xref: /openbmc/linux/drivers/gpu/drm/i915/i915_drv.h (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/mm_types.h>
44 #include <linux/perf_event.h>
45 #include <linux/pm_qos.h>
46 #include <linux/reservation.h>
47 #include <linux/shmem_fs.h>
48 
49 #include <drm/drmP.h>
50 #include <drm/intel-gtt.h>
51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
52 #include <drm/drm_gem.h>
53 #include <drm/drm_auth.h>
54 #include <drm/drm_cache.h>
55 #include <drm/drm_util.h>
56 #include <drm/drm_dsc.h>
57 
58 #include "i915_fixed.h"
59 #include "i915_params.h"
60 #include "i915_reg.h"
61 #include "i915_utils.h"
62 
63 #include "intel_bios.h"
64 #include "intel_device_info.h"
65 #include "intel_display.h"
66 #include "intel_dpll_mgr.h"
67 #include "intel_lrc.h"
68 #include "intel_opregion.h"
69 #include "intel_ringbuffer.h"
70 #include "intel_uncore.h"
71 #include "intel_wopcm.h"
72 #include "intel_workarounds.h"
73 #include "intel_uc.h"
74 
75 #include "i915_gem.h"
76 #include "i915_gem_context.h"
77 #include "i915_gem_fence_reg.h"
78 #include "i915_gem_object.h"
79 #include "i915_gem_gtt.h"
80 #include "i915_gpu_error.h"
81 #include "i915_request.h"
82 #include "i915_scheduler.h"
83 #include "i915_timeline.h"
84 #include "i915_vma.h"
85 
86 #include "intel_gvt.h"
87 
88 /* General customization:
89  */
90 
91 #define DRIVER_NAME		"i915"
92 #define DRIVER_DESC		"Intel Graphics"
93 #define DRIVER_DATE		"20181204"
94 #define DRIVER_TIMESTAMP	1543944377
95 
96 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
97  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
98  * which may not necessarily be a user visible problem.  This will either
99  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
100  * enable distros and users to tailor their preferred amount of i915 abrt
101  * spam.
102  */
103 #define I915_STATE_WARN(condition, format...) ({			\
104 	int __ret_warn_on = !!(condition);				\
105 	if (unlikely(__ret_warn_on))					\
106 		if (!WARN(i915_modparams.verbose_state_checks, format))	\
107 			DRM_ERROR(format);				\
108 	unlikely(__ret_warn_on);					\
109 })
110 
111 #define I915_STATE_WARN_ON(x)						\
112 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
113 
114 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
115 
116 bool __i915_inject_load_failure(const char *func, int line);
117 #define i915_inject_load_failure() \
118 	__i915_inject_load_failure(__func__, __LINE__)
119 
120 bool i915_error_injected(void);
121 
122 #else
123 
124 #define i915_inject_load_failure() false
125 #define i915_error_injected() false
126 
127 #endif
128 
129 #define i915_load_error(i915, fmt, ...)					 \
130 	__i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
131 		      fmt, ##__VA_ARGS__)
132 
133 enum hpd_pin {
134 	HPD_NONE = 0,
135 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
136 	HPD_CRT,
137 	HPD_SDVO_B,
138 	HPD_SDVO_C,
139 	HPD_PORT_A,
140 	HPD_PORT_B,
141 	HPD_PORT_C,
142 	HPD_PORT_D,
143 	HPD_PORT_E,
144 	HPD_PORT_F,
145 	HPD_NUM_PINS
146 };
147 
148 #define for_each_hpd_pin(__pin) \
149 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
150 
151 /* Threshold == 5 for long IRQs, 50 for short */
152 #define HPD_STORM_DEFAULT_THRESHOLD 50
153 
154 struct i915_hotplug {
155 	struct work_struct hotplug_work;
156 
157 	struct {
158 		unsigned long last_jiffies;
159 		int count;
160 		enum {
161 			HPD_ENABLED = 0,
162 			HPD_DISABLED = 1,
163 			HPD_MARK_DISABLED = 2
164 		} state;
165 	} stats[HPD_NUM_PINS];
166 	u32 event_bits;
167 	struct delayed_work reenable_work;
168 
169 	u32 long_port_mask;
170 	u32 short_port_mask;
171 	struct work_struct dig_port_work;
172 
173 	struct work_struct poll_init_work;
174 	bool poll_enabled;
175 
176 	unsigned int hpd_storm_threshold;
177 	/* Whether or not to count short HPD IRQs in HPD storms */
178 	u8 hpd_short_storm_enabled;
179 
180 	/*
181 	 * if we get a HPD irq from DP and a HPD irq from non-DP
182 	 * the non-DP HPD could block the workqueue on a mode config
183 	 * mutex getting, that userspace may have taken. However
184 	 * userspace is waiting on the DP workqueue to run which is
185 	 * blocked behind the non-DP one.
