1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hash.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/mm_types.h> 44 #include <linux/perf_event.h> 45 #include <linux/pm_qos.h> 46 #include <linux/reservation.h> 47 #include <linux/shmem_fs.h> 48 #include <linux/stackdepot.h> 49 50 #include <drm/intel-gtt.h> 51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 52 #include <drm/drm_gem.h> 53 #include <drm/drm_auth.h> 54 #include <drm/drm_cache.h> 55 #include <drm/drm_util.h> 56 #include <drm/drm_dsc.h> 57 #include <drm/drm_connector.h> 58 59 #include "i915_fixed.h" 60 #include "i915_params.h" 61 #include "i915_reg.h" 62 #include "i915_utils.h" 63 64 #include "intel_bios.h" 65 #include "intel_device_info.h" 66 #include "intel_display.h" 67 #include "intel_dpll_mgr.h" 68 #include "intel_lrc.h" 69 #include "intel_opregion.h" 70 #include "intel_ringbuffer.h" 71 #include "intel_uncore.h" 72 #include "intel_wopcm.h" 73 #include "intel_workarounds.h" 74 #include "intel_uc.h" 75 76 #include "i915_gem.h" 77 #include "i915_gem_context.h" 78 #include "i915_gem_fence_reg.h" 79 #include "i915_gem_object.h" 80 #include "i915_gem_gtt.h" 81 #include "i915_gpu_error.h" 82 #include "i915_request.h" 83 #include "i915_scheduler.h" 84 #include "i915_timeline.h" 85 #include "i915_vma.h" 86 87 #include "intel_gvt.h" 88 89 /* General customization: 90 */ 91 92 #define DRIVER_NAME "i915" 93 #define DRIVER_DESC "Intel Graphics" 94 #define DRIVER_DATE "20190202" 95 #define DRIVER_TIMESTAMP 1549095268 96 97 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 98 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 99 * which may not necessarily be a user visible problem. This will either 100 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 101 * enable distros and users to tailor their preferred amount of i915 abrt 102 * spam. 103 */ 104 #define I915_STATE_WARN(condition, format...) ({ \ 105 int __ret_warn_on = !!(condition); \ 106 if (unlikely(__ret_warn_on)) \ 107 if (!WARN(i915_modparams.verbose_state_checks, format)) \ 108 DRM_ERROR(format); \ 109 unlikely(__ret_warn_on); \ 110 }) 111 112 #define I915_STATE_WARN_ON(x) \ 113 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 114 115 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG) 116 117 bool __i915_inject_load_failure(const char *func, int line); 118 #define i915_inject_load_failure() \ 119 __i915_inject_load_failure(__func__, __LINE__) 120 121 bool i915_error_injected(void); 122 123 #else 124 125 #define i915_inject_load_failure() false 126 #define i915_error_injected() false 127 128 #endif 129 130 #define i915_load_error(i915, fmt, ...) \ 131 __i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \ 132 fmt, ##__VA_ARGS__) 133 134 typedef depot_stack_handle_t intel_wakeref_t; 135 136 enum hpd_pin { 137 HPD_NONE = 0, 138 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 139 HPD_CRT, 140 HPD_SDVO_B, 141 HPD_SDVO_C, 142 HPD_PORT_A, 143 HPD_PORT_B, 144 HPD_PORT_C, 145 HPD_PORT_D, 146 HPD_PORT_E, 147 HPD_PORT_F, 148 HPD_NUM_PINS 149 }; 150 151 #define for_each_hpd_pin(__pin) \ 152 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 153 154 /* Threshold == 5 for long IRQs, 50 for short */ 155 #define HPD_STORM_DEFAULT_THRESHOLD 50 156 157 struct i915_hotplug { 158 struct work_struct hotplug_work; 159 160 struct { 161 unsigned long last_jiffies; 162 int count; 163 enum { 164 HPD_ENABLED = 0, 165 HPD_DISABLED = 1, 166 HPD_MARK_DISABLED = 2 167 } state; 168 } stats[HPD_NUM_PINS]; 169 u32 event_bits; 170 struct delayed_work reenable_work; 171 172 u32 long_port_mask; 173 u32 short_port_mask; 174 struct work_struct dig_port_work; 175 176 struct work_struct poll_init_work; 177 bool poll_enabled; 178 179 unsigned int hpd_storm_threshold; 180 /* Whether or not to count short HPD IRQs in HPD storms */ 181 u8 hpd_short_storm_enabled; 182 183 /* 184 * if we get a HPD irq from DP and a HPD irq from non-DP 185 * the non-DP HPD could block the workqueue on a mode config 186 * mutex getting, that userspace may have taken. However 187 * userspace is waiting on the DP workqueue to run which is 188 * blocked behind the non-DP one. 189 */ 190 struct workqueue_struct *dp_wq; 191 }; 192 193 #define I915_GEM_GPU_DOMAINS \ 194 (I915_GEM_DOMAIN_RENDER | \ 195 I915_GEM_DOMAIN_SAMPLER | \ 196 I915_GEM_DOMAIN_COMMAND | \ 197 I915_GEM_DOMAIN_INSTRUCTION | \ 198 I915_GEM_DOMAIN_VERTEX) 199 200 struct drm_i915_private; 201 struct i915_mm_struct; 202 struct i915_mmu_object; 203 204 struct drm_i915_file_private { 205 struct drm_i915_private *dev_priv; 206 struct drm_file *file; 207 208 struct { 209 spinlock_t lock; 210 struct list_head request_list; 211 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 212 * chosen to prevent the CPU getting more than a frame ahead of the GPU 213 * (when using lax throttling for the frontbuffer). We also use it to 214 * offer free GPU waitboosts for severely congested workloads. 215 */ 216 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 217 } mm; 218 struct idr context_idr; 219 220 struct intel_rps_client { 221 atomic_t boosts; 222 } rps_client; 223 224 unsigned int bsd_engine; 225 226 /* 227 * Every context ban increments per client ban score. Also 228 * hangs in short succession increments ban score. If ban threshold 229 * is reached, client is considered banned and submitting more work 230 * will fail. This is a stop gap measure to limit the badly behaving 231 * clients access to gpu. Note that unbannable contexts never increment 232 * the client ban score. 233 */ 234 #define I915_CLIENT_SCORE_HANG_FAST 1 235 #define I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ) 236 #define I915_CLIENT_SCORE_CONTEXT_BAN 3 237 #define I915_CLIENT_SCORE_BANNED 9 238 /** ban_score: Accumulated score of all ctx bans and fast hangs. */ 239 atomic_t ban_score; 240 unsigned long hang_timestamp; 241 }; 242 243 /* Interface history: 244 * 245 * 1.1: Original. 246 * 1.2: Add Power Management 247 * 1.3: Add vblank support 248 * 1.4: Fix cmdbuffer path, add heap destroy 249 * 1.5: Add vblank pipe configuration 250 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 251 * - Support vertical blank on secondary display pipe 252 */ 253 #define DRIVER_MAJOR 1 254 #define DRIVER_MINOR 6 255 #define DRIVER_PATCHLEVEL 0 256 257 struct intel_overlay; 258 struct intel_overlay_error_state; 259 260 struct sdvo_device_mapping { 261 u8 initialized; 262 u8 dvo_port; 263 u8 slave_addr; 264 u8 dvo_wiring; 265 u8 i2c_pin; 266 u8 ddc_pin; 267 }; 268 269 struct intel_connector; 270 struct intel_encoder; 271 struct intel_atomic_state; 272 struct intel_crtc_state; 273 struct intel_initial_plane_config; 274 struct intel_crtc; 275 struct intel_limit; 276 struct dpll; 277 struct intel_cdclk_state; 278 279 struct drm_i915_display_funcs { 280 void (*get_cdclk)(struct drm_i915_private *dev_priv, 281 struct intel_cdclk_state *cdclk_state); 282 void (*set_cdclk)(struct drm_i915_private *dev_priv, 283 const struct intel_cdclk_state *cdclk_state); 284 int (*get_fifo_size)(struct drm_i915_private *dev_priv, 285 enum i9xx_plane_id i9xx_plane); 286 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 287 int (*compute_intermediate_wm)(struct intel_crtc_state *newstate); 288 void (*initial_watermarks)(struct intel_atomic_state *state, 289 struct intel_crtc_state *cstate); 290 void (*atomic_update_watermarks)(struct intel_atomic_state *state, 291 struct intel_crtc_state *cstate); 292 void (*optimize_watermarks)(struct intel_atomic_state *state, 293 struct intel_crtc_state *cstate); 294 int (*compute_global_watermarks)(struct intel_atomic_state *state); 295 void (*update_wm)(struct intel_crtc *crtc); 296 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 297 /* Returns the active state of the crtc, and if the crtc is active, 298 * fills out the pipe-config with the hw state. */ 299 bool (*get_pipe_config)(struct intel_crtc *, 300 struct intel_crtc_state *); 301 void (*get_initial_plane_config)(struct intel_crtc *, 302 struct intel_initial_plane_config *); 303 int (*crtc_compute_clock)(struct intel_crtc *crtc, 304 struct intel_crtc_state *crtc_state); 305 void (*crtc_enable)(struct intel_crtc_state *pipe_config, 306 struct drm_atomic_state *old_state); 307 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state, 308 struct drm_atomic_state *old_state); 309 void (*update_crtcs)(struct drm_atomic_state *state); 310 void (*audio_codec_enable)(struct intel_encoder *encoder, 311 const struct intel_crtc_state *crtc_state, 312 const struct drm_connector_state *conn_state); 313 void (*audio_codec_disable)(struct intel_encoder *encoder, 314 const struct intel_crtc_state *old_crtc_state, 315 const struct drm_connector_state *old_conn_state); 316 void (*fdi_link_train)(struct intel_crtc *crtc, 317 const struct intel_crtc_state *crtc_state); 318 void (*init_clock_gating)(struct drm_i915_private *dev_priv); 319 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 320 /* clock updates for mode set */ 321 /* cursor updates */ 322 /* render clock increase/decrease */ 323 /* display clock increase/decrease */ 324 /* pll clock increase/decrease */ 325 326 void (*load_csc_matrix)(struct intel_crtc_state *crtc_state); 327 void (*load_luts)(struct intel_crtc_state *crtc_state); 328 }; 329 330 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 331 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 332 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 333 334 struct intel_csr { 335 struct work_struct work; 336 const char *fw_path; 337 u32 required_version; 338 u32 max_fw_size; /* bytes */ 339 u32 *dmc_payload; 340 u32 dmc_fw_size; /* dwords */ 341 u32 version; 342 u32 mmio_count; 343 i915_reg_t mmioaddr[8]; 344 u32 mmiodata[8]; 345 u32 dc_state; 346 u32 allowed_dc_mask; 347 intel_wakeref_t wakeref; 348 }; 349 350 enum i915_cache_level { 351 I915_CACHE_NONE = 0, 352 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 353 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 354 caches, eg sampler/render caches, and the 355 large Last-Level-Cache. LLC is coherent with 356 the CPU, but L3 is only visible to the GPU. */ 357 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 358 }; 359 360 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ 361 362 enum fb_op_origin { 363 ORIGIN_GTT, 364 ORIGIN_CPU, 365 ORIGIN_CS, 366 ORIGIN_FLIP, 367 ORIGIN_DIRTYFB, 368 }; 369 370 struct intel_fbc { 371 /* This is always the inner lock when overlapping with struct_mutex and 372 * it's the outer lock when overlapping with stolen_lock. */ 373 struct mutex lock; 374 unsigned threshold; 375 unsigned int possible_framebuffer_bits; 376 unsigned int busy_bits; 377 unsigned int visible_pipes_mask; 378 struct intel_crtc *crtc; 379 380 struct drm_mm_node compressed_fb; 381 struct drm_mm_node *compressed_llb; 382 383 bool false_color; 384 385 bool enabled; 386 bool active; 387 bool flip_pending; 388 389 bool underrun_detected; 390 struct work_struct underrun_work; 391 392 /* 393 * Due to the atomic rules we can't access some structures without the 394 * appropriate locking, so we cache information here in order to avoid 395 * these problems. 396 */ 397 struct intel_fbc_state_cache { 398 struct i915_vma *vma; 399 unsigned long flags; 400 401 struct { 402 unsigned int mode_flags; 403 u32 hsw_bdw_pixel_rate; 404 } crtc; 405 406 struct { 407 unsigned int rotation; 408 int src_w; 409 int src_h; 410 bool visible; 411 /* 412 * Display surface base address adjustement for 413 * pageflips. Note that on gen4+ this only adjusts up 414 * to a tile, offsets within a tile are handled in 415 * the hw itself (with the TILEOFF register). 416 */ 417 int adjusted_x; 418 int adjusted_y; 419 420 int y; 421 422 u16 pixel_blend_mode; 423 } plane; 424 425 struct { 426 const struct drm_format_info *format; 427 unsigned int stride; 428 } fb; 429 } state_cache; 430 431 /* 432 * This structure contains everything that's relevant to program the 433 * hardware registers. When we want to figure out if we need to disable 434 * and re-enable FBC for a new configuration we just check if there's 435 * something different in the struct. The genx_fbc_activate functions 436 * are supposed to read from it in order to program the registers. 437 */ 438 struct intel_fbc_reg_params { 439 struct i915_vma *vma; 440 unsigned long flags; 441 442 struct { 443 enum pipe pipe; 444 enum i9xx_plane_id i9xx_plane; 445 unsigned int fence_y_offset; 446 } crtc; 447 448 struct { 449 const struct drm_format_info *format; 450 unsigned int stride; 451 } fb; 452 453 int cfb_size; 454 unsigned int gen9_wa_cfb_stride; 455 } params; 456 457 const char *no_fbc_reason; 458 }; 459 460 /* 461 * HIGH_RR is the highest eDP panel refresh rate read from EDID 462 * LOW_RR is the lowest eDP panel refresh rate found from EDID 463 * parsing for same resolution. 