xref: /openbmc/linux/drivers/gpu/drm/i915/i915_drv.h (revision 90a53e44)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46 
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53 
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57 
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64 
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73 
74 #include "i915_vma.h"
75 
76 #include "intel_gvt.h"
77 
78 /* General customization:
79  */
80 
81 #define DRIVER_NAME		"i915"
82 #define DRIVER_DESC		"Intel Graphics"
83 #define DRIVER_DATE		"20170818"
84 #define DRIVER_TIMESTAMP	1503088845
85 
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88  * which may not necessarily be a user visible problem.  This will either
89  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90  * enable distros and users to tailor their preferred amount of i915 abrt
91  * spam.
92  */
93 #define I915_STATE_WARN(condition, format...) ({			\
94 	int __ret_warn_on = !!(condition);				\
95 	if (unlikely(__ret_warn_on))					\
96 		if (!WARN(i915.verbose_state_checks, format))		\
97 			DRM_ERROR(format);				\
98 	unlikely(__ret_warn_on);					\
99 })
100 
101 #define I915_STATE_WARN_ON(x)						\
102 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103 
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 	__i915_inject_load_failure(__func__, __LINE__)
107 
108 typedef struct {
109 	uint32_t val;
110 } uint_fixed_16_16_t;
111 
112 #define FP_16_16_MAX ({ \
113 	uint_fixed_16_16_t fp; \
114 	fp.val = UINT_MAX; \
115 	fp; \
116 })
117 
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 	if (val.val == 0)
121 		return true;
122 	return false;
123 }
124 
125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127 	uint_fixed_16_16_t fp;
128 
129 	WARN_ON(val >> 16);
130 
131 	fp.val = val << 16;
132 	return fp;
133 }
134 
135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 	return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139 
140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142 	return fp.val >> 16;
143 }
144 
145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146 						 uint_fixed_16_16_t min2)
147 {
148 	uint_fixed_16_16_t min;
149 
150 	min.val = min(min1.val, min2.val);
151 	return min;
152 }
153 
154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155 						 uint_fixed_16_16_t max2)
156 {
157 	uint_fixed_16_16_t max;
158 
159 	max.val = max(max1.val, max2.val);
160 	return max;
161 }
162 
163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165 	uint_fixed_16_16_t fp;
166 	WARN_ON(val >> 32);
167 	fp.val = clamp_t(uint32_t, val, 0, ~0);
168 	return fp;
169 }
170 
171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172 					    uint_fixed_16_16_t d)
173 {
174 	return DIV_ROUND_UP(val.val, d.val);
175 }
176 
177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178 						uint_fixed_16_16_t mul)
179 {
180 	uint64_t intermediate_val;
181 
182 	intermediate_val = (uint64_t) val * mul.val;
183 	intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184 	WARN_ON(intermediate_val >> 32);
185 	return clamp_t(uint32_t, intermediate_val, 0, ~0);
186 }
187 
188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189 					     uint_fixed_16_16_t mul)
190 {
191 	uint64_t intermediate_val;
192 
193 	intermediate_val = (uint64_t) val.val * mul.val;
194 	intermediate_val = intermediate_val >> 16;
195 	return clamp_u64_to_fixed16(intermediate_val);
196 }
197 
198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200 	uint64_t interm_val;
201 
202 	interm_val = (uint64_t)val << 16;
203 	interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204 	return clamp_u64_to_fixed16(interm_val);
205 }
206 
207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208 						uint_fixed_16_16_t d)
209 {
210 	uint64_t interm_val;
211 
212 	interm_val = (uint64_t)val << 16;
213 	interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214 	WARN_ON(interm_val >> 32);
215 	return clamp_t(uint32_t, interm_val, 0, ~0);
216 }
217 
218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219 						     uint_fixed_16_16_t mul)
220 {
221 	uint64_t intermediate_val;
222 
223 	intermediate_val = (uint64_t) val * mul.val;
224 	return clamp_u64_to_fixed16(intermediate_val);
225 }
226 
227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228 					     uint_fixed_16_16_t add2)
229 {
230 	uint64_t interm_sum;
231 
232 	interm_sum = (uint64_t) add1.val + add2.val;
233 	return clamp_u64_to_fixed16(interm_sum);
234 }
235 
236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237 						 uint32_t add2)
238 {
239 	uint64_t interm_sum;
240 	uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241 
242 	interm_sum = (uint64_t) add1.val + interm_add2.val;
243 	return clamp_u64_to_fixed16(interm_sum);
244 }
245 
246 static inline const char *yesno(bool v)
247 {
248 	return v ? "yes" : "no";
249 }
250 
251 static inline const char *onoff(bool v)
252 {
253 	return v ? "on" : "off";
254 }
255 
256 static inline const char *enableddisabled(bool v)
257 {
258 	return v ? "enabled" : "disabled";
259 }
260 
261 enum pipe {
262 	INVALID_PIPE = -1,
263 	PIPE_A = 0,
264 	PIPE_B,
265 	PIPE_C,
266 	_PIPE_EDP,
267 	I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270 
271 enum transcoder {
272 	TRANSCODER_A = 0,
273 	TRANSCODER_B,
274 	TRANSCODER_C,
275 	TRANSCODER_EDP,
276 	TRANSCODER_DSI_A,
277 	TRANSCODER_DSI_C,
278 	I915_MAX_TRANSCODERS
279 };
280 
281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283 	switch (transcoder) {
284 	case TRANSCODER_A:
285 		return "A";
286 	case TRANSCODER_B:
287 		return "B";
288 	case TRANSCODER_C:
289 		return "C";
290 	case TRANSCODER_EDP:
291 		return "EDP";
292 	case TRANSCODER_DSI_A:
293 		return "DSI A";
294 	case TRANSCODER_DSI_C:
295 		return "DSI C";
296 	default:
297 		return "<invalid>";
298 	}
299 }
300 
301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303 	return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305 
306 /*
307  * Global legacy plane identifier. Valid only for primary/sprite
308  * planes on pre-g4x, and only for primary planes on g4x+.
309  */
310 enum plane {
311 	PLANE_A,
312 	PLANE_B,
313 	PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316 
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318 
319 /*
320  * Per-pipe plane identifier.
321  * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322  * number of planes per CRTC.  Not all platforms really have this many planes,
323  * which means some arrays of size I915_MAX_PLANES may have unused entries
324  * between the topmost sprite plane and the cursor plane.
325  *
326  * This is expected to be passed to various register macros
327  * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328  */
329 enum plane_id {
330 	PLANE_PRIMARY,
331 	PLANE_SPRITE0,
332 	PLANE_SPRITE1,
333 	PLANE_SPRITE2,
334 	PLANE_CURSOR,
335 	I915_MAX_PLANES,
336 };
337 
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339 	for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340 		for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341 
342 enum port {
343 	PORT_NONE = -1,
344 	PORT_A = 0,
345 	PORT_B,
346 	PORT_C,
347 	PORT_D,
348 	PORT_E,
349 	I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352 
353 #define I915_NUM_PHYS_VLV 2
354 
355 enum dpio_channel {
356 	DPIO_CH0,
357 	DPIO_CH1
358 };
359 
360 enum dpio_phy {
361 	DPIO_PHY0,
362 	DPIO_PHY1,
363 	DPIO_PHY2,
364 };
365 
366 enum intel_display_power_domain {
367 	POWER_DOMAIN_PIPE_A,
368 	POWER_DOMAIN_PIPE_B,
369 	POWER_DOMAIN_PIPE_C,
370 	POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371 	POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372 	POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373 	POWER_DOMAIN_TRANSCODER_A,
374 	POWER_DOMAIN_TRANSCODER_B,
375 	POWER_DOMAIN_TRANSCODER_C,
376 	POWER_DOMAIN_TRANSCODER_EDP,
377 	POWER_DOMAIN_TRANSCODER_DSI_A,
378 	POWER_DOMAIN_TRANSCODER_DSI_C,
379 	POWER_DOMAIN_PORT_DDI_A_LANES,
380 	POWER_DOMAIN_PORT_DDI_B_LANES,
381 	POWER_DOMAIN_PORT_DDI_C_LANES,
382 	POWER_DOMAIN_PORT_DDI_D_LANES,
383 	POWER_DOMAIN_PORT_DDI_E_LANES,
384 	POWER_DOMAIN_PORT_DDI_A_IO,
385 	POWER_DOMAIN_PORT_DDI_B_IO,
386 	POWER_DOMAIN_PORT_DDI_C_IO,
387 	POWER_DOMAIN_PORT_DDI_D_IO,
388 	POWER_DOMAIN_PORT_DDI_E_IO,
389 	POWER_DOMAIN_PORT_DSI,
390 	POWER_DOMAIN_PORT_CRT,
391 	POWER_DOMAIN_PORT_OTHER,
392 	POWER_DOMAIN_VGA,
393 	POWER_DOMAIN_AUDIO,
394 	POWER_DOMAIN_PLLS,
395 	POWER_DOMAIN_AUX_A,
396 	POWER_DOMAIN_AUX_B,
397 	POWER_DOMAIN_AUX_C,
398 	POWER_DOMAIN_AUX_D,
399 	POWER_DOMAIN_GMBUS,
400 	POWER_DOMAIN_MODESET,
401 	POWER_DOMAIN_INIT,
402 
403 	POWER_DOMAIN_NUM,
404 };
405 
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408 		((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410 	((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411 	 (tran) + POWER_DOMAIN_TRANSCODER_A)
412 
413 enum hpd_pin {
414 	HPD_NONE = 0,
415 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
416 	HPD_CRT,
417 	HPD_SDVO_B,
418 	HPD_SDVO_C,
419 	HPD_PORT_A,
420 	HPD_PORT_B,
421 	HPD_PORT_C,
422 	HPD_PORT_D,
423 	HPD_PORT_E,
424 	HPD_NUM_PINS
425 };
426 
427 #define for_each_hpd_pin(__pin) \
428 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429 
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431 
432 struct i915_hotplug {
433 	struct work_struct hotplug_work;
434 
435 	struct {
436 		unsigned long last_jiffies;
437 		int count;
438 		enum {
439 			HPD_ENABLED = 0,
440 			HPD_DISABLED = 1,
441 			HPD_MARK_DISABLED = 2
442 		} state;
443 	} stats[HPD_NUM_PINS];
444 	u32 event_bits;
445 	struct delayed_work reenable_work;
446 
447 	struct intel_digital_port *irq_port[I915_MAX_PORTS];
448 	u32 long_port_mask;
449 	u32 short_port_mask;
450 	struct work_struct dig_port_work;
451 
452 	struct work_struct poll_init_work;
453 	bool poll_enabled;
454 
455 	unsigned int hpd_storm_threshold;
456 
457 	/*
458 	 * if we get a HPD irq from DP and a HPD irq from non-DP
459 	 * the non-DP HPD could block the workqueue on a mode config
460 	 * mutex getting, that userspace may have taken. However
461 	 * userspace is waiting on the DP workqueue to run which is
462 	 * blocked behind the non-DP one.
463 	 */
464 	struct workqueue_struct *dp_wq;
465 };
466 
467 #define I915_GEM_GPU_DOMAINS \
468 	(I915_GEM_DOMAIN_RENDER | \
469 	 I915_GEM_DOMAIN_SAMPLER | \
470 	 I915_GEM_DOMAIN_COMMAND | \
471 	 I915_GEM_DOMAIN_INSTRUCTION | \
472 	 I915_GEM_DOMAIN_VERTEX)
473 
474 #define for_each_pipe(__dev_priv, __p) \
475 	for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477 	for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478 		for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p)		\
480 	for ((__p) = 0;							\
481 	     (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1;	\
482 	     (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s)				\
484 	for ((__s) = 0;							\
485 	     (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)];	\
486 	     (__s)++)
487 
488 #define for_each_port_masked(__port, __ports_mask) \
489 	for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++)	\
490 		for_each_if ((__ports_mask) & (1 << (__port)))
491 
492 #define for_each_crtc(dev, crtc) \
493 	list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494 
495 #define for_each_intel_plane(dev, intel_plane) \
496 	list_for_each_entry(intel_plane,			\
497 			    &(dev)->mode_config.plane_list,	\
498 			    base.head)
499 
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask)		\
501 	list_for_each_entry(intel_plane,				\
502 			    &(dev)->mode_config.plane_list,		\
503 			    base.head)					\
504 		for_each_if ((plane_mask) &				\
505 			     (1 << drm_plane_index(&intel_plane->base)))
506 
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane)	\
508 	list_for_each_entry(intel_plane,				\
509 			    &(dev)->mode_config.plane_list,		\
510 			    base.head)					\
511 		for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512 
513 #define for_each_intel_crtc(dev, intel_crtc)				\
514 	list_for_each_entry(intel_crtc,					\
515 			    &(dev)->mode_config.crtc_list,		\
516 			    base.head)
517 
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask)		\
519 	list_for_each_entry(intel_crtc,					\
520 			    &(dev)->mode_config.crtc_list,		\
521 			    base.head)					\
522 		for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523 
524 #define for_each_intel_encoder(dev, intel_encoder)		\
525 	list_for_each_entry(intel_encoder,			\
526 			    &(dev)->mode_config.encoder_list,	\
527 			    base.head)
528 
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530 	while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531 
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533 	list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534 		for_each_if ((intel_encoder)->base.crtc == (__crtc))
535 
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537 	list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538 		for_each_if ((intel_connector)->base.encoder == (__encoder))
539 
540 #define for_each_power_domain(domain, mask)				\
541 	for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)	\
542 		for_each_if (BIT_ULL(domain) & (mask))
543 
544 #define for_each_power_well(__dev_priv, __power_well)				\
545 	for ((__power_well) = (__dev_priv)->power_domains.power_wells;	\
546 	     (__power_well) - (__dev_priv)->power_domains.power_wells <	\
547 		(__dev_priv)->power_domains.power_well_count;		\
548 	     (__power_well)++)
549 
550 #define for_each_power_well_rev(__dev_priv, __power_well)			\
551 	for ((__power_well) = (__dev_priv)->power_domains.power_wells +		\
552 			      (__dev_priv)->power_domains.power_well_count - 1;	\
553 	     (__power_well) - (__dev_priv)->power_domains.power_wells >= 0;	\
554 	     (__power_well)--)
555 
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask)	\
557 	for_each_power_well(__dev_priv, __power_well)				\
558 		for_each_if ((__power_well)->domains & (__domain_mask))
559 
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561 	for_each_power_well_rev(__dev_priv, __power_well)		        \
562 		for_each_if ((__power_well)->domains & (__domain_mask))
563 
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565 	for ((__i) = 0; \
566 	     (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567 		     ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568 		      (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569 	     (__i)++) \
570 		for_each_if (plane_state)
571 
572 struct drm_i915_private;
573 struct i915_mm_struct;
574 struct i915_mmu_object;
575 
576 struct drm_i915_file_private {
577 	struct drm_i915_private *dev_priv;
578 	struct drm_file *file;
579 
580 	struct {
581 		spinlock_t lock;
582 		struct list_head request_list;
583 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
584  * chosen to prevent the CPU getting more than a frame ahead of the GPU
585  * (when using lax throttling for the frontbuffer). We also use it to
586  * offer free GPU waitboosts for severely congested workloads.
587  */
588 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
589 	} mm;
590 	struct idr context_idr;
591 
592 	struct intel_rps_client {
593 		atomic_t boosts;
594 	} rps;
595 
596 	unsigned int bsd_engine;
597 
598 /* Client can have a maximum of 3 contexts banned before
599  * it is denied of creating new contexts. As one context
600  * ban needs 4 consecutive hangs, and more if there is
601  * progress in between, this is a last resort stop gap measure
602  * to limit the badly behaving clients access to gpu.
603  */
604 #define I915_MAX_CLIENT_CONTEXT_BANS 3
605 	atomic_t context_bans;
606 };
607 
608 /* Used by dp and fdi links */
609 struct intel_link_m_n {
610 	uint32_t	tu;
611 	uint32_t	gmch_m;
612 	uint32_t	gmch_n;
613 	uint32_t	link_m;
614 	uint32_t	link_n;
615 };
616 
617 void intel_link_compute_m_n(int bpp, int nlanes,
618 			    int pixel_clock, int link_clock,
619 			    struct intel_link_m_n *m_n,
620 			    bool reduce_m_n);
621 
622 /* Interface history:
623  *
624  * 1.1: Original.