186 	 */
187 	struct workqueue_struct *dp_wq;
188 };
189 
190 #define I915_GEM_GPU_DOMAINS \
191 	(I915_GEM_DOMAIN_RENDER | \
192 	 I915_GEM_DOMAIN_SAMPLER | \
193 	 I915_GEM_DOMAIN_COMMAND | \
194 	 I915_GEM_DOMAIN_INSTRUCTION | \
195 	 I915_GEM_DOMAIN_VERTEX)
196 
197 struct drm_i915_private;
198 struct i915_mm_struct;
199 struct i915_mmu_object;
200 
201 struct drm_i915_file_private {
202 	struct drm_i915_private *dev_priv;
203 	struct drm_file *file;
204 
205 	struct {
206 		spinlock_t lock;
207 		struct list_head request_list;
208 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
209  * chosen to prevent the CPU getting more than a frame ahead of the GPU
210  * (when using lax throttling for the frontbuffer). We also use it to
211  * offer free GPU waitboosts for severely congested workloads.
212  */
213 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
214 	} mm;
215 	struct idr context_idr;
216 
217 	struct intel_rps_client {
218 		atomic_t boosts;
219 	} rps_client;
220 
221 	unsigned int bsd_engine;
222 
223 /*
224  * Every context ban increments per client ban score. Also
225  * hangs in short succession increments ban score. If ban threshold
226  * is reached, client is considered banned and submitting more work
227  * will fail. This is a stop gap measure to limit the badly behaving
228  * clients access to gpu. Note that unbannable contexts never increment
229  * the client ban score.
230  */
231 #define I915_CLIENT_SCORE_HANG_FAST	1
232 #define   I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ)
233 #define I915_CLIENT_SCORE_CONTEXT_BAN   3
234 #define I915_CLIENT_SCORE_BANNED	9
235 	/** ban_score: Accumulated score of all ctx bans and fast hangs. */
236 	atomic_t ban_score;
237 	unsigned long hang_timestamp;
238 };
239 
240 /* Interface history:
241  *
242  * 1.1: Original.
243  * 1.2: Add Power Management
244  * 1.3: Add vblank support
245  * 1.4: Fix cmdbuffer path, add heap destroy
246  * 1.5: Add vblank pipe configuration
247  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
248  *      - Support vertical blank on secondary display pipe
249  */
250 #define DRIVER_MAJOR		1
251 #define DRIVER_MINOR		6
252 #define DRIVER_PATCHLEVEL	0
253 
254 struct intel_overlay;
255 struct intel_overlay_error_state;
256 
257 struct sdvo_device_mapping {
258 	u8 initialized;
259 	u8 dvo_port;
260 	u8 slave_addr;
261 	u8 dvo_wiring;
262 	u8 i2c_pin;
263 	u8 ddc_pin;
264 };
265 
266 struct intel_connector;
267 struct intel_encoder;
268 struct intel_atomic_state;
269 struct intel_crtc_state;
270 struct intel_initial_plane_config;
271 struct intel_crtc;
272 struct intel_limit;
273 struct dpll;
274 struct intel_cdclk_state;
275 
276 struct drm_i915_display_funcs {
277 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
278 			  struct intel_cdclk_state *cdclk_state);
279 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
280 			  const struct intel_cdclk_state *cdclk_state);
281 	int (*get_fifo_size)(struct drm_i915_private *dev_priv,
282 			     enum i9xx_plane_id i9xx_plane);
283 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
284 	int (*compute_intermediate_wm)(struct drm_device *dev,
285 				       struct intel_crtc *intel_crtc,
286 				       struct intel_crtc_state *newstate);
287 	void (*initial_watermarks)(struct intel_atomic_state *state,
288 				   struct intel_crtc_state *cstate);
289 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
290 					 struct intel_crtc_state *cstate);
291 	void (*optimize_watermarks)(struct intel_atomic_state *state,
292 				    struct intel_crtc_state *cstate);
293 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
294 	void (*update_wm)(struct intel_crtc *crtc);
295 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
296 	/* Returns the active state of the crtc, and if the crtc is active,
297 	 * fills out the pipe-config with the hw state. */
298 	bool (*get_pipe_config)(struct intel_crtc *,
