1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hash.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/mm_types.h> 44 #include <linux/perf_event.h> 45 #include <linux/pm_qos.h> 46 #include <linux/reservation.h> 47 #include <linux/shmem_fs.h> 48 49 #include <drm/drmP.h> 50 #include <drm/intel-gtt.h> 51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 52 #include <drm/drm_gem.h> 53 #include <drm/drm_auth.h> 54 #include <drm/drm_cache.h> 55 #include <drm/drm_util.h> 56 57 #include "i915_params.h" 58 #include "i915_reg.h" 59 #include "i915_utils.h" 60 61 #include "intel_bios.h" 62 #include "intel_device_info.h" 63 #include "intel_display.h" 64 #include "intel_dpll_mgr.h" 65 #include "intel_lrc.h" 66 #include "intel_opregion.h" 67 #include "intel_ringbuffer.h" 68 #include "intel_uncore.h" 69 #include "intel_wopcm.h" 70 #include "intel_uc.h" 71 72 #include "i915_gem.h" 73 #include "i915_gem_context.h" 74 #include "i915_gem_fence_reg.h" 75 #include "i915_gem_object.h" 76 #include "i915_gem_gtt.h" 77 #include "i915_gpu_error.h" 78 #include "i915_request.h" 79 #include "i915_scheduler.h" 80 #include "i915_timeline.h" 81 #include "i915_vma.h" 82 83 #include "intel_gvt.h" 84 85 /* General customization: 86 */ 87 88 #define DRIVER_NAME "i915" 89 #define DRIVER_DESC "Intel Graphics" 90 #define DRIVER_DATE "20181102" 91 #define DRIVER_TIMESTAMP 1541153051 92 93 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 94 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 95 * which may not necessarily be a user visible problem. This will either 96 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 97 * enable distros and users to tailor their preferred amount of i915 abrt 98 * spam. 99 */ 100 #define I915_STATE_WARN(condition, format...) ({ \ 101 int __ret_warn_on = !!(condition); \ 102 if (unlikely(__ret_warn_on)) \ 103 if (!WARN(i915_modparams.verbose_state_checks, format)) \ 104 DRM_ERROR(format); \ 105 unlikely(__ret_warn_on); \ 106 }) 107 108 #define I915_STATE_WARN_ON(x) \ 109 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 110 111 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG) 112 113 bool __i915_inject_load_failure(const char *func, int line); 114 #define i915_inject_load_failure() \ 115 __i915_inject_load_failure(__func__, __LINE__) 116 117 bool i915_error_injected(void); 118 119 #else 120 121 #define i915_inject_load_failure() false 122 #define i915_error_injected() false 123 124 #endif 125 126 #define i915_load_error(i915, fmt, ...) \ 127 __i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \ 128 fmt, ##__VA_ARGS__) 129 130 typedef struct { 131 uint32_t val; 132 } uint_fixed_16_16_t; 133 134 #define FP_16_16_MAX ({ \ 135 uint_fixed_16_16_t fp; \ 136 fp.val = UINT_MAX; \ 137 fp; \ 138 }) 139 140 static inline bool is_fixed16_zero(uint_fixed_16_16_t val) 141 { 142 if (val.val == 0) 143 return true; 144 return false; 145 } 146 147 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val) 148 { 149 uint_fixed_16_16_t fp; 150 151 WARN_ON(val > U16_MAX); 152 153 fp.val = val << 16; 154 return fp; 155 } 156 157 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp) 158 { 159 return DIV_ROUND_UP(fp.val, 1 << 16); 160 } 161 162 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp) 163 { 164 return fp.val >> 16; 165 } 166 167 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1, 168 uint_fixed_16_16_t min2) 169 { 170 uint_fixed_16_16_t min; 171 172 min.val = min(min1.val, min2.val); 173 return min; 174 } 175 176 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1, 177 uint_fixed_16_16_t max2) 178 { 179 uint_fixed_16_16_t max; 180 181 max.val = max(max1.val, max2.val); 182 return max; 183 } 184 185 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val) 186 { 187 uint_fixed_16_16_t fp; 188 WARN_ON(val > U32_MAX); 189 fp.val = (uint32_t) val; 190 return fp; 191 } 192 193 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val, 194 uint_fixed_16_16_t d) 195 { 196 return DIV_ROUND_UP(val.val, d.val); 197 } 198 199 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val, 200 uint_fixed_16_16_t mul) 201 { 202 uint64_t intermediate_val; 203 204 intermediate_val = (uint64_t) val * mul.val; 205 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16); 206 WARN_ON(intermediate_val > U32_MAX); 207 return (uint32_t) intermediate_val; 208 } 209 210 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val, 211 uint_fixed_16_16_t mul) 212 { 213 uint64_t intermediate_val; 214 215 intermediate_val = (uint64_t) val.val * mul.val; 216 intermediate_val = intermediate_val >> 16; 217 return clamp_u64_to_fixed16(intermediate_val); 218 } 219 220 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d) 221 { 222 uint64_t interm_val; 223 224 interm_val = (uint64_t)val << 16; 225 interm_val = DIV_ROUND_UP_ULL(interm_val, d); 226 return clamp_u64_to_fixed16(interm_val); 227 } 228 229 static inline uint32_t div_round_up_u32_fixed16(uint32_t val, 230 uint_fixed_16_16_t d) 231 { 232 uint64_t interm_val; 233 234 interm_val = (uint64_t)val << 16; 235 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val); 236 WARN_ON(interm_val > U32_MAX); 237 return (uint32_t) interm_val; 238 } 239 240 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val, 241 uint_fixed_16_16_t mul) 242 { 243 uint64_t intermediate_val; 244 245 intermediate_val = (uint64_t) val * mul.val; 246 return clamp_u64_to_fixed16(intermediate_val); 247 } 248 249 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1, 250 uint_fixed_16_16_t add2) 251 { 252 uint64_t interm_sum; 253 254 interm_sum = (uint64_t) add1.val + add2.val; 255 return clamp_u64_to_fixed16(interm_sum); 256 } 257 258 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1, 259 uint32_t add2) 260 { 261 uint64_t interm_sum; 262 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2); 263 264 interm_sum = (uint64_t) add1.val + interm_add2.val; 265 return clamp_u64_to_fixed16(interm_sum); 266 } 267 268 enum hpd_pin { 269 HPD_NONE = 0, 270 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 271 HPD_CRT, 272 HPD_SDVO_B, 273 HPD_SDVO_C, 274 HPD_PORT_A, 275 HPD_PORT_B, 276 HPD_PORT_C, 277 HPD_PORT_D, 278 HPD_PORT_E, 279 HPD_PORT_F, 280 HPD_NUM_PINS 281 }; 282 283 #define for_each_hpd_pin(__pin) \ 284 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 285 286 #define HPD_STORM_DEFAULT_THRESHOLD 5 287 288 struct i915_hotplug { 289 struct work_struct hotplug_work; 290 291 struct { 292 unsigned long last_jiffies; 293 int count; 294 enum { 295 HPD_ENABLED = 0, 296 HPD_DISABLED = 1, 297 HPD_MARK_DISABLED = 2 298 } state; 299 } stats[HPD_NUM_PINS]; 300 u32 event_bits; 301 struct delayed_work reenable_work; 302 303 u32 long_port_mask; 304 u32 short_port_mask; 305 struct work_struct dig_port_work; 306 307 struct work_struct poll_init_work; 308 bool poll_enabled; 309 310 unsigned int hpd_storm_threshold; 311 312 /* 313 * if we get a HPD irq from DP and a HPD irq from non-DP 314 * the non-DP HPD could block the workqueue on a mode config 315 * mutex getting, that userspace may have taken. However 316 * userspace is waiting on the DP workqueue to run which is 317 * blocked behind the non-DP one. 318 */ 319 struct workqueue_struct *dp_wq; 320 }; 321 322 #define I915_GEM_GPU_DOMAINS \ 323 (I915_GEM_DOMAIN_RENDER | \ 324 I915_GEM_DOMAIN_SAMPLER | \ 325 I915_GEM_DOMAIN_COMMAND | \ 326 I915_GEM_DOMAIN_INSTRUCTION | \ 327 I915_GEM_DOMAIN_VERTEX) 328 329 struct drm_i915_private; 330 struct i915_mm_struct; 331 struct i915_mmu_object; 332 333 struct drm_i915_file_private { 334 struct drm_i915_private *dev_priv; 335 struct drm_file *file; 336 337 struct { 338 spinlock_t lock; 339 struct list_head request_list; 340 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 341 * chosen to prevent the CPU getting more than a frame ahead of the GPU 342 * (when using lax throttling for the frontbuffer). We also use it to 343 * offer free GPU waitboosts for severely congested workloads. 344 */ 345 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 346 } mm; 347 struct idr context_idr; 348 349 struct intel_rps_client { 350 atomic_t boosts; 351 } rps_client; 352 353 unsigned int bsd_engine; 354 355 /* 356 * Every context ban increments per client ban score. Also 357 * hangs in short succession increments ban score. If ban threshold 358 * is reached, client is considered banned and submitting more work 359 * will fail. This is a stop gap measure to limit the badly behaving 360 * clients access to gpu. Note that unbannable contexts never increment 361 * the client ban score. 362 */ 363 #define I915_CLIENT_SCORE_HANG_FAST 1 364 #define I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ) 365 #define I915_CLIENT_SCORE_CONTEXT_BAN 3 366 #define I915_CLIENT_SCORE_BANNED 9 367 /** ban_score: Accumulated score of all ctx bans and fast hangs. */ 368 atomic_t ban_score; 369 unsigned long hang_timestamp; 370 }; 371 372 /* Interface history: 373 * 374 * 1.1: Original. 375 * 1.2: Add Power Management 376 * 1.3: Add vblank support 377 * 1.4: Fix cmdbuffer path, add heap destroy 378 * 1.5: Add vblank pipe configuration 379 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 380 * - Support vertical blank on secondary display pipe 381 */ 382 #define DRIVER_MAJOR 1 383 #define DRIVER_MINOR 6 384 #define DRIVER_PATCHLEVEL 0 385 386 struct intel_overlay; 387 struct intel_overlay_error_state; 388 389 struct sdvo_device_mapping { 390 u8 initialized; 391 u8 dvo_port; 392 u8 slave_addr; 393 u8 dvo_wiring; 394 u8 i2c_pin; 395 u8 ddc_pin; 396 }; 397 398 struct intel_connector; 399 struct intel_encoder; 400 struct intel_atomic_state; 401 struct intel_crtc_state; 402 struct intel_initial_plane_config; 403 struct intel_crtc; 404 struct intel_limit; 405 struct dpll; 406 struct intel_cdclk_state; 407 408 struct drm_i915_display_funcs { 409 void (*get_cdclk)(struct drm_i915_private *dev_priv, 410 struct intel_cdclk_state *cdclk_state); 411 void (*set_cdclk)(struct drm_i915_private *dev_priv, 412 const struct intel_cdclk_state *cdclk_state); 413 int (*get_fifo_size)(struct drm_i915_private *dev_priv, 414 enum i9xx_plane_id i9xx_plane); 415 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 416 int (*compute_intermediate_wm)(struct drm_device *dev, 417 struct intel_crtc *intel_crtc, 418 struct intel_crtc_state *newstate); 419 void (*initial_watermarks)(struct intel_atomic_state *state, 420 struct intel_crtc_state *cstate); 421 void (*atomic_update_watermarks)(struct intel_atomic_state *state, 422 struct intel_crtc_state *cstate); 423 void (*optimize_watermarks)(struct intel_atomic_state *state, 424 struct intel_crtc_state *cstate); 425 int (*compute_global_watermarks)(struct drm_atomic_state *state); 426 void (*update_wm)(struct intel_crtc *crtc); 427 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 428 /* Returns the active state of the crtc, and if the crtc is active, 429 * fills out the pipe-config with the hw state. */ 430 bool (*get_pipe_config)(struct intel_crtc *, 431 struct intel_crtc_state *); 432 void (*get_initial_plane_config)(struct intel_crtc *, 433 struct intel_initial_plane_config *); 434 int (*crtc_compute_clock)(struct intel_crtc *crtc, 435 struct intel_crtc_state *crtc_state); 436 void (*crtc_enable)(struct intel_crtc_state *pipe_config, 437 struct drm_atomic_state *old_state); 438 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state, 439 struct drm_atomic_state *old_state); 440 void (*update_crtcs)(struct drm_atomic_state *state); 441 void (*audio_codec_enable)(struct intel_encoder *encoder, 442 const struct intel_crtc_state *crtc_state, 443 const struct drm_connector_state *conn_state); 444 void (*audio_codec_disable)(struct intel_encoder *encoder, 445 const struct intel_crtc_state *old_crtc_state, 446 const struct drm_connector_state *old_conn_state); 447 void (*fdi_link_train)(struct intel_crtc *crtc, 448 const struct intel_crtc_state *crtc_state); 449 void (*init_clock_gating)(struct drm_i915_private *dev_priv); 450 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 451 /* clock updates for mode set */ 452 /* cursor updates */ 453 /* render clock increase/decrease */ 454 /* display clock increase/decrease */ 455 /* pll clock increase/decrease */ 456 457 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); 458 void (*load_luts)(struct drm_crtc_state *crtc_state); 459 }; 460 461 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 462 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 463 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 464 465 struct intel_csr { 466 struct work_struct work; 467 const char *fw_path; 468 uint32_t required_version; 469 uint32_t max_fw_size; /* bytes */ 470 uint32_t *dmc_payload; 471 uint32_t dmc_fw_size; /* dwords */ 472 uint32_t version; 473 uint32_t mmio_count; 474 i915_reg_t mmioaddr[8]; 475 uint32_t mmiodata[8]; 476 uint32_t dc_state; 477 uint32_t allowed_dc_mask; 478 }; 479 480 enum i915_cache_level { 481 I915_CACHE_NONE = 0, 482 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 483 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 484 caches, eg sampler/render caches, and the 485 large Last-Level-Cache. LLC is coherent with 486 the CPU, but L3 is only visible to the GPU. */ 487 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 488 }; 489 490 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ 491 492 enum fb_op_origin { 493 ORIGIN_GTT, 494 ORIGIN_CPU, 495 ORIGIN_CS, 496 ORIGIN_FLIP, 497 ORIGIN_DIRTYFB, 498 }; 499 500 struct intel_fbc { 501 /* This is always the inner lock when overlapping with struct_mutex and 502 * it's the outer lock when overlapping with stolen_lock. */ 503 struct mutex lock; 504 unsigned threshold; 505 unsigned int possible_framebuffer_bits; 506 unsigned int busy_bits; 507 unsigned int visible_pipes_mask; 508 struct intel_crtc *crtc; 509 510 struct drm_mm_node compressed_fb; 511 struct drm_mm_node *compressed_llb; 512 513 bool false_color; 514 515 bool enabled; 516 bool active; 517 bool flip_pending; 518 519 bool underrun_detected; 520 struct work_struct underrun_work; 521 522 /* 523 * Due to the atomic rules we can't access some structures without the 524 * appropriate locking, so we cache information here in order to avoid 525 * these problems. 526 */ 527 struct intel_fbc_state_cache { 528 struct i915_vma *vma; 529 unsigned long flags; 530 531 struct { 532 unsigned int mode_flags; 533 uint32_t hsw_bdw_pixel_rate; 534 } crtc; 535 536 struct { 537 unsigned int rotation; 538 int src_w; 539 int src_h; 540 bool visible; 541 /* 542 * Display surface base address adjustement for 543 * pageflips. Note that on gen4+ this only adjusts up 544 * to a tile, offsets within a tile are handled in 545 * the hw itself (with the TILEOFF register). 546 */ 547 int adjusted_x; 548 int adjusted_y; 549 550 int y; 551 552 uint16_t pixel_blend_mode; 553 } plane; 554 555 struct { 556 const struct drm_format_info *format; 557 unsigned int stride; 558 } fb; 559 } state_cache; 560 561 /* 562 * This structure contains everything that's relevant to program the 563 * hardware registers. When we want to figure out if we need to disable 564 * and re-enable FBC for a new configuration we just check if there's 565 * something different in the struct. The genx_fbc_activate functions 566 * are supposed to read from it in order to program the registers. 567 */ 568 struct intel_fbc_reg_params { 569 struct i915_vma *vma; 570 unsigned long flags; 571 572 struct { 573 enum pipe pipe; 574 enum i9xx_plane_id i9xx_plane; 575 unsigned int fence_y_offset; 576 } crtc; 577 578 struct { 579 const struct drm_format_info *format; 580 unsigned int stride; 581 } fb; 582 583 int cfb_size; 584 unsigned int gen9_wa_cfb_stride; 585 } params; 586 587 const char *no_fbc_reason; 588 }; 589 590 /* 591 * HIGH_RR is the highest eDP panel refresh rate read from EDID 592 * LOW_RR is the lowest eDP panel refresh rate found from EDID 593 * parsing for same resolution. 