625  * 1.2: Add Power Management
626  * 1.3: Add vblank support
627  * 1.4: Fix cmdbuffer path, add heap destroy
628  * 1.5: Add vblank pipe configuration
629  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
630  *      - Support vertical blank on secondary display pipe
631  */
632 #define DRIVER_MAJOR		1
633 #define DRIVER_MINOR		6
634 #define DRIVER_PATCHLEVEL	0
635 
636 struct opregion_header;
637 struct opregion_acpi;
638 struct opregion_swsci;
639 struct opregion_asle;
640 
641 struct intel_opregion {
642 	struct opregion_header *header;
643 	struct opregion_acpi *acpi;
644 	struct opregion_swsci *swsci;
645 	u32 swsci_gbda_sub_functions;
646 	u32 swsci_sbcb_sub_functions;
647 	struct opregion_asle *asle;
648 	void *rvda;
649 	void *vbt_firmware;
650 	const void *vbt;
651 	u32 vbt_size;
652 	u32 *lid_state;
653 	struct work_struct asle_work;
654 };
655 #define OPREGION_SIZE            (8*1024)
656 
657 struct intel_overlay;
658 struct intel_overlay_error_state;
659 
660 struct sdvo_device_mapping {
661 	u8 initialized;
662 	u8 dvo_port;
663 	u8 slave_addr;
664 	u8 dvo_wiring;
665 	u8 i2c_pin;
666 	u8 ddc_pin;
667 };
668 
669 struct intel_connector;
670 struct intel_encoder;
671 struct intel_atomic_state;
672 struct intel_crtc_state;
673 struct intel_initial_plane_config;
674 struct intel_crtc;
675 struct intel_limit;
676 struct dpll;
677 struct intel_cdclk_state;
678 
679 struct drm_i915_display_funcs {
680 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
681 			  struct intel_cdclk_state *cdclk_state);
682 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
683 			  const struct intel_cdclk_state *cdclk_state);
684 	int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
685 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
686 	int (*compute_intermediate_wm)(struct drm_device *dev,
687 				       struct intel_crtc *intel_crtc,
688 				       struct intel_crtc_state *newstate);
689 	void (*initial_watermarks)(struct intel_atomic_state *state,
690 				   struct intel_crtc_state *cstate);
691 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
692 					 struct intel_crtc_state *cstate);
693 	void (*optimize_watermarks)(struct intel_atomic_state *state,
694 				    struct intel_crtc_state *cstate);
695 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
696 	void (*update_wm)(struct intel_crtc *crtc);
697 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
698 	/* Returns the active state of the crtc, and if the crtc is active,
699 	 * fills out the pipe-config with the hw state. */
700 	bool (*get_pipe_config)(struct intel_crtc *,
701 				struct intel_crtc_state *);
702 	void (*get_initial_plane_config)(struct intel_crtc *,
703 					 struct intel_initial_plane_config *);
704 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
705 				  struct intel_crtc_state *crtc_state);
706 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
707 			    struct drm_atomic_state *old_state);
708 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
709 			     struct drm_atomic_state *old_state);
710 	void (*update_crtcs)(struct drm_atomic_state *state,
711 			     unsigned int *crtc_vblank_mask);
712 	void (*audio_codec_enable)(struct drm_connector *connector,
713 				   struct intel_encoder *encoder,
714 				   const struct drm_display_mode *adjusted_mode);
715 	void (*audio_codec_disable)(struct intel_encoder *encoder);
716 	void (*fdi_link_train)(struct intel_crtc *crtc,
717 			       const struct intel_crtc_state *crtc_state);
718 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
719 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
720 	/* clock updates for mode set */
721 	/* cursor updates */
722 	/* render clock increase/decrease */
723 	/* display clock increase/decrease */
724 	/* pll clock increase/decrease */
725 
726 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
727 	void (*load_luts)(struct drm_crtc_state *crtc_state);
728 };
729 
730 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
731 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
732 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
733 
734 struct intel_csr {
735 	struct work_struct work;
736 	const char *fw_path;
737 	uint32_t *dmc_payload;
738 	uint32_t dmc_fw_size;
739 	uint32_t version;
740 	uint32_t mmio_count;
741 	i915_reg_t mmioaddr[8];
742 	uint32_t mmiodata[8];
743 	uint32_t dc_state;
744 	uint32_t allowed_dc_mask;
745 };
746 
747 #define DEV_INFO_FOR_EACH_FLAG(func) \
748 	func(is_mobile); \
749 	func(is_lp); \
750 	func(is_alpha_support); \
751 	/* Keep has_* in alphabetical order */ \
752 	func(has_64bit_reloc); \
753 	func(has_aliasing_ppgtt); \
754 	func(has_csr); \
755 	func(has_ddi); \
756 	func(has_dp_mst); \
757 	func(has_reset_engine); \
758 	func(has_fbc); \
759 	func(has_fpga_dbg); \
760 	func(has_full_ppgtt); \
761 	func(has_full_48bit_ppgtt); \
762 	func(has_gmbus_irq); \
763 	func(has_gmch_display); \
764 	func(has_guc); \
765 	func(has_guc_ct); \
766 	func(has_hotplug); \
767 	func(has_l3_dpf); \
768 	func(has_llc); \
769 	func(has_logical_ring_contexts); \
770 	func(has_overlay); \
771 	func(has_pipe_cxsr); \
772 	func(has_pooled_eu); \
773 	func(has_psr); \
774 	func(has_rc6); \
775 	func(has_rc6p); \
776 	func(has_resource_streamer); \
777 	func(has_runtime_pm); \
778 	func(has_snoop); \
779 	func(unfenced_needs_alignment); \
780 	func(cursor_needs_physical); \
781 	func(hws_needs_physical); \
782 	func(overlay_needs_physical); \
783 	func(supports_tv);
784 
785 struct sseu_dev_info {
786 	u8 slice_mask;
787 	u8 subslice_mask;
788 	u8 eu_total;
789 	u8 eu_per_subslice;
790 	u8 min_eu_in_pool;
791 	/* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
792 	u8 subslice_7eu[3];
793 	u8 has_slice_pg:1;
794 	u8 has_subslice_pg:1;
795 	u8 has_eu_pg:1;
796 };
797 
798 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
799 {
800 	return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
801 }
802 
803 /* Keep in gen based order, and chronological order within a gen */
804 enum intel_platform {
805 	INTEL_PLATFORM_UNINITIALIZED = 0,
806 	INTEL_I830,
807 	INTEL_I845G,
808 	INTEL_I85X,
809 	INTEL_I865G,
810 	INTEL_I915G,
811 	INTEL_I915GM,
812 	INTEL_I945G,
813 	INTEL_I945GM,
814 	INTEL_G33,
815 	INTEL_PINEVIEW,
816 	INTEL_I965G,
817 	INTEL_I965GM,
818 	INTEL_G45,
819 	INTEL_GM45,
820 	INTEL_IRONLAKE,
821 	INTEL_SANDYBRIDGE,
822 	INTEL_IVYBRIDGE,
823 	INTEL_VALLEYVIEW,
824 	INTEL_HASWELL,
825 	INTEL_BROADWELL,
826 	INTEL_CHERRYVIEW,
827 	INTEL_SKYLAKE,
828 	INTEL_BROXTON,
829 	INTEL_KABYLAKE,
830 	INTEL_GEMINILAKE,
831 	INTEL_COFFEELAKE,
832 	INTEL_CANNONLAKE,
833 	INTEL_MAX_PLATFORMS
834 };
835 
836 struct intel_device_info {
837 	u32 display_mmio_offset;
838 	u16 device_id;
839 	u8 num_pipes;
840 	u8 num_sprites[I915_MAX_PIPES];
841 	u8 num_scalers[I915_MAX_PIPES];
842 	u8 gen;
843 	u16 gen_mask;
844 	enum intel_platform platform;
845 	u8 ring_mask; /* Rings supported by the HW */
846 	u8 num_rings;
847 #define DEFINE_FLAG(name) u8 name:1
848 	DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
849 #undef DEFINE_FLAG
850 	u16 ddb_size; /* in blocks */
851 	/* Register offsets for the various display pipes and transcoders */
852 	int pipe_offsets[I915_MAX_TRANSCODERS];
853 	int trans_offsets[I915_MAX_TRANSCODERS];
854 	int palette_offsets[I915_MAX_PIPES];
855 	int cursor_offsets[I915_MAX_PIPES];
856 
857 	/* Slice/subslice/EU info */
858 	struct sseu_dev_info sseu;
859 
860 	struct color_luts {
861 		u16 degamma_lut_size;
862 		u16 gamma_lut_size;
863 	} color;
864 };
865 
866 struct intel_display_error_state;
867 
868 struct i915_gpu_state {
869 	struct kref ref;
870 	struct timeval time;
871 	struct timeval boottime;
872 	struct timeval uptime;
873 
874 	struct drm_i915_private *i915;
875 
876 	char error_msg[128];
877 	bool simulated;
878 	bool awake;
879 	bool wakelock;
880 	bool suspended;
881 	int iommu;
882 	u32 reset_count;
883 	u32 suspend_count;
884 	struct intel_device_info device_info;
885 	struct i915_params params;
886 
887 	/* Generic register state */
888 	u32 eir;
889 	u32 pgtbl_er;
890 	u32 ier;
891 	u32 gtier[4], ngtier;
892 	u32 ccid;
893 	u32 derrmr;
894 	u32 forcewake;
895 	u32 error; /* gen6+ */
896 	u32 err_int; /* gen7 */
897 	u32 fault_data0; /* gen8, gen9 */
898 	u32 fault_data1; /* gen8, gen9 */
899 	u32 done_reg;
900 	u32 gac_eco;
901 	u32 gam_ecochk;
902 	u32 gab_ctl;
903 	u32 gfx_mode;
904 
905 	u32 nfence;
906 	u64 fence[I915_MAX_NUM_FENCES];
907 	struct intel_overlay_error_state *overlay;
908 	struct intel_display_error_state *display;
909 	struct drm_i915_error_object *semaphore;
910 	struct drm_i915_error_object *guc_log;
911 
912 	struct drm_i915_error_engine {
913 		int engine_id;
914 		/* Software tracked state */
915 		bool waiting;
916 		int num_waiters;
917 		unsigned long hangcheck_timestamp;
918 		bool hangcheck_stalled;
919 		enum intel_engine_hangcheck_action hangcheck_action;
920 		struct i915_address_space *vm;
921 		int num_requests;
922 		u32 reset_count;
923 
924 		/* position of active request inside the ring */
925 		u32 rq_head, rq_post, rq_tail;
926 
927 		/* our own tracking of ring head and tail */
928 		u32 cpu_ring_head;
929 		u32 cpu_ring_tail;
930 
931 		u32 last_seqno;
932 
933 		/* Register state */
934 		u32 start;
935 		u32 tail;
936 		u32 head;
937 		u32 ctl;
938 		u32 mode;
939 		u32 hws;
940 		u32 ipeir;
941 		u32 ipehr;
942 		u32 bbstate;
943 		u32 instpm;
944 		u32 instps;
945 		u32 seqno;
946 		u64 bbaddr;
947 		u64 acthd;
948 		u32 fault_reg;
949 		u64 faddr;
950 		u32 rc_psmi; /* sleep state */
951 		u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
952 		struct intel_instdone instdone;
953 
954 		struct drm_i915_error_context {
955 			char comm[TASK_COMM_LEN];
956 			pid_t pid;
957 			u32 handle;
958 			u32 hw_id;
959 			int ban_score;
960 			int active;
961 			int guilty;
962 		} context;
963 
964 		struct drm_i915_error_object {
965 			u64 gtt_offset;
966 			u64 gtt_size;
967 			int page_count;
968 			int unused;
969 			u32 *pages[0];
970 		} *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
971 
972 		struct drm_i915_error_object **user_bo;
973 		long user_bo_count;
974 
975 		struct drm_i915_error_object *wa_ctx;
976 
977 		struct drm_i915_error_request {
978 			long jiffies;
979 			pid_t pid;
980 			u32 context;
981 			int ban_score;
982 			u32 seqno;
983 			u32 head;
984 			u32 tail;
985 		} *requests, execlist[2];
986 
987 		struct drm_i915_error_waiter {
988 			char comm[TASK_COMM_LEN];
989 			pid_t pid;
990 			u32 seqno;
991 		} *waiters;
992 
993 		struct {
994 			u32 gfx_mode;
995 			union {
996 				u64 pdp[4];
997 				u32 pp_dir_base;
998 			};
999 		} vm_info;
1000 	} engine[I915_NUM_ENGINES];
1001 
1002 	struct drm_i915_error_buffer {
1003 		u32 size;
1004 		u32 name;
1005 		u32 rseqno[I915_NUM_ENGINES], wseqno;
1006 		u64 gtt_offset;
1007 		u32 read_domains;
1008 		u32 write_domain;
1009 		s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1010 		u32 tiling:2;
1011 		u32 dirty:1;
1012 		u32 purgeable:1;
1013 		u32 userptr:1;
1014 		s32 engine:4;
1015 		u32 cache_level:3;
1016 	} *active_bo[I915_NUM_ENGINES], *pinned_bo;
1017 	u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1018 	struct i915_address_space *active_vm[I915_NUM_ENGINES];
1019 };
1020 
1021 enum i915_cache_level {
1022 	I915_CACHE_NONE = 0,
1023 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1024 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1025 			      caches, eg sampler/render caches, and the
1026 			      large Last-Level-Cache. LLC is coherent with
1027 			      the CPU, but L3 is only visible to the GPU. */
1028 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1029 };
1030 
1031 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1032 
1033 enum fb_op_origin {
1034 	ORIGIN_GTT,
1035 	ORIGIN_CPU,
1036 	ORIGIN_CS,
1037 	ORIGIN_FLIP,
1038 	ORIGIN_DIRTYFB,
1039 };
1040 
1041 struct intel_fbc {
1042 	/* This is always the inner lock when overlapping with struct_mutex and
1043 	 * it's the outer lock when overlapping with stolen_lock. */
1044 	struct mutex lock;
1045 	unsigned threshold;
1046 	unsigned int possible_framebuffer_bits;
1047 	unsigned int busy_bits;
1048 	unsigned int visible_pipes_mask;
1049 	struct intel_crtc *crtc;
1050 
1051 	struct drm_mm_node compressed_fb;
1052 	struct drm_mm_node *compressed_llb;
1053 
1054 	bool false_color;
1055 
1056 	bool enabled;
1057 	bool active;
1058 
1059 	bool underrun_detected;
1060 	struct work_struct underrun_work;
1061 
1062 	/*
1063 	 * Due to the atomic rules we can't access some structures without the
1064 	 * appropriate locking, so we cache information here in order to avoid
1065 	 * these problems.
1066 	 */
1067 	struct intel_fbc_state_cache {
1068 		struct i915_vma *vma;
1069 
1070 		struct {
1071 			unsigned int mode_flags;
1072 			uint32_t hsw_bdw_pixel_rate;
1073 		} crtc;
1074 
1075 		struct {
1076 			unsigned int rotation;
1077 			int src_w;
1078 			int src_h;
1079 			bool visible;
1080 		} plane;
1081 
1082 		struct {
1083 			const struct drm_format_info *format;
1084 			unsigned int stride;
1085 		} fb;
1086 	} state_cache;
1087 
1088 	/*
1089 	 * This structure contains everything that's relevant to program the
1090 	 * hardware registers. When we want to figure out if we need to disable
1091 	 * and re-enable FBC for a new configuration we just check if there's
1092 	 * something different in the struct. The genx_fbc_activate functions
1093 	 * are supposed to read from it in order to program the registers.
1094 	 */
1095 	struct intel_fbc_reg_params {
1096 		struct i915_vma *vma;
1097 
1098 		struct {
1099 			enum pipe pipe;
1100 			enum plane plane;
1101 			unsigned int fence_y_offset;
1102 		} crtc;
1103 
1104 		struct {
1105 			const struct drm_format_info *format;
1106 			unsigned int stride;
1107 		} fb;
1108 
1109 		int cfb_size;
1110 	} params;
1111 
1112 	struct intel_fbc_work {
1113 		bool scheduled;
1114 		u32 scheduled_vblank;
1115 		struct work_struct work;
1116 	} work;
1117 
1118 	const char *no_fbc_reason;
1119 };
1120 
1121 /*
1122  * HIGH_RR is the highest eDP panel refresh rate read from EDID
1123  * LOW_RR is the lowest eDP panel refresh rate found from EDID
1124  * parsing for same resolution.