299 				struct intel_crtc_state *);
300 	void (*get_initial_plane_config)(struct intel_crtc *,
301 					 struct intel_initial_plane_config *);
302 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
303 				  struct intel_crtc_state *crtc_state);
304 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
305 			    struct drm_atomic_state *old_state);
306 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
307 			     struct drm_atomic_state *old_state);
308 	void (*update_crtcs)(struct drm_atomic_state *state);
309 	void (*audio_codec_enable)(struct intel_encoder *encoder,
310 				   const struct intel_crtc_state *crtc_state,
311 				   const struct drm_connector_state *conn_state);
312 	void (*audio_codec_disable)(struct intel_encoder *encoder,
313 				    const struct intel_crtc_state *old_crtc_state,
314 				    const struct drm_connector_state *old_conn_state);
315 	void (*fdi_link_train)(struct intel_crtc *crtc,
316 			       const struct intel_crtc_state *crtc_state);
317 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
318 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
319 	/* clock updates for mode set */
320 	/* cursor updates */
321 	/* render clock increase/decrease */
322 	/* display clock increase/decrease */
323 	/* pll clock increase/decrease */
324 
325 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
326 	void (*load_luts)(struct drm_crtc_state *crtc_state);
327 };
328 
329 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
330 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
331 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
332 
333 struct intel_csr {
334 	struct work_struct work;
335 	const char *fw_path;
336 	uint32_t required_version;
337 	uint32_t max_fw_size; /* bytes */
338 	uint32_t *dmc_payload;
339 	uint32_t dmc_fw_size; /* dwords */
340 	uint32_t version;
341 	uint32_t mmio_count;
342 	i915_reg_t mmioaddr[8];
343 	uint32_t mmiodata[8];
344 	uint32_t dc_state;
345 	uint32_t allowed_dc_mask;
346 };
347 
348 enum i915_cache_level {
349 	I915_CACHE_NONE = 0,
350 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
351 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
352 			      caches, eg sampler/render caches, and the
353 			      large Last-Level-Cache. LLC is coherent with
354 			      the CPU, but L3 is only visible to the GPU. */
355 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
356 };
357 
358 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
359 
360 enum fb_op_origin {
361 	ORIGIN_GTT,
362 	ORIGIN_CPU,
363 	ORIGIN_CS,
364 	ORIGIN_FLIP,
365 	ORIGIN_DIRTYFB,
366 };
367 
368 struct intel_fbc {
369 	/* This is always the inner lock when overlapping with struct_mutex and
370 	 * it's the outer lock when overlapping with stolen_lock. */
371 	struct mutex lock;
372 	unsigned threshold;
373 	unsigned int possible_framebuffer_bits;
374 	unsigned int busy_bits;
375 	unsigned int visible_pipes_mask;
376 	struct intel_crtc *crtc;
377 
378 	struct drm_mm_node compressed_fb;
379 	struct drm_mm_node *compressed_llb;
380 
381 	bool false_color;
382 
383 	bool enabled;
384 	bool active;
385 	bool flip_pending;
386 
387 	bool underrun_detected;
388 	struct work_struct underrun_work;
389 
390 	/*
391 	 * Due to the atomic rules we can't access some structures without the
392 	 * appropriate locking, so we cache information here in order to avoid
393 	 * these problems.
394 	 */
395 	struct intel_fbc_state_cache {
396 		struct i915_vma *vma;
397 		unsigned long flags;
398 
399 		struct {
400 			unsigned int mode_flags;
401 			uint32_t hsw_bdw_pixel_rate;
402 		} crtc;
403 
404 		struct {
405 			unsigned int rotation;
406 			int src_w;
407 			int src_h;
408 			bool visible;
409 			/*
410 			 * Display surface base address adjustement for
411 			 * pageflips. Note that on gen4+ this only adjusts up
412 			 * to a tile, offsets within a tile are handled in
413 			 * the hw itself (with the TILEOFF register).