594 */ 595 enum drrs_refresh_rate_type { 596 DRRS_HIGH_RR, 597 DRRS_LOW_RR, 598 DRRS_MAX_RR, /* RR count */ 599 }; 600 601 enum drrs_support_type { 602 DRRS_NOT_SUPPORTED = 0, 603 STATIC_DRRS_SUPPORT = 1, 604 SEAMLESS_DRRS_SUPPORT = 2 605 }; 606 607 struct intel_dp; 608 struct i915_drrs { 609 struct mutex mutex; 610 struct delayed_work work; 611 struct intel_dp *dp; 612 unsigned busy_frontbuffer_bits; 613 enum drrs_refresh_rate_type refresh_rate_type; 614 enum drrs_support_type type; 615 }; 616 617 struct i915_psr { 618 struct mutex lock; 619 620 #define I915_PSR_DEBUG_MODE_MASK 0x0f 621 #define I915_PSR_DEBUG_DEFAULT 0x00 622 #define I915_PSR_DEBUG_DISABLE 0x01 623 #define I915_PSR_DEBUG_ENABLE 0x02 624 #define I915_PSR_DEBUG_FORCE_PSR1 0x03 625 #define I915_PSR_DEBUG_IRQ 0x10 626 627 u32 debug; 628 bool sink_support; 629 bool prepared, enabled; 630 struct intel_dp *dp; 631 bool active; 632 struct work_struct work; 633 unsigned busy_frontbuffer_bits; 634 bool sink_psr2_support; 635 bool link_standby; 636 bool colorimetry_support; 637 bool psr2_enabled; 638 u8 sink_sync_latency; 639 ktime_t last_entry_attempt; 640 ktime_t last_exit; 641 }; 642 643 enum intel_pch { 644 PCH_NONE = 0, /* No PCH present */ 645 PCH_IBX, /* Ibexpeak PCH */ 646 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */ 647 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */ 648 PCH_SPT, /* Sunrisepoint PCH */ 649 PCH_KBP, /* Kaby Lake PCH */ 650 PCH_CNP, /* Cannon Lake PCH */ 651 PCH_ICP, /* Ice Lake PCH */ 652 PCH_NOP, /* PCH without south display */ 653 }; 654 655 enum intel_sbi_destination { 656 SBI_ICLK, 657 SBI_MPHY, 658 }; 659 660 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 661 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 662 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 663 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 664 #define QUIRK_INCREASE_T12_DELAY (1<<6) 665 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7) 666 667 struct intel_fbdev; 668 struct intel_fbc_work; 669 670 struct intel_gmbus { 671 struct i2c_adapter adapter; 672 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 673 u32 force_bit; 674 u32 reg0; 675 i915_reg_t gpio_reg; 676 struct i2c_algo_bit_data bit_algo; 677 struct drm_i915_private *dev_priv; 678 }; 679 680 struct i915_suspend_saved_registers { 681 u32 saveDSPARB; 682 u32 saveFBC_CONTROL; 683 u32 saveCACHE_MODE_0; 684 u32 saveMI_ARB_STATE; 685 u32 saveSWF0[16]; 686 u32 saveSWF1[16]; 687 u32 saveSWF3[3]; 688 uint64_t saveFENCE[I915_MAX_NUM_FENCES]; 689 u32 savePCH_PORT_HOTPLUG; 690 u16 saveGCDGMBUS; 691 }; 692 693 struct vlv_s0ix_state { 694 /* GAM */ 695 u32 wr_watermark; 696 u32 gfx_prio_ctrl; 697 u32 arb_mode; 698 u32 gfx_pend_tlb0; 699 u32 gfx_pend_tlb1; 700 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 701 u32 media_max_req_count; 702 u32 gfx_max_req_count; 703 u32 render_hwsp; 704 u32 ecochk; 705 u32 bsd_hwsp; 706 u32 blt_hwsp; 707 u32 tlb_rd_addr; 708 709 /* MBC */ 710 u32 g3dctl; 711 u32 gsckgctl; 712 u32 mbctl; 713 714 /* GCP */ 715 u32 ucgctl1; 716 u32 ucgctl3; 717 u32 rcgctl1; 718 u32 rcgctl2; 719 u32 rstctl; 720 u32 misccpctl; 721 722 /* GPM */ 723 u32 gfxpause; 724 u32 rpdeuhwtc; 725 u32 rpdeuc; 726 u32 ecobus; 727 u32 pwrdwnupctl; 728 u32 rp_down_timeout; 729 u32 rp_deucsw; 730 u32 rcubmabdtmr; 731 u32 rcedata; 732 u32 spare2gh; 733 734 /* Display 1 CZ domain */ 735 u32 gt_imr; 736 u32 gt_ier; 737 u32 pm_imr; 738 u32 pm_ier; 739 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 740 741 /* GT SA CZ domain */ 742 u32 tilectl; 743 u32 gt_fifoctl; 744 u32 gtlc_wake_ctrl; 745 u32 gtlc_survive; 746 u32 pmwgicz; 747 748 /* Display 2 CZ domain */ 749 u32 gu_ctl0; 750 u32 gu_ctl1; 751 u32 pcbr; 752 u32 clock_gate_dis2; 753 }; 754 755 struct intel_rps_ei { 756 ktime_t ktime; 757 u32 render_c0; 758 u32 media_c0; 759 }; 760 761 struct intel_rps { 762 /* 763 * work, interrupts_enabled and pm_iir are protected by 764 * dev_priv->irq_lock 765 */ 766 struct work_struct work; 767 bool interrupts_enabled; 768 u32 pm_iir; 769 770 /* PM interrupt bits that should never be masked */ 771 u32 pm_intrmsk_mbz; 772 773 /* Frequencies are stored in potentially platform dependent multiples. 774 * In other words, *_freq needs to be multiplied by X to be interesting. 775 * Soft limits are those which are used for the dynamic reclocking done 776 * by the driver (raise frequencies under heavy loads, and lower for 777 * lighter loads). Hard limits are those imposed by the hardware. 778 * 779 * A distinction is made for overclocking, which is never enabled by 780 * default, and is considered to be above the hard limit if it's 781 * possible at all. 782 */ 783 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 784 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 785 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 786 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 787 u8 min_freq; /* AKA RPn. Minimum frequency */ 788 u8 boost_freq; /* Frequency to request when wait boosting */ 789 u8 idle_freq; /* Frequency to request when we are idle */ 790 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 791 u8 rp1_freq; /* "less than" RP0 power/freqency */ 792 u8 rp0_freq; /* Non-overclocked max frequency. */ 793 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 794 795 int last_adj; 796 797 struct { 798 struct mutex mutex; 799 800 enum { LOW_POWER, BETWEEN, HIGH_POWER } mode; 801 unsigned int interactive; 802 803 u8 up_threshold; /* Current %busy required to uplock */ 804 u8 down_threshold; /* Current %busy required to downclock */ 805 } power; 806 807 bool enabled; 808 atomic_t num_waiters; 809 atomic_t boosts; 810 811 /* manual wa residency calculations */ 812 struct intel_rps_ei ei; 813 }; 814 815 struct intel_rc6 { 816 bool enabled; 817 u64 prev_hw_residency[4]; 818 u64 cur_residency[4]; 819 }; 820 821 struct intel_llc_pstate { 822 bool enabled; 823 }; 824 825 struct intel_gen6_power_mgmt { 826 struct intel_rps rps; 827 struct intel_rc6 rc6; 828 struct intel_llc_pstate llc_pstate; 829 }; 830 831 /* defined intel_pm.c */ 832 extern spinlock_t mchdev_lock; 833 834 struct intel_ilk_power_mgmt { 835 u8 cur_delay; 836 u8 min_delay; 837 u8 max_delay; 838 u8 fmax; 839 u8 fstart; 840 841 u64 last_count1; 842 unsigned long last_time1; 843 unsigned long chipset_power; 844 u64 last_count2; 845 u64 last_time2; 846 unsigned long gfx_power; 847 u8 corr; 848 849 int c_m; 850 int r_t; 851 }; 852 853 struct drm_i915_private; 854 struct i915_power_well; 855 856 struct i915_power_well_ops { 857 /* 858 * Synchronize the well's hw state to match the current sw state, for 859 * example enable/disable it based on the current refcount. Called 860 * during driver init and resume time, possibly after first calling 861 * the enable/disable handlers. 862 */ 863 void (*sync_hw)(struct drm_i915_private *dev_priv, 864 struct i915_power_well *power_well); 865 /* 866 * Enable the well and resources that depend on it (for example 867 * interrupts located on the well). Called after the 0->1 refcount 868 * transition. 869 */ 870 void (*enable)(struct drm_i915_private *dev_priv, 871 struct i915_power_well *power_well); 872 /* 873 * Disable the well and resources that depend on it. Called after 874 * the 1->0 refcount transition. 875 */ 876 void (*disable)(struct drm_i915_private *dev_priv, 877 struct i915_power_well *power_well); 878 /* Returns the hw enabled state. */ 879 bool (*is_enabled)(struct drm_i915_private *dev_priv, 880 struct i915_power_well *power_well); 881 }; 882 883 struct i915_power_well_regs { 884 i915_reg_t bios; 885 i915_reg_t driver; 886 i915_reg_t kvmr; 887 i915_reg_t debug; 888 }; 889 890 /* Power well structure for haswell */ 891 struct i915_power_well_desc { 892 const char *name; 893 bool always_on; 894 u64 domains; 895 /* unique identifier for this power well */ 896 enum i915_power_well_id id; 897 /* 898 * Arbitraty data associated with this power well. Platform and power 899 * well specific. 900 */ 901 union { 902 struct { 903 /* 904 * request/status flag index in the PUNIT power well 905 * control/status registers. 906 */ 907 u8 idx; 908 } vlv; 909 struct { 910 enum dpio_phy phy; 911 } bxt; 912 struct { 913 const struct i915_power_well_regs *regs; 914 /* 915 * request/status flag index in the power well 916 * constrol/status registers. 917 */ 918 u8 idx; 919 /* Mask of pipes whose IRQ logic is backed by the pw */ 920 u8 irq_pipe_mask; 921 /* The pw is backing the VGA functionality */ 922 bool has_vga:1; 923 bool has_fuses:1; 924 /* 925 * The pw is for an ICL+ TypeC PHY port in 926 * Thunderbolt mode. 927 */ 928 bool is_tc_tbt:1; 929 } hsw; 930 }; 931 const struct i915_power_well_ops *ops; 932 }; 933 934 struct i915_power_well { 935 const struct i915_power_well_desc *desc; 936 /* power well enable/disable usage count */ 937 int count; 938 /* cached hw enabled state */ 939 bool hw_enabled; 940 }; 941 942 struct i915_power_domains { 943 /* 944 * Power wells needed for initialization at driver init and suspend 945 * time are on. They are kept on until after the first modeset. 946 */ 947 bool initializing; 948 bool display_core_suspended; 949 int power_well_count; 950 951 struct mutex lock; 952 int domain_use_count[POWER_DOMAIN_NUM]; 953 struct i915_power_well *power_wells; 954 }; 955 956 #define MAX_L3_SLICES 2 957 struct intel_l3_parity { 958 u32 *remap_info[MAX_L3_SLICES]; 959 struct work_struct error_work; 960 int which_slice; 961 }; 962 963 struct i915_gem_mm { 964 /** Memory allocator for GTT stolen memory */ 965 struct drm_mm stolen; 966 /** Protects the usage of the GTT stolen memory allocator. This is 967 * always the inner lock when overlapping with struct_mutex. */ 968 struct mutex stolen_lock; 969 970 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */ 971 spinlock_t obj_lock; 972 973 /** List of all objects in gtt_space. Used to restore gtt 974 * mappings on resume */ 975 struct list_head bound_list; 976 /** 977 * List of objects which are not bound to the GTT (thus 978 * are idle and not used by the GPU). These objects may or may 979 * not actually have any pages attached. 980 */ 981 struct list_head unbound_list; 982 983 /** List of all objects in gtt_space, currently mmaped by userspace. 984 * All objects within this list must also be on bound_list. 985 */ 986 struct list_head userfault_list; 987 988 /** 989 * List of objects which are pending destruction. 990 */ 991 struct llist_head free_list; 992 struct work_struct free_work; 993 spinlock_t free_lock; 994 /** 995 * Count of objects pending destructions. Used to skip needlessly 996 * waiting on an RCU barrier if no objects are waiting to be freed. 997 */ 998 atomic_t free_count; 999 1000 /** 1001 * Small stash of WC pages 1002 */ 1003 struct pagestash wc_stash; 1004 1005 /** 1006 * tmpfs instance used for shmem backed objects 1007 */ 1008 struct vfsmount *gemfs; 1009 1010 /** PPGTT used for aliasing the PPGTT with the GTT */ 1011 struct i915_hw_ppgtt *aliasing_ppgtt; 1012 1013 struct notifier_block oom_notifier; 1014 struct notifier_block vmap_notifier; 1015 struct shrinker shrinker; 1016 1017 /** LRU list of objects with fence regs on them. */ 1018 struct list_head fence_list; 1019 1020 /** 1021 * Workqueue to fault in userptr pages, flushed by the execbuf 1022 * when required but otherwise left to userspace to try again 1023 * on EAGAIN. 1024 */ 1025 struct workqueue_struct *userptr_wq; 1026 1027 u64 unordered_timeline; 1028 1029 /* the indicator for dispatch video commands on two BSD rings */ 1030 atomic_t bsd_engine_dispatch_index; 1031 1032 /** Bit 6 swizzling required for X tiling */ 1033 uint32_t bit_6_swizzle_x; 1034 /** Bit 6 swizzling required for Y tiling */ 1035 uint32_t bit_6_swizzle_y; 1036 1037 /* accounting, useful for userland debugging */ 1038 spinlock_t object_stat_lock; 1039 u64 object_memory; 1040 u32 object_count; 1041 }; 1042 1043 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */ 1044 1045 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */ 1046 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */ 1047 1048 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */ 1049 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */ 1050 1051 #define I915_ENGINE_WEDGED_TIMEOUT (60 * HZ) /* Reset but no recovery? */ 1052 1053 #define DP_AUX_A 0x40 1054 #define DP_AUX_B 0x10 1055 #define DP_AUX_C 0x20 1056 #define DP_AUX_D 0x30 1057 #define DP_AUX_E 0x50 1058 #define DP_AUX_F 0x60 1059 1060 #define DDC_PIN_B 0x05 1061 #define DDC_PIN_C 0x04 1062 #define DDC_PIN_D 0x06 1063 1064 struct ddi_vbt_port_info { 1065 int max_tmds_clock; 1066 1067 /* 1068 * This is an index in the HDMI/DVI DDI buffer translation table. 1069 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 1070 * populate this field. 1071 */ 1072 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 1073 uint8_t hdmi_level_shift; 1074 1075 uint8_t supports_dvi:1; 1076 uint8_t supports_hdmi:1; 1077 uint8_t supports_dp:1; 1078 uint8_t supports_edp:1; 1079 1080 uint8_t alternate_aux_channel; 1081 uint8_t alternate_ddc_pin; 1082 1083 uint8_t dp_boost_level; 1084 uint8_t hdmi_boost_level; 1085 int dp_max_link_rate; /* 0 for not limited by VBT */ 1086 }; 1087 1088 enum psr_lines_to_wait { 1089 PSR_0_LINES_TO_WAIT = 0, 1090 PSR_1_LINE_TO_WAIT, 1091 PSR_4_LINES_TO_WAIT, 1092 PSR_8_LINES_TO_WAIT 1093 }; 1094 1095 struct intel_vbt_data { 1096 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 1097 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 1098 1099 /* Feature bits */ 1100 unsigned int int_tv_support:1; 1101 unsigned int lvds_dither:1; 1102 unsigned int int_crt_support:1; 1103 unsigned int lvds_use_ssc:1; 1104 unsigned int int_lvds_support:1; 1105 unsigned int display_clock_mode:1; 1106 unsigned int fdi_rx_polarity_inverted:1; 1107 unsigned int panel_type:4; 1108 int lvds_ssc_freq; 1109 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 1110 1111 enum drrs_support_type drrs_type; 1112 1113 struct { 1114 int rate; 1115 int lanes; 1116 int preemphasis; 1117 int vswing; 1118 bool low_vswing; 1119 bool initialized; 1120 int bpp; 1121 struct edp_power_seq pps; 1122 } edp; 1123 1124 struct { 1125 bool enable; 1126 bool full_link; 1127 bool require_aux_wakeup; 1128 int idle_frames; 1129 enum psr_lines_to_wait lines_to_wait; 1130 int tp1_wakeup_time_us; 1131 int tp2_tp3_wakeup_time_us; 1132 } psr; 1133 1134 struct { 1135 u16 pwm_freq_hz; 1136 bool present; 1137 bool active_low_pwm; 1138 u8 min_brightness; /* min_brightness/255 of max */ 1139 u8 controller; /* brightness controller number */ 1140 enum intel_backlight_type type; 1141 } backlight; 1142 1143 /* MIPI DSI */ 1144 struct { 1145 u16 panel_id; 1146 struct mipi_config *config; 1147 struct mipi_pps_data *pps; 1148 u16 bl_ports; 1149 u16 cabc_ports; 1150 u8 seq_version; 1151 u32 size; 1152 u8 *data; 1153 const u8 *sequence[MIPI_SEQ_MAX]; 1154 u8 *deassert_seq; /* Used by fixup_mipi_sequences() */ 1155 } dsi; 1156 1157 int crt_ddc_pin; 1158 1159 int child_dev_num; 1160 struct child_device_config *child_dev; 1161 1162 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1163 struct sdvo_device_mapping sdvo_mappings[2]; 1164 }; 1165 1166 enum intel_ddb_partitioning { 1167 INTEL_DDB_PART_1_2, 1168 INTEL_DDB_PART_5_6, /* IVB+ */ 1169 }; 1170 1171 struct intel_wm_level { 1172 bool enable; 1173 uint32_t pri_val; 1174 uint32_t