464 */ 465 enum drrs_refresh_rate_type { 466 DRRS_HIGH_RR, 467 DRRS_LOW_RR, 468 DRRS_MAX_RR, /* RR count */ 469 }; 470 471 enum drrs_support_type { 472 DRRS_NOT_SUPPORTED = 0, 473 STATIC_DRRS_SUPPORT = 1, 474 SEAMLESS_DRRS_SUPPORT = 2 475 }; 476 477 struct intel_dp; 478 struct i915_drrs { 479 struct mutex mutex; 480 struct delayed_work work; 481 struct intel_dp *dp; 482 unsigned busy_frontbuffer_bits; 483 enum drrs_refresh_rate_type refresh_rate_type; 484 enum drrs_support_type type; 485 }; 486 487 struct i915_psr { 488 struct mutex lock; 489 490 #define I915_PSR_DEBUG_MODE_MASK 0x0f 491 #define I915_PSR_DEBUG_DEFAULT 0x00 492 #define I915_PSR_DEBUG_DISABLE 0x01 493 #define I915_PSR_DEBUG_ENABLE 0x02 494 #define I915_PSR_DEBUG_FORCE_PSR1 0x03 495 #define I915_PSR_DEBUG_IRQ 0x10 496 497 u32 debug; 498 bool sink_support; 499 bool prepared, enabled; 500 struct intel_dp *dp; 501 enum pipe pipe; 502 bool active; 503 struct work_struct work; 504 unsigned busy_frontbuffer_bits; 505 bool sink_psr2_support; 506 bool link_standby; 507 bool colorimetry_support; 508 bool psr2_enabled; 509 u8 sink_sync_latency; 510 ktime_t last_entry_attempt; 511 ktime_t last_exit; 512 bool sink_not_reliable; 513 bool irq_aux_error; 514 u16 su_x_granularity; 515 }; 516 517 enum intel_pch { 518 PCH_NONE = 0, /* No PCH present */ 519 PCH_IBX, /* Ibexpeak PCH */ 520 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */ 521 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */ 522 PCH_SPT, /* Sunrisepoint PCH */ 523 PCH_KBP, /* Kaby Lake PCH */ 524 PCH_CNP, /* Cannon Lake PCH */ 525 PCH_ICP, /* Ice Lake PCH */ 526 PCH_NOP, /* PCH without south display */ 527 }; 528 529 enum intel_sbi_destination { 530 SBI_ICLK, 531 SBI_MPHY, 532 }; 533 534 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 535 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 536 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 537 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 538 #define QUIRK_INCREASE_T12_DELAY (1<<6) 539 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7) 540 541 struct intel_fbdev; 542 struct intel_fbc_work; 543 544 struct intel_gmbus { 545 struct i2c_adapter adapter; 546 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 547 u32 force_bit; 548 u32 reg0; 549 i915_reg_t gpio_reg; 550 struct i2c_algo_bit_data bit_algo; 551 struct drm_i915_private *dev_priv; 552 }; 553 554 struct i915_suspend_saved_registers { 555 u32 saveDSPARB; 556 u32 saveFBC_CONTROL; 557 u32 saveCACHE_MODE_0; 558 u32 saveMI_ARB_STATE; 559 u32 saveSWF0[16]; 560 u32 saveSWF1[16]; 561 u32 saveSWF3[3]; 562 u64 saveFENCE[I915_MAX_NUM_FENCES]; 563 u32 savePCH_PORT_HOTPLUG; 564 u16 saveGCDGMBUS; 565 }; 566 567 struct vlv_s0ix_state { 568 /* GAM */ 569 u32 wr_watermark; 570 u32 gfx_prio_ctrl; 571 u32 arb_mode; 572 u32 gfx_pend_tlb0; 573 u32 gfx_pend_tlb1; 574 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 575 u32 media_max_req_count; 576 u32 gfx_max_req_count; 577 u32 render_hwsp; 578 u32 ecochk; 579 u32 bsd_hwsp; 580 u32 blt_hwsp; 581 u32 tlb_rd_addr; 582 583 /* MBC */ 584 u32 g3dctl; 585 u32 gsckgctl; 586 u32 mbctl; 587 588 /* GCP */ 589 u32 ucgctl1; 590 u32 ucgctl3; 591 u32 rcgctl1; 592 u32 rcgctl2; 593 u32 rstctl; 594 u32 misccpctl; 595 596 /* GPM */ 597 u32 gfxpause; 598 u32 rpdeuhwtc; 599 u32 rpdeuc; 600 u32 ecobus; 601 u32 pwrdwnupctl; 602 u32 rp_down_timeout; 603 u32 rp_deucsw; 604 u32 rcubmabdtmr; 605 u32 rcedata; 606 u32 spare2gh; 607 608 /* Display 1 CZ domain */ 609 u32 gt_imr; 610 u32 gt_ier; 611 u32 pm_imr; 612 u32 pm_ier; 613 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 614 615 /* GT SA CZ domain */ 616 u32 tilectl; 617 u32 gt_fifoctl; 618 u32 gtlc_wake_ctrl; 619 u32 gtlc_survive; 620 u32 pmwgicz; 621 622 /* Display 2 CZ domain */ 623 u32 gu_ctl0; 624 u32 gu_ctl1; 625 u32 pcbr; 626 u32 clock_gate_dis2; 627 }; 628 629 struct intel_rps_ei { 630 ktime_t ktime; 631 u32 render_c0; 632 u32 media_c0; 633 }; 634 635 struct intel_rps { 636 /* 637 * work, interrupts_enabled and pm_iir are protected by 638 * dev_priv->irq_lock 639 */ 640 struct work_struct work; 641 bool interrupts_enabled; 642 u32 pm_iir; 643 644 /* PM interrupt bits that should never be masked */ 645 u32 pm_intrmsk_mbz; 646 647 /* Frequencies are stored in potentially platform dependent multiples. 648 * In other words, *_freq needs to be multiplied by X to be interesting. 649 * Soft limits are those which are used for the dynamic reclocking done 650 * by the driver (raise frequencies under heavy loads, and lower for 651 * lighter loads). Hard limits are those imposed by the hardware. 652 * 653 * A distinction is made for overclocking, which is never enabled by 654 * default, and is considered to be above the hard limit if it's 655 * possible at all. 656 */ 657 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 658 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 659 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 660 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 661 u8 min_freq; /* AKA RPn. Minimum frequency */ 662 u8 boost_freq; /* Frequency to request when wait boosting */ 663 u8 idle_freq; /* Frequency to request when we are idle */ 664 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 665 u8 rp1_freq; /* "less than" RP0 power/freqency */ 666 u8 rp0_freq; /* Non-overclocked max frequency. */ 667 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 668 669 int last_adj; 670 671 struct { 672 struct mutex mutex; 673 674 enum { LOW_POWER, BETWEEN, HIGH_POWER } mode; 675 unsigned int interactive; 676 677 u8 up_threshold; /* Current %busy required to uplock */ 678 u8 down_threshold; /* Current %busy required to downclock */ 679 } power; 680 681 bool enabled; 682 atomic_t num_waiters; 683 atomic_t boosts; 684 685 /* manual wa residency calculations */ 686 struct intel_rps_ei ei; 687 }; 688 689 struct intel_rc6 { 690 bool enabled; 691 u64 prev_hw_residency[4]; 692 u64 cur_residency[4]; 693 }; 694 695 struct intel_llc_pstate { 696 bool enabled; 697 }; 698 699 struct intel_gen6_power_mgmt { 700 struct intel_rps rps; 701 struct intel_rc6 rc6; 702 struct intel_llc_pstate llc_pstate; 703 }; 704 705 /* defined intel_pm.c */ 706 extern spinlock_t mchdev_lock; 707 708 struct intel_ilk_power_mgmt { 709 u8 cur_delay; 710 u8 min_delay; 711 u8 max_delay; 712 u8 fmax; 713 u8 fstart; 714 715 u64 last_count1; 716 unsigned long last_time1; 717 unsigned long chipset_power; 718 u64 last_count2; 719 u64 last_time2; 720 unsigned long gfx_power; 721 u8 corr; 722 723 int c_m; 724 int r_t; 725 }; 726 727 struct drm_i915_private; 728 struct i915_power_well; 729 730 struct i915_power_well_ops { 731 /* 732 * Synchronize the well's hw state to match the current sw state, for 733 * example enable/disable it based on the current refcount. Called 734 * during driver init and resume time, possibly after first calling 735 * the enable/disable handlers. 736 */ 737 void (*sync_hw)(struct drm_i915_private *dev_priv, 738 struct i915_power_well *power_well); 739 /* 740 * Enable the well and resources that depend on it (for example 741 * interrupts located on the well). Called after the 0->1 refcount 742 * transition. 743 */ 744 void (*enable)(struct drm_i915_private *dev_priv, 745 struct i915_power_well *power_well); 746 /* 747 * Disable the well and resources that depend on it. Called after 748 * the 1->0 refcount transition. 749 */ 750 void (*disable)(struct drm_i915_private *dev_priv, 751 struct i915_power_well *power_well); 752 /* Returns the hw enabled state. */ 753 bool (*is_enabled)(struct drm_i915_private *dev_priv, 754 struct i915_power_well *power_well); 755 }; 756 757 struct i915_power_well_regs { 758 i915_reg_t bios; 759 i915_reg_t driver; 760 i915_reg_t kvmr; 761 i915_reg_t debug; 762 }; 763 764 /* Power well structure for haswell */ 765 struct i915_power_well_desc { 766 const char *name; 767 bool always_on; 768 u64 domains; 769 /* unique identifier for this power well */ 770 enum i915_power_well_id id; 771 /* 772 * Arbitraty data associated with this power well. Platform and power 773 * well specific. 774 */ 775 union { 776 struct { 777 /* 778 * request/status flag index in the PUNIT power well 779 * control/status registers. 780 */ 781 u8 idx; 782 } vlv; 783 struct { 784 enum dpio_phy phy; 785 } bxt; 786 struct { 787 const struct i915_power_well_regs *regs; 788 /* 789 * request/status flag index in the power well 790 * constrol/status registers. 791 */ 792 u8 idx; 793 /* Mask of pipes whose IRQ logic is backed by the pw */ 794 u8 irq_pipe_mask; 795 /* The pw is backing the VGA functionality */ 796 bool has_vga:1; 797 bool has_fuses:1; 798 /* 799 * The pw is for an ICL+ TypeC PHY port in 800 * Thunderbolt mode. 801 */ 802 bool is_tc_tbt:1; 803 } hsw; 804 }; 805 const struct i915_power_well_ops *ops; 806 }; 807 808 struct i915_power_well { 809 const struct i915_power_well_desc *desc; 810 /* power well enable/disable usage count */ 811 int count; 812 /* cached hw enabled state */ 813 bool hw_enabled; 814 }; 815 816 struct i915_power_domains { 817 /* 818 * Power wells needed for initialization at driver init and suspend 819 * time are on. They are kept on until after the first modeset. 820 */ 821 bool initializing; 822 bool display_core_suspended; 823 int power_well_count; 824 825 intel_wakeref_t wakeref; 826 827 struct mutex lock; 828 int domain_use_count[POWER_DOMAIN_NUM]; 829 struct i915_power_well *power_wells; 830 }; 831 832 #define MAX_L3_SLICES 2 833 struct intel_l3_parity { 834 u32 *remap_info[MAX_L3_SLICES]; 835 struct work_struct error_work; 836 int which_slice; 837 }; 838 839 struct i915_gem_mm { 840 /** Memory allocator for GTT stolen memory */ 841 struct drm_mm stolen; 842 /** Protects the usage of the GTT stolen memory allocator. This is 843 * always the inner lock when overlapping with struct_mutex. */ 844 struct mutex stolen_lock; 845 846 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */ 847 spinlock_t obj_lock; 848 849 /** List of all objects in gtt_space. Used to restore gtt 850 * mappings on resume */ 851 struct list_head bound_list; 852 /** 853 * List of objects which are not bound to the GTT (thus 854 * are idle and not used by the GPU). These objects may or may 855 * not actually have any pages attached. 856 */ 857 struct list_head unbound_list; 858 859 /** List of all objects in gtt_space, currently mmaped by userspace. 860 * All objects within this list must also be on bound_list. 861 */ 862 struct list_head userfault_list; 863 864 /** 865 * List of objects which are pending destruction. 866 */ 867 struct llist_head free_list; 868 struct work_struct free_work; 869 spinlock_t free_lock; 870 /** 871 * Count of objects pending destructions. Used to skip needlessly 872 * waiting on an RCU barrier if no objects are waiting to be freed. 873 */ 874 atomic_t free_count; 875 876 /** 877 * Small stash of WC pages 878 */ 879 struct pagestash wc_stash; 880 881 /** 882 * tmpfs instance used for shmem backed objects 883 */ 884 struct vfsmount *gemfs; 885 886 /** PPGTT used for aliasing the PPGTT with the GTT */ 887 struct i915_hw_ppgtt *aliasing_ppgtt; 888 889 struct notifier_block oom_notifier; 890 struct notifier_block vmap_notifier; 891 struct shrinker shrinker; 892 893 /** LRU list of objects with fence regs on them. */ 894 struct list_head fence_list; 895 896 /** 897 * Workqueue to fault in userptr pages, flushed by the execbuf 898 * when required but otherwise left to userspace to try again 899 * on EAGAIN. 900 */ 901 struct workqueue_struct *userptr_wq; 902 903 u64 unordered_timeline; 904 905 /* the indicator for dispatch video commands on two BSD rings */ 906 atomic_t bsd_engine_dispatch_index; 907 908 /** Bit 6 swizzling required for X tiling */ 909 u32 bit_6_swizzle_x; 910 /** Bit 6 swizzling required for Y tiling */ 911 u32 bit_6_swizzle_y; 912 913 /* accounting, useful for userland debugging */ 914 spinlock_t object_stat_lock; 915 u64 object_memory; 916 u32 object_count; 917 }; 918 919 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */ 920 921 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */ 922 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */ 923 924 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */ 925 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */ 926 927 #define I915_ENGINE_WEDGED_TIMEOUT (60 * HZ) /* Reset but no recovery? */ 928 929 struct ddi_vbt_port_info { 930 int max_tmds_clock; 931 932 /* 933 * This is an index in the HDMI/DVI DDI buffer translation table. 934 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 935 * populate this field. 936 */ 937 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 938 u8 hdmi_level_shift; 939 940 u8 supports_dvi:1; 941 u8 supports_hdmi:1; 942 u8 supports_dp:1; 943 u8 supports_edp:1; 944 u8 supports_typec_usb:1; 945 u8 supports_tbt:1; 946 947 u8 alternate_aux_channel; 948 u8 alternate_ddc_pin; 949 950 u8 dp_boost_level; 951 u8 hdmi_boost_level; 952 int dp_max_link_rate; /* 0 for not limited by VBT */ 953 }; 954 955 enum psr_lines_to_wait { 956 PSR_0_LINES_TO_WAIT = 0, 957 PSR_1_LINE_TO_WAIT, 958 PSR_4_LINES_TO_WAIT, 959 PSR_8_LINES_TO_WAIT 960 }; 961 962 struct intel_vbt_data { 963 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 964 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 965 966 /* Feature bits */ 967 unsigned int int_tv_support:1; 968 unsigned int lvds_dither:1; 969 unsigned int int_crt_support:1; 970 unsigned int lvds_use_ssc:1; 971 unsigned int int_lvds_support:1; 972 unsigned int display_clock_mode:1; 973 unsigned int fdi_rx_polarity_inverted:1; 974 unsigned int panel_type:4; 975 int lvds_ssc_freq; 976 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 977 enum drm_panel_orientation orientation; 978 979 enum drrs_support_type drrs_type; 980 981 struct { 982 int rate; 983 int lanes; 984 int preemphasis; 985 int vswing; 986 bool low_vswing; 987 bool initialized; 988 int bpp; 989 struct edp_power_seq pps; 990 } edp; 991 992 struct { 993 bool enable; 994 bool full_link; 995 bool require_aux_wakeup; 996 int idle_frames; 997 enum psr_lines_to_wait lines_to_wait; 998 int tp1_wakeup_time_us; 999 int tp2_tp3_wakeup_time_us; 1000 } psr; 1001 1002 struct { 1003 u16 pwm_freq_hz; 1004 bool present; 1005 bool active_low_pwm; 1006 u8 min_brightness; /* min_brightness/255 of max */ 1007 u8 controller; /* brightness controller number */ 1008 enum intel_backlight_type type; 1009 } backlight; 1010 1011 /* MIPI DSI */ 1012 struct { 1013 u16 panel_id; 1014 struct mipi_config *config; 1015 struct mipi_pps_data *pps; 1016 u16 bl_ports; 1017 u16 cabc_ports; 1018 u8 seq_version; 1019 u32 size; 1020 u8 *data; 1021 const u8 *sequence[MIPI_SEQ_MAX]; 1022 u8 *deassert_seq; /* Used by fixup_mipi_sequences() */ 1023 enum drm_panel_orientation orientation; 1024 } dsi; 1025 1026 int crt_ddc_pin; 1027 1028 int child_dev_num; 1029 struct child_device_config *child_dev; 1030 1031 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1032 struct sdvo_device_mapping sdvo_mappings[2]; 1033 }; 1034 1035 enum intel_ddb_partitioning { 1036 INTEL_DDB_PART_1_2, 1037 INTEL_DDB_PART_5_6, /* IVB+ */ 1038 }; 1039 1040 struct intel_wm_level { 1041 bool enable; 1042 u32 pri_val; 1043 u32 spr_val; 1044 u32 cur_val; 1045 u32 fbc_val; 1046 }; 1047 1048 struct ilk_wm_values { 1049 u32 wm_pipe[3]; 1050 u32 wm_lp[3]; 1051 u32 wm_lp_spr[3]; 1052 u32 wm_linetime[3]; 1053 bool enable_fbc_wm; 1054 enum intel_ddb_partitioning partitioning; 1055 }; 1056 1057 struct g4x_pipe_wm { 1058 u16 plane[I915_MAX_PLANES]; 1059 u16 fbc; 1060 }; 1061 1062 struct g4x_sr_wm { 1063 u16 plane; 1064 u16 cursor; 1065 u16 fbc; 1066 }; 1067 1068 struct vlv_wm_ddl_values { 1069 u8 plane[I915_MAX_PLANES]; 1070 }; 1071 1072 struct vlv_wm_values { 1073 struct g4x_pipe_wm pipe[3]; 1074 struct g4x_sr_wm sr; 1075 struct vlv_wm_ddl_values ddl[3]; 1076 u8 level; 1077 bool cxsr; 1078 }; 1079 1080 struct g4x_wm_values { 1081 struct g4x_pipe_wm pipe[2]; 1082 struct g4x_sr_wm sr; 1083 struct g4x_sr_wm hpll; 1084 bool cxsr; 1085 bool hpll_en; 1086 bool fbc_en; 1087 }; 1088 1089 struct skl_ddb_entry { 1090 u16 start, end; /* in number of blocks, 'end' is exclusive */ 1091 }; 1092 1093 static inline u16 skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1094 { 1095 return entry->end - entry->start; 1096 } 1097 1098 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1099 const struct skl_ddb_entry *e2) 1100 { 1101 if (e1->start == e2->start && e1->end == e2->end) 1102 return true; 1103 1104 return false; 1105 } 1106 1107 struct skl_ddb_allocation { 1108 u8 enabled_slices; /* GEN11 has configurable 2 slices */ 1109 }; 1110 1111 struct skl_ddb_values { 1112 unsigned dirty_pipes; 1113 struct skl_ddb_allocation ddb; 1114 }; 1115 1116 struct skl_wm_level { 1117 u16 min_ddb_alloc; 1118 u16 plane_res_b; 1119 u8 plane_res_l; 1120 bool plane_en; 1121 }; 1122 1123 /* Stores plane specific WM parameters */ 1124 struct skl_wm_params { 1125 bool x_tiled, y_tiled; 1126 bool rc_surface; 1127 bool is_planar; 1128 u32 width; 1129 u8 cpp; 1130 u32 plane_pixel_rate; 1131 u32 y_min_scanlines; 1132 u32 plane_bytes_per_line; 1133 uint_fixed_16_16_t plane_blocks_per_line; 1134 uint_fixed_16_16_t y_tile_minimum; 1135 u32 linetime_us; 1136 u32 dbuf_block_size; 1137 }; 1138 1139 /* 1140 * This struct helps tracking the state needed for runtime PM, which puts the 1141 * device in PCI D3 state. Notice that when this happens, nothing on the 1142 * graphics device works, even register access, so we don't get interrupts nor 1143 * anything else. 1144 * 1145 * Every piece of our code that needs to actually touch the hardware needs to 1146 * either call intel_runtime_pm_get or call intel_display_power_get with the 1147 * appropriate power domain. 