414 			 */
415 			int adjusted_x;
416 			int adjusted_y;
417 
418 			int y;
419 
420 			uint16_t pixel_blend_mode;
421 		} plane;
422 
423 		struct {
424 			const struct drm_format_info *format;
425 			unsigned int stride;
426 		} fb;
427 	} state_cache;
428 
429 	/*
430 	 * This structure contains everything that's relevant to program the
431 	 * hardware registers. When we want to figure out if we need to disable
432 	 * and re-enable FBC for a new configuration we just check if there's
433 	 * something different in the struct. The genx_fbc_activate functions
434 	 * are supposed to read from it in order to program the registers.
435 	 */
436 	struct intel_fbc_reg_params {
437 		struct i915_vma *vma;
438 		unsigned long flags;
439 
440 		struct {
441 			enum pipe pipe;
442 			enum i9xx_plane_id i9xx_plane;
443 			unsigned int fence_y_offset;
444 		} crtc;
445 
446 		struct {
447 			const struct drm_format_info *format;
448 			unsigned int stride;
449 		} fb;
450 
451 		int cfb_size;
452 		unsigned int gen9_wa_cfb_stride;
453 	} params;
454 
455 	const char *no_fbc_reason;
456 };
457 
458 /*
459  * HIGH_RR is the highest eDP panel refresh rate read from EDID
460  * LOW_RR is the lowest eDP panel refresh rate found from EDID
461  * parsing for same resolution.
462  */
463 enum drrs_refresh_rate_type {
464 	DRRS_HIGH_RR,
465 	DRRS_LOW_RR,
466 	DRRS_MAX_RR, /* RR count */
467 };
468 
469 enum drrs_support_type {
470 	DRRS_NOT_SUPPORTED = 0,
471 	STATIC_DRRS_SUPPORT = 1,
472 	SEAMLESS_DRRS_SUPPORT = 2
473 };
474 
475 struct intel_dp;
476 struct i915_drrs {
477 	struct mutex mutex;
478 	struct delayed_work work;
479 	struct intel_dp *dp;
480 	unsigned busy_frontbuffer_bits;
481 	enum drrs_refresh_rate_type refresh_rate_type;
482 	enum drrs_support_type type;
483 };
484 
485 struct i915_psr {
486 	struct mutex lock;
487 
488 #define I915_PSR_DEBUG_MODE_MASK	0x0f
489 #define I915_PSR_DEBUG_DEFAULT		0x00
490 #define I915_PSR_DEBUG_DISABLE		0x01
491 #define I915_PSR_DEBUG_ENABLE		0x02
492 #define I915_PSR_DEBUG_FORCE_PSR1	0x03
493 #define I915_PSR_DEBUG_IRQ		0x10
494 
495 	u32 debug;
496 	bool sink_support;
497 	bool prepared, enabled;
498 	struct intel_dp *dp;
499 	enum pipe pipe;
500 	bool active;
501 	struct work_struct work;
502 	unsigned busy_frontbuffer_bits;
503 	bool sink_psr2_support;
504 	bool link_standby;
505 	bool colorimetry_support;
506 	bool psr2_enabled;
507 	u8 sink_sync_latency;
508 	ktime_t last_entry_attempt;
509 	ktime_t last_exit;
510 	bool sink_not_reliable;
511 	bool irq_aux_error;
512 };
513 
514 enum intel_pch {
515 	PCH_NONE = 0,	/* No PCH present */
516 	PCH_IBX,	/* Ibexpeak PCH */
517 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
518 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
519 	PCH_SPT,        /* Sunrisepoint PCH */
520 	PCH_KBP,        /* Kaby Lake PCH */
521 	PCH_CNP,        /* Cannon Lake PCH */
522 	PCH_ICP,	/* Ice Lake PCH */
523 	PCH_NOP,	/* PCH without south display */
524 };
525 
526 enum intel_sbi_destination {
527 	SBI_ICLK,
528 	SBI_MPHY,
529 };
530 
531 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
