4068 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 4069 4070 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 4071 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 4072 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 4073 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 4074 4075 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 4076 * will be implemented using 2 32-bit writes in an arbitrary order with 4077 * an arbitrary delay between them. This can cause the hardware to 4078 * act upon the intermediate value, possibly leading to corruption and 4079 * machine death. For this reason we do not support I915_WRITE64, or 4080 * dev_priv->uncore.funcs.mmio_writeq. 4081 * 4082 * When reading a 64-bit value as two 32-bit values, the delay may cause 4083 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that 4084 * occasionally a 64-bit register does not actualy support a full readq 4085 * and must be read using two 32-bit reads. 4086 * 4087 * You have been warned. 4088 */ 4089 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 4090 4091 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 4092 u32 upper, lower, old_upper, loop = 0; \ 4093 upper = I915_READ(upper_reg); \ 4094 do { \ 4095 old_upper = upper; \ 4096 lower = I915_READ(lower_reg); \ 4097 upper = I915_READ(upper_reg); \ 4098 } while (upper != old_upper && loop++ < 2); \ 4099 (u64)upper << 32 | lower; }) 4100 4101 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 4102 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 4103 4104 #define __raw_read(x, s) \ 4105 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \ 4106 i915_reg_t reg) \ 4107 { \ 4108 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 4109 } 4110 4111 #define __raw_write(x, s) \ 4112 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \ 4113 i915_reg_t reg, uint##x##_t val) \ 4114 { \ 4115 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 4116 } 4117 __raw_read(8, b) 4118 __raw_read(16, w) 4119 __raw_read(32, l) 4120 __raw_read(64, q) 4121 4122 __raw_write(8, b) 4123 __raw_write(16, w) 4124 __raw_write(32, l) 4125 __raw_write(64, q) 4126 4127 #undef __raw_read 4128 #undef __raw_write 4129 4130 /* These are untraced mmio-accessors that are only valid to be used inside 4131 * critical sections, such as inside IRQ handlers, where forcewake is explicitly 4132 * controlled. 4133 * 4134 * Think twice, and think again, before using these. 4135 * 4136 * As an example, these accessors can possibly be used between: 4137 * 4138 * spin_lock_irq(&dev_priv->uncore.lock); 4139 * intel_uncore_forcewake_get__locked(); 4140 * 4141 * and 4142 * 4143 * intel_uncore_forcewake_put__locked(); 4144 * spin_unlock_irq(&dev_priv->uncore.lock); 4145 * 4146 * 4147 * Note: some registers may not need forcewake held, so 4148 * intel_uncore_forcewake_{get,put} can be omitted, see 4149 * intel_uncore_forcewake_for_reg(). 4150 * 4151 * Certain architectures will die if the same cacheline is concurrently accessed 4152 * by different clients (e.g. on Ivybridge). Access to registers should 4153 * therefore generally be serialised, by either the dev_priv->uncore.lock or 4154 * a more localised lock guarding all access to that bank of registers. 4155 */ 4156 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 4157 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 4158 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) 4159 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 4160 4161 /* "Broadcast RGB" property */ 4162 #define INTEL_BROADCAST_RGB_AUTO 0 4163 #define INTEL_BROADCAST_RGB_FULL 1 4164 #define INTEL_BROADCAST_RGB_LIMITED 2 4165 4166 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) 4167 { 4168 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 4169 return VLV_VGACNTRL; 4170 else if (INTEL_GEN(dev_priv) >= 5) 4171 return CPU_VGACNTRL; 4172 else 4173 return VGACNTRL; 4174 } 4175 4176 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 4177 { 4178 unsigned long j = msecs_to_jiffies(m); 4179 4180 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 4181 } 4182 4183 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 4184 { 4185 /* nsecs_to_jiffies64() does not guard against overflow */ 4186 if (NSEC_PER_SEC % HZ && 4187 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ) 4188 return MAX_JIFFY_OFFSET; 4189 4190 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 4191 } 4192 4193 static inline unsigned long 4194 timespec_to_jiffies_timeout(const struct timespec *value) 4195 { 4196 unsigned long j = timespec_to_jiffies(value); 4197 4198 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 4199 } 4200 4201 /* 4202 * If you need to wait X milliseconds between events A and B, but event B 4203 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 4204 * when event A happened, then just before event B you call this function and 4205 * pass the timestamp as the first argument, and X as the second argument. 