1148 * 1149 * Our driver uses the autosuspend delay feature, which means we'll only really 1150 * suspend if we stay with zero refcount for a certain amount of time. The 1151 * default value is currently very conservative (see intel_runtime_pm_enable), but 1152 * it can be changed with the standard runtime PM files from sysfs. 1153 * 1154 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1155 * goes back to false exactly before we reenable the IRQs. We use this variable 1156 * to check if someone is trying to enable/disable IRQs while they're supposed 1157 * to be disabled. This shouldn't happen and we'll print some error messages in 1158 * case it happens. 1159 * 1160 * For more, read the Documentation/power/runtime_pm.txt. 1161 */ 1162 struct i915_runtime_pm { 1163 atomic_t wakeref_count; 1164 bool suspended; 1165 bool irqs_enabled; 1166 1167 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 1168 /* 1169 * To aide detection of wakeref leaks and general misuse, we 1170 * track all wakeref holders. With manual markup (i.e. returning 1171 * a cookie to each rpm_get caller which they then supply to their 1172 * paired rpm_put) we can remove corresponding pairs of and keep 1173 * the array trimmed to active wakerefs. 1174 */ 1175 struct intel_runtime_pm_debug { 1176 spinlock_t lock; 1177 1178 depot_stack_handle_t last_acquire; 1179 depot_stack_handle_t last_release; 1180 1181 depot_stack_handle_t *owners; 1182 unsigned long count; 1183 } debug; 1184 #endif 1185 }; 1186 1187 enum intel_pipe_crc_source { 1188 INTEL_PIPE_CRC_SOURCE_NONE, 1189 INTEL_PIPE_CRC_SOURCE_PLANE1, 1190 INTEL_PIPE_CRC_SOURCE_PLANE2, 1191 INTEL_PIPE_CRC_SOURCE_PF, 1192 INTEL_PIPE_CRC_SOURCE_PIPE, 1193 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1194 INTEL_PIPE_CRC_SOURCE_TV, 1195 INTEL_PIPE_CRC_SOURCE_DP_B, 1196 INTEL_PIPE_CRC_SOURCE_DP_C, 1197 INTEL_PIPE_CRC_SOURCE_DP_D, 1198 INTEL_PIPE_CRC_SOURCE_AUTO, 1199 INTEL_PIPE_CRC_SOURCE_MAX, 1200 }; 1201 1202 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1203 struct intel_pipe_crc { 1204 spinlock_t lock; 1205 int skipped; 1206 enum intel_pipe_crc_source source; 1207 }; 1208 1209 struct i915_frontbuffer_tracking { 1210 spinlock_t lock; 1211 1212 /* 1213 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1214 * scheduled flips. 1215 */ 1216 unsigned busy_bits; 1217 unsigned flip_bits; 1218 }; 1219 1220 struct i915_virtual_gpu { 1221 bool active; 1222 u32 caps; 1223 }; 1224 1225 /* used in computing the new watermarks state */ 1226 struct intel_wm_config { 1227 unsigned int num_pipes_active; 1228 bool sprites_enabled; 1229 bool sprites_scaled; 1230 }; 1231 1232 struct i915_oa_format { 1233 u32 format; 1234 int size; 1235 }; 1236 1237 struct i915_oa_reg { 1238 i915_reg_t addr; 1239 u32 value; 1240 }; 1241 1242 struct i915_oa_config { 1243 char uuid[UUID_STRING_LEN + 1]; 1244 int id; 1245 1246 const struct i915_oa_reg *mux_regs; 1247 u32 mux_regs_len; 1248 const struct i915_oa_reg *b_counter_regs; 1249 u32 b_counter_regs_len; 1250 const struct i915_oa_reg *flex_regs; 1251 u32 flex_regs_len; 1252 1253 struct attribute_group sysfs_metric; 1254 struct attribute *attrs[2]; 1255 struct device_attribute sysfs_metric_id; 1256 1257 atomic_t ref_count; 1258 }; 1259 1260 struct i915_perf_stream; 1261 1262 /** 1263 * struct i915_perf_stream_ops - the OPs to support a specific stream type 1264 */ 1265 struct i915_perf_stream_ops { 1266 /** 1267 * @enable: Enables the collection of HW samples, either in response to 1268 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened 1269 * without `I915_PERF_FLAG_DISABLED`. 1270 */ 1271 void (*enable)(struct i915_perf_stream *stream); 1272 1273 /** 1274 * @disable: Disables the collection of HW samples, either in response 1275 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying 1276 * the stream. 1277 */ 1278 void (*disable)(struct i915_perf_stream *stream); 1279 1280 /** 1281 * @poll_wait: Call poll_wait, passing a wait queue that will be woken 1282 * once there is something ready to read() for the stream 1283 */ 1284 void (*poll_wait)(struct i915_perf_stream *stream, 1285 struct file *file, 1286 poll_table *wait); 1287 1288 /** 1289 * @wait_unlocked: For handling a blocking read, wait until there is 1290 * something to ready to read() for the stream. E.g. wait on the same 1291 * wait queue that would be passed to poll_wait(). 1292 */ 1293 int (*wait_unlocked)(struct i915_perf_stream *stream); 1294 1295 /** 1296 * @read: Copy buffered metrics as records to userspace 1297 * **buf**: the userspace, destination buffer 1298 * **count**: the number of bytes to copy, requested by userspace 1299 * **offset**: zero at the start of the read, updated as the read 1300 * proceeds, it represents how many bytes have been copied so far and 1301 * the buffer offset for copying the next record. 1302 * 1303 * Copy as many buffered i915 perf samples and records for this stream 1304 * to userspace as will fit in the given buffer. 1305 * 1306 * Only write complete records; returning -%ENOSPC if there isn't room 1307 * for a complete record. 1308 * 1309 * Return any error condition that results in a short read such as 1310 * -%ENOSPC or -%EFAULT, even though these may be squashed before 1311 * returning to userspace. 1312 */ 1313 int (*read)(struct i915_perf_stream *stream, 1314 char __user *buf, 1315 size_t count, 1316 size_t *offset); 1317 1318 /** 1319 * @destroy: Cleanup any stream specific resources. 1320 * 1321 * The stream will always be disabled before this is called. 1322 */ 1323 void (*destroy)(struct i915_perf_stream *stream); 1324 }; 1325 1326 /** 1327 * struct i915_perf_stream - state for a single open stream FD 1328 */ 1329 struct i915_perf_stream { 1330 /** 1331 * @dev_priv: i915 drm device 1332 */ 1333 struct drm_i915_private *dev_priv; 1334 1335 /** 1336 * @link: Links the stream into ``&drm_i915_private->streams`` 1337 */ 1338 struct list_head link; 1339 1340 /** 1341 * @wakeref: As we keep the device awake while the perf stream is 1342 * active, we track our runtime pm reference for later release. 1343 */ 1344 intel_wakeref_t wakeref; 1345 1346 /** 1347 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*` 1348 * properties given when opening a stream, representing the contents 1349 * of a single sample as read() by userspace. 1350 */ 1351 u32 sample_flags; 1352 1353 /** 1354 * @sample_size: Considering the configured contents of a sample 1355 * combined with the required header size, this is the total size 1356 * of a single sample record. 1357 */ 1358 int sample_size; 1359 1360 /** 1361 * @ctx: %NULL if measuring system-wide across all contexts or a 1362 * specific context that is being monitored. 1363 */ 1364 struct i915_gem_context *ctx; 1365 1366 /** 1367 * @enabled: Whether the stream is currently enabled, considering 1368 * whether the stream was opened in a disabled state and based 1369 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls. 1370 */ 1371 bool enabled; 1372 1373 /** 1374 * @ops: The callbacks providing the implementation of this specific 1375 * type of configured stream. 1376 */ 1377 const struct i915_perf_stream_ops *ops; 1378 1379 /** 1380 * @oa_config: The OA configuration used by the stream. 1381 */ 1382 struct i915_oa_config *oa_config; 1383 }; 1384 1385 /** 1386 * struct i915_oa_ops - Gen specific implementation of an OA unit stream 1387 */ 1388 struct i915_oa_ops { 1389 /** 1390 * @is_valid_b_counter_reg: Validates register's address for 1391 * programming boolean counters for a particular platform. 1392 */ 1393 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv, 1394 u32 addr); 1395 1396 /** 1397 * @is_valid_mux_reg: Validates register's address for programming mux 1398 * for a particular platform. 1399 */ 1400 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr); 1401 1402 /** 1403 * @is_valid_flex_reg: Validates register's address for programming 1404 * flex EU filtering for a particular platform. 1405 */ 1406 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr); 1407 1408 /** 1409 * @enable_metric_set: Selects and applies any MUX configuration to set 1410 * up the Boolean and Custom (B/C) counters that are part of the 1411 * counter reports being sampled. May apply system constraints such as 1412 * disabling EU clock gating as required. 1413 */ 1414 int (*enable_metric_set)(struct i915_perf_stream *stream); 1415 1416 /** 1417 * @disable_metric_set: Remove system constraints associated with using 1418 * the OA unit. 1419 */ 1420 void (*disable_metric_set)(struct drm_i915_private *dev_priv); 1421 1422 /** 1423 * @oa_enable: Enable periodic sampling 1424 */ 1425 void (*oa_enable)(struct i915_perf_stream *stream); 1426 1427 /** 1428 * @oa_disable: Disable periodic sampling 1429 */ 1430 void (*oa_disable)(struct i915_perf_stream *stream); 1431 1432 /** 1433 * @read: Copy data from the circular OA buffer into a given userspace 1434 * buffer. 1435 */ 1436 int (*read)(struct i915_perf_stream *stream, 1437 char __user *buf, 1438 size_t count, 1439 size_t *offset); 1440 1441 /** 1442 * @oa_hw_tail_read: read the OA tail pointer register 1443 * 1444 * In particular this enables us to share all the fiddly code for 1445 * handling the OA unit tail pointer race that affects multiple 1446 * generations. 1447 */ 1448 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv); 1449 }; 1450 1451 struct intel_cdclk_state { 1452 unsigned int cdclk, vco, ref, bypass; 1453 u8 voltage_level; 1454 }; 1455 1456 struct drm_i915_private { 1457 struct drm_device drm; 1458 1459 struct kmem_cache *objects; 1460 struct kmem_cache *vmas; 1461 struct kmem_cache *luts; 1462 struct kmem_cache *requests; 1463 struct kmem_cache *dependencies; 1464 struct kmem_cache *priorities; 1465 1466 const struct intel_device_info __info; /* Use INTEL_INFO() to access. */ 1467 struct intel_runtime_info __runtime; /* Use RUNTIME_INFO() to access. */ 1468 struct intel_driver_caps caps; 1469 1470 /** 1471 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and 1472 * end of stolen which we can optionally use to create GEM objects 1473 * backed by stolen memory. Note that stolen_usable_size tells us 1474 * exactly how much of this we are actually allowed to use, given that 1475 * some portion of it is in fact reserved for use by hardware functions. 1476 */ 1477 struct resource dsm; 1478 /** 1479 * Reseved portion of Data Stolen Memory 1480 */ 1481 struct resource dsm_reserved; 1482 1483 /* 1484 * Stolen memory is segmented in hardware with different portions 1485 * offlimits to certain functions. 1486 * 1487 * The drm_mm is initialised to the total accessible range, as found 1488 * from the PCI config. On Broadwell+, this is further restricted to 1489 * avoid the first page! The upper end of stolen memory is reserved for 1490 * hardware functions and similarly removed from the accessible range. 1491 */ 1492 resource_size_t stolen_usable_size; /* Total size minus reserved ranges */ 1493 1494 void __iomem *regs; 1495 1496 struct intel_uncore uncore; 1497 1498 struct i915_virtual_gpu vgpu; 1499 1500 struct intel_gvt *gvt; 1501 1502 struct intel_wopcm wopcm; 1503 1504 struct intel_huc huc; 1505 struct intel_guc guc; 1506 1507 struct intel_csr csr; 1508 1509 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 1510 1511 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 1512 * controller on different i2c buses. */ 1513 struct mutex gmbus_mutex; 1514 1515 /** 1516 * Base address of where the gmbus and gpio blocks are located (either 1517 * on PCH or on SoC for platforms without PCH). 1518 */ 1519 u32 gpio_mmio_base; 1520 1521 /* MMIO base address for MIPI regs */ 1522 u32 mipi_mmio_base; 1523 1524 u32 psr_mmio_base; 1525 1526 u32 pps_mmio_base; 1527 1528 wait_queue_head_t gmbus_wait_queue; 1529 1530 struct pci_dev *bridge_dev; 1531 struct intel_engine_cs *engine[I915_NUM_ENGINES]; 1532 /* Context used internally to idle the GPU and setup initial state */ 1533 struct i915_gem_context *kernel_context; 1534 /* Context only to be used for injecting preemption commands */ 1535 struct i915_gem_context *preempt_context; 1536 struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1] 1537 [MAX_ENGINE_INSTANCE + 1]; 1538 1539 struct resource mch_res; 1540 1541 /* protects the irq masks */ 1542 spinlock_t irq_lock; 1543 1544 bool display_irqs_enabled; 1545 1546 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 1547 struct pm_qos_request pm_qos; 1548 1549 /* Sideband mailbox protection */ 1550 struct mutex sb_lock; 1551 1552 /** Cached value of IMR to avoid reads in updating the bitfield */ 1553 union { 1554 u32 irq_mask; 1555 u32 de_irq_mask[I915_MAX_PIPES]; 1556 }; 1557 u32 gt_irq_mask; 1558 u32 pm_imr; 1559 u32 pm_ier; 1560 u32 pm_rps_events; 1561 u32 pm_guc_events; 1562 u32 pipestat_irq_mask[I915_MAX_PIPES]; 1563 1564 struct i915_hotplug hotplug; 1565 struct intel_fbc fbc; 1566 struct i915_drrs drrs; 1567 struct intel_opregion opregion; 1568 struct intel_vbt_data vbt; 1569 1570 bool preserve_bios_swizzle; 1571 1572 /* overlay */ 1573 struct intel_overlay *overlay; 1574 1575 /* backlight registers and fields in struct intel_panel */ 1576 struct mutex backlight_lock; 1577 1578 /* LVDS info */ 1579 bool no_aux_handshake; 1580 1581 /* protects panel power sequencer state */ 1582 struct mutex pps_mutex; 1583 1584 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 1585 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 1586 1587 unsigned int fsb_freq, mem_freq, is_ddr3; 1588 unsigned int skl_preferred_vco_freq; 1589 unsigned int max_cdclk_freq; 1590 1591 unsigned int max_dotclk_freq; 1592 unsigned int rawclk_freq; 1593 unsigned int hpll_freq; 1594 unsigned int fdi_pll_freq; 1595 unsigned int czclk_freq; 1596 1597 struct { 1598 /* 1599 * The current logical cdclk state. 