xref: /openbmc/linux/drivers/gpu/drm/i915/i915_drv.h (revision 8a2fe6c0)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/mm_types.h>
44 #include <linux/perf_event.h>
45 #include <linux/pm_qos.h>
46 #include <linux/reservation.h>
47 #include <linux/shmem_fs.h>
48 #include <linux/stackdepot.h>
49 
50 #include <drm/intel-gtt.h>
51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
52 #include <drm/drm_gem.h>
53 #include <drm/drm_auth.h>
54 #include <drm/drm_cache.h>
55 #include <drm/drm_util.h>
56 #include <drm/drm_dsc.h>
57 #include <drm/drm_connector.h>
58 
59 #include "i915_fixed.h"
60 #include "i915_params.h"
61 #include "i915_reg.h"
62 #include "i915_utils.h"
63 
64 #include "intel_bios.h"
65 #include "intel_device_info.h"
66 #include "intel_display.h"
67 #include "intel_dpll_mgr.h"
68 #include "intel_lrc.h"
69 #include "intel_opregion.h"
70 #include "intel_ringbuffer.h"
71 #include "intel_uncore.h"
72 #include "intel_wopcm.h"
73 #include "intel_workarounds.h"
74 #include "intel_uc.h"
75 
76 #include "i915_gem.h"
77 #include "i915_gem_context.h"
78 #include "i915_gem_fence_reg.h"
79 #include "i915_gem_object.h"
80 #include "i915_gem_gtt.h"
81 #include "i915_gpu_error.h"
82 #include "i915_request.h"
83 #include "i915_scheduler.h"
84 #include "i915_timeline.h"
85 #include "i915_vma.h"
86 
87 #include "intel_gvt.h"
88 
89 /* General customization:
90  */
91 
92 #define DRIVER_NAME		"i915"
93 #define DRIVER_DESC		"Intel Graphics"
94 #define DRIVER_DATE		"20190202"
95 #define DRIVER_TIMESTAMP	1549095268
96 
97 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
98  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
99  * which may not necessarily be a user visible problem.  This will either
100  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
101  * enable distros and users to tailor their preferred amount of i915 abrt
102  * spam.
103  */
104 #define I915_STATE_WARN(condition, format...) ({			\
105 	int __ret_warn_on = !!(condition);				\
106 	if (unlikely(__ret_warn_on))					\
107 		if (!WARN(i915_modparams.verbose_state_checks, format))	\
108 			DRM_ERROR(format);				\
109 	unlikely(__ret_warn_on);					\
110 })
111 
112 #define I915_STATE_WARN_ON(x)						\
113 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
114 
115 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
116 
117 bool __i915_inject_load_failure(const char *func, int line);
118 #define i915_inject_load_failure() \
119 	__i915_inject_load_failure(__func__, __LINE__)
120 
121 bool i915_error_injected(void);
122 
123 #else
124 
125 #define i915_inject_load_failure() false
126 #define i915_error_injected() false
127 
128 #endif
129 
130 #define i915_load_error(i915, fmt, ...)					 \
131 	__i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
132 		      fmt, ##__VA_ARGS__)
133 
134 typedef depot_stack_handle_t intel_wakeref_t;
135 
136 enum hpd_pin {
137 	HPD_NONE = 0,
138 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
139 	HPD_CRT,
140 	HPD_SDVO_B,
141 	HPD_SDVO_C,
142 	HPD_PORT_A,
143 	HPD_PORT_B,
144 	HPD_PORT_C,
145 	HPD_PORT_D,
146 	HPD_PORT_E,
147 	HPD_PORT_F,
148 	HPD_NUM_PINS
149 };
150 
151 #define for_each_hpd_pin(__pin) \
152 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
153 
154 /* Threshold == 5 for long IRQs, 50 for short */
155 #define HPD_STORM_DEFAULT_THRESHOLD 50
156 
157 struct i915_hotplug {
158 	struct work_struct hotplug_work;
159 
160 	struct {
161 		unsigned long last_jiffies;
162 		int count;
163 		enum {
164 			HPD_ENABLED = 0,
165 			HPD_DISABLED = 1,
166 			HPD_MARK_DISABLED = 2
167 		} state;
168 	} stats[HPD_NUM_PINS];
169 	u32 event_bits;
170 	struct delayed_work reenable_work;
171 
172 	u32 long_port_mask;
173 	u32 short_port_mask;
174 	struct work_struct dig_port_work;
175 
176 	struct work_struct poll_init_work;
177 	bool poll_enabled;
178 
179 	unsigned int hpd_storm_threshold;
180 	/* Whether or not to count short HPD IRQs in HPD storms */
181 	u8 hpd_short_storm_enabled;
182 
183 	/*
184 	 * if we get a HPD irq from DP and a HPD irq from non-DP
185 	 * the non-DP HPD could block the workqueue on a mode config
186 	 * mutex getting, that userspace may have taken. However
187 	 * userspace is waiting on the DP workqueue to run which is
188 	 * blocked behind the non-DP one.
189 	 */
190 	struct workqueue_struct *dp_wq;
191 };
192 
193 #define I915_GEM_GPU_DOMAINS \
194 	(I915_GEM_DOMAIN_RENDER | \
195 	 I915_GEM_DOMAIN_SAMPLER | \
196 	 I915_GEM_DOMAIN_COMMAND | \
197 	 I915_GEM_DOMAIN_INSTRUCTION | \
198 	 I915_GEM_DOMAIN_VERTEX)
199 
200 struct drm_i915_private;
201 struct i915_mm_struct;
202 struct i915_mmu_object;
203 
204 struct drm_i915_file_private {
205 	struct drm_i915_private *dev_priv;
206 	struct drm_file *file;
207 
208 	struct {
209 		spinlock_t lock;
210 		struct list_head request_list;
211 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
212  * chosen to prevent the CPU getting more than a frame ahead of the GPU
213  * (when using lax throttling for the frontbuffer). We also use it to
214  * offer free GPU waitboosts for severely congested workloads.
215  */
216 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
217 	} mm;
218 	struct idr context_idr;
219 
220 	struct intel_rps_client {
221 		atomic_t boosts;
222 	} rps_client;
223 
224 	unsigned int bsd_engine;
225 
226 /*
227  * Every context ban increments per client ban score. Also
228  * hangs in short succession increments ban score. If ban threshold
229  * is reached, client is considered banned and submitting more work
230  * will fail. This is a stop gap measure to limit the badly behaving
231  * clients access to gpu. Note that unbannable contexts never increment
232  * the client ban score.
233  */
234 #define I915_CLIENT_SCORE_HANG_FAST	1
235 #define   I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ)
236 #define I915_CLIENT_SCORE_CONTEXT_BAN   3
237 #define I915_CLIENT_SCORE_BANNED	9
238 	/** ban_score: Accumulated score of all ctx bans and fast hangs. */
239 	atomic_t ban_score;
240 	unsigned long hang_timestamp;
241 };
242 
243 /* Interface history:
244  *
245  * 1.1: Original.
246  * 1.2: Add Power Management
247  * 1.3: Add vblank support
248  * 1.4: Fix cmdbuffer path, add heap destroy
249  * 1.5: Add vblank pipe configuration
250  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
251  *      - Support vertical blank on secondary display pipe
252  */
253 #define DRIVER_MAJOR		1
254 #define DRIVER_MINOR		6
255 #define DRIVER_PATCHLEVEL	0
256 
257 struct intel_overlay;
258 struct intel_overlay_error_state;
259 
260 struct sdvo_device_mapping {
261 	u8 initialized;
262 	u8 dvo_port;
263 	u8 slave_addr;
264 	u8 dvo_wiring;
265 	u8 i2c_pin;
266 	u8 ddc_pin;
267 };
268 
269 struct intel_connector;
270 struct intel_encoder;
271 struct intel_atomic_state;
272 struct intel_crtc_state;
273 struct intel_initial_plane_config;
274 struct intel_crtc;
275 struct intel_limit;
276 struct dpll;
277 struct intel_cdclk_state;
278 
279 struct drm_i915_display_funcs {
280 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
281 			  struct intel_cdclk_state *cdclk_state);
282 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
283 			  const struct intel_cdclk_state *cdclk_state);
284 	int (*get_fifo_size)(struct drm_i915_private *dev_priv,
285 			     enum i9xx_plane_id i9xx_plane);
286 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
287 	int (*compute_intermediate_wm)(struct intel_crtc_state *newstate);
288 	void (*initial_watermarks)(struct intel_atomic_state *state,
289 				   struct intel_crtc_state *cstate);
290 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
291 					 struct intel_crtc_state *cstate);
292 	void (*optimize_watermarks)(struct intel_atomic_state *state,
293 				    struct intel_crtc_state *cstate);
294 	int (*compute_global_watermarks)(struct intel_atomic_state *state);
295 	void (*update_wm)(struct intel_crtc *crtc);
296 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
297 	/* Returns the active state of the crtc, and if the crtc is active,
298 	 * fills out the pipe-config with the hw state. */
299 	bool (*get_pipe_config)(struct intel_crtc *,
300 				struct intel_crtc_state *);
301 	void (*get_initial_plane_config)(struct intel_crtc *,
302 					 struct intel_initial_plane_config *);
303 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
304 				  struct intel_crtc_state *crtc_state);
305 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
306 			    struct drm_atomic_state *old_state);
307 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
308 			     struct drm_atomic_state *old_state);
309 	void (*update_crtcs)(struct drm_atomic_state *state);
310 	void (*audio_codec_enable)(struct intel_encoder *encoder,
311 				   const struct intel_crtc_state *crtc_state,
312 				   const struct drm_connector_state *conn_state);
313 	void (*audio_codec_disable)(struct intel_encoder *encoder,
314 				    const struct intel_crtc_state *old_crtc_state,
315 				    const struct drm_connector_state *old_conn_state);
316 	void (*fdi_link_train)(struct intel_crtc *crtc,
317 			       const struct intel_crtc_state *crtc_state);
318 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
319 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
320 	/* clock updates for mode set */
321 	/* cursor updates */
322 	/* render clock increase/decrease */
323 	/* display clock increase/decrease */
324 	/* pll clock increase/decrease */
325 
326 	void (*load_csc_matrix)(struct intel_crtc_state *crtc_state);
327 	void (*load_luts)(struct intel_crtc_state *crtc_state);
328 };
329 
330 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
331 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
332 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
333 
334 struct intel_csr {
335 	struct work_struct work;
336 	const char *fw_path;
337 	u32 required_version;
338 	u32 max_fw_size; /* bytes */
339 	u32 *dmc_payload;
340 	u32 dmc_fw_size; /* dwords */
341 	u32 version;
342 	u32 mmio_count;
343 	i915_reg_t mmioaddr[8];
344 	u32 mmiodata[8];
345 	u32 dc_state;
346 	u32 allowed_dc_mask;
347 	intel_wakeref_t wakeref;
348 };
349 
350 enum i915_cache_level {
351 	I915_CACHE_NONE = 0,
352 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
353 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
354 			      caches, eg sampler/render caches, and the
355 			      large Last-Level-Cache. LLC is coherent with
356 			      the CPU, but L3 is only visible to the GPU. */
357 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
358 };
359 
360 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
361 
362 enum fb_op_origin {
363 	ORIGIN_GTT,
364 	ORIGIN_CPU,
365 	ORIGIN_CS,
366 	ORIGIN_FLIP,
367 	ORIGIN_DIRTYFB,
368 };
369 
370 struct intel_fbc {
371 	/* This is always the inner lock when overlapping with struct_mutex and
372 	 * it's the outer lock when overlapping with stolen_lock. */
373 	struct mutex lock;
374 	unsigned threshold;
375 	unsigned int possible_framebuffer_bits;
376 	unsigned int busy_bits;
377 	unsigned int visible_pipes_mask;
378 	struct intel_crtc *crtc;
379 
380 	struct drm_mm_node compressed_fb;
381 	struct drm_mm_node *compressed_llb;
382 
383 	bool false_color;
384 
385 	bool enabled;
386 	bool active;
387 	bool flip_pending;
388 
389 	bool underrun_detected;
390 	struct work_struct underrun_work;
391 
392 	/*
393 	 * Due to the atomic rules we can't access some structures without the
394 	 * appropriate locking, so we cache information here in order to avoid
395 	 * these problems.
396 	 */
397 	struct intel_fbc_state_cache {
398 		struct i915_vma *vma;
399 		unsigned long flags;
400 
401 		struct {
402 			unsigned int mode_flags;
403 			u32 hsw_bdw_pixel_rate;
404 		} crtc;
405 
406 		struct {
407 			unsigned int rotation;
408 			int src_w;
409 			int src_h;
410 			bool visible;
411 			/*
412 			 * Display surface base address adjustement for
413 			 * pageflips. Note that on gen4+ this only adjusts up
414 			 * to a tile, offsets within a tile are handled in
415 			 * the hw itself (with the TILEOFF register).
416 			 */
417 			int adjusted_x;
418 			int adjusted_y;
419 
420 			int y;
421 
422 			u16 pixel_blend_mode;
423 		} plane;
424 
425 		struct {
426 			const struct drm_format_info *format;
427 			unsigned int stride;
428 		} fb;
429 	} state_cache;
430 
431 	/*
432 	 * This structure contains everything that's relevant to program the
433 	 * hardware registers. When we want to figure out if we need to disable
434 	 * and re-enable FBC for a new configuration we just check if there's
435 	 * something different in the struct. The genx_fbc_activate functions
436 	 * are supposed to read from it in order to program the registers.
437 	 */
438 	struct intel_fbc_reg_params {
439 		struct i915_vma *vma;
440 		unsigned long flags;
441 
442 		struct {
443 			enum pipe pipe;
444 			enum i9xx_plane_id i9xx_plane;
445 			unsigned int fence_y_offset;
446 		} crtc;
447 
448 		struct {
449 			const struct drm_format_info *format;
450 			unsigned int stride;
451 		} fb;
452 
453 		int cfb_size;
454 		unsigned int gen9_wa_cfb_stride;
455 	} params;
456 
457 	const char *no_fbc_reason;
458 };
459 
460 /*
461  * HIGH_RR is the highest eDP panel refresh rate read from EDID
462  * LOW_RR is the lowest eDP panel refresh rate found from EDID
463  * parsing for same resolution.