spr_val; 1175 uint32_t cur_val; 1176 uint32_t fbc_val; 1177 }; 1178 1179 struct ilk_wm_values { 1180 uint32_t wm_pipe[3]; 1181 uint32_t wm_lp[3]; 1182 uint32_t wm_lp_spr[3]; 1183 uint32_t wm_linetime[3]; 1184 bool enable_fbc_wm; 1185 enum intel_ddb_partitioning partitioning; 1186 }; 1187 1188 struct g4x_pipe_wm { 1189 uint16_t plane[I915_MAX_PLANES]; 1190 uint16_t fbc; 1191 }; 1192 1193 struct g4x_sr_wm { 1194 uint16_t plane; 1195 uint16_t cursor; 1196 uint16_t fbc; 1197 }; 1198 1199 struct vlv_wm_ddl_values { 1200 uint8_t plane[I915_MAX_PLANES]; 1201 }; 1202 1203 struct vlv_wm_values { 1204 struct g4x_pipe_wm pipe[3]; 1205 struct g4x_sr_wm sr; 1206 struct vlv_wm_ddl_values ddl[3]; 1207 uint8_t level; 1208 bool cxsr; 1209 }; 1210 1211 struct g4x_wm_values { 1212 struct g4x_pipe_wm pipe[2]; 1213 struct g4x_sr_wm sr; 1214 struct g4x_sr_wm hpll; 1215 bool cxsr; 1216 bool hpll_en; 1217 bool fbc_en; 1218 }; 1219 1220 struct skl_ddb_entry { 1221 uint16_t start, end; /* in number of blocks, 'end' is exclusive */ 1222 }; 1223 1224 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1225 { 1226 return entry->end - entry->start; 1227 } 1228 1229 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1230 const struct skl_ddb_entry *e2) 1231 { 1232 if (e1->start == e2->start && e1->end == e2->end) 1233 return true; 1234 1235 return false; 1236 } 1237 1238 struct skl_ddb_allocation { 1239 /* packed/y */ 1240 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1241 struct skl_ddb_entry uv_plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1242 u8 enabled_slices; /* GEN11 has configurable 2 slices */ 1243 }; 1244 1245 struct skl_ddb_values { 1246 unsigned dirty_pipes; 1247 struct skl_ddb_allocation ddb; 1248 }; 1249 1250 struct skl_wm_level { 1251 bool plane_en; 1252 uint16_t plane_res_b; 1253 uint8_t plane_res_l; 1254 }; 1255 1256 /* Stores plane specific WM parameters */ 1257 struct skl_wm_params { 1258 bool x_tiled, y_tiled; 1259 bool rc_surface; 1260 bool is_planar; 1261 uint32_t width; 1262 uint8_t cpp; 1263 uint32_t plane_pixel_rate; 1264 uint32_t y_min_scanlines; 1265 uint32_t plane_bytes_per_line; 1266 uint_fixed_16_16_t plane_blocks_per_line; 1267 uint_fixed_16_16_t y_tile_minimum; 1268 uint32_t linetime_us; 1269 uint32_t dbuf_block_size; 1270 }; 1271 1272 /* 1273 * This struct helps tracking the state needed for runtime PM, which puts the 1274 * device in PCI D3 state. Notice that when this happens, nothing on the 1275 * graphics device works, even register access, so we don't get interrupts nor 1276 * anything else. 1277 * 1278 * Every piece of our code that needs to actually touch the hardware needs to 1279 * either call intel_runtime_pm_get or call intel_display_power_get with the 1280 * appropriate power domain. 1281 * 1282 * Our driver uses the autosuspend delay feature, which means we'll only really 1283 * suspend if we stay with zero refcount for a certain amount of time. The 1284 * default value is currently very conservative (see intel_runtime_pm_enable), but 1285 * it can be changed with the standard runtime PM files from sysfs. 1286 * 1287 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1288 * goes back to false exactly before we reenable the IRQs. We use this variable 1289 * to check if someone is trying to enable/disable IRQs while they're supposed 1290 * to be disabled. This shouldn't happen and we'll print some error messages in 1291 * case it happens. 1292 * 1293 * For more, read the Documentation/power/runtime_pm.txt. 1294 */ 1295 struct i915_runtime_pm { 1296 atomic_t wakeref_count; 1297 bool suspended; 1298 bool irqs_enabled; 1299 }; 1300 1301 enum intel_pipe_crc_source { 1302 INTEL_PIPE_CRC_SOURCE_NONE, 1303 INTEL_PIPE_CRC_SOURCE_PLANE1, 1304 INTEL_PIPE_CRC_SOURCE_PLANE2, 1305 INTEL_PIPE_CRC_SOURCE_PF, 1306 INTEL_PIPE_CRC_SOURCE_PIPE, 1307 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1308 INTEL_PIPE_CRC_SOURCE_TV, 1309 INTEL_PIPE_CRC_SOURCE_DP_B, 1310 INTEL_PIPE_CRC_SOURCE_DP_C, 1311 INTEL_PIPE_CRC_SOURCE_DP_D, 1312 INTEL_PIPE_CRC_SOURCE_AUTO, 1313 INTEL_PIPE_CRC_SOURCE_MAX, 1314 }; 1315 1316 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1317 struct intel_pipe_crc { 1318 spinlock_t lock; 1319 int skipped; 1320 enum intel_pipe_crc_source source; 1321 }; 1322 1323 struct i915_frontbuffer_tracking { 1324 spinlock_t lock; 1325 1326 /* 1327 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1328 * scheduled flips. 1329 */ 1330 unsigned busy_bits; 1331 unsigned flip_bits; 1332 }; 1333 1334 struct i915_wa_reg { 1335 u32 addr; 1336 u32 value; 1337 /* bitmask representing WA bits */ 1338 u32 mask; 1339 }; 1340 1341 #define I915_MAX_WA_REGS 16 1342 1343 struct i915_workarounds { 1344 struct i915_wa_reg reg[I915_MAX_WA_REGS]; 1345 u32 count; 1346 }; 1347 1348 struct i915_virtual_gpu { 1349 bool active; 1350 u32 caps; 1351 }; 1352 1353 /* used in computing the new watermarks state */ 1354 struct intel_wm_config { 1355 unsigned int num_pipes_active; 1356 bool sprites_enabled; 1357 bool sprites_scaled; 1358 }; 1359 1360 struct i915_oa_format { 1361 u32 format; 1362 int size; 1363 }; 1364 1365 struct i915_oa_reg { 1366 i915_reg_t addr; 1367 u32 value; 1368 }; 1369 1370 struct i915_oa_config { 1371 char uuid[UUID_STRING_LEN + 1]; 1372 int id; 1373 1374 const struct i915_oa_reg *mux_regs; 1375 u32 mux_regs_len; 1376 const struct i915_oa_reg *b_counter_regs; 1377 u32 b_counter_regs_len; 1378 const struct i915_oa_reg *flex_regs; 1379 u32 flex_regs_len; 1380 1381 struct attribute_group sysfs_metric; 1382 struct attribute *attrs[2]; 1383 struct device_attribute sysfs_metric_id; 1384 1385 atomic_t ref_count; 1386 }; 1387 1388 struct i915_perf_stream; 1389 1390 /** 1391 * struct i915_perf_stream_ops - the OPs to support a specific stream type 1392 */ 1393 struct i915_perf_stream_ops { 1394 /** 1395 * @enable: Enables the collection of HW samples, either in response to 1396 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened 1397 * without `I915_PERF_FLAG_DISABLED`. 1398 */ 1399 void (*enable)(struct i915_perf_stream *stream); 1400 1401 /** 1402 * @disable: Disables the collection of HW samples, either in response 1403 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying 1404 * the stream. 1405 */ 1406 void (*disable)(struct i915_perf_stream *stream); 1407 1408 /** 1409 * @poll_wait: Call poll_wait, passing a wait queue that will be woken 1410 * once there is something ready to read() for the stream 1411 */ 1412 void (*poll_wait)(struct i915_perf_stream *stream, 1413 struct file *file, 1414 poll_table *wait); 1415 1416 /** 1417 * @wait_unlocked: For handling a blocking read, wait until there is 1418 * something to ready to read() for the stream. E.g. wait on the same 1419 * wait queue that would be passed to poll_wait(). 1420 */ 1421 int (*wait_unlocked)(struct i915_perf_stream *stream); 1422 1423 /** 1424 * @read: Copy buffered metrics as records to userspace 1425 * **buf**: the userspace, destination buffer 1426 * **count**: the number of bytes to copy, requested by userspace 1427 * **offset**: zero at the start of the read, updated as the read 1428 * proceeds, it represents how many bytes have been copied so far and 1429 * the buffer offset for copying the next record. 1430 * 1431 * Copy as many buffered i915 perf samples and records for this stream 1432 * to userspace as will fit in the given buffer. 1433 * 1434 * Only write complete records; returning -%ENOSPC if there isn't room 1435 * for a complete record. 1436 * 1437 * Return any error condition that results in a short read such as 1438 * -%ENOSPC or -%EFAULT, even though these may be squashed before 1439 * returning to userspace. 1440 */ 1441 int (*read)(struct i915_perf_stream *stream, 1442 char __user *buf, 1443 size_t count, 1444 size_t *offset); 1445 1446 /** 1447 * @destroy: Cleanup any stream specific resources. 1448 * 1449 * The stream will always be disabled before this is called. 1450 */ 1451 void (*destroy)(struct i915_perf_stream *stream); 1452 }; 1453 1454 /** 1455 * struct i915_perf_stream - state for a single open stream FD 1456 */ 1457 struct i915_perf_stream { 1458 /** 1459 * @dev_priv: i915 drm device 1460 */ 1461 struct drm_i915_private *dev_priv; 1462 1463 /** 1464 * @link: Links the stream into ``&drm_i915_private->streams`` 1465 */ 1466 struct list_head link; 1467 1468 /** 1469 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*` 1470 * properties given when opening a stream, representing the contents 1471 * of a single sample as read() by userspace. 1472 */ 1473 u32 sample_flags; 1474 1475 /** 1476 * @sample_size: Considering the configured contents of a sample 1477 * combined with the required header size, this is the total size 1478 * of a single sample record. 1479 */ 1480 int sample_size; 1481 1482 /** 1483 * @ctx: %NULL if measuring system-wide across all contexts or a 1484 * specific context that is being monitored. 1485 */ 1486 struct i915_gem_context *ctx; 1487 1488 /** 1489 * @enabled: Whether the stream is currently enabled, considering 1490 * whether the stream was opened in a disabled state and based 1491 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls. 1492 */ 1493 bool enabled; 1494 1495 /** 1496 * @ops: The callbacks providing the implementation of this specific 1497 * type of configured stream. 1498 */ 1499 const struct i915_perf_stream_ops *ops; 1500 1501 /** 1502 * @oa_config: The OA configuration used by the stream. 1503 */ 1504 struct i915_oa_config *oa_config; 1505 }; 1506 1507 /** 1508 * struct i915_oa_ops - Gen specific implementation of an OA unit stream 1509 */ 1510 struct i915_oa_ops { 1511 /** 1512 * @is_valid_b_counter_reg: Validates register's address for 1513 * programming boolean counters for a particular platform. 1514 */ 1515 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv, 1516 u32 addr); 1517 1518 /** 1519 * @is_valid_mux_reg: Validates register's address for programming mux 1520 * for a particular platform. 1521 */ 1522 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr); 1523 1524 /** 1525 * @is_valid_flex_reg: Validates register's address for programming 1526 * flex EU filtering for a particular platform. 1527 */ 1528 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr); 1529 1530 /** 1531 * @enable_metric_set: Selects and applies any MUX configuration to set 1532 * up the Boolean and Custom (B/C) counters that are part of the 1533 * counter reports being sampled. May apply system constraints such as 1534 * disabling EU clock gating as required. 1535 */ 1536 int (*enable_metric_set)(struct i915_perf_stream *stream); 1537 1538 /** 1539 * @disable_metric_set: Remove system constraints associated with using 1540 * the OA unit. 1541 */ 1542 void (*disable_metric_set)(struct drm_i915_private *dev_priv); 1543 1544 /** 1545 * @oa_enable: Enable periodic sampling 1546 */ 1547 void (*oa_enable)(struct i915_perf_stream *stream); 1548 1549 /** 1550 * @oa_disable: Disable periodic sampling 1551 */ 1552 void (*oa_disable)(struct i915_perf_stream *stream); 1553 1554 /** 1555 * @read: Copy data from the circular OA buffer into a given userspace 1556 * buffer. 1557 */ 1558 int (*read)(struct i915_perf_stream *stream, 1559 char __user *buf, 1560 size_t count, 1561 size_t *offset); 1562 1563 /** 1564 * @oa_hw_tail_read: read the OA tail pointer register 1565 * 1566 * In particular this enables us to share all the fiddly code for 1567 * handling the OA unit tail pointer race that affects multiple 1568 * generations. 1569 */ 1570 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv); 1571 }; 1572 1573 struct intel_cdclk_state { 1574 unsigned int cdclk, vco, ref, bypass; 1575 u8 voltage_level; 1576 }; 1577 1578 struct drm_i915_private { 1579 struct drm_device drm; 1580 1581 struct kmem_cache *objects; 1582 struct kmem_cache *vmas; 1583 struct kmem_cache *luts; 1584 struct kmem_cache *requests; 1585 struct kmem_cache *dependencies; 1586 struct kmem_cache *priorities; 1587 1588 const struct intel_device_info info; 1589 struct intel_driver_caps caps; 1590 1591 /** 1592 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and 1593 * end of stolen which we can optionally use to create GEM objects 1594 * backed by stolen memory. Note that stolen_usable_size tells us 1595 * exactly how much of this we are actually allowed to use, given that 1596 * some portion of it is in fact reserved for use by hardware functions. 1597 */ 1598 struct resource dsm; 1599 /** 1600 * Reseved portion of Data Stolen Memory 1601 */ 1602 struct resource dsm_reserved; 1603 1604 /* 1605 * Stolen memory is segmented in hardware with different portions 1606 * offlimits to certain functions. 1607 * 1608 * The drm_mm is initialised to the total accessible range, as found 1609 * from the PCI config. On Broadwell+, this is further restricted to 1610 * avoid the first page! The upper end of stolen memory is reserved for 1611 * hardware functions and similarly removed from the accessible range. 1612 */ 1613 resource_size_t stolen_usable_size; /* Total size minus reserved ranges */ 1614 1615 void __iomem *regs; 1616 1617 struct intel_uncore uncore; 1618 1619 struct i915_virtual_gpu vgpu; 1620 1621 struct intel_gvt *gvt; 1622 1623 struct intel_wopcm wopcm; 1624 1625 struct intel_huc huc; 1626 struct intel_guc guc; 1627 1628 struct intel_csr csr; 1629 1630 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 1631 1632 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 1633 * controller on different i2c buses. */ 1634 struct mutex gmbus_mutex; 1635 1636 /** 1637 * Base address of where the gmbus and gpio blocks are located (either 1638 * on PCH or on SoC for platforms without PCH). 1639 */ 1640 uint32_t gpio_mmio_base; 1641 1642 /* MMIO base address for MIPI regs */ 1643 uint32_t mipi_mmio_base; 1644 1645 uint32_t psr_mmio_base; 1646 1647 uint32_t pps_mmio_base; 1648 1649 wait_queue_head_t gmbus_wait_queue; 1650 1651 struct pci_dev *bridge_dev; 1652 struct intel_engine_cs *engine[I915_NUM_ENGINES]; 1653 /* Context used internally to idle the GPU and setup initial state */ 1654 struct i915_gem_context *kernel_context; 1655 /* Context only to be used for injecting preemption commands */ 1656 struct i915_gem_context *preempt_context; 1657 struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1] 1658 [MAX_ENGINE_INSTANCE + 1]; 1659 1660 struct resource mch_res; 1661 1662 /* protects the irq masks */ 1663 spinlock_t irq_lock; 1664 1665 bool display_irqs_enabled; 1666 1667 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 1668 struct pm_qos_request pm_qos; 1669 1670 /* Sideband mailbox protection */ 1671 struct mutex sb_lock; 1672 1673 /** Cached value of IMR to avoid reads in updating the bitfield */ 1674 union { 1675 u32 irq_mask; 1676 u32 de_irq_mask[I915_MAX_PIPES]; 1677 }; 1678 u32 gt_irq_mask; 1679 u32 pm_imr; 1680 u32 pm_ier; 1681 u32 pm_rps_events; 1682 u32 pm_guc_events; 1683 u32 pipestat_irq_mask[I915_MAX_PIPES]; 1684 1685 struct i915_hotplug hotplug; 1686 struct intel_fbc fbc; 1687 struct i915_drrs drrs; 1688 struct intel_opregion opregion; 1689 struct intel_vbt_data vbt; 1690 1691 bool preserve_bios_swizzle; 1692 1693 /* overlay */ 1694 struct intel_overlay *overlay; 1695 1696 /* backlight registers and fields in struct intel_panel */ 1697 struct mutex backlight_lock; 1698 1699 /* LVDS info */ 1700 bool no_aux_handshake; 1701 1702 /* protects panel power sequencer state */ 1703 struct mutex pps_mutex; 1704 1705 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 1706 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 1707 1708 unsigned int fsb_freq, mem_freq, is_ddr3; 1709 unsigned int skl_preferred_vco_freq; 1710 unsigned int max_cdclk_freq; 1711 1712 unsigned int max_dotclk_freq; 1713 unsigned int rawclk_freq; 1714 unsigned int hpll_freq; 1715 unsigned int fdi_pll_freq; 1716 unsigned int czclk_freq; 1717 1718 struct { 1719 /* 1720 * The current logical cdclk state. 