1600 * See intel_atomic_state.cdclk.logical 1601 * 1602 * For reading holding any crtc lock is sufficient, 1603 * for writing must hold all of them. 1604 */ 1605 struct intel_cdclk_state logical; 1606 /* 1607 * The current actual cdclk state. 1608 * See intel_atomic_state.cdclk.actual 1609 */ 1610 struct intel_cdclk_state actual; 1611 /* The current hardware cdclk state */ 1612 struct intel_cdclk_state hw; 1613 } cdclk; 1614 1615 /** 1616 * wq - Driver workqueue for GEM. 1617 * 1618 * NOTE: Work items scheduled here are not allowed to grab any modeset 1619 * locks, for otherwise the flushing done in the pageflip code will 1620 * result in deadlocks. 1621 */ 1622 struct workqueue_struct *wq; 1623 1624 /* ordered wq for modesets */ 1625 struct workqueue_struct *modeset_wq; 1626 1627 /* Display functions */ 1628 struct drm_i915_display_funcs display; 1629 1630 /* PCH chipset type */ 1631 enum intel_pch pch_type; 1632 unsigned short pch_id; 1633 1634 unsigned long quirks; 1635 1636 struct drm_atomic_state *modeset_restore_state; 1637 struct drm_modeset_acquire_ctx reset_ctx; 1638 1639 struct i915_ggtt ggtt; /* VM representing the global address space */ 1640 1641 struct i915_gem_mm mm; 1642 DECLARE_HASHTABLE(mm_structs, 7); 1643 struct mutex mm_lock; 1644 1645 struct intel_ppat ppat; 1646 1647 /* Kernel Modesetting */ 1648 1649 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 1650 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 1651 1652 #ifdef CONFIG_DEBUG_FS 1653 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 1654 #endif 1655 1656 /* dpll and cdclk state is protected by connection_mutex */ 1657 int num_shared_dpll; 1658 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 1659 const struct intel_dpll_mgr *dpll_mgr; 1660 1661 /* 1662 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 1663 * Must be global rather than per dpll, because on some platforms 1664 * plls share registers. 1665 */ 1666 struct mutex dpll_lock; 1667 1668 unsigned int active_crtcs; 1669 /* minimum acceptable cdclk for each pipe */ 1670 int min_cdclk[I915_MAX_PIPES]; 1671 /* minimum acceptable voltage level for each pipe */ 1672 u8 min_voltage_level[I915_MAX_PIPES]; 1673 1674 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 1675 1676 struct i915_wa_list gt_wa_list; 1677 1678 struct i915_frontbuffer_tracking fb_tracking; 1679 1680 struct intel_atomic_helper { 1681 struct llist_head free_list; 1682 struct work_struct free_work; 1683 } atomic_helper; 1684 1685 u16 orig_clock; 1686 1687 bool mchbar_need_disable; 1688 1689 struct intel_l3_parity l3_parity; 1690 1691 /* Cannot be determined by PCIID. You must always read a register. */ 1692 u32 edram_cap; 1693 1694 /* 1695 * Protects RPS/RC6 register access and PCU communication. 1696 * Must be taken after struct_mutex if nested. Note that 1697 * this lock may be held for long periods of time when 1698 * talking to hw - so only take it when talking to hw! 1699 */ 1700 struct mutex pcu_lock; 1701 1702 /* gen6+ GT PM state */ 1703 struct intel_gen6_power_mgmt gt_pm; 1704 1705 /* ilk-only ips/rps state. Everything in here is protected by the global 1706 * mchdev_lock in intel_pm.c */ 1707 struct intel_ilk_power_mgmt ips; 1708 1709 struct i915_power_domains power_domains; 1710 1711 struct i915_psr psr; 1712 1713 struct i915_gpu_error gpu_error; 1714 1715 struct drm_i915_gem_object *vlv_pctx; 1716 1717 /* list of fbdev register on this device */ 1718 struct intel_fbdev *fbdev; 1719 struct work_struct fbdev_suspend_work; 1720 1721 struct drm_property *broadcast_rgb_property; 1722 struct drm_property *force_audio_property; 1723 1724 /* hda/i915 audio component */ 1725 struct i915_audio_component *audio_component; 1726 bool audio_component_registered; 1727 /** 1728 * av_mutex - mutex for audio/video sync 1729 * 1730 */ 1731 struct mutex av_mutex; 1732 1733 struct { 1734 struct mutex mutex; 1735 struct list_head list; 1736 struct llist_head free_list; 1737 struct work_struct free_work; 1738 1739 /* The hw wants to have a stable context identifier for the 1740 * lifetime of the context (for OA, PASID, faults, etc). 1741 * This is limited in execlists to 21 bits. 1742 */ 1743 struct ida hw_ida; 1744 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 1745 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */ 1746 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */ 1747 struct list_head hw_id_list; 1748 } contexts; 1749 1750 u32 fdi_rx_config; 1751 1752 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 1753 u32 chv_phy_control; 1754 /* 1755 * Shadows for CHV DPLL_MD regs to keep the state 1756 * checker somewhat working in the presence hardware 1757 * crappiness (can't read out DPLL_MD for pipes B & C). 1758 */ 1759 u32 chv_dpll_md[I915_MAX_PIPES]; 1760 u32 bxt_phy_grc; 1761 1762 u32 suspend_count; 1763 bool power_domains_suspended; 1764 struct i915_suspend_saved_registers regfile; 1765 struct vlv_s0ix_state vlv_s0ix_state; 1766 1767 enum { 1768 I915_SAGV_UNKNOWN = 0, 1769 I915_SAGV_DISABLED, 1770 I915_SAGV_ENABLED, 1771 I915_SAGV_NOT_CONTROLLED 1772 } sagv_status; 1773 1774 struct { 1775 /* 1776 * Raw watermark latency values: 1777 * in 0.1us units for WM0, 1778 * in 0.5us units for WM1+. 1779 */ 1780 /* primary */ 1781 u16 pri_latency[5]; 1782 /* sprite */ 1783 u16 spr_latency[5]; 1784 /* cursor */ 1785 u16 cur_latency[5]; 1786 /* 1787 * Raw watermark memory latency values 1788 * for SKL for all 8 levels 1789 * in 1us units. 1790 */ 1791 u16 skl_latency[8]; 1792 1793 /* current hardware state */ 1794 union { 1795 struct ilk_wm_values hw; 1796 struct skl_ddb_values skl_hw; 1797 struct vlv_wm_values vlv; 1798 struct g4x_wm_values g4x; 1799 }; 1800 1801 u8 max_level; 1802 1803 /* 1804 * Should be held around atomic WM register writing; also 1805 * protects * intel_crtc->wm.active and 1806 * cstate->wm.need_postvbl_update. 1807 */ 1808 struct mutex wm_mutex; 1809 1810 /* 1811 * Set during HW readout of watermarks/DDB. Some platforms 1812 * need to know when we're still using BIOS-provided values 1813 * (which we don't fully trust). 1814 */ 1815 bool distrust_bios_wm; 1816 } wm; 1817 1818 struct dram_info { 1819 bool valid; 1820 bool is_16gb_dimm; 1821 u8 num_channels; 1822 enum dram_rank { 1823 I915_DRAM_RANK_INVALID = 0, 1824 I915_DRAM_RANK_SINGLE, 1825 I915_DRAM_RANK_DUAL 1826 } rank; 1827 u32 bandwidth_kbps; 1828 bool symmetric_memory; 1829 } dram_info; 1830 1831 struct i915_runtime_pm runtime_pm; 1832 1833 struct { 1834 bool initialized; 1835 1836 struct kobject *metrics_kobj; 1837 struct ctl_table_header *sysctl_header; 1838 1839 /* 1840 * Lock associated with adding/modifying/removing OA configs 1841 * in dev_priv->perf.metrics_idr. 1842 */ 1843 struct mutex metrics_lock; 1844 1845 /* 1846 * List of dynamic configurations, you need to hold 1847 * dev_priv->perf.metrics_lock to access it. 1848 */ 1849 struct idr metrics_idr; 1850 1851 /* 1852 * Lock associated with anything below within this structure 1853 * except exclusive_stream. 1854 */ 1855 struct mutex lock; 1856 struct list_head streams; 1857 1858 struct { 1859 /* 1860 * The stream currently using the OA unit. If accessed 1861 * outside a syscall associated to its file 1862 * descriptor, you need to hold 1863 * dev_priv->drm.struct_mutex. 1864 */ 1865 struct i915_perf_stream *exclusive_stream; 1866 1867 struct intel_context *pinned_ctx; 1868 u32 specific_ctx_id; 1869 u32 specific_ctx_id_mask; 1870 1871 struct hrtimer poll_check_timer; 1872 wait_queue_head_t poll_wq; 1873 bool pollin; 1874 1875 /** 1876 * For rate limiting any notifications of spurious 1877 * invalid OA reports 1878 */ 1879 struct ratelimit_state spurious_report_rs; 1880 1881 bool periodic; 1882 int period_exponent; 1883 1884 struct i915_oa_config test_config; 1885 1886 struct { 1887 struct i915_vma *vma; 1888 u8 *vaddr; 1889 u32 last_ctx_id; 1890 int format; 1891 int format_size; 1892 1893 /** 1894 * Locks reads and writes to all head/tail state 1895 * 1896 * Consider: the head and tail pointer state 1897 * needs to be read consistently from a hrtimer 1898 * callback (atomic context) and read() fop 1899 * (user context) with tail pointer updates 1900 * happening in atomic context and head updates 1901 * in user context and the (unlikely) 1902 * possibility of read() errors needing to 1903 * reset all head/tail state. 1904 * 1905 * Note: Contention or performance aren't 1906 * currently a significant concern here 1907 * considering the relatively low frequency of 1908 * hrtimer callbacks (5ms period) and that 1909 * reads typically only happen in response to a 1910 * hrtimer event and likely complete before the 1911 * next callback. 1912 * 1913 * Note: This lock is not held *while* reading 1914 * and copying data to userspace so the value 1915 * of head observed in htrimer callbacks won't 1916 * represent any partial consumption of data. 1917 */ 1918 spinlock_t ptr_lock; 1919 1920 /** 1921 * One 'aging' tail pointer and one 'aged' 1922 * tail pointer ready to used for reading. 1923 * 1924 * Initial values of 0xffffffff are invalid 1925 * and imply that an update is required 1926 * (and should be ignored by an attempted 1927 * read) 1928 */ 1929 struct { 1930 u32 offset; 1931 } tails[2]; 1932 1933 /** 1934 * Index for the aged tail ready to read() 1935 * data up to. 1936 */ 1937 unsigned int aged_tail_idx; 1938 1939 /** 1940 * A monotonic timestamp for when the current 1941 * aging tail pointer was read; used to 1942 * determine when it is old enough to trust. 1943 */ 1944 u64 aging_timestamp; 1945 1946 /** 1947 * Although we can always read back the head 1948 * pointer register, we prefer to avoid 1949 * trusting the HW state, just to avoid any 1950 * risk that some hardware condition could 1951 * somehow bump the head pointer unpredictably 1952 * and cause us to forward the wrong OA buffer 1953 * data to userspace. 1954 */ 1955 u32 head; 1956 } oa_buffer; 1957 1958 u32 gen7_latched_oastatus1; 1959 u32 ctx_oactxctrl_offset; 1960 u32 ctx_flexeu0_offset; 1961 1962 /** 1963 * The RPT_ID/reason field for Gen8+ includes a bit 1964 * to determine if the CTX ID in the report is valid 1965 * but the specific bit differs between Gen 8 and 9 1966 */ 1967 u32 gen8_valid_ctx_bit; 1968 1969 struct i915_oa_ops ops; 1970 const struct i915_oa_format *oa_formats; 1971 } oa; 1972 } perf; 1973 1974 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 1975 struct { 1976 void (*resume)(struct drm_i915_private *); 1977 void (*cleanup_engine)(struct intel_engine_cs *engine); 1978 1979 struct i915_gt_timelines { 1980 struct mutex mutex; /* protects list, tainted by GPU */ 1981 struct list_head active_list; 1982 1983 /* Pack multiple timelines' seqnos into the same page */ 1984 spinlock_t hwsp_lock; 1985 struct list_head hwsp_free_list; 1986 } timelines; 1987 1988 struct list_head active_rings; 1989 struct list_head closed_vma; 1990 u32 active_requests; 1991 1992 /** 1993 * Is the GPU currently considered idle, or busy executing 1994 * userspace requests? Whilst idle, we allow runtime power 1995 * management to power down the hardware and display clocks. 1996 * In order to reduce the effect on performance, there 1997 * is a slight delay before we do so. 1998 */ 1999 intel_wakeref_t awake; 2000 2001 /** 2002 * The number of times we have woken up. 2003 */ 2004 unsigned int epoch; 2005 #define I915_EPOCH_INVALID 0 2006 2007 /** 2008 * We leave the user IRQ off as much as possible, 2009 * but this means that requests will finish and never 2010 * be retired once the system goes idle. Set a timer to 2011 * fire periodically while the ring is running. When it 2012 * fires, go retire requests. 2013 */ 2014 struct delayed_work retire_work; 2015 2016 /** 2017 * When we detect an idle GPU, we want to turn on 2018 * powersaving features. So once we see that there 2019 * are no more requests outstanding and no more 2020 * arrive within a small period of time, we fire 2021 * off the idle_work. 2022 */ 2023 struct delayed_work idle_work; 2024 2025 ktime_t last_init_time; 2026 2027 struct i915_vma *scratch; 2028 } gt; 2029 2030 /* perform PHY state sanity checks? */ 2031 bool chv_phy_assert[2]; 2032 2033 bool ipc_enabled; 2034 2035 /* Used to save the pipe-to-encoder mapping for audio */ 2036 struct intel_encoder *av_enc_map[I915_MAX_PIPES]; 2037 2038 /* necessary resource sharing with HDMI LPE audio driver. */ 2039 struct { 2040 struct platform_device *platdev; 2041 int irq; 2042 } lpe_audio; 2043 2044 struct i915_pmu pmu; 2045 2046 /* 2047 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2048 * will be rejected. Instead look for a better place. 2049 */ 2050 }; 2051 2052 struct dram_channel_info { 2053 struct info { 2054 u8 size, width; 2055 enum dram_rank rank; 2056 } l_info, s_info; 2057 enum dram_rank rank; 2058 bool is_16gb_dimm; 2059 }; 2060 2061 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2062 { 2063 return container_of(dev, struct drm_i915_private, drm); 2064 } 2065 2066 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) 2067 { 2068 return to_i915(dev_get_drvdata(kdev)); 2069 } 2070 2071 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm) 2072 { 2073 return container_of(wopcm, struct drm_i915_private, wopcm); 2074 } 2075 2076 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2077 { 2078 return container_of(guc, struct drm_i915_private, guc); 2079 } 2080 2081 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc) 2082 { 2083 return container_of(huc, struct drm_i915_private, huc); 2084 } 2085 2086 /* Simple iterator over all initialised engines */ 2087 #define for_each_engine(engine__, dev_priv__, id__) \ 2088 for ((id__) = 0; \ 2089 (id__) < I915_NUM_ENGINES; \ 2090 (id__)++) \ 2091 for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) 2092 2093 /* Iterator over subset of engines selected by mask */ 2094 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \ 2095 for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \ 2096 (tmp__) ? \ 2097 ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \ 2098 0;) 2099 2100 enum hdmi_force_audio { 2101 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2102 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2103 HDMI_AUDIO_AUTO, /* trust EDID */ 2104 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2105 }; 2106 2107 #define I915_GTT_OFFSET_NONE ((u32)-1) 2108 2109 /* 2110 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2111 * considered to be the frontbuffer for the given plane interface-wise. This 2112 * doesn't mean that the hw necessarily already scans it out, but that any 2113 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2114 * 2115 * We have one bit per pipe and per scanout plane type. 2116 */ 2117 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2118 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \ 2119 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \ 2120 BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \ 2121 BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \ 2122 }) 2123 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2124 BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2125 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2126 GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \ 2127 INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2128 2129 /* 2130 * Optimised SGL iterator for GEM objects 2131 */ 2132 static __always_inline struct sgt_iter { 2133 struct scatterlist *sgp; 2134 union { 2135 unsigned long pfn; 2136 dma_addr_t dma; 2137 }; 2138 unsigned int curr; 2139 unsigned int max; 2140 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2141 struct sgt_iter s = { .sgp = sgl }; 2142 2143 if (s.sgp) { 2144 s.max = s.curr = s.sgp->offset; 2145 s.max += s.sgp->length; 2146 if (dma) 2147 s.dma = sg_dma_address(s.sgp); 2148 else 2149 s.pfn = page_to_pfn(sg_page(s.sgp)); 2150 } 2151 2152 return s; 2153 } 2154 2155 static inline struct scatterlist *____sg_next(struct scatterlist *sg) 2156 { 2157 ++sg; 2158 if (unlikely(sg_is_chain(sg))) 2159 sg = sg_chain_ptr(sg); 2160 return sg; 2161 } 2162 2163 /** 2164 * __sg_next - return the next scatterlist entry in a list 2165 * @sg: The current sg entry 2166 * 2167 * Description: 2168 * If the entry is the last, return NULL; otherwise, step to the next 2169 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2170 * otherwise just return the pointer to the current element. 