532 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
533 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
534 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
535 #define QUIRK_INCREASE_T12_DELAY (1<<6)
536 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7)
537 
538 struct intel_fbdev;
539 struct intel_fbc_work;
540 
541 struct intel_gmbus {
542 	struct i2c_adapter adapter;
543 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
544 	u32 force_bit;
545 	u32 reg0;
546 	i915_reg_t gpio_reg;
547 	struct i2c_algo_bit_data bit_algo;
548 	struct drm_i915_private *dev_priv;
549 };
550 
551 struct i915_suspend_saved_registers {
552 	u32 saveDSPARB;
553 	u32 saveFBC_CONTROL;
554 	u32 saveCACHE_MODE_0;
555 	u32 saveMI_ARB_STATE;
556 	u32 saveSWF0[16];
557 	u32 saveSWF1[16];
558 	u32 saveSWF3[3];
559 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
560 	u32 savePCH_PORT_HOTPLUG;
561 	u16 saveGCDGMBUS;
562 };
563 
564 struct vlv_s0ix_state {
565 	/* GAM */
566 	u32 wr_watermark;
567 	u32 gfx_prio_ctrl;
568 	u32 arb_mode;
569 	u32 gfx_pend_tlb0;
570 	u32 gfx_pend_tlb1;
571 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
572 	u32 media_max_req_count;
573 	u32 gfx_max_req_count;
574 	u32 render_hwsp;
575 	u32 ecochk;
576 	u32 bsd_hwsp;
577 	u32 blt_hwsp;
578 	u32 tlb_rd_addr;
579 
580 	/* MBC */
581 	u32 g3dctl;
582 	u32 gsckgctl;
583 	u32 mbctl;
584 
585 	/* GCP */
586 	u32 ucgctl1;
587 	u32 ucgctl3;
588 	u32 rcgctl1;
589 	u32 rcgctl2;
590 	u32 rstctl;
591 	u32 misccpctl;
592 
593 	/* GPM */
594 	u32 gfxpause;
595 	u32 rpdeuhwtc;
596 	u32 rpdeuc;
597 	u32 ecobus;
598 	u32 pwrdwnupctl;
599 	u32 rp_down_timeout;
600 	u32 rp_deucsw;
601 	u32 rcubmabdtmr;
602 	u32 rcedata;
603 	u32 spare2gh;
604 
605 	/* Display 1 CZ domain */
606 	u32 gt_imr;
607 	u32 gt_ier;
608 	u32 pm_imr;
609 	u32 pm_ier;
610 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
611 
612 	/* GT SA CZ domain */
613 	u32 tilectl;
614 	u32 gt_fifoctl;
615 	u32 gtlc_wake_ctrl;
616 	u32 gtlc_survive;
617 	u32 pmwgicz;
618 
619 	/* Display 2 CZ domain */
620 	u32 gu_ctl0;
621 	u32 gu_ctl1;
622 	u32 pcbr;
623 	u32 clock_gate_dis2;
624 };
625 
626 struct intel_rps_ei {
627 	ktime_t ktime;
628 	u32 render_c0;
629 	u32 media_c0;
630 };
631 
632 struct intel_rps {
633 	/*
634 	 * work, interrupts_enabled and pm_iir are protected by
635 	 * dev_priv->irq_lock
636 	 */
637 	struct work_struct work;
638 	bool interrupts_enabled;
639 	u32 pm_iir;
640 
641 	/* PM interrupt bits that should never be masked */
642 	u32 pm_intrmsk_mbz;
643 
644 	/* Frequencies are stored in potentially platform dependent multiples.
645 	 * In other words, *_freq needs to be multiplied by X to be interesting.
646 	 * Soft limits are those which are used for the dynamic reclocking done
647 	 * by the driver (raise frequencies under heavy loads, and lower for
648 	 * lighter loads). Hard limits are those imposed by the hardware.
649 	 *
650 	 * A distinction is made for overclocking, which is never enabled by
651 	 * default, and is considered to be above the hard limit if it's
652 	 * possible at all.