464  */
465 enum drrs_refresh_rate_type {
466 	DRRS_HIGH_RR,
467 	DRRS_LOW_RR,
468 	DRRS_MAX_RR, /* RR count */
469 };
470 
471 enum drrs_support_type {
472 	DRRS_NOT_SUPPORTED = 0,
473 	STATIC_DRRS_SUPPORT = 1,
474 	SEAMLESS_DRRS_SUPPORT = 2
475 };
476 
477 struct intel_dp;
478 struct i915_drrs {
479 	struct mutex mutex;
480 	struct delayed_work work;
481 	struct intel_dp *dp;
482 	unsigned busy_frontbuffer_bits;
483 	enum drrs_refresh_rate_type refresh_rate_type;
484 	enum drrs_support_type type;
485 };
486 
487 struct i915_psr {
488 	struct mutex lock;
489 
490 #define I915_PSR_DEBUG_MODE_MASK	0x0f
491 #define I915_PSR_DEBUG_DEFAULT		0x00
492 #define I915_PSR_DEBUG_DISABLE		0x01
493 #define I915_PSR_DEBUG_ENABLE		0x02
494 #define I915_PSR_DEBUG_FORCE_PSR1	0x03
495 #define I915_PSR_DEBUG_IRQ		0x10
496 
497 	u32 debug;
498 	bool sink_support;
499 	bool prepared, enabled;
500 	struct intel_dp *dp;
501 	enum pipe pipe;
502 	bool active;
503 	struct work_struct work;
504 	unsigned busy_frontbuffer_bits;
505 	bool sink_psr2_support;
506 	bool link_standby;
507 	bool colorimetry_support;
508 	bool psr2_enabled;
509 	u8 sink_sync_latency;
510 	ktime_t last_entry_attempt;
511 	ktime_t last_exit;
512 	bool sink_not_reliable;
513 	bool irq_aux_error;
514 	u16 su_x_granularity;
515 };
516 
517 enum intel_pch {
518 	PCH_NONE = 0,	/* No PCH present */
519 	PCH_IBX,	/* Ibexpeak PCH */
520 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
521 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
522 	PCH_SPT,        /* Sunrisepoint PCH */
523 	PCH_KBP,        /* Kaby Lake PCH */
524 	PCH_CNP,        /* Cannon Lake PCH */
525 	PCH_ICP,	/* Ice Lake PCH */
526 	PCH_NOP,	/* PCH without south display */
527 };
528 
529 enum intel_sbi_destination {
530 	SBI_ICLK,
531 	SBI_MPHY,
532 };
533 
534 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
535 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
536 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
537 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
538 #define QUIRK_INCREASE_T12_DELAY (1<<6)
539 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7)
540 
541 struct intel_fbdev;
542 struct intel_fbc_work;
543 
544 struct intel_gmbus {
545 	struct i2c_adapter adapter;
546 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
547 	u32 force_bit;
548 	u32 reg0;
549 	i915_reg_t gpio_reg;
550 	struct i2c_algo_bit_data bit_algo;
551 	struct drm_i915_private *dev_priv;
552 };
553 
554 struct i915_suspend_saved_registers {
555 	u32 saveDSPARB;
556 	u32 saveFBC_CONTROL;
557 	u32 saveCACHE_MODE_0;
558 	u32 saveMI_ARB_STATE;
559 	u32 saveSWF0[16];
560 	u32 saveSWF1[16];
561 	u32 saveSWF3[3];
562 	u64 saveFENCE[I915_MAX_NUM_FENCES];
563 	u32 savePCH_PORT_HOTPLUG;
564 	u16 saveGCDGMBUS;
565 };
566 
567 struct vlv_s0ix_state {
568 	/* GAM */
569 	u32 wr_watermark;
570 	u32 gfx_prio_ctrl;
571 	u32 arb_mode;
572 	u32 gfx_pend_tlb0;
573 	u32 gfx_pend_tlb1;
574 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
575 	u32 media_max_req_count;
576 	u32 gfx_max_req_count;
577 	u32 render_hwsp;
578 	u32 ecochk;
579 	u32 bsd_hwsp;
580 	u32 blt_hwsp;
581 	u32 tlb_rd_addr;
582 
583 	/* MBC */
584 	u32 g3dctl;
585 	u32 gsckgctl;
586 	u32 mbctl;
587 
588 	/* GCP */
589 	u32 ucgctl1;
590 	u32 ucgctl3;
591 	u32 rcgctl1;
592 	u32 rcgctl2;
593 	u32 rstctl;
594 	u32 misccpctl;
595 
596 	/* GPM */
597 	u32 gfxpause;
598 	u32 rpdeuhwtc;
599 	u32 rpdeuc;
600 	u32 ecobus;
601 	u32 pwrdwnupctl;
602 	u32 rp_down_timeout;
603 	u32 rp_deucsw;
604 	u32 rcubmabdtmr;
605 	u32 rcedata;
606 	u32 spare2gh;
607 
608 	/* Display 1 CZ domain */
609 	u32 gt_imr;
610 	u32 gt_ier;
611 	u32 pm_imr;
612 	u32 pm_ier;
613 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
614 
615 	/* GT SA CZ domain */
616 	u32 tilectl;
617 	u32 gt_fifoctl;
618 	u32 gtlc_wake_ctrl;
619 	u32 gtlc_survive;
620 	u32 pmwgicz;
621 
622 	/* Display 2 CZ domain */
623 	u32 gu_ctl0;
624 	u32 gu_ctl1;
625 	u32 pcbr;
626 	u32 clock_gate_dis2;
627 };
628 
629 struct intel_rps_ei {
630 	ktime_t ktime;
631 	u32 render_c0;
632 	u32 media_c0;
633 };
634 
635 struct intel_rps {
636 	/*
637 	 * work, interrupts_enabled and pm_iir are protected by
638 	 * dev_priv->irq_lock
639 	 */
640 	struct work_struct work;
641 	bool interrupts_enabled;
642 	u32 pm_iir;
643 
644 	/* PM interrupt bits that should never be masked */
645 	u32 pm_intrmsk_mbz;
646 
647 	/* Frequencies are stored in potentially platform dependent multiples.
648 	 * In other words, *_freq needs to be multiplied by X to be interesting.
649 	 * Soft limits are those which are used for the dynamic reclocking done
650 	 * by the driver (raise frequencies under heavy loads, and lower for
651 	 * lighter loads). Hard limits are those imposed by the hardware.
652 	 *
653 	 * A distinction is made for overclocking, which is never enabled by
654 	 * default, and is considered to be above the hard limit if it's
655 	 * possible at all.
656 	 */
657 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
658 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
659 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
660 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
661 	u8 min_freq;		/* AKA RPn. Minimum frequency */
662 	u8 boost_freq;		/* Frequency to request when wait boosting */
663 	u8 idle_freq;		/* Frequency to request when we are idle */
664 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
665 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
666 	u8 rp0_freq;		/* Non-overclocked max frequency. */
667 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
668 
669 	int last_adj;
670 
671 	struct {
672 		struct mutex mutex;
673 
674 		enum { LOW_POWER, BETWEEN, HIGH_POWER } mode;
675 		unsigned int interactive;
676 
677 		u8 up_threshold; /* Current %busy required to uplock */
678 		u8 down_threshold; /* Current %busy required to downclock */
679 	} power;
680 
681 	bool enabled;
682 	atomic_t num_waiters;
683 	atomic_t boosts;
684 
685 	/* manual wa residency calculations */
686 	struct intel_rps_ei ei;
687 };
688 
689 struct intel_rc6 {
690 	bool enabled;
691 	u64 prev_hw_residency[4];
692 	u64 cur_residency[4];
693 };
694 
695 struct intel_llc_pstate {
696 	bool enabled;
697 };
698 
699 struct intel_gen6_power_mgmt {
700 	struct intel_rps rps;
701 	struct intel_rc6 rc6;
702 	struct intel_llc_pstate llc_pstate;
703 };
704 
705 /* defined intel_pm.c */
706 extern spinlock_t mchdev_lock;
707 
708 struct intel_ilk_power_mgmt {
709 	u8 cur_delay;
710 	u8 min_delay;
711 	u8 max_delay;
712 	u8 fmax;
713 	u8 fstart;
714 
715 	u64 last_count1;
716 	unsigned long last_time1;
717 	unsigned long chipset_power;
718 	u64 last_count2;
719 	u64 last_time2;
720 	unsigned long gfx_power;
721 	u8 corr;
722 
723 	int c_m;
724 	int r_t;
725 };
726 
727 struct drm_i915_private;
728 struct i915_power_well;
729 
730 struct i915_power_well_ops {
731 	/*
732 	 * Synchronize the well's hw state to match the current sw state, for
733 	 * example enable/disable it based on the current refcount. Called
734 	 * during driver init and resume time, possibly after first calling
735 	 * the enable/disable handlers.
736 	 */
737 	void (*sync_hw)(struct drm_i915_private *dev_priv,
738 			struct i915_power_well *power_well);
739 	/*
740 	 * Enable the well and resources that depend on it (for example
741 	 * interrupts located on the well). Called after the 0->1 refcount
742 	 * transition.
743 	 */
744 	void (*enable)(struct drm_i915_private *dev_priv,
745 		       struct i915_power_well *power_well);
746 	/*
747 	 * Disable the well and resources that depend on it. Called after
748 	 * the 1->0 refcount transition.
749 	 */
750 	void (*disable)(struct drm_i915_private *dev_priv,
751 			struct i915_power_well *power_well);
752 	/* Returns the hw enabled state. */
753 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
754 			   struct i915_power_well *power_well);
755 };
756 
757 struct i915_power_well_regs {
758 	i915_reg_t bios;
759 	i915_reg_t driver;
760 	i915_reg_t kvmr;
761 	i915_reg_t debug;
762 };
763 
764 /* Power well structure for haswell */
765 struct i915_power_well_desc {
766 	const char *name;
767 	bool always_on;
768 	u64 domains;
769 	/* unique identifier for this power well */
770 	enum i915_power_well_id id;
771 	/*
772 	 * Arbitraty data associated with this power well. Platform and power
773 	 * well specific.
774 	 */
775 	union {
776 		struct {
777 			/*
778 			 * request/status flag index in the PUNIT power well
779 			 * control/status registers.
780 			 */
781 			u8 idx;
782 		} vlv;
783 		struct {
784 			enum dpio_phy phy;
785 		} bxt;
786 		struct {
787 			const struct i915_power_well_regs *regs;
788 			/*
789 			 * request/status flag index in the power well
790 			 * constrol/status registers.
791 			 */
792 			u8 idx;
793 			/* Mask of pipes whose IRQ logic is backed by the pw */
794 			u8 irq_pipe_mask;
795 			/* The pw is backing the VGA functionality */
796 			bool has_vga:1;
797 			bool has_fuses:1;
798 			/*
799 			 * The pw is for an ICL+ TypeC PHY port in
800 			 * Thunderbolt mode.
801 			 */
802 			bool is_tc_tbt:1;
803 		} hsw;
804 	};
805 	const struct i915_power_well_ops *ops;
806 };
807 
808 struct i915_power_well {
809 	const struct i915_power_well_desc *desc;
810 	/* power well enable/disable usage count */
811 	int count;
812 	/* cached hw enabled state */
813 	bool hw_enabled;
814 };
815 
816 struct i915_power_domains {
817 	/*
818 	 * Power wells needed for initialization at driver init and suspend
819 	 * time are on. They are kept on until after the first modeset.
820 	 */
821 	bool initializing;
822 	bool display_core_suspended;
823 	int power_well_count;
824 
825 	intel_wakeref_t wakeref;
826 
827 	struct mutex lock;
828 	int domain_use_count[POWER_DOMAIN_NUM];
829 	struct i915_power_well *power_wells;
830 };
831 
832 #define MAX_L3_SLICES 2
833 struct intel_l3_parity {
834 	u32 *remap_info[MAX_L3_SLICES];
835 	struct work_struct error_work;
836 	int which_slice;
837 };
838 
839 struct i915_gem_mm {
840 	/** Memory allocator for GTT stolen memory */
841 	struct drm_mm stolen;
842 	/** Protects the usage of the GTT stolen memory allocator. This is
843 	 * always the inner lock when overlapping with struct_mutex. */
844 	struct mutex stolen_lock;
845 
846 	/* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
847 	spinlock_t obj_lock;
848 
849 	/** List of all objects in gtt_space. Used to restore gtt
850 	 * mappings on resume */
851 	struct list_head bound_list;
852 	/**
853 	 * List of objects which are not bound to the GTT (thus
854 	 * are idle and not used by the GPU). These objects may or may
855 	 * not actually have any pages attached.
856 	 */
857 	struct list_head unbound_list;
858 
859 	/** List of all objects in gtt_space, currently mmaped by userspace.
860 	 * All objects within this list must also be on bound_list.
861 	 */
862 	struct list_head userfault_list;
863 
864 	/**
865 	 * List of objects which are pending destruction.
866 	 */
867 	struct llist_head free_list;
868 	struct work_struct free_work;
869 	spinlock_t free_lock;
870 	/**
871 	 * Count of objects pending destructions. Used to skip needlessly
872 	 * waiting on an RCU barrier if no objects are waiting to be freed.
873 	 */
874 	atomic_t free_count;
875 
876 	/**
877 	 * Small stash of WC pages
878 	 */
879 	struct pagestash wc_stash;
880 
881 	/**
882 	 * tmpfs instance used for shmem backed objects
883 	 */
884 	struct vfsmount *gemfs;
885 
886 	/** PPGTT used for aliasing the PPGTT with the GTT */
887 	struct i915_hw_ppgtt *aliasing_ppgtt;
888 
889 	struct notifier_block oom_notifier;
890 	struct notifier_block vmap_notifier;
891 	struct shrinker shrinker;
892 
893 	/** LRU list of objects with fence regs on them. */
894 	struct list_head fence_list;
895 
896 	/**
897 	 * Workqueue to fault in userptr pages, flushed by the execbuf
898 	 * when required but otherwise left to userspace to try again
899 	 * on EAGAIN.