2171 **/ 2172 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2173 { 2174 return sg_is_last(sg) ? NULL : ____sg_next(sg); 2175 } 2176 2177 /** 2178 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2179 * @__dmap: DMA address (output) 2180 * @__iter: 'struct sgt_iter' (iterator state, internal) 2181 * @__sgt: sg_table to iterate over (input) 2182 */ 2183 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2184 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2185 ((__dmap) = (__iter).dma + (__iter).curr); \ 2186 (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ? \ 2187 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0) 2188 2189 /** 2190 * for_each_sgt_page - iterate over the pages of the given sg_table 2191 * @__pp: page pointer (output) 2192 * @__iter: 'struct sgt_iter' (iterator state, internal) 2193 * @__sgt: sg_table to iterate over (input) 2194 */ 2195 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2196 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2197 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2198 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2199 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2200 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0) 2201 2202 bool i915_sg_trim(struct sg_table *orig_st); 2203 2204 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg) 2205 { 2206 unsigned int page_sizes; 2207 2208 page_sizes = 0; 2209 while (sg) { 2210 GEM_BUG_ON(sg->offset); 2211 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE)); 2212 page_sizes |= sg->length; 2213 sg = __sg_next(sg); 2214 } 2215 2216 return page_sizes; 2217 } 2218 2219 static inline unsigned int i915_sg_segment_size(void) 2220 { 2221 unsigned int size = swiotlb_max_segment(); 2222 2223 if (size == 0) 2224 return SCATTERLIST_MAX_SEGMENT; 2225 2226 size = rounddown(size, PAGE_SIZE); 2227 /* swiotlb_max_segment_size can return 1 byte when it means one page. */ 2228 if (size < PAGE_SIZE) 2229 size = PAGE_SIZE; 2230 2231 return size; 2232 } 2233 2234 #define INTEL_INFO(dev_priv) (&(dev_priv)->__info) 2235 #define RUNTIME_INFO(dev_priv) (&(dev_priv)->__runtime) 2236 #define DRIVER_CAPS(dev_priv) (&(dev_priv)->caps) 2237 2238 #define INTEL_GEN(dev_priv) (INTEL_INFO(dev_priv)->gen) 2239 #define INTEL_DEVID(dev_priv) (RUNTIME_INFO(dev_priv)->device_id) 2240 2241 #define REVID_FOREVER 0xff 2242 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision) 2243 2244 #define INTEL_GEN_MASK(s, e) ( \ 2245 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \ 2246 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \ 2247 GENMASK((e) - 1, (s) - 1)) 2248 2249 /* Returns true if Gen is in inclusive range [Start, End] */ 2250 #define IS_GEN_RANGE(dev_priv, s, e) \ 2251 (!!(INTEL_INFO(dev_priv)->gen_mask & INTEL_GEN_MASK((s), (e)))) 2252 2253 #define IS_GEN(dev_priv, n) \ 2254 (BUILD_BUG_ON_ZERO(!__builtin_constant_p(n)) + \ 2255 INTEL_INFO(dev_priv)->gen == (n)) 2256 2257 /* 2258 * Return true if revision is in range [since,until] inclusive. 2259 * 2260 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2261 */ 2262 #define IS_REVID(p, since, until) \ 2263 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2264 2265 #define IS_PLATFORM(dev_priv, p) (INTEL_INFO(dev_priv)->platform_mask & BIT(p)) 2266 2267 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830) 2268 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G) 2269 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X) 2270 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G) 2271 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G) 2272 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM) 2273 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G) 2274 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM) 2275 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G) 2276 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM) 2277 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45) 2278 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45) 2279 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) 2280 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001) 2281 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011) 2282 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW) 2283 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33) 2284 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046) 2285 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE) 2286 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \ 2287 INTEL_INFO(dev_priv)->gt == 1) 2288 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW) 2289 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW) 2290 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL) 2291 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL) 2292 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE) 2293 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON) 2294 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE) 2295 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE) 2296 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE) 2297 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE) 2298 #define IS_ICELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ICELAKE) 2299 #define IS_MOBILE(dev_priv) (INTEL_INFO(dev_priv)->is_mobile) 2300 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ 2301 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) 2302 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \ 2303 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \ 2304 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \ 2305 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)) 2306 /* ULX machines are also considered ULT. */ 2307 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \ 2308 (INTEL_DEVID(dev_priv) & 0xf) == 0xe) 2309 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ 2310 INTEL_INFO(dev_priv)->gt == 3) 2311 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \ 2312 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00) 2313 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ 2314 INTEL_INFO(dev_priv)->gt == 3) 2315 #define IS_HSW_GT1(dev_priv) (IS_HASWELL(dev_priv) && \ 2316 INTEL_INFO(dev_priv)->gt == 1) 2317 /* ULX machines are also considered ULT. */ 2318 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \ 2319 INTEL_DEVID(dev_priv) == 0x0A1E) 2320 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \ 2321 INTEL_DEVID(dev_priv) == 0x1913 || \ 2322 INTEL_DEVID(dev_priv) == 0x1916 || \ 2323 INTEL_DEVID(dev_priv) == 0x1921 || \ 2324 INTEL_DEVID(dev_priv) == 0x1926) 2325 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \ 2326 INTEL_DEVID(dev_priv) == 0x1915 || \ 2327 INTEL_DEVID(dev_priv) == 0x191E) 2328 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \ 2329 INTEL_DEVID(dev_priv) == 0x5913 || \ 2330 INTEL_DEVID(dev_priv) == 0x5916 || \ 2331 INTEL_DEVID(dev_priv) == 0x5921 || \ 2332 INTEL_DEVID(dev_priv) == 0x5926) 2333 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \ 2334 INTEL_DEVID(dev_priv) == 0x5915 || \ 2335 INTEL_DEVID(dev_priv) == 0x591E) 2336 #define IS_AML_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x591C || \ 2337 INTEL_DEVID(dev_priv) == 0x87C0) 2338 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2339 INTEL_INFO(dev_priv)->gt == 2) 2340 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2341 INTEL_INFO(dev_priv)->gt == 3) 2342 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2343 INTEL_INFO(dev_priv)->gt == 4) 2344 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2345 INTEL_INFO(dev_priv)->gt == 2) 2346 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2347 INTEL_INFO(dev_priv)->gt == 3) 2348 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2349 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0) 2350 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2351 INTEL_INFO(dev_priv)->gt == 2) 2352 #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2353 INTEL_INFO(dev_priv)->gt == 3) 2354 #define IS_CNL_WITH_PORT_F(dev_priv) (IS_CANNONLAKE(dev_priv) && \ 2355 (INTEL_DEVID(dev_priv) & 0x0004) == 0x0004) 2356 #define IS_ICL_WITH_PORT_F(dev_priv) (IS_ICELAKE(dev_priv) && \ 2357 INTEL_DEVID(dev_priv) != 0x8A51) 2358 2359 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support) 2360 2361 #define SKL_REVID_A0 0x0 2362 #define SKL_REVID_B0 0x1 2363 #define SKL_REVID_C0 0x2 2364 #define SKL_REVID_D0 0x3 2365 #define SKL_REVID_E0 0x4 2366 #define SKL_REVID_F0 0x5 2367 #define SKL_REVID_G0 0x6 2368 #define SKL_REVID_H0 0x7 2369 2370 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2371 2372 #define BXT_REVID_A0 0x0 2373 #define BXT_REVID_A1 0x1 2374 #define BXT_REVID_B0 0x3 2375 #define BXT_REVID_B_LAST 0x8 2376 #define BXT_REVID_C0 0x9 2377 2378 #define IS_BXT_REVID(dev_priv, since, until) \ 2379 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until)) 2380 2381 #define KBL_REVID_A0 0x0 2382 #define KBL_REVID_B0 0x1 2383 #define KBL_REVID_C0 0x2 2384 #define KBL_REVID_D0 0x3 2385 #define KBL_REVID_E0 0x4 2386 2387 #define IS_KBL_REVID(dev_priv, since, until) \ 2388 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2389 2390 #define GLK_REVID_A0 0x0 2391 #define GLK_REVID_A1 0x1 2392 2393 #define IS_GLK_REVID(dev_priv, since, until) \ 2394 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2395 2396 #define CNL_REVID_A0 0x0 2397 #define CNL_REVID_B0 0x1 2398 #define CNL_REVID_C0 0x2 2399 2400 #define IS_CNL_REVID(p, since, until) \ 2401 (IS_CANNONLAKE(p) && IS_REVID(p, since, until)) 2402 2403 #define ICL_REVID_A0 0x0 2404 #define ICL_REVID_A2 0x1 2405 #define ICL_REVID_B0 0x3 2406 #define ICL_REVID_B2 0x4 2407 #define ICL_REVID_C0 0x5 2408 2409 #define IS_ICL_REVID(p, since, until) \ 2410 (IS_ICELAKE(p) && IS_REVID(p, since, until)) 2411 2412 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) 2413 #define IS_GEN9_LP(dev_priv) (IS_GEN(dev_priv, 9) && IS_LP(dev_priv)) 2414 #define IS_GEN9_BC(dev_priv) (IS_GEN(dev_priv, 9) && !IS_LP(dev_priv)) 2415 2416 #define ENGINE_MASK(id) BIT(id) 2417 #define RENDER_RING ENGINE_MASK(RCS) 2418 #define BSD_RING ENGINE_MASK(VCS) 2419 #define BLT_RING ENGINE_MASK(BCS) 2420 #define VEBOX_RING ENGINE_MASK(VECS) 2421 #define BSD2_RING ENGINE_MASK(VCS2) 2422 #define BSD3_RING ENGINE_MASK(VCS3) 2423 #define BSD4_RING ENGINE_MASK(VCS4) 2424 #define VEBOX2_RING ENGINE_MASK(VECS2) 2425 #define ALL_ENGINES (~0) 2426 2427 #define HAS_ENGINE(dev_priv, id) \ 2428 (!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id))) 2429 2430 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) 2431 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) 2432 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) 2433 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) 2434 2435 #define HAS_LLC(dev_priv) (INTEL_INFO(dev_priv)->has_llc) 2436 #define HAS_SNOOP(dev_priv) (INTEL_INFO(dev_priv)->has_snoop) 2437 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED)) 2438 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \ 2439 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv)) 2440 2441 #define HWS_NEEDS_PHYSICAL(dev_priv) (INTEL_INFO(dev_priv)->hws_needs_physical) 2442 2443 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ 2444 (INTEL_INFO(dev_priv)->has_logical_ring_contexts) 2445 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \ 2446 (INTEL_INFO(dev_priv)->has_logical_ring_elsq) 2447 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \ 2448 (INTEL_INFO(dev_priv)->has_logical_ring_preemption) 2449 2450 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv) 2451 2452 #define INTEL_PPGTT(dev_priv) (INTEL_INFO(dev_priv)->ppgtt) 2453 #define HAS_PPGTT(dev_priv) \ 2454 (INTEL_PPGTT(dev_priv) != INTEL_PPGTT_NONE) 2455 #define HAS_FULL_PPGTT(dev_priv) \ 2456 (INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL) 2457 #define HAS_FULL_48BIT_PPGTT(dev_priv) \ 2458 (INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL_4LVL) 2459 2460 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \ 2461 GEM_BUG_ON((sizes) == 0); \ 2462 ((sizes) & ~INTEL_INFO(dev_priv)->page_sizes) == 0; \ 2463 }) 2464 2465 #define HAS_OVERLAY(dev_priv) (INTEL_INFO(dev_priv)->display.has_overlay) 2466 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ 2467 (INTEL_INFO(dev_priv)->display.overlay_needs_physical) 2468 2469 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2470 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) 2471 2472 /* WaRsDisableCoarsePowerGating:skl,cnl */ 2473 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 2474 (IS_CANNONLAKE(dev_priv) || \ 2475 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv)) 2476 2477 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4) 2478 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \ 2479 IS_GEMINILAKE(dev_priv) || \ 2480 IS_KABYLAKE(dev_priv)) 2481 2482 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2483 * rows, which changed the alignment requirements and fence programming. 2484 */ 2485 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN(dev_priv, 2) && \ 2486 !