1125  */
1126 enum drrs_refresh_rate_type {
1127 	DRRS_HIGH_RR,
1128 	DRRS_LOW_RR,
1129 	DRRS_MAX_RR, /* RR count */
1130 };
1131 
1132 enum drrs_support_type {
1133 	DRRS_NOT_SUPPORTED = 0,
1134 	STATIC_DRRS_SUPPORT = 1,
1135 	SEAMLESS_DRRS_SUPPORT = 2
1136 };
1137 
1138 struct intel_dp;
1139 struct i915_drrs {
1140 	struct mutex mutex;
1141 	struct delayed_work work;
1142 	struct intel_dp *dp;
1143 	unsigned busy_frontbuffer_bits;
1144 	enum drrs_refresh_rate_type refresh_rate_type;
1145 	enum drrs_support_type type;
1146 };
1147 
1148 struct i915_psr {
1149 	struct mutex lock;
1150 	bool sink_support;
1151 	bool source_ok;
1152 	struct intel_dp *enabled;
1153 	bool active;
1154 	struct delayed_work work;
1155 	unsigned busy_frontbuffer_bits;
1156 	bool psr2_support;
1157 	bool aux_frame_sync;
1158 	bool link_standby;
1159 	bool y_cord_support;
1160 	bool colorimetry_support;
1161 	bool alpm;
1162 };
1163 
1164 enum intel_pch {
1165 	PCH_NONE = 0,	/* No PCH present */
1166 	PCH_IBX,	/* Ibexpeak PCH */
1167 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
1168 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
1169 	PCH_SPT,        /* Sunrisepoint PCH */
1170 	PCH_KBP,        /* Kaby Lake PCH */
1171 	PCH_CNP,        /* Cannon Lake PCH */
1172 	PCH_NOP,
1173 };
1174 
1175 enum intel_sbi_destination {
1176 	SBI_ICLK,
1177 	SBI_MPHY,
1178 };
1179 
1180 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1181 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1182 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1183 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1184 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1185 
1186 struct intel_fbdev;
1187 struct intel_fbc_work;
1188 
1189 struct intel_gmbus {
1190 	struct i2c_adapter adapter;
1191 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1192 	u32 force_bit;
1193 	u32 reg0;
1194 	i915_reg_t gpio_reg;
1195 	struct i2c_algo_bit_data bit_algo;
1196 	struct drm_i915_private *dev_priv;
1197 };
1198 
1199 struct i915_suspend_saved_registers {
1200 	u32 saveDSPARB;
1201 	u32 saveFBC_CONTROL;
1202 	u32 saveCACHE_MODE_0;
1203 	u32 saveMI_ARB_STATE;
1204 	u32 saveSWF0[16];
1205 	u32 saveSWF1[16];
1206 	u32 saveSWF3[3];
1207 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1208 	u32 savePCH_PORT_HOTPLUG;
1209 	u16 saveGCDGMBUS;
1210 };
1211 
1212 struct vlv_s0ix_state {
1213 	/* GAM */
1214 	u32 wr_watermark;
1215 	u32 gfx_prio_ctrl;
1216 	u32 arb_mode;
1217 	u32 gfx_pend_tlb0;
1218 	u32 gfx_pend_tlb1;
1219 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1220 	u32 media_max_req_count;
1221 	u32 gfx_max_req_count;
1222 	u32 render_hwsp;
1223 	u32 ecochk;
1224 	u32 bsd_hwsp;
1225 	u32 blt_hwsp;
1226 	u32 tlb_rd_addr;
1227 
1228 	/* MBC */
1229 	u32 g3dctl;
1230 	u32 gsckgctl;
1231 	u32 mbctl;
1232 
1233 	/* GCP */
1234 	u32 ucgctl1;
1235 	u32 ucgctl3;
1236 	u32 rcgctl1;
1237 	u32 rcgctl2;
1238 	u32 rstctl;
1239 	u32 misccpctl;
1240 
1241 	/* GPM */
1242 	u32 gfxpause;
1243 	u32 rpdeuhwtc;
1244 	u32 rpdeuc;
1245 	u32 ecobus;
1246 	u32 pwrdwnupctl;
1247 	u32 rp_down_timeout;
1248 	u32 rp_deucsw;
1249 	u32 rcubmabdtmr;
1250 	u32 rcedata;
1251 	u32 spare2gh;
1252 
1253 	/* Display 1 CZ domain */
1254 	u32 gt_imr;
1255 	u32 gt_ier;
1256 	u32 pm_imr;
1257 	u32 pm_ier;
1258 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1259 
1260 	/* GT SA CZ domain */
1261 	u32 tilectl;
1262 	u32 gt_fifoctl;
1263 	u32 gtlc_wake_ctrl;
1264 	u32 gtlc_survive;
1265 	u32 pmwgicz;
1266 
1267 	/* Display 2 CZ domain */
1268 	u32 gu_ctl0;
1269 	u32 gu_ctl1;
1270 	u32 pcbr;
1271 	u32 clock_gate_dis2;
1272 };
1273 
1274 struct intel_rps_ei {
1275 	ktime_t ktime;
1276 	u32 render_c0;
1277 	u32 media_c0;
1278 };
1279 
1280 struct intel_gen6_power_mgmt {
1281 	/*
1282 	 * work, interrupts_enabled and pm_iir are protected by
1283 	 * dev_priv->irq_lock
1284 	 */
1285 	struct work_struct work;
1286 	bool interrupts_enabled;
1287 	u32 pm_iir;
1288 
1289 	/* PM interrupt bits that should never be masked */
1290 	u32 pm_intrmsk_mbz;
1291 
1292 	/* Frequencies are stored in potentially platform dependent multiples.
1293 	 * In other words, *_freq needs to be multiplied by X to be interesting.
1294 	 * Soft limits are those which are used for the dynamic reclocking done
1295 	 * by the driver (raise frequencies under heavy loads, and lower for
1296 	 * lighter loads). Hard limits are those imposed by the hardware.
1297 	 *
1298 	 * A distinction is made for overclocking, which is never enabled by
1299 	 * default, and is considered to be above the hard limit if it's
1300 	 * possible at all.
1301 	 */
1302 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
1303 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
1304 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
1305 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
1306 	u8 min_freq;		/* AKA RPn. Minimum frequency */
1307 	u8 boost_freq;		/* Frequency to request when wait boosting */
1308 	u8 idle_freq;		/* Frequency to request when we are idle */
1309 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
1310 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
1311 	u8 rp0_freq;		/* Non-overclocked max frequency. */
1312 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
1313 
1314 	u8 up_threshold; /* Current %busy required to uplock */
1315 	u8 down_threshold; /* Current %busy required to downclock */
1316 
1317 	int last_adj;
1318 	enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1319 
1320 	bool enabled;
1321 	struct delayed_work autoenable_work;
1322 	atomic_t num_waiters;
1323 	atomic_t boosts;
1324 
1325 	/* manual wa residency calculations */
1326 	struct intel_rps_ei ei;
1327 
1328 	/*
1329 	 * Protects RPS/RC6 register access and PCU communication.
1330 	 * Must be taken after struct_mutex if nested. Note that
1331 	 * this lock may be held for long periods of time when
1332 	 * talking to hw - so only take it when talking to hw!
1333 	 */
1334 	struct mutex hw_lock;
1335 };
1336 
1337 /* defined intel_pm.c */
1338 extern spinlock_t mchdev_lock;
1339 
1340 struct intel_ilk_power_mgmt {
1341 	u8 cur_delay;
1342 	u8 min_delay;
1343 	u8 max_delay;
1344 	u8 fmax;
1345 	u8 fstart;
1346 
1347 	u64 last_count1;
1348 	unsigned long last_time1;
1349 	unsigned long chipset_power;
1350 	u64 last_count2;
1351 	u64 last_time2;
1352 	unsigned long gfx_power;
1353 	u8 corr;
1354 
1355 	int c_m;
1356 	int r_t;
1357 };
1358 
1359 struct drm_i915_private;
1360 struct i915_power_well;
1361 
1362 struct i915_power_well_ops {
1363 	/*
1364 	 * Synchronize the well's hw state to match the current sw state, for
1365 	 * example enable/disable it based on the current refcount. Called
1366 	 * during driver init and resume time, possibly after first calling
1367 	 * the enable/disable handlers.
1368 	 */
1369 	void (*sync_hw)(struct drm_i915_private *dev_priv,
1370 			struct i915_power_well *power_well);
1371 	/*
1372 	 * Enable the well and resources that depend on it (for example
1373 	 * interrupts located on the well). Called after the 0->1 refcount
1374 	 * transition.
1375 	 */
1376 	void (*enable)(struct drm_i915_private *dev_priv,
1377 		       struct i915_power_well *power_well);
1378 	/*
1379 	 * Disable the well and resources that depend on it. Called after
1380 	 * the 1->0 refcount transition.
1381 	 */
1382 	void (*disable)(struct drm_i915_private *dev_priv,
1383 			struct i915_power_well *power_well);
1384 	/* Returns the hw enabled state. */
1385 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
1386 			   struct i915_power_well *power_well);
1387 };
1388 
1389 /* Power well structure for haswell */
1390 struct i915_power_well {
1391 	const char *name;
1392 	bool always_on;
1393 	/* power well enable/disable usage count */
1394 	int count;
1395 	/* cached hw enabled state */
1396 	bool hw_enabled;
1397 	u64 domains;
1398 	/* unique identifier for this power well */
1399 	enum i915_power_well_id id;
1400 	/*
1401 	 * Arbitraty data associated with this power well. Platform and power
1402 	 * well specific.
1403 	 */
1404 	union {
1405 		struct {
1406 			enum dpio_phy phy;
1407 		} bxt;
1408 		struct {
1409 			/* Mask of pipes whose IRQ logic is backed by the pw */
1410 			u8 irq_pipe_mask;
1411 			/* The pw is backing the VGA functionality */
1412 			bool has_vga:1;
1413 			bool has_fuses:1;
1414 		} hsw;
1415 	};
1416 	const struct i915_power_well_ops *ops;
1417 };
1418 
1419 struct i915_power_domains {
1420 	/*
1421 	 * Power wells needed for initialization at driver init and suspend
1422 	 * time are on. They are kept on until after the first modeset.
1423 	 */
1424 	bool init_power_on;
1425 	bool initializing;
1426 	int power_well_count;
1427 
1428 	struct mutex lock;
1429 	int domain_use_count[POWER_DOMAIN_NUM];
1430 	struct i915_power_well *power_wells;
1431 };
1432 
1433 #define MAX_L3_SLICES 2
1434 struct intel_l3_parity {
1435 	u32 *remap_info[MAX_L3_SLICES];
1436 	struct work_struct error_work;
1437 	int which_slice;
1438 };
1439 
1440 struct i915_gem_mm {
1441 	/** Memory allocator for GTT stolen memory */
1442 	struct drm_mm stolen;
1443 	/** Protects the usage of the GTT stolen memory allocator. This is
1444 	 * always the inner lock when overlapping with struct_mutex. */
1445 	struct mutex stolen_lock;
1446 
1447 	/** List of all objects in gtt_space. Used to restore gtt
1448 	 * mappings on resume */
1449 	struct list_head bound_list;
1450 	/**
1451 	 * List of objects which are not bound to the GTT (thus
1452 	 * are idle and not used by the GPU). These objects may or may
1453 	 * not actually have any pages attached.
1454 	 */
1455 	struct list_head unbound_list;
1456 
1457 	/** List of all objects in gtt_space, currently mmaped by userspace.
1458 	 * All objects within this list must also be on bound_list.
1459 	 */
1460 	struct list_head userfault_list;
1461 
1462 	/**
1463 	 * List of objects which are pending destruction.
1464 	 */
1465 	struct llist_head free_list;
1466 	struct work_struct free_work;
1467 
1468 	/** Usable portion of the GTT for GEM */
1469 	dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1470 
1471 	/** PPGTT used for aliasing the PPGTT with the GTT */
1472 	struct i915_hw_ppgtt *aliasing_ppgtt;
1473 
1474 	struct notifier_block oom_notifier;
1475 	struct notifier_block vmap_notifier;
1476 	struct shrinker shrinker;
1477 
1478 	/** LRU list of objects with fence regs on them. */
1479 	struct list_head fence_list;
1480 
1481 	/**
1482 	 * Workqueue to fault in userptr pages, flushed by the execbuf
1483 	 * when required but otherwise left to userspace to try again
1484 	 * on EAGAIN.
1485 	 */
1486 	struct workqueue_struct *userptr_wq;
1487 
1488 	u64 unordered_timeline;
1489 
1490 	/* the indicator for dispatch video commands on two BSD rings */
1491 	atomic_t bsd_engine_dispatch_index;
1492 
1493 	/** Bit 6 swizzling required for X tiling */
1494 	uint32_t bit_6_swizzle_x;
1495 	/** Bit 6 swizzling required for Y tiling */
1496 	uint32_t bit_6_swizzle_y;
1497 
1498 	/* accounting, useful for userland debugging */
1499 	spinlock_t object_stat_lock;
1500 	u64 object_memory;
1501 	u32 object_count;
1502 };
1503 
1504 struct drm_i915_error_state_buf {
1505 	struct drm_i915_private *i915;
1506 	unsigned bytes;
1507 	unsigned size;
1508 	int err;
1509 	u8 *buf;
1510 	loff_t start;
1511 	loff_t pos;
1512 };
1513 
1514 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1515 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1516 
1517 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1518 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1519 
1520 struct i915_gpu_error {
1521 	/* For hangcheck timer */
1522 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1523 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1524 
1525 	struct delayed_work hangcheck_work;
1526 
1527 	/* For reset and error_state handling. */
1528 	spinlock_t lock;
1529 	/* Protected by the above dev->gpu_error.lock. */
1530 	struct i915_gpu_state *first_error;
1531 
1532 	atomic_t pending_fb_pin;
1533 
1534 	unsigned long missed_irq_rings;
1535 
1536 	/**
1537 	 * State variable controlling the reset flow and count
1538 	 *
1539 	 * This is a counter which gets incremented when reset is triggered,
1540 	 *
1541 	 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1542 	 * meaning that any waiters holding onto the struct_mutex should
1543 	 * relinquish the lock immediately in order for the reset to start.
1544 	 *
1545 	 * If reset is not completed succesfully, the I915_WEDGE bit is
1546 	 * set meaning that hardware is terminally sour and there is no
1547 	 * recovery. All waiters on the reset_queue will be woken when
1548 	 * that happens.
1549 	 *
1550 	 * This counter is used by the wait_seqno code to notice that reset
1551 	 * event happened and it needs to restart the entire ioctl (since most
1552 	 * likely the seqno it waited for won't ever signal anytime soon).
1553 	 *
1554 	 * This is important for lock-free wait paths, where no contended lock
1555 	 * naturally enforces the correct ordering between the bail-out of the
1556 	 * waiter and the gpu reset work code.
1557 	 */
1558 	unsigned long reset_count;
1559 
1560 	/**
1561 	 * flags: Control various stages of the GPU reset
1562 	 *
1563 	 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1564 	 * other users acquiring the struct_mutex. To do this we set the
1565 	 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1566 	 * and then check for that bit before acquiring the struct_mutex (in
1567 	 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1568 	 * secondary role in preventing two concurrent global reset attempts.
1569 	 *
1570 	 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1571 	 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1572 	 * but it may be held by some long running waiter (that we cannot
1573 	 * interrupt without causing trouble). Once we are ready to do the GPU
1574 	 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1575 	 * they already hold the struct_mutex and want to participate they can
1576 	 * inspect the bit and do the reset directly, otherwise the worker
1577 	 * waits for the struct_mutex.
1578 	 *
1579 	 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1580 	 * acquire the struct_mutex to reset an engine, we need an explicit
1581 	 * flag to prevent two concurrent reset attempts in the same engine.
1582 	 * As the number of engines continues to grow, allocate the flags from
1583 	 * the most significant bits.
1584 	 *
1585 	 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1586 	 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1587 	 * i915_gem_request_alloc(), this bit is checked and the sequence
1588 	 * aborted (with -EIO reported to userspace) if set.
1589 	 */
1590 	unsigned long flags;
1591 #define I915_RESET_BACKOFF	0
1592 #define I915_RESET_HANDOFF	1
1593 #define I915_RESET_MODESET	2
1594 #define I915_WEDGED		(BITS_PER_LONG - 1)
1595 #define I915_RESET_ENGINE	(I915_WEDGED - I915_NUM_ENGINES)
1596 
1597 	/** Number of times an engine has been reset */
1598 	u32 reset_engine_count[I915_NUM_ENGINES];
1599 
1600 	/**
1601 	 * Waitqueue to signal when a hang is detected. Used to for waiters
1602 	 * to release the struct_mutex for the reset to procede.
1603 	 */
1604 	wait_queue_head_t wait_queue;
1605 
1606 	/**
1607 	 * Waitqueue to signal when the reset has completed. Used by clients
1608 	 * that wait for dev_priv->mm.wedged to settle.