1721 * See intel_atomic_state.cdclk.logical 1722 * 1723 * For reading holding any crtc lock is sufficient, 1724 * for writing must hold all of them. 1725 */ 1726 struct intel_cdclk_state logical; 1727 /* 1728 * The current actual cdclk state. 1729 * See intel_atomic_state.cdclk.actual 1730 */ 1731 struct intel_cdclk_state actual; 1732 /* The current hardware cdclk state */ 1733 struct intel_cdclk_state hw; 1734 } cdclk; 1735 1736 /** 1737 * wq - Driver workqueue for GEM. 1738 * 1739 * NOTE: Work items scheduled here are not allowed to grab any modeset 1740 * locks, for otherwise the flushing done in the pageflip code will 1741 * result in deadlocks. 1742 */ 1743 struct workqueue_struct *wq; 1744 1745 /* ordered wq for modesets */ 1746 struct workqueue_struct *modeset_wq; 1747 1748 /* Display functions */ 1749 struct drm_i915_display_funcs display; 1750 1751 /* PCH chipset type */ 1752 enum intel_pch pch_type; 1753 unsigned short pch_id; 1754 1755 unsigned long quirks; 1756 1757 struct drm_atomic_state *modeset_restore_state; 1758 struct drm_modeset_acquire_ctx reset_ctx; 1759 1760 struct i915_ggtt ggtt; /* VM representing the global address space */ 1761 1762 struct i915_gem_mm mm; 1763 DECLARE_HASHTABLE(mm_structs, 7); 1764 struct mutex mm_lock; 1765 1766 struct intel_ppat ppat; 1767 1768 /* Kernel Modesetting */ 1769 1770 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 1771 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 1772 1773 #ifdef CONFIG_DEBUG_FS 1774 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 1775 #endif 1776 1777 /* dpll and cdclk state is protected by connection_mutex */ 1778 int num_shared_dpll; 1779 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 1780 const struct intel_dpll_mgr *dpll_mgr; 1781 1782 /* 1783 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 1784 * Must be global rather than per dpll, because on some platforms 1785 * plls share registers. 1786 */ 1787 struct mutex dpll_lock; 1788 1789 unsigned int active_crtcs; 1790 /* minimum acceptable cdclk for each pipe */ 1791 int min_cdclk[I915_MAX_PIPES]; 1792 /* minimum acceptable voltage level for each pipe */ 1793 u8 min_voltage_level[I915_MAX_PIPES]; 1794 1795 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 1796 1797 struct i915_workarounds workarounds; 1798 1799 struct i915_frontbuffer_tracking fb_tracking; 1800 1801 struct intel_atomic_helper { 1802 struct llist_head free_list; 1803 struct work_struct free_work; 1804 } atomic_helper; 1805 1806 u16 orig_clock; 1807 1808 bool mchbar_need_disable; 1809 1810 struct intel_l3_parity l3_parity; 1811 1812 /* Cannot be determined by PCIID. You must always read a register. */ 1813 u32 edram_cap; 1814 1815 /* 1816 * Protects RPS/RC6 register access and PCU communication. 1817 * Must be taken after struct_mutex if nested. Note that 1818 * this lock may be held for long periods of time when 1819 * talking to hw - so only take it when talking to hw! 1820 */ 1821 struct mutex pcu_lock; 1822 1823 /* gen6+ GT PM state */ 1824 struct intel_gen6_power_mgmt gt_pm; 1825 1826 /* ilk-only ips/rps state. Everything in here is protected by the global 1827 * mchdev_lock in intel_pm.c */ 1828 struct intel_ilk_power_mgmt ips; 1829 1830 struct i915_power_domains power_domains; 1831 1832 struct i915_psr psr; 1833 1834 struct i915_gpu_error gpu_error; 1835 1836 struct drm_i915_gem_object *vlv_pctx; 1837 1838 /* list of fbdev register on this device */ 1839 struct intel_fbdev *fbdev; 1840 struct work_struct fbdev_suspend_work; 1841 1842 struct drm_property *broadcast_rgb_property; 1843 struct drm_property *force_audio_property; 1844 1845 /* hda/i915 audio component */ 1846 struct i915_audio_component *audio_component; 1847 bool audio_component_registered; 1848 /** 1849 * av_mutex - mutex for audio/video sync 1850 * 1851 */ 1852 struct mutex av_mutex; 1853 1854 struct { 1855 struct mutex mutex; 1856 struct list_head list; 1857 struct llist_head free_list; 1858 struct work_struct free_work; 1859 1860 /* The hw wants to have a stable context identifier for the 1861 * lifetime of the context (for OA, PASID, faults, etc). 1862 * This is limited in execlists to 21 bits. 1863 */ 1864 struct ida hw_ida; 1865 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 1866 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */ 1867 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */ 1868 struct list_head hw_id_list; 1869 } contexts; 1870 1871 u32 fdi_rx_config; 1872 1873 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 1874 u32 chv_phy_control; 1875 /* 1876 * Shadows for CHV DPLL_MD regs to keep the state 1877 * checker somewhat working in the presence hardware 1878 * crappiness (can't read out DPLL_MD for pipes B & C). 1879 */ 1880 u32 chv_dpll_md[I915_MAX_PIPES]; 1881 u32 bxt_phy_grc; 1882 1883 u32 suspend_count; 1884 bool power_domains_suspended; 1885 struct i915_suspend_saved_registers regfile; 1886 struct vlv_s0ix_state vlv_s0ix_state; 1887 1888 enum { 1889 I915_SAGV_UNKNOWN = 0, 1890 I915_SAGV_DISABLED, 1891 I915_SAGV_ENABLED, 1892 I915_SAGV_NOT_CONTROLLED 1893 } sagv_status; 1894 1895 struct { 1896 /* 1897 * Raw watermark latency values: 1898 * in 0.1us units for WM0, 1899 * in 0.5us units for WM1+. 1900 */ 1901 /* primary */ 1902 uint16_t pri_latency[5]; 1903 /* sprite */ 1904 uint16_t spr_latency[5]; 1905 /* cursor */ 1906 uint16_t cur_latency[5]; 1907 /* 1908 * Raw watermark memory latency values 1909 * for SKL for all 8 levels 1910 * in 1us units. 1911 */ 1912 uint16_t skl_latency[8]; 1913 1914 /* current hardware state */ 1915 union { 1916 struct ilk_wm_values hw; 1917 struct skl_ddb_values skl_hw; 1918 struct vlv_wm_values vlv; 1919 struct g4x_wm_values g4x; 1920 }; 1921 1922 uint8_t max_level; 1923 1924 /* 1925 * Should be held around atomic WM register writing; also 1926 * protects * intel_crtc->wm.active and 1927 * cstate->wm.need_postvbl_update. 1928 */ 1929 struct mutex wm_mutex; 1930 1931 /* 1932 * Set during HW readout of watermarks/DDB. Some platforms 1933 * need to know when we're still using BIOS-provided values 1934 * (which we don't fully trust). 1935 */ 1936 bool distrust_bios_wm; 1937 } wm; 1938 1939 struct dram_info { 1940 bool valid; 1941 bool is_16gb_dimm; 1942 u8 num_channels; 1943 enum dram_rank { 1944 I915_DRAM_RANK_INVALID = 0, 1945 I915_DRAM_RANK_SINGLE, 1946 I915_DRAM_RANK_DUAL 1947 } rank; 1948 u32 bandwidth_kbps; 1949 bool symmetric_memory; 1950 } dram_info; 1951 1952 struct i915_runtime_pm runtime_pm; 1953 1954 struct { 1955 bool initialized; 1956 1957 struct kobject *metrics_kobj; 1958 struct ctl_table_header *sysctl_header; 1959 1960 /* 1961 * Lock associated with adding/modifying/removing OA configs 1962 * in dev_priv->perf.metrics_idr. 1963 */ 1964 struct mutex metrics_lock; 1965 1966 /* 1967 * List of dynamic configurations, you need to hold 1968 * dev_priv->perf.metrics_lock to access it. 1969 */ 1970 struct idr metrics_idr; 1971 1972 /* 1973 * Lock associated with anything below within this structure 1974 * except exclusive_stream. 1975 */ 1976 struct mutex lock; 1977 struct list_head streams; 1978 1979 struct { 1980 /* 1981 * The stream currently using the OA unit. If accessed 1982 * outside a syscall associated to its file 1983 * descriptor, you need to hold 1984 * dev_priv->drm.struct_mutex. 1985 */ 1986 struct i915_perf_stream *exclusive_stream; 1987 1988 struct intel_context *pinned_ctx; 1989 u32 specific_ctx_id; 1990 u32 specific_ctx_id_mask; 1991 1992 struct hrtimer poll_check_timer; 1993 wait_queue_head_t poll_wq; 1994 bool pollin; 1995 1996 /** 1997 * For rate limiting any notifications of spurious 1998 * invalid OA reports 1999 */ 2000 struct ratelimit_state spurious_report_rs; 2001 2002 bool periodic; 2003 int period_exponent; 2004 2005 struct i915_oa_config test_config; 2006 2007 struct { 2008 struct i915_vma *vma; 2009 u8 *vaddr; 2010 u32 last_ctx_id; 2011 int format; 2012 int format_size; 2013 int size_exponent; 2014 2015 /** 2016 * Locks reads and writes to all head/tail state 2017 * 2018 * Consider: the head and tail pointer state 2019 * needs to be read consistently from a hrtimer 2020 * callback (atomic context) and read() fop 2021 * (user context) with tail pointer updates 2022 * happening in atomic context and head updates 2023 * in user context and the (unlikely) 2024 * possibility of read() errors needing to 2025 * reset all head/tail state. 2026 * 2027 * Note: Contention or performance aren't 2028 * currently a significant concern here 2029 * considering the relatively low frequency of 2030 * hrtimer callbacks (5ms period) and that 2031 * reads typically only happen in response to a 2032 * hrtimer event and likely complete before the 2033 * next callback. 2034 * 2035 * Note: This lock is not held *while* reading 2036 * and copying data to userspace so the value 2037 * of head observed in htrimer callbacks won't 2038 * represent any partial consumption of data. 2039 */ 2040 spinlock_t ptr_lock; 2041 2042 /** 2043 * One 'aging' tail pointer and one 'aged' 2044 * tail pointer ready to used for reading. 2045 * 2046 * Initial values of 0xffffffff are invalid 2047 * and imply that an update is required 2048 * (and should be ignored by an attempted 2049 * read) 2050 */ 2051 struct { 2052 u32 offset; 2053 } tails[2]; 2054 2055 /** 2056 * Index for the aged tail ready to read() 2057 * data up to. 2058 */ 2059 unsigned int aged_tail_idx; 2060 2061 /** 2062 * A monotonic timestamp for when the current 2063 * aging tail pointer was read; used to 2064 * determine when it is old enough to trust. 2065 */ 2066 u64 aging_timestamp; 2067 2068 /** 2069 * Although we can always read back the head 2070 * pointer register, we prefer to avoid 2071 * trusting the HW state, just to avoid any 2072 * risk that some hardware condition could 2073 * somehow bump the head pointer unpredictably 2074 * and cause us to forward the wrong OA buffer 2075 * data to userspace. 2076 */ 2077 u32 head; 2078 } oa_buffer; 2079 2080 u32 gen7_latched_oastatus1; 2081 u32 ctx_oactxctrl_offset; 2082 u32 ctx_flexeu0_offset; 2083 2084 /** 2085 * The RPT_ID/reason field for Gen8+ includes a bit 2086 * to determine if the CTX ID in the report is valid 2087 * but the specific bit differs between Gen 8 and 9 2088 */ 2089 u32 gen8_valid_ctx_bit; 2090 2091 struct i915_oa_ops ops; 2092 const struct i915_oa_format *oa_formats; 2093 } oa; 2094 } perf; 2095 2096 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 2097 struct { 2098 void (*resume)(struct drm_i915_private *); 2099 void (*cleanup_engine)(struct intel_engine_cs *engine); 2100 2101 struct list_head timelines; 2102 2103 struct list_head active_rings; 2104 struct list_head closed_vma; 2105 u32 active_requests; 2106 u32 request_serial; 2107 2108 /** 2109 * Is the GPU currently considered idle, or busy executing 2110 * userspace requests? Whilst idle, we allow runtime power 2111 * management to power down the hardware and display clocks. 2112 * In order to reduce the effect on performance, there 2113 * is a slight delay before we do so. 2114 */ 2115 bool awake; 2116 2117 /** 2118 * The number of times we have woken up. 2119 */ 2120 unsigned int epoch; 2121 #define I915_EPOCH_INVALID 0 2122 2123 /** 2124 * We leave the user IRQ off as much as possible, 2125 * but this means that requests will finish and never 2126 * be retired once the system goes idle. Set a timer to 2127 * fire periodically while the ring is running. When it 2128 * fires, go retire requests. 2129 */ 2130 struct delayed_work retire_work; 2131 2132 /** 2133 * When we detect an idle GPU, we want to turn on 2134 * powersaving features. So once we see that there 2135 * are no more requests outstanding and no more 2136 * arrive within a small period of time, we fire 2137 * off the idle_work. 2138 */ 2139 struct delayed_work idle_work; 2140 2141 ktime_t last_init_time; 2142 } gt; 2143 2144 /* perform PHY state sanity checks? */ 2145 bool chv_phy_assert[2]; 2146 2147 bool ipc_enabled; 2148 2149 /* Used to save the pipe-to-encoder mapping for audio */ 2150 struct intel_encoder *av_enc_map[I915_MAX_PIPES]; 2151 2152 /* necessary resource sharing with HDMI LPE audio driver. */ 2153 struct { 2154 struct platform_device *platdev; 2155 int irq; 2156 } lpe_audio; 2157 2158 struct i915_pmu pmu; 2159 2160 /* 2161 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2162 * will be rejected. Instead look for a better place. 2163 */ 2164 }; 2165 2166 struct dram_channel_info { 2167 struct info { 2168 u8 size, width; 2169 enum dram_rank rank; 2170 } l_info, s_info; 2171 enum dram_rank rank; 2172 bool is_16gb_dimm; 2173 }; 2174 2175 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2176 { 2177 return container_of(dev, struct drm_i915_private, drm); 2178 } 2179 2180 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) 2181 { 2182 return to_i915(dev_get_drvdata(kdev)); 2183 } 2184 2185 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm) 2186 { 2187 return container_of(wopcm, struct drm_i915_private, wopcm); 2188 } 2189 2190 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2191 { 2192 return container_of(guc, struct drm_i915_private, guc); 2193 } 2194 2195 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc) 2196 { 2197 return container_of(huc, struct drm_i915_private, huc); 2198 } 2199 2200 /* Simple iterator over all initialised engines */ 2201 #define for_each_engine(engine__, dev_priv__, id__) \ 2202 for ((id__) = 0; \ 2203 (id__) < I915_NUM_ENGINES; \ 2204 (id__)++) \ 2205 for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) 2206 2207 /* Iterator over subset of engines selected by mask */ 2208 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \ 2209 for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \ 2210 (tmp__) ? \ 2211 ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \ 2212 0;) 2213 2214 enum hdmi_force_audio { 2215 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2216 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2217 HDMI_AUDIO_AUTO, /* trust EDID */ 2218 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2219 }; 2220 2221 #define I915_GTT_OFFSET_NONE ((u32)-1) 2222 2223 /* 2224 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2225 * considered to be the frontbuffer for the given plane interface-wise. This 2226 * doesn't mean that the hw necessarily already scans it out, but that any 2227 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2228 * 2229 * We have one bit per pipe and per scanout plane type. 2230 */ 2231 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2232 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \ 2233 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \ 2234 BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \ 2235 BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \ 2236 }) 2237 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2238 BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2239 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2240 GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \ 2241 INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2242 2243 /* 2244 * Optimised SGL iterator for GEM objects 2245 */ 2246 static __always_inline struct sgt_iter { 2247 struct scatterlist *sgp; 2248 union { 2249 unsigned long pfn; 2250 dma_addr_t dma; 2251 }; 2252 unsigned int curr; 2253 unsigned int max; 2254 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2255 struct sgt_iter s = { .sgp = sgl }; 2256 2257 if (s.sgp) { 2258 s.max = s.curr = s.sgp->offset; 2259 s.max += s.sgp->length; 2260 if (dma) 2261 s.dma = sg_dma_address(s.sgp); 2262 else 2263 s.pfn = page_to_pfn(sg_page(s.sgp)); 2264 } 2265 2266 return s; 2267 } 2268 2269 static inline struct scatterlist *____sg_next(struct scatterlist *sg) 2270 { 2271 ++sg; 2272 if (unlikely(sg_is_chain(sg))) 2273 sg = sg_chain_ptr(sg); 2274 return sg; 2275 } 2276 2277 /** 2278 * __sg_next - return the next scatterlist entry in a list 2279 * @sg: The current sg entry 2280 * 2281 * Description: 2282 * If the entry is the last, return NULL; otherwise, step to the next 2283 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2284 * otherwise just return the pointer to the current element. 