xref: /openbmc/linux/drivers/gpu/drm/i915/i915_drv.h (revision 8dfb839c)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/mm_types.h>
44 #include <linux/perf_event.h>
45 #include <linux/pm_qos.h>
46 #include <linux/reservation.h>
47 #include <linux/shmem_fs.h>
48 
49 #include <drm/drmP.h>
50 #include <drm/intel-gtt.h>
51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
52 #include <drm/drm_gem.h>
53 #include <drm/drm_auth.h>
54 #include <drm/drm_cache.h>
55 #include <drm/drm_util.h>
56 
57 #include "i915_params.h"
58 #include "i915_reg.h"
59 #include "i915_utils.h"
60 
61 #include "intel_bios.h"
62 #include "intel_device_info.h"
63 #include "intel_display.h"
64 #include "intel_dpll_mgr.h"
65 #include "intel_lrc.h"
66 #include "intel_opregion.h"
67 #include "intel_ringbuffer.h"
68 #include "intel_uncore.h"
69 #include "intel_wopcm.h"
70 #include "intel_uc.h"
71 
72 #include "i915_gem.h"
73 #include "i915_gem_context.h"
74 #include "i915_gem_fence_reg.h"
75 #include "i915_gem_object.h"
76 #include "i915_gem_gtt.h"
77 #include "i915_gpu_error.h"
78 #include "i915_request.h"
79 #include "i915_scheduler.h"
80 #include "i915_timeline.h"
81 #include "i915_vma.h"
82 
83 #include "intel_gvt.h"
84 
85 /* General customization:
86  */
87 
88 #define DRIVER_NAME		"i915"
89 #define DRIVER_DESC		"Intel Graphics"
90 #define DRIVER_DATE		"20181102"
91 #define DRIVER_TIMESTAMP	1541153051
92 
93 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
94  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
95  * which may not necessarily be a user visible problem.  This will either
96  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
97  * enable distros and users to tailor their preferred amount of i915 abrt
98  * spam.
99  */
100 #define I915_STATE_WARN(condition, format...) ({			\
101 	int __ret_warn_on = !!(condition);				\
102 	if (unlikely(__ret_warn_on))					\
103 		if (!WARN(i915_modparams.verbose_state_checks, format))	\
104 			DRM_ERROR(format);				\
105 	unlikely(__ret_warn_on);					\
106 })
107 
108 #define I915_STATE_WARN_ON(x)						\
109 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
110 
111 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
112 
113 bool __i915_inject_load_failure(const char *func, int line);
114 #define i915_inject_load_failure() \
115 	__i915_inject_load_failure(__func__, __LINE__)
116 
117 bool i915_error_injected(void);
118 
119 #else
120 
121 #define i915_inject_load_failure() false
122 #define i915_error_injected() false
123 
124 #endif
125 
126 #define i915_load_error(i915, fmt, ...)					 \
127 	__i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
128 		      fmt, ##__VA_ARGS__)
129 
130 typedef struct {
131 	uint32_t val;
132 } uint_fixed_16_16_t;
133 
134 #define FP_16_16_MAX ({ \
135 	uint_fixed_16_16_t fp; \
136 	fp.val = UINT_MAX; \
137 	fp; \
138 })
139 
140 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
141 {
142 	if (val.val == 0)
143 		return true;
144 	return false;
145 }
146 
147 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
148 {
149 	uint_fixed_16_16_t fp;
150 
151 	WARN_ON(val > U16_MAX);
152 
153 	fp.val = val << 16;
154 	return fp;
155 }
156 
157 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
158 {
159 	return DIV_ROUND_UP(fp.val, 1 << 16);
160 }
161 
162 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
163 {
164 	return fp.val >> 16;
165 }
166 
167 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
168 						 uint_fixed_16_16_t min2)
169 {
170 	uint_fixed_16_16_t min;
171 
172 	min.val = min(min1.val, min2.val);
173 	return min;
174 }
175 
176 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
177 						 uint_fixed_16_16_t max2)
178 {
179 	uint_fixed_16_16_t max;
180 
181 	max.val = max(max1.val, max2.val);
182 	return max;
183 }
184 
185 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
186 {
187 	uint_fixed_16_16_t fp;
188 	WARN_ON(val > U32_MAX);
189 	fp.val = (uint32_t) val;
190 	return fp;
191 }
192 
193 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
194 					    uint_fixed_16_16_t d)
195 {
196 	return DIV_ROUND_UP(val.val, d.val);
197 }
198 
199 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
200 						uint_fixed_16_16_t mul)
201 {
202 	uint64_t intermediate_val;
203 
204 	intermediate_val = (uint64_t) val * mul.val;
205 	intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
206 	WARN_ON(intermediate_val > U32_MAX);
207 	return (uint32_t) intermediate_val;
208 }
209 
210 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
211 					     uint_fixed_16_16_t mul)
212 {
213 	uint64_t intermediate_val;
214 
215 	intermediate_val = (uint64_t) val.val * mul.val;
216 	intermediate_val = intermediate_val >> 16;
217 	return clamp_u64_to_fixed16(intermediate_val);
218 }
219 
220 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
221 {
222 	uint64_t interm_val;
223 
224 	interm_val = (uint64_t)val << 16;
225 	interm_val = DIV_ROUND_UP_ULL(interm_val, d);
226 	return clamp_u64_to_fixed16(interm_val);
227 }
228 
229 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
230 						uint_fixed_16_16_t d)
231 {
232 	uint64_t interm_val;
233 
234 	interm_val = (uint64_t)val << 16;
235 	interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
236 	WARN_ON(interm_val > U32_MAX);
237 	return (uint32_t) interm_val;
238 }
239 
240 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
241 						     uint_fixed_16_16_t mul)
242 {
243 	uint64_t intermediate_val;
244 
245 	intermediate_val = (uint64_t) val * mul.val;
246 	return clamp_u64_to_fixed16(intermediate_val);
247 }
248 
249 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
250 					     uint_fixed_16_16_t add2)
251 {
252 	uint64_t interm_sum;
253 
254 	interm_sum = (uint64_t) add1.val + add2.val;
255 	return clamp_u64_to_fixed16(interm_sum);
256 }
257 
258 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
259 						 uint32_t add2)
260 {
261 	uint64_t interm_sum;
262 	uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
263 
264 	interm_sum = (uint64_t) add1.val + interm_add2.val;
265 	return clamp_u64_to_fixed16(interm_sum);
266 }
267 
268 enum hpd_pin {
269 	HPD_NONE = 0,
270 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
271 	HPD_CRT,
272 	HPD_SDVO_B,
273 	HPD_SDVO_C,
274 	HPD_PORT_A,
275 	HPD_PORT_B,
276 	HPD_PORT_C,
277 	HPD_PORT_D,
278 	HPD_PORT_E,
279 	HPD_PORT_F,
280 	HPD_NUM_PINS
281 };
282 
283 #define for_each_hpd_pin(__pin) \
284 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
285 
286 #define HPD_STORM_DEFAULT_THRESHOLD 5
287 
288 struct i915_hotplug {
289 	struct work_struct hotplug_work;
290 
291 	struct {
292 		unsigned long last_jiffies;
293 		int count;
294 		enum {
295 			HPD_ENABLED = 0,
296 			HPD_DISABLED = 1,
297 			HPD_MARK_DISABLED = 2
298 		} state;
299 	} stats[HPD_NUM_PINS];
300 	u32 event_bits;
301 	struct delayed_work reenable_work;
302 
303 	u32 long_port_mask;
304 	u32 short_port_mask;
305 	struct work_struct dig_port_work;
306 
307 	struct work_struct poll_init_work;
308 	bool poll_enabled;
309 
310 	unsigned int hpd_storm_threshold;
311 
312 	/*
313 	 * if we get a HPD irq from DP and a HPD irq from non-DP
314 	 * the non-DP HPD could block the workqueue on a mode config
315 	 * mutex getting, that userspace may have taken. However
316 	 * userspace is waiting on the DP workqueue to run which is
317 	 * blocked behind the non-DP one.
318 	 */
319 	struct workqueue_struct *dp_wq;
320 };
321 
322 #define I915_GEM_GPU_DOMAINS \
323 	(I915_GEM_DOMAIN_RENDER | \
324 	 I915_GEM_DOMAIN_SAMPLER | \
325 	 I915_GEM_DOMAIN_COMMAND | \
326 	 I915_GEM_DOMAIN_INSTRUCTION | \
327 	 I915_GEM_DOMAIN_VERTEX)
328 
329 struct drm_i915_private;
330 struct i915_mm_struct;
331 struct i915_mmu_object;
332 
333 struct drm_i915_file_private {
334 	struct drm_i915_private *dev_priv;
335 	struct drm_file *file;
336 
337 	struct {
338 		spinlock_t lock;
339 		struct list_head request_list;
340 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
341  * chosen to prevent the CPU getting more than a frame ahead of the GPU
342  * (when using lax throttling for the frontbuffer). We also use it to
343  * offer free GPU waitboosts for severely congested workloads.
344  */
345 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
346 	} mm;
347 	struct idr context_idr;
348 
349 	struct intel_rps_client {
350 		atomic_t boosts;
351 	} rps_client;
352 
353 	unsigned int bsd_engine;
354 
355 /*
356  * Every context ban increments per client ban score. Also
357  * hangs in short succession increments ban score. If ban threshold
358  * is reached, client is considered banned and submitting more work
359  * will fail. This is a stop gap measure to limit the badly behaving
360  * clients access to gpu. Note that unbannable contexts never increment
361  * the client ban score.
362  */
363 #define I915_CLIENT_SCORE_HANG_FAST	1
364 #define   I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ)
365 #define I915_CLIENT_SCORE_CONTEXT_BAN   3
366 #define I915_CLIENT_SCORE_BANNED	9
367 	/** ban_score: Accumulated score of all ctx bans and fast hangs. */
368 	atomic_t ban_score;
369 	unsigned long hang_timestamp;
370 };
371 
372 /* Interface history:
373  *
374  * 1.1: Original.
375  * 1.2: Add Power Management
376  * 1.3: Add vblank support
377  * 1.4: Fix cmdbuffer path, add heap destroy
378  * 1.5: Add vblank pipe configuration
379  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
380  *      - Support vertical blank on secondary display pipe
381  */
382 #define DRIVER_MAJOR		1
383 #define DRIVER_MINOR		6
384 #define DRIVER_PATCHLEVEL	0
385 
386 struct intel_overlay;
387 struct intel_overlay_error_state;
388 
389 struct sdvo_device_mapping {
390 	u8 initialized;
391 	u8 dvo_port;
392 	u8 slave_addr;
393 	u8 dvo_wiring;
394 	u8 i2c_pin;
395 	u8 ddc_pin;
396 };
397 
398 struct intel_connector;
399 struct intel_encoder;
400 struct intel_atomic_state;
401 struct intel_crtc_state;
402 struct intel_initial_plane_config;
403 struct intel_crtc;
404 struct intel_limit;
405 struct dpll;
406 struct intel_cdclk_state;
407 
408 struct drm_i915_display_funcs {
409 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
410 			  struct intel_cdclk_state *cdclk_state);
411 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
412 			  const struct intel_cdclk_state *cdclk_state);
413 	int (*get_fifo_size)(struct drm_i915_private *dev_priv,
414 			     enum i9xx_plane_id i9xx_plane);
415 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
416 	int (*compute_intermediate_wm)(struct drm_device *dev,
417 				       struct intel_crtc *intel_crtc,
418 				       struct intel_crtc_state *newstate);
419 	void (*initial_watermarks)(struct intel_atomic_state *state,
420 				   struct intel_crtc_state *cstate);
421 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
422 					 struct intel_crtc_state *cstate);
423 	void (*optimize_watermarks)(struct intel_atomic_state *state,
424 				    struct intel_crtc_state *cstate);
425 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
426 	void (*update_wm)(struct intel_crtc *crtc);
427 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
428 	/* Returns the active state of the crtc, and if the crtc is active,
429 	 * fills out the pipe-config with the hw state. */
430 	bool (*get_pipe_config)(struct intel_crtc *,
431 				struct intel_crtc_state *);
432 	void (*get_initial_plane_config)(struct intel_crtc *,
433 					 struct intel_initial_plane_config *);
434 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
435 				  struct intel_crtc_state *crtc_state);
436 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
437 			    struct drm_atomic_state *old_state);
438 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
439 			     struct drm_atomic_state *old_state);
440 	void (*update_crtcs)(struct drm_atomic_state *state);
441 	void (*audio_codec_enable)(struct intel_encoder *encoder,
442 				   const struct intel_crtc_state *crtc_state,
443 				   const struct drm_connector_state *conn_state);
444 	void (*audio_codec_disable)(struct intel_encoder *encoder,
445 				    const struct intel_crtc_state *old_crtc_state,
446 				    const struct drm_connector_state *old_conn_state);
447 	void (*fdi_link_train)(struct intel_crtc *crtc,
448 			       const struct intel_crtc_state *crtc_state);
449 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
450 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
451 	/* clock updates for mode set */
452 	/* cursor updates */
453 	/* render clock increase/decrease */
454 	/* display clock increase/decrease */
455 	/* pll clock increase/decrease */
456 
457 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
458 	void (*load_luts)(struct drm_crtc_state *crtc_state);
459 };
460 
461 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
462 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
463 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
464 
465 struct intel_csr {
466 	struct work_struct work;
467 	const char *fw_path;
468 	uint32_t required_version;
469 	uint32_t max_fw_size; /* bytes */
470 	uint32_t *dmc_payload;
471 	uint32_t dmc_fw_size; /* dwords */
472 	uint32_t version;
473 	uint32_t mmio_count;
474 	i915_reg_t mmioaddr[8];
475 	uint32_t mmiodata[8];
476 	uint32_t dc_state;
477 	uint32_t allowed_dc_mask;
478 };
479 
480 enum i915_cache_level {
481 	I915_CACHE_NONE = 0,
482 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
483 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
484 			      caches, eg sampler/render caches, and the
485 			      large Last-Level-Cache. LLC is coherent with
486 			      the CPU, but L3 is only visible to the GPU. */
487 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
488 };
489 
490 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
491 
492 enum fb_op_origin {
493 	ORIGIN_GTT,
494 	ORIGIN_CPU,
495 	ORIGIN_CS,
496 	ORIGIN_FLIP,
497 	ORIGIN_DIRTYFB,
498 };
499 
500 struct intel_fbc {
501 	/* This is always the inner lock when overlapping with struct_mutex and
502 	 * it's the outer lock when overlapping with stolen_lock. */
503 	struct mutex lock;
504 	unsigned threshold;
505 	unsigned int possible_framebuffer_bits;
506 	unsigned int busy_bits;
507 	unsigned int visible_pipes_mask;
508 	struct intel_crtc *crtc;
509 
510 	struct drm_mm_node compressed_fb;
511 	struct drm_mm_node *compressed_llb;
512 
513 	bool false_color;
514 
515 	bool enabled;
516 	bool active;
517 	bool flip_pending;
518 
519 	bool underrun_detected;
520 	struct work_struct underrun_work;
521 
522 	/*
523 	 * Due to the atomic rules we can't access some structures without the
524 	 * appropriate locking, so we cache information here in order to avoid
525 	 * these problems.