4206 */ 4207 static inline void 4208 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 4209 { 4210 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 4211 4212 /* 4213 * Don't re-read the value of "jiffies" every time since it may change 4214 * behind our back and break the math. 4215 */ 4216 tmp_jiffies = jiffies; 4217 target_jiffies = timestamp_jiffies + 4218 msecs_to_jiffies_timeout(to_wait_ms); 4219 4220 if (time_after(target_jiffies, tmp_jiffies)) { 4221 remaining_jiffies = target_jiffies - tmp_jiffies; 4222 while (remaining_jiffies) 4223 remaining_jiffies = 4224 schedule_timeout_uninterruptible(remaining_jiffies); 4225 } 4226 } 4227 4228 static inline bool 4229 __i915_request_irq_complete(const struct drm_i915_gem_request *req) 4230 { 4231 struct intel_engine_cs *engine = req->engine; 4232 u32 seqno; 4233 4234 /* Note that the engine may have wrapped around the seqno, and 4235 * so our request->global_seqno will be ahead of the hardware, 4236 * even though it completed the request before wrapping. We catch 4237 * this by kicking all the waiters before resetting the seqno 4238 * in hardware, and also signal the fence. 4239 */ 4240 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags)) 4241 return true; 4242 4243 /* The request was dequeued before we were awoken. We check after 4244 * inspecting the hw to confirm that this was the same request 4245 * that generated the HWS update. The memory barriers within 4246 * the request execution are sufficient to ensure that a check 4247 * after reading the value from hw matches this request. 4248 */ 4249 seqno = i915_gem_request_global_seqno(req); 4250 if (!seqno) 4251 return false; 4252 4253 /* Before we do the heavier coherent read of the seqno, 4254 * check the value (hopefully) in the CPU cacheline. 4255 */ 4256 if (__i915_gem_request_completed(req, seqno)) 4257 return true; 4258 4259 /* Ensure our read of the seqno is coherent so that we 4260 * do not "miss an interrupt" (i.e. if this is the last 4261 * request and the seqno write from the GPU is not visible 4262 * by the time the interrupt fires, we will see that the 4263 * request is incomplete and go back to sleep awaiting 4264 * another interrupt that will never come.) 4265 * 4266 * Strictly, we only need to do this once after an interrupt, 4267 * but it is easier and safer to do it every time the waiter 4268 * is woken. 4269 */ 4270 if (engine->irq_seqno_barrier && 4271 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) { 4272 struct intel_breadcrumbs *b = &engine->breadcrumbs; 4273 4274 /* The ordering of irq_posted versus applying the barrier 4275 * is crucial. The clearing of the current irq_posted must 4276 * be visible before we perform the barrier operation, 4277 * such that if a subsequent interrupt arrives, irq_posted 4278 * is reasserted and our task rewoken (which causes us to 4279 * do another __i915_request_irq_complete() immediately 4280 * and reapply the barrier). Conversely, if the clear 4281 * occurs after the barrier, then an interrupt that arrived 4282 * whilst we waited on the barrier would not trigger a 4283 * barrier on the next pass, and the read may not see the 4284 * seqno update. 4285 */ 4286 engine->irq_seqno_barrier(engine); 4287 4288 /* If we consume the irq, but we are no longer the bottom-half, 4289 * the real bottom-half may not have serialised their own 4290 * seqno check with the irq-barrier (i.e. may have inspected 4291 * the seqno before we believe it coherent since they see 4292 * irq_posted == false but we are still running). 4293 */ 4294 spin_lock_irq(&b->irq_lock); 4295 if (b->irq_wait && b->irq_wait->tsk != current) 4296 /* Note that if the bottom-half is changed as we 4297 * are sending the wake-up, the new bottom-half will 4298 * be woken by whomever made the change. We only have 4299 * to worry about when we steal the irq-posted for 4300 * ourself. 4301 */ 4302 wake_up_process(b->irq_wait->tsk); 4303 spin_unlock_irq(&b->irq_lock); 4304 4305 if (__i915_gem_request_completed(req, seqno)) 4306 return true; 4307 } 4308 4309 return false; 4310 } 4311 4312 void i915_memcpy_init_early(struct drm_i915_private *dev_priv); 4313 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len); 4314 4315 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment, 4316 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot 4317 * perform the operation. To check beforehand, pass in the parameters to 4318 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits, 4319 * you only need to pass in the minor offsets, page-aligned pointers are 4320 * always valid. 4321 * 4322 * For just checking for SSE4.1, in the foreknowledge that the future use 4323 * will be correctly aligned, just use i915_has_memcpy_from_wc(). 4324 */ 4325 #define i915_can_memcpy_from_wc(dst, src, len) \ 4326 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0) 4327 4328 #define i915_has_memcpy_from_wc() \ 4329 i915_memcpy_from_wc(NULL, NULL, 0) 4330 4331 /* i915_mm.c */ 4332 int remap_io_mapping(struct vm_area_struct *vma, 4333 unsigned long addr, unsigned long pfn, unsigned long size, 4334 struct io_mapping *iomap); 4335 4336 static inline bool 4337 intel_engine_can_store_dword(struct intel_engine_cs *engine) 4338 { 4339 return __intel_engine_can_store_dword(INTEL_GEN(engine->i915), 4340 engine->class); 4341 } 4342 4343 #endif 4344