2285 **/ 2286 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2287 { 2288 return sg_is_last(sg) ? NULL : ____sg_next(sg); 2289 } 2290 2291 /** 2292 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2293 * @__dmap: DMA address (output) 2294 * @__iter: 'struct sgt_iter' (iterator state, internal) 2295 * @__sgt: sg_table to iterate over (input) 2296 */ 2297 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2298 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2299 ((__dmap) = (__iter).dma + (__iter).curr); \ 2300 (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ? \ 2301 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0) 2302 2303 /** 2304 * for_each_sgt_page - iterate over the pages of the given sg_table 2305 * @__pp: page pointer (output) 2306 * @__iter: 'struct sgt_iter' (iterator state, internal) 2307 * @__sgt: sg_table to iterate over (input) 2308 */ 2309 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2310 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2311 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2312 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2313 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2314 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0) 2315 2316 bool i915_sg_trim(struct sg_table *orig_st); 2317 2318 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg) 2319 { 2320 unsigned int page_sizes; 2321 2322 page_sizes = 0; 2323 while (sg) { 2324 GEM_BUG_ON(sg->offset); 2325 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE)); 2326 page_sizes |= sg->length; 2327 sg = __sg_next(sg); 2328 } 2329 2330 return page_sizes; 2331 } 2332 2333 static inline unsigned int i915_sg_segment_size(void) 2334 { 2335 unsigned int size = swiotlb_max_segment(); 2336 2337 if (size == 0) 2338 return SCATTERLIST_MAX_SEGMENT; 2339 2340 size = rounddown(size, PAGE_SIZE); 2341 /* swiotlb_max_segment_size can return 1 byte when it means one page. */ 2342 if (size < PAGE_SIZE) 2343 size = PAGE_SIZE; 2344 2345 return size; 2346 } 2347 2348 static inline const struct intel_device_info * 2349 intel_info(const struct drm_i915_private *dev_priv) 2350 { 2351 return &dev_priv->info; 2352 } 2353 2354 #define INTEL_INFO(dev_priv) intel_info((dev_priv)) 2355 #define DRIVER_CAPS(dev_priv) (&(dev_priv)->caps) 2356 2357 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen) 2358 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id) 2359 2360 #define REVID_FOREVER 0xff 2361 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision) 2362 2363 #define INTEL_GEN_MASK(s, e) ( \ 2364 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \ 2365 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \ 2366 GENMASK((e) - 1, (s) - 1)) 2367 2368 /* Returns true if Gen is in inclusive range [Start, End] */ 2369 #define IS_GEN(dev_priv, s, e) \ 2370 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e)))) 2371 2372 /* 2373 * Return true if revision is in range [since,until] inclusive. 2374 * 2375 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2376 */ 2377 #define IS_REVID(p, since, until) \ 2378 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2379 2380 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p)) 2381 2382 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830) 2383 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G) 2384 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X) 2385 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G) 2386 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G) 2387 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM) 2388 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G) 2389 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM) 2390 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G) 2391 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM) 2392 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45) 2393 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45) 2394 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) 2395 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001) 2396 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011) 2397 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW) 2398 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33) 2399 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046) 2400 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE) 2401 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \ 2402 (dev_priv)->info.gt == 1) 2403 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW) 2404 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW) 2405 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL) 2406 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL) 2407 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE) 2408 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON) 2409 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE) 2410 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE) 2411 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE) 2412 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE) 2413 #define IS_ICELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ICELAKE) 2414 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile) 2415 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ 2416 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) 2417 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \ 2418 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \ 2419 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \ 2420 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)) 2421 /* ULX machines are also considered ULT. */ 2422 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \ 2423 (INTEL_DEVID(dev_priv) & 0xf) == 0xe) 2424 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ 2425 (dev_priv)->info.gt == 3) 2426 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \ 2427 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00) 2428 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ 2429 (dev_priv)->info.gt == 3) 2430 /* ULX machines are also considered ULT. */ 2431 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \ 2432 INTEL_DEVID(dev_priv) == 0x0A1E) 2433 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \ 2434 INTEL_DEVID(dev_priv) == 0x1913 || \ 2435 INTEL_DEVID(dev_priv) == 0x1916 || \ 2436 INTEL_DEVID(dev_priv) == 0x1921 || \ 2437 INTEL_DEVID(dev_priv) == 0x1926) 2438 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \ 2439 INTEL_DEVID(dev_priv) == 0x1915 || \ 2440 INTEL_DEVID(dev_priv) == 0x191E) 2441 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \ 2442 INTEL_DEVID(dev_priv) == 0x5913 || \ 2443 INTEL_DEVID(dev_priv) == 0x5916 || \ 2444 INTEL_DEVID(dev_priv) == 0x5921 || \ 2445 INTEL_DEVID(dev_priv) == 0x5926) 2446 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \ 2447 INTEL_DEVID(dev_priv) == 0x5915 || \ 2448 INTEL_DEVID(dev_priv) == 0x591E) 2449 #define IS_AML_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x591C || \ 2450 INTEL_DEVID(dev_priv) == 0x87C0) 2451 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2452 (dev_priv)->info.gt == 2) 2453 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2454 (dev_priv)->info.gt == 3) 2455 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2456 (dev_priv)->info.gt == 4) 2457 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2458 (dev_priv)->info.gt == 2) 2459 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2460 (dev_priv)->info.gt == 3) 2461 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2462 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0) 2463 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2464 (dev_priv)->info.gt == 2) 2465 #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2466 (dev_priv)->info.gt == 3) 2467 #define IS_CNL_WITH_PORT_F(dev_priv) (IS_CANNONLAKE(dev_priv) && \ 2468 (INTEL_DEVID(dev_priv) & 0x0004) == 0x0004) 2469 2470 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support) 2471 2472 #define SKL_REVID_A0 0x0 2473 #define SKL_REVID_B0 0x1 2474 #define SKL_REVID_C0 0x2 2475 #define SKL_REVID_D0 0x3 2476 #define SKL_REVID_E0 0x4 2477 #define SKL_REVID_F0 0x5 2478 #define SKL_REVID_G0 0x6 2479 #define SKL_REVID_H0 0x7 2480 2481 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2482 2483 #define BXT_REVID_A0 0x0 2484 #define BXT_REVID_A1 0x1 2485 #define BXT_REVID_B0 0x3 2486 #define BXT_REVID_B_LAST 0x8 2487 #define BXT_REVID_C0 0x9 2488 2489 #define IS_BXT_REVID(dev_priv, since, until) \ 2490 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until)) 2491 2492 #define KBL_REVID_A0 0x0 2493 #define KBL_REVID_B0 0x1 2494 #define KBL_REVID_C0 0x2 2495 #define KBL_REVID_D0 0x3 2496 #define KBL_REVID_E0 0x4 2497 2498 #define IS_KBL_REVID(dev_priv, since, until) \ 2499 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2500 2501 #define GLK_REVID_A0 0x0 2502 #define GLK_REVID_A1 0x1 2503 2504 #define IS_GLK_REVID(dev_priv, since, until) \ 2505 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2506 2507 #define CNL_REVID_A0 0x0 2508 #define CNL_REVID_B0 0x1 2509 #define CNL_REVID_C0 0x2 2510 2511 #define IS_CNL_REVID(p, since, until) \ 2512 (IS_CANNONLAKE(p) && IS_REVID(p, since, until)) 2513 2514 #define ICL_REVID_A0 0x0 2515 #define ICL_REVID_A2 0x1 2516 #define ICL_REVID_B0 0x3 2517 #define ICL_REVID_B2 0x4 2518 #define ICL_REVID_C0 0x5 2519 2520 #define IS_ICL_REVID(p, since, until) \ 2521 (IS_ICELAKE(p) && IS_REVID(p, since, until)) 2522 2523 /* 2524 * The genX designation typically refers to the render engine, so render 2525 * capability related checks should use IS_GEN, while display and other checks 2526 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular 2527 * chips, etc.). 2528 */ 2529 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1))) 2530 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2))) 2531 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3))) 2532 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4))) 2533 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5))) 2534 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6))) 2535 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7))) 2536 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8))) 2537 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9))) 2538 #define IS_GEN11(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(10))) 2539 2540 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) 2541 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv)) 2542 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv)) 2543 2544 #define ENGINE_MASK(id) BIT(id) 2545 #define RENDER_RING ENGINE_MASK(RCS) 2546 #define BSD_RING ENGINE_MASK(VCS) 2547 #define BLT_RING ENGINE_MASK(BCS) 2548 #define VEBOX_RING ENGINE_MASK(VECS) 2549 #define BSD2_RING ENGINE_MASK(VCS2) 2550 #define BSD3_RING ENGINE_MASK(VCS3) 2551 #define BSD4_RING ENGINE_MASK(VCS4) 2552 #define VEBOX2_RING ENGINE_MASK(VECS2) 2553 #define ALL_ENGINES (~0) 2554 2555 #define HAS_ENGINE(dev_priv, id) \ 2556 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id))) 2557 2558 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) 2559 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) 2560 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) 2561 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) 2562 2563 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv) 2564 2565 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc) 2566 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop) 2567 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED)) 2568 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \ 2569 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv)) 2570 2571 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical) 2572 2573 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ 2574 ((dev_priv)->info.has_logical_ring_contexts) 2575 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \ 2576 ((dev_priv)->info.has_logical_ring_elsq) 2577 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \ 2578 ((dev_priv)->info.has_logical_ring_preemption) 2579 2580 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv) 2581 2582 #define INTEL_PPGTT(dev_priv) (INTEL_INFO(dev_priv)->ppgtt) 2583 #define HAS_PPGTT(dev_priv) \ 2584 (INTEL_PPGTT(dev_priv) != INTEL_PPGTT_NONE) 2585 #define HAS_FULL_PPGTT(dev_priv) \ 2586 (INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL) 2587 #define HAS_FULL_48BIT_PPGTT(dev_priv) \ 2588 (INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL_4LVL) 2589 2590 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \ 2591 GEM_BUG_ON((sizes) == 0); \ 2592 ((sizes) & ~(dev_priv)->info.page_sizes) == 0; \ 2593 }) 2594 2595 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay) 2596 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ 2597 ((dev_priv)->info.overlay_needs_physical) 2598 2599 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2600 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) 2601 2602 /* WaRsDisableCoarsePowerGating:skl,cnl */ 2603 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 2604 (IS_CANNONLAKE(dev_priv) || \ 2605 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv)) 2606 2607 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4) 2608 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \ 2609 IS_GEMINILAKE(dev_priv) || \ 2610 IS_KABYLAKE(dev_priv)) 2611 2612 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2613 * rows, which changed the alignment requirements and fence programming. 2614 */ 2615 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \ 2616 !