1609 	 */
1610 	wait_queue_head_t reset_queue;
1611 
1612 	/* For missed irq/seqno simulation. */
1613 	unsigned long test_irq_rings;
1614 };
1615 
1616 enum modeset_restore {
1617 	MODESET_ON_LID_OPEN,
1618 	MODESET_DONE,
1619 	MODESET_SUSPENDED,
1620 };
1621 
1622 #define DP_AUX_A 0x40
1623 #define DP_AUX_B 0x10
1624 #define DP_AUX_C 0x20
1625 #define DP_AUX_D 0x30
1626 
1627 #define DDC_PIN_B  0x05
1628 #define DDC_PIN_C  0x04
1629 #define DDC_PIN_D  0x06
1630 
1631 struct ddi_vbt_port_info {
1632 	/*
1633 	 * This is an index in the HDMI/DVI DDI buffer translation table.
1634 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1635 	 * populate this field.
1636 	 */
1637 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
1638 	uint8_t hdmi_level_shift;
1639 
1640 	uint8_t supports_dvi:1;
1641 	uint8_t supports_hdmi:1;
1642 	uint8_t supports_dp:1;
1643 	uint8_t supports_edp:1;
1644 
1645 	uint8_t alternate_aux_channel;
1646 	uint8_t alternate_ddc_pin;
1647 
1648 	uint8_t dp_boost_level;
1649 	uint8_t hdmi_boost_level;
1650 };
1651 
1652 enum psr_lines_to_wait {
1653 	PSR_0_LINES_TO_WAIT = 0,
1654 	PSR_1_LINE_TO_WAIT,
1655 	PSR_4_LINES_TO_WAIT,
1656 	PSR_8_LINES_TO_WAIT
1657 };
1658 
1659 struct intel_vbt_data {
1660 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1661 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1662 
1663 	/* Feature bits */
1664 	unsigned int int_tv_support:1;
1665 	unsigned int lvds_dither:1;
1666 	unsigned int lvds_vbt:1;
1667 	unsigned int int_crt_support:1;
1668 	unsigned int lvds_use_ssc:1;
1669 	unsigned int display_clock_mode:1;
1670 	unsigned int fdi_rx_polarity_inverted:1;
1671 	unsigned int panel_type:4;
1672 	int lvds_ssc_freq;
1673 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1674 
1675 	enum drrs_support_type drrs_type;
1676 
1677 	struct {
1678 		int rate;
1679 		int lanes;
1680 		int preemphasis;
1681 		int vswing;
1682 		bool low_vswing;
1683 		bool initialized;
1684 		bool support;
1685 		int bpp;
1686 		struct edp_power_seq pps;
1687 	} edp;
1688 
1689 	struct {
1690 		bool full_link;
1691 		bool require_aux_wakeup;
1692 		int idle_frames;
1693 		enum psr_lines_to_wait lines_to_wait;
1694 		int tp1_wakeup_time;
1695 		int tp2_tp3_wakeup_time;
1696 	} psr;
1697 
1698 	struct {
1699 		u16 pwm_freq_hz;
1700 		bool present;
1701 		bool active_low_pwm;
1702 		u8 min_brightness;	/* min_brightness/255 of max */
1703 		u8 controller;		/* brightness controller number */
1704 		enum intel_backlight_type type;
1705 	} backlight;
1706 
1707 	/* MIPI DSI */
1708 	struct {
1709 		u16 panel_id;
1710 		struct mipi_config *config;
1711 		struct mipi_pps_data *pps;
1712 		u8 seq_version;
1713 		u32 size;
1714 		u8 *data;
1715 		const u8 *sequence[MIPI_SEQ_MAX];
1716 	} dsi;
1717 
1718 	int crt_ddc_pin;
1719 
1720 	int child_dev_num;
1721 	union child_device_config *child_dev;
1722 
1723 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1724 	struct sdvo_device_mapping sdvo_mappings[2];
1725 };
1726 
1727 enum intel_ddb_partitioning {
1728 	INTEL_DDB_PART_1_2,
1729 	INTEL_DDB_PART_5_6, /* IVB+ */
1730 };
1731 
1732 struct intel_wm_level {
1733 	bool enable;
1734 	uint32_t pri_val;
1735 	uint32_t spr_val;
1736 	uint32_t cur_val;
1737 	uint32_t fbc_val;
1738 };
1739 
1740 struct ilk_wm_values {
1741 	uint32_t wm_pipe[3];
1742 	uint32_t wm_lp[3];
1743 	uint32_t wm_lp_spr[3];
1744 	uint32_t wm_linetime[3];
1745 	bool enable_fbc_wm;
1746 	enum intel_ddb_partitioning partitioning;
1747 };
1748 
1749 struct g4x_pipe_wm {
1750 	uint16_t plane[I915_MAX_PLANES];
1751 	uint16_t fbc;
1752 };
1753 
1754 struct g4x_sr_wm {
1755 	uint16_t plane;
1756 	uint16_t cursor;
1757 	uint16_t fbc;
1758 };
1759 
1760 struct vlv_wm_ddl_values {
1761 	uint8_t plane[I915_MAX_PLANES];
1762 };
1763 
1764 struct vlv_wm_values {
1765 	struct g4x_pipe_wm pipe[3];
1766 	struct g4x_sr_wm sr;
1767 	struct vlv_wm_ddl_values ddl[3];
1768 	uint8_t level;
1769 	bool cxsr;
1770 };
1771 
1772 struct g4x_wm_values {
1773 	struct g4x_pipe_wm pipe[2];
1774 	struct g4x_sr_wm sr;
1775 	struct g4x_sr_wm hpll;
1776 	bool cxsr;
1777 	bool hpll_en;
1778 	bool fbc_en;
1779 };
1780 
1781 struct skl_ddb_entry {
1782 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1783 };
1784 
1785 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1786 {
1787 	return entry->end - entry->start;
1788 }
1789 
1790 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1791 				       const struct skl_ddb_entry *e2)
1792 {
1793 	if (e1->start == e2->start && e1->end == e2->end)
1794 		return true;
1795 
1796 	return false;
1797 }
1798 
1799 struct skl_ddb_allocation {
1800 	struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1801 	struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1802 };
1803 
1804 struct skl_wm_values {
1805 	unsigned dirty_pipes;
1806 	struct skl_ddb_allocation ddb;
1807 };
1808 
1809 struct skl_wm_level {
1810 	bool plane_en;
1811 	uint16_t plane_res_b;
1812 	uint8_t plane_res_l;
1813 };
1814 
1815 /*
1816  * This struct helps tracking the state needed for runtime PM, which puts the
1817  * device in PCI D3 state. Notice that when this happens, nothing on the
1818  * graphics device works, even register access, so we don't get interrupts nor
1819  * anything else.
1820  *
1821  * Every piece of our code that needs to actually touch the hardware needs to
1822  * either call intel_runtime_pm_get or call intel_display_power_get with the
1823  * appropriate power domain.
1824  *
1825  * Our driver uses the autosuspend delay feature, which means we'll only really
1826  * suspend if we stay with zero refcount for a certain amount of time. The
1827  * default value is currently very conservative (see intel_runtime_pm_enable), but
1828  * it can be changed with the standard runtime PM files from sysfs.
1829  *
1830  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1831  * goes back to false exactly before we reenable the IRQs. We use this variable
1832  * to check if someone is trying to enable/disable IRQs while they're supposed
1833  * to be disabled. This shouldn't happen and we'll print some error messages in
1834  * case it happens.
1835  *
1836  * For more, read the Documentation/power/runtime_pm.txt.
1837  */
1838 struct i915_runtime_pm {
1839 	atomic_t wakeref_count;
1840 	bool suspended;
1841 	bool irqs_enabled;
1842 };
1843 
1844 enum intel_pipe_crc_source {
1845 	INTEL_PIPE_CRC_SOURCE_NONE,
1846 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1847 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1848 	INTEL_PIPE_CRC_SOURCE_PF,
1849 	INTEL_PIPE_CRC_SOURCE_PIPE,
1850 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1851 	INTEL_PIPE_CRC_SOURCE_TV,
1852 	INTEL_PIPE_CRC_SOURCE_DP_B,
1853 	INTEL_PIPE_CRC_SOURCE_DP_C,
1854 	INTEL_PIPE_CRC_SOURCE_DP_D,
1855 	INTEL_PIPE_CRC_SOURCE_AUTO,
1856 	INTEL_PIPE_CRC_SOURCE_MAX,
1857 };
1858 
1859 struct intel_pipe_crc_entry {
1860 	uint32_t frame;
1861 	uint32_t crc[5];
1862 };
1863 
1864 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1865 struct intel_pipe_crc {
1866 	spinlock_t lock;
1867 	bool opened;		/* exclusive access to the result file */
1868 	struct intel_pipe_crc_entry *entries;
1869 	enum intel_pipe_crc_source source;
1870 	int head, tail;
1871 	wait_queue_head_t wq;
1872 	int skipped;
1873 };
1874 
1875 struct i915_frontbuffer_tracking {
1876 	spinlock_t lock;
1877 
1878 	/*
1879 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1880 	 * scheduled flips.
1881 	 */
1882 	unsigned busy_bits;
1883 	unsigned flip_bits;
1884 };
1885 
1886 struct i915_wa_reg {
1887 	i915_reg_t addr;
1888 	u32 value;
1889 	/* bitmask representing WA bits */
1890 	u32 mask;
1891 };
1892 
1893 /*
1894  * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1895  * allowing it for RCS as we don't foresee any requirement of having
1896  * a whitelist for other engines. When it is really required for
1897  * other engines then the limit need to be increased.
1898  */
1899 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1900 
1901 struct i915_workarounds {
1902 	struct i915_wa_reg reg[I915_MAX_WA_REGS];
1903 	u32 count;
1904 	u32 hw_whitelist_count[I915_NUM_ENGINES];
1905 };
1906 
1907 struct i915_virtual_gpu {
1908 	bool active;
1909 	u32 caps;
1910 };
1911 
1912 /* used in computing the new watermarks state */
1913 struct intel_wm_config {
1914 	unsigned int num_pipes_active;
1915 	bool sprites_enabled;
1916 	bool sprites_scaled;
1917 };
1918 
1919 struct i915_oa_format {
1920 	u32 format;
1921 	int size;
1922 };
1923 
1924 struct i915_oa_reg {
1925 	i915_reg_t addr;
1926 	u32 value;
1927 };
1928 
1929 struct i915_oa_config {
1930 	char uuid[UUID_STRING_LEN + 1];
1931 	int id;
1932 
1933 	const struct i915_oa_reg *mux_regs;
1934 	u32 mux_regs_len;
1935 	const struct i915_oa_reg *b_counter_regs;
1936 	u32 b_counter_regs_len;
1937 	const struct i915_oa_reg *flex_regs;
1938 	u32 flex_regs_len;
1939 
1940 	struct attribute_group sysfs_metric;
1941 	struct attribute *attrs[2];
1942 	struct device_attribute sysfs_metric_id;
1943 
1944 	atomic_t ref_count;
1945 };
1946 
1947 struct i915_perf_stream;
1948 
1949 /**
1950  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1951  */
1952 struct i915_perf_stream_ops {
1953 	/**
1954 	 * @enable: Enables the collection of HW samples, either in response to
1955 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1956 	 * without `I915_PERF_FLAG_DISABLED`.
1957 	 */
1958 	void (*enable)(struct i915_perf_stream *stream);
1959 
1960 	/**
1961 	 * @disable: Disables the collection of HW samples, either in response
1962 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1963 	 * the stream.
1964 	 */
1965 	void (*disable)(struct i915_perf_stream *stream);
1966 
1967 	/**
1968 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1969 	 * once there is something ready to read() for the stream
1970 	 */
1971 	void (*poll_wait)(struct i915_perf_stream *stream,
1972 			  struct file *file,
1973 			  poll_table *wait);
1974 
1975 	/**
1976 	 * @wait_unlocked: For handling a blocking read, wait until there is
1977 	 * something to ready to read() for the stream. E.g. wait on the same
1978 	 * wait queue that would be passed to poll_wait().
1979 	 */
1980 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1981 
1982 	/**
1983 	 * @read: Copy buffered metrics as records to userspace
1984 	 * **buf**: the userspace, destination buffer
1985 	 * **count**: the number of bytes to copy, requested by userspace
1986 	 * **offset**: zero at the start of the read, updated as the read
1987 	 * proceeds, it represents how many bytes have been copied so far and
1988 	 * the buffer offset for copying the next record.
1989 	 *
1990 	 * Copy as many buffered i915 perf samples and records for this stream
1991 	 * to userspace as will fit in the given buffer.
1992 	 *
1993 	 * Only write complete records; returning -%ENOSPC if there isn't room
1994 	 * for a complete record.
1995 	 *
1996 	 * Return any error condition that results in a short read such as
1997 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1998 	 * returning to userspace.
1999 	 */
2000 	int (*read)(struct i915_perf_stream *stream,
2001 		    char __user *buf,
2002 		    size_t count,
2003 		    size_t *offset);
2004 
2005 	/**
2006 	 * @destroy: Cleanup any stream specific resources.
2007 	 *
2008 	 * The stream will always be disabled before this is called.
2009 	 */
2010 	void (*destroy)(struct i915_perf_stream *stream);
2011 };
2012 
2013 /**
2014  * struct i915_perf_stream - state for a single open stream FD
2015  */
2016 struct i915_perf_stream {
2017 	/**
2018 	 * @dev_priv: i915 drm device
2019 	 */
2020 	struct drm_i915_private *dev_priv;
2021 
2022 	/**
2023 	 * @link: Links the stream into ``&drm_i915_private->streams``
2024 	 */
2025 	struct list_head link;
2026 
2027 	/**
2028 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2029 	 * properties given when opening a stream, representing the contents
2030 	 * of a single sample as read() by userspace.
2031 	 */
2032 	u32 sample_flags;
2033 
2034 	/**
2035 	 * @sample_size: Considering the configured contents of a sample
2036 	 * combined with the required header size, this is the total size
2037 	 * of a single sample record.
2038 	 */
2039 	int sample_size;
2040 
2041 	/**
2042 	 * @ctx: %NULL if measuring system-wide across all contexts or a
2043 	 * specific context that is being monitored.
2044 	 */
2045 	struct i915_gem_context *ctx;
2046 
2047 	/**
2048 	 * @enabled: Whether the stream is currently enabled, considering
2049 	 * whether the stream was opened in a disabled state and based
2050 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2051 	 */
2052 	bool enabled;
2053 
2054 	/**
2055 	 * @ops: The callbacks providing the implementation of this specific
2056 	 * type of configured stream.
2057 	 */
2058 	const struct i915_perf_stream_ops *ops;
2059 
2060 	/**
2061 	 * @oa_config: The OA configuration used by the stream.
2062 	 */
2063 	struct i915_oa_config *oa_config;
2064 };
2065 
2066 /**
2067  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2068  */
2069 struct i915_oa_ops {
2070 	/**
2071 	 * @is_valid_b_counter_reg: Validates register's address for
2072 	 * programming boolean counters for a particular platform.
2073 	 */
2074 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2075 				       u32 addr);
2076 
2077 	/**
2078 	 * @is_valid_mux_reg: Validates register's address for programming mux
2079 	 * for a particular platform.
2080 	 */
2081 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2082 
2083 	/**
2084 	 * @is_valid_flex_reg: Validates register's address for programming
2085 	 * flex EU filtering for a particular platform.
2086 	 */
2087 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2088 
2089 	/**
2090 	 * @init_oa_buffer: Resets the head and tail pointers of the
2091 	 * circular buffer for periodic OA reports.
2092 	 *
2093 	 * Called when first opening a stream for OA metrics, but also may be
2094 	 * called in response to an OA buffer overflow or other error
2095 	 * condition.
2096 	 *
2097 	 * Note it may be necessary to clear the full OA buffer here as part of
2098 	 * maintaining the invariable that new reports must be written to
2099 	 * zeroed memory for us to be able to reliable detect if an expected
2100 	 * report has not yet landed in memory.  (At least on Haswell the OA
2101 	 * buffer tail pointer is not synchronized with reports being visible
2102 	 * to the CPU)
2103 	 */
2104 	void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2105 
2106 	/**
2107 	 * @enable_metric_set: Selects and applies any MUX configuration to set
2108 	 * up the Boolean and Custom (B/C) counters that are part of the
2109 	 * counter reports being sampled. May apply system constraints such as
2110 	 * disabling EU clock gating as required.
2111 	 */
2112 	int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2113 				 const struct i915_oa_config *oa_config);
2114 
2115 	/**
2116 	 * @disable_metric_set: Remove system constraints associated with using
2117 	 * the OA unit.