653 	 */
654 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
655 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
656 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
657 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
658 	u8 min_freq;		/* AKA RPn. Minimum frequency */
659 	u8 boost_freq;		/* Frequency to request when wait boosting */
660 	u8 idle_freq;		/* Frequency to request when we are idle */
661 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
662 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
663 	u8 rp0_freq;		/* Non-overclocked max frequency. */
664 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
665 
666 	int last_adj;
667 
668 	struct {
669 		struct mutex mutex;
670 
671 		enum { LOW_POWER, BETWEEN, HIGH_POWER } mode;
672 		unsigned int interactive;
673 
674 		u8 up_threshold; /* Current %busy required to uplock */
675 		u8 down_threshold; /* Current %busy required to downclock */
676 	} power;
677 
678 	bool enabled;
679 	atomic_t num_waiters;
680 	atomic_t boosts;
681 
682 	/* manual wa residency calculations */
683 	struct intel_rps_ei ei;
684 };
685 
686 struct intel_rc6 {
687 	bool enabled;
688 	u64 prev_hw_residency[4];
689 	u64 cur_residency[4];
690 };
691 
692 struct intel_llc_pstate {
693 	bool enabled;
694 };
695 
696 struct intel_gen6_power_mgmt {
697 	struct intel_rps rps;
698 	struct intel_rc6 rc6;
699 	struct intel_llc_pstate llc_pstate;
700 };
701 
702 /* defined intel_pm.c */
703 extern spinlock_t mchdev_lock;
704 
705 struct intel_ilk_power_mgmt {
706 	u8 cur_delay;
707 	u8 min_delay;
708 	u8 max_delay;
709 	u8 fmax;
710 	u8 fstart;
711 
712 	u64 last_count1;
713 	unsigned long last_time1;
714 	unsigned long chipset_power;
715 	u64 last_count2;
716 	u64 last_time2;
717 	unsigned long gfx_power;
718 	u8 corr;
719 
720 	int c_m;
721 	int r_t;
722 };
723 
724 struct drm_i915_private;
725 struct i915_power_well;
726 
727 struct i915_power_well_ops {
728 	/*
729 	 * Synchronize the well's hw state to match the current sw state, for
730 	 * example enable/disable it based on the current refcount. Called
731 	 * during driver init and resume time, possibly after first calling
732 	 * the enable/disable handlers.
733 	 */
734 	void (*sync_hw)(struct drm_i915_private *dev_priv,
735 			struct i915_power_well *power_well);
736 	/*
737 	 * Enable the well and resources that depend on it (for example
738 	 * interrupts located on the well). Called after the 0->1 refcount
739 	 * transition.
740 	 */
741 	void (*enable)(struct drm_i915_private *dev_priv,
742 		       struct i915_power_well *power_well);
743 	/*
744 	 * Disable the well and resources that depend on it. Called after
745 	 * the 1->0 refcount transition.
746 	 */
747 	void (*disable)(struct drm_i915_private *dev_priv,
748 			struct i915_power_well *power_well);
749 	/* Returns the hw enabled state. */
750 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
751 			   struct i915_power_well *power_well);
752 };
753 
754 struct i915_power_well_regs {
755 	i915_reg_t bios;
756 	i915_reg_t driver;
757 	i915_reg_t kvmr;
758 	i915_reg_t debug;
759 };
760 
761 /* Power well structure for haswell */
762 struct i915_power_well_desc {
763 	const char *name;
764 	bool always_on;
765 	u64 domains;
766 	/* unique identifier for this power well */
767 	enum i915_power_well_id id;
768 	/*
769 	 * Arbitraty data associated with this power well. Platform and power
770 	 * well specific.
771 	 */
772 	union {
773 		struct {
774 			/*
775 			 * request/status flag index in the PUNIT power well
776 			 * control/status registers.
777 			 */
778 			u8 idx;
779 		} vlv;
780 		struct {
781 			enum dpio_phy phy;
782 		} bxt;
783 		struct {
784 			const struct i915_power_well_regs *regs;
785 			/*
786 			 * request/status flag index in the power well
787 			 * constrol/status registers.
788 			 */
789 			u8 idx;
790 			/* Mask of pipes whose IRQ logic is backed by the pw */
791 			u8 irq_pipe_mask;
792 			/* The pw is backing the VGA functionality */
793 			bool has_vga:1;
794 			bool has_fuses:1;
795 			/*
796 			 * The pw is for an ICL+ TypeC PHY port in
797 			 * Thunderbolt mode.
798 			 */
799 			bool is_tc_tbt:1;
800 		} hsw;
801 	};
802 	const struct i915_power_well_ops *ops;
803 };
804 
805 struct i915_power_well {
806 	const struct i915_power_well_desc *desc;
807 	/* power well enable/disable usage count */
808 	int count;
809 	/* cached hw enabled state */
810 	bool hw_enabled;
811 };
812 
813 struct i915_power_domains {
814 	/*
815 	 * Power wells needed for initialization at driver init and suspend
816 	 * time are on. They are kept on until after the first modeset.