(IS_I915G(dev_priv) || \ 2617 IS_I915GM(dev_priv))) 2618 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv) 2619 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug) 2620 2621 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2) 2622 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc) 2623 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7) 2624 2625 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) 2626 2627 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst) 2628 2629 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi) 2630 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg) 2631 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr) 2632 2633 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6) 2634 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p) 2635 #define HAS_RC6pp(dev_priv) (false) /* HW was never validated */ 2636 2637 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr) 2638 2639 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm) 2640 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc) 2641 2642 #define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc) 2643 2644 /* 2645 * For now, anything with a GuC requires uCode loading, and then supports 2646 * command submission once loaded. But these are logically independent 2647 * properties, so we have separate macros to test them. 2648 */ 2649 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc) 2650 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct) 2651 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2652 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv)) 2653 2654 /* For now, anything with a GuC has also HuC */ 2655 #define HAS_HUC(dev_priv) (HAS_GUC(dev_priv)) 2656 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2657 2658 /* Having a GuC is not the same as using a GuC */ 2659 #define USES_GUC(dev_priv) intel_uc_is_using_guc() 2660 #define USES_GUC_SUBMISSION(dev_priv) intel_uc_is_using_guc_submission() 2661 #define USES_HUC(dev_priv) intel_uc_is_using_huc() 2662 2663 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu) 2664 2665 #define INTEL_PCH_DEVICE_ID_MASK 0xff80 2666 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2667 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2668 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2669 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2670 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2671 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80 2672 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80 2673 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2674 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2675 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280 2676 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300 2677 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80 2678 #define INTEL_PCH_ICP_DEVICE_ID_TYPE 0x3480 2679 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2680 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2681 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2682 2683 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type) 2684 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id) 2685 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP) 2686 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP) 2687 #define HAS_PCH_CNP_LP(dev_priv) \ 2688 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) 2689 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP) 2690 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT) 2691 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT) 2692 #define HAS_PCH_LPT_LP(dev_priv) \ 2693 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \ 2694 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) 2695 #define HAS_PCH_LPT_H(dev_priv) \ 2696 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \ 2697 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE) 2698 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT) 2699 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX) 2700 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP) 2701 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE) 2702 2703 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display) 2704 2705 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9) 2706 2707 /* DPF == dynamic parity feature */ 2708 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf) 2709 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 2710 2 : HAS_L3_DPF(dev_priv)) 2711 2712 #define GT_FREQUENCY_MULTIPLIER 50 2713 #define GEN9_FREQ_SCALER 3 2714 2715 #include "i915_trace.h" 2716 2717 static inline bool intel_vtd_active(void) 2718 { 2719 #ifdef CONFIG_INTEL_IOMMU 2720 if (intel_iommu_gfx_mapped) 2721 return true; 2722 #endif 2723 return false; 2724 } 2725 2726 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 2727 { 2728 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active(); 2729 } 2730 2731 static inline bool 2732 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv) 2733 { 2734 return IS_BROXTON(dev_priv) && intel_vtd_active(); 2735 } 2736 2737 /* i915_drv.c */ 2738 void __printf(3, 4) 2739 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 2740 const char *fmt, ...); 2741 2742 #define i915_report_error(dev_priv, fmt, ...) \ 2743 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 2744 2745 #ifdef CONFIG_COMPAT 2746 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2747 unsigned long arg); 2748 #else 2749 #define i915_compat_ioctl NULL 2750 #endif 2751 extern const struct dev_pm_ops i915_pm_ops; 2752 2753 extern int i915_driver_load(struct pci_dev *pdev, 2754 const struct pci_device_id *ent); 2755 extern void i915_driver_unload(struct drm_device *dev); 2756 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask); 2757 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv); 2758 2759 extern void i915_reset(struct drm_i915_private *i915, 2760 unsigned int stalled_mask, 2761 const char *reason); 2762 extern int i915_reset_engine(struct intel_engine_cs *engine, 2763 const char *reason); 2764 2765 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv); 2766 extern int intel_reset_guc(struct drm_i915_private *dev_priv); 2767 extern int intel_guc_reset_engine(struct intel_guc *guc, 2768 struct intel_engine_cs *engine); 2769 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 2770 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv); 2771 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2772 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2773 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2774 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2775 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2776 2777 int intel_engines_init_mmio(struct drm_i915_private *dev_priv); 2778 int intel_engines_init(struct drm_i915_private *dev_priv); 2779 2780 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv); 2781 2782 /* intel_hotplug.c */ 2783 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, 2784 u32 pin_mask, u32 long_mask); 2785 void intel_hpd_init(struct drm_i915_private *dev_priv); 2786 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 2787 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 2788 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv, 2789 enum port port); 2790 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2791 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2792 2793 /* i915_irq.c */ 2794 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 2795 { 2796 unsigned long delay; 2797 2798 if (unlikely(!i915_modparams.enable_hangcheck)) 2799 return; 2800 2801 /* Don't continually defer the hangcheck so that it is always run at 2802 * least once after work has been scheduled on any ring. Otherwise, 2803 * we will ignore a hung ring if a second ring is kept busy. 2804 */ 2805 2806 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 2807 queue_delayed_work(system_long_wq, 2808 &dev_priv->gpu_error.hangcheck_work, delay); 2809 } 2810 2811 __printf(4, 5) 2812 void i915_handle_error(struct drm_i915_private *dev_priv, 2813 u32 engine_mask, 2814 unsigned long flags, 2815 const char *fmt, ...); 2816 #define I915_ERROR_CAPTURE BIT(0) 2817 2818 extern void intel_irq_init(struct drm_i915_private *dev_priv); 2819 extern void intel_irq_fini(struct drm_i915_private *dev_priv); 2820 int intel_irq_install(struct drm_i915_private *dev_priv); 2821 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 2822 2823 void i915_clear_error_registers(struct drm_i915_private *dev_priv); 2824 2825 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 2826 { 2827 return dev_priv->gvt; 2828 } 2829 2830 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 2831 { 2832 return dev_priv->vgpu.active; 2833 } 2834 2835 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 2836 enum pipe pipe); 2837 void 2838 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2839 u32 status_mask); 2840 2841 void 2842 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2843 u32 status_mask); 2844 2845 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 2846 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 2847 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 2848 uint32_t mask, 2849 uint32_t bits); 2850 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 2851 uint32_t interrupt_mask, 2852 uint32_t enabled_irq_mask); 2853 static inline void 2854 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2855 { 2856 ilk_update_display_irq(dev_priv, bits, bits); 2857 } 2858 static inline void 2859 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2860 { 2861 ilk_update_display_irq(dev_priv, bits, 0); 2862 } 2863 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 2864 enum pipe pipe, 2865 uint32_t interrupt_mask, 2866 uint32_t enabled_irq_mask); 2867 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 2868 enum pipe pipe, uint32_t bits) 2869 { 2870 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 2871 } 2872 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 2873 enum pipe pipe, uint32_t bits) 2874 { 2875 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 2876 } 2877 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 2878 uint32_t interrupt_mask, 2879 uint32_t enabled_irq_mask); 2880 static inline void 2881 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2882 { 2883 ibx_display_interrupt_update(dev_priv, bits, bits); 2884 } 2885 static inline void 2886 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2887 { 2888 ibx_display_interrupt_update(dev_priv, bits, 0); 2889 } 2890 2891 /* i915_gem.c */ 2892 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 2893 struct drm_file *file_priv); 2894 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 2895 struct drm_file *file_priv); 2896 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 2897 struct drm_file *file_priv); 2898 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 2899 struct drm_file *file_priv); 2900 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2901 struct drm_file *file_priv); 2902 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 2903 struct drm_file *file_priv); 2904 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 2905 struct drm_file *file_priv); 2906 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2907 struct drm_file *file_priv); 2908 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 2909 struct drm_file *file_priv); 2910 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 2911 struct drm_file *file_priv); 2912 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 2913 struct drm_file *file); 2914 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 2915 struct drm_file *file); 2916 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 2917 struct drm_file *file_priv); 2918 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 2919 struct drm_file *file_priv); 2920 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, 2921 struct drm_file *file_priv); 2922 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, 2923 struct drm_file *file_priv); 2924 int i915_gem_init_userptr(struct drm_i915_private *dev_priv); 2925 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv); 2926 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 2927 struct drm_file *file); 2928 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 2929 struct drm_file *file_priv); 2930 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 2931 struct drm_file *file_priv); 2932 void i915_gem_sanitize(struct drm_i915_private *i915); 2933 int i915_gem_init_early(struct drm_i915_private *dev_priv); 2934 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv); 2935 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 2936 int i915_gem_freeze(struct drm_i915_private *dev_priv); 2937 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 2938 2939 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv); 2940 void i915_gem_object_free(struct drm_i915_gem_object *obj); 2941 void i915_gem_object_init(struct drm_i915_gem_object *obj, 2942 const struct drm_i915_gem_object_ops *ops); 2943 struct drm_i915_gem_object * 2944 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size); 2945 struct drm_i915_gem_object * 2946 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 2947 const void *data, size_t size); 2948 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); 2949 void i915_gem_free_object(struct drm_gem_object *obj); 2950 2951 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 2952 { 2953 if (!atomic_read(&i915->mm.free_count)) 2954 return; 2955 2956 /* A single pass should suffice to release all the freed objects (along 2957 * most call paths) , but be a little more paranoid in that freeing 2958 * the objects does take a little amount of time, during which the rcu 2959 * callbacks could have added new objects into the freed list, and 2960 * armed the work again. 2961 */ 2962 do { 2963 rcu_barrier(); 2964 } while (flush_work(&i915->mm.free_work)); 2965 } 2966 2967 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915) 2968 { 2969 /* 2970 * Similar to objects above (see i915_gem_drain_freed-objects), in 2971 * general we have workers that are armed by RCU and then rearm 2972 * themselves in their callbacks. To be paranoid, we need to 2973 * drain the workqueue a second time after waiting for the RCU 2974 * grace period so that we catch work queued via RCU from the first 2975 * pass. As neither drain_workqueue() nor flush_workqueue() report 2976 * a result, we make an assumption that we only don't require more 2977 * than 2 passes to catch all recursive RCU delayed work. 2978 * 2979 */ 2980 int pass = 2; 2981 do { 2982 rcu_barrier(); 2983 drain_workqueue(i915->wq); 2984 } while (--pass); 2985 } 2986 2987 struct i915_vma * __must_check 2988 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 2989 const struct i915_ggtt_view *view, 2990 u64 size, 2991 u64 alignment, 2992 u64 flags); 2993 2994 int i915_gem_object_unbind(struct drm_i915_gem_object *obj); 2995 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 2996 2997 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); 2998 2999 static inline int __sg_page_count(const struct scatterlist *sg) 3000 { 3001 return sg->length >> PAGE_SHIFT; 3002 } 3003 3004 struct scatterlist * 3005 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 3006 unsigned int n, unsigned int *offset); 3007 3008 struct page * 3009 i915_gem_object_get_page(struct drm_i915_gem_object *obj, 3010 unsigned int n); 3011 3012 struct page * 3013 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 3014 unsigned int n); 3015 3016 dma_addr_t 3017 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 3018 unsigned long n); 3019 3020 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 3021 struct sg_table *pages, 3022 unsigned int sg_page_sizes); 3023 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 3024 3025 static inline int __must_check 3026 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3027 { 3028 might_lock(&obj->mm.lock); 3029 3030 if (atomic_inc_not_zero(&obj->mm.pages_pin_count)) 3031 return 0; 3032 3033 return __i915_gem_object_get_pages(obj); 3034 } 3035 3036 static inline bool 3037 i915_gem_object_has_pages(struct drm_i915_gem_object *obj) 3038 { 3039 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages)); 3040 } 3041 3042 static inline void 3043 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3044 { 3045 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 3046 3047 atomic_inc(&obj->mm.pages_pin_count); 3048 } 3049 3050 static inline bool 3051 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj) 3052 { 3053 return atomic_read(&obj->mm.pages_pin_count); 3054 } 3055 3056 static inline void 3057 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3058 { 3059 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 3060 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 3061 3062 atomic_dec(&obj->mm.pages_pin_count); 3063 } 3064 3065 static inline void 3066 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3067 { 3068 __i915_gem_object_unpin_pages(obj); 3069 } 3070 3071 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */ 3072 I915_MM_NORMAL = 0, 3073 I915_MM_SHRINKER 3074 }; 3075 3076 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 3077 enum i915_mm_subclass subclass); 3078 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj); 3079 3080 enum i915_map_type { 3081 I915_MAP_WB = 0, 3082 I915_MAP_WC, 3083 #define I915_MAP_OVERRIDE BIT(31) 3084 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE, 3085 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE, 3086 }; 3087 3088 static inline enum i915_map_type 3089 i915_coherent_map_type(struct drm_i915_private *i915) 3090 { 3091 return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC; 3092 } 3093 3094 /** 3095 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 3096 * @obj: the object to map into kernel address space 3097 * @type: the type of mapping, used to select pgprot_t 3098 * 3099 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 3100 * pages and then returns a contiguous mapping of the backing storage into 3101 * the kernel address space. Based on the @type of mapping, the PTE will be 3102 * set to either WriteBack or WriteCombine (via pgprot_t). 