(IS_I915G(dev_priv) || \ 2487 IS_I915GM(dev_priv))) 2488 #define SUPPORTS_TV(dev_priv) (INTEL_INFO(dev_priv)->display.supports_tv) 2489 #define I915_HAS_HOTPLUG(dev_priv) (INTEL_INFO(dev_priv)->display.has_hotplug) 2490 2491 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2) 2492 #define HAS_FBC(dev_priv) (INTEL_INFO(dev_priv)->display.has_fbc) 2493 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7) 2494 2495 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) 2496 2497 #define HAS_DP_MST(dev_priv) (INTEL_INFO(dev_priv)->display.has_dp_mst) 2498 2499 #define HAS_DDI(dev_priv) (INTEL_INFO(dev_priv)->display.has_ddi) 2500 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) (INTEL_INFO(dev_priv)->has_fpga_dbg) 2501 #define HAS_PSR(dev_priv) (INTEL_INFO(dev_priv)->display.has_psr) 2502 2503 #define HAS_RC6(dev_priv) (INTEL_INFO(dev_priv)->has_rc6) 2504 #define HAS_RC6p(dev_priv) (INTEL_INFO(dev_priv)->has_rc6p) 2505 #define HAS_RC6pp(dev_priv) (false) /* HW was never validated */ 2506 2507 #define HAS_CSR(dev_priv) (INTEL_INFO(dev_priv)->display.has_csr) 2508 2509 #define HAS_RUNTIME_PM(dev_priv) (INTEL_INFO(dev_priv)->has_runtime_pm) 2510 #define HAS_64BIT_RELOC(dev_priv) (INTEL_INFO(dev_priv)->has_64bit_reloc) 2511 2512 #define HAS_IPC(dev_priv) (INTEL_INFO(dev_priv)->display.has_ipc) 2513 2514 /* 2515 * For now, anything with a GuC requires uCode loading, and then supports 2516 * command submission once loaded. But these are logically independent 2517 * properties, so we have separate macros to test them. 2518 */ 2519 #define HAS_GUC(dev_priv) (INTEL_INFO(dev_priv)->has_guc) 2520 #define HAS_GUC_CT(dev_priv) (INTEL_INFO(dev_priv)->has_guc_ct) 2521 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2522 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv)) 2523 2524 /* For now, anything with a GuC has also HuC */ 2525 #define HAS_HUC(dev_priv) (HAS_GUC(dev_priv)) 2526 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2527 2528 /* Having a GuC is not the same as using a GuC */ 2529 #define USES_GUC(dev_priv) intel_uc_is_using_guc(dev_priv) 2530 #define USES_GUC_SUBMISSION(dev_priv) intel_uc_is_using_guc_submission(dev_priv) 2531 #define USES_HUC(dev_priv) intel_uc_is_using_huc(dev_priv) 2532 2533 #define HAS_POOLED_EU(dev_priv) (INTEL_INFO(dev_priv)->has_pooled_eu) 2534 2535 #define INTEL_PCH_DEVICE_ID_MASK 0xff80 2536 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2537 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2538 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2539 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2540 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2541 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80 2542 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80 2543 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2544 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2545 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280 2546 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300 2547 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80 2548 #define INTEL_PCH_ICP_DEVICE_ID_TYPE 0x3480 2549 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2550 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2551 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2552 2553 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type) 2554 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id) 2555 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP) 2556 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP) 2557 #define HAS_PCH_CNP_LP(dev_priv) \ 2558 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) 2559 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP) 2560 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT) 2561 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT) 2562 #define HAS_PCH_LPT_LP(dev_priv) \ 2563 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \ 2564 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) 2565 #define HAS_PCH_LPT_H(dev_priv) \ 2566 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \ 2567 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE) 2568 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT) 2569 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX) 2570 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP) 2571 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE) 2572 2573 #define HAS_GMCH_DISPLAY(dev_priv) (INTEL_INFO(dev_priv)->display.has_gmch_display) 2574 2575 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9) 2576 2577 /* DPF == dynamic parity feature */ 2578 #define HAS_L3_DPF(dev_priv) (INTEL_INFO(dev_priv)->has_l3_dpf) 2579 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 2580 2 : HAS_L3_DPF(dev_priv)) 2581 2582 #define GT_FREQUENCY_MULTIPLIER 50 2583 #define GEN9_FREQ_SCALER 3 2584 2585 #define HAS_DISPLAY(dev_priv) (INTEL_INFO(dev_priv)->num_pipes > 0) 2586 2587 #include "i915_trace.h" 2588 2589 static inline bool intel_vtd_active(void) 2590 { 2591 #ifdef CONFIG_INTEL_IOMMU 2592 if (intel_iommu_gfx_mapped) 2593 return true; 2594 #endif 2595 return false; 2596 } 2597 2598 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 2599 { 2600 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active(); 2601 } 2602 2603 static inline bool 2604 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv) 2605 { 2606 return IS_BROXTON(dev_priv) && intel_vtd_active(); 2607 } 2608 2609 /* i915_drv.c */ 2610 void __printf(3, 4) 2611 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 2612 const char *fmt, ...); 2613 2614 #define i915_report_error(dev_priv, fmt, ...) \ 2615 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 2616 2617 #ifdef CONFIG_COMPAT 2618 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2619 unsigned long arg); 2620 #else 2621 #define i915_compat_ioctl NULL 2622 #endif 2623 extern const struct dev_pm_ops i915_pm_ops; 2624 2625 extern int i915_driver_load(struct pci_dev *pdev, 2626 const struct pci_device_id *ent); 2627 extern void i915_driver_unload(struct drm_device *dev); 2628 2629 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 2630 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv); 2631 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2632 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2633 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2634 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2635 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2636 2637 int intel_engines_init_mmio(struct drm_i915_private *dev_priv); 2638 int intel_engines_init(struct drm_i915_private *dev_priv); 2639 2640 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv); 2641 2642 /* intel_hotplug.c */ 2643 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, 2644 u32 pin_mask, u32 long_mask); 2645 void intel_hpd_init(struct drm_i915_private *dev_priv); 2646 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 2647 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 2648 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv, 2649 enum port port); 2650 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2651 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2652 2653 /* i915_irq.c */ 2654 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 2655 { 2656 unsigned long delay; 2657 2658 if (unlikely(!i915_modparams.enable_hangcheck)) 2659 return; 2660 2661 /* Don't continually defer the hangcheck so that it is always run at 2662 * least once after work has been scheduled on any ring. Otherwise, 2663 * we will ignore a hung ring if a second ring is kept busy. 2664 */ 2665 2666 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 2667 queue_delayed_work(system_long_wq, 2668 &dev_priv->gpu_error.hangcheck_work, delay); 2669 } 2670 2671 extern void intel_irq_init(struct drm_i915_private *dev_priv); 2672 extern void intel_irq_fini(struct drm_i915_private *dev_priv); 2673 int intel_irq_install(struct drm_i915_private *dev_priv); 2674 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 2675 2676 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 2677 { 2678 return dev_priv->gvt; 2679 } 2680 2681 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 2682 { 2683 return dev_priv->vgpu.active; 2684 } 2685 2686 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 2687 enum pipe pipe); 2688 void 2689 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2690 u32 status_mask); 2691 2692 void 2693 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2694 u32 status_mask); 2695 2696 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 2697 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 2698 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 2699 u32 mask, 2700 u32 bits); 2701 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 2702 u32 interrupt_mask, 2703 u32 enabled_irq_mask); 2704 static inline void 2705 ilk_enable_display_irq(struct drm_i915_private *dev_priv, u32 bits) 2706 { 2707 ilk_update_display_irq(dev_priv, bits, bits); 2708 } 2709 static inline void 2710 ilk_disable_display_irq(struct drm_i915_private *dev_priv, u32 bits) 2711 { 2712 ilk_update_display_irq(dev_priv, bits, 0); 2713 } 2714 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 2715 enum pipe pipe, 2716 u32 interrupt_mask, 2717 u32 enabled_irq_mask); 2718 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 2719 enum pipe pipe, u32 bits) 2720 { 2721 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 2722 } 2723 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 2724 enum pipe pipe, u32 bits) 2725 { 2726 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 2727 } 2728 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 2729 u32 interrupt_mask, 2730 u32 enabled_irq_mask); 2731 static inline void 2732 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, u32 bits) 2733 { 2734 ibx_display_interrupt_update(dev_priv, bits, bits); 2735 } 2736 static inline void 2737 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, u32 bits) 2738 { 2739 ibx_display_interrupt_update(dev_priv, bits, 0); 2740 } 2741 2742 /* i915_gem.c */ 2743 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 2744 struct drm_file *file_priv); 2745 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 2746 struct drm_file *file_priv); 2747 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 2748 struct drm_file *file_priv); 2749 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 2750 struct drm_file *file_priv); 2751 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2752 struct drm_file *file_priv); 2753 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 2754 struct drm_file *file_priv); 2755 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 2756 struct drm_file *file_priv); 2757 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2758 struct drm_file *file_priv); 2759 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 2760 struct drm_file *file_priv); 2761 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 2762 struct drm_file *file_priv); 2763 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 2764 struct drm_file *file); 2765 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 2766 struct drm_file *file); 2767 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 2768 struct drm_file *file_priv); 2769 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 2770 struct drm_file *file_priv); 2771 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, 2772 struct drm_file *file_priv); 2773 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, 2774 struct drm_file *file_priv); 2775 int i915_gem_init_userptr(struct drm_i915_private *dev_priv); 2776 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv); 2777 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 2778 struct drm_file *file); 2779 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 2780 struct drm_file *file_priv); 2781 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 2782 struct drm_file *file_priv); 2783 void i915_gem_sanitize(struct drm_i915_private *i915); 2784 int i915_gem_init_early(struct drm_i915_private *dev_priv); 2785 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv); 2786 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 2787 int i915_gem_freeze(struct drm_i915_private *dev_priv); 2788 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 2789 2790 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv); 2791 void i915_gem_object_free(struct drm_i915_gem_object *obj); 2792 void i915_gem_object_init(struct drm_i915_gem_object *obj, 2793 const struct drm_i915_gem_object_ops *ops); 2794 struct drm_i915_gem_object * 2795 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size); 2796 struct drm_i915_gem_object * 2797 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 2798 const void *data, size_t size); 2799 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); 2800 void i915_gem_free_object(struct drm_gem_object *obj); 2801 2802 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 2803 { 2804 if (!atomic_read(&i915->mm.free_count)) 2805 return; 2806 2807 /* A single pass should suffice to release all the freed objects (along 2808 * most call paths) , but be a little more paranoid in that freeing 2809 * the objects does take a little amount of time, during which the rcu 2810 * callbacks could have added new objects into the freed list, and 2811 * armed the work again. 