526 	 */
527 	struct intel_fbc_state_cache {
528 		struct i915_vma *vma;
529 		unsigned long flags;
530 
531 		struct {
532 			unsigned int mode_flags;
533 			uint32_t hsw_bdw_pixel_rate;
534 		} crtc;
535 
536 		struct {
537 			unsigned int rotation;
538 			int src_w;
539 			int src_h;
540 			bool visible;
541 			/*
542 			 * Display surface base address adjustement for
543 			 * pageflips. Note that on gen4+ this only adjusts up
544 			 * to a tile, offsets within a tile are handled in
545 			 * the hw itself (with the TILEOFF register).
546 			 */
547 			int adjusted_x;
548 			int adjusted_y;
549 
550 			int y;
551 
552 			uint16_t pixel_blend_mode;
553 		} plane;
554 
555 		struct {
556 			const struct drm_format_info *format;
557 			unsigned int stride;
558 		} fb;
559 	} state_cache;
560 
561 	/*
562 	 * This structure contains everything that's relevant to program the
563 	 * hardware registers. When we want to figure out if we need to disable
564 	 * and re-enable FBC for a new configuration we just check if there's
565 	 * something different in the struct. The genx_fbc_activate functions
566 	 * are supposed to read from it in order to program the registers.
567 	 */
568 	struct intel_fbc_reg_params {
569 		struct i915_vma *vma;
570 		unsigned long flags;
571 
572 		struct {
573 			enum pipe pipe;
574 			enum i9xx_plane_id i9xx_plane;
575 			unsigned int fence_y_offset;
576 		} crtc;
577 
578 		struct {
579 			const struct drm_format_info *format;
580 			unsigned int stride;
581 		} fb;
582 
583 		int cfb_size;
584 		unsigned int gen9_wa_cfb_stride;
585 	} params;
586 
587 	const char *no_fbc_reason;
588 };
589 
590 /*
591  * HIGH_RR is the highest eDP panel refresh rate read from EDID
592  * LOW_RR is the lowest eDP panel refresh rate found from EDID
593  * parsing for same resolution.
594  */
595 enum drrs_refresh_rate_type {
596 	DRRS_HIGH_RR,
597 	DRRS_LOW_RR,
598 	DRRS_MAX_RR, /* RR count */
599 };
600 
601 enum drrs_support_type {
602 	DRRS_NOT_SUPPORTED = 0,
603 	STATIC_DRRS_SUPPORT = 1,
604 	SEAMLESS_DRRS_SUPPORT = 2
605 };
606 
607 struct intel_dp;
608 struct i915_drrs {
609 	struct mutex mutex;
610 	struct delayed_work work;
611 	struct intel_dp *dp;
612 	unsigned busy_frontbuffer_bits;
613 	enum drrs_refresh_rate_type refresh_rate_type;
614 	enum drrs_support_type type;
615 };
616 
617 struct i915_psr {
618 	struct mutex lock;
619 
620 #define I915_PSR_DEBUG_MODE_MASK	0x0f
621 #define I915_PSR_DEBUG_DEFAULT		0x00
622 #define I915_PSR_DEBUG_DISABLE		0x01
623 #define I915_PSR_DEBUG_ENABLE		0x02
624 #define I915_PSR_DEBUG_FORCE_PSR1	0x03
625 #define I915_PSR_DEBUG_IRQ		0x10
626 
627 	u32 debug;
628 	bool sink_support;
629 	bool prepared, enabled;
630 	struct intel_dp *dp;
631 	bool active;
632 	struct work_struct work;
633 	unsigned busy_frontbuffer_bits;
634 	bool sink_psr2_support;
635 	bool link_standby;
636 	bool colorimetry_support;
637 	bool psr2_enabled;
638 	u8 sink_sync_latency;
639 	ktime_t last_entry_attempt;
640 	ktime_t last_exit;
641 };
642 
643 enum intel_pch {
644 	PCH_NONE = 0,	/* No PCH present */
645 	PCH_IBX,	/* Ibexpeak PCH */
646 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
647 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
648 	PCH_SPT,        /* Sunrisepoint PCH */
649 	PCH_KBP,        /* Kaby Lake PCH */
650 	PCH_CNP,        /* Cannon Lake PCH */
651 	PCH_ICP,	/* Ice Lake PCH */
652 	PCH_NOP,	/* PCH without south display */
653 };
654 
655 enum intel_sbi_destination {
656 	SBI_ICLK,
657 	SBI_MPHY,
658 };
659 
660 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
661 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
662 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
663 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
664 #define QUIRK_INCREASE_T12_DELAY (1<<6)
665 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7)
666 
667 struct intel_fbdev;
668 struct intel_fbc_work;
669 
670 struct intel_gmbus {
671 	struct i2c_adapter adapter;
672 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
673 	u32 force_bit;
674 	u32 reg0;
675 	i915_reg_t gpio_reg;
676 	struct i2c_algo_bit_data bit_algo;
677 	struct drm_i915_private *dev_priv;
678 };
679 
680 struct i915_suspend_saved_registers {
681 	u32 saveDSPARB;
682 	u32 saveFBC_CONTROL;
683 	u32 saveCACHE_MODE_0;
684 	u32 saveMI_ARB_STATE;
685 	u32 saveSWF0[16];
686 	u32 saveSWF1[16];
687 	u32 saveSWF3[3];
688 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
689 	u32 savePCH_PORT_HOTPLUG;
690 	u16 saveGCDGMBUS;
691 };
692 
693 struct vlv_s0ix_state {
694 	/* GAM */
695 	u32 wr_watermark;
696 	u32 gfx_prio_ctrl;
697 	u32 arb_mode;
698 	u32 gfx_pend_tlb0;
699 	u32 gfx_pend_tlb1;
700 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
701 	u32 media_max_req_count;
702 	u32 gfx_max_req_count;
703 	u32 render_hwsp;
704 	u32 ecochk;
705 	u32 bsd_hwsp;
706 	u32 blt_hwsp;
707 	u32 tlb_rd_addr;
708 
709 	/* MBC */
710 	u32 g3dctl;
711 	u32 gsckgctl;
712 	u32 mbctl;
713 
714 	/* GCP */
715 	u32 ucgctl1;
716 	u32 ucgctl3;
717 	u32 rcgctl1;
718 	u32 rcgctl2;
719 	u32 rstctl;
720 	u32 misccpctl;
721 
722 	/* GPM */
723 	u32 gfxpause;
724 	u32 rpdeuhwtc;
725 	u32 rpdeuc;
726 	u32 ecobus;
727 	u32 pwrdwnupctl;
728 	u32 rp_down_timeout;
729 	u32 rp_deucsw;
730 	u32 rcubmabdtmr;
731 	u32 rcedata;
732 	u32 spare2gh;
733 
734 	/* Display 1 CZ domain */
735 	u32 gt_imr;
736 	u32 gt_ier;
737 	u32 pm_imr;
738 	u32 pm_ier;
739 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
740 
741 	/* GT SA CZ domain */
742 	u32 tilectl;
743 	u32 gt_fifoctl;
744 	u32 gtlc_wake_ctrl;
745 	u32 gtlc_survive;
746 	u32 pmwgicz;
747 
748 	/* Display 2 CZ domain */
749 	u32 gu_ctl0;
750 	u32 gu_ctl1;
751 	u32 pcbr;
752 	u32 clock_gate_dis2;
753 };
754 
755 struct intel_rps_ei {
756 	ktime_t ktime;
757 	u32 render_c0;
758 	u32 media_c0;
759 };
760 
761 struct intel_rps {
762 	/*
763 	 * work, interrupts_enabled and pm_iir are protected by
764 	 * dev_priv->irq_lock
765 	 */
766 	struct work_struct work;
767 	bool interrupts_enabled;
768 	u32 pm_iir;
769 
770 	/* PM interrupt bits that should never be masked */
771 	u32 pm_intrmsk_mbz;
772 
773 	/* Frequencies are stored in potentially platform dependent multiples.
774 	 * In other words, *_freq needs to be multiplied by X to be interesting.
775 	 * Soft limits are those which are used for the dynamic reclocking done
776 	 * by the driver (raise frequencies under heavy loads, and lower for
777 	 * lighter loads). Hard limits are those imposed by the hardware.
778 	 *
779 	 * A distinction is made for overclocking, which is never enabled by
780 	 * default, and is considered to be above the hard limit if it's
781 	 * possible at all.
782 	 */
783 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
784 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
785 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
786 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
787 	u8 min_freq;		/* AKA RPn. Minimum frequency */
788 	u8 boost_freq;		/* Frequency to request when wait boosting */
789 	u8 idle_freq;		/* Frequency to request when we are idle */
790 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
791 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
792 	u8 rp0_freq;		/* Non-overclocked max frequency. */
793 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
794 
795 	int last_adj;
796 
797 	struct {
798 		struct mutex mutex;
799 
800 		enum { LOW_POWER, BETWEEN, HIGH_POWER } mode;
801 		unsigned int interactive;
802 
803 		u8 up_threshold; /* Current %busy required to uplock */
804 		u8 down_threshold; /* Current %busy required to downclock */
805 	} power;
806 
807 	bool enabled;
808 	atomic_t num_waiters;
809 	atomic_t boosts;
810 
811 	/* manual wa residency calculations */
812 	struct intel_rps_ei ei;
813 };
814 
815 struct intel_rc6 {
816 	bool enabled;
817 	u64 prev_hw_residency[4];
818 	u64 cur_residency[4];
819 };
820 
821 struct intel_llc_pstate {
822 	bool enabled;
823 };
824 
825 struct intel_gen6_power_mgmt {
826 	struct intel_rps rps;
827 	struct intel_rc6 rc6;
828 	struct intel_llc_pstate llc_pstate;
829 };
830 
831 /* defined intel_pm.c */
832 extern spinlock_t mchdev_lock;
833 
834 struct intel_ilk_power_mgmt {
835 	u8 cur_delay;
836 	u8 min_delay;
837 	u8 max_delay;
838 	u8 fmax;
839 	u8 fstart;
840 
841 	u64 last_count1;
842 	unsigned long last_time1;
843 	unsigned long chipset_power;
844 	u64 last_count2;
845 	u64 last_time2;
846 	unsigned long gfx_power;
847 	u8 corr;
848 
849 	int c_m;
850 	int r_t;
851 };
852 
853 struct drm_i915_private;
854 struct i915_power_well;
855 
856 struct i915_power_well_ops {
857 	/*
858 	 * Synchronize the well's hw state to match the current sw state, for
859 	 * example enable/disable it based on the current refcount. Called
860 	 * during driver init and resume time, possibly after first calling
861 	 * the enable/disable handlers.
862 	 */
863 	void (*sync_hw)(struct drm_i915_private *dev_priv,
864 			struct i915_power_well *power_well);
865 	/*
866 	 * Enable the well and resources that depend on it (for example
867 	 * interrupts located on the well). Called after the 0->1 refcount
868 	 * transition.
869 	 */
870 	void (*enable)(struct drm_i915_private *dev_priv,
871 		       struct i915_power_well *power_well);
872 	/*
873 	 * Disable the well and resources that depend on it. Called after
874 	 * the 1->0 refcount transition.
875 	 */
876 	void (*disable)(struct drm_i915_private *dev_priv,
877 			struct i915_power_well *power_well);
878 	/* Returns the hw enabled state. */
879 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
880 			   struct i915_power_well *power_well);
881 };
882 
883 struct i915_power_well_regs {
884 	i915_reg_t bios;
885 	i915_reg_t driver;
886 	i915_reg_t kvmr;
887 	i915_reg_t debug;
888 };
889 
890 /* Power well structure for haswell */
891 struct i915_power_well_desc {
892 	const char *name;
893 	bool always_on;
894 	u64 domains;
895 	/* unique identifier for this power well */
896 	enum i915_power_well_id id;
897 	/*
898 	 * Arbitraty data associated with this power well. Platform and power
899 	 * well specific.
900 	 */
901 	union {
902 		struct {
903 			/*
904 			 * request/status flag index in the PUNIT power well
905 			 * control/status registers.
906 			 */
907 			u8 idx;
908 		} vlv;
909 		struct {
910 			enum dpio_phy phy;
911 		} bxt;
912 		struct {
913 			const struct i915_power_well_regs *regs;
914 			/*
915 			 * request/status flag index in the power well
916 			 * constrol/status registers.
917 			 */
918 			u8 idx;
919 			/* Mask of pipes whose IRQ logic is backed by the pw */
920 			u8 irq_pipe_mask;
921 			/* The pw is backing the VGA functionality */
922 			bool has_vga:1;
923 			bool has_fuses:1;
924 			/*
925 			 * The pw is for an ICL+ TypeC PHY port in
926 			 * Thunderbolt mode.
927 			 */
928 			bool is_tc_tbt:1;
929 		} hsw;
930 	};
931 	const struct i915_power_well_ops *ops;
932 };
933 
934 struct i915_power_well {
935 	const struct i915_power_well_desc *desc;
936 	/* power well enable/disable usage count */
937 	int count;
938 	/* cached hw enabled state */
939 	bool hw_enabled;
940 };
941 
942 struct i915_power_domains {
943 	/*
944 	 * Power wells needed for initialization at driver init and suspend
945 	 * time are on. They are kept on until after the first modeset.
946 	 */
947 	bool initializing;
948 	bool display_core_suspended;
949 	int power_well_count;
950 
951 	struct mutex lock;
952 	int domain_use_count[POWER_DOMAIN_NUM];
953 	struct i915_power_well *power_wells;
954 };
955 
956 #define MAX_L3_SLICES 2
957 struct intel_l3_parity {
958 	u32 *remap_info[MAX_L3_SLICES];
959 	struct work_struct error_work;
960 	int which_slice;
961 };
962 
963 struct i915_gem_mm {
964 	/** Memory allocator for GTT stolen memory */
965 	struct drm_mm stolen;
966 	/** Protects the usage of the GTT stolen memory allocator. This is
967 	 * always the inner lock when overlapping with struct_mutex. */
968 	struct mutex stolen_lock;
969 
970 	/* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
971 	spinlock_t obj_lock;
972 
973 	/** List of all objects in gtt_space. Used to restore gtt
974 	 * mappings on resume */
975 	struct list_head bound_list;
976 	/**
977 	 * List of objects which are not bound to the GTT (thus
978 	 * are idle and not used by the GPU). These objects may or may
979 	 * not actually have any pages attached.
980 	 */
981 	struct list_head unbound_list;
982 
983 	/** List of all objects in gtt_space, currently mmaped by userspace.