3103 * 3104 * The caller is responsible for calling i915_gem_object_unpin_map() when the 3105 * mapping is no longer required. 3106 * 3107 * Returns the pointer through which to access the mapped object, or an 3108 * ERR_PTR() on error. 3109 */ 3110 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 3111 enum i915_map_type type); 3112 3113 /** 3114 * i915_gem_object_unpin_map - releases an earlier mapping 3115 * @obj: the object to unmap 3116 * 3117 * After pinning the object and mapping its pages, once you are finished 3118 * with your access, call i915_gem_object_unpin_map() to release the pin 3119 * upon the mapping. Once the pin count reaches zero, that mapping may be 3120 * removed. 3121 */ 3122 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 3123 { 3124 i915_gem_object_unpin_pages(obj); 3125 } 3126 3127 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 3128 unsigned int *needs_clflush); 3129 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 3130 unsigned int *needs_clflush); 3131 #define CLFLUSH_BEFORE BIT(0) 3132 #define CLFLUSH_AFTER BIT(1) 3133 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER) 3134 3135 static inline void 3136 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj) 3137 { 3138 i915_gem_object_unpin_pages(obj); 3139 } 3140 3141 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 3142 int i915_gem_dumb_create(struct drm_file *file_priv, 3143 struct drm_device *dev, 3144 struct drm_mode_create_dumb *args); 3145 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3146 uint32_t handle, uint64_t *offset); 3147 int i915_gem_mmap_gtt_version(void); 3148 3149 void i915_gem_track_fb(struct drm_i915_gem_object *old, 3150 struct drm_i915_gem_object *new, 3151 unsigned frontbuffer_bits); 3152 3153 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); 3154 3155 struct i915_request * 3156 i915_gem_find_active_request(struct intel_engine_cs *engine); 3157 3158 static inline bool i915_reset_backoff(struct i915_gpu_error *error) 3159 { 3160 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags)); 3161 } 3162 3163 static inline bool i915_reset_handoff(struct i915_gpu_error *error) 3164 { 3165 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags)); 3166 } 3167 3168 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3169 { 3170 return unlikely(test_bit(I915_WEDGED, &error->flags)); 3171 } 3172 3173 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error) 3174 { 3175 return i915_reset_backoff(error) | i915_terminally_wedged(error); 3176 } 3177 3178 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3179 { 3180 return READ_ONCE(error->reset_count); 3181 } 3182 3183 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error, 3184 struct intel_engine_cs *engine) 3185 { 3186 return READ_ONCE(error->reset_engine_count[engine->id]); 3187 } 3188 3189 struct i915_request * 3190 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine); 3191 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv); 3192 void i915_gem_reset(struct drm_i915_private *dev_priv, 3193 unsigned int stalled_mask); 3194 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine); 3195 void i915_gem_reset_finish(struct drm_i915_private *dev_priv); 3196 void i915_gem_set_wedged(struct drm_i915_private *dev_priv); 3197 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv); 3198 void i915_gem_reset_engine(struct intel_engine_cs *engine, 3199 struct i915_request *request, 3200 bool stalled); 3201 3202 void i915_gem_init_mmio(struct drm_i915_private *i915); 3203 int __must_check i915_gem_init(struct drm_i915_private *dev_priv); 3204 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv); 3205 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv); 3206 void i915_gem_fini(struct drm_i915_private *dev_priv); 3207 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv); 3208 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, 3209 unsigned int flags, long timeout); 3210 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv); 3211 void i915_gem_suspend_late(struct drm_i915_private *dev_priv); 3212 void i915_gem_resume(struct drm_i915_private *dev_priv); 3213 vm_fault_t i915_gem_fault(struct vm_fault *vmf); 3214 int i915_gem_object_wait(struct drm_i915_gem_object *obj, 3215 unsigned int flags, 3216 long timeout, 3217 struct intel_rps_client *rps); 3218 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 3219 unsigned int flags, 3220 const struct i915_sched_attr *attr); 3221 #define I915_PRIORITY_DISPLAY I915_USER_PRIORITY(I915_PRIORITY_MAX) 3222 3223 int __must_check 3224 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write); 3225 int __must_check 3226 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write); 3227 int __must_check 3228 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3229 struct i915_vma * __must_check 3230 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3231 u32 alignment, 3232 const struct i915_ggtt_view *view, 3233 unsigned int flags); 3234 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma); 3235 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3236 int align); 3237 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file); 3238 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3239 3240 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3241 enum i915_cache_level cache_level); 3242 3243 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3244 struct dma_buf *dma_buf); 3245 3246 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3247 struct drm_gem_object *gem_obj, int flags); 3248 3249 static inline struct i915_hw_ppgtt * 3250 i915_vm_to_ppgtt(struct i915_address_space *vm) 3251 { 3252 return container_of(vm, struct i915_hw_ppgtt, vm); 3253 } 3254 3255 /* i915_gem_fence_reg.c */ 3256 struct drm_i915_fence_reg * 3257 i915_reserve_fence(struct drm_i915_private *dev_priv); 3258 void i915_unreserve_fence(struct drm_i915_fence_reg *fence); 3259 3260 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv); 3261 void i915_gem_restore_fences(struct drm_i915_private *dev_priv); 3262 3263 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv); 3264 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 3265 struct sg_table *pages); 3266 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 3267 struct sg_table *pages); 3268 3269 static inline struct i915_gem_context * 3270 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id) 3271 { 3272 return idr_find(&file_priv->context_idr, id); 3273 } 3274 3275 static inline struct i915_gem_context * 3276 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3277 { 3278 struct i915_gem_context *ctx; 3279 3280 rcu_read_lock(); 3281 ctx = __i915_gem_context_lookup_rcu(file_priv, id); 3282 if (ctx && !kref_get_unless_zero(&ctx->ref)) 3283 ctx = NULL; 3284 rcu_read_unlock(); 3285 3286 return ctx; 3287 } 3288 3289 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3290 struct drm_file *file); 3291 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3292 struct drm_file *file); 3293 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3294 struct drm_file *file); 3295 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 3296 struct i915_gem_context *ctx, 3297 uint32_t *reg_state); 3298 3299 /* i915_gem_evict.c */ 3300 int __must_check i915_gem_evict_something(struct i915_address_space *vm, 3301 u64 min_size, u64 alignment, 3302 unsigned cache_level, 3303 u64 start, u64 end, 3304 unsigned flags); 3305 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, 3306 struct drm_mm_node *node, 3307 unsigned int flags); 3308 int i915_gem_evict_vm(struct i915_address_space *vm); 3309 3310 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv); 3311 3312 /* belongs in i915_gem_gtt.h */ 3313 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3314 { 3315 wmb(); 3316 if (INTEL_GEN(dev_priv) < 6) 3317 intel_gtt_chipset_flush(); 3318 } 3319 3320 /* i915_gem_stolen.c */ 3321 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3322 struct drm_mm_node *node, u64 size, 3323 unsigned alignment); 3324 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3325 struct drm_mm_node *node, u64 size, 3326 unsigned alignment, u64 start, 3327 u64 end); 3328 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3329 struct drm_mm_node *node); 3330 int i915_gem_init_stolen(struct drm_i915_private *dev_priv); 3331 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv); 3332 struct drm_i915_gem_object * 3333 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, 3334 resource_size_t size); 3335 struct drm_i915_gem_object * 3336 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv, 3337 resource_size_t stolen_offset, 3338 resource_size_t gtt_offset, 3339 resource_size_t size); 3340 3341 /* i915_gem_internal.c */ 3342 struct drm_i915_gem_object * 3343 i915_gem_object_create_internal(struct drm_i915_private *dev_priv, 3344 phys_addr_t size); 3345 3346 /* i915_gem_shrinker.c */ 3347 unsigned long i915_gem_shrink(struct drm_i915_private *i915, 3348 unsigned long target, 3349 unsigned long *nr_scanned, 3350 unsigned flags); 3351 #define I915_SHRINK_PURGEABLE 0x1 3352 #define I915_SHRINK_UNBOUND 0x2 3353 #define I915_SHRINK_BOUND 0x4 3354 #define I915_SHRINK_ACTIVE 0x8 3355 #define I915_SHRINK_VMAPS 0x10 3356 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915); 3357 void i915_gem_shrinker_register(struct drm_i915_private *i915); 3358 void i915_gem_shrinker_unregister(struct drm_i915_private *i915); 3359 void i915_gem_shrinker_taints_mutex(struct mutex *mutex); 3360 3361 /* i915_gem_tiling.c */ 3362 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3363 { 3364 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3365 3366 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3367 i915_gem_object_is_tiled(obj); 3368 } 3369 3370 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, 3371 unsigned int tiling, unsigned int stride); 3372 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, 3373 unsigned int tiling, unsigned int stride); 3374 3375 /* i915_debugfs.c */ 3376 #ifdef CONFIG_DEBUG_FS 3377 int i915_debugfs_register(struct drm_i915_private *dev_priv); 3378 int i915_debugfs_connector_add(struct drm_connector *connector); 3379 void intel_display_crc_init(struct drm_i915_private *dev_priv); 3380 #else 3381 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} 3382 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3383 { return 0; } 3384 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {} 3385 #endif 3386 3387 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3388 3389 /* i915_cmd_parser.c */ 3390 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 3391 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine); 3392 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); 3393 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 3394 struct drm_i915_gem_object *batch_obj, 3395 struct drm_i915_gem_object *shadow_batch_obj, 3396 u32 batch_start_offset, 3397 u32 batch_len, 3398 bool is_master); 3399 3400 /* i915_perf.c */ 3401 extern void i915_perf_init(struct drm_i915_private *dev_priv); 3402 extern void i915_perf_fini(struct drm_i915_private *dev_priv); 3403 extern void i915_perf_register(struct drm_i915_private *dev_priv); 3404 extern void i915_perf_unregister(struct drm_i915_private *dev_priv); 3405 3406 /* i915_suspend.c */ 3407 extern int i915_save_state(struct drm_i915_private *dev_priv); 3408 extern int i915_restore_state(struct drm_i915_private *dev_priv); 3409 3410 /* i915_sysfs.c */ 3411 void i915_setup_sysfs(struct drm_i915_private *dev_priv); 3412 void i915_teardown_sysfs(struct drm_i915_private *dev_priv); 3413 3414 /* intel_lpe_audio.c */ 3415 int intel_lpe_audio_init(struct drm_i915_private *dev_priv); 3416 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv); 3417 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv); 3418 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv, 3419 enum pipe pipe, enum port port, 3420 const void *eld, int ls_clock, bool dp_output); 3421 3422 /* intel_i2c.c */ 3423 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv); 3424 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv); 3425 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3426 unsigned int pin); 3427 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter); 3428 3429 extern struct i2c_adapter * 3430 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3431 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3432 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3433 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3434 { 3435 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3436 } 3437 extern void intel_i2c_reset(struct drm_i915_private *dev_priv); 3438 3439 /* intel_bios.c */ 3440 void intel_bios_init(struct drm_i915_private *dev_priv); 3441 void intel_bios_cleanup(struct drm_i915_private *dev_priv); 3442 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3443 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3444 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3445 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3446 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3447 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3448 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3449 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3450 enum port port); 3451 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv, 3452 enum port port); 3453 enum aux_ch intel_aux_ch(struct drm_i915_private *dev_priv, enum port port); 3454 3455 /* intel_acpi.c */ 3456 #ifdef CONFIG_ACPI 3457 extern void intel_register_dsm_handler(void); 3458 extern void intel_unregister_dsm_handler(void); 3459 #else 3460 static inline void intel_register_dsm_handler(void) { return; } 3461 static inline void intel_unregister_dsm_handler(void) { return; } 3462 #endif /* CONFIG_ACPI */ 3463 3464 /* intel_device_info.c */ 3465 static inline struct intel_device_info * 3466 mkwrite_device_info(struct drm_i915_private *dev_priv) 3467 { 3468 return (struct intel_device_info *)&dev_priv->info; 3469 } 3470 3471 /* modesetting */ 3472 extern void intel_modeset_init_hw(struct