900 	 */
901 	struct workqueue_struct *userptr_wq;
902 
903 	u64 unordered_timeline;
904 
905 	/* the indicator for dispatch video commands on two BSD rings */
906 	atomic_t bsd_engine_dispatch_index;
907 
908 	/** Bit 6 swizzling required for X tiling */
909 	u32 bit_6_swizzle_x;
910 	/** Bit 6 swizzling required for Y tiling */
911 	u32 bit_6_swizzle_y;
912 
913 	/* accounting, useful for userland debugging */
914 	spinlock_t object_stat_lock;
915 	u64 object_memory;
916 	u32 object_count;
917 };
918 
919 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
920 
921 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
922 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
923 
924 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
925 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
926 
927 #define I915_ENGINE_WEDGED_TIMEOUT  (60 * HZ)  /* Reset but no recovery? */
928 
929 struct ddi_vbt_port_info {
930 	int max_tmds_clock;
931 
932 	/*
933 	 * This is an index in the HDMI/DVI DDI buffer translation table.
934 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
935 	 * populate this field.
936 	 */
937 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
938 	u8 hdmi_level_shift;
939 
940 	u8 supports_dvi:1;
941 	u8 supports_hdmi:1;
942 	u8 supports_dp:1;
943 	u8 supports_edp:1;
944 	u8 supports_typec_usb:1;
945 	u8 supports_tbt:1;
946 
947 	u8 alternate_aux_channel;
948 	u8 alternate_ddc_pin;
949 
950 	u8 dp_boost_level;
951 	u8 hdmi_boost_level;
952 	int dp_max_link_rate;		/* 0 for not limited by VBT */
953 };
954 
955 enum psr_lines_to_wait {
956 	PSR_0_LINES_TO_WAIT = 0,
957 	PSR_1_LINE_TO_WAIT,
958 	PSR_4_LINES_TO_WAIT,
959 	PSR_8_LINES_TO_WAIT
960 };
961 
962 struct intel_vbt_data {
963 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
964 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
965 
966 	/* Feature bits */
967 	unsigned int int_tv_support:1;
968 	unsigned int lvds_dither:1;
969 	unsigned int int_crt_support:1;
970 	unsigned int lvds_use_ssc:1;
971 	unsigned int int_lvds_support:1;
972 	unsigned int display_clock_mode:1;
973 	unsigned int fdi_rx_polarity_inverted:1;
974 	unsigned int panel_type:4;
975 	int lvds_ssc_freq;
976 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
977 	enum drm_panel_orientation orientation;
978 
979 	enum drrs_support_type drrs_type;
980 
981 	struct {
982 		int rate;
983 		int lanes;
984 		int preemphasis;
985 		int vswing;
986 		bool low_vswing;
987 		bool initialized;
988 		int bpp;
989 		struct edp_power_seq pps;
990 	} edp;
991 
992 	struct {
993 		bool enable;
994 		bool full_link;
995 		bool require_aux_wakeup;
996 		int idle_frames;
997 		enum psr_lines_to_wait lines_to_wait;
998 		int tp1_wakeup_time_us;
999 		int tp2_tp3_wakeup_time_us;
1000 	} psr;
1001 
1002 	struct {
1003 		u16 pwm_freq_hz;
1004 		bool present;
1005 		bool active_low_pwm;
1006 		u8 min_brightness;	/* min_brightness/255 of max */
1007 		u8 controller;		/* brightness controller number */
1008 		enum intel_backlight_type type;
1009 	} backlight;
1010 
1011 	/* MIPI DSI */
1012 	struct {
1013 		u16 panel_id;
1014 		struct mipi_config *config;
1015 		struct mipi_pps_data *pps;
1016 		u16 bl_ports;
1017 		u16 cabc_ports;
1018 		u8 seq_version;
1019 		u32 size;
1020 		u8 *data;
1021 		const u8 *sequence[MIPI_SEQ_MAX];
1022 		u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1023 		enum drm_panel_orientation orientation;
1024 	} dsi;
1025 
1026 	int crt_ddc_pin;
1027 
1028 	int child_dev_num;
1029 	struct child_device_config *child_dev;
1030 
1031 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1032 	struct sdvo_device_mapping sdvo_mappings[2];
1033 };
1034 
1035 enum intel_ddb_partitioning {
1036 	INTEL_DDB_PART_1_2,
1037 	INTEL_DDB_PART_5_6, /* IVB+ */
1038 };
1039 
1040 struct intel_wm_level {
1041 	bool enable;
1042 	u32 pri_val;
1043 	u32 spr_val;
1044 	u32 cur_val;
1045 	u32 fbc_val;
1046 };
1047 
1048 struct ilk_wm_values {
1049 	u32 wm_pipe[3];
1050 	u32 wm_lp[3];
1051 	u32 wm_lp_spr[3];
1052 	u32 wm_linetime[3];
1053 	bool enable_fbc_wm;
1054 	enum intel_ddb_partitioning partitioning;
1055 };
1056 
1057 struct g4x_pipe_wm {
1058 	u16 plane[I915_MAX_PLANES];
1059 	u16 fbc;
1060 };
1061 
1062 struct g4x_sr_wm {
1063 	u16 plane;
1064 	u16 cursor;
1065 	u16 fbc;
1066 };
1067 
1068 struct vlv_wm_ddl_values {
1069 	u8 plane[I915_MAX_PLANES];
1070 };
1071 
1072 struct vlv_wm_values {
1073 	struct g4x_pipe_wm pipe[3];
1074 	struct g4x_sr_wm sr;
1075 	struct vlv_wm_ddl_values ddl[3];
1076 	u8 level;
1077 	bool cxsr;
1078 };
1079 
1080 struct g4x_wm_values {
1081 	struct g4x_pipe_wm pipe[2];
1082 	struct g4x_sr_wm sr;
1083 	struct g4x_sr_wm hpll;
1084 	bool cxsr;
1085 	bool hpll_en;
1086 	bool fbc_en;
1087 };
1088 
1089 struct skl_ddb_entry {
1090 	u16 start, end;	/* in number of blocks, 'end' is exclusive */
1091 };
1092 
1093 static inline u16 skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1094 {
1095 	return entry->end - entry->start;
1096 }
1097 
1098 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1099 				       const struct skl_ddb_entry *e2)
1100 {
1101 	if (e1->start == e2->start && e1->end == e2->end)
1102 		return true;
1103 
1104 	return false;
1105 }
1106 
1107 struct skl_ddb_allocation {
1108 	u8 enabled_slices; /* GEN11 has configurable 2 slices */
1109 };
1110 
1111 struct skl_ddb_values {
1112 	unsigned dirty_pipes;
1113 	struct skl_ddb_allocation ddb;
1114 };
1115 
1116 struct skl_wm_level {
1117 	u16 min_ddb_alloc;
1118 	u16 plane_res_b;
1119 	u8 plane_res_l;
1120 	bool plane_en;
1121 };
1122 
1123 /* Stores plane specific WM parameters */
1124 struct skl_wm_params {
1125 	bool x_tiled, y_tiled;
1126 	bool rc_surface;
1127 	bool is_planar;
1128 	u32 width;
1129 	u8 cpp;
1130 	u32 plane_pixel_rate;
1131 	u32 y_min_scanlines;
1132 	u32 plane_bytes_per_line;
1133 	uint_fixed_16_16_t plane_blocks_per_line;
1134 	uint_fixed_16_16_t y_tile_minimum;
1135 	u32 linetime_us;
1136 	u32 dbuf_block_size;
1137 };
1138 
1139 /*
1140  * This struct helps tracking the state needed for runtime PM, which puts the
1141  * device in PCI D3 state. Notice that when this happens, nothing on the
1142  * graphics device works, even register access, so we don't get interrupts nor
1143  * anything else.
1144  *
1145  * Every piece of our code that needs to actually touch the hardware needs to
1146  * either call intel_runtime_pm_get or call intel_display_power_get with the
1147  * appropriate power domain.
1148  *
1149  * Our driver uses the autosuspend delay feature, which means we'll only really
1150  * suspend if we stay with zero refcount for a certain amount of time. The
1151  * default value is currently very conservative (see intel_runtime_pm_enable), but
1152  * it can be changed with the standard runtime PM files from sysfs.
1153  *
1154  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1155  * goes back to false exactly before we reenable the IRQs. We use this variable
1156  * to check if someone is trying to enable/disable IRQs while they're supposed
1157  * to be disabled. This shouldn't happen and we'll print some error messages in
1158  * case it happens.
1159  *
1160  * For more, read the Documentation/power/runtime_pm.txt.
1161  */
1162 struct i915_runtime_pm {
1163 	atomic_t wakeref_count;
1164 	bool suspended;
1165 	bool irqs_enabled;
1166 
1167 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
1168 	/*
1169 	 * To aide detection of wakeref leaks and general misuse, we
1170 	 * track all wakeref holders. With manual markup (i.e. returning
1171 	 * a cookie to each rpm_get caller which they then supply to their
1172 	 * paired rpm_put) we can remove corresponding pairs of and keep
1173 	 * the array trimmed to active wakerefs.
1174 	 */
1175 	struct intel_runtime_pm_debug {
1176 		spinlock_t lock;
1177 
1178 		depot_stack_handle_t last_acquire;
1179 		depot_stack_handle_t last_release;
1180 
1181 		depot_stack_handle_t *owners;
1182 		unsigned long count;
1183 	} debug;
1184 #endif
1185 };
1186 
1187 enum intel_pipe_crc_source {
1188 	INTEL_PIPE_CRC_SOURCE_NONE,
1189 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1190 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1191 	INTEL_PIPE_CRC_SOURCE_PF,
1192 	INTEL_PIPE_CRC_SOURCE_PIPE,
1193 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1194 	INTEL_PIPE_CRC_SOURCE_TV,
1195 	INTEL_PIPE_CRC_SOURCE_DP_B,
1196 	INTEL_PIPE_CRC_SOURCE_DP_C,
1197 	INTEL_PIPE_CRC_SOURCE_DP_D,
1198 	INTEL_PIPE_CRC_SOURCE_AUTO,
1199 	INTEL_PIPE_CRC_SOURCE_MAX,
1200 };
1201 
1202 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1203 struct intel_pipe_crc {
1204 	spinlock_t lock;
1205 	int skipped;
1206 	enum intel_pipe_crc_source source;
1207 };
1208 
1209 struct i915_frontbuffer_tracking {
1210 	spinlock_t lock;
1211 
1212 	/*
1213 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1214 	 * scheduled flips.
1215 	 */
1216 	unsigned busy_bits;
1217 	unsigned flip_bits;
1218 };
1219 
1220 struct i915_virtual_gpu {
1221 	bool active;
1222 	u32 caps;
1223 };
1224 
1225 /* used in computing the new watermarks state */
1226 struct intel_wm_config {
1227 	unsigned int num_pipes_active;
1228 	bool sprites_enabled;
1229 	bool sprites_scaled;
1230 };
1231 
1232 struct i915_oa_format {
1233 	u32 format;
1234 	int size;
1235 };
1236 
1237 struct i915_oa_reg {
1238 	i915_reg_t addr;
1239 	u32 value;
1240 };
1241 
1242 struct i915_oa_config {
1243 	char uuid[UUID_STRING_LEN + 1];
1244 	int id;
1245 
1246 	const struct i915_oa_reg *mux_regs;
1247 	u32 mux_regs_len;
1248 	const struct i915_oa_reg *b_counter_regs;
1249 	u32 b_counter_regs_len;
1250 	const struct i915_oa_reg *flex_regs;
1251 	u32 flex_regs_len;
1252 
1253 	struct attribute_group sysfs_metric;
1254 	struct attribute *attrs[2];
1255 	struct device_attribute sysfs_metric_id;
1256 
1257 	atomic_t ref_count;
1258 };
1259 
1260 struct i915_perf_stream;
1261 
1262 /**
1263  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1264  */
1265 struct i915_perf_stream_ops {
1266 	/**
1267 	 * @enable: Enables the collection of HW samples, either in response to
1268 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1269 	 * without `I915_PERF_FLAG_DISABLED`.
1270 	 */
1271 	void (*enable)(struct i915_perf_stream *stream);
1272 
1273 	/**
1274 	 * @disable: Disables the collection of HW samples, either in response
1275 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1276 	 * the stream.
1277 	 */
1278 	void (*disable)(struct i915_perf_stream *stream);
1279 
1280 	/**
1281 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1282 	 * once there is something ready to read() for the stream
1283 	 */
1284 	void (*poll_wait)(struct i915_perf_stream *stream,
1285 			  struct file *file,
1286 			  poll_table *wait);
1287 
1288 	/**
1289 	 * @wait_unlocked: For handling a blocking read, wait until there is
1290 	 * something to ready to read() for the stream. E.g. wait on the same
1291 	 * wait queue that would be passed to poll_wait().
1292 	 */
1293 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1294 
1295 	/**
1296 	 * @read: Copy buffered metrics as records to userspace
1297 	 * **buf**: the userspace, destination buffer
1298 	 * **count**: the number of bytes to copy, requested by userspace
1299 	 * **offset**: zero at the start of the read, updated as the read
1300 	 * proceeds, it represents how many bytes have been copied so far and
1301 	 * the buffer offset for copying the next record.
1302 	 *
1303 	 * Copy as many buffered i915 perf samples and records for this stream
1304 	 * to userspace as will fit in the given buffer.
1305 	 *
1306 	 * Only write complete records; returning -%ENOSPC if there isn't room
1307 	 * for a complete record.
1308 	 *
1309 	 * Return any error condition that results in a short read such as
1310 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1311 	 * returning to userspace.
1312 	 */
1313 	int (*read)(struct i915_perf_stream *stream,
1314 		    char __user *buf,
1315 		    size_t count,
1316 		    size_t *offset);
1317 
1318 	/**
1319 	 * @destroy: Cleanup any stream specific resources.
1320 	 *
1321 	 * The stream will always be disabled before this is called.
1322 	 */
1323 	void (*destroy)(struct i915_perf_stream *stream);
1324 };
1325 
1326 /**
1327  * struct i915_perf_stream - state for a single open stream FD
1328  */
1329 struct i915_perf_stream {
1330 	/**
1331 	 * @dev_priv: i915 drm device
1332 	 */
1333 	struct drm_i915_private *dev_priv;
1334 
1335 	/**
1336 	 * @link: Links the stream into ``&drm_i915_private->streams``
1337 	 */
1338 	struct list_head link;
1339 
1340 	/**
1341 	 * @wakeref: As we keep the device awake while the perf stream is
1342 	 * active, we track our runtime pm reference for later release.