984 	 * All objects within this list must also be on bound_list.
985 	 */
986 	struct list_head userfault_list;
987 
988 	/**
989 	 * List of objects which are pending destruction.
990 	 */
991 	struct llist_head free_list;
992 	struct work_struct free_work;
993 	spinlock_t free_lock;
994 	/**
995 	 * Count of objects pending destructions. Used to skip needlessly
996 	 * waiting on an RCU barrier if no objects are waiting to be freed.
997 	 */
998 	atomic_t free_count;
999 
1000 	/**
1001 	 * Small stash of WC pages
1002 	 */
1003 	struct pagestash wc_stash;
1004 
1005 	/**
1006 	 * tmpfs instance used for shmem backed objects
1007 	 */
1008 	struct vfsmount *gemfs;
1009 
1010 	/** PPGTT used for aliasing the PPGTT with the GTT */
1011 	struct i915_hw_ppgtt *aliasing_ppgtt;
1012 
1013 	struct notifier_block oom_notifier;
1014 	struct notifier_block vmap_notifier;
1015 	struct shrinker shrinker;
1016 
1017 	/** LRU list of objects with fence regs on them. */
1018 	struct list_head fence_list;
1019 
1020 	/**
1021 	 * Workqueue to fault in userptr pages, flushed by the execbuf
1022 	 * when required but otherwise left to userspace to try again
1023 	 * on EAGAIN.
1024 	 */
1025 	struct workqueue_struct *userptr_wq;
1026 
1027 	u64 unordered_timeline;
1028 
1029 	/* the indicator for dispatch video commands on two BSD rings */
1030 	atomic_t bsd_engine_dispatch_index;
1031 
1032 	/** Bit 6 swizzling required for X tiling */
1033 	uint32_t bit_6_swizzle_x;
1034 	/** Bit 6 swizzling required for Y tiling */
1035 	uint32_t bit_6_swizzle_y;
1036 
1037 	/* accounting, useful for userland debugging */
1038 	spinlock_t object_stat_lock;
1039 	u64 object_memory;
1040 	u32 object_count;
1041 };
1042 
1043 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
1044 
1045 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1046 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1047 
1048 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1049 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1050 
1051 #define I915_ENGINE_WEDGED_TIMEOUT  (60 * HZ)  /* Reset but no recovery? */
1052 
1053 #define DP_AUX_A 0x40
1054 #define DP_AUX_B 0x10
1055 #define DP_AUX_C 0x20
1056 #define DP_AUX_D 0x30
1057 #define DP_AUX_E 0x50
1058 #define DP_AUX_F 0x60
1059 
1060 #define DDC_PIN_B  0x05
1061 #define DDC_PIN_C  0x04
1062 #define DDC_PIN_D  0x06
1063 
1064 struct ddi_vbt_port_info {
1065 	int max_tmds_clock;
1066 
1067 	/*
1068 	 * This is an index in the HDMI/DVI DDI buffer translation table.
1069 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1070 	 * populate this field.
1071 	 */
1072 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
1073 	uint8_t hdmi_level_shift;
1074 
1075 	uint8_t supports_dvi:1;
1076 	uint8_t supports_hdmi:1;
1077 	uint8_t supports_dp:1;
1078 	uint8_t supports_edp:1;
1079 
1080 	uint8_t alternate_aux_channel;
1081 	uint8_t alternate_ddc_pin;
1082 
1083 	uint8_t dp_boost_level;
1084 	uint8_t hdmi_boost_level;
1085 	int dp_max_link_rate;		/* 0 for not limited by VBT */
1086 };
1087 
1088 enum psr_lines_to_wait {
1089 	PSR_0_LINES_TO_WAIT = 0,
1090 	PSR_1_LINE_TO_WAIT,
1091 	PSR_4_LINES_TO_WAIT,
1092 	PSR_8_LINES_TO_WAIT
1093 };
1094 
1095 struct intel_vbt_data {
1096 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1097 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1098 
1099 	/* Feature bits */
1100 	unsigned int int_tv_support:1;
1101 	unsigned int lvds_dither:1;
1102 	unsigned int int_crt_support:1;
1103 	unsigned int lvds_use_ssc:1;
1104 	unsigned int int_lvds_support:1;
1105 	unsigned int display_clock_mode:1;
1106 	unsigned int fdi_rx_polarity_inverted:1;
1107 	unsigned int panel_type:4;
1108 	int lvds_ssc_freq;
1109 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1110 
1111 	enum drrs_support_type drrs_type;
1112 
1113 	struct {
1114 		int rate;
1115 		int lanes;
1116 		int preemphasis;
1117 		int vswing;
1118 		bool low_vswing;
1119 		bool initialized;
1120 		int bpp;
1121 		struct edp_power_seq pps;
1122 	} edp;
1123 
1124 	struct {
1125 		bool enable;
1126 		bool full_link;
1127 		bool require_aux_wakeup;
1128 		int idle_frames;
1129 		enum psr_lines_to_wait lines_to_wait;
1130 		int tp1_wakeup_time_us;
1131 		int tp2_tp3_wakeup_time_us;
1132 	} psr;
1133 
1134 	struct {
1135 		u16 pwm_freq_hz;
1136 		bool present;
1137 		bool active_low_pwm;
1138 		u8 min_brightness;	/* min_brightness/255 of max */
1139 		u8 controller;		/* brightness controller number */
1140 		enum intel_backlight_type type;
1141 	} backlight;
1142 
1143 	/* MIPI DSI */
1144 	struct {
1145 		u16 panel_id;
1146 		struct mipi_config *config;
1147 		struct mipi_pps_data *pps;
1148 		u16 bl_ports;
1149 		u16 cabc_ports;
1150 		u8 seq_version;
1151 		u32 size;
1152 		u8 *data;
1153 		const u8 *sequence[MIPI_SEQ_MAX];
1154 		u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1155 	} dsi;
1156 
1157 	int crt_ddc_pin;
1158 
1159 	int child_dev_num;
1160 	struct child_device_config *child_dev;
1161 
1162 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1163 	struct sdvo_device_mapping sdvo_mappings[2];
1164 };
1165 
1166 enum intel_ddb_partitioning {
1167 	INTEL_DDB_PART_1_2,
1168 	INTEL_DDB_PART_5_6, /* IVB+ */
1169 };
1170 
1171 struct intel_wm_level {
1172 	bool enable;
1173 	uint32_t pri_val;
1174 	uint32_t spr_val;
1175 	uint32_t cur_val;
1176 	uint32_t fbc_val;
1177 };
1178 
1179 struct ilk_wm_values {
1180 	uint32_t wm_pipe[3];
1181 	uint32_t wm_lp[3];
1182 	uint32_t wm_lp_spr[3];
1183 	uint32_t wm_linetime[3];
1184 	bool enable_fbc_wm;
1185 	enum intel_ddb_partitioning partitioning;
1186 };
1187 
1188 struct g4x_pipe_wm {
1189 	uint16_t plane[I915_MAX_PLANES];
1190 	uint16_t fbc;
1191 };
1192 
1193 struct g4x_sr_wm {
1194 	uint16_t plane;
1195 	uint16_t cursor;
1196 	uint16_t fbc;
1197 };
1198 
1199 struct vlv_wm_ddl_values {
1200 	uint8_t plane[I915_MAX_PLANES];
1201 };
1202 
1203 struct vlv_wm_values {
1204 	struct g4x_pipe_wm pipe[3];
1205 	struct g4x_sr_wm sr;
1206 	struct vlv_wm_ddl_values ddl[3];
1207 	uint8_t level;
1208 	bool cxsr;
1209 };
1210 
1211 struct g4x_wm_values {
1212 	struct g4x_pipe_wm pipe[2];
1213 	struct g4x_sr_wm sr;
1214 	struct g4x_sr_wm hpll;
1215 	bool cxsr;
1216 	bool hpll_en;
1217 	bool fbc_en;
1218 };
1219 
1220 struct skl_ddb_entry {
1221 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1222 };
1223 
1224 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1225 {
1226 	return entry->end - entry->start;
1227 }
1228 
1229 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1230 				       const struct skl_ddb_entry *e2)
1231 {
1232 	if (e1->start == e2->start && e1->end == e2->end)
1233 		return true;
1234 
1235 	return false;
1236 }
1237 
1238 struct skl_ddb_allocation {
1239 	/* packed/y */
1240 	struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES];
1241 	struct skl_ddb_entry uv_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1242 	u8 enabled_slices; /* GEN11 has configurable 2 slices */
1243 };
1244 
1245 struct skl_ddb_values {
1246 	unsigned dirty_pipes;
1247 	struct skl_ddb_allocation ddb;
1248 };
1249 
1250 struct skl_wm_level {
1251 	bool plane_en;
1252 	uint16_t plane_res_b;
1253 	uint8_t plane_res_l;
1254 };
1255 
1256 /* Stores plane specific WM parameters */
1257 struct skl_wm_params {
1258 	bool x_tiled, y_tiled;
1259 	bool rc_surface;
1260 	bool is_planar;
1261 	uint32_t width;
1262 	uint8_t cpp;
1263 	uint32_t plane_pixel_rate;
1264 	uint32_t y_min_scanlines;
1265 	uint32_t plane_bytes_per_line;
1266 	uint_fixed_16_16_t plane_blocks_per_line;
1267 	uint_fixed_16_16_t y_tile_minimum;
1268 	uint32_t linetime_us;
1269 	uint32_t dbuf_block_size;
1270 };
1271 
1272 /*
1273  * This struct helps tracking the state needed for runtime PM, which puts the
1274  * device in PCI D3 state. Notice that when this happens, nothing on the
1275  * graphics device works, even register access, so we don't get interrupts nor
1276  * anything else.
1277  *
1278  * Every piece of our code that needs to actually touch the hardware needs to
1279  * either call intel_runtime_pm_get or call intel_display_power_get with the
1280  * appropriate power domain.
1281  *
1282  * Our driver uses the autosuspend delay feature, which means we'll only really
1283  * suspend if we stay with zero refcount for a certain amount of time. The
1284  * default value is currently very conservative (see intel_runtime_pm_enable), but
1285  * it can be changed with the standard runtime PM files from sysfs.
1286  *
1287  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1288  * goes back to false exactly before we reenable the IRQs. We use this variable
1289  * to check if someone is trying to enable/disable IRQs while they're supposed
1290  * to be disabled. This shouldn't happen and we'll print some error messages in
1291  * case it happens.
1292  *
1293  * For more, read the Documentation/power/runtime_pm.txt.
1294  */
1295 struct i915_runtime_pm {
1296 	atomic_t wakeref_count;
1297 	bool suspended;
1298 	bool irqs_enabled;
1299 };
1300 
1301 enum intel_pipe_crc_source {
1302 	INTEL_PIPE_CRC_SOURCE_NONE,
1303 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1304 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1305 	INTEL_PIPE_CRC_SOURCE_PF,
1306 	INTEL_PIPE_CRC_SOURCE_PIPE,
1307 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1308 	INTEL_PIPE_CRC_SOURCE_TV,
1309 	INTEL_PIPE_CRC_SOURCE_DP_B,
1310 	INTEL_PIPE_CRC_SOURCE_DP_C,
1311 	INTEL_PIPE_CRC_SOURCE_DP_D,
1312 	INTEL_PIPE_CRC_SOURCE_AUTO,
1313 	INTEL_PIPE_CRC_SOURCE_MAX,
1314 };
1315 
1316 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1317 struct intel_pipe_crc {
1318 	spinlock_t lock;
1319 	int skipped;
1320 	enum intel_pipe_crc_source source;
1321 };
1322 
1323 struct i915_frontbuffer_tracking {
1324 	spinlock_t lock;
1325 
1326 	/*
1327 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1328 	 * scheduled flips.
1329 	 */
1330 	unsigned busy_bits;
1331 	unsigned flip_bits;
1332 };
1333 
1334 struct i915_wa_reg {
1335 	u32 addr;
1336 	u32 value;
1337 	/* bitmask representing WA bits */
1338 	u32 mask;
1339 };
1340 
1341 #define I915_MAX_WA_REGS 16
1342 
1343 struct i915_workarounds {
1344 	struct i915_wa_reg reg[I915_MAX_WA_REGS];
1345 	u32 count;
1346 };
1347 
1348 struct i915_virtual_gpu {
1349 	bool active;
1350 	u32 caps;
1351 };
1352 
1353 /* used in computing the new watermarks state */
1354 struct intel_wm_config {
1355 	unsigned int num_pipes_active;
1356 	bool sprites_enabled;
1357 	bool sprites_scaled;
1358 };
1359 
1360 struct i915_oa_format {
1361 	u32 format;
1362 	int size;
1363 };
1364 
1365 struct i915_oa_reg {
1366 	i915_reg_t addr;
1367 	u32 value;
1368 };
1369 
1370 struct i915_oa_config {
1371 	char uuid[UUID_STRING_LEN + 1];
1372 	int id;
1373 
1374 	const struct i915_oa_reg *mux_regs;
1375 	u32 mux_regs_len;
1376 	const struct i915_oa_reg *b_counter_regs;
1377 	u32 b_counter_regs_len;
1378 	const struct i915_oa_reg *flex_regs;
1379 	u32 flex_regs_len;
1380 
1381 	struct attribute_group sysfs_metric;
1382 	struct attribute *attrs[2];
1383 	struct device_attribute sysfs_metric_id;
1384 
1385 	atomic_t ref_count;
1386 };
1387 
1388 struct i915_perf_stream;
1389 
1390 /**
1391  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1392  */
1393 struct i915_perf_stream_ops {
1394 	/**
1395 	 * @enable: Enables the collection of HW samples, either in response to
1396 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1397 	 * without `I915_PERF_FLAG_DISABLED`.
1398 	 */
1399 	void (*enable)(struct i915_perf_stream *stream);
1400 
1401 	/**
1402 	 * @disable: Disables the collection of HW samples, either in response
1403 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1404 	 * the stream.
1405 	 */
1406 	void (*disable)(struct i915_perf_stream *stream);
1407 
1408 	/**
1409 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1410 	 * once there is something ready to read() for the stream
1411 	 */
1412 	void (*poll_wait)(struct i915_perf_stream *stream,
1413 			  struct file *file,
1414 			  poll_table *wait);
1415 
1416 	/**
1417 	 * @wait_unlocked: For handling a blocking read, wait until there is
1418 	 * something to ready to read() for the stream. E.g. wait on the same
1419 	 * wait queue that would be passed to poll_wait().
1420 	 */
1421 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1422 
1423 	/**
1424 	 * @read: Copy buffered metrics as records to userspace
1425 	 * **buf**: the userspace, destination buffer
1426 	 * **count**: the number of bytes to copy, requested by userspace
1427 	 * **offset**: zero at the start of the read, updated as the read
1428 	 * proceeds, it represents how many bytes have been copied so far and
1429 	 * the buffer offset for copying the next record.