drm_device *dev); 3473 extern int intel_modeset_init(struct drm_device *dev); 3474 extern void intel_modeset_cleanup(struct drm_device *dev); 3475 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, 3476 bool state); 3477 extern void intel_display_resume(struct drm_device *dev); 3478 extern void i915_redisable_vga(struct drm_i915_private *dev_priv); 3479 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv); 3480 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 3481 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv); 3482 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 3483 extern void intel_rps_mark_interactive(struct drm_i915_private *i915, 3484 bool interactive); 3485 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3486 bool enable); 3487 3488 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3489 struct drm_file *file); 3490 3491 /* overlay */ 3492 extern struct intel_overlay_error_state * 3493 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); 3494 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3495 struct intel_overlay_error_state *error); 3496 3497 extern struct intel_display_error_state * 3498 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 3499 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3500 struct intel_display_error_state *error); 3501 3502 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3503 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox, 3504 u32 val, int fast_timeout_us, 3505 int slow_timeout_ms); 3506 #define sandybridge_pcode_write(dev_priv, mbox, val) \ 3507 sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0) 3508 3509 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, 3510 u32 reply_mask, u32 reply, int timeout_base_ms); 3511 3512 /* intel_sideband.c */ 3513 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3514 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3515 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3516 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 3517 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 3518 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3519 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3520 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3521 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3522 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3523 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3524 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 3525 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 3526 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3527 enum intel_sbi_destination destination); 3528 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3529 enum intel_sbi_destination destination); 3530 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3531 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3532 3533 /* intel_dpio_phy.c */ 3534 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 3535 enum dpio_phy *phy, enum dpio_channel *ch); 3536 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv, 3537 enum port port, u32 margin, u32 scale, 3538 u32 enable, u32 deemphasis); 3539 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3540 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3541 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 3542 enum dpio_phy phy); 3543 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 3544 enum dpio_phy phy); 3545 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count); 3546 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 3547 uint8_t lane_lat_optim_mask); 3548 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder); 3549 3550 void chv_set_phy_signal_level(struct intel_encoder *encoder, 3551 u32 deemph_reg_value, u32 margin_reg_value, 3552 bool uniq_trans_scale); 3553 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 3554 const struct intel_crtc_state *crtc_state, 3555 bool reset); 3556 void chv_phy_pre_pll_enable(struct intel_encoder *encoder, 3557 const struct intel_crtc_state *crtc_state); 3558 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3559 const struct intel_crtc_state *crtc_state); 3560 void chv_phy_release_cl2_override(struct intel_encoder *encoder); 3561 void chv_phy_post_pll_disable(struct intel_encoder *encoder, 3562 const struct intel_crtc_state *old_crtc_state); 3563 3564 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 3565 u32 demph_reg_value, u32 preemph_reg_value, 3566 u32 uniqtranscale_reg_value, u32 tx3_demph); 3567 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, 3568 const struct intel_crtc_state *crtc_state); 3569 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3570 const struct intel_crtc_state *crtc_state); 3571 void vlv_phy_reset_lanes(struct intel_encoder *encoder, 3572 const struct intel_crtc_state *old_crtc_state); 3573 3574 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3575 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3576 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv, 3577 const i915_reg_t reg); 3578 3579 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1); 3580 3581 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv, 3582 const i915_reg_t reg) 3583 { 3584 return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000); 3585 } 3586 3587 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 3588 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 3589 3590 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 3591 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 3592 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 3593 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 3594 3595 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 3596 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 3597 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 3598 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 3599 3600 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3601 * will be implemented using 2 32-bit writes in an arbitrary order with 3602 * an arbitrary delay between them. This can cause the hardware to 3603 * act upon the intermediate value, possibly leading to corruption and 3604 * machine death. For this reason we do not support I915_WRITE64, or 3605 * dev_priv->uncore.funcs.mmio_writeq. 3606 * 3607 * When reading a 64-bit value as two 32-bit values, the delay may cause 3608 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that 3609 * occasionally a 64-bit register does not actualy support a full readq 3610 * and must be read using two 32-bit reads. 3611 * 3612 * You have been warned. 3613 */ 3614 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 3615 3616 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 3617 u32 upper, lower, old_upper, loop = 0; \ 3618 upper = I915_READ(upper_reg); \ 3619 do { \ 3620 old_upper = upper; \ 3621 lower = I915_READ(lower_reg); \ 3622 upper = I915_READ(upper_reg); \ 3623 } while (upper != old_upper && loop++ < 2); \ 3624 (u64)upper << 32 | lower; }) 3625 3626 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 3627 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 3628 3629 #define __raw_read(x, s) \ 3630 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \ 3631 i915_reg_t reg) \ 3632 { \ 3633 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3634 } 3635 3636 #define __raw_write(x, s) \ 3637 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \ 3638 i915_reg_t reg, uint##x##_t val) \ 3639 { \ 3640 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3641 } 3642 __raw_read(8, b) 3643 __raw_read(16, w) 3644 __raw_read(32, l) 3645 __raw_read(64, q) 3646 3647 __raw_write(8, b) 3648 __raw_write(16, w) 3649 __raw_write(32, l) 3650 __raw_write(64, q) 3651 3652 #undef __raw_read 3653 #undef __raw_write 3654 3655 /* These are untraced mmio-accessors that are only valid to be used inside 3656 * critical sections, such as inside IRQ handlers, where forcewake is explicitly 3657 * controlled. 3658 * 3659 * Think twice, and think again, before using these. 3660 * 3661 * As an example, these accessors can possibly be used between: 3662 * 3663 * spin_lock_irq(&dev_priv->uncore.lock); 3664 * intel_uncore_forcewake_get__locked(); 3665 * 3666 * and 3667 * 3668 * intel_uncore_forcewake_put__locked(); 3669 * spin_unlock_irq(&dev_priv->uncore.lock); 3670 * 3671 * 3672 * Note: some registers may not need forcewake held, so 3673 * intel_uncore_forcewake_{get,put} can be omitted, see 3674 * intel_uncore_forcewake_for_reg(). 3675 * 3676 * Certain architectures will die if the same cacheline is concurrently accessed 3677 * by different clients (e.g. on Ivybridge). Access to registers should 3678 * therefore generally be serialised, by either the dev_priv->uncore.lock or 3679 * a more localised lock guarding all access to that bank of registers. 3680 */ 3681 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 3682 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 3683 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) 3684 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 3685 3686 /* "Broadcast RGB" property */ 3687 #define INTEL_BROADCAST_RGB_AUTO 0 3688 #define INTEL_BROADCAST_RGB_FULL 1 3689 #define INTEL_BROADCAST_RGB_LIMITED 2 3690 3691 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) 3692 { 3693 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3694 return VLV_VGACNTRL; 3695 else if (INTEL_GEN(dev_priv) >= 5) 3696 return CPU_VGACNTRL; 3697 else 3698 return VGACNTRL; 3699 } 3700 3701 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 3702 { 3703 unsigned long j = msecs_to_jiffies(m); 3704 3705 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3706 } 3707 3708 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 3709 { 3710 /* nsecs_to_jiffies64() does not guard against overflow */ 3711 if (NSEC_PER_SEC % HZ && 3712 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ) 3713 return MAX_JIFFY_OFFSET; 3714 3715 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 3716 } 3717 3718 /* 3719 * If you need to wait X milliseconds between events A and B, but event B 3720 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 3721 * when event A happened, then just before event B you call this function and 3722 * pass the timestamp as the first argument, and X as the second argument. 3723 */ 3724 static inline void 3725 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 3726 { 3727 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 3728 3729 /* 3730 * Don't re-read the value of "jiffies" every time since it may change 3731 * behind our back and break the math. 3732 */ 3733 tmp_jiffies = jiffies; 3734 target_jiffies = timestamp_jiffies + 3735 msecs_to_jiffies_timeout(to_wait_ms); 3736 3737 if (time_after(target_jiffies, tmp_jiffies)) { 3738 remaining_jiffies = target_jiffies - tmp_jiffies; 3739 while (remaining_jiffies) 3740 remaining_jiffies = 3741 schedule_timeout_uninterruptible(remaining_jiffies); 3742 } 3743 } 3744 3745 static inline bool 3746 __i915_request_irq_complete(const struct i915_request *rq) 3747 { 3748 struct intel_engine_cs *engine = rq->engine; 3749 u32 seqno; 3750 3751 /* Note that the engine may have wrapped around the seqno, and 3752 * so our request->global_seqno will be ahead of the hardware, 3753 * even though it completed the request before wrapping. We catch 3754 * this by kicking all the waiters before resetting the seqno 3755 * in hardware, and also signal the fence. 3756 */ 3757 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 3758 return true; 3759 3760 /* The request was dequeued before we were awoken. We check after 3761 * inspecting the hw to confirm that this was the same request 3762 * that generated the HWS update. The memory barriers within 3763 * the request execution are sufficient to ensure that a check 3764 * after reading the value from hw matches this request. 3765 */ 3766 seqno = i915_request_global_seqno(rq); 3767 if (!seqno) 3768 return false; 3769 3770 /* Before we do the heavier coherent read of the seqno, 3771 * check the value (hopefully) in the CPU cacheline. 3772 */ 3773 if (__i915_request_completed(rq, seqno)) 3774 return true; 3775 3776 /* Ensure our read of the seqno is coherent so that we 3777 * do not "miss an interrupt" (i.e. if this is the last 3778 * request and the seqno write from the GPU is not visible 3779 * by the time the interrupt fires, we will see that the 3780 * request is incomplete and go back to sleep awaiting 3781 * another interrupt that will never come.) 3782 * 3783 * Strictly, we only need to do this once after an interrupt, 3784 * but it is easier and safer to do it every time the waiter 3785 * is woken. 3786 */ 3787 if (engine->irq_seqno_barrier && 3788 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) { 3789 struct intel_breadcrumbs *b = &engine->breadcrumbs; 3790 3791 /* The ordering of irq_posted versus applying the barrier 3792 * is crucial. The clearing of the current irq_posted must 3793 * be visible before we perform the barrier operation, 3794 * such that if a subsequent interrupt arrives, irq_posted 3795 * is reasserted and our task rewoken (which causes us to 3796 * do another __i915_request_irq_complete() immediately 3797 * and reapply the barrier). Conversely, if the clear 3798 * occurs after the barrier, then an interrupt that arrived 3799 * whilst we waited on the barrier would not trigger a 3800 * barrier on the next pass, and the read may not see the 3801 * seqno update. 3802 */ 3803 engine->irq_seqno_barrier(engine); 3804 3805 /* If we consume the irq, but we are no longer the bottom-half, 3806 * the real bottom-half may not have serialised their own 3807 * seqno check with the irq-barrier (i.e. may have inspected 3808 * the seqno before we believe it coherent since they see 3809 * irq_posted == false but we are still running). 3810 */ 3811 spin_lock_irq(&b->irq_lock); 3812 if (b->irq_wait && b->irq_wait->tsk != current) 3813 /* Note that if the bottom-half is changed as we 3814 * are sending the wake-up, the new bottom-half will 3815 * be woken by whomever made the change. We only have 3816 * to worry about when we steal the irq-posted for 3817 * ourself. 3818 */ 3819 wake_up_process(b->irq_wait->tsk); 3820 spin_unlock_irq(&b->irq_lock); 3821 3822 if (__i915_request_completed(rq, seqno)) 3823 return true; 3824 } 3825 3826 return false; 3827 } 3828 3829 void i915_memcpy_init_early(struct drm_i915_private *dev_priv); 3830 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len); 3831 3832 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment, 3833 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot 3834 * perform the operation. To check beforehand, pass in the parameters to 3835 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits, 3836 * you only need to pass in the minor offsets, page-aligned pointers are 3837 * always valid. 3838 * 3839 * For just checking for SSE4.1, in the foreknowledge that the future use 3840 * will be correctly aligned, just use i915_has_memcpy_from_wc(). 3841 */ 3842 #define i915_can_memcpy_from_wc(dst, src, len) \ 3843 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0) 3844 3845 #define i915_has_memcpy_from_wc() \ 3846 i915_memcpy_from_wc(NULL, NULL, 0) 3847 3848 /* i915_mm.c */ 3849 int remap_io_mapping(struct vm_area_struct *vma, 3850 unsigned long addr, unsigned long pfn, unsigned long size, 3851 struct io_mapping *iomap); 3852 3853 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915) 3854 { 3855 if (INTEL_GEN(i915) >= 10) 3856 return CNL_HWS_CSB_WRITE_INDEX; 3857 else 3858 return I915_HWS_CSB_WRITE_INDEX; 3859 } 3860 3861 #endif 3862