1343 	 */
1344 	intel_wakeref_t wakeref;
1345 
1346 	/**
1347 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1348 	 * properties given when opening a stream, representing the contents
1349 	 * of a single sample as read() by userspace.
1350 	 */
1351 	u32 sample_flags;
1352 
1353 	/**
1354 	 * @sample_size: Considering the configured contents of a sample
1355 	 * combined with the required header size, this is the total size
1356 	 * of a single sample record.
1357 	 */
1358 	int sample_size;
1359 
1360 	/**
1361 	 * @ctx: %NULL if measuring system-wide across all contexts or a
1362 	 * specific context that is being monitored.
1363 	 */
1364 	struct i915_gem_context *ctx;
1365 
1366 	/**
1367 	 * @enabled: Whether the stream is currently enabled, considering
1368 	 * whether the stream was opened in a disabled state and based
1369 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1370 	 */
1371 	bool enabled;
1372 
1373 	/**
1374 	 * @ops: The callbacks providing the implementation of this specific
1375 	 * type of configured stream.
1376 	 */
1377 	const struct i915_perf_stream_ops *ops;
1378 
1379 	/**
1380 	 * @oa_config: The OA configuration used by the stream.
1381 	 */
1382 	struct i915_oa_config *oa_config;
1383 };
1384 
1385 /**
1386  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1387  */
1388 struct i915_oa_ops {
1389 	/**
1390 	 * @is_valid_b_counter_reg: Validates register's address for
1391 	 * programming boolean counters for a particular platform.
1392 	 */
1393 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1394 				       u32 addr);
1395 
1396 	/**
1397 	 * @is_valid_mux_reg: Validates register's address for programming mux
1398 	 * for a particular platform.
1399 	 */
1400 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1401 
1402 	/**
1403 	 * @is_valid_flex_reg: Validates register's address for programming
1404 	 * flex EU filtering for a particular platform.
1405 	 */
1406 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1407 
1408 	/**
1409 	 * @enable_metric_set: Selects and applies any MUX configuration to set
1410 	 * up the Boolean and Custom (B/C) counters that are part of the
1411 	 * counter reports being sampled. May apply system constraints such as
1412 	 * disabling EU clock gating as required.
1413 	 */
1414 	int (*enable_metric_set)(struct i915_perf_stream *stream);
1415 
1416 	/**
1417 	 * @disable_metric_set: Remove system constraints associated with using
1418 	 * the OA unit.
1419 	 */
1420 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1421 
1422 	/**
1423 	 * @oa_enable: Enable periodic sampling
1424 	 */
1425 	void (*oa_enable)(struct i915_perf_stream *stream);
1426 
1427 	/**
1428 	 * @oa_disable: Disable periodic sampling
1429 	 */
1430 	void (*oa_disable)(struct i915_perf_stream *stream);
1431 
1432 	/**
1433 	 * @read: Copy data from the circular OA buffer into a given userspace
1434 	 * buffer.
1435 	 */
1436 	int (*read)(struct i915_perf_stream *stream,
1437 		    char __user *buf,
1438 		    size_t count,
1439 		    size_t *offset);
1440 
1441 	/**
1442 	 * @oa_hw_tail_read: read the OA tail pointer register
1443 	 *
1444 	 * In particular this enables us to share all the fiddly code for
1445 	 * handling the OA unit tail pointer race that affects multiple
1446 	 * generations.
1447 	 */
1448 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1449 };
1450 
1451 struct intel_cdclk_state {
1452 	unsigned int cdclk, vco, ref, bypass;
1453 	u8 voltage_level;
1454 };
1455 
1456 struct drm_i915_private {
1457 	struct drm_device drm;
1458 
1459 	struct kmem_cache *objects;
1460 	struct kmem_cache *vmas;
1461 	struct kmem_cache *luts;
1462 	struct kmem_cache *requests;
1463 	struct kmem_cache *dependencies;
1464 	struct kmem_cache *priorities;
1465 
1466 	const struct intel_device_info __info; /* Use INTEL_INFO() to access. */
1467 	struct intel_runtime_info __runtime; /* Use RUNTIME_INFO() to access. */
1468 	struct intel_driver_caps caps;
1469 
1470 	/**
1471 	 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1472 	 * end of stolen which we can optionally use to create GEM objects
1473 	 * backed by stolen memory. Note that stolen_usable_size tells us
1474 	 * exactly how much of this we are actually allowed to use, given that
1475 	 * some portion of it is in fact reserved for use by hardware functions.
1476 	 */
1477 	struct resource dsm;
1478 	/**
1479 	 * Reseved portion of Data Stolen Memory
1480 	 */
1481 	struct resource dsm_reserved;
1482 
1483 	/*
1484 	 * Stolen memory is segmented in hardware with different portions
1485 	 * offlimits to certain functions.
1486 	 *
1487 	 * The drm_mm is initialised to the total accessible range, as found
1488 	 * from the PCI config. On Broadwell+, this is further restricted to
1489 	 * avoid the first page! The upper end of stolen memory is reserved for
1490 	 * hardware functions and similarly removed from the accessible range.
1491 	 */
1492 	resource_size_t stolen_usable_size;	/* Total size minus reserved ranges */
1493 
1494 	void __iomem *regs;
1495 
1496 	struct intel_uncore uncore;
1497 
1498 	struct i915_virtual_gpu vgpu;
1499 
1500 	struct intel_gvt *gvt;
1501 
1502 	struct intel_wopcm wopcm;
1503 
1504 	struct intel_huc huc;
1505 	struct intel_guc guc;
1506 
1507 	struct intel_csr csr;
1508 
1509 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1510 
1511 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
1512 	 * controller on different i2c buses. */
1513 	struct mutex gmbus_mutex;
1514 
1515 	/**
1516 	 * Base address of where the gmbus and gpio blocks are located (either
1517 	 * on PCH or on SoC for platforms without PCH).
1518 	 */
1519 	u32 gpio_mmio_base;
1520 
1521 	/* MMIO base address for MIPI regs */
1522 	u32 mipi_mmio_base;
1523 
1524 	u32 psr_mmio_base;
1525 
1526 	u32 pps_mmio_base;
1527 
1528 	wait_queue_head_t gmbus_wait_queue;
1529 
1530 	struct pci_dev *bridge_dev;
1531 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
1532 	/* Context used internally to idle the GPU and setup initial state */
1533 	struct i915_gem_context *kernel_context;
1534 	/* Context only to be used for injecting preemption commands */
1535 	struct i915_gem_context *preempt_context;
1536 	struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1537 					    [MAX_ENGINE_INSTANCE + 1];
1538 
1539 	struct resource mch_res;
1540 
1541 	/* protects the irq masks */
1542 	spinlock_t irq_lock;
1543 
1544 	bool display_irqs_enabled;
1545 
1546 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1547 	struct pm_qos_request pm_qos;
1548 
1549 	/* Sideband mailbox protection */
1550 	struct mutex sb_lock;
1551 
1552 	/** Cached value of IMR to avoid reads in updating the bitfield */
1553 	union {
1554 		u32 irq_mask;
1555 		u32 de_irq_mask[I915_MAX_PIPES];
1556 	};
1557 	u32 gt_irq_mask;
1558 	u32 pm_imr;
1559 	u32 pm_ier;
1560 	u32 pm_rps_events;
1561 	u32 pm_guc_events;
1562 	u32 pipestat_irq_mask[I915_MAX_PIPES];
1563 
1564 	struct i915_hotplug hotplug;
1565 	struct intel_fbc fbc;
1566 	struct i915_drrs drrs;
1567 	struct intel_opregion opregion;
1568 	struct intel_vbt_data vbt;
1569 
1570 	bool preserve_bios_swizzle;
1571 
1572 	/* overlay */
1573 	struct intel_overlay *overlay;
1574 
1575 	/* backlight registers and fields in struct intel_panel */
1576 	struct mutex backlight_lock;
1577 
1578 	/* LVDS info */
1579 	bool no_aux_handshake;
1580 
1581 	/* protects panel power sequencer state */
1582 	struct mutex pps_mutex;
1583 
1584 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1585 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1586 
1587 	unsigned int fsb_freq, mem_freq, is_ddr3;
1588 	unsigned int skl_preferred_vco_freq;
1589 	unsigned int max_cdclk_freq;
1590 
1591 	unsigned int max_dotclk_freq;
1592 	unsigned int rawclk_freq;
1593 	unsigned int hpll_freq;
1594 	unsigned int fdi_pll_freq;
1595 	unsigned int czclk_freq;
1596 
1597 	struct {
1598 		/*
1599 		 * The current logical cdclk state.
1600 		 * See intel_atomic_state.cdclk.logical
1601 		 *
1602 		 * For reading holding any crtc lock is sufficient,
1603 		 * for writing must hold all of them.
1604 		 */
1605 		struct intel_cdclk_state logical;
1606 		/*
1607 		 * The current actual cdclk state.
1608 		 * See intel_atomic_state.cdclk.actual
1609 		 */
1610 		struct intel_cdclk_state actual;
1611 		/* The current hardware cdclk state */
1612 		struct intel_cdclk_state hw;
1613 	} cdclk;
1614 
1615 	/**
1616 	 * wq - Driver workqueue for GEM.
1617 	 *
1618 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
1619 	 * locks, for otherwise the flushing done in the pageflip code will
1620 	 * result in deadlocks.
1621 	 */
1622 	struct workqueue_struct *wq;
1623 
1624 	/* ordered wq for modesets */
1625 	struct workqueue_struct *modeset_wq;
1626 
1627 	/* Display functions */
1628 	struct drm_i915_display_funcs display;
1629 
1630 	/* PCH chipset type */
1631 	enum intel_pch pch_type;
1632 	unsigned short pch_id;
1633 
1634 	unsigned long quirks;
1635 
1636 	struct drm_atomic_state *modeset_restore_state;
1637 	struct drm_modeset_acquire_ctx reset_ctx;
1638 
1639 	struct i915_ggtt ggtt; /* VM representing the global address space */
1640 
1641 	struct i915_gem_mm mm;
1642 	DECLARE_HASHTABLE(mm_structs, 7);
1643 	struct mutex mm_lock;
1644 
1645 	struct intel_ppat ppat;
1646 
1647 	/* Kernel Modesetting */
1648 
1649 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1650 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1651 
1652 #ifdef CONFIG_DEBUG_FS
1653 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1654 #endif
1655 
1656 	/* dpll and cdclk state is protected by connection_mutex */
1657 	int num_shared_dpll;
1658 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1659 	const struct intel_dpll_mgr *dpll_mgr;
1660 
1661 	/*
1662 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1663 	 * Must be global rather than per dpll, because on some platforms
1664 	 * plls share registers.
1665 	 */
1666 	struct mutex dpll_lock;
1667 
1668 	unsigned int active_crtcs;
1669 	/* minimum acceptable cdclk for each pipe */
1670 	int min_cdclk[I915_MAX_PIPES];
1671 	/* minimum acceptable voltage level for each pipe */
1672 	u8 min_voltage_level[I915_MAX_PIPES];
1673 
1674 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1675 
1676 	struct i915_wa_list gt_wa_list;
1677 
1678 	struct i915_frontbuffer_tracking fb_tracking;
1679 
1680 	struct intel_atomic_helper {
1681 		struct llist_head free_list;
1682 		struct work_struct free_work;
1683 	} atomic_helper;
1684 
1685 	u16 orig_clock;
1686 
1687 	bool mchbar_need_disable;
1688 
1689 	struct intel_l3_parity l3_parity;
1690 
1691 	/* Cannot be determined by PCIID. You must always read a register. */
1692 	u32 edram_cap;
1693 
1694 	/*
1695 	 * Protects RPS/RC6 register access and PCU communication.
1696 	 * Must be taken after struct_mutex if nested. Note that
1697 	 * this lock may be held for long periods of time when
1698 	 * talking to hw - so only take it when talking to hw!
1699 	 */
1700 	struct mutex pcu_lock;
1701 
1702 	/* gen6+ GT PM state */
1703 	struct intel_gen6_power_mgmt gt_pm;
1704 
1705 	/* ilk-only ips/rps state. Everything in here is protected by the global
1706 	 * mchdev_lock in intel_pm.c */
1707 	struct intel_ilk_power_mgmt ips;
1708 
1709 	struct i915_power_domains power_domains;
1710 
1711 	struct i915_psr psr;
1712 
1713 	struct i915_gpu_error gpu_error;
1714 
1715 	struct drm_i915_gem_object *vlv_pctx;
1716 
1717 	/* list of fbdev register on this device */
1718 	struct intel_fbdev *fbdev;
1719 	struct work_struct fbdev_suspend_work;
1720 
1721 	struct drm_property *broadcast_rgb_property;
1722 	struct drm_property *force_audio_property;
1723 
1724 	/* hda/i915 audio component */
1725 	struct i915_audio_component *audio_component;
1726 	bool audio_component_registered;
1727 	/**
1728 	 * av_mutex - mutex for audio/video sync
1729 	 *
1730 	 */
1731 	struct mutex av_mutex;
1732 
1733 	struct {
1734 		struct mutex mutex;
1735 		struct list_head list;
1736 		struct llist_head free_list;
1737 		struct work_struct free_work;
1738 
1739 		/* The hw wants to have a stable context identifier for the
1740 		 * lifetime of the context (for OA, PASID, faults, etc).
1741 		 * This is limited in execlists to 21 bits.
1742 		 */
1743 		struct ida hw_ida;
1744 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1745 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */
1746 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1747 		struct list_head hw_id_list;
1748 	} contexts;
1749 
1750 	u32 fdi_rx_config;
1751 
1752 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1753 	u32 chv_phy_control;
1754 	/*
1755 	 * Shadows for CHV DPLL_MD regs to keep the state
1756 	 * checker somewhat working in the presence hardware
1757 	 * crappiness (can't read out DPLL_MD for pipes B & C).