817 	 */
818 	bool initializing;
819 	bool display_core_suspended;
820 	int power_well_count;
821 
822 	struct mutex lock;
823 	int domain_use_count[POWER_DOMAIN_NUM];
824 	struct i915_power_well *power_wells;
825 };
826 
827 #define MAX_L3_SLICES 2
828 struct intel_l3_parity {
829 	u32 *remap_info[MAX_L3_SLICES];
830 	struct work_struct error_work;
831 	int which_slice;
832 };
833 
834 struct i915_gem_mm {
835 	/** Memory allocator for GTT stolen memory */
836 	struct drm_mm stolen;
837 	/** Protects the usage of the GTT stolen memory allocator. This is
838 	 * always the inner lock when overlapping with struct_mutex. */
839 	struct mutex stolen_lock;
840 
841 	/* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
842 	spinlock_t obj_lock;
843 
844 	/** List of all objects in gtt_space. Used to restore gtt
845 	 * mappings on resume */
846 	struct list_head bound_list;
847 	/**
848 	 * List of objects which are not bound to the GTT (thus
849 	 * are idle and not used by the GPU). These objects may or may
850 	 * not actually have any pages attached.
851 	 */
852 	struct list_head unbound_list;
853 
854 	/** List of all objects in gtt_space, currently mmaped by userspace.
855 	 * All objects within this list must also be on bound_list.
856 	 */
857 	struct list_head userfault_list;
858 
859 	/**
860 	 * List of objects which are pending destruction.
861 	 */
862 	struct llist_head free_list;
863 	struct work_struct free_work;
864 	spinlock_t free_lock;
865 	/**
866 	 * Count of objects pending destructions. Used to skip needlessly
867 	 * waiting on an RCU barrier if no objects are waiting to be freed.
868 	 */
869 	atomic_t free_count;
870 
871 	/**
872 	 * Small stash of WC pages
873 	 */
874 	struct pagestash wc_stash;
875 
876 	/**
877 	 * tmpfs instance used for shmem backed objects
878 	 */
879 	struct vfsmount *gemfs;
880 
881 	/** PPGTT used for aliasing the PPGTT with the GTT */
882 	struct i915_hw_ppgtt *aliasing_ppgtt;
883 
884 	struct notifier_block oom_notifier;
885 	struct notifier_block vmap_notifier;
886 	struct shrinker shrinker;
887 
888 	/** LRU list of objects with fence regs on them. */
889 	struct list_head fence_list;
890 
891 	/**
892 	 * Workqueue to fault in userptr pages, flushed by the execbuf
893 	 * when required but otherwise left to userspace to try again
894 	 * on EAGAIN.
895 	 */
896 	struct workqueue_struct *userptr_wq;
897 
898 	u64 unordered_timeline;
899 
900 	/* the indicator for dispatch video commands on two BSD rings */
901 	atomic_t bsd_engine_dispatch_index;
902 
903 	/** Bit 6 swizzling required for X tiling */
904 	uint32_t bit_6_swizzle_x;
905 	/** Bit 6 swizzling required for Y tiling */
906 	uint32_t bit_6_swizzle_y;
907 
908 	/* accounting, useful for userland debugging */
909 	spinlock_t object_stat_lock;
910 	u64 object_memory;
911 	u32 object_count;
912 };
913 
914 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
915 
916 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
917 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
918 
919 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
920 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
921 
922 #define I915_ENGINE_WEDGED_TIMEOUT  (60 * HZ)  /* Reset but no recovery? */
923 
924 struct ddi_vbt_port_info {
925 	int max_tmds_clock;
926 
927 	/*
928 	 * This is an index in the HDMI/DVI DDI buffer translation table.
929 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
930 	 * populate this field.