2812 */ 2813 do { 2814 rcu_barrier(); 2815 } while (flush_work(&i915->mm.free_work)); 2816 } 2817 2818 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915) 2819 { 2820 /* 2821 * Similar to objects above (see i915_gem_drain_freed-objects), in 2822 * general we have workers that are armed by RCU and then rearm 2823 * themselves in their callbacks. To be paranoid, we need to 2824 * drain the workqueue a second time after waiting for the RCU 2825 * grace period so that we catch work queued via RCU from the first 2826 * pass. As neither drain_workqueue() nor flush_workqueue() report 2827 * a result, we make an assumption that we only don't require more 2828 * than 2 passes to catch all recursive RCU delayed work. 2829 * 2830 */ 2831 int pass = 2; 2832 do { 2833 rcu_barrier(); 2834 drain_workqueue(i915->wq); 2835 } while (--pass); 2836 } 2837 2838 struct i915_vma * __must_check 2839 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 2840 const struct i915_ggtt_view *view, 2841 u64 size, 2842 u64 alignment, 2843 u64 flags); 2844 2845 int i915_gem_object_unbind(struct drm_i915_gem_object *obj); 2846 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 2847 2848 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); 2849 2850 static inline int __sg_page_count(const struct scatterlist *sg) 2851 { 2852 return sg->length >> PAGE_SHIFT; 2853 } 2854 2855 struct scatterlist * 2856 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 2857 unsigned int n, unsigned int *offset); 2858 2859 struct page * 2860 i915_gem_object_get_page(struct drm_i915_gem_object *obj, 2861 unsigned int n); 2862 2863 struct page * 2864 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 2865 unsigned int n); 2866 2867 dma_addr_t 2868 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 2869 unsigned long n); 2870 2871 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 2872 struct sg_table *pages, 2873 unsigned int sg_page_sizes); 2874 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 2875 2876 static inline int __must_check 2877 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 2878 { 2879 might_lock(&obj->mm.lock); 2880 2881 if (atomic_inc_not_zero(&obj->mm.pages_pin_count)) 2882 return 0; 2883 2884 return __i915_gem_object_get_pages(obj); 2885 } 2886 2887 static inline bool 2888 i915_gem_object_has_pages(struct drm_i915_gem_object *obj) 2889 { 2890 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages)); 2891 } 2892 2893 static inline void 2894 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 2895 { 2896 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 2897 2898 atomic_inc(&obj->mm.pages_pin_count); 2899 } 2900 2901 static inline bool 2902 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj) 2903 { 2904 return atomic_read(&obj->mm.pages_pin_count); 2905 } 2906 2907 static inline void 2908 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 2909 { 2910 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 2911 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 2912 2913 atomic_dec(&obj->mm.pages_pin_count); 2914 } 2915 2916 static inline void 2917 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 2918 { 2919 __i915_gem_object_unpin_pages(obj); 2920 } 2921 2922 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock/struct_mutex */ 2923 I915_MM_NORMAL = 0, 2924 I915_MM_SHRINKER /* called "recursively" from direct-reclaim-esque */ 2925 }; 2926 2927 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 2928 enum i915_mm_subclass subclass); 2929 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj); 2930 2931 enum i915_map_type { 2932 I915_MAP_WB = 0, 2933 I915_MAP_WC, 2934 #define I915_MAP_OVERRIDE BIT(31) 2935 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE, 2936 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE, 2937 }; 2938 2939 static inline enum i915_map_type 2940 i915_coherent_map_type(struct drm_i915_private *i915) 2941 { 2942 return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC; 2943 } 2944 2945 /** 2946 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 2947 * @obj: the object to map into kernel address space 2948 * @type: the type of mapping, used to select pgprot_t 2949 * 2950 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 2951 * pages and then returns a contiguous mapping of the backing storage into 2952 * the kernel address space. Based on the @type of mapping, the PTE will be 2953 * set to either WriteBack or WriteCombine (via pgprot_t). 2954 * 2955 * The caller is responsible for calling i915_gem_object_unpin_map() when the 2956 * mapping is no longer required. 2957 * 2958 * Returns the pointer through which to access the mapped object, or an 2959 * ERR_PTR() on error. 2960 */ 2961 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 2962 enum i915_map_type type); 2963 2964 /** 2965 * i915_gem_object_unpin_map - releases an earlier mapping 2966 * @obj: the object to unmap 2967 * 2968 * After pinning the object and mapping its pages, once you are finished 2969 * with your access, call i915_gem_object_unpin_map() to release the pin 2970 * upon the mapping. Once the pin count reaches zero, that mapping may be 2971 * removed. 2972 */ 2973 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 2974 { 2975 i915_gem_object_unpin_pages(obj); 2976 } 2977 2978 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 2979 unsigned int *needs_clflush); 2980 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 2981 unsigned int *needs_clflush); 2982 #define CLFLUSH_BEFORE BIT(0) 2983 #define CLFLUSH_AFTER BIT(1) 2984 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER) 2985 2986 static inline void 2987 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj) 2988 { 2989 i915_gem_object_unpin_pages(obj); 2990 } 2991 2992 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 2993 int i915_gem_dumb_create(struct drm_file *file_priv, 2994 struct drm_device *dev, 2995 struct drm_mode_create_dumb *args); 2996 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 2997 u32 handle, u64 *offset); 2998 int i915_gem_mmap_gtt_version(void); 2999 3000 void i915_gem_track_fb(struct drm_i915_gem_object *old, 3001 struct drm_i915_gem_object *new, 3002 unsigned frontbuffer_bits); 3003 3004 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); 3005 3006 struct i915_request * 3007 i915_gem_find_active_request(struct intel_engine_cs *engine); 3008 3009 static inline bool i915_reset_backoff(struct i915_gpu_error *error) 3010 { 3011 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags)); 3012 } 3013 3014 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3015 { 3016 return unlikely(test_bit(I915_WEDGED, &error->flags)); 3017 } 3018 3019 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error) 3020 { 3021 return i915_reset_backoff(error) | i915_terminally_wedged(error); 3022 } 3023 3024 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3025 { 3026 return READ_ONCE(error->reset_count); 3027 } 3028 3029 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error, 3030 struct intel_engine_cs *engine) 3031 { 3032 return READ_ONCE(error->reset_engine_count[engine->id]); 3033 } 3034 3035 void i915_gem_set_wedged(struct drm_i915_private *dev_priv); 3036 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv); 3037 3038 void i915_gem_init_mmio(struct drm_i915_private *i915); 3039 int __must_check i915_gem_init(struct drm_i915_private *dev_priv); 3040 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv); 3041 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv); 3042 void i915_gem_fini(struct drm_i915_private *dev_priv); 3043 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv); 3044 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, 3045 unsigned int flags, long timeout); 3046 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv); 3047 void i915_gem_suspend_late(struct drm_i915_private *dev_priv); 3048 void i915_gem_resume(struct drm_i915_private *dev_priv); 3049 vm_fault_t i915_gem_fault(struct vm_fault *vmf); 3050 int i915_gem_object_wait(struct drm_i915_gem_object *obj, 3051 unsigned int flags, 3052 long timeout, 3053 struct intel_rps_client *rps); 3054 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 3055 unsigned int flags, 3056 const struct i915_sched_attr *attr); 3057 #define I915_PRIORITY_DISPLAY I915_USER_PRIORITY(I915_PRIORITY_MAX) 3058 3059 int __must_check 3060 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write); 3061 int __must_check 3062 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write); 3063 int __must_check 3064 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3065 struct i915_vma * __must_check 3066 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3067 u32 alignment, 3068 const struct i915_ggtt_view *view, 3069 unsigned int flags); 3070 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma); 3071 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3072 int align); 3073 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file); 3074 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3075 3076 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3077 enum i915_cache_level cache_level); 3078 3079 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3080 struct dma_buf *dma_buf); 3081 3082 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3083 struct drm_gem_object *gem_obj, int flags); 3084 3085 static inline struct i915_hw_ppgtt * 3086 i915_vm_to_ppgtt(struct i915_address_space *vm) 3087 { 3088 return container_of(vm, struct i915_hw_ppgtt, vm); 3089 } 3090 3091 /* i915_gem_fence_reg.c */ 3092 struct drm_i915_fence_reg * 3093 i915_reserve_fence(struct drm_i915_private *dev_priv); 3094 void i915_unreserve_fence(struct drm_i915_fence_reg *fence); 3095 3096 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv); 3097 void i915_gem_restore_fences(struct drm_i915_private *dev_priv); 3098 3099 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv); 3100 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 3101 struct sg_table *pages); 3102 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 3103 struct sg_table *pages); 3104 3105 static inline struct i915_gem_context * 3106 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id) 3107 { 3108 return idr_find(&file_priv->context_idr, id); 3109 } 3110 3111 static inline struct i915_gem_context * 3112 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3113 { 3114 struct i915_gem_context *ctx; 3115 3116 rcu_read_lock(); 3117 ctx = __i915_gem_context_lookup_rcu(file_priv, id); 3118 if (ctx && !kref_get_unless_zero(&ctx->ref)) 3119 ctx = NULL; 3120 rcu_read_unlock(); 3121 3122 return ctx; 3123 } 3124 3125 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3126 struct drm_file *file); 3127 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3128 struct drm_file *file); 3129 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3130 struct drm_file *file); 3131 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 3132 struct i915_gem_context *ctx, 3133 u32 *reg_state); 3134 3135 /* i915_gem_evict.c */ 3136 int __must_check i915_gem_evict_something(struct i915_address_space *vm, 3137 u64 min_size, u64 alignment, 3138 unsigned cache_level, 3139 u64 start, u64 end, 3140 unsigned flags); 3141 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, 3142 struct drm_mm_node *node, 3143 unsigned int flags); 3144 int i915_gem_evict_vm(struct i915_address_space *vm); 3145 3146 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv); 3147 3148 /* belongs in i915_gem_gtt.h */ 3149 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3150 { 3151 wmb(); 3152 if (INTEL_GEN(dev_priv) < 6) 3153 intel_gtt_chipset_flush(); 3154 } 3155 3156 /* i915_gem_stolen.c */ 3157 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3158 struct drm_mm_node *node, u64 size, 3159 unsigned alignment); 3160 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3161 struct drm_mm_node *node, u64 size, 3162 unsigned alignment, u64 start, 3163 u64 end); 3164 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3165 struct drm_mm_node *node); 3166 int i915_gem_init_stolen(struct drm_i915_private *dev_priv); 3167 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv); 3168 struct drm_i915_gem_object * 3169 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, 3170 resource_size_t size); 3171 struct drm_i915_gem_object * 3172 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv, 3173 resource_size_t stolen_offset, 3174 resource_size_t gtt_offset, 3175 resource_size_t size); 3176 3177 /* i915_gem_internal.c */ 3178 struct drm_i915_gem_object * 3179 i915_gem_object_create_internal(struct drm_i915_private *dev_priv, 3180 phys_addr_t size); 3181 3182 /* i915_gem_shrinker.c */ 3183 unsigned long i915_gem_shrink(struct drm_i915_private *i915, 3184 unsigned long target, 3185 unsigned long *nr_scanned, 3186 unsigned flags); 3187 #define I915_SHRINK_PURGEABLE 0x1 3188 #define I915_SHRINK_UNBOUND 0x2 3189 #define I915_SHRINK_BOUND 0x4 3190 #define I915_SHRINK_ACTIVE 0x8 3191 #define I915_SHRINK_VMAPS 0x10 3192 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915); 3193 void i915_gem_shrinker_register(struct drm_i915_private *i915); 3194 void i915_gem_shrinker_unregister(struct drm_i915_private *i915); 3195 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 3196 struct mutex *mutex); 3197 3198 /* i915_gem_tiling.c */ 3199 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3200 { 3201 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3202 3203 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3204 i915_gem_object_is_tiled(obj); 3205 } 3206 3207 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, 3208 unsigned int tiling, unsigned int stride); 3209 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, 3210 unsigned int tiling, unsigned int stride); 3211 3212 /* i915_debugfs.c */ 3213 #ifdef CONFIG_DEBUG_FS 3214 int i915_debugfs_register(struct drm_i915_private *dev_priv); 3215 int i915_debugfs_connector_add(struct drm_connector *connector); 3216 void intel_display_crc_init(struct drm_i915_private *dev_priv); 3217 #else 3218 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} 3219 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3220 { return 0; } 3221 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {} 3222 #endif 3223 3224 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3225 3226 /* i915_cmd_parser.c */ 3227 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 3228 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine); 3229 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); 3230 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 3231 struct drm_i915_gem_object *batch_obj, 3232 struct drm_i915_gem_object *shadow_batch_obj, 3233 u32 batch_start_offset, 3234 u32 batch_len, 3235 bool is_master); 3236 3237 /* i915_perf.c */ 3238 extern void i915_perf_init(struct drm_i915_private *dev_priv); 3239 extern void i915_perf_fini(struct drm_i915_private *dev_priv); 3240 extern void i915_perf_register(struct drm_i915_private *dev_priv); 3241 extern void i915_perf_unregister(struct drm_i915_private *dev_priv); 3242 3243 /* i915_suspend.c */ 3244 extern int i915_save_state(struct drm_i915_private *dev_priv); 3245 extern int i915_restore_state(struct drm_i915_private *dev_priv); 3246 3247 /* i915_sysfs.c */ 3248 void i915_setup_sysfs(struct drm_i915_private *dev_priv); 3249 void i915_teardown_sysfs(struct drm_i915_private *dev_priv); 3250 3251 /* intel_lpe_audio.c */ 3252 int intel_lpe_audio_init(struct drm_i915_private *dev_priv); 3253 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv); 3254 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv); 3255 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv, 3256 enum pipe pipe, enum port port, 3257 const void *eld, int ls_clock, bool dp_output); 3258 3259 /* intel_i2c.c */ 3260 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv); 3261 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv); 3262 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3263 unsigned int pin); 3264 