1758 	 */
1759 	u32 chv_dpll_md[I915_MAX_PIPES];
1760 	u32 bxt_phy_grc;
1761 
1762 	u32 suspend_count;
1763 	bool power_domains_suspended;
1764 	struct i915_suspend_saved_registers regfile;
1765 	struct vlv_s0ix_state vlv_s0ix_state;
1766 
1767 	enum {
1768 		I915_SAGV_UNKNOWN = 0,
1769 		I915_SAGV_DISABLED,
1770 		I915_SAGV_ENABLED,
1771 		I915_SAGV_NOT_CONTROLLED
1772 	} sagv_status;
1773 
1774 	struct {
1775 		/*
1776 		 * Raw watermark latency values:
1777 		 * in 0.1us units for WM0,
1778 		 * in 0.5us units for WM1+.
1779 		 */
1780 		/* primary */
1781 		u16 pri_latency[5];
1782 		/* sprite */
1783 		u16 spr_latency[5];
1784 		/* cursor */
1785 		u16 cur_latency[5];
1786 		/*
1787 		 * Raw watermark memory latency values
1788 		 * for SKL for all 8 levels
1789 		 * in 1us units.
1790 		 */
1791 		u16 skl_latency[8];
1792 
1793 		/* current hardware state */
1794 		union {
1795 			struct ilk_wm_values hw;
1796 			struct skl_ddb_values skl_hw;
1797 			struct vlv_wm_values vlv;
1798 			struct g4x_wm_values g4x;
1799 		};
1800 
1801 		u8 max_level;
1802 
1803 		/*
1804 		 * Should be held around atomic WM register writing; also
1805 		 * protects * intel_crtc->wm.active and
1806 		 * cstate->wm.need_postvbl_update.
1807 		 */
1808 		struct mutex wm_mutex;
1809 
1810 		/*
1811 		 * Set during HW readout of watermarks/DDB.  Some platforms
1812 		 * need to know when we're still using BIOS-provided values
1813 		 * (which we don't fully trust).
1814 		 */
1815 		bool distrust_bios_wm;
1816 	} wm;
1817 
1818 	struct dram_info {
1819 		bool valid;
1820 		bool is_16gb_dimm;
1821 		u8 num_channels;
1822 		enum dram_rank {
1823 			I915_DRAM_RANK_INVALID = 0,
1824 			I915_DRAM_RANK_SINGLE,
1825 			I915_DRAM_RANK_DUAL
1826 		} rank;
1827 		u32 bandwidth_kbps;
1828 		bool symmetric_memory;
1829 	} dram_info;
1830 
1831 	struct i915_runtime_pm runtime_pm;
1832 
1833 	struct {
1834 		bool initialized;
1835 
1836 		struct kobject *metrics_kobj;
1837 		struct ctl_table_header *sysctl_header;
1838 
1839 		/*
1840 		 * Lock associated with adding/modifying/removing OA configs
1841 		 * in dev_priv->perf.metrics_idr.
1842 		 */
1843 		struct mutex metrics_lock;
1844 
1845 		/*
1846 		 * List of dynamic configurations, you need to hold
1847 		 * dev_priv->perf.metrics_lock to access it.
1848 		 */
1849 		struct idr metrics_idr;
1850 
1851 		/*
1852 		 * Lock associated with anything below within this structure
1853 		 * except exclusive_stream.
1854 		 */
1855 		struct mutex lock;
1856 		struct list_head streams;
1857 
1858 		struct {
1859 			/*
1860 			 * The stream currently using the OA unit. If accessed
1861 			 * outside a syscall associated to its file
1862 			 * descriptor, you need to hold
1863 			 * dev_priv->drm.struct_mutex.
1864 			 */
1865 			struct i915_perf_stream *exclusive_stream;
1866 
1867 			struct intel_context *pinned_ctx;
1868 			u32 specific_ctx_id;
1869 			u32 specific_ctx_id_mask;
1870 
1871 			struct hrtimer poll_check_timer;
1872 			wait_queue_head_t poll_wq;
1873 			bool pollin;
1874 
1875 			/**
1876 			 * For rate limiting any notifications of spurious
1877 			 * invalid OA reports
1878 			 */
1879 			struct ratelimit_state spurious_report_rs;
1880 
1881 			bool periodic;
1882 			int period_exponent;
1883 
1884 			struct i915_oa_config test_config;
1885 
1886 			struct {
1887 				struct i915_vma *vma;
1888 				u8 *vaddr;
1889 				u32 last_ctx_id;
1890 				int format;
1891 				int format_size;
1892 
1893 				/**
1894 				 * Locks reads and writes to all head/tail state
1895 				 *
1896 				 * Consider: the head and tail pointer state
1897 				 * needs to be read consistently from a hrtimer
1898 				 * callback (atomic context) and read() fop
1899 				 * (user context) with tail pointer updates
1900 				 * happening in atomic context and head updates
1901 				 * in user context and the (unlikely)
1902 				 * possibility of read() errors needing to
1903 				 * reset all head/tail state.
1904 				 *
1905 				 * Note: Contention or performance aren't
1906 				 * currently a significant concern here
1907 				 * considering the relatively low frequency of
1908 				 * hrtimer callbacks (5ms period) and that
1909 				 * reads typically only happen in response to a
1910 				 * hrtimer event and likely complete before the
1911 				 * next callback.
1912 				 *
1913 				 * Note: This lock is not held *while* reading
1914 				 * and copying data to userspace so the value
1915 				 * of head observed in htrimer callbacks won't
1916 				 * represent any partial consumption of data.
1917 				 */
1918 				spinlock_t ptr_lock;
1919 
1920 				/**
1921 				 * One 'aging' tail pointer and one 'aged'
1922 				 * tail pointer ready to used for reading.
1923 				 *
1924 				 * Initial values of 0xffffffff are invalid
1925 				 * and imply that an update is required
1926 				 * (and should be ignored by an attempted
1927 				 * read)
1928 				 */
1929 				struct {
1930 					u32 offset;
1931 				} tails[2];
1932 
1933 				/**
1934 				 * Index for the aged tail ready to read()
1935 				 * data up to.
1936 				 */
1937 				unsigned int aged_tail_idx;
1938 
1939 				/**
1940 				 * A monotonic timestamp for when the current
1941 				 * aging tail pointer was read; used to
1942 				 * determine when it is old enough to trust.
1943 				 */
1944 				u64 aging_timestamp;
1945 
1946 				/**
1947 				 * Although we can always read back the head
1948 				 * pointer register, we prefer to avoid
1949 				 * trusting the HW state, just to avoid any
1950 				 * risk that some hardware condition could
1951 				 * somehow bump the head pointer unpredictably
1952 				 * and cause us to forward the wrong OA buffer
1953 				 * data to userspace.
1954 				 */
1955 				u32 head;
1956 			} oa_buffer;
1957 
1958 			u32 gen7_latched_oastatus1;
1959 			u32 ctx_oactxctrl_offset;
1960 			u32 ctx_flexeu0_offset;
1961 
1962 			/**
1963 			 * The RPT_ID/reason field for Gen8+ includes a bit
1964 			 * to determine if the CTX ID in the report is valid
1965 			 * but the specific bit differs between Gen 8 and 9
1966 			 */
1967 			u32 gen8_valid_ctx_bit;
1968 
1969 			struct i915_oa_ops ops;
1970 			const struct i915_oa_format *oa_formats;
1971 		} oa;
1972 	} perf;
1973 
1974 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
1975 	struct {
1976 		void (*resume)(struct drm_i915_private *);
1977 		void (*cleanup_engine)(struct intel_engine_cs *engine);
1978 
1979 		struct i915_gt_timelines {
1980 			struct mutex mutex; /* protects list, tainted by GPU */
1981 			struct list_head active_list;
1982 
1983 			/* Pack multiple timelines' seqnos into the same page */
1984 			spinlock_t hwsp_lock;
1985 			struct list_head hwsp_free_list;
1986 		} timelines;
1987 
1988 		struct list_head active_rings;
1989 		struct list_head closed_vma;
1990 		u32 active_requests;
1991 
1992 		/**
1993 		 * Is the GPU currently considered idle, or busy executing
1994 		 * userspace requests? Whilst idle, we allow runtime power
1995 		 * management to power down the hardware and display clocks.
1996 		 * In order to reduce the effect on performance, there
1997 		 * is a slight delay before we do so.
1998 		 */
1999 		intel_wakeref_t awake;
2000 
2001 		/**
2002 		 * The number of times we have woken up.
2003 		 */
2004 		unsigned int epoch;
2005 #define I915_EPOCH_INVALID 0
2006 
2007 		/**
2008 		 * We leave the user IRQ off as much as possible,
2009 		 * but this means that requests will finish and never
2010 		 * be retired once the system goes idle. Set a timer to
2011 		 * fire periodically while the ring is running. When it
2012 		 * fires, go retire requests.
2013 		 */
2014 		struct delayed_work retire_work;
2015 
2016 		/**
2017 		 * When we detect an idle GPU, we want to turn on
2018 		 * powersaving features. So once we see that there
2019 		 * are no more requests outstanding and no more
2020 		 * arrive within a small period of time, we fire
2021 		 * off the idle_work.
2022 		 */
2023 		struct delayed_work idle_work;
2024 
2025 		ktime_t last_init_time;
2026 
2027 		struct i915_vma *scratch;
2028 	} gt;
2029 
2030 	/* perform PHY state sanity checks? */
2031 	bool chv_phy_assert[2];
2032 
2033 	bool ipc_enabled;
2034 
2035 	/* Used to save the pipe-to-encoder mapping for audio */
2036 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2037 
2038 	/* necessary resource sharing with HDMI LPE audio driver. */
2039 	struct {
2040 		struct platform_device *platdev;
2041 		int	irq;
2042 	} lpe_audio;
2043 
2044 	struct i915_pmu pmu;
2045 
2046 	/*
2047 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2048 	 * will be rejected. Instead look for a better place.
2049 	 */
2050 };
2051 
2052 struct dram_channel_info {
2053 	struct info {
2054 		u8 size, width;
2055 		enum dram_rank rank;
2056 	} l_info, s_info;
2057 	enum dram_rank rank;
2058 	bool is_16gb_dimm;
2059 };
2060 
2061 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2062 {
2063 	return container_of(dev, struct drm_i915_private, drm);
2064 }
2065 
2066 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2067 {
2068 	return to_i915(dev_get_drvdata(kdev));
2069 }
2070 
2071 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2072 {
2073 	return container_of(wopcm, struct drm_i915_private, wopcm);
2074 }
2075 
2076 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2077 {
2078 	return container_of(guc, struct drm_i915_private, guc);
2079 }
2080 
2081 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2082 {
2083 	return container_of(huc, struct drm_i915_private, huc);
2084 }
2085 
2086 /* Simple iterator over all initialised engines */
2087 #define for_each_engine(engine__, dev_priv__, id__) \
2088 	for ((id__) = 0; \
2089 	     (id__) < I915_NUM_ENGINES; \
2090 	     (id__)++) \
2091 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2092 
2093 /* Iterator over subset of engines selected by mask */
2094 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2095 	for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \
2096 	     (tmp__) ? \
2097 	     ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2098 	     0;)
2099 
2100 enum hdmi_force_audio {
2101 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2102 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2103 	HDMI_AUDIO_AUTO,		/* trust EDID */
2104 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2105 };
2106 
2107 #define I915_GTT_OFFSET_NONE ((u32)-1)
2108 
2109 /*
2110  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2111  * considered to be the frontbuffer for the given plane interface-wise. This
2112  * doesn't mean that the hw necessarily already scans it out, but that any
2113  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2114  *
2115  * We have one bit per pipe and per scanout plane type.
2116  */
2117 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2118 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2119 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2120 	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2121 	BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2122 })
2123 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2124 	BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2125 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2126 	GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2127 		INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2128 
2129 /*
2130  * Optimised SGL iterator for GEM objects
2131  */
2132 static __always_inline struct sgt_iter {
2133 	struct scatterlist *sgp;
2134 	union {
2135 		unsigned long pfn;
2136 		dma_addr_t dma;
2137 	};
2138 	unsigned int curr;
2139 	unsigned int max;
2140 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2141 	struct sgt_iter s = { .sgp = sgl };
2142 
2143 	if (s.sgp) {
2144 		s.max = s.curr = s.sgp->offset;
2145 		s.max += s.sgp->length;
2146 		if (dma)
2147 			s.dma = sg_dma_address(s.sgp);
2148 		else
2149 			s.pfn = page_to_pfn(sg_page(s.sgp));
2150 	}
2151 
2152 	return s;
2153 }
2154 
2155 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2156 {
2157 	++sg;
2158 	if (unlikely(sg_is_chain(sg)))
2159 		sg = sg_chain_ptr(sg);
2160 	return sg;
2161 }
2162 
2163 /**
2164  * __sg_next - return the next scatterlist entry in a list
2165  * @sg:		The current sg entry
2166  *
2167  * Description:
2168  *   If the entry is the last, return NULL; otherwise, step to the next
2169  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2170  *   otherwise just return the pointer to the current element.