2118 	 */
2119 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2120 
2121 	/**
2122 	 * @oa_enable: Enable periodic sampling
2123 	 */
2124 	void (*oa_enable)(struct drm_i915_private *dev_priv);
2125 
2126 	/**
2127 	 * @oa_disable: Disable periodic sampling
2128 	 */
2129 	void (*oa_disable)(struct drm_i915_private *dev_priv);
2130 
2131 	/**
2132 	 * @read: Copy data from the circular OA buffer into a given userspace
2133 	 * buffer.
2134 	 */
2135 	int (*read)(struct i915_perf_stream *stream,
2136 		    char __user *buf,
2137 		    size_t count,
2138 		    size_t *offset);
2139 
2140 	/**
2141 	 * @oa_hw_tail_read: read the OA tail pointer register
2142 	 *
2143 	 * In particular this enables us to share all the fiddly code for
2144 	 * handling the OA unit tail pointer race that affects multiple
2145 	 * generations.
2146 	 */
2147 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2148 };
2149 
2150 struct intel_cdclk_state {
2151 	unsigned int cdclk, vco, ref;
2152 };
2153 
2154 struct drm_i915_private {
2155 	struct drm_device drm;
2156 
2157 	struct kmem_cache *objects;
2158 	struct kmem_cache *vmas;
2159 	struct kmem_cache *luts;
2160 	struct kmem_cache *requests;
2161 	struct kmem_cache *dependencies;
2162 	struct kmem_cache *priorities;
2163 
2164 	const struct intel_device_info info;
2165 
2166 	void __iomem *regs;
2167 
2168 	struct intel_uncore uncore;
2169 
2170 	struct i915_virtual_gpu vgpu;
2171 
2172 	struct intel_gvt *gvt;
2173 
2174 	struct intel_huc huc;
2175 	struct intel_guc guc;
2176 
2177 	struct intel_csr csr;
2178 
2179 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2180 
2181 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
2182 	 * controller on different i2c buses. */
2183 	struct mutex gmbus_mutex;
2184 
2185 	/**
2186 	 * Base address of the gmbus and gpio block.
2187 	 */
2188 	uint32_t gpio_mmio_base;
2189 
2190 	/* MMIO base address for MIPI regs */
2191 	uint32_t mipi_mmio_base;
2192 
2193 	uint32_t psr_mmio_base;
2194 
2195 	uint32_t pps_mmio_base;
2196 
2197 	wait_queue_head_t gmbus_wait_queue;
2198 
2199 	struct pci_dev *bridge_dev;
2200 	struct i915_gem_context *kernel_context;
2201 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
2202 	struct i915_vma *semaphore;
2203 
2204 	struct drm_dma_handle *status_page_dmah;
2205 	struct resource mch_res;
2206 
2207 	/* protects the irq masks */
2208 	spinlock_t irq_lock;
2209 
2210 	bool display_irqs_enabled;
2211 
2212 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2213 	struct pm_qos_request pm_qos;
2214 
2215 	/* Sideband mailbox protection */
2216 	struct mutex sb_lock;
2217 
2218 	/** Cached value of IMR to avoid reads in updating the bitfield */
2219 	union {
2220 		u32 irq_mask;
2221 		u32 de_irq_mask[I915_MAX_PIPES];
2222 	};
2223 	u32 gt_irq_mask;
2224 	u32 pm_imr;
2225 	u32 pm_ier;
2226 	u32 pm_rps_events;
2227 	u32 pm_guc_events;
2228 	u32 pipestat_irq_mask[I915_MAX_PIPES];
2229 
2230 	struct i915_hotplug hotplug;
2231 	struct intel_fbc fbc;
2232 	struct i915_drrs drrs;
2233 	struct intel_opregion opregion;
2234 	struct intel_vbt_data vbt;
2235 
2236 	bool preserve_bios_swizzle;
2237 
2238 	/* overlay */
2239 	struct intel_overlay *overlay;
2240 
2241 	/* backlight registers and fields in struct intel_panel */
2242 	struct mutex backlight_lock;
2243 
2244 	/* LVDS info */
2245 	bool no_aux_handshake;
2246 
2247 	/* protects panel power sequencer state */
2248 	struct mutex pps_mutex;
2249 
2250 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2251 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2252 
2253 	unsigned int fsb_freq, mem_freq, is_ddr3;
2254 	unsigned int skl_preferred_vco_freq;
2255 	unsigned int max_cdclk_freq;
2256 
2257 	unsigned int max_dotclk_freq;
2258 	unsigned int rawclk_freq;
2259 	unsigned int hpll_freq;
2260 	unsigned int czclk_freq;
2261 
2262 	struct {
2263 		/*
2264 		 * The current logical cdclk state.
2265 		 * See intel_atomic_state.cdclk.logical
2266 		 *
2267 		 * For reading holding any crtc lock is sufficient,
2268 		 * for writing must hold all of them.
2269 		 */
2270 		struct intel_cdclk_state logical;
2271 		/*
2272 		 * The current actual cdclk state.
2273 		 * See intel_atomic_state.cdclk.actual
2274 		 */
2275 		struct intel_cdclk_state actual;
2276 		/* The current hardware cdclk state */
2277 		struct intel_cdclk_state hw;
2278 	} cdclk;
2279 
2280 	/**
2281 	 * wq - Driver workqueue for GEM.
2282 	 *
2283 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
2284 	 * locks, for otherwise the flushing done in the pageflip code will
2285 	 * result in deadlocks.
2286 	 */
2287 	struct workqueue_struct *wq;
2288 
2289 	/* Display functions */
2290 	struct drm_i915_display_funcs display;
2291 
2292 	/* PCH chipset type */
2293 	enum intel_pch pch_type;
2294 	unsigned short pch_id;
2295 
2296 	unsigned long quirks;
2297 
2298 	enum modeset_restore modeset_restore;
2299 	struct mutex modeset_restore_lock;
2300 	struct drm_atomic_state *modeset_restore_state;
2301 	struct drm_modeset_acquire_ctx reset_ctx;
2302 
2303 	struct list_head vm_list; /* Global list of all address spaces */
2304 	struct i915_ggtt ggtt; /* VM representing the global address space */
2305 
2306 	struct i915_gem_mm mm;
2307 	DECLARE_HASHTABLE(mm_structs, 7);
2308 	struct mutex mm_lock;
2309 
2310 	/* Kernel Modesetting */
2311 
2312 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2313 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2314 
2315 #ifdef CONFIG_DEBUG_FS
2316 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2317 #endif
2318 
2319 	/* dpll and cdclk state is protected by connection_mutex */
2320 	int num_shared_dpll;
2321 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2322 	const struct intel_dpll_mgr *dpll_mgr;
2323 
2324 	/*
2325 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2326 	 * Must be global rather than per dpll, because on some platforms
2327 	 * plls share registers.
2328 	 */
2329 	struct mutex dpll_lock;
2330 
2331 	unsigned int active_crtcs;
2332 	unsigned int min_pixclk[I915_MAX_PIPES];
2333 
2334 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2335 
2336 	struct i915_workarounds workarounds;
2337 
2338 	struct i915_frontbuffer_tracking fb_tracking;
2339 
2340 	struct intel_atomic_helper {
2341 		struct llist_head free_list;
2342 		struct work_struct free_work;
2343 	} atomic_helper;
2344 
2345 	u16 orig_clock;
2346 
2347 	bool mchbar_need_disable;
2348 
2349 	struct intel_l3_parity l3_parity;
2350 
2351 	/* Cannot be determined by PCIID. You must always read a register. */
2352 	u32 edram_cap;
2353 
2354 	/* gen6+ rps state */
2355 	struct intel_gen6_power_mgmt rps;
2356 
2357 	/* ilk-only ips/rps state. Everything in here is protected by the global
2358 	 * mchdev_lock in intel_pm.c */
2359 	struct intel_ilk_power_mgmt ips;
2360 
2361 	struct i915_power_domains power_domains;
2362 
2363 	struct i915_psr psr;
2364 
2365 	struct i915_gpu_error gpu_error;
2366 
2367 	struct drm_i915_gem_object *vlv_pctx;
2368 
2369 	/* list of fbdev register on this device */
2370 	struct intel_fbdev *fbdev;
2371 	struct work_struct fbdev_suspend_work;
2372 
2373 	struct drm_property *broadcast_rgb_property;
2374 	struct drm_property *force_audio_property;
2375 
2376 	/* hda/i915 audio component */
2377 	struct i915_audio_component *audio_component;
2378 	bool audio_component_registered;
2379 	/**
2380 	 * av_mutex - mutex for audio/video sync
2381 	 *
2382 	 */
2383 	struct mutex av_mutex;
2384 
2385 	struct {
2386 		struct list_head list;
2387 		struct llist_head free_list;
2388 		struct work_struct free_work;
2389 
2390 		/* The hw wants to have a stable context identifier for the
2391 		 * lifetime of the context (for OA, PASID, faults, etc).
2392 		 * This is limited in execlists to 21 bits.
2393 		 */
2394 		struct ida hw_ida;
2395 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2396 	} contexts;
2397 
2398 	u32 fdi_rx_config;
2399 
2400 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2401 	u32 chv_phy_control;
2402 	/*
2403 	 * Shadows for CHV DPLL_MD regs to keep the state
2404 	 * checker somewhat working in the presence hardware
2405 	 * crappiness (can't read out DPLL_MD for pipes B & C).
2406 	 */
2407 	u32 chv_dpll_md[I915_MAX_PIPES];
2408 	u32 bxt_phy_grc;
2409 
2410 	u32 suspend_count;
2411 	bool suspended_to_idle;
2412 	struct i915_suspend_saved_registers regfile;
2413 	struct vlv_s0ix_state vlv_s0ix_state;
2414 
2415 	enum {
2416 		I915_SAGV_UNKNOWN = 0,
2417 		I915_SAGV_DISABLED,
2418 		I915_SAGV_ENABLED,
2419 		I915_SAGV_NOT_CONTROLLED
2420 	} sagv_status;
2421 
2422 	struct {
2423 		/*
2424 		 * Raw watermark latency values:
2425 		 * in 0.1us units for WM0,
2426 		 * in 0.5us units for WM1+.
2427 		 */
2428 		/* primary */
2429 		uint16_t pri_latency[5];
2430 		/* sprite */
2431 		uint16_t spr_latency[5];
2432 		/* cursor */
2433 		uint16_t cur_latency[5];
2434 		/*
2435 		 * Raw watermark memory latency values
2436 		 * for SKL for all 8 levels
2437 		 * in 1us units.
2438 		 */
2439 		uint16_t skl_latency[8];
2440 
2441 		/* current hardware state */
2442 		union {
2443 			struct ilk_wm_values hw;
2444 			struct skl_wm_values skl_hw;
2445 			struct vlv_wm_values vlv;
2446 			struct g4x_wm_values g4x;
2447 		};
2448 
2449 		uint8_t max_level;
2450 
2451 		/*
2452 		 * Should be held around atomic WM register writing; also
2453 		 * protects * intel_crtc->wm.active and
2454 		 * cstate->wm.need_postvbl_update.
2455 		 */
2456 		struct mutex wm_mutex;
2457 
2458 		/*
2459 		 * Set during HW readout of watermarks/DDB.  Some platforms
2460 		 * need to know when we're still using BIOS-provided values
2461 		 * (which we don't fully trust).
2462 		 */
2463 		bool distrust_bios_wm;
2464 	} wm;
2465 
2466 	struct i915_runtime_pm pm;
2467 
2468 	struct {
2469 		bool initialized;
2470 
2471 		struct kobject *metrics_kobj;
2472 		struct ctl_table_header *sysctl_header;
2473 
2474 		/*
2475 		 * Lock associated with adding/modifying/removing OA configs
2476 		 * in dev_priv->perf.metrics_idr.
2477 		 */
2478 		struct mutex metrics_lock;
2479 
2480 		/*
2481 		 * List of dynamic configurations, you need to hold
2482 		 * dev_priv->perf.metrics_lock to access it.
2483 		 */
2484 		struct idr metrics_idr;
2485 
2486 		/*
2487 		 * Lock associated with anything below within this structure
2488 		 * except exclusive_stream.
2489 		 */
2490 		struct mutex lock;
2491 		struct list_head streams;
2492 
2493 		struct {
2494 			/*
2495 			 * The stream currently using the OA unit. If accessed
2496 			 * outside a syscall associated to its file
2497 			 * descriptor, you need to hold
2498 			 * dev_priv->drm.struct_mutex.
2499 			 */
2500 			struct i915_perf_stream *exclusive_stream;
2501 
2502 			u32 specific_ctx_id;
2503 
2504 			struct hrtimer poll_check_timer;
2505 			wait_queue_head_t poll_wq;
2506 			bool pollin;
2507 
2508 			/**
2509 			 * For rate limiting any notifications of spurious
2510 			 * invalid OA reports
2511 			 */
2512 			struct ratelimit_state spurious_report_rs;
2513 
2514 			bool periodic;
2515 			int period_exponent;
2516 			int timestamp_frequency;
2517 
2518 			struct i915_oa_config test_config;
2519 
2520 			struct {
2521 				struct i915_vma *vma;
2522 				u8 *vaddr;
2523 				u32 last_ctx_id;
2524 				int format;
2525 				int format_size;
2526 
2527 				/**
2528 				 * Locks reads and writes to all head/tail state
2529 				 *
2530 				 * Consider: the head and tail pointer state
2531 				 * needs to be read consistently from a hrtimer
2532 				 * callback (atomic context) and read() fop
2533 				 * (user context) with tail pointer updates
2534 				 * happening in atomic context and head updates
2535 				 * in user context and the (unlikely)
2536 				 * possibility of read() errors needing to
2537 				 * reset all head/tail state.
2538 				 *
2539 				 * Note: Contention or performance aren't
2540 				 * currently a significant concern here
2541 				 * considering the relatively low frequency of
2542 				 * hrtimer callbacks (5ms period) and that
2543 				 * reads typically only happen in response to a
2544 				 * hrtimer event and likely complete before the
2545 				 * next callback.
2546 				 *
2547 				 * Note: This lock is not held *while* reading
2548 				 * and copying data to userspace so the value
2549 				 * of head observed in htrimer callbacks won't
2550 				 * represent any partial consumption of data.
2551 				 */
2552 				spinlock_t ptr_lock;
2553 
2554 				/**
2555 				 * One 'aging' tail pointer and one 'aged'
2556 				 * tail pointer ready to used for reading.
2557 				 *
2558 				 * Initial values of 0xffffffff are invalid
2559 				 * and imply that an update is required
2560 				 * (and should be ignored by an attempted
2561 				 * read)
2562 				 */
2563 				struct {
2564 					u32 offset;
2565 				} tails[2];
2566 
2567 				/**
2568 				 * Index for the aged tail ready to read()
2569 				 * data up to.
2570 				 */
2571 				unsigned int aged_tail_idx;
2572 
2573 				/**
2574 				 * A monotonic timestamp for when the current
2575 				 * aging tail pointer was read; used to
2576 				 * determine when it is old enough to trust.
2577 				 */
2578 				u64 aging_timestamp;
2579 
2580 				/**
2581 				 * Although we can always read back the head
2582 				 * pointer register, we prefer to avoid
2583 				 * trusting the HW state, just to avoid any
2584 				 * risk that some hardware condition could
2585 				 * somehow bump the head pointer unpredictably
2586 				 * and cause us to forward the wrong OA buffer
2587 				 * data to userspace.
2588 				 */
2589 				u32 head;
2590 			} oa_buffer;
2591 
2592 			u32 gen7_latched_oastatus1;
2593 			u32 ctx_oactxctrl_offset;
2594 			u32 ctx_flexeu0_offset;
2595 
2596 			/**
2597 			 * The RPT_ID/reason field for Gen8+ includes a bit
2598 			 * to determine if the CTX ID in the report is valid
2599 			 * but the specific bit differs between Gen 8 and 9
2600 			 */
2601 			u32 gen8_valid_ctx_bit;
2602 
2603 			struct i915_oa_ops ops;
2604 			const struct i915_oa_format *oa_formats;
2605 		} oa;
2606 	} perf;
2607 
2608 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2609 	struct {
2610 		void (*resume)(struct drm_i915_private *);
2611 		void (*cleanup_engine)(struct intel_engine_cs *engine);
2612 
2613 		struct list_head timelines;
2614 		struct i915_gem_timeline global_timeline;
2615 		u32 active_requests;
2616 
2617 		/**
2618 		 * Is the GPU currently considered idle, or busy executing
2619 		 * userspace requests? Whilst idle, we allow runtime power
2620 		 * management to power down the hardware and display clocks.
2621 		 * In order to reduce the effect on performance, there
2622 		 * is a slight delay before we do so.