1430 	 *
1431 	 * Copy as many buffered i915 perf samples and records for this stream
1432 	 * to userspace as will fit in the given buffer.
1433 	 *
1434 	 * Only write complete records; returning -%ENOSPC if there isn't room
1435 	 * for a complete record.
1436 	 *
1437 	 * Return any error condition that results in a short read such as
1438 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1439 	 * returning to userspace.
1440 	 */
1441 	int (*read)(struct i915_perf_stream *stream,
1442 		    char __user *buf,
1443 		    size_t count,
1444 		    size_t *offset);
1445 
1446 	/**
1447 	 * @destroy: Cleanup any stream specific resources.
1448 	 *
1449 	 * The stream will always be disabled before this is called.
1450 	 */
1451 	void (*destroy)(struct i915_perf_stream *stream);
1452 };
1453 
1454 /**
1455  * struct i915_perf_stream - state for a single open stream FD
1456  */
1457 struct i915_perf_stream {
1458 	/**
1459 	 * @dev_priv: i915 drm device
1460 	 */
1461 	struct drm_i915_private *dev_priv;
1462 
1463 	/**
1464 	 * @link: Links the stream into ``&drm_i915_private->streams``
1465 	 */
1466 	struct list_head link;
1467 
1468 	/**
1469 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1470 	 * properties given when opening a stream, representing the contents
1471 	 * of a single sample as read() by userspace.
1472 	 */
1473 	u32 sample_flags;
1474 
1475 	/**
1476 	 * @sample_size: Considering the configured contents of a sample
1477 	 * combined with the required header size, this is the total size
1478 	 * of a single sample record.
1479 	 */
1480 	int sample_size;
1481 
1482 	/**
1483 	 * @ctx: %NULL if measuring system-wide across all contexts or a
1484 	 * specific context that is being monitored.
1485 	 */
1486 	struct i915_gem_context *ctx;
1487 
1488 	/**
1489 	 * @enabled: Whether the stream is currently enabled, considering
1490 	 * whether the stream was opened in a disabled state and based
1491 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1492 	 */
1493 	bool enabled;
1494 
1495 	/**
1496 	 * @ops: The callbacks providing the implementation of this specific
1497 	 * type of configured stream.
1498 	 */
1499 	const struct i915_perf_stream_ops *ops;
1500 
1501 	/**
1502 	 * @oa_config: The OA configuration used by the stream.
1503 	 */
1504 	struct i915_oa_config *oa_config;
1505 };
1506 
1507 /**
1508  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1509  */
1510 struct i915_oa_ops {
1511 	/**
1512 	 * @is_valid_b_counter_reg: Validates register's address for
1513 	 * programming boolean counters for a particular platform.
1514 	 */
1515 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1516 				       u32 addr);
1517 
1518 	/**
1519 	 * @is_valid_mux_reg: Validates register's address for programming mux
1520 	 * for a particular platform.
1521 	 */
1522 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1523 
1524 	/**
1525 	 * @is_valid_flex_reg: Validates register's address for programming
1526 	 * flex EU filtering for a particular platform.
1527 	 */
1528 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1529 
1530 	/**
1531 	 * @enable_metric_set: Selects and applies any MUX configuration to set
1532 	 * up the Boolean and Custom (B/C) counters that are part of the
1533 	 * counter reports being sampled. May apply system constraints such as
1534 	 * disabling EU clock gating as required.
1535 	 */
1536 	int (*enable_metric_set)(struct i915_perf_stream *stream);
1537 
1538 	/**
1539 	 * @disable_metric_set: Remove system constraints associated with using
1540 	 * the OA unit.
1541 	 */
1542 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1543 
1544 	/**
1545 	 * @oa_enable: Enable periodic sampling
1546 	 */
1547 	void (*oa_enable)(struct i915_perf_stream *stream);
1548 
1549 	/**
1550 	 * @oa_disable: Disable periodic sampling
1551 	 */
1552 	void (*oa_disable)(struct i915_perf_stream *stream);
1553 
1554 	/**
1555 	 * @read: Copy data from the circular OA buffer into a given userspace
1556 	 * buffer.
1557 	 */
1558 	int (*read)(struct i915_perf_stream *stream,
1559 		    char __user *buf,
1560 		    size_t count,
1561 		    size_t *offset);
1562 
1563 	/**
1564 	 * @oa_hw_tail_read: read the OA tail pointer register
1565 	 *
1566 	 * In particular this enables us to share all the fiddly code for
1567 	 * handling the OA unit tail pointer race that affects multiple
1568 	 * generations.
1569 	 */
1570 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1571 };
1572 
1573 struct intel_cdclk_state {
1574 	unsigned int cdclk, vco, ref, bypass;
1575 	u8 voltage_level;
1576 };
1577 
1578 struct drm_i915_private {
1579 	struct drm_device drm;
1580 
1581 	struct kmem_cache *objects;
1582 	struct kmem_cache *vmas;
1583 	struct kmem_cache *luts;
1584 	struct kmem_cache *requests;
1585 	struct kmem_cache *dependencies;
1586 	struct kmem_cache *priorities;
1587 
1588 	const struct intel_device_info info;
1589 	struct intel_driver_caps caps;
1590 
1591 	/**
1592 	 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1593 	 * end of stolen which we can optionally use to create GEM objects
1594 	 * backed by stolen memory. Note that stolen_usable_size tells us
1595 	 * exactly how much of this we are actually allowed to use, given that
1596 	 * some portion of it is in fact reserved for use by hardware functions.
1597 	 */
1598 	struct resource dsm;
1599 	/**
1600 	 * Reseved portion of Data Stolen Memory
1601 	 */
1602 	struct resource dsm_reserved;
1603 
1604 	/*
1605 	 * Stolen memory is segmented in hardware with different portions
1606 	 * offlimits to certain functions.
1607 	 *
1608 	 * The drm_mm is initialised to the total accessible range, as found
1609 	 * from the PCI config. On Broadwell+, this is further restricted to
1610 	 * avoid the first page! The upper end of stolen memory is reserved for
1611 	 * hardware functions and similarly removed from the accessible range.
1612 	 */
1613 	resource_size_t stolen_usable_size;	/* Total size minus reserved ranges */
1614 
1615 	void __iomem *regs;
1616 
1617 	struct intel_uncore uncore;
1618 
1619 	struct i915_virtual_gpu vgpu;
1620 
1621 	struct intel_gvt *gvt;
1622 
1623 	struct intel_wopcm wopcm;
1624 
1625 	struct intel_huc huc;
1626 	struct intel_guc guc;
1627 
1628 	struct intel_csr csr;
1629 
1630 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1631 
1632 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
1633 	 * controller on different i2c buses. */
1634 	struct mutex gmbus_mutex;
1635 
1636 	/**
1637 	 * Base address of where the gmbus and gpio blocks are located (either
1638 	 * on PCH or on SoC for platforms without PCH).
1639 	 */
1640 	uint32_t gpio_mmio_base;
1641 
1642 	/* MMIO base address for MIPI regs */
1643 	uint32_t mipi_mmio_base;
1644 
1645 	uint32_t psr_mmio_base;
1646 
1647 	uint32_t pps_mmio_base;
1648 
1649 	wait_queue_head_t gmbus_wait_queue;
1650 
1651 	struct pci_dev *bridge_dev;
1652 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
1653 	/* Context used internally to idle the GPU and setup initial state */
1654 	struct i915_gem_context *kernel_context;
1655 	/* Context only to be used for injecting preemption commands */
1656 	struct i915_gem_context *preempt_context;
1657 	struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1658 					    [MAX_ENGINE_INSTANCE + 1];
1659 
1660 	struct resource mch_res;
1661 
1662 	/* protects the irq masks */
1663 	spinlock_t irq_lock;
1664 
1665 	bool display_irqs_enabled;
1666 
1667 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1668 	struct pm_qos_request pm_qos;
1669 
1670 	/* Sideband mailbox protection */
1671 	struct mutex sb_lock;
1672 
1673 	/** Cached value of IMR to avoid reads in updating the bitfield */
1674 	union {
1675 		u32 irq_mask;
1676 		u32 de_irq_mask[I915_MAX_PIPES];
1677 	};
1678 	u32 gt_irq_mask;
1679 	u32 pm_imr;
1680 	u32 pm_ier;
1681 	u32 pm_rps_events;
1682 	u32 pm_guc_events;
1683 	u32 pipestat_irq_mask[I915_MAX_PIPES];
1684 
1685 	struct i915_hotplug hotplug;
1686 	struct intel_fbc fbc;
1687 	struct i915_drrs drrs;
1688 	struct intel_opregion opregion;
1689 	struct intel_vbt_data vbt;
1690 
1691 	bool preserve_bios_swizzle;
1692 
1693 	/* overlay */
1694 	struct intel_overlay *overlay;
1695 
1696 	/* backlight registers and fields in struct intel_panel */
1697 	struct mutex backlight_lock;
1698 
1699 	/* LVDS info */
1700 	bool no_aux_handshake;
1701 
1702 	/* protects panel power sequencer state */
1703 	struct mutex pps_mutex;
1704 
1705 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1706 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1707 
1708 	unsigned int fsb_freq, mem_freq, is_ddr3;
1709 	unsigned int skl_preferred_vco_freq;
1710 	unsigned int max_cdclk_freq;
1711 
1712 	unsigned int max_dotclk_freq;
1713 	unsigned int rawclk_freq;
1714 	unsigned int hpll_freq;
1715 	unsigned int fdi_pll_freq;
1716 	unsigned int czclk_freq;
1717 
1718 	struct {
1719 		/*
1720 		 * The current logical cdclk state.
1721 		 * See intel_atomic_state.cdclk.logical
1722 		 *
1723 		 * For reading holding any crtc lock is sufficient,
1724 		 * for writing must hold all of them.
1725 		 */
1726 		struct intel_cdclk_state logical;
1727 		/*
1728 		 * The current actual cdclk state.
1729 		 * See intel_atomic_state.cdclk.actual
1730 		 */
1731 		struct intel_cdclk_state actual;
1732 		/* The current hardware cdclk state */
1733 		struct intel_cdclk_state hw;
1734 	} cdclk;
1735 
1736 	/**
1737 	 * wq - Driver workqueue for GEM.
1738 	 *
1739 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
1740 	 * locks, for otherwise the flushing done in the pageflip code will
1741 	 * result in deadlocks.
1742 	 */
1743 	struct workqueue_struct *wq;
1744 
1745 	/* ordered wq for modesets */
1746 	struct workqueue_struct *modeset_wq;
1747 
1748 	/* Display functions */
1749 	struct drm_i915_display_funcs display;
1750 
1751 	/* PCH chipset type */
1752 	enum intel_pch pch_type;
1753 	unsigned short pch_id;
1754 
1755 	unsigned long quirks;
1756 
1757 	struct drm_atomic_state *modeset_restore_state;
1758 	struct drm_modeset_acquire_ctx reset_ctx;
1759 
1760 	struct i915_ggtt ggtt; /* VM representing the global address space */
1761 
1762 	struct i915_gem_mm mm;
1763 	DECLARE_HASHTABLE(mm_structs, 7);
1764 	struct mutex mm_lock;
1765 
1766 	struct intel_ppat ppat;
1767 
1768 	/* Kernel Modesetting */
1769 
1770 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1771 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1772 
1773 #ifdef CONFIG_DEBUG_FS
1774 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1775 #endif
1776 
1777 	/* dpll and cdclk state is protected by connection_mutex */
1778 	int num_shared_dpll;
1779 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1780 	const struct intel_dpll_mgr *dpll_mgr;
1781 
1782 	/*
1783 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1784 	 * Must be global rather than per dpll, because on some platforms
1785 	 * plls share registers.
1786 	 */
1787 	struct mutex dpll_lock;
1788 
1789 	unsigned int active_crtcs;
1790 	/* minimum acceptable cdclk for each pipe */
1791 	int min_cdclk[I915_MAX_PIPES];
1792 	/* minimum acceptable voltage level for each pipe */
1793 	u8 min_voltage_level[I915_MAX_PIPES];
1794 
1795 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1796 
1797 	struct i915_workarounds workarounds;
1798 
1799 	struct i915_frontbuffer_tracking fb_tracking;
1800 
1801 	struct intel_atomic_helper {
1802 		struct llist_head free_list;
1803 		struct work_struct free_work;
1804 	} atomic_helper;
1805 
1806 	u16 orig_clock;
1807 
1808 	bool mchbar_need_disable;
1809 
1810 	struct intel_l3_parity l3_parity;
1811 
1812 	/* Cannot be determined by PCIID. You must always read a register. */
1813 	u32 edram_cap;
1814 
1815 	/*
1816 	 * Protects RPS/RC6 register access and PCU communication.
1817 	 * Must be taken after struct_mutex if nested. Note that
1818 	 * this lock may be held for long periods of time when
1819 	 * talking to hw - so only take it when talking to hw!
1820 	 */
1821 	struct mutex pcu_lock;
1822 
1823 	/* gen6+ GT PM state */
1824 	struct intel_gen6_power_mgmt gt_pm;
1825 
1826 	/* ilk-only ips/rps state. Everything in here is protected by the global
1827 	 * mchdev_lock in intel_pm.c */
1828 	struct intel_ilk_power_mgmt ips;
1829 
1830 	struct i915_power_domains power_domains;
1831 
1832 	struct i915_psr psr;
1833 
1834 	struct i915_gpu_error gpu_error;
1835 
1836 	struct drm_i915_gem_object *vlv_pctx;
1837 
1838 	/* list of fbdev register on this device */
1839 	struct intel_fbdev *fbdev;
1840 	struct work_struct fbdev_suspend_work;
1841 
1842 	struct drm_property *broadcast_rgb_property;
1843 	struct drm_property *force_audio_property;
1844 
1845 	/* hda/i915 audio component */
1846 	struct i915_audio_component *audio_component;
1847 	bool audio_component_registered;
1848 	/**
1849 	 * av_mutex - mutex for audio/video sync
1850 	 *
1851 	 */
1852 	struct mutex av_mutex;
1853 
1854 	struct {
1855 		struct mutex mutex;
1856 		struct list_head list;
1857 		struct llist_head free_list;
1858 		struct work_struct free_work;
1859 
1860 		/* The hw wants to have a stable context identifier for the
1861 		 * lifetime of the context (for OA, PASID, faults, etc).
1862 		 * This is limited in execlists to 21 bits.
1863 		 */
1864 		struct ida hw_ida;
1865 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1866 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */
1867 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1868 		struct list_head hw_id_list;
1869 	} contexts;
1870 
1871 	u32 fdi_rx_config;
1872 
1873 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1874 	u32 chv_phy_control;
1875 	/*
1876 	 * Shadows for CHV DPLL_MD regs to keep the state
1877 	 * checker somewhat working in the presence hardware
1878 	 * crappiness (can't read out DPLL_MD for pipes B & C).