2171  **/
2172 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2173 {
2174 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2175 }
2176 
2177 /**
2178  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2179  * @__dmap:	DMA address (output)
2180  * @__iter:	'struct sgt_iter' (iterator state, internal)
2181  * @__sgt:	sg_table to iterate over (input)
2182  */
2183 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2184 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2185 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2186 	     (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ?	\
2187 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2188 
2189 /**
2190  * for_each_sgt_page - iterate over the pages of the given sg_table
2191  * @__pp:	page pointer (output)
2192  * @__iter:	'struct sgt_iter' (iterator state, internal)
2193  * @__sgt:	sg_table to iterate over (input)
2194  */
2195 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2196 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2197 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2198 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2199 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2200 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2201 
2202 bool i915_sg_trim(struct sg_table *orig_st);
2203 
2204 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2205 {
2206 	unsigned int page_sizes;
2207 
2208 	page_sizes = 0;
2209 	while (sg) {
2210 		GEM_BUG_ON(sg->offset);
2211 		GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2212 		page_sizes |= sg->length;
2213 		sg = __sg_next(sg);
2214 	}
2215 
2216 	return page_sizes;
2217 }
2218 
2219 static inline unsigned int i915_sg_segment_size(void)
2220 {
2221 	unsigned int size = swiotlb_max_segment();
2222 
2223 	if (size == 0)
2224 		return SCATTERLIST_MAX_SEGMENT;
2225 
2226 	size = rounddown(size, PAGE_SIZE);
2227 	/* swiotlb_max_segment_size can return 1 byte when it means one page. */
2228 	if (size < PAGE_SIZE)
2229 		size = PAGE_SIZE;
2230 
2231 	return size;
2232 }
2233 
2234 #define INTEL_INFO(dev_priv)	(&(dev_priv)->__info)
2235 #define RUNTIME_INFO(dev_priv)	(&(dev_priv)->__runtime)
2236 #define DRIVER_CAPS(dev_priv)	(&(dev_priv)->caps)
2237 
2238 #define INTEL_GEN(dev_priv)	(INTEL_INFO(dev_priv)->gen)
2239 #define INTEL_DEVID(dev_priv)	(RUNTIME_INFO(dev_priv)->device_id)
2240 
2241 #define REVID_FOREVER		0xff
2242 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2243 
2244 #define INTEL_GEN_MASK(s, e) ( \
2245 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2246 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2247 	GENMASK((e) - 1, (s) - 1))
2248 
2249 /* Returns true if Gen is in inclusive range [Start, End] */
2250 #define IS_GEN_RANGE(dev_priv, s, e) \
2251 	(!!(INTEL_INFO(dev_priv)->gen_mask & INTEL_GEN_MASK((s), (e))))
2252 
2253 #define IS_GEN(dev_priv, n) \
2254 	(BUILD_BUG_ON_ZERO(!__builtin_constant_p(n)) + \
2255 	 INTEL_INFO(dev_priv)->gen == (n))
2256 
2257 /*
2258  * Return true if revision is in range [since,until] inclusive.
2259  *
2260  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2261  */
2262 #define IS_REVID(p, since, until) \
2263 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2264 
2265 #define IS_PLATFORM(dev_priv, p) (INTEL_INFO(dev_priv)->platform_mask & BIT(p))
2266 
2267 #define IS_I830(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I830)
2268 #define IS_I845G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I845G)
2269 #define IS_I85X(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I85X)
2270 #define IS_I865G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I865G)
2271 #define IS_I915G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915G)
2272 #define IS_I915GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915GM)
2273 #define IS_I945G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945G)
2274 #define IS_I945GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945GM)
2275 #define IS_I965G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965G)
2276 #define IS_I965GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965GM)
2277 #define IS_G45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G45)
2278 #define IS_GM45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GM45)
2279 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2280 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2281 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2282 #define IS_PINEVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2283 #define IS_G33(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G33)
2284 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2285 #define IS_IVYBRIDGE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2286 #define IS_IVB_GT1(dev_priv)	(IS_IVYBRIDGE(dev_priv) && \
2287 				 INTEL_INFO(dev_priv)->gt == 1)
2288 #define IS_VALLEYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2289 #define IS_CHERRYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2290 #define IS_HASWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_HASWELL)
2291 #define IS_BROADWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2292 #define IS_SKYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2293 #define IS_BROXTON(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROXTON)
2294 #define IS_KABYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2295 #define IS_GEMINILAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2296 #define IS_COFFEELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2297 #define IS_CANNONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2298 #define IS_ICELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2299 #define IS_MOBILE(dev_priv)	(INTEL_INFO(dev_priv)->is_mobile)
2300 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2301 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2302 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2303 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2304 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2305 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2306 /* ULX machines are also considered ULT. */
2307 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2308 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2309 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2310 				 INTEL_INFO(dev_priv)->gt == 3)
2311 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2312 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2313 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2314 				 INTEL_INFO(dev_priv)->gt == 3)
2315 #define IS_HSW_GT1(dev_priv)	(IS_HASWELL(dev_priv) && \
2316 				 INTEL_INFO(dev_priv)->gt == 1)
2317 /* ULX machines are also considered ULT. */
2318 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2319 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2320 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2321 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2322 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2323 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2324 				 INTEL_DEVID(dev_priv) == 0x1926)
2325 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2326 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2327 				 INTEL_DEVID(dev_priv) == 0x191E)
2328 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2329 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2330 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2331 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2332 				 INTEL_DEVID(dev_priv) == 0x5926)
2333 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2334 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2335 				 INTEL_DEVID(dev_priv) == 0x591E)
2336 #define IS_AML_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x591C || \
2337 				 INTEL_DEVID(dev_priv) == 0x87C0)
2338 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2339 				 INTEL_INFO(dev_priv)->gt == 2)
2340 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2341 				 INTEL_INFO(dev_priv)->gt == 3)
2342 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2343 				 INTEL_INFO(dev_priv)->gt == 4)
2344 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2345 				 INTEL_INFO(dev_priv)->gt == 2)
2346 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2347 				 INTEL_INFO(dev_priv)->gt == 3)
2348 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2349 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2350 #define IS_CFL_GT2(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2351 				 INTEL_INFO(dev_priv)->gt == 2)
2352 #define IS_CFL_GT3(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2353 				 INTEL_INFO(dev_priv)->gt == 3)
2354 #define IS_CNL_WITH_PORT_F(dev_priv)   (IS_CANNONLAKE(dev_priv) && \
2355 					(INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2356 #define IS_ICL_WITH_PORT_F(dev_priv)   (IS_ICELAKE(dev_priv) && \
2357 					INTEL_DEVID(dev_priv) != 0x8A51)
2358 
2359 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2360 
2361 #define SKL_REVID_A0		0x0
2362 #define SKL_REVID_B0		0x1
2363 #define SKL_REVID_C0		0x2
2364 #define SKL_REVID_D0		0x3
2365 #define SKL_REVID_E0		0x4
2366 #define SKL_REVID_F0		0x5
2367 #define SKL_REVID_G0		0x6
2368 #define SKL_REVID_H0		0x7
2369 
2370 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2371 
2372 #define BXT_REVID_A0		0x0
2373 #define BXT_REVID_A1		0x1
2374 #define BXT_REVID_B0		0x3
2375 #define BXT_REVID_B_LAST	0x8
2376 #define BXT_REVID_C0		0x9
2377 
2378 #define IS_BXT_REVID(dev_priv, since, until) \
2379 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2380 
2381 #define KBL_REVID_A0		0x0
2382 #define KBL_REVID_B0		0x1
2383 #define KBL_REVID_C0		0x2
2384 #define KBL_REVID_D0		0x3
2385 #define KBL_REVID_E0		0x4
2386 
2387 #define IS_KBL_REVID(dev_priv, since, until) \
2388 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2389 
2390 #define GLK_REVID_A0		0x0
2391 #define GLK_REVID_A1		0x1
2392 
2393 #define IS_GLK_REVID(dev_priv, since, until) \
2394 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2395 
2396 #define CNL_REVID_A0		0x0
2397 #define CNL_REVID_B0		0x1
2398 #define CNL_REVID_C0		0x2
2399 
2400 #define IS_CNL_REVID(p, since, until) \
2401 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2402 
2403 #define ICL_REVID_A0		0x0
2404 #define ICL_REVID_A2		0x1
2405 #define ICL_REVID_B0		0x3
2406 #define ICL_REVID_B2		0x4
2407 #define ICL_REVID_C0		0x5
2408 
2409 #define IS_ICL_REVID(p, since, until) \
2410 	(IS_ICELAKE(p) && IS_REVID(p, since, until))
2411 
2412 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2413 #define IS_GEN9_LP(dev_priv)	(IS_GEN(dev_priv, 9) && IS_LP(dev_priv))
2414 #define IS_GEN9_BC(dev_priv)	(IS_GEN(dev_priv, 9) && !IS_LP(dev_priv))
2415 
2416 #define ENGINE_MASK(id)	BIT(id)
2417 #define RENDER_RING	ENGINE_MASK(RCS)
2418 #define BSD_RING	ENGINE_MASK(VCS)
2419 #define BLT_RING	ENGINE_MASK(BCS)
2420 #define VEBOX_RING	ENGINE_MASK(VECS)
2421 #define BSD2_RING	ENGINE_MASK(VCS2)
2422 #define BSD3_RING	ENGINE_MASK(VCS3)
2423 #define BSD4_RING	ENGINE_MASK(VCS4)
2424 #define VEBOX2_RING	ENGINE_MASK(VECS2)
2425 #define ALL_ENGINES	(~0)
2426 
2427 #define HAS_ENGINE(dev_priv, id) \
2428 	(!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id)))
2429 
2430 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
2431 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
2432 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
2433 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
2434 
2435 #define HAS_LLC(dev_priv)	(INTEL_INFO(dev_priv)->has_llc)
2436 #define HAS_SNOOP(dev_priv)	(INTEL_INFO(dev_priv)->has_snoop)
2437 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2438 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2439 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2440 
2441 #define HWS_NEEDS_PHYSICAL(dev_priv)	(INTEL_INFO(dev_priv)->hws_needs_physical)
2442 
2443 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2444 		(INTEL_INFO(dev_priv)->has_logical_ring_contexts)
2445 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2446 		(INTEL_INFO(dev_priv)->has_logical_ring_elsq)
2447 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2448 		(INTEL_INFO(dev_priv)->has_logical_ring_preemption)
2449 
2450 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2451 
2452 #define INTEL_PPGTT(dev_priv) (INTEL_INFO(dev_priv)->ppgtt)
2453 #define HAS_PPGTT(dev_priv) \
2454 	(INTEL_PPGTT(dev_priv) != INTEL_PPGTT_NONE)
2455 #define HAS_FULL_PPGTT(dev_priv) \
2456 	(INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL)
2457 #define HAS_FULL_48BIT_PPGTT(dev_priv)	\
2458 	(INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL_4LVL)
2459 
2460 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2461 	GEM_BUG_ON((sizes) == 0); \
2462 	((sizes) & ~INTEL_INFO(dev_priv)->page_sizes) == 0; \
2463 })
2464 
2465 #define HAS_OVERLAY(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_overlay)
2466 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2467 		(INTEL_INFO(dev_priv)->display.overlay_needs_physical)
2468 
2469 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2470 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
2471 
2472 /* WaRsDisableCoarsePowerGating:skl,cnl */
2473 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2474 	(IS_CANNONLAKE(dev_priv) || \
2475 	 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2476 
2477 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2478 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \
2479 					IS_GEMINILAKE(dev_priv) || \
2480 					IS_KABYLAKE(dev_priv))
2481 
2482 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2483  * rows, which changed the alignment requirements and fence programming.
2484  */
2485 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN(dev_priv, 2) && \
2486 					 !(IS_I915G(dev_priv) || \
2487 					 IS_I915GM(dev_priv)))
2488 #define SUPPORTS_TV(dev_priv)		(INTEL_INFO(dev_priv)->display.supports_tv)
2489 #define I915_HAS_HOTPLUG(dev_priv)	(INTEL_INFO(dev_priv)->display.has_hotplug)
2490 
2491 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
2492 #define HAS_FBC(dev_priv)	(INTEL_INFO(dev_priv)->display.has_fbc)
2493 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2494 
2495 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2496 
2497 #define HAS_DP_MST(dev_priv)	(INTEL_INFO(dev_priv)->display.has_dp_mst)
2498 
2499 #define HAS_DDI(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_ddi)
2500 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) (INTEL_INFO(dev_priv)->has_fpga_dbg)
2501 #define HAS_PSR(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_psr)
2502 
2503 #define HAS_RC6(dev_priv)		 (INTEL_INFO(dev_priv)->has_rc6)
2504 #define HAS_RC6p(dev_priv)		 (INTEL_INFO(dev_priv)->has_rc6p)
2505 #define HAS_RC6pp(dev_priv)		 (false) /* HW was never validated */
2506 
2507 #define HAS_CSR(dev_priv)	(INTEL_INFO(dev_priv)->display.has_csr)
2508 
2509 #define HAS_RUNTIME_PM(dev_priv) (INTEL_INFO(dev_priv)->has_runtime_pm)
2510 #define HAS_64BIT_RELOC(dev_priv) (INTEL_INFO(dev_priv)->has_64bit_reloc)
2511 
2512 #define HAS_IPC(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_ipc)
2513 
2514 /*
2515  * For now, anything with a GuC requires uCode loading, and then supports
2516  * command submission once loaded. But these are logically independent
2517  * properties, so we have separate macros to test them.
2518  */
2519 #define HAS_GUC(dev_priv)	(INTEL_INFO(dev_priv)->has_guc)
2520 #define HAS_GUC_CT(dev_priv)	(INTEL_INFO(dev_priv)->has_guc_ct)
2521 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2522 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
2523 
2524 /* For now, anything with a GuC has also HuC */
2525 #define HAS_HUC(dev_priv)	(HAS_GUC(dev_priv))
2526 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2527 
2528 /* Having a GuC is not the same as using a GuC */
2529 #define USES_GUC(dev_priv)		intel_uc_is_using_guc(dev_priv)
2530 #define USES_GUC_SUBMISSION(dev_priv)	intel_uc_is_using_guc_submission(dev_priv)
2531 #define USES_HUC(dev_priv)		intel_uc_is_using_huc(dev_priv)
2532 
2533 #define HAS_POOLED_EU(dev_priv)	(INTEL_INFO(dev_priv)->has_pooled_eu)
2534 
2535 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
2536 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2537 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2538 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2539 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2540 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2541 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
2542 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
2543 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2544 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2545 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
2546 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
2547 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
2548 #define INTEL_PCH_ICP_DEVICE_ID_TYPE		0x3480
2549 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2550 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2551 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2552 
2553 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2554 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2555 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2556 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2557 #define HAS_PCH_CNP_LP(dev_priv) \
2558 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2559 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2560 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2561 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2562 #define HAS_PCH_LPT_LP(dev_priv) \
2563 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2564 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2565 #define HAS_PCH_LPT_H(dev_priv) \
2566 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2567 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2568 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2569 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2570 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2571 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2572 
2573 #define HAS_GMCH_DISPLAY(dev_priv) (INTEL_INFO(dev_priv)->display.has_gmch_display)
2574 
2575 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2576 
2577 /* DPF == dynamic parity feature */
2578 #define HAS_L3_DPF(dev_priv) (INTEL_INFO(dev_priv)->has_l3_dpf)
2579 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2580 				 2 : HAS_L3_DPF(dev_priv))
2581 
2582 #define GT_FREQUENCY_MULTIPLIER 50
2583 #define GEN9_FREQ_SCALER 3
2584 
2585 #define HAS_DISPLAY(dev_priv) (INTEL_INFO(dev_priv)->num_pipes > 0)
2586 
2587 #include "i915_trace.h"
2588 
2589 static inline bool intel_vtd_active(void)
2590 {
2591 #ifdef CONFIG_INTEL_IOMMU
2592 	if (intel_iommu_gfx_mapped)
2593 		return true;
2594 #endif
2595 	return false;
2596 }
2597 
2598 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2599 {
2600 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2601 }
2602 
2603 static inline bool
2604 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2605 {
2606 	return IS_BROXTON(dev_priv) && intel_vtd_active();
2607 }
2608 
2609 /* i915_drv.c */
2610 void __printf(3, 4)
2611 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2612 	      const char *fmt, ...);
2613 
2614 #define i915_report_error(dev_priv, fmt, ...)				   \
2615 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2616 
2617 #ifdef CONFIG_COMPAT
2618 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2619 			      unsigned long arg);
2620 #else
2621 #define i915_compat_ioctl NULL
2622 #endif
2623 extern const struct dev_pm_ops i915_pm_ops;
2624 
2625 extern int i915_driver_load(struct pci_dev *pdev,
2626 			    const struct pci_device_id *ent);
2627 extern void i915_driver_unload(struct drm_device *dev);
2628 
2629 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2630 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2631 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2632 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2633 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2634 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2635 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2636 
2637 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2638 int intel_engines_init(struct drm_i915_private *dev_priv);
2639 
2640 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv);
2641 
2642 /* intel_hotplug.c */
2643 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2644 			   u32 pin_mask, u32 long_mask);
2645 void intel_hpd_init(struct drm_i915_private *dev_priv);
2646 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2647 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2648 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2649 				   enum port port);
2650 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2651 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2652 
2653 /* i915_irq.c */
2654 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2655 {
2656 	unsigned long delay;
2657 
2658 	if (unlikely(!i915_modparams.enable_hangcheck))
2659 		return;
2660 
2661 	/* Don't continually defer the hangcheck so that it is always run at
2662 	 * least once after work has been scheduled on any ring. Otherwise,
2663 	 * we will ignore a hung ring if a second ring is kept busy.