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter); 3265 3266 extern struct i2c_adapter * 3267 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3268 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3269 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3270 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3271 { 3272 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3273 } 3274 extern void intel_i2c_reset(struct drm_i915_private *dev_priv); 3275 3276 /* intel_bios.c */ 3277 void intel_bios_init(struct drm_i915_private *dev_priv); 3278 void intel_bios_cleanup(struct drm_i915_private *dev_priv); 3279 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3280 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3281 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3282 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3283 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3284 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3285 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3286 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3287 enum port port); 3288 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv, 3289 enum port port); 3290 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv, enum port port); 3291 3292 /* intel_acpi.c */ 3293 #ifdef CONFIG_ACPI 3294 extern void intel_register_dsm_handler(void); 3295 extern void intel_unregister_dsm_handler(void); 3296 #else 3297 static inline void intel_register_dsm_handler(void) { return; } 3298 static inline void intel_unregister_dsm_handler(void) { return; } 3299 #endif /* CONFIG_ACPI */ 3300 3301 /* intel_device_info.c */ 3302 static inline struct intel_device_info * 3303 mkwrite_device_info(struct drm_i915_private *dev_priv) 3304 { 3305 return (struct intel_device_info *)INTEL_INFO(dev_priv); 3306 } 3307 3308 /* modesetting */ 3309 extern void intel_modeset_init_hw(struct drm_device *dev); 3310 extern int intel_modeset_init(struct drm_device *dev); 3311 extern void intel_modeset_cleanup(struct drm_device *dev); 3312 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, 3313 bool state); 3314 extern void intel_display_resume(struct drm_device *dev); 3315 extern void i915_redisable_vga(struct drm_i915_private *dev_priv); 3316 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv); 3317 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 3318 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv); 3319 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 3320 extern void intel_rps_mark_interactive(struct drm_i915_private *i915, 3321 bool interactive); 3322 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3323 bool enable); 3324 void intel_dsc_enable(struct intel_encoder *encoder, 3325 const struct intel_crtc_state *crtc_state); 3326 void intel_dsc_disable(const struct intel_crtc_state *crtc_state); 3327 3328 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3329 struct drm_file *file); 3330 3331 /* overlay */ 3332 extern struct intel_overlay_error_state * 3333 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); 3334 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3335 struct intel_overlay_error_state *error); 3336 3337 extern struct intel_display_error_state * 3338 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 3339 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3340 struct intel_display_error_state *error); 3341 3342 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3343 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox, 3344 u32 val, int fast_timeout_us, 3345 int slow_timeout_ms); 3346 #define sandybridge_pcode_write(dev_priv, mbox, val) \ 3347 sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0) 3348 3349 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, 3350 u32 reply_mask, u32 reply, int timeout_base_ms); 3351 3352 /* intel_sideband.c */ 3353 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3354 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3355 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3356 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 3357 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 3358 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3359 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3360 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3361 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3362 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3363 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3364 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 3365 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 3366 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3367 enum intel_sbi_destination destination); 3368 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3369 enum intel_sbi_destination destination); 3370 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3371 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3372 3373 /* intel_dpio_phy.c */ 3374 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 3375 enum dpio_phy *phy, enum dpio_channel *ch); 3376 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv, 3377 enum port port, u32 margin, u32 scale, 3378 u32 enable, u32 deemphasis); 3379 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3380 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3381 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 3382 enum dpio_phy phy); 3383 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 3384 enum dpio_phy phy); 3385 u8 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count); 3386 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 3387 u8 lane_lat_optim_mask); 3388 u8 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder); 3389 3390 void chv_set_phy_signal_level(struct intel_encoder *encoder, 3391 u32 deemph_reg_value, u32 margin_reg_value, 3392 bool uniq_trans_scale); 3393 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 3394 const struct intel_crtc_state *crtc_state, 3395 bool reset); 3396 void chv_phy_pre_pll_enable(struct intel_encoder *encoder, 3397 const struct intel_crtc_state *crtc_state); 3398 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3399 const struct intel_crtc_state *crtc_state); 3400 void chv_phy_release_cl2_override(struct intel_encoder *encoder); 3401 void chv_phy_post_pll_disable(struct intel_encoder *encoder, 3402 const struct intel_crtc_state *old_crtc_state); 3403 3404 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 3405 u32 demph_reg_value, u32 preemph_reg_value, 3406 u32 uniqtranscale_reg_value, u32 tx3_demph); 3407 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, 3408 const struct intel_crtc_state *crtc_state); 3409 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3410 const struct intel_crtc_state *crtc_state); 3411 void vlv_phy_reset_lanes(struct intel_encoder *encoder, 3412 const struct intel_crtc_state *old_crtc_state); 3413 3414 /* intel_combo_phy.c */ 3415 void icl_combo_phys_init(struct drm_i915_private *dev_priv); 3416 void icl_combo_phys_uninit(struct drm_i915_private *dev_priv); 3417 void cnl_combo_phys_init(struct drm_i915_private *dev_priv); 3418 void cnl_combo_phys_uninit(struct drm_i915_private *dev_priv); 3419 3420 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3421 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3422 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv, 3423 const i915_reg_t reg); 3424 3425 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1); 3426 3427 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv, 3428 const i915_reg_t reg) 3429 { 3430 return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000); 3431 } 3432 3433 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 3434 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 3435 3436 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 3437 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 3438 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 3439 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 3440 3441 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 3442 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 3443 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 3444 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 3445 3446 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3447 * will be implemented using 2 32-bit writes in an arbitrary order with 3448 * an arbitrary delay between them. This can cause the hardware to 3449 * act upon the intermediate value, possibly leading to corruption and 3450 * machine death. For this reason we do not support I915_WRITE64, or 3451 * dev_priv->uncore.funcs.mmio_writeq. 3452 * 3453 * When reading a 64-bit value as two 32-bit values, the delay may cause 3454 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that 3455 * occasionally a 64-bit register does not actualy support a full readq 3456 * and must be read using two 32-bit reads. 3457 * 3458 * You have been warned. 3459 */ 3460 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 3461 3462 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 3463 u32 upper, lower, old_upper, loop = 0; \ 3464 upper = I915_READ(upper_reg); \ 3465 do { \ 3466 old_upper = upper; \ 3467 lower = I915_READ(lower_reg); \ 3468 upper = I915_READ(upper_reg); \ 3469 } while (upper != old_upper && loop++ < 2); \ 3470 (u64)upper << 32 | lower; }) 3471 3472 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 3473 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 3474 3475 #define __raw_read(x, s) \ 3476 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \ 3477 i915_reg_t reg) \ 3478 { \ 3479 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3480 } 3481 3482 #define __raw_write(x, s) \ 3483 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \ 3484 i915_reg_t reg, uint##x##_t val) \ 3485 { \ 3486 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3487 } 3488 __raw_read(8, b) 3489 __raw_read(16, w) 3490 __raw_read(32, l) 3491 __raw_read(64, q) 3492 3493 __raw_write(8, b) 3494 __raw_write(16, w) 3495 __raw_write(32, l) 3496 __raw_write(64, q) 3497 3498 #undef __raw_read 3499 #undef __raw_write 3500 3501 /* These are untraced mmio-accessors that are only valid to be used inside 3502 * critical sections, such as inside IRQ handlers, where forcewake is explicitly 3503 * controlled. 3504 * 3505 * Think twice, and think again, before using these. 3506 * 3507 * As an example, these accessors can possibly be used between: 3508 * 3509 * spin_lock_irq(&dev_priv->uncore.lock); 3510 * intel_uncore_forcewake_get__locked(); 3511 * 3512 * and 3513 * 3514 * intel_uncore_forcewake_put__locked(); 3515 * spin_unlock_irq(&dev_priv->uncore.lock); 3516 * 3517 * 3518 * Note: some registers may not need forcewake held, so 3519 * intel_uncore_forcewake_{get,put} can be omitted, see 3520 * intel_uncore_forcewake_for_reg(). 3521 * 3522 * Certain architectures will die if the same cacheline is concurrently accessed 3523 * by different clients (e.g. on Ivybridge). Access to registers should 3524 * therefore generally be serialised, by either the dev_priv->uncore.lock or 3525 * a more localised lock guarding all access to that bank of registers. 3526 */ 3527 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 3528 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 3529 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) 3530 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 3531 3532 /* "Broadcast RGB" property */ 3533 #define INTEL_BROADCAST_RGB_AUTO 0 3534 #define INTEL_BROADCAST_RGB_FULL 1 3535 #define INTEL_BROADCAST_RGB_LIMITED 2 3536 3537 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) 3538 { 3539 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3540 return VLV_VGACNTRL; 3541 else if (INTEL_GEN(dev_priv) >= 5) 3542 return CPU_VGACNTRL; 3543 else 3544 return VGACNTRL; 3545 } 3546 3547 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 3548 { 3549 unsigned long j = msecs_to_jiffies(m); 3550 3551 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3552 } 3553 3554 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 3555 { 3556 /* nsecs_to_jiffies64() does not guard against overflow */ 3557 if (NSEC_PER_SEC % HZ && 3558 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ) 3559 return MAX_JIFFY_OFFSET; 3560 3561 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 3562 } 3563 3564 /* 3565 * If you need to wait X milliseconds between events A and B, but event B 3566 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 3567 * when event A happened, then just before event B you call this function and 3568 * pass the timestamp as the first argument, and X as the second argument. 3569 */ 3570 static inline void 3571 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 3572 { 3573 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 3574 3575 /* 3576 * Don't re-read the value of "jiffies" every time since it may change 3577 * behind our back and break the math. 3578 */ 3579 tmp_jiffies = jiffies; 3580 target_jiffies = timestamp_jiffies + 3581 msecs_to_jiffies_timeout(to_wait_ms); 3582 3583 if (time_after(target_jiffies, tmp_jiffies)) { 3584 remaining_jiffies = target_jiffies - tmp_jiffies; 3585 while (remaining_jiffies) 3586 remaining_jiffies = 3587 schedule_timeout_uninterruptible(remaining_jiffies); 3588 } 3589 } 3590 3591 void i915_memcpy_init_early(struct drm_i915_private *dev_priv); 3592 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len); 3593 3594 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment, 3595 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot 3596 * perform the operation. To check beforehand, pass in the parameters to 3597 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits, 3598 * you only need to pass in the minor offsets, page-aligned pointers are 3599 * always valid. 3600 * 3601 * For just checking for SSE4.1, in the foreknowledge that the future use 3602 * will be correctly aligned, just use i915_has_memcpy_from_wc(). 3603 */ 3604 #define i915_can_memcpy_from_wc(dst, src, len) \ 3605 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0) 3606 3607 #define i915_has_memcpy_from_wc() \ 3608 i915_memcpy_from_wc(NULL, NULL, 0) 3609 3610 /* i915_mm.c */ 3611 int remap_io_mapping(struct vm_area_struct *vma, 3612 unsigned long addr, unsigned long pfn, unsigned long size, 3613 struct io_mapping *iomap); 3614 3615 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915) 3616 { 3617 if (INTEL_GEN(i915) >= 10) 3618 return CNL_HWS_CSB_WRITE_INDEX; 3619 else 3620 return I915_HWS_CSB_WRITE_INDEX; 3621 } 3622 3623 static inline u32 i915_scratch_offset(const struct drm_i915_private *i915) 3624 { 3625 return i915_ggtt_offset(i915->gt.scratch); 3626 } 3627 3628 #endif 3629