1879 	 */
1880 	u32 chv_dpll_md[I915_MAX_PIPES];
1881 	u32 bxt_phy_grc;
1882 
1883 	u32 suspend_count;
1884 	bool power_domains_suspended;
1885 	struct i915_suspend_saved_registers regfile;
1886 	struct vlv_s0ix_state vlv_s0ix_state;
1887 
1888 	enum {
1889 		I915_SAGV_UNKNOWN = 0,
1890 		I915_SAGV_DISABLED,
1891 		I915_SAGV_ENABLED,
1892 		I915_SAGV_NOT_CONTROLLED
1893 	} sagv_status;
1894 
1895 	struct {
1896 		/*
1897 		 * Raw watermark latency values:
1898 		 * in 0.1us units for WM0,
1899 		 * in 0.5us units for WM1+.
1900 		 */
1901 		/* primary */
1902 		uint16_t pri_latency[5];
1903 		/* sprite */
1904 		uint16_t spr_latency[5];
1905 		/* cursor */
1906 		uint16_t cur_latency[5];
1907 		/*
1908 		 * Raw watermark memory latency values
1909 		 * for SKL for all 8 levels
1910 		 * in 1us units.
1911 		 */
1912 		uint16_t skl_latency[8];
1913 
1914 		/* current hardware state */
1915 		union {
1916 			struct ilk_wm_values hw;
1917 			struct skl_ddb_values skl_hw;
1918 			struct vlv_wm_values vlv;
1919 			struct g4x_wm_values g4x;
1920 		};
1921 
1922 		uint8_t max_level;
1923 
1924 		/*
1925 		 * Should be held around atomic WM register writing; also
1926 		 * protects * intel_crtc->wm.active and
1927 		 * cstate->wm.need_postvbl_update.
1928 		 */
1929 		struct mutex wm_mutex;
1930 
1931 		/*
1932 		 * Set during HW readout of watermarks/DDB.  Some platforms
1933 		 * need to know when we're still using BIOS-provided values
1934 		 * (which we don't fully trust).
1935 		 */
1936 		bool distrust_bios_wm;
1937 	} wm;
1938 
1939 	struct dram_info {
1940 		bool valid;
1941 		bool is_16gb_dimm;
1942 		u8 num_channels;
1943 		enum dram_rank {
1944 			I915_DRAM_RANK_INVALID = 0,
1945 			I915_DRAM_RANK_SINGLE,
1946 			I915_DRAM_RANK_DUAL
1947 		} rank;
1948 		u32 bandwidth_kbps;
1949 		bool symmetric_memory;
1950 	} dram_info;
1951 
1952 	struct i915_runtime_pm runtime_pm;
1953 
1954 	struct {
1955 		bool initialized;
1956 
1957 		struct kobject *metrics_kobj;
1958 		struct ctl_table_header *sysctl_header;
1959 
1960 		/*
1961 		 * Lock associated with adding/modifying/removing OA configs
1962 		 * in dev_priv->perf.metrics_idr.
1963 		 */
1964 		struct mutex metrics_lock;
1965 
1966 		/*
1967 		 * List of dynamic configurations, you need to hold
1968 		 * dev_priv->perf.metrics_lock to access it.
1969 		 */
1970 		struct idr metrics_idr;
1971 
1972 		/*
1973 		 * Lock associated with anything below within this structure
1974 		 * except exclusive_stream.
1975 		 */
1976 		struct mutex lock;
1977 		struct list_head streams;
1978 
1979 		struct {
1980 			/*
1981 			 * The stream currently using the OA unit. If accessed
1982 			 * outside a syscall associated to its file
1983 			 * descriptor, you need to hold
1984 			 * dev_priv->drm.struct_mutex.
1985 			 */
1986 			struct i915_perf_stream *exclusive_stream;
1987 
1988 			struct intel_context *pinned_ctx;
1989 			u32 specific_ctx_id;
1990 			u32 specific_ctx_id_mask;
1991 
1992 			struct hrtimer poll_check_timer;
1993 			wait_queue_head_t poll_wq;
1994 			bool pollin;
1995 
1996 			/**
1997 			 * For rate limiting any notifications of spurious
1998 			 * invalid OA reports
1999 			 */
2000 			struct ratelimit_state spurious_report_rs;
2001 
2002 			bool periodic;
2003 			int period_exponent;
2004 
2005 			struct i915_oa_config test_config;
2006 
2007 			struct {
2008 				struct i915_vma *vma;
2009 				u8 *vaddr;
2010 				u32 last_ctx_id;
2011 				int format;
2012 				int format_size;
2013 				int size_exponent;
2014 
2015 				/**
2016 				 * Locks reads and writes to all head/tail state
2017 				 *
2018 				 * Consider: the head and tail pointer state
2019 				 * needs to be read consistently from a hrtimer
2020 				 * callback (atomic context) and read() fop
2021 				 * (user context) with tail pointer updates
2022 				 * happening in atomic context and head updates
2023 				 * in user context and the (unlikely)
2024 				 * possibility of read() errors needing to
2025 				 * reset all head/tail state.
2026 				 *
2027 				 * Note: Contention or performance aren't
2028 				 * currently a significant concern here
2029 				 * considering the relatively low frequency of
2030 				 * hrtimer callbacks (5ms period) and that
2031 				 * reads typically only happen in response to a
2032 				 * hrtimer event and likely complete before the
2033 				 * next callback.
2034 				 *
2035 				 * Note: This lock is not held *while* reading
2036 				 * and copying data to userspace so the value
2037 				 * of head observed in htrimer callbacks won't
2038 				 * represent any partial consumption of data.
2039 				 */
2040 				spinlock_t ptr_lock;
2041 
2042 				/**
2043 				 * One 'aging' tail pointer and one 'aged'
2044 				 * tail pointer ready to used for reading.
2045 				 *
2046 				 * Initial values of 0xffffffff are invalid
2047 				 * and imply that an update is required
2048 				 * (and should be ignored by an attempted
2049 				 * read)
2050 				 */
2051 				struct {
2052 					u32 offset;
2053 				} tails[2];
2054 
2055 				/**
2056 				 * Index for the aged tail ready to read()
2057 				 * data up to.
2058 				 */
2059 				unsigned int aged_tail_idx;
2060 
2061 				/**
2062 				 * A monotonic timestamp for when the current
2063 				 * aging tail pointer was read; used to
2064 				 * determine when it is old enough to trust.
2065 				 */
2066 				u64 aging_timestamp;
2067 
2068 				/**
2069 				 * Although we can always read back the head
2070 				 * pointer register, we prefer to avoid
2071 				 * trusting the HW state, just to avoid any
2072 				 * risk that some hardware condition could
2073 				 * somehow bump the head pointer unpredictably
2074 				 * and cause us to forward the wrong OA buffer
2075 				 * data to userspace.
2076 				 */
2077 				u32 head;
2078 			} oa_buffer;
2079 
2080 			u32 gen7_latched_oastatus1;
2081 			u32 ctx_oactxctrl_offset;
2082 			u32 ctx_flexeu0_offset;
2083 
2084 			/**
2085 			 * The RPT_ID/reason field for Gen8+ includes a bit
2086 			 * to determine if the CTX ID in the report is valid
2087 			 * but the specific bit differs between Gen 8 and 9
2088 			 */
2089 			u32 gen8_valid_ctx_bit;
2090 
2091 			struct i915_oa_ops ops;
2092 			const struct i915_oa_format *oa_formats;
2093 		} oa;
2094 	} perf;
2095 
2096 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2097 	struct {
2098 		void (*resume)(struct drm_i915_private *);
2099 		void (*cleanup_engine)(struct intel_engine_cs *engine);
2100 
2101 		struct list_head timelines;
2102 
2103 		struct list_head active_rings;
2104 		struct list_head closed_vma;
2105 		u32 active_requests;
2106 		u32 request_serial;
2107 
2108 		/**
2109 		 * Is the GPU currently considered idle, or busy executing
2110 		 * userspace requests? Whilst idle, we allow runtime power
2111 		 * management to power down the hardware and display clocks.
2112 		 * In order to reduce the effect on performance, there
2113 		 * is a slight delay before we do so.
2114 		 */
2115 		bool awake;
2116 
2117 		/**
2118 		 * The number of times we have woken up.
2119 		 */
2120 		unsigned int epoch;
2121 #define I915_EPOCH_INVALID 0
2122 
2123 		/**
2124 		 * We leave the user IRQ off as much as possible,
2125 		 * but this means that requests will finish and never
2126 		 * be retired once the system goes idle. Set a timer to
2127 		 * fire periodically while the ring is running. When it
2128 		 * fires, go retire requests.
2129 		 */
2130 		struct delayed_work retire_work;
2131 
2132 		/**
2133 		 * When we detect an idle GPU, we want to turn on
2134 		 * powersaving features. So once we see that there
2135 		 * are no more requests outstanding and no more
2136 		 * arrive within a small period of time, we fire
2137 		 * off the idle_work.
2138 		 */
2139 		struct delayed_work idle_work;
2140 
2141 		ktime_t last_init_time;
2142 	} gt;
2143 
2144 	/* perform PHY state sanity checks? */
2145 	bool chv_phy_assert[2];
2146 
2147 	bool ipc_enabled;
2148 
2149 	/* Used to save the pipe-to-encoder mapping for audio */
2150 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2151 
2152 	/* necessary resource sharing with HDMI LPE audio driver. */
2153 	struct {
2154 		struct platform_device *platdev;
2155 		int	irq;
2156 	} lpe_audio;
2157 
2158 	struct i915_pmu pmu;
2159 
2160 	/*
2161 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2162 	 * will be rejected. Instead look for a better place.
2163 	 */
2164 };
2165 
2166 struct dram_channel_info {
2167 	struct info {
2168 		u8 size, width;
2169 		enum dram_rank rank;
2170 	} l_info, s_info;
2171 	enum dram_rank rank;
2172 	bool is_16gb_dimm;
2173 };
2174 
2175 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2176 {
2177 	return container_of(dev, struct drm_i915_private, drm);
2178 }
2179 
2180 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2181 {
2182 	return to_i915(dev_get_drvdata(kdev));
2183 }
2184 
2185 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2186 {
2187 	return container_of(wopcm, struct drm_i915_private, wopcm);
2188 }
2189 
2190 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2191 {
2192 	return container_of(guc, struct drm_i915_private, guc);
2193 }
2194 
2195 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2196 {
2197 	return container_of(huc, struct drm_i915_private, huc);
2198 }
2199 
2200 /* Simple iterator over all initialised engines */
2201 #define for_each_engine(engine__, dev_priv__, id__) \
2202 	for ((id__) = 0; \
2203 	     (id__) < I915_NUM_ENGINES; \
2204 	     (id__)++) \
2205 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2206 
2207 /* Iterator over subset of engines selected by mask */
2208 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2209 	for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \
2210 	     (tmp__) ? \
2211 	     ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2212 	     0;)
2213 
2214 enum hdmi_force_audio {
2215 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2216 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2217 	HDMI_AUDIO_AUTO,		/* trust EDID */
2218 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2219 };
2220 
2221 #define I915_GTT_OFFSET_NONE ((u32)-1)
2222 
2223 /*
2224  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2225  * considered to be the frontbuffer for the given plane interface-wise. This
2226  * doesn't mean that the hw necessarily already scans it out, but that any
2227  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2228  *
2229  * We have one bit per pipe and per scanout plane type.
2230  */
2231 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2232 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2233 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2234 	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2235 	BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2236 })
2237 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2238 	BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2239 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2240 	GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2241 		INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2242 
2243 /*
2244  * Optimised SGL iterator for GEM objects
2245  */
2246 static __always_inline struct sgt_iter {
2247 	struct scatterlist *sgp;
2248 	union {
2249 		unsigned long pfn;
2250 		dma_addr_t dma;
2251 	};
2252 	unsigned int curr;
2253 	unsigned int max;
2254 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2255 	struct sgt_iter s = { .sgp = sgl };
2256 
2257 	if (s.sgp) {
2258 		s.max = s.curr = s.sgp->offset;
2259 		s.max += s.sgp->length;
2260 		if (dma)
2261 			s.dma = sg_dma_address(s.sgp);
2262 		else
2263 			s.pfn = page_to_pfn(sg_page(s.sgp));
2264 	}
2265 
2266 	return s;
2267 }
2268 
2269 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2270 {
2271 	++sg;
2272 	if (unlikely(sg_is_chain(sg)))
2273 		sg = sg_chain_ptr(sg);
2274 	return sg;
2275 }
2276 
2277 /**
2278  * __sg_next - return the next scatterlist entry in a list
2279  * @sg:		The current sg entry
2280  *
2281  * Description:
2282  *   If the entry is the last, return NULL; otherwise, step to the next
2283  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2284  *   otherwise just return the pointer to the current element.
2285  **/
2286 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2287 {
2288 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2289 }
2290 
2291 /**
2292  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2293  * @__dmap:	DMA address (output)
2294  * @__iter:	'struct sgt_iter' (iterator state, internal)
2295  * @__sgt:	sg_table to iterate over (input)
2296  */
2297 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2298 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2299 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2300 	     (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ?	\
2301 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2302 
2303 /**
2304  * for_each_sgt_page - iterate over the pages of the given sg_table
2305  * @__pp:	page pointer (output)
2306  * @__iter:	'struct sgt_iter' (iterator state, internal)
2307  * @__sgt:	sg_table to iterate over (input)
2308  */
2309 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2310 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2311 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2312 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2313 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2314 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2315 
2316 bool i915_sg_trim(struct sg_table *orig_st);
2317 
2318 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2319 {
2320 	unsigned int page_sizes;
2321 
2322 	page_sizes = 0;
2323 	while (sg) {
2324 		GEM_BUG_ON(sg->offset);
2325 		GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2326 		page_sizes |= sg->length;
2327 		sg = __sg_next(sg);
2328 	}
2329 
2330 	return page_sizes;
2331 }
2332 
2333 static inline unsigned int i915_sg_segment_size(void)
2334 {
2335 	unsigned int size = swiotlb_max_segment();
2336 
2337 	if (size == 0)
2338 		return SCATTERLIST_MAX_SEGMENT;
2339 
2340 	size = rounddown(size, PAGE_SIZE);
2341 	/* swiotlb_max_segment_size can return 1 byte when it means one page. */
2342 	if (size < PAGE_SIZE)
2343 		size = PAGE_SIZE;
2344 
2345 	return size;
2346 }
2347 
2348 static inline const struct intel_device_info *
2349 intel_info(const struct drm_i915_private *dev_priv)
2350 {
2351 	return &dev_priv->info;
2352 }
2353 
2354 #define INTEL_INFO(dev_priv)	intel_info((dev_priv))
2355 #define DRIVER_CAPS(dev_priv)	(&(dev_priv)->caps)
2356 
2357 #define INTEL_GEN(dev_priv)	((dev_priv)->info.gen)
2358 #define INTEL_DEVID(dev_priv)	((dev_priv)->info.device_id)
2359 
2360 #define REVID_FOREVER		0xff
2361 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2362 
2363 #define INTEL_GEN_MASK(s, e) ( \
2364 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2365 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2366 	GENMASK((e) - 1, (s) - 1))
2367 
2368 /* Returns true if Gen is in inclusive range [Start, End] */
2369 #define IS_GEN(dev_priv, s, e) \
2370 	(!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2371 
2372 /*
2373  * Return true if revision is in range [since,until] inclusive.