2623 		 */
2624 		bool awake;
2625 
2626 		/**
2627 		 * We leave the user IRQ off as much as possible,
2628 		 * but this means that requests will finish and never
2629 		 * be retired once the system goes idle. Set a timer to
2630 		 * fire periodically while the ring is running. When it
2631 		 * fires, go retire requests.
2632 		 */
2633 		struct delayed_work retire_work;
2634 
2635 		/**
2636 		 * When we detect an idle GPU, we want to turn on
2637 		 * powersaving features. So once we see that there
2638 		 * are no more requests outstanding and no more
2639 		 * arrive within a small period of time, we fire
2640 		 * off the idle_work.
2641 		 */
2642 		struct delayed_work idle_work;
2643 
2644 		ktime_t last_init_time;
2645 	} gt;
2646 
2647 	/* perform PHY state sanity checks? */
2648 	bool chv_phy_assert[2];
2649 
2650 	bool ipc_enabled;
2651 
2652 	/* Used to save the pipe-to-encoder mapping for audio */
2653 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2654 
2655 	/* necessary resource sharing with HDMI LPE audio driver. */
2656 	struct {
2657 		struct platform_device *platdev;
2658 		int	irq;
2659 	} lpe_audio;
2660 
2661 	/*
2662 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2663 	 * will be rejected. Instead look for a better place.
2664 	 */
2665 };
2666 
2667 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2668 {
2669 	return container_of(dev, struct drm_i915_private, drm);
2670 }
2671 
2672 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2673 {
2674 	return to_i915(dev_get_drvdata(kdev));
2675 }
2676 
2677 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2678 {
2679 	return container_of(guc, struct drm_i915_private, guc);
2680 }
2681 
2682 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2683 {
2684 	return container_of(huc, struct drm_i915_private, huc);
2685 }
2686 
2687 /* Simple iterator over all initialised engines */
2688 #define for_each_engine(engine__, dev_priv__, id__) \
2689 	for ((id__) = 0; \
2690 	     (id__) < I915_NUM_ENGINES; \
2691 	     (id__)++) \
2692 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2693 
2694 /* Iterator over subset of engines selected by mask */
2695 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2696 	for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask;	\
2697 	     tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2698 
2699 enum hdmi_force_audio {
2700 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2701 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2702 	HDMI_AUDIO_AUTO,		/* trust EDID */
2703 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2704 };
2705 
2706 #define I915_GTT_OFFSET_NONE ((u32)-1)
2707 
2708 /*
2709  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2710  * considered to be the frontbuffer for the given plane interface-wise. This
2711  * doesn't mean that the hw necessarily already scans it out, but that any
2712  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2713  *
2714  * We have one bit per pipe and per scanout plane type.
2715  */
2716 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2717 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2718 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2719 	(1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2720 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2721 	(1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2722 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2723 	(1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2724 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2725 	(1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2726 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2727 	(0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2728 
2729 /*
2730  * Optimised SGL iterator for GEM objects
2731  */
2732 static __always_inline struct sgt_iter {
2733 	struct scatterlist *sgp;
2734 	union {
2735 		unsigned long pfn;
2736 		dma_addr_t dma;
2737 	};
2738 	unsigned int curr;
2739 	unsigned int max;
2740 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2741 	struct sgt_iter s = { .sgp = sgl };
2742 
2743 	if (s.sgp) {
2744 		s.max = s.curr = s.sgp->offset;
2745 		s.max += s.sgp->length;
2746 		if (dma)
2747 			s.dma = sg_dma_address(s.sgp);
2748 		else
2749 			s.pfn = page_to_pfn(sg_page(s.sgp));
2750 	}
2751 
2752 	return s;
2753 }
2754 
2755 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2756 {
2757 	++sg;
2758 	if (unlikely(sg_is_chain(sg)))
2759 		sg = sg_chain_ptr(sg);
2760 	return sg;
2761 }
2762 
2763 /**
2764  * __sg_next - return the next scatterlist entry in a list
2765  * @sg:		The current sg entry
2766  *
2767  * Description:
2768  *   If the entry is the last, return NULL; otherwise, step to the next
2769  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2770  *   otherwise just return the pointer to the current element.
2771  **/
2772 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2773 {
2774 #ifdef CONFIG_DEBUG_SG
2775 	BUG_ON(sg->sg_magic != SG_MAGIC);
2776 #endif
2777 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2778 }
2779 
2780 /**
2781  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2782  * @__dmap:	DMA address (output)
2783  * @__iter:	'struct sgt_iter' (iterator state, internal)
2784  * @__sgt:	sg_table to iterate over (input)
2785  */
2786 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2787 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2788 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2789 	     (((__iter).curr += PAGE_SIZE) < (__iter).max) ||		\
2790 	     ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2791 
2792 /**
2793  * for_each_sgt_page - iterate over the pages of the given sg_table
2794  * @__pp:	page pointer (output)
2795  * @__iter:	'struct sgt_iter' (iterator state, internal)
2796  * @__sgt:	sg_table to iterate over (input)
2797  */
2798 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2799 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2800 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2801 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2802 	     (((__iter).curr += PAGE_SIZE) < (__iter).max) ||		\
2803 	     ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2804 
2805 static inline const struct intel_device_info *
2806 intel_info(const struct drm_i915_private *dev_priv)
2807 {
2808 	return &dev_priv->info;
2809 }
2810 
2811 #define INTEL_INFO(dev_priv)	intel_info((dev_priv))
2812 
2813 #define INTEL_GEN(dev_priv)	((dev_priv)->info.gen)
2814 #define INTEL_DEVID(dev_priv)	((dev_priv)->info.device_id)
2815 
2816 #define REVID_FOREVER		0xff
2817 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2818 
2819 #define GEN_FOREVER (0)
2820 /*
2821  * Returns true if Gen is in inclusive range [Start, End].
2822  *
2823  * Use GEN_FOREVER for unbound start and or end.
2824  */
2825 #define IS_GEN(dev_priv, s, e) ({ \
2826 	unsigned int __s = (s), __e = (e); \
2827 	BUILD_BUG_ON(!__builtin_constant_p(s)); \
2828 	BUILD_BUG_ON(!__builtin_constant_p(e)); \
2829 	if ((__s) != GEN_FOREVER) \
2830 		__s = (s) - 1; \
2831 	if ((__e) == GEN_FOREVER) \
2832 		__e = BITS_PER_LONG - 1; \
2833 	else \
2834 		__e = (e) - 1; \
2835 	!!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2836 })
2837 
2838 /*
2839  * Return true if revision is in range [since,until] inclusive.
2840  *
2841  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2842  */
2843 #define IS_REVID(p, since, until) \
2844 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2845 
2846 #define IS_I830(dev_priv)	((dev_priv)->info.platform == INTEL_I830)
2847 #define IS_I845G(dev_priv)	((dev_priv)->info.platform == INTEL_I845G)
2848 #define IS_I85X(dev_priv)	((dev_priv)->info.platform == INTEL_I85X)
2849 #define IS_I865G(dev_priv)	((dev_priv)->info.platform == INTEL_I865G)
2850 #define IS_I915G(dev_priv)	((dev_priv)->info.platform == INTEL_I915G)
2851 #define IS_I915GM(dev_priv)	((dev_priv)->info.platform == INTEL_I915GM)
2852 #define IS_I945G(dev_priv)	((dev_priv)->info.platform == INTEL_I945G)
2853 #define IS_I945GM(dev_priv)	((dev_priv)->info.platform == INTEL_I945GM)
2854 #define IS_I965G(dev_priv)	((dev_priv)->info.platform == INTEL_I965G)
2855 #define IS_I965GM(dev_priv)	((dev_priv)->info.platform == INTEL_I965GM)
2856 #define IS_G45(dev_priv)	((dev_priv)->info.platform == INTEL_G45)
2857 #define IS_GM45(dev_priv)	((dev_priv)->info.platform == INTEL_GM45)
2858 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2859 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2860 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2861 #define IS_PINEVIEW(dev_priv)	((dev_priv)->info.platform == INTEL_PINEVIEW)
2862 #define IS_G33(dev_priv)	((dev_priv)->info.platform == INTEL_G33)
2863 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2864 #define IS_IVYBRIDGE(dev_priv)	((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2865 #define IS_IVB_GT1(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0156 || \
2866 				 INTEL_DEVID(dev_priv) == 0x0152 || \
2867 				 INTEL_DEVID(dev_priv) == 0x015a)
2868 #define IS_VALLEYVIEW(dev_priv)	((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2869 #define IS_CHERRYVIEW(dev_priv)	((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2870 #define IS_HASWELL(dev_priv)	((dev_priv)->info.platform == INTEL_HASWELL)
2871 #define IS_BROADWELL(dev_priv)	((dev_priv)->info.platform == INTEL_BROADWELL)
2872 #define IS_SKYLAKE(dev_priv)	((dev_priv)->info.platform == INTEL_SKYLAKE)
2873 #define IS_BROXTON(dev_priv)	((dev_priv)->info.platform == INTEL_BROXTON)
2874 #define IS_KABYLAKE(dev_priv)	((dev_priv)->info.platform == INTEL_KABYLAKE)
2875 #define IS_GEMINILAKE(dev_priv)	((dev_priv)->info.platform == INTEL_GEMINILAKE)
2876 #define IS_COFFEELAKE(dev_priv)	((dev_priv)->info.platform == INTEL_COFFEELAKE)
2877 #define IS_CANNONLAKE(dev_priv)	((dev_priv)->info.platform == INTEL_CANNONLAKE)
2878 #define IS_MOBILE(dev_priv)	((dev_priv)->info.is_mobile)
2879 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2880 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2881 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2882 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2883 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2884 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2885 /* ULX machines are also considered ULT. */
2886 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2887 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2888 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2889 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2890 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2891 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2892 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2893 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2894 /* ULX machines are also considered ULT. */
2895 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2896 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2897 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2898 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2899 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2900 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2901 				 INTEL_DEVID(dev_priv) == 0x1926)
2902 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2903 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2904 				 INTEL_DEVID(dev_priv) == 0x191E)
2905 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2906 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2907 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2908 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2909 				 INTEL_DEVID(dev_priv) == 0x5926)
2910 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2911 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2912 				 INTEL_DEVID(dev_priv) == 0x591E)
2913 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2914 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2915 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2916 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2917 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2918 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2919 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2920 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2921 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2922 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2923 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2924 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2925 
2926 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2927 
2928 #define SKL_REVID_A0		0x0
2929 #define SKL_REVID_B0		0x1
2930 #define SKL_REVID_C0		0x2
2931 #define SKL_REVID_D0		0x3
2932 #define SKL_REVID_E0		0x4
2933 #define SKL_REVID_F0		0x5
2934 #define SKL_REVID_G0		0x6
2935 #define SKL_REVID_H0		0x7
2936 
2937 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2938 
2939 #define BXT_REVID_A0		0x0
2940 #define BXT_REVID_A1		0x1
2941 #define BXT_REVID_B0		0x3
2942 #define BXT_REVID_B_LAST	0x8
2943 #define BXT_REVID_C0		0x9
2944 
2945 #define IS_BXT_REVID(dev_priv, since, until) \
2946 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2947 
2948 #define KBL_REVID_A0		0x0
2949 #define KBL_REVID_B0		0x1
2950 #define KBL_REVID_C0		0x2
2951 #define KBL_REVID_D0		0x3
2952 #define KBL_REVID_E0		0x4
2953 
2954 #define IS_KBL_REVID(dev_priv, since, until) \
2955 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2956 
2957 #define GLK_REVID_A0		0x0
2958 #define GLK_REVID_A1		0x1
2959 
2960 #define IS_GLK_REVID(dev_priv, since, until) \
2961 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2962 
2963 #define CNL_REVID_A0		0x0
2964 #define CNL_REVID_B0		0x1
2965 
2966 #define IS_CNL_REVID(p, since, until) \
2967 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2968 
2969 /*
2970  * The genX designation typically refers to the render engine, so render
2971  * capability related checks should use IS_GEN, while display and other checks
2972  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2973  * chips, etc.).
2974  */
2975 #define IS_GEN2(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(1)))
2976 #define IS_GEN3(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(2)))
2977 #define IS_GEN4(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(3)))
2978 #define IS_GEN5(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(4)))
2979 #define IS_GEN6(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(5)))
2980 #define IS_GEN7(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(6)))
2981 #define IS_GEN8(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(7)))
2982 #define IS_GEN9(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(8)))
2983 #define IS_GEN10(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(9)))
2984 
2985 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2986 #define IS_GEN9_LP(dev_priv)	(IS_GEN9(dev_priv) && IS_LP(dev_priv))
2987 #define IS_GEN9_BC(dev_priv)	(IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2988 
2989 #define ENGINE_MASK(id)	BIT(id)
2990 #define RENDER_RING	ENGINE_MASK(RCS)
2991 #define BSD_RING	ENGINE_MASK(VCS)
2992 #define BLT_RING	ENGINE_MASK(BCS)
2993 #define VEBOX_RING	ENGINE_MASK(VECS)
2994 #define BSD2_RING	ENGINE_MASK(VCS2)
2995 #define ALL_ENGINES	(~0)
2996 
2997 #define HAS_ENGINE(dev_priv, id) \
2998 	(!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2999 
3000 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
3001 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
3002 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
3003 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
3004 
3005 #define HAS_LLC(dev_priv)	((dev_priv)->info.has_llc)
3006 #define HAS_SNOOP(dev_priv)	((dev_priv)->info.has_snoop)
3007 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3008 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
3009 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3010 
3011 #define HWS_NEEDS_PHYSICAL(dev_priv)	((dev_priv)->info.hws_needs_physical)
3012 
3013 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3014 		((dev_priv)->info.has_logical_ring_contexts)
3015 #define USES_PPGTT(dev_priv)		(i915.enable_ppgtt)
3016 #define USES_FULL_PPGTT(dev_priv)	(i915.enable_ppgtt >= 2)
3017 #define USES_FULL_48BIT_PPGTT(dev_priv)	(i915.enable_ppgtt == 3)
3018 
3019 #define HAS_OVERLAY(dev_priv)		 ((dev_priv)->info.has_overlay)
3020 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3021 		((dev_priv)->info.overlay_needs_physical)
3022 
3023 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
3024 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
3025 
3026 /* WaRsDisableCoarsePowerGating:skl,bxt */
3027 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3028 	(IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
3029 
3030 /*
3031  * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3032  * even when in MSI mode. This results in spurious interrupt warnings if the
3033  * legacy irq no. is shared with another device. The kernel then disables that
3034  * interrupt source and so prevents the other device from working properly.
3035  */
3036 #define HAS_AUX_IRQ(dev_priv)   ((dev_priv)->info.gen >= 5)
3037 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
3038 
3039 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3040  * rows, which changed the alignment requirements and fence programming.
3041  */
3042 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3043 					 !(IS_I915G(dev_priv) || \
3044 					 IS_I915GM(dev_priv)))
3045 #define SUPPORTS_TV(dev_priv)		((dev_priv)->info.supports_tv)
3046 #define I915_HAS_HOTPLUG(dev_priv)	((dev_priv)->info.has_hotplug)
3047 
3048 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
3049 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
3050 #define HAS_FBC(dev_priv)	((dev_priv)->info.has_fbc)
3051 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3052 
3053 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3054 
3055 #define HAS_DP_MST(dev_priv)	((dev_priv)->info.has_dp_mst)
3056 
3057 #define HAS_DDI(dev_priv)		 ((dev_priv)->info.has_ddi)
3058 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3059 #define HAS_PSR(dev_priv)		 ((dev_priv)->info.has_psr)
3060 #define HAS_RC6(dev_priv)		 ((dev_priv)->info.has_rc6)
3061 #define HAS_RC6p(dev_priv)		 ((dev_priv)->info.has_rc6p)
3062 
3063 #define HAS_CSR(dev_priv)	((dev_priv)->info.has_csr)
3064 
3065 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3066 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3067 
3068 /*
3069  * For now, anything with a GuC requires uCode loading, and then supports
3070  * command submission once loaded. But these are logically independent
3071  * properties, so we have separate macros to test them.