2664 	 */
2665 
2666 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2667 	queue_delayed_work(system_long_wq,
2668 			   &dev_priv->gpu_error.hangcheck_work, delay);
2669 }
2670 
2671 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2672 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2673 int intel_irq_install(struct drm_i915_private *dev_priv);
2674 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2675 
2676 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2677 {
2678 	return dev_priv->gvt;
2679 }
2680 
2681 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2682 {
2683 	return dev_priv->vgpu.active;
2684 }
2685 
2686 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2687 			      enum pipe pipe);
2688 void
2689 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2690 		     u32 status_mask);
2691 
2692 void
2693 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2694 		      u32 status_mask);
2695 
2696 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2697 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2698 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2699 				   u32 mask,
2700 				   u32 bits);
2701 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2702 			    u32 interrupt_mask,
2703 			    u32 enabled_irq_mask);
2704 static inline void
2705 ilk_enable_display_irq(struct drm_i915_private *dev_priv, u32 bits)
2706 {
2707 	ilk_update_display_irq(dev_priv, bits, bits);
2708 }
2709 static inline void
2710 ilk_disable_display_irq(struct drm_i915_private *dev_priv, u32 bits)
2711 {
2712 	ilk_update_display_irq(dev_priv, bits, 0);
2713 }
2714 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2715 			 enum pipe pipe,
2716 			 u32 interrupt_mask,
2717 			 u32 enabled_irq_mask);
2718 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2719 				       enum pipe pipe, u32 bits)
2720 {
2721 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2722 }
2723 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2724 					enum pipe pipe, u32 bits)
2725 {
2726 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2727 }
2728 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2729 				  u32 interrupt_mask,
2730 				  u32 enabled_irq_mask);
2731 static inline void
2732 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, u32 bits)
2733 {
2734 	ibx_display_interrupt_update(dev_priv, bits, bits);
2735 }
2736 static inline void
2737 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, u32 bits)
2738 {
2739 	ibx_display_interrupt_update(dev_priv, bits, 0);
2740 }
2741 
2742 /* i915_gem.c */
2743 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2744 			  struct drm_file *file_priv);
2745 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2746 			 struct drm_file *file_priv);
2747 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2748 			  struct drm_file *file_priv);
2749 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2750 			struct drm_file *file_priv);
2751 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2752 			struct drm_file *file_priv);
2753 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2754 			      struct drm_file *file_priv);
2755 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2756 			     struct drm_file *file_priv);
2757 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2758 			      struct drm_file *file_priv);
2759 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2760 			       struct drm_file *file_priv);
2761 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2762 			struct drm_file *file_priv);
2763 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2764 			       struct drm_file *file);
2765 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2766 			       struct drm_file *file);
2767 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2768 			    struct drm_file *file_priv);
2769 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2770 			   struct drm_file *file_priv);
2771 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2772 			      struct drm_file *file_priv);
2773 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2774 			      struct drm_file *file_priv);
2775 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2776 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2777 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2778 			   struct drm_file *file);
2779 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2780 				struct drm_file *file_priv);
2781 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2782 			struct drm_file *file_priv);
2783 void i915_gem_sanitize(struct drm_i915_private *i915);
2784 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2785 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2786 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2787 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2788 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2789 
2790 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
2791 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2792 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2793 			 const struct drm_i915_gem_object_ops *ops);
2794 struct drm_i915_gem_object *
2795 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2796 struct drm_i915_gem_object *
2797 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2798 				 const void *data, size_t size);
2799 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2800 void i915_gem_free_object(struct drm_gem_object *obj);
2801 
2802 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2803 {
2804 	if (!atomic_read(&i915->mm.free_count))
2805 		return;
2806 
2807 	/* A single pass should suffice to release all the freed objects (along
2808 	 * most call paths) , but be a little more paranoid in that freeing
2809 	 * the objects does take a little amount of time, during which the rcu
2810 	 * callbacks could have added new objects into the freed list, and
2811 	 * armed the work again.
2812 	 */
2813 	do {
2814 		rcu_barrier();
2815 	} while (flush_work(&i915->mm.free_work));
2816 }
2817 
2818 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2819 {
2820 	/*
2821 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
2822 	 * general we have workers that are armed by RCU and then rearm
2823 	 * themselves in their callbacks. To be paranoid, we need to
2824 	 * drain the workqueue a second time after waiting for the RCU
2825 	 * grace period so that we catch work queued via RCU from the first
2826 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
2827 	 * a result, we make an assumption that we only don't require more
2828 	 * than 2 passes to catch all recursive RCU delayed work.
2829 	 *
2830 	 */
2831 	int pass = 2;
2832 	do {
2833 		rcu_barrier();
2834 		drain_workqueue(i915->wq);
2835 	} while (--pass);
2836 }
2837 
2838 struct i915_vma * __must_check
2839 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2840 			 const struct i915_ggtt_view *view,
2841 			 u64 size,
2842 			 u64 alignment,
2843 			 u64 flags);
2844 
2845 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
2846 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2847 
2848 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
2849 
2850 static inline int __sg_page_count(const struct scatterlist *sg)
2851 {
2852 	return sg->length >> PAGE_SHIFT;
2853 }
2854 
2855 struct scatterlist *
2856 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
2857 		       unsigned int n, unsigned int *offset);
2858 
2859 struct page *
2860 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
2861 			 unsigned int n);
2862 
2863 struct page *
2864 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
2865 			       unsigned int n);
2866 
2867 dma_addr_t
2868 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
2869 				unsigned long n);
2870 
2871 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2872 				 struct sg_table *pages,
2873 				 unsigned int sg_page_sizes);
2874 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2875 
2876 static inline int __must_check
2877 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2878 {
2879 	might_lock(&obj->mm.lock);
2880 
2881 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
2882 		return 0;
2883 
2884 	return __i915_gem_object_get_pages(obj);
2885 }
2886 
2887 static inline bool
2888 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
2889 {
2890 	return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
2891 }
2892 
2893 static inline void
2894 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2895 {
2896 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2897 
2898 	atomic_inc(&obj->mm.pages_pin_count);
2899 }
2900 
2901 static inline bool
2902 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
2903 {
2904 	return atomic_read(&obj->mm.pages_pin_count);
2905 }
2906 
2907 static inline void
2908 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2909 {
2910 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2911 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
2912 
2913 	atomic_dec(&obj->mm.pages_pin_count);
2914 }
2915 
2916 static inline void
2917 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2918 {
2919 	__i915_gem_object_unpin_pages(obj);
2920 }
2921 
2922 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock/struct_mutex */
2923 	I915_MM_NORMAL = 0,
2924 	I915_MM_SHRINKER /* called "recursively" from direct-reclaim-esque */
2925 };
2926 
2927 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2928 				enum i915_mm_subclass subclass);
2929 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
2930 
2931 enum i915_map_type {
2932 	I915_MAP_WB = 0,
2933 	I915_MAP_WC,
2934 #define I915_MAP_OVERRIDE BIT(31)
2935 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
2936 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
2937 };
2938 
2939 static inline enum i915_map_type
2940 i915_coherent_map_type(struct drm_i915_private *i915)
2941 {
2942 	return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
2943 }
2944 
2945 /**
2946  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
2947  * @obj: the object to map into kernel address space
2948  * @type: the type of mapping, used to select pgprot_t
2949  *
2950  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
2951  * pages and then returns a contiguous mapping of the backing storage into
2952  * the kernel address space. Based on the @type of mapping, the PTE will be
2953  * set to either WriteBack or WriteCombine (via pgprot_t).
2954  *
2955  * The caller is responsible for calling i915_gem_object_unpin_map() when the
2956  * mapping is no longer required.
2957  *
2958  * Returns the pointer through which to access the mapped object, or an
2959  * ERR_PTR() on error.
2960  */
2961 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2962 					   enum i915_map_type type);
2963 
2964 /**
2965  * i915_gem_object_unpin_map - releases an earlier mapping
2966  * @obj: the object to unmap
2967  *
2968  * After pinning the object and mapping its pages, once you are finished
2969  * with your access, call i915_gem_object_unpin_map() to release the pin
2970  * upon the mapping. Once the pin count reaches zero, that mapping may be
2971  * removed.