2374  *
2375  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2376  */
2377 #define IS_REVID(p, since, until) \
2378 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2379 
2380 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2381 
2382 #define IS_I830(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I830)
2383 #define IS_I845G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I845G)
2384 #define IS_I85X(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I85X)
2385 #define IS_I865G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I865G)
2386 #define IS_I915G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915G)
2387 #define IS_I915GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915GM)
2388 #define IS_I945G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945G)
2389 #define IS_I945GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945GM)
2390 #define IS_I965G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965G)
2391 #define IS_I965GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965GM)
2392 #define IS_G45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G45)
2393 #define IS_GM45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GM45)
2394 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2395 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2396 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2397 #define IS_PINEVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2398 #define IS_G33(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G33)
2399 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2400 #define IS_IVYBRIDGE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2401 #define IS_IVB_GT1(dev_priv)	(IS_IVYBRIDGE(dev_priv) && \
2402 				 (dev_priv)->info.gt == 1)
2403 #define IS_VALLEYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2404 #define IS_CHERRYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2405 #define IS_HASWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_HASWELL)
2406 #define IS_BROADWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2407 #define IS_SKYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2408 #define IS_BROXTON(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROXTON)
2409 #define IS_KABYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2410 #define IS_GEMINILAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2411 #define IS_COFFEELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2412 #define IS_CANNONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2413 #define IS_ICELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2414 #define IS_MOBILE(dev_priv)	((dev_priv)->info.is_mobile)
2415 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2416 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2417 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2418 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2419 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2420 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2421 /* ULX machines are also considered ULT. */
2422 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2423 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2424 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2425 				 (dev_priv)->info.gt == 3)
2426 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2427 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2428 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2429 				 (dev_priv)->info.gt == 3)
2430 /* ULX machines are also considered ULT. */
2431 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2432 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2433 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2434 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2435 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2436 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2437 				 INTEL_DEVID(dev_priv) == 0x1926)
2438 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2439 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2440 				 INTEL_DEVID(dev_priv) == 0x191E)
2441 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2442 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2443 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2444 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2445 				 INTEL_DEVID(dev_priv) == 0x5926)
2446 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2447 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2448 				 INTEL_DEVID(dev_priv) == 0x591E)
2449 #define IS_AML_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x591C || \
2450 				 INTEL_DEVID(dev_priv) == 0x87C0)
2451 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2452 				 (dev_priv)->info.gt == 2)
2453 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2454 				 (dev_priv)->info.gt == 3)
2455 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2456 				 (dev_priv)->info.gt == 4)
2457 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2458 				 (dev_priv)->info.gt == 2)
2459 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2460 				 (dev_priv)->info.gt == 3)
2461 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2462 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2463 #define IS_CFL_GT2(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2464 				 (dev_priv)->info.gt == 2)
2465 #define IS_CFL_GT3(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2466 				 (dev_priv)->info.gt == 3)
2467 #define IS_CNL_WITH_PORT_F(dev_priv)   (IS_CANNONLAKE(dev_priv) && \
2468 					(INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2469 
2470 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2471 
2472 #define SKL_REVID_A0		0x0
2473 #define SKL_REVID_B0		0x1
2474 #define SKL_REVID_C0		0x2
2475 #define SKL_REVID_D0		0x3
2476 #define SKL_REVID_E0		0x4
2477 #define SKL_REVID_F0		0x5
2478 #define SKL_REVID_G0		0x6
2479 #define SKL_REVID_H0		0x7
2480 
2481 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2482 
2483 #define BXT_REVID_A0		0x0
2484 #define BXT_REVID_A1		0x1
2485 #define BXT_REVID_B0		0x3
2486 #define BXT_REVID_B_LAST	0x8
2487 #define BXT_REVID_C0		0x9
2488 
2489 #define IS_BXT_REVID(dev_priv, since, until) \
2490 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2491 
2492 #define KBL_REVID_A0		0x0
2493 #define KBL_REVID_B0		0x1
2494 #define KBL_REVID_C0		0x2
2495 #define KBL_REVID_D0		0x3
2496 #define KBL_REVID_E0		0x4
2497 
2498 #define IS_KBL_REVID(dev_priv, since, until) \
2499 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2500 
2501 #define GLK_REVID_A0		0x0
2502 #define GLK_REVID_A1		0x1
2503 
2504 #define IS_GLK_REVID(dev_priv, since, until) \
2505 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2506 
2507 #define CNL_REVID_A0		0x0
2508 #define CNL_REVID_B0		0x1
2509 #define CNL_REVID_C0		0x2
2510 
2511 #define IS_CNL_REVID(p, since, until) \
2512 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2513 
2514 #define ICL_REVID_A0		0x0
2515 #define ICL_REVID_A2		0x1
2516 #define ICL_REVID_B0		0x3
2517 #define ICL_REVID_B2		0x4
2518 #define ICL_REVID_C0		0x5
2519 
2520 #define IS_ICL_REVID(p, since, until) \
2521 	(IS_ICELAKE(p) && IS_REVID(p, since, until))
2522 
2523 /*
2524  * The genX designation typically refers to the render engine, so render
2525  * capability related checks should use IS_GEN, while display and other checks
2526  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2527  * chips, etc.).
2528  */
2529 #define IS_GEN2(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(1)))
2530 #define IS_GEN3(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(2)))
2531 #define IS_GEN4(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(3)))
2532 #define IS_GEN5(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(4)))
2533 #define IS_GEN6(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(5)))
2534 #define IS_GEN7(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(6)))
2535 #define IS_GEN8(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(7)))
2536 #define IS_GEN9(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(8)))
2537 #define IS_GEN10(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(9)))
2538 #define IS_GEN11(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(10)))
2539 
2540 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2541 #define IS_GEN9_LP(dev_priv)	(IS_GEN9(dev_priv) && IS_LP(dev_priv))
2542 #define IS_GEN9_BC(dev_priv)	(IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2543 
2544 #define ENGINE_MASK(id)	BIT(id)
2545 #define RENDER_RING	ENGINE_MASK(RCS)
2546 #define BSD_RING	ENGINE_MASK(VCS)
2547 #define BLT_RING	ENGINE_MASK(BCS)
2548 #define VEBOX_RING	ENGINE_MASK(VECS)
2549 #define BSD2_RING	ENGINE_MASK(VCS2)
2550 #define BSD3_RING	ENGINE_MASK(VCS3)
2551 #define BSD4_RING	ENGINE_MASK(VCS4)
2552 #define VEBOX2_RING	ENGINE_MASK(VECS2)
2553 #define ALL_ENGINES	(~0)
2554 
2555 #define HAS_ENGINE(dev_priv, id) \
2556 	(!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2557 
2558 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
2559 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
2560 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
2561 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
2562 
2563 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv)
2564 
2565 #define HAS_LLC(dev_priv)	((dev_priv)->info.has_llc)
2566 #define HAS_SNOOP(dev_priv)	((dev_priv)->info.has_snoop)
2567 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2568 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2569 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2570 
2571 #define HWS_NEEDS_PHYSICAL(dev_priv)	((dev_priv)->info.hws_needs_physical)
2572 
2573 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2574 		((dev_priv)->info.has_logical_ring_contexts)
2575 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2576 		((dev_priv)->info.has_logical_ring_elsq)
2577 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2578 		((dev_priv)->info.has_logical_ring_preemption)
2579 
2580 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2581 
2582 #define INTEL_PPGTT(dev_priv) (INTEL_INFO(dev_priv)->ppgtt)
2583 #define HAS_PPGTT(dev_priv) \
2584 	(INTEL_PPGTT(dev_priv) != INTEL_PPGTT_NONE)
2585 #define HAS_FULL_PPGTT(dev_priv) \
2586 	(INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL)
2587 #define HAS_FULL_48BIT_PPGTT(dev_priv)	\
2588 	(INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL_4LVL)
2589 
2590 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2591 	GEM_BUG_ON((sizes) == 0); \
2592 	((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
2593 })
2594 
2595 #define HAS_OVERLAY(dev_priv)		 ((dev_priv)->info.has_overlay)
2596 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2597 		((dev_priv)->info.overlay_needs_physical)
2598 
2599 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2600 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
2601 
2602 /* WaRsDisableCoarsePowerGating:skl,cnl */
2603 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2604 	(IS_CANNONLAKE(dev_priv) || \
2605 	 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2606 
2607 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2608 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \
2609 					IS_GEMINILAKE(dev_priv) || \
2610 					IS_KABYLAKE(dev_priv))
2611 
2612 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2613  * rows, which changed the alignment requirements and fence programming.
2614  */
2615 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2616 					 !(IS_I915G(dev_priv) || \
2617 					 IS_I915GM(dev_priv)))
2618 #define SUPPORTS_TV(dev_priv)		((dev_priv)->info.supports_tv)
2619 #define I915_HAS_HOTPLUG(dev_priv)	((dev_priv)->info.has_hotplug)
2620 
2621 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
2622 #define HAS_FBC(dev_priv)	((dev_priv)->info.has_fbc)
2623 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2624 
2625 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2626 
2627 #define HAS_DP_MST(dev_priv)	((dev_priv)->info.has_dp_mst)
2628 
2629 #define HAS_DDI(dev_priv)		 ((dev_priv)->info.has_ddi)
2630 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2631 #define HAS_PSR(dev_priv)		 ((dev_priv)->info.has_psr)
2632 
2633 #define HAS_RC6(dev_priv)		 ((dev_priv)->info.has_rc6)
2634 #define HAS_RC6p(dev_priv)		 ((dev_priv)->info.has_rc6p)
2635 #define HAS_RC6pp(dev_priv)		 (false) /* HW was never validated */
2636 
2637 #define HAS_CSR(dev_priv)	((dev_priv)->info.has_csr)
2638 
2639 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2640 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2641 
2642 #define HAS_IPC(dev_priv)		 ((dev_priv)->info.has_ipc)
2643 
2644 /*
2645  * For now, anything with a GuC requires uCode loading, and then supports
2646  * command submission once loaded. But these are logically independent
2647  * properties, so we have separate macros to test them.
2648  */
2649 #define HAS_GUC(dev_priv)	((dev_priv)->info.has_guc)
2650 #define HAS_GUC_CT(dev_priv)	((dev_priv)->info.has_guc_ct)
2651 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2652 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
2653 
2654 /* For now, anything with a GuC has also HuC */
2655 #define HAS_HUC(dev_priv)	(HAS_GUC(dev_priv))
2656 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2657 
2658 /* Having a GuC is not the same as using a GuC */
2659 #define USES_GUC(dev_priv)		intel_uc_is_using_guc()
2660 #define USES_GUC_SUBMISSION(dev_priv)	intel_uc_is_using_guc_submission()
2661 #define USES_HUC(dev_priv)		intel_uc_is_using_huc()
2662 
2663 #define HAS_POOLED_EU(dev_priv)	((dev_priv)->info.has_pooled_eu)
2664 
2665 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
2666 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2667 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2668 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2669 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2670 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2671 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
2672 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
2673 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2674 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2675 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
2676 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
2677 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
2678 #define INTEL_PCH_ICP_DEVICE_ID_TYPE		0x3480
2679 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2680 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2681 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2682 
2683 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2684 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2685 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2686 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2687 #define HAS_PCH_CNP_LP(dev_priv) \
2688 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2689 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2690 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2691 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2692 #define HAS_PCH_LPT_LP(dev_priv) \
2693 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2694 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2695 #define HAS_PCH_LPT_H(dev_priv) \
2696 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2697 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2698 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2699 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2700 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2701 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2702 
2703 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2704 
2705 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2706 
2707 /* DPF == dynamic parity feature */
2708 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2709 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2710 				 2 : HAS_L3_DPF(dev_priv))
2711 
2712 #define GT_FREQUENCY_MULTIPLIER 50
2713 #define GEN9_FREQ_SCALER 3
2714 
2715 #include "i915_trace.h"
2716 
2717 static inline bool intel_vtd_active(void)
2718 {
2719 #ifdef CONFIG_INTEL_IOMMU
2720 	if (intel_iommu_gfx_mapped)
2721 		return true;
2722 #endif
2723 	return false;
2724 }
2725 
2726 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2727 {
2728 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2729 }
2730 
2731 static inline bool
2732 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2733 {
2734 	return IS_BROXTON(dev_priv) && intel_vtd_active();
2735 }
2736 
2737 /* i915_drv.c */
2738 void __printf(3, 4)
2739 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2740 	      const char *fmt, ...);
2741 
2742 #define i915_report_error(dev_priv, fmt, ...)				   \
2743 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2744 
2745 #ifdef CONFIG_COMPAT
2746 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2747 			      unsigned long arg);
2748 #else
2749 #define i915_compat_ioctl NULL
2750 #endif
2751 extern const struct dev_pm_ops i915_pm_ops;
2752 
2753 extern int i915_driver_load(struct pci_dev *pdev,
2754 			    const struct pci_device_id *ent);
2755 extern void i915_driver_unload(struct drm_device *dev);
2756 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2757 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2758 
2759 extern void i915_reset(struct drm_i915_private *i915,
2760 		       unsigned int stalled_mask,
2761 		       const char *reason);
2762 extern int i915_reset_engine(struct intel_engine_cs *engine,
2763 			     const char *reason);
2764 
2765 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
2766 extern int intel_reset_guc(struct drm_i915_private *dev_priv);
2767 extern int intel_guc_reset_engine(struct intel_guc *guc,
2768 				  struct intel_engine_cs *engine);
2769 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2770 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2771 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2772 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2773 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2774 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2775 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2776 
2777 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2778 int intel_engines_init(struct drm_i915_private *dev_priv);
2779 
2780 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv);
2781 
2782 /* intel_hotplug.c */
2783 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2784 			   u32 pin_mask, u32 long_mask);
2785 void intel_hpd_init(struct drm_i915_private *dev_priv);
2786 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2787 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2788 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2789 				   enum port port);
2790 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2791 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2792 
2793 /* i915_irq.c */
2794 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2795 {
2796 	unsigned long delay;
2797 
2798 	if (unlikely(!i915_modparams.enable_hangcheck))
2799 		return;
2800 
2801 	/* Don't continually defer the hangcheck so that it is always run at
2802 	 * least once after work has been scheduled on any ring. Otherwise,
2803 	 * we will ignore a hung ring if a second ring is kept busy.