3072  */
3073 #define HAS_GUC(dev_priv)	((dev_priv)->info.has_guc)
3074 #define HAS_GUC_CT(dev_priv)	((dev_priv)->info.has_guc_ct)
3075 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
3076 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
3077 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
3078 
3079 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3080 
3081 #define HAS_POOLED_EU(dev_priv)	((dev_priv)->info.has_pooled_eu)
3082 
3083 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
3084 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
3085 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
3086 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
3087 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
3088 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
3089 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
3090 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
3091 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
3092 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
3093 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
3094 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
3095 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
3096 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
3097 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
3098 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
3099 
3100 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3101 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3102 #define HAS_PCH_CNP_LP(dev_priv) \
3103 	((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3104 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3105 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3106 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3107 #define HAS_PCH_LPT_LP(dev_priv) \
3108 	((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3109 	 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3110 #define HAS_PCH_LPT_H(dev_priv) \
3111 	((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3112 	 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3113 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3114 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3115 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3116 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3117 
3118 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3119 
3120 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3121 
3122 /* DPF == dynamic parity feature */
3123 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3124 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3125 				 2 : HAS_L3_DPF(dev_priv))
3126 
3127 #define GT_FREQUENCY_MULTIPLIER 50
3128 #define GEN9_FREQ_SCALER 3
3129 
3130 #include "i915_trace.h"
3131 
3132 static inline bool intel_vtd_active(void)
3133 {
3134 #ifdef CONFIG_INTEL_IOMMU
3135 	if (intel_iommu_gfx_mapped)
3136 		return true;
3137 #endif
3138 	return false;
3139 }
3140 
3141 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3142 {
3143 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3144 }
3145 
3146 static inline bool
3147 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3148 {
3149 	return IS_BROXTON(dev_priv) && intel_vtd_active();
3150 }
3151 
3152 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3153 				int enable_ppgtt);
3154 
3155 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3156 
3157 /* i915_drv.c */
3158 void __printf(3, 4)
3159 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3160 	      const char *fmt, ...);
3161 
3162 #define i915_report_error(dev_priv, fmt, ...)				   \
3163 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3164 
3165 #ifdef CONFIG_COMPAT
3166 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3167 			      unsigned long arg);
3168 #else
3169 #define i915_compat_ioctl NULL
3170 #endif
3171 extern const struct dev_pm_ops i915_pm_ops;
3172 
3173 extern int i915_driver_load(struct pci_dev *pdev,
3174 			    const struct pci_device_id *ent);
3175 extern void i915_driver_unload(struct drm_device *dev);
3176 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3177 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3178 
3179 #define I915_RESET_QUIET BIT(0)
3180 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3181 extern int i915_reset_engine(struct intel_engine_cs *engine,
3182 			     unsigned int flags);
3183 
3184 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3185 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3186 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3187 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3188 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3189 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3190 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3191 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3192 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3193 
3194 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3195 int intel_engines_init(struct drm_i915_private *dev_priv);
3196 
3197 /* intel_hotplug.c */
3198 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3199 			   u32 pin_mask, u32 long_mask);
3200 void intel_hpd_init(struct drm_i915_private *dev_priv);
3201 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3202 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3203 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3204 enum hpd_pin intel_hpd_pin(enum port port);
3205 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3206 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3207 
3208 /* i915_irq.c */
3209 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3210 {
3211 	unsigned long delay;
3212 
3213 	if (unlikely(!i915.enable_hangcheck))
3214 		return;
3215 
3216 	/* Don't continually defer the hangcheck so that it is always run at
3217 	 * least once after work has been scheduled on any ring. Otherwise,
3218 	 * we will ignore a hung ring if a second ring is kept busy.
3219 	 */
3220 
3221 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3222 	queue_delayed_work(system_long_wq,
3223 			   &dev_priv->gpu_error.hangcheck_work, delay);
3224 }
3225 
3226 __printf(3, 4)
3227 void i915_handle_error(struct drm_i915_private *dev_priv,
3228 		       u32 engine_mask,
3229 		       const char *fmt, ...);
3230 
3231 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3232 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3233 int intel_irq_install(struct drm_i915_private *dev_priv);
3234 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3235 
3236 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3237 {
3238 	return dev_priv->gvt;
3239 }
3240 
3241 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3242 {
3243 	return dev_priv->vgpu.active;
3244 }
3245 
3246 void
3247 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3248 		     u32 status_mask);
3249 
3250 void
3251 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3252 		      u32 status_mask);
3253 
3254 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3255 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3256 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3257 				   uint32_t mask,
3258 				   uint32_t bits);
3259 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3260 			    uint32_t interrupt_mask,
3261 			    uint32_t enabled_irq_mask);
3262 static inline void
3263 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3264 {
3265 	ilk_update_display_irq(dev_priv, bits, bits);
3266 }
3267 static inline void
3268 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3269 {
3270 	ilk_update_display_irq(dev_priv, bits, 0);
3271 }
3272 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3273 			 enum pipe pipe,
3274 			 uint32_t interrupt_mask,
3275 			 uint32_t enabled_irq_mask);
3276 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3277 				       enum pipe pipe, uint32_t bits)
3278 {
3279 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3280 }
3281 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3282 					enum pipe pipe, uint32_t bits)
3283 {
3284 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3285 }
3286 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3287 				  uint32_t interrupt_mask,
3288 				  uint32_t enabled_irq_mask);
3289 static inline void
3290 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3291 {
3292 	ibx_display_interrupt_update(dev_priv, bits, bits);
3293 }
3294 static inline void
3295 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3296 {
3297 	ibx_display_interrupt_update(dev_priv, bits, 0);
3298 }
3299 
3300 /* i915_gem.c */
3301 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3302 			  struct drm_file *file_priv);
3303 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3304 			 struct drm_file *file_priv);
3305 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3306 			  struct drm_file *file_priv);
3307 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3308 			struct drm_file *file_priv);
3309 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3310 			struct drm_file *file_priv);
3311 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3312 			      struct drm_file *file_priv);
3313 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3314 			     struct drm_file *file_priv);
3315 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3316 			struct drm_file *file_priv);
3317 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3318 			 struct drm_file *file_priv);
3319 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3320 			struct drm_file *file_priv);
3321 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3322 			       struct drm_file *file);
3323 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3324 			       struct drm_file *file);
3325 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3326 			    struct drm_file *file_priv);
3327 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3328 			   struct drm_file *file_priv);
3329 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3330 			      struct drm_file *file_priv);
3331 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3332 			      struct drm_file *file_priv);
3333 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3334 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3335 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3336 			   struct drm_file *file);
3337 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3338 				struct drm_file *file_priv);
3339 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3340 			struct drm_file *file_priv);
3341 void i915_gem_sanitize(struct drm_i915_private *i915);
3342 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3343 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3344 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3345 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3346 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3347 
3348 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3349 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3350 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3351 			 const struct drm_i915_gem_object_ops *ops);
3352 struct drm_i915_gem_object *
3353 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3354 struct drm_i915_gem_object *
3355 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3356 				 const void *data, size_t size);
3357 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3358 void i915_gem_free_object(struct drm_gem_object *obj);
3359 
3360 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3361 {
3362 	/* A single pass should suffice to release all the freed objects (along
3363 	 * most call paths) , but be a little more paranoid in that freeing
3364 	 * the objects does take a little amount of time, during which the rcu
3365 	 * callbacks could have added new objects into the freed list, and
3366 	 * armed the work again.
3367 	 */
3368 	do {
3369 		rcu_barrier();
3370 	} while (flush_work(&i915->mm.free_work));
3371 }
3372 
3373 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3374 {
3375 	/*
3376 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
3377 	 * general we have workers that are armed by RCU and then rearm
3378 	 * themselves in their callbacks. To be paranoid, we need to
3379 	 * drain the workqueue a second time after waiting for the RCU
3380 	 * grace period so that we catch work queued via RCU from the first
3381 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
3382 	 * a result, we make an assumption that we only don't require more
3383 	 * than 2 passes to catch all recursive RCU delayed work.
3384 	 *
3385 	 */
3386 	int pass = 2;
3387 	do {
3388 		rcu_barrier();
3389 		drain_workqueue(i915->wq);
3390 	} while (--pass);
3391 }
3392 
3393 struct i915_vma * __must_check
3394 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3395 			 const struct i915_ggtt_view *view,
3396 			 u64 size,
3397 			 u64 alignment,
3398 			 u64 flags);
3399 
3400 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3401 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3402 
3403 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3404 
3405 static inline int __sg_page_count(const struct scatterlist *sg)
3406 {
3407 	return sg->length >> PAGE_SHIFT;
3408 }
3409 
3410 struct scatterlist *
3411 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3412 		       unsigned int n, unsigned int *offset);
3413 
3414 struct page *
3415 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3416 			 unsigned int n);
3417 
3418 struct page *
3419 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3420 			       unsigned int n);
3421 
3422 dma_addr_t
3423 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3424 				unsigned long n);
3425 
3426 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3427 				 struct sg_table *pages);
3428 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3429 
3430 static inline int __must_check
3431 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3432 {
3433 	might_lock(&obj->mm.lock);
3434 
3435 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3436 		return 0;
3437 
3438 	return __i915_gem_object_get_pages(obj);
3439 }
3440 
3441 static inline void
3442 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3443 {
3444 	GEM_BUG_ON(!obj->mm.pages);
3445 
3446 	atomic_inc(&obj->mm.pages_pin_count);
3447 }
3448 
3449 static inline bool
3450 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3451 {
3452 	return atomic_read(&obj->mm.pages_pin_count);
3453 }
3454 
3455 static inline void
3456 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3457 {
3458 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3459 	GEM_BUG_ON(!obj->mm.pages);
3460 
3461 	atomic_dec(&obj->mm.pages_pin_count);
3462 }
3463 
3464 static inline void
3465 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3466 {
3467 	__i915_gem_object_unpin_pages(obj);
3468 }
3469 
3470 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3471 	I915_MM_NORMAL = 0,
3472 	I915_MM_SHRINKER
3473 };
3474 
3475 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3476 				 enum i915_mm_subclass subclass);
3477 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3478 
3479 enum i915_map_type {
3480 	I915_MAP_WB = 0,
3481 	I915_MAP_WC,
3482 #define I915_MAP_OVERRIDE BIT(31)
3483 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3484 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3485 };
3486 
3487 /**
3488  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3489  * @obj: the object to map into kernel address space
3490  * @type: the type of mapping, used to select pgprot_t
3491  *
3492  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3493  * pages and then returns a contiguous mapping of the backing storage into
3494  * the kernel address space. Based on the @type of mapping, the PTE will be
3495  * set to either WriteBack or WriteCombine (via pgprot_t).
3496  *
3497  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3498  * mapping is no longer required.
3499  *
3500  * Returns the pointer through which to access the mapped object, or an
3501  * ERR_PTR() on error.
3502  */
3503 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3504 					   enum i915_map_type type);
3505 
3506 /**
3507  * i915_gem_object_unpin_map - releases an earlier mapping
3508  * @obj: the object to unmap
3509  *
3510  * After pinning the object and mapping its pages, once you are finished
3511  * with your access, call i915_gem_object_unpin_map() to release the pin
3512  * upon the mapping. Once the pin count reaches zero, that mapping may be
3513  * removed.
3514  */
3515 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3516 {
3517 	i915_gem_object_unpin_pages(obj);
3518 }
3519 
3520 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3521 				    unsigned int *needs_clflush);
3522 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3523 				     unsigned int *needs_clflush);
3524 #define CLFLUSH_BEFORE	BIT(0)
3525 #define CLFLUSH_AFTER	BIT(1)
3526 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
3527 
3528 static inline void
3529 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3530 {
3531 	i915_gem_object_unpin_pages(obj);
3532 }
3533 
3534 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3535 void i915_vma_move_to_active(struct i915_vma *vma,
3536 			     struct drm_i915_gem_request *req,
3537 			     unsigned int flags);
3538 int i915_gem_dumb_create(struct drm_file *file_priv,
3539 			 struct drm_device *dev,
3540 			 struct drm_mode_create_dumb *args);
3541 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3542 		      uint32_t handle, uint64_t *offset);
3543 int i915_gem_mmap_gtt_version(void);
3544 
3545 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3546 		       struct drm_i915_gem_object *new,
3547 		       unsigned frontbuffer_bits);
3548 
3549 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3550 
3551 struct drm_i915_gem_request *
3552 i915_gem_find_active_request(struct intel_engine_cs *engine);
3553 
3554 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3555 
3556 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3557 {
3558 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3559 }
3560 
3561 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3562 {
3563 	return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3564 }
3565 
3566 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3567 {
3568 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3569 }
3570 
3571 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3572 {
3573 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3574 }
3575 
3576 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3577 {
3578 	return READ_ONCE(error->reset_count);
3579 }
3580 
3581 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3582 					  struct intel_engine_cs *engine)
3583 {
3584 	return READ_ONCE(error->reset_engine_count[engine->id]);
3585 }
3586 
3587 struct drm_i915_gem_request *
3588 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3589 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3590 void i915_gem_reset(struct drm_i915_private *dev_priv);
3591 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3592 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3593 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3594 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3595 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3596 			   struct drm_i915_gem_request *request);
3597 
3598 void i915_gem_init_mmio(struct drm_i915_private *i915);
3599 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3600 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3601 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3602 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3603 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3604 			   unsigned int flags);
3605 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3606 void i915_gem_resume(struct drm_i915_private *dev_priv);
3607 int i915_gem_fault(struct vm_fault *vmf);
3608 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3609 			 unsigned int flags,
3610 			 long timeout,
3611 			 struct intel_rps_client *rps);
3612 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3613 				  unsigned int flags,
3614 				  int priority);
3615 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3616 
3617 int __must_check
3618 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3619 int __must_check
3620 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3621 int __must_check
3622 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3623 struct i915_vma * __must_check
3624 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3625 				     u32 alignment,
3626 				     const struct i915_ggtt_view *view);
3627 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3628 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3629 				int align);
3630 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3631 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3632 
3633 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3634 				    enum i915_cache_level cache_level);
3635 
3636 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3637 				struct dma_buf *dma_buf);
3638 
3639 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3640 				struct drm_gem_object *gem_obj, int flags);
3641 
3642 static inline struct i915_hw_ppgtt *
3643 i915_vm_to_ppgtt(struct i915_address_space *vm)
3644 {
3645 	return container_of(vm, struct i915_hw_ppgtt, base);
3646 }
3647 
3648 /* i915_gem_fence_reg.c */
3649 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3650 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3651 
3652 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3653 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3654 
3655 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3656 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3657 				       struct sg_table *pages);
3658 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3659 					 struct sg_table *pages);
3660 
3661 static inline struct i915_gem_context *
3662 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3663 {
3664 	return idr_find(&file_priv->context_idr, id);
3665 }
3666 
3667 static inline struct i915_gem_context *
3668 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3669 {
3670 	struct i915_gem_context *ctx;
3671 
3672 	rcu_read_lock();
3673 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3674 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3675 		ctx = NULL;
3676 	rcu_read_unlock();
3677 
3678 	return ctx;
3679 }
3680 
3681 static inline struct intel_timeline *
3682 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3683 				 struct intel_engine_cs *engine)
3684 {
3685 	struct i915_address_space *vm;
3686 
3687 	vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3688 	return &vm->timeline.engine[engine->id];
3689 }
3690 
3691 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3692 			 struct drm_file *file);
3693 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3694 			       struct drm_file *file);
3695 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3696 				  struct drm_file *file);
3697 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3698 			    struct i915_gem_context *ctx,
3699 			    uint32_t *reg_state);
3700 
3701 /* i915_gem_evict.c */
3702 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3703 					  u64 min_size, u64 alignment,
3704 					  unsigned cache_level,
3705 					  u64 start, u64 end,
3706 					  unsigned flags);
3707 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3708 					 struct drm_mm_node *node,
3709 					 unsigned int flags);
3710 int i915_gem_evict_vm(struct i915_address_space *vm);
3711 
3712 /* belongs in i915_gem_gtt.h */
3713 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3714 {
3715 	wmb();
3716 	if (INTEL_GEN(dev_priv) < 6)
3717 		intel_gtt_chipset_flush();
3718 }
3719 
3720 /* i915_gem_stolen.c */
3721 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3722 				struct drm_mm_node *node, u64 size,
3723 				unsigned alignment);