2972  */
2973 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
2974 {
2975 	i915_gem_object_unpin_pages(obj);
2976 }
2977 
2978 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
2979 				    unsigned int *needs_clflush);
2980 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
2981 				     unsigned int *needs_clflush);
2982 #define CLFLUSH_BEFORE	BIT(0)
2983 #define CLFLUSH_AFTER	BIT(1)
2984 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
2985 
2986 static inline void
2987 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
2988 {
2989 	i915_gem_object_unpin_pages(obj);
2990 }
2991 
2992 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
2993 int i915_gem_dumb_create(struct drm_file *file_priv,
2994 			 struct drm_device *dev,
2995 			 struct drm_mode_create_dumb *args);
2996 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
2997 		      u32 handle, u64 *offset);
2998 int i915_gem_mmap_gtt_version(void);
2999 
3000 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3001 		       struct drm_i915_gem_object *new,
3002 		       unsigned frontbuffer_bits);
3003 
3004 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3005 
3006 struct i915_request *
3007 i915_gem_find_active_request(struct intel_engine_cs *engine);
3008 
3009 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3010 {
3011 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3012 }
3013 
3014 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3015 {
3016 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3017 }
3018 
3019 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3020 {
3021 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3022 }
3023 
3024 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3025 {
3026 	return READ_ONCE(error->reset_count);
3027 }
3028 
3029 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3030 					  struct intel_engine_cs *engine)
3031 {
3032 	return READ_ONCE(error->reset_engine_count[engine->id]);
3033 }
3034 
3035 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3036 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3037 
3038 void i915_gem_init_mmio(struct drm_i915_private *i915);
3039 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3040 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3041 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3042 void i915_gem_fini(struct drm_i915_private *dev_priv);
3043 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3044 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3045 			   unsigned int flags, long timeout);
3046 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3047 void i915_gem_suspend_late(struct drm_i915_private *dev_priv);
3048 void i915_gem_resume(struct drm_i915_private *dev_priv);
3049 vm_fault_t i915_gem_fault(struct vm_fault *vmf);
3050 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3051 			 unsigned int flags,
3052 			 long timeout,
3053 			 struct intel_rps_client *rps);
3054 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3055 				  unsigned int flags,
3056 				  const struct i915_sched_attr *attr);
3057 #define I915_PRIORITY_DISPLAY I915_USER_PRIORITY(I915_PRIORITY_MAX)
3058 
3059 int __must_check
3060 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3061 int __must_check
3062 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3063 int __must_check
3064 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3065 struct i915_vma * __must_check
3066 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3067 				     u32 alignment,
3068 				     const struct i915_ggtt_view *view,
3069 				     unsigned int flags);
3070 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3071 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3072 				int align);
3073 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3074 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3075 
3076 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3077 				    enum i915_cache_level cache_level);
3078 
3079 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3080 				struct dma_buf *dma_buf);
3081 
3082 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3083 				struct drm_gem_object *gem_obj, int flags);
3084 
3085 static inline struct i915_hw_ppgtt *
3086 i915_vm_to_ppgtt(struct i915_address_space *vm)
3087 {
3088 	return container_of(vm, struct i915_hw_ppgtt, vm);
3089 }
3090 
3091 /* i915_gem_fence_reg.c */
3092 struct drm_i915_fence_reg *
3093 i915_reserve_fence(struct drm_i915_private *dev_priv);
3094 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3095 
3096 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3097 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3098 
3099 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3100 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3101 				       struct sg_table *pages);
3102 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3103 					 struct sg_table *pages);
3104 
3105 static inline struct i915_gem_context *
3106 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3107 {
3108 	return idr_find(&file_priv->context_idr, id);
3109 }
3110 
3111 static inline struct i915_gem_context *
3112 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3113 {
3114 	struct i915_gem_context *ctx;
3115 
3116 	rcu_read_lock();
3117 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3118 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3119 		ctx = NULL;
3120 	rcu_read_unlock();
3121 
3122 	return ctx;
3123 }
3124 
3125 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3126 			 struct drm_file *file);
3127 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3128 			       struct drm_file *file);
3129 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3130 				  struct drm_file *file);
3131 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3132 			    struct i915_gem_context *ctx,
3133 			    u32 *reg_state);
3134 
3135 /* i915_gem_evict.c */
3136 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3137 					  u64 min_size, u64 alignment,
3138 					  unsigned cache_level,
3139 					  u64 start, u64 end,
3140 					  unsigned flags);
3141 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3142 					 struct drm_mm_node *node,
3143 					 unsigned int flags);
3144 int i915_gem_evict_vm(struct i915_address_space *vm);
3145 
3146 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3147 
3148 /* belongs in i915_gem_gtt.h */
3149 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3150 {
3151 	wmb();
3152 	if (INTEL_GEN(dev_priv) < 6)
3153 		intel_gtt_chipset_flush();
3154 }
3155 
3156 /* i915_gem_stolen.c */
3157 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3158 				struct drm_mm_node *node, u64 size,
3159 				unsigned alignment);
3160 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3161 					 struct drm_mm_node *node, u64 size,
3162 					 unsigned alignment, u64 start,
3163 					 u64 end);
3164 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3165 				 struct drm_mm_node *node);
3166 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3167 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv);
3168 struct drm_i915_gem_object *
3169 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3170 			      resource_size_t size);
3171 struct drm_i915_gem_object *
3172 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3173 					       resource_size_t stolen_offset,
3174 					       resource_size_t gtt_offset,
3175 					       resource_size_t size);
3176 
3177 /* i915_gem_internal.c */
3178 struct drm_i915_gem_object *
3179 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3180 				phys_addr_t size);
3181 
3182 /* i915_gem_shrinker.c */
3183 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3184 			      unsigned long target,
3185 			      unsigned long *nr_scanned,
3186 			      unsigned flags);
3187 #define I915_SHRINK_PURGEABLE 0x1
3188 #define I915_SHRINK_UNBOUND 0x2
3189 #define I915_SHRINK_BOUND 0x4
3190 #define I915_SHRINK_ACTIVE 0x8
3191 #define I915_SHRINK_VMAPS 0x10
3192 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3193 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3194 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3195 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915,
3196 				    struct mutex *mutex);
3197 
3198 /* i915_gem_tiling.c */
3199 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3200 {
3201 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3202 
3203 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3204 		i915_gem_object_is_tiled(obj);
3205 }
3206 
3207 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3208 			unsigned int tiling, unsigned int stride);
3209 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3210 			     unsigned int tiling, unsigned int stride);
3211 
3212 /* i915_debugfs.c */
3213 #ifdef CONFIG_DEBUG_FS
3214 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3215 int i915_debugfs_connector_add(struct drm_connector *connector);
3216 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3217 #else
3218 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3219 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3220 { return 0; }
3221 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3222 #endif
3223 
3224 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3225 
3226 /* i915_cmd_parser.c */
3227 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3228 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3229 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3230 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3231 			    struct drm_i915_gem_object *batch_obj,
3232 			    struct drm_i915_gem_object *shadow_batch_obj,
3233 			    u32 batch_start_offset,
3234 			    u32 batch_len,
3235 			    bool is_master);
3236 
3237 /* i915_perf.c */
3238 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3239 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3240 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3241 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3242 
3243 /* i915_suspend.c */
3244 extern int i915_save_state(struct drm_i915_private *dev_priv);
3245 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3246 
3247 /* i915_sysfs.c */
3248 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3249 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3250 
3251 /* intel_lpe_audio.c */
3252 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3253 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3254 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3255 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3256 			    enum pipe pipe, enum port port,
3257 			    const void *eld, int ls_clock, bool dp_output);
3258 
3259 /* intel_i2c.c */
3260 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3261 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3262 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3263 				     unsigned int pin);
3264 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3265 
3266 extern struct i2c_adapter *
3267 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3268 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3269 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3270 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3271 {
3272 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3273 }
3274 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3275 
3276 /* intel_bios.c */
3277 void intel_bios_init(struct drm_i915_private *dev_priv);
3278 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3279 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3280 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3281 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3282 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3283 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3284 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3285 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3286 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3287 				     enum port port);
3288 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3289 				enum port port);
3290 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv, enum port port);
3291 
3292 /* intel_acpi.c */
3293 #ifdef CONFIG_ACPI
3294 extern void intel_register_dsm_handler(void);
3295 extern void intel_unregister_dsm_handler(void);
3296 #else
3297 static inline void intel_register_dsm_handler(void) { return; }
3298 static inline void intel_unregister_dsm_handler(void) { return; }
3299 #endif /* CONFIG_ACPI */
3300 
3301 /* intel_device_info.c */
3302 static inline struct intel_device_info *
3303 mkwrite_device_info(struct drm_i915_private *dev_priv)
3304 {
3305 	return (struct intel_device_info *)INTEL_INFO(dev_priv);
3306 }
3307 
3308 /* modesetting */
3309 extern void intel_modeset_init_hw(struct drm_device *dev);
3310 extern int intel_modeset_init(struct drm_device *dev);
3311 extern void intel_modeset_cleanup(struct drm_device *dev);
3312 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3313 				       bool state);
3314 extern void intel_display_resume(struct drm_device *dev);
3315 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3316 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3317 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3318 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3319 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3320 extern void intel_rps_mark_interactive(struct drm_i915_private *i915,
3321 				       bool interactive);
3322 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3323 				  bool enable);
3324 void intel_dsc_enable(struct intel_encoder *encoder,
3325 		      const struct intel_crtc_state *crtc_state);
3326 void intel_dsc_disable(const struct intel_crtc_state *crtc_state);
3327 
3328 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3329 			struct drm_file *file);
3330 
3331 /* overlay */
3332 extern struct intel_overlay_error_state *
3333 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3334 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3335 					    struct intel_overlay_error_state *error);
3336 
3337 extern struct intel_display_error_state *
3338 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3339 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3340 					    struct intel_display_error_state *error);
3341 
3342 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3343 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3344 				    u32 val, int fast_timeout_us,
3345 				    int slow_timeout_ms);
3346 #define sandybridge_pcode_write(dev_priv, mbox, val)	\
3347 	sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3348 
3349 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3350 		      u32 reply_mask, u32 reply, int timeout_base_ms);
3351 
3352 /* intel_sideband.c */
3353 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3354 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3355 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3356 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3357 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3358 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3359 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3360 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3361 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3362 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3363 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3364 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3365 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3366 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3367 		   enum intel_sbi_destination destination);
3368 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3369 		     enum intel_sbi_destination destination);
3370 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3371 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3372 
3373 /* intel_dpio_phy.c */
3374 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3375 			     enum dpio_phy *phy, enum dpio_channel *ch);
3376 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3377 				  enum port port, u32 margin, u32 scale,
3378 				  u32 enable, u32 deemphasis);
3379 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3380 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3381 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3382 			    enum dpio_phy phy);
3383 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3384 			      enum dpio_phy phy);
3385 u8 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count);
3386 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3387 				     u8 lane_lat_optim_mask);
3388 u8 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3389 
3390 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3391 			      u32 deemph_reg_value, u32 margin_reg_value,
3392 			      bool uniq_trans_scale);
3393 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3394 			      const struct intel_crtc_state *crtc_state,
3395 			      bool reset);
3396 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3397 			    const struct intel_crtc_state *crtc_state);
3398 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3399 				const struct intel_crtc_state *crtc_state);
3400 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3401 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3402 			      const struct intel_crtc_state *old_crtc_state);
3403 
3404 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3405 			      u32 demph_reg_value, u32 preemph_reg_value,
3406 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3407 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3408 			    const struct intel_crtc_state *crtc_state);
3409 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3410 				const struct intel_crtc_state *crtc_state);
3411 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3412 			 const struct intel_crtc_state *old_crtc_state);
3413 
3414 /* intel_combo_phy.c */
3415 void icl_combo_phys_init(struct drm_i915_private *dev_priv);
3416 void icl_combo_phys_uninit(struct drm_i915_private *dev_priv);
3417 void cnl_combo_phys_init(struct drm_i915_private *dev_priv);
3418 void cnl_combo_phys_uninit(struct drm_i915_private *dev_priv);
3419 
3420 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3421 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3422 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3423 			   const i915_reg_t reg);
3424 
3425 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3426 
3427 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3428 					 const i915_reg_t reg)
3429 {
3430 	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3431 }
3432 
3433 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3434 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3435 
3436 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3437 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3438 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3439 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3440 
3441 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3442 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3443 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3444 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3445 
3446 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3447  * will be implemented using 2 32-bit writes in an arbitrary order with
3448  * an arbitrary delay between them. This can cause the hardware to
3449  * act upon the intermediate value, possibly leading to corruption and
3450  * machine death. For this reason we do not support I915_WRITE64, or
3451  * dev_priv->uncore.funcs.mmio_writeq.
3452  *
3453  * When reading a 64-bit value as two 32-bit values, the delay may cause
3454  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3455  * occasionally a 64-bit register does not actualy support a full readq
3456  * and must be read using two 32-bit reads.
3457  *
3458  * You have been warned.
3459  */
3460 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3461 
3462 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
3463 	u32 upper, lower, old_upper, loop = 0;				\
3464 	upper = I915_READ(upper_reg);					\
3465 	do {								\
3466 		old_upper = upper;					\
3467 		lower = I915_READ(lower_reg);				\
3468 		upper = I915_READ(upper_reg);				\
3469 	} while (upper != old_upper && loop++ < 2);			\
3470 	(u64)upper << 32 | lower; })
3471 
3472 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
3473 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
3474 
3475 #define __raw_read(x, s) \
3476 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3477 					     i915_reg_t reg) \
3478 { \
3479 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3480 }
3481 
3482 #define __raw_write(x, s) \
3483 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3484 				       i915_reg_t reg, uint##x##_t val) \
3485 { \
3486 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3487 }
3488 __raw_read(8, b)
3489 __raw_read(16, w)
3490 __raw_read(32, l)
3491 __raw_read(64, q)
3492 
3493 __raw_write(8, b)
3494 __raw_write(16, w)
3495 __raw_write(32, l)
3496 __raw_write(64, q)
3497 
3498 #undef __raw_read
3499 #undef __raw_write
3500 
3501 /* These are untraced mmio-accessors that are only valid to be used inside
3502  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3503  * controlled.
3504  *
3505  * Think twice, and think again, before using these.
3506  *
3507  * As an example, these accessors can possibly be used between:
3508  *
3509  * spin_lock_irq(&dev_priv->uncore.lock);
3510  * intel_uncore_forcewake_get__locked();
3511  *
3512  * and
3513  *
3514  * intel_uncore_forcewake_put__locked();
3515  * spin_unlock_irq(&dev_priv->uncore.lock);
3516  *
3517  *
3518  * Note: some registers may not need forcewake held, so
3519  * intel_uncore_forcewake_{get,put} can be omitted, see
3520  * intel_uncore_forcewake_for_reg().
3521  *
3522  * Certain architectures will die if the same cacheline is concurrently accessed
3523  * by different clients (e.g. on Ivybridge). Access to registers should
3524  * therefore generally be serialised, by either the dev_priv->uncore.lock or
3525  * a more localised lock guarding all access to that bank of registers.
3526  */
3527 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3528 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3529 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3530 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3531 
3532 /* "Broadcast RGB" property */
3533 #define INTEL_BROADCAST_RGB_AUTO 0
3534 #define INTEL_BROADCAST_RGB_FULL 1
3535 #define INTEL_BROADCAST_RGB_LIMITED 2
3536 
3537 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3538 {
3539 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3540 		return VLV_VGACNTRL;
3541 	else if (INTEL_GEN(dev_priv) >= 5)
3542 		return CPU_VGACNTRL;
3543 	else
3544 		return VGACNTRL;
3545 }
3546 
3547 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3548 {
3549 	unsigned long j = msecs_to_jiffies(m);
3550 
3551 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3552 }
3553 
3554 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3555 {
3556 	/* nsecs_to_jiffies64() does not guard against overflow */
3557 	if (NSEC_PER_SEC % HZ &&
3558 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3559 		return MAX_JIFFY_OFFSET;
3560 
3561         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3562 }
3563 
3564 /*
3565  * If you need to wait X milliseconds between events A and B, but event B
3566  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3567  * when event A happened, then just before event B you call this function and
3568  * pass the timestamp as the first argument, and X as the second argument.
3569  */
3570 static inline void
3571 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3572 {
3573 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3574 
3575 	/*
3576 	 * Don't re-read the value of "jiffies" every time since it may change
3577 	 * behind our back and break the math.
3578 	 */
3579 	tmp_jiffies = jiffies;
3580 	target_jiffies = timestamp_jiffies +
3581 			 msecs_to_jiffies_timeout(to_wait_ms);
3582 
3583 	if (time_after(target_jiffies, tmp_jiffies)) {
3584 		remaining_jiffies = target_jiffies - tmp_jiffies;
3585 		while (remaining_jiffies)
3586 			remaining_jiffies =
3587 			    schedule_timeout_uninterruptible(remaining_jiffies);
3588 	}
3589 }
3590 
3591 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3592 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3593 
3594 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3595  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3596  * perform the operation. To check beforehand, pass in the parameters to
3597  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3598  * you only need to pass in the minor offsets, page-aligned pointers are
3599  * always valid.
3600  *
3601  * For just checking for SSE4.1, in the foreknowledge that the future use
3602  * will be correctly aligned, just use i915_has_memcpy_from_wc().
3603  */
3604 #define i915_can_memcpy_from_wc(dst, src, len) \
3605 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3606 
3607 #define i915_has_memcpy_from_wc() \
3608 	i915_memcpy_from_wc(NULL, NULL, 0)
3609 
3610 /* i915_mm.c */
3611 int remap_io_mapping(struct vm_area_struct *vma,
3612 		     unsigned long addr, unsigned long pfn, unsigned long size,
3613 		     struct io_mapping *iomap);
3614 
3615 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3616 {
3617 	if (INTEL_GEN(i915) >= 10)
3618 		return CNL_HWS_CSB_WRITE_INDEX;
3619 	else
3620 		return I915_HWS_CSB_WRITE_INDEX;
3621 }
3622 
3623 static inline u32 i915_scratch_offset(const struct drm_i915_private *i915)
3624 {
3625 	return i915_ggtt_offset(i915->gt.scratch);
3626 }
3627 
3628 #endif
3629