2804 	 */
2805 
2806 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2807 	queue_delayed_work(system_long_wq,
2808 			   &dev_priv->gpu_error.hangcheck_work, delay);
2809 }
2810 
2811 __printf(4, 5)
2812 void i915_handle_error(struct drm_i915_private *dev_priv,
2813 		       u32 engine_mask,
2814 		       unsigned long flags,
2815 		       const char *fmt, ...);
2816 #define I915_ERROR_CAPTURE BIT(0)
2817 
2818 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2819 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2820 int intel_irq_install(struct drm_i915_private *dev_priv);
2821 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2822 
2823 void i915_clear_error_registers(struct drm_i915_private *dev_priv);
2824 
2825 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2826 {
2827 	return dev_priv->gvt;
2828 }
2829 
2830 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2831 {
2832 	return dev_priv->vgpu.active;
2833 }
2834 
2835 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2836 			      enum pipe pipe);
2837 void
2838 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2839 		     u32 status_mask);
2840 
2841 void
2842 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2843 		      u32 status_mask);
2844 
2845 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2846 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2847 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2848 				   uint32_t mask,
2849 				   uint32_t bits);
2850 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2851 			    uint32_t interrupt_mask,
2852 			    uint32_t enabled_irq_mask);
2853 static inline void
2854 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2855 {
2856 	ilk_update_display_irq(dev_priv, bits, bits);
2857 }
2858 static inline void
2859 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2860 {
2861 	ilk_update_display_irq(dev_priv, bits, 0);
2862 }
2863 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2864 			 enum pipe pipe,
2865 			 uint32_t interrupt_mask,
2866 			 uint32_t enabled_irq_mask);
2867 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2868 				       enum pipe pipe, uint32_t bits)
2869 {
2870 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2871 }
2872 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2873 					enum pipe pipe, uint32_t bits)
2874 {
2875 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2876 }
2877 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2878 				  uint32_t interrupt_mask,
2879 				  uint32_t enabled_irq_mask);
2880 static inline void
2881 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2882 {
2883 	ibx_display_interrupt_update(dev_priv, bits, bits);
2884 }
2885 static inline void
2886 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2887 {
2888 	ibx_display_interrupt_update(dev_priv, bits, 0);
2889 }
2890 
2891 /* i915_gem.c */
2892 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2893 			  struct drm_file *file_priv);
2894 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2895 			 struct drm_file *file_priv);
2896 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2897 			  struct drm_file *file_priv);
2898 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2899 			struct drm_file *file_priv);
2900 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2901 			struct drm_file *file_priv);
2902 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2903 			      struct drm_file *file_priv);
2904 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2905 			     struct drm_file *file_priv);
2906 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2907 			      struct drm_file *file_priv);
2908 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2909 			       struct drm_file *file_priv);
2910 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2911 			struct drm_file *file_priv);
2912 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2913 			       struct drm_file *file);
2914 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2915 			       struct drm_file *file);
2916 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2917 			    struct drm_file *file_priv);
2918 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2919 			   struct drm_file *file_priv);
2920 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2921 			      struct drm_file *file_priv);
2922 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2923 			      struct drm_file *file_priv);
2924 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2925 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2926 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2927 			   struct drm_file *file);
2928 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2929 				struct drm_file *file_priv);
2930 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2931 			struct drm_file *file_priv);
2932 void i915_gem_sanitize(struct drm_i915_private *i915);
2933 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2934 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2935 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2936 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2937 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2938 
2939 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
2940 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2941 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2942 			 const struct drm_i915_gem_object_ops *ops);
2943 struct drm_i915_gem_object *
2944 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2945 struct drm_i915_gem_object *
2946 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2947 				 const void *data, size_t size);
2948 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2949 void i915_gem_free_object(struct drm_gem_object *obj);
2950 
2951 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2952 {
2953 	if (!atomic_read(&i915->mm.free_count))
2954 		return;
2955 
2956 	/* A single pass should suffice to release all the freed objects (along
2957 	 * most call paths) , but be a little more paranoid in that freeing
2958 	 * the objects does take a little amount of time, during which the rcu
2959 	 * callbacks could have added new objects into the freed list, and
2960 	 * armed the work again.
2961 	 */
2962 	do {
2963 		rcu_barrier();
2964 	} while (flush_work(&i915->mm.free_work));
2965 }
2966 
2967 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2968 {
2969 	/*
2970 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
2971 	 * general we have workers that are armed by RCU and then rearm
2972 	 * themselves in their callbacks. To be paranoid, we need to
2973 	 * drain the workqueue a second time after waiting for the RCU
2974 	 * grace period so that we catch work queued via RCU from the first
2975 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
2976 	 * a result, we make an assumption that we only don't require more
2977 	 * than 2 passes to catch all recursive RCU delayed work.
2978 	 *
2979 	 */
2980 	int pass = 2;
2981 	do {
2982 		rcu_barrier();
2983 		drain_workqueue(i915->wq);
2984 	} while (--pass);
2985 }
2986 
2987 struct i915_vma * __must_check
2988 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2989 			 const struct i915_ggtt_view *view,
2990 			 u64 size,
2991 			 u64 alignment,
2992 			 u64 flags);
2993 
2994 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
2995 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2996 
2997 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
2998 
2999 static inline int __sg_page_count(const struct scatterlist *sg)
3000 {
3001 	return sg->length >> PAGE_SHIFT;
3002 }
3003 
3004 struct scatterlist *
3005 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3006 		       unsigned int n, unsigned int *offset);
3007 
3008 struct page *
3009 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3010 			 unsigned int n);
3011 
3012 struct page *
3013 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3014 			       unsigned int n);
3015 
3016 dma_addr_t
3017 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3018 				unsigned long n);
3019 
3020 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3021 				 struct sg_table *pages,
3022 				 unsigned int sg_page_sizes);
3023 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3024 
3025 static inline int __must_check
3026 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3027 {
3028 	might_lock(&obj->mm.lock);
3029 
3030 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3031 		return 0;
3032 
3033 	return __i915_gem_object_get_pages(obj);
3034 }
3035 
3036 static inline bool
3037 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
3038 {
3039 	return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
3040 }
3041 
3042 static inline void
3043 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3044 {
3045 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3046 
3047 	atomic_inc(&obj->mm.pages_pin_count);
3048 }
3049 
3050 static inline bool
3051 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3052 {
3053 	return atomic_read(&obj->mm.pages_pin_count);
3054 }
3055 
3056 static inline void
3057 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3058 {
3059 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3060 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3061 
3062 	atomic_dec(&obj->mm.pages_pin_count);
3063 }
3064 
3065 static inline void
3066 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3067 {
3068 	__i915_gem_object_unpin_pages(obj);
3069 }
3070 
3071 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3072 	I915_MM_NORMAL = 0,
3073 	I915_MM_SHRINKER
3074 };
3075 
3076 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3077 				 enum i915_mm_subclass subclass);
3078 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3079 
3080 enum i915_map_type {
3081 	I915_MAP_WB = 0,
3082 	I915_MAP_WC,
3083 #define I915_MAP_OVERRIDE BIT(31)
3084 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3085 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3086 };
3087 
3088 static inline enum i915_map_type
3089 i915_coherent_map_type(struct drm_i915_private *i915)
3090 {
3091 	return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
3092 }
3093 
3094 /**
3095  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3096  * @obj: the object to map into kernel address space
3097  * @type: the type of mapping, used to select pgprot_t
3098  *
3099  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3100  * pages and then returns a contiguous mapping of the backing storage into
3101  * the kernel address space. Based on the @type of mapping, the PTE will be
3102  * set to either WriteBack or WriteCombine (via pgprot_t).
3103  *
3104  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3105  * mapping is no longer required.
3106  *
3107  * Returns the pointer through which to access the mapped object, or an
3108  * ERR_PTR() on error.
3109  */
3110 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3111 					   enum i915_map_type type);
3112 
3113 /**
3114  * i915_gem_object_unpin_map - releases an earlier mapping
3115  * @obj: the object to unmap
3116  *
3117  * After pinning the object and mapping its pages, once you are finished
3118  * with your access, call i915_gem_object_unpin_map() to release the pin
3119  * upon the mapping. Once the pin count reaches zero, that mapping may be
3120  * removed.
3121  */
3122 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3123 {
3124 	i915_gem_object_unpin_pages(obj);
3125 }
3126 
3127 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3128 				    unsigned int *needs_clflush);
3129 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3130 				     unsigned int *needs_clflush);
3131 #define CLFLUSH_BEFORE	BIT(0)
3132 #define CLFLUSH_AFTER	BIT(1)
3133 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
3134 
3135 static inline void
3136 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3137 {
3138 	i915_gem_object_unpin_pages(obj);
3139 }
3140 
3141 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3142 int i915_gem_dumb_create(struct drm_file *file_priv,
3143 			 struct drm_device *dev,
3144 			 struct drm_mode_create_dumb *args);
3145 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3146 		      uint32_t handle, uint64_t *offset);
3147 int i915_gem_mmap_gtt_version(void);
3148 
3149 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3150 		       struct drm_i915_gem_object *new,
3151 		       unsigned frontbuffer_bits);
3152 
3153 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3154 
3155 struct i915_request *
3156 i915_gem_find_active_request(struct intel_engine_cs *engine);
3157 
3158 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3159 {
3160 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3161 }
3162 
3163 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3164 {
3165 	return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3166 }
3167 
3168 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3169 {
3170 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3171 }
3172 
3173 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3174 {
3175 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3176 }
3177 
3178 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3179 {
3180 	return READ_ONCE(error->reset_count);
3181 }
3182 
3183 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3184 					  struct intel_engine_cs *engine)
3185 {
3186 	return READ_ONCE(error->reset_engine_count[engine->id]);
3187 }
3188 
3189 struct i915_request *
3190 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3191 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3192 void i915_gem_reset(struct drm_i915_private *dev_priv,
3193 		    unsigned int stalled_mask);
3194 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3195 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3196 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3197 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3198 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3199 			   struct i915_request *request,
3200 			   bool stalled);
3201 
3202 void i915_gem_init_mmio(struct drm_i915_private *i915);
3203 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3204 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3205 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3206 void i915_gem_fini(struct drm_i915_private *dev_priv);
3207 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3208 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3209 			   unsigned int flags, long timeout);
3210 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3211 void i915_gem_suspend_late(struct drm_i915_private *dev_priv);
3212 void i915_gem_resume(struct drm_i915_private *dev_priv);
3213 vm_fault_t i915_gem_fault(struct vm_fault *vmf);
3214 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3215 			 unsigned int flags,
3216 			 long timeout,
3217 			 struct intel_rps_client *rps);
3218 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3219 				  unsigned int flags,
3220 				  const struct i915_sched_attr *attr);
3221 #define I915_PRIORITY_DISPLAY I915_USER_PRIORITY(I915_PRIORITY_MAX)
3222 
3223 int __must_check
3224 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3225 int __must_check
3226 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3227 int __must_check
3228 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3229 struct i915_vma * __must_check
3230 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3231 				     u32 alignment,
3232 				     const struct i915_ggtt_view *view,
3233 				     unsigned int flags);
3234 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3235 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3236 				int align);
3237 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3238 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3239 
3240 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3241 				    enum i915_cache_level cache_level);
3242 
3243 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3244 				struct dma_buf *dma_buf);
3245 
3246 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3247 				struct drm_gem_object *gem_obj, int flags);
3248 
3249 static inline struct i915_hw_ppgtt *
3250 i915_vm_to_ppgtt(struct i915_address_space *vm)
3251 {
3252 	return container_of(vm, struct i915_hw_ppgtt, vm);
3253 }
3254 
3255 /* i915_gem_fence_reg.c */
3256 struct drm_i915_fence_reg *
3257 i915_reserve_fence(struct drm_i915_private *dev_priv);
3258 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3259 
3260 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3261 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3262 
3263 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3264 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3265 				       struct sg_table *pages);
3266 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3267 					 struct sg_table *pages);
3268 
3269 static inline struct i915_gem_context *
3270 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3271 {
3272 	return idr_find(&file_priv->context_idr, id);
3273 }
3274 
3275 static inline struct i915_gem_context *
3276 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3277 {
3278 	struct i915_gem_context *ctx;
3279 
3280 	rcu_read_lock();
3281 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3282 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3283 		ctx = NULL;
3284 	rcu_read_unlock();
3285 
3286 	return ctx;
3287 }
3288 
3289 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3290 			 struct drm_file *file);
3291 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3292 			       struct drm_file *file);
3293 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3294 				  struct drm_file *file);
3295 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3296 			    struct i915_gem_context *ctx,
3297 			    uint32_t *reg_state);
3298 
3299 /* i915_gem_evict.c */
3300 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3301 					  u64 min_size, u64 alignment,
3302 					  unsigned cache_level,
3303 					  u64 start, u64 end,
3304 					  unsigned flags);
3305 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3306 					 struct drm_mm_node *node,
3307 					 unsigned int flags);
3308 int i915_gem_evict_vm(struct i915_address_space *vm);
3309 
3310 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3311 
3312 /* belongs in i915_gem_gtt.h */
3313 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3314 {
3315 	wmb();
3316 	if (INTEL_GEN(dev_priv) < 6)
3317 		intel_gtt_chipset_flush();
3318 }
3319 
3320 /* i915_gem_stolen.c */
3321 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3322 				struct drm_mm_node *node, u64 size,
3323 				unsigned alignment);
3324 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3325 					 struct drm_mm_node *node, u64 size,
3326 					 unsigned alignment, u64 start,
3327 					 u64 end);
3328 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3329 				 struct drm_mm_node *node);
3330 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3331 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv);
3332 struct drm_i915_gem_object *
3333 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3334 			      resource_size_t size);
3335 struct drm_i915_gem_object *
3336 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3337 					       resource_size_t stolen_offset,
3338 					       resource_size_t gtt_offset,
3339 					       resource_size_t size);
3340 
3341 /* i915_gem_internal.c */
3342 struct drm_i915_gem_object *
3343 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3344 				phys_addr_t size);
3345 
3346 /* i915_gem_shrinker.c */
3347 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3348 			      unsigned long target,
3349 			      unsigned long *nr_scanned,
3350 			      unsigned flags);
3351 #define I915_SHRINK_PURGEABLE 0x1
3352 #define I915_SHRINK_UNBOUND 0x2
3353 #define I915_SHRINK_BOUND 0x4
3354 #define I915_SHRINK_ACTIVE 0x8
3355 #define I915_SHRINK_VMAPS 0x10
3356 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3357 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3358 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3359 void i915_gem_shrinker_taints_mutex(struct mutex *mutex);
3360 
3361 /* i915_gem_tiling.c */
3362 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3363 {
3364 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3365 