3724 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3725 					 struct drm_mm_node *node, u64 size,
3726 					 unsigned alignment, u64 start,
3727 					 u64 end);
3728 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3729 				 struct drm_mm_node *node);
3730 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3731 void i915_gem_cleanup_stolen(struct drm_device *dev);
3732 struct drm_i915_gem_object *
3733 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3734 struct drm_i915_gem_object *
3735 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3736 					       u32 stolen_offset,
3737 					       u32 gtt_offset,
3738 					       u32 size);
3739 
3740 /* i915_gem_internal.c */
3741 struct drm_i915_gem_object *
3742 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3743 				phys_addr_t size);
3744 
3745 /* i915_gem_shrinker.c */
3746 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3747 			      unsigned long target,
3748 			      unsigned long *nr_scanned,
3749 			      unsigned flags);
3750 #define I915_SHRINK_PURGEABLE 0x1
3751 #define I915_SHRINK_UNBOUND 0x2
3752 #define I915_SHRINK_BOUND 0x4
3753 #define I915_SHRINK_ACTIVE 0x8
3754 #define I915_SHRINK_VMAPS 0x10
3755 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3756 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3757 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3758 
3759 
3760 /* i915_gem_tiling.c */
3761 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3762 {
3763 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3764 
3765 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3766 		i915_gem_object_is_tiled(obj);
3767 }
3768 
3769 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3770 			unsigned int tiling, unsigned int stride);
3771 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3772 			     unsigned int tiling, unsigned int stride);
3773 
3774 /* i915_debugfs.c */
3775 #ifdef CONFIG_DEBUG_FS
3776 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3777 int i915_debugfs_connector_add(struct drm_connector *connector);
3778 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3779 #else
3780 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3781 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3782 { return 0; }
3783 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3784 #endif
3785 
3786 /* i915_gpu_error.c */
3787 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3788 
3789 __printf(2, 3)
3790 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3791 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3792 			    const struct i915_gpu_state *gpu);
3793 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3794 			      struct drm_i915_private *i915,
3795 			      size_t count, loff_t pos);
3796 static inline void i915_error_state_buf_release(
3797 	struct drm_i915_error_state_buf *eb)
3798 {
3799 	kfree(eb->buf);
3800 }
3801 
3802 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3803 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3804 			      u32 engine_mask,
3805 			      const char *error_msg);
3806 
3807 static inline struct i915_gpu_state *
3808 i915_gpu_state_get(struct i915_gpu_state *gpu)
3809 {
3810 	kref_get(&gpu->ref);
3811 	return gpu;
3812 }
3813 
3814 void __i915_gpu_state_free(struct kref *kref);
3815 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3816 {
3817 	if (gpu)
3818 		kref_put(&gpu->ref, __i915_gpu_state_free);
3819 }
3820 
3821 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3822 void i915_reset_error_state(struct drm_i915_private *i915);
3823 
3824 #else
3825 
3826 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3827 					    u32 engine_mask,
3828 					    const char *error_msg)
3829 {
3830 }
3831 
3832 static inline struct i915_gpu_state *
3833 i915_first_error_state(struct drm_i915_private *i915)
3834 {
3835 	return NULL;
3836 }
3837 
3838 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3839 {
3840 }
3841 
3842 #endif
3843 
3844 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3845 
3846 /* i915_cmd_parser.c */
3847 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3848 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3849 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3850 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3851 			    struct drm_i915_gem_object *batch_obj,
3852 			    struct drm_i915_gem_object *shadow_batch_obj,
3853 			    u32 batch_start_offset,
3854 			    u32 batch_len,
3855 			    bool is_master);
3856 
3857 /* i915_perf.c */
3858 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3859 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3860 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3861 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3862 
3863 /* i915_suspend.c */
3864 extern int i915_save_state(struct drm_i915_private *dev_priv);
3865 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3866 
3867 /* i915_sysfs.c */
3868 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3869 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3870 
3871 /* intel_lpe_audio.c */
3872 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3873 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3874 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3875 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3876 			    enum pipe pipe, enum port port,
3877 			    const void *eld, int ls_clock, bool dp_output);
3878 
3879 /* intel_i2c.c */
3880 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3881 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3882 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3883 				     unsigned int pin);
3884 
3885 extern struct i2c_adapter *
3886 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3887 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3888 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3889 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3890 {
3891 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3892 }
3893 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3894 
3895 /* intel_bios.c */
3896 void intel_bios_init(struct drm_i915_private *dev_priv);
3897 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3898 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3899 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3900 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3901 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3902 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3903 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3904 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3905 				     enum port port);
3906 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3907 				enum port port);
3908 
3909 
3910 /* intel_opregion.c */
3911 #ifdef CONFIG_ACPI
3912 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3913 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3914 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3915 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3916 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3917 					 bool enable);
3918 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3919 					 pci_power_t state);
3920 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3921 #else
3922 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3923 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3924 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3925 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3926 {
3927 }
3928 static inline int
3929 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3930 {
3931 	return 0;
3932 }
3933 static inline int
3934 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3935 {
3936 	return 0;
3937 }
3938 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3939 {
3940 	return -ENODEV;
3941 }
3942 #endif
3943 
3944 /* intel_acpi.c */
3945 #ifdef CONFIG_ACPI
3946 extern void intel_register_dsm_handler(void);
3947 extern void intel_unregister_dsm_handler(void);
3948 #else
3949 static inline void intel_register_dsm_handler(void) { return; }
3950 static inline void intel_unregister_dsm_handler(void) { return; }
3951 #endif /* CONFIG_ACPI */
3952 
3953 /* intel_device_info.c */
3954 static inline struct intel_device_info *
3955 mkwrite_device_info(struct drm_i915_private *dev_priv)
3956 {
3957 	return (struct intel_device_info *)&dev_priv->info;
3958 }
3959 
3960 const char *intel_platform_name(enum intel_platform platform);
3961 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3962 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3963 
3964 /* modesetting */
3965 extern void intel_modeset_init_hw(struct drm_device *dev);
3966 extern int intel_modeset_init(struct drm_device *dev);
3967 extern void intel_modeset_gem_init(struct drm_device *dev);
3968 extern void intel_modeset_cleanup(struct drm_device *dev);
3969 extern int intel_connector_register(struct drm_connector *);
3970 extern void intel_connector_unregister(struct drm_connector *);
3971 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3972 				       bool state);
3973 extern void intel_display_resume(struct drm_device *dev);
3974 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3975 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3976 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3977 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3978 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3979 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3980 				  bool enable);
3981 
3982 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3983 			struct drm_file *file);
3984 
3985 /* overlay */
3986 extern struct intel_overlay_error_state *
3987 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3988 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3989 					    struct intel_overlay_error_state *error);
3990 
3991 extern struct intel_display_error_state *
3992 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3993 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3994 					    struct intel_display_error_state *error);
3995 
3996 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3997 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3998 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3999 		      u32 reply_mask, u32 reply, int timeout_base_ms);
4000 
4001 /* intel_sideband.c */
4002 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4003 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4004 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4005 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4006 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4007 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4008 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4009 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4010 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4011 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4012 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4013 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4014 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4015 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4016 		   enum intel_sbi_destination destination);
4017 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4018 		     enum intel_sbi_destination destination);
4019 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4020 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4021 
4022 /* intel_dpio_phy.c */
4023 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4024 			     enum dpio_phy *phy, enum dpio_channel *ch);
4025 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4026 				  enum port port, u32 margin, u32 scale,
4027 				  u32 enable, u32 deemphasis);
4028 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4029 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4030 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4031 			    enum dpio_phy phy);
4032 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4033 			      enum dpio_phy phy);
4034 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4035 					     uint8_t lane_count);
4036 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4037 				     uint8_t lane_lat_optim_mask);
4038 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4039 
4040 void chv_set_phy_signal_level(struct intel_encoder *encoder,
4041 			      u32 deemph_reg_value, u32 margin_reg_value,
4042 			      bool uniq_trans_scale);
4043 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4044 			      bool reset);
4045 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4046 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4047 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4048 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4049 
4050 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4051 			      u32 demph_reg_value, u32 preemph_reg_value,
4052 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
4053 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4054 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4055 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4056 
4057 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4058 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4059 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4060 			   const i915_reg_t reg);
4061 
4062 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4063 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4064 
4065 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4066 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4067 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4068 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4069 
4070 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4071 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4072 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4073 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4074 
4075 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4076  * will be implemented using 2 32-bit writes in an arbitrary order with
4077  * an arbitrary delay between them. This can cause the hardware to
4078  * act upon the intermediate value, possibly leading to corruption and
4079  * machine death. For this reason we do not support I915_WRITE64, or
4080  * dev_priv->uncore.funcs.mmio_writeq.
4081  *
4082  * When reading a 64-bit value as two 32-bit values, the delay may cause
4083  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4084  * occasionally a 64-bit register does not actualy support a full readq
4085  * and must be read using two 32-bit reads.
4086  *
4087  * You have been warned.
4088  */
4089 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4090 
4091 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
4092 	u32 upper, lower, old_upper, loop = 0;				\
4093 	upper = I915_READ(upper_reg);					\
4094 	do {								\
4095 		old_upper = upper;					\
4096 		lower = I915_READ(lower_reg);				\
4097 		upper = I915_READ(upper_reg);				\
4098 	} while (upper != old_upper && loop++ < 2);			\
4099 	(u64)upper << 32 | lower; })
4100 
4101 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
4102 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
4103 
4104 #define __raw_read(x, s) \
4105 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4106 					     i915_reg_t reg) \
4107 { \
4108 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4109 }
4110 
4111 #define __raw_write(x, s) \
4112 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4113 				       i915_reg_t reg, uint##x##_t val) \
4114 { \
4115 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4116 }
4117 __raw_read(8, b)
4118 __raw_read(16, w)
4119 __raw_read(32, l)
4120 __raw_read(64, q)
4121 
4122 __raw_write(8, b)
4123 __raw_write(16, w)
4124 __raw_write(32, l)
4125 __raw_write(64, q)
4126 
4127 #undef __raw_read
4128 #undef __raw_write
4129 
4130 /* These are untraced mmio-accessors that are only valid to be used inside
4131  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4132  * controlled.
4133  *
4134  * Think twice, and think again, before using these.
4135  *
4136  * As an example, these accessors can possibly be used between:
4137  *
4138  * spin_lock_irq(&dev_priv->uncore.lock);
4139  * intel_uncore_forcewake_get__locked();
4140  *
4141  * and
4142  *
4143  * intel_uncore_forcewake_put__locked();
4144  * spin_unlock_irq(&dev_priv->uncore.lock);
4145  *
4146  *
4147  * Note: some registers may not need forcewake held, so
4148  * intel_uncore_forcewake_{get,put} can be omitted, see
4149  * intel_uncore_forcewake_for_reg().
4150  *
4151  * Certain architectures will die if the same cacheline is concurrently accessed
4152  * by different clients (e.g. on Ivybridge). Access to registers should
4153  * therefore generally be serialised, by either the dev_priv->uncore.lock or
4154  * a more localised lock guarding all access to that bank of registers.
4155  */
4156 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4157 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4158 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4159 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4160 
4161 /* "Broadcast RGB" property */
4162 #define INTEL_BROADCAST_RGB_AUTO 0
4163 #define INTEL_BROADCAST_RGB_FULL 1
4164 #define INTEL_BROADCAST_RGB_LIMITED 2
4165 
4166 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4167 {
4168 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4169 		return VLV_VGACNTRL;
4170 	else if (INTEL_GEN(dev_priv) >= 5)
4171 		return CPU_VGACNTRL;
4172 	else
4173 		return VGACNTRL;
4174 }
4175 
4176 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4177 {
4178 	unsigned long j = msecs_to_jiffies(m);
4179 
4180 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4181 }
4182 
4183 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4184 {
4185 	/* nsecs_to_jiffies64() does not guard against overflow */
4186 	if (NSEC_PER_SEC % HZ &&
4187 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4188 		return MAX_JIFFY_OFFSET;
4189 
4190         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4191 }
4192 
4193 static inline unsigned long
4194 timespec_to_jiffies_timeout(const struct timespec *value)
4195 {
4196 	unsigned long j = timespec_to_jiffies(value);
4197 
4198 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4199 }
4200 
4201 /*
4202  * If you need to wait X milliseconds between events A and B, but event B
4203  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4204  * when event A happened, then just before event B you call this function and
4205  * pass the timestamp as the first argument, and X as the second argument.
4206  */
4207 static inline void
4208 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4209 {
4210 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4211 
4212 	/*
4213 	 * Don't re-read the value of "jiffies" every time since it may change
4214 	 * behind our back and break the math.
4215 	 */
4216 	tmp_jiffies = jiffies;
4217 	target_jiffies = timestamp_jiffies +
4218 			 msecs_to_jiffies_timeout(to_wait_ms);
4219 
4220 	if (time_after(target_jiffies, tmp_jiffies)) {
4221 		remaining_jiffies = target_jiffies - tmp_jiffies;
4222 		while (remaining_jiffies)
4223 			remaining_jiffies =
4224 			    schedule_timeout_uninterruptible(remaining_jiffies);
4225 	}
4226 }
4227 
4228 static inline bool
4229 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4230 {
4231 	struct intel_engine_cs *engine = req->engine;
4232 	u32 seqno;
4233 
4234 	/* Note that the engine may have wrapped around the seqno, and
4235 	 * so our request->global_seqno will be ahead of the hardware,
4236 	 * even though it completed the request before wrapping. We catch
4237 	 * this by kicking all the waiters before resetting the seqno
4238 	 * in hardware, and also signal the fence.
4239 	 */
4240 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4241 		return true;
4242 
4243 	/* The request was dequeued before we were awoken. We check after
4244 	 * inspecting the hw to confirm that this was the same request
4245 	 * that generated the HWS update. The memory barriers within
4246 	 * the request execution are sufficient to ensure that a check
4247 	 * after reading the value from hw matches this request.
4248 	 */
4249 	seqno = i915_gem_request_global_seqno(req);
4250 	if (!seqno)
4251 		return false;
4252 
4253 	/* Before we do the heavier coherent read of the seqno,
4254 	 * check the value (hopefully) in the CPU cacheline.
4255 	 */
4256 	if (__i915_gem_request_completed(req, seqno))
4257 		return true;
4258 
4259 	/* Ensure our read of the seqno is coherent so that we
4260 	 * do not "miss an interrupt" (i.e. if this is the last
4261 	 * request and the seqno write from the GPU is not visible
4262 	 * by the time the interrupt fires, we will see that the
4263 	 * request is incomplete and go back to sleep awaiting
4264 	 * another interrupt that will never come.)
4265 	 *
4266 	 * Strictly, we only need to do this once after an interrupt,
4267 	 * but it is easier and safer to do it every time the waiter
4268 	 * is woken.
4269 	 */
4270 	if (engine->irq_seqno_barrier &&
4271 	    test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4272 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
4273 
4274 		/* The ordering of irq_posted versus applying the barrier
4275 		 * is crucial. The clearing of the current irq_posted must
4276 		 * be visible before we perform the barrier operation,
4277 		 * such that if a subsequent interrupt arrives, irq_posted
4278 		 * is reasserted and our task rewoken (which causes us to
4279 		 * do another __i915_request_irq_complete() immediately
4280 		 * and reapply the barrier). Conversely, if the clear
4281 		 * occurs after the barrier, then an interrupt that arrived
4282 		 * whilst we waited on the barrier would not trigger a
4283 		 * barrier on the next pass, and the read may not see the
4284 		 * seqno update.
4285 		 */
4286 		engine->irq_seqno_barrier(engine);
4287 
4288 		/* If we consume the irq, but we are no longer the bottom-half,
4289 		 * the real bottom-half may not have serialised their own
4290 		 * seqno check with the irq-barrier (i.e. may have inspected
4291 		 * the seqno before we believe it coherent since they see
4292 		 * irq_posted == false but we are still running).
4293 		 */
4294 		spin_lock_irq(&b->irq_lock);
4295 		if (b->irq_wait && b->irq_wait->tsk != current)
4296 			/* Note that if the bottom-half is changed as we
4297 			 * are sending the wake-up, the new bottom-half will
4298 			 * be woken by whomever made the change. We only have
4299 			 * to worry about when we steal the irq-posted for
4300 			 * ourself.
4301 			 */
4302 			wake_up_process(b->irq_wait->tsk);
4303 		spin_unlock_irq(&b->irq_lock);
4304 
4305 		if (__i915_gem_request_completed(req, seqno))
4306 			return true;
4307 	}
4308 
4309 	return false;
4310 }
4311 
4312 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4313 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4314 
4315 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4316  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4317  * perform the operation. To check beforehand, pass in the parameters to
4318  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4319  * you only need to pass in the minor offsets, page-aligned pointers are
4320  * always valid.
4321  *
4322  * For just checking for SSE4.1, in the foreknowledge that the future use
4323  * will be correctly aligned, just use i915_has_memcpy_from_wc().
4324  */
4325 #define i915_can_memcpy_from_wc(dst, src, len) \
4326 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4327 
4328 #define i915_has_memcpy_from_wc() \
4329 	i915_memcpy_from_wc(NULL, NULL, 0)
4330 
4331 /* i915_mm.c */
4332 int remap_io_mapping(struct vm_area_struct *vma,
4333 		     unsigned long addr, unsigned long pfn, unsigned long size,
4334 		     struct io_mapping *iomap);
4335 
4336 static inline bool
4337 intel_engine_can_store_dword(struct intel_engine_cs *engine)
4338 {
4339 	return __intel_engine_can_store_dword(INTEL_GEN(engine->i915),
4340 					      engine->class);
4341 }
4342 
4343 #endif
4344