3366 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3367 		i915_gem_object_is_tiled(obj);
3368 }
3369 
3370 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3371 			unsigned int tiling, unsigned int stride);
3372 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3373 			     unsigned int tiling, unsigned int stride);
3374 
3375 /* i915_debugfs.c */
3376 #ifdef CONFIG_DEBUG_FS
3377 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3378 int i915_debugfs_connector_add(struct drm_connector *connector);
3379 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3380 #else
3381 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3382 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3383 { return 0; }
3384 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3385 #endif
3386 
3387 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3388 
3389 /* i915_cmd_parser.c */
3390 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3391 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3392 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3393 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3394 			    struct drm_i915_gem_object *batch_obj,
3395 			    struct drm_i915_gem_object *shadow_batch_obj,
3396 			    u32 batch_start_offset,
3397 			    u32 batch_len,
3398 			    bool is_master);
3399 
3400 /* i915_perf.c */
3401 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3402 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3403 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3404 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3405 
3406 /* i915_suspend.c */
3407 extern int i915_save_state(struct drm_i915_private *dev_priv);
3408 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3409 
3410 /* i915_sysfs.c */
3411 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3412 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3413 
3414 /* intel_lpe_audio.c */
3415 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3416 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3417 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3418 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3419 			    enum pipe pipe, enum port port,
3420 			    const void *eld, int ls_clock, bool dp_output);
3421 
3422 /* intel_i2c.c */
3423 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3424 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3425 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3426 				     unsigned int pin);
3427 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3428 
3429 extern struct i2c_adapter *
3430 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3431 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3432 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3433 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3434 {
3435 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3436 }
3437 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3438 
3439 /* intel_bios.c */
3440 void intel_bios_init(struct drm_i915_private *dev_priv);
3441 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3442 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3443 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3444 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3445 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3446 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3447 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3448 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3449 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3450 				     enum port port);
3451 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3452 				enum port port);
3453 enum aux_ch intel_aux_ch(struct drm_i915_private *dev_priv, enum port port);
3454 
3455 /* intel_acpi.c */
3456 #ifdef CONFIG_ACPI
3457 extern void intel_register_dsm_handler(void);
3458 extern void intel_unregister_dsm_handler(void);
3459 #else
3460 static inline void intel_register_dsm_handler(void) { return; }
3461 static inline void intel_unregister_dsm_handler(void) { return; }
3462 #endif /* CONFIG_ACPI */
3463 
3464 /* intel_device_info.c */
3465 static inline struct intel_device_info *
3466 mkwrite_device_info(struct drm_i915_private *dev_priv)
3467 {
3468 	return (struct intel_device_info *)&dev_priv->info;
3469 }
3470 
3471 /* modesetting */
3472 extern void intel_modeset_init_hw(struct drm_device *dev);
3473 extern int intel_modeset_init(struct drm_device *dev);
3474 extern void intel_modeset_cleanup(struct drm_device *dev);
3475 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3476 				       bool state);
3477 extern void intel_display_resume(struct drm_device *dev);
3478 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3479 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3480 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3481 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3482 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3483 extern void intel_rps_mark_interactive(struct drm_i915_private *i915,
3484 				       bool interactive);
3485 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3486 				  bool enable);
3487 
3488 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3489 			struct drm_file *file);
3490 
3491 /* overlay */
3492 extern struct intel_overlay_error_state *
3493 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3494 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3495 					    struct intel_overlay_error_state *error);
3496 
3497 extern struct intel_display_error_state *
3498 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3499 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3500 					    struct intel_display_error_state *error);
3501 
3502 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3503 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3504 				    u32 val, int fast_timeout_us,
3505 				    int slow_timeout_ms);
3506 #define sandybridge_pcode_write(dev_priv, mbox, val)	\
3507 	sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3508 
3509 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3510 		      u32 reply_mask, u32 reply, int timeout_base_ms);
3511 
3512 /* intel_sideband.c */
3513 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3514 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3515 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3516 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3517 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3518 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3519 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3520 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3521 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3522 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3523 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3524 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3525 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3526 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3527 		   enum intel_sbi_destination destination);
3528 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3529 		     enum intel_sbi_destination destination);
3530 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3531 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3532 
3533 /* intel_dpio_phy.c */
3534 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3535 			     enum dpio_phy *phy, enum dpio_channel *ch);
3536 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3537 				  enum port port, u32 margin, u32 scale,
3538 				  u32 enable, u32 deemphasis);
3539 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3540 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3541 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3542 			    enum dpio_phy phy);
3543 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3544 			      enum dpio_phy phy);
3545 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count);
3546 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3547 				     uint8_t lane_lat_optim_mask);
3548 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3549 
3550 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3551 			      u32 deemph_reg_value, u32 margin_reg_value,
3552 			      bool uniq_trans_scale);
3553 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3554 			      const struct intel_crtc_state *crtc_state,
3555 			      bool reset);
3556 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3557 			    const struct intel_crtc_state *crtc_state);
3558 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3559 				const struct intel_crtc_state *crtc_state);
3560 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3561 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3562 			      const struct intel_crtc_state *old_crtc_state);
3563 
3564 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3565 			      u32 demph_reg_value, u32 preemph_reg_value,
3566 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3567 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3568 			    const struct intel_crtc_state *crtc_state);
3569 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3570 				const struct intel_crtc_state *crtc_state);
3571 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3572 			 const struct intel_crtc_state *old_crtc_state);
3573 
3574 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3575 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3576 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3577 			   const i915_reg_t reg);
3578 
3579 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3580 
3581 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3582 					 const i915_reg_t reg)
3583 {
3584 	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3585 }
3586 
3587 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3588 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3589 
3590 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3591 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3592 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3593 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3594 
3595 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3596 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3597 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3598 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3599 
3600 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3601  * will be implemented using 2 32-bit writes in an arbitrary order with
3602  * an arbitrary delay between them. This can cause the hardware to
3603  * act upon the intermediate value, possibly leading to corruption and
3604  * machine death. For this reason we do not support I915_WRITE64, or
3605  * dev_priv->uncore.funcs.mmio_writeq.
3606  *
3607  * When reading a 64-bit value as two 32-bit values, the delay may cause
3608  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3609  * occasionally a 64-bit register does not actualy support a full readq
3610  * and must be read using two 32-bit reads.
3611  *
3612  * You have been warned.
3613  */
3614 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3615 
3616 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
3617 	u32 upper, lower, old_upper, loop = 0;				\
3618 	upper = I915_READ(upper_reg);					\
3619 	do {								\
3620 		old_upper = upper;					\
3621 		lower = I915_READ(lower_reg);				\
3622 		upper = I915_READ(upper_reg);				\
3623 	} while (upper != old_upper && loop++ < 2);			\
3624 	(u64)upper << 32 | lower; })
3625 
3626 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
3627 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
3628 
3629 #define __raw_read(x, s) \
3630 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3631 					     i915_reg_t reg) \
3632 { \
3633 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3634 }
3635 
3636 #define __raw_write(x, s) \
3637 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3638 				       i915_reg_t reg, uint##x##_t val) \
3639 { \
3640 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3641 }
3642 __raw_read(8, b)
3643 __raw_read(16, w)
3644 __raw_read(32, l)
3645 __raw_read(64, q)
3646 
3647 __raw_write(8, b)
3648 __raw_write(16, w)
3649 __raw_write(32, l)
3650 __raw_write(64, q)
3651 
3652 #undef __raw_read
3653 #undef __raw_write
3654 
3655 /* These are untraced mmio-accessors that are only valid to be used inside
3656  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3657  * controlled.
3658  *
3659  * Think twice, and think again, before using these.
3660  *
3661  * As an example, these accessors can possibly be used between:
3662  *
3663  * spin_lock_irq(&dev_priv->uncore.lock);
3664  * intel_uncore_forcewake_get__locked();
3665  *
3666  * and
3667  *
3668  * intel_uncore_forcewake_put__locked();
3669  * spin_unlock_irq(&dev_priv->uncore.lock);
3670  *
3671  *
3672  * Note: some registers may not need forcewake held, so
3673  * intel_uncore_forcewake_{get,put} can be omitted, see
3674  * intel_uncore_forcewake_for_reg().
3675  *
3676  * Certain architectures will die if the same cacheline is concurrently accessed
3677  * by different clients (e.g. on Ivybridge). Access to registers should
3678  * therefore generally be serialised, by either the dev_priv->uncore.lock or
3679  * a more localised lock guarding all access to that bank of registers.
3680  */
3681 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3682 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3683 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3684 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3685 
3686 /* "Broadcast RGB" property */
3687 #define INTEL_BROADCAST_RGB_AUTO 0
3688 #define INTEL_BROADCAST_RGB_FULL 1
3689 #define INTEL_BROADCAST_RGB_LIMITED 2
3690 
3691 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3692 {
3693 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3694 		return VLV_VGACNTRL;
3695 	else if (INTEL_GEN(dev_priv) >= 5)
3696 		return CPU_VGACNTRL;
3697 	else
3698 		return VGACNTRL;
3699 }
3700 
3701 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3702 {
3703 	unsigned long j = msecs_to_jiffies(m);
3704 
3705 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3706 }
3707 
3708 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3709 {
3710 	/* nsecs_to_jiffies64() does not guard against overflow */
3711 	if (NSEC_PER_SEC % HZ &&
3712 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3713 		return MAX_JIFFY_OFFSET;
3714 
3715         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3716 }
3717 
3718 /*
3719  * If you need to wait X milliseconds between events A and B, but event B
3720  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3721  * when event A happened, then just before event B you call this function and
3722  * pass the timestamp as the first argument, and X as the second argument.
3723  */
3724 static inline void
3725 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3726 {
3727 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3728 
3729 	/*
3730 	 * Don't re-read the value of "jiffies" every time since it may change
3731 	 * behind our back and break the math.
3732 	 */
3733 	tmp_jiffies = jiffies;
3734 	target_jiffies = timestamp_jiffies +
3735 			 msecs_to_jiffies_timeout(to_wait_ms);
3736 
3737 	if (time_after(target_jiffies, tmp_jiffies)) {
3738 		remaining_jiffies = target_jiffies - tmp_jiffies;
3739 		while (remaining_jiffies)
3740 			remaining_jiffies =
3741 			    schedule_timeout_uninterruptible(remaining_jiffies);
3742 	}
3743 }
3744 
3745 static inline bool
3746 __i915_request_irq_complete(const struct i915_request *rq)
3747 {
3748 	struct intel_engine_cs *engine = rq->engine;
3749 	u32 seqno;
3750 
3751 	/* Note that the engine may have wrapped around the seqno, and
3752 	 * so our request->global_seqno will be ahead of the hardware,
3753 	 * even though it completed the request before wrapping. We catch
3754 	 * this by kicking all the waiters before resetting the seqno
3755 	 * in hardware, and also signal the fence.
3756 	 */
3757 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
3758 		return true;
3759 
3760 	/* The request was dequeued before we were awoken. We check after
3761 	 * inspecting the hw to confirm that this was the same request
3762 	 * that generated the HWS update. The memory barriers within
3763 	 * the request execution are sufficient to ensure that a check
3764 	 * after reading the value from hw matches this request.
3765 	 */
3766 	seqno = i915_request_global_seqno(rq);
3767 	if (!seqno)
3768 		return false;
3769 
3770 	/* Before we do the heavier coherent read of the seqno,
3771 	 * check the value (hopefully) in the CPU cacheline.
3772 	 */
3773 	if (__i915_request_completed(rq, seqno))
3774 		return true;
3775 
3776 	/* Ensure our read of the seqno is coherent so that we
3777 	 * do not "miss an interrupt" (i.e. if this is the last
3778 	 * request and the seqno write from the GPU is not visible
3779 	 * by the time the interrupt fires, we will see that the
3780 	 * request is incomplete and go back to sleep awaiting
3781 	 * another interrupt that will never come.)
3782 	 *
3783 	 * Strictly, we only need to do this once after an interrupt,
3784 	 * but it is easier and safer to do it every time the waiter
3785 	 * is woken.
3786 	 */
3787 	if (engine->irq_seqno_barrier &&
3788 	    test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
3789 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
3790 
3791 		/* The ordering of irq_posted versus applying the barrier
3792 		 * is crucial. The clearing of the current irq_posted must
3793 		 * be visible before we perform the barrier operation,
3794 		 * such that if a subsequent interrupt arrives, irq_posted
3795 		 * is reasserted and our task rewoken (which causes us to
3796 		 * do another __i915_request_irq_complete() immediately
3797 		 * and reapply the barrier). Conversely, if the clear
3798 		 * occurs after the barrier, then an interrupt that arrived
3799 		 * whilst we waited on the barrier would not trigger a
3800 		 * barrier on the next pass, and the read may not see the
3801 		 * seqno update.
3802 		 */
3803 		engine->irq_seqno_barrier(engine);
3804 
3805 		/* If we consume the irq, but we are no longer the bottom-half,
3806 		 * the real bottom-half may not have serialised their own
3807 		 * seqno check with the irq-barrier (i.e. may have inspected
3808 		 * the seqno before we believe it coherent since they see
3809 		 * irq_posted == false but we are still running).
3810 		 */
3811 		spin_lock_irq(&b->irq_lock);
3812 		if (b->irq_wait && b->irq_wait->tsk != current)
3813 			/* Note that if the bottom-half is changed as we
3814 			 * are sending the wake-up, the new bottom-half will
3815 			 * be woken by whomever made the change. We only have
3816 			 * to worry about when we steal the irq-posted for
3817 			 * ourself.
3818 			 */
3819 			wake_up_process(b->irq_wait->tsk);
3820 		spin_unlock_irq(&b->irq_lock);
3821 
3822 		if (__i915_request_completed(rq, seqno))
3823 			return true;
3824 	}
3825 
3826 	return false;
3827 }
3828 
3829 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3830 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3831 
3832 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3833  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3834  * perform the operation. To check beforehand, pass in the parameters to
3835  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3836  * you only need to pass in the minor offsets, page-aligned pointers are
3837  * always valid.
3838  *
3839  * For just checking for SSE4.1, in the foreknowledge that the future use
3840  * will be correctly aligned, just use i915_has_memcpy_from_wc().
3841  */
3842 #define i915_can_memcpy_from_wc(dst, src, len) \
3843 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3844 
3845 #define i915_has_memcpy_from_wc() \
3846 	i915_memcpy_from_wc(NULL, NULL, 0)
3847 
3848 /* i915_mm.c */
3849 int remap_io_mapping(struct vm_area_struct *vma,
3850 		     unsigned long addr, unsigned long pfn, unsigned long size,
3851 		     struct io_mapping *iomap);
3852 
3853 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3854 {
3855 	if (INTEL_GEN(i915) >= 10)
3856 		return CNL_HWS_CSB_WRITE_INDEX;
3857 	else
3858 		return I915_HWS_CSB_WRITE_INDEX;
3859 }
3860 
3861 #endif
3862