931 	 */
932 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
933 	uint8_t hdmi_level_shift;
934 
935 	uint8_t supports_dvi:1;
936 	uint8_t supports_hdmi:1;
937 	uint8_t supports_dp:1;
938 	uint8_t supports_edp:1;
939 
940 	uint8_t alternate_aux_channel;
941 	uint8_t alternate_ddc_pin;
942 
943 	uint8_t dp_boost_level;
944 	uint8_t hdmi_boost_level;
945 	int dp_max_link_rate;		/* 0 for not limited by VBT */
946 };
947 
948 enum psr_lines_to_wait {
949 	PSR_0_LINES_TO_WAIT = 0,
950 	PSR_1_LINE_TO_WAIT,
951 	PSR_4_LINES_TO_WAIT,
952 	PSR_8_LINES_TO_WAIT
953 };
954 
955 struct intel_vbt_data {
956 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
957 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
958 
959 	/* Feature bits */
960 	unsigned int int_tv_support:1;
961 	unsigned int lvds_dither:1;
962 	unsigned int int_crt_support:1;
963 	unsigned int lvds_use_ssc:1;
964 	unsigned int int_lvds_support:1;
965 	unsigned int display_clock_mode:1;
966 	unsigned int fdi_rx_polarity_inverted:1;
967 	unsigned int panel_type:4;
968 	int lvds_ssc_freq;
969 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
970 	enum drm_panel_orientation orientation;
971 
972 	enum drrs_support_type drrs_type;
973 
974 	struct {
975 		int rate;
976 		int lanes;
977 		int preemphasis;
978 		int vswing;
979 		bool low_vswing;
980 		bool initialized;
981 		int bpp;
982 		struct edp_power_seq pps;
983 	} edp;
984 
985 	struct {
986 		bool enable;
987 		bool full_link;
988 		bool require_aux_wakeup;
989 		int idle_frames;
990 		enum psr_lines_to_wait lines_to_wait;
991 		int tp1_wakeup_time_us;
992 		int tp2_tp3_wakeup_time_us;
993 	} psr;
994 
995 	struct {
996 		u16 pwm_freq_hz;
997 		bool present;
998 		bool active_low_pwm;
999 		u8 min_brightness;	/* min_brightness/255 of max */
1000 		u8 controller;		/* brightness controller number */
1001 		enum intel_backlight_type type;
1002 	} backlight;
1003 
1004 	/* MIPI DSI */
1005 	struct {
1006 		u16 panel_id;
1007 		struct mipi_config *config;
1008 		struct mipi_pps_data *pps;
1009 		u16 bl_ports;
1010 		u16 cabc_ports;
1011 		u8 seq_version;
1012 		u32 size;
1013 		u8 *data;
1014 		const u8 *sequence[MIPI_SEQ_MAX];
1015 		u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1016 		enum drm_panel_orientation orientation;
1017 	} dsi;
1018 
1019 	int crt_ddc_pin;
1020 
1021 	int child_dev_num;
1022 	struct child_device_config *child_dev;
1023 
1024 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1025 	struct sdvo_device_mapping sdvo_mappings[2];
1026 };
1027 
1028 enum intel_ddb_partitioning {
1029 	INTEL_DDB_PART_1_2,
1030 	INTEL_DDB_PART_5_6, /* IVB+ */
1031 };
1032 
1033 struct intel_wm_level {
1034 	bool enable;
1035 	uint32_t pri_val;
1036 	uint32_t spr_val;
1037 	uint32_t cur_val;
1038 	uint32_t fbc_val;
1039 };
1040 
1041 struct ilk_wm_values {
1042 	uint32_t wm_pipe[3];
1043 	uint32_t wm_lp[3];
1044 	uint32_t wm_lp_spr[3];
1045 	uint32_t wm_linetime[3];
1046 	bool enable_fbc_wm;
1047 	enum intel_ddb_partitioning partitioning;
1048 };
1049 
1050 struct g4x_pipe_wm {
1051 	uint16_t plane[I915_MAX_PLANES];
1052 	uint16_t fbc;
1053 };
1054 
1055 struct g4x_sr_wm {
1056 	uint16_t plane;
1057 	uint16_t cursor;
1058 	uint16_t fbc;
1059 };
1060 
1061 struct vlv_wm_ddl_values {
1062 	uint8_t plane[I915_MAX_PLANES];
1063 };
1064 
1065 struct vlv_wm_values {
1066 	struct g4x_pipe_wm pipe[3];
1067 	struct g4x_sr_wm sr;
1068 	struct vlv_wm_ddl_values ddl[3];
1069 	uint8_t level;
1070 	bool cxsr;
1071 };
1072 
1073 struct g4x_wm_values {
1074 	struct g4x_pipe_wm pipe[2];
1075 	struct g4x_sr_wm sr;
1076 	struct g4x_sr_wm hpll;
1077 	bool cxsr;
1078 	bool hpll_en;
1079 	bool fbc_en;
1080 };
1081 
1082 struct skl_ddb_entry {
1083 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1084 };
1085 
1086 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1087 {
1088 	return entry->end - entry->start;
1089 }
1090 
1091 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1092 				       const struct skl_ddb_entry *e2)
1093 {
1094 	if (e1->start == e2->start && e1->end == e2->end)
1095 		return true;
1096 
1097 	return false;
1098 }
1099 
1100 struct skl_ddb_allocation {
1101 	u8 enabled_slices; /* GEN11 has configurable 2 slices */
1102 };
1103 
1104 struct skl_ddb_values {
1105 	unsigned dirty_pipes;
1106 	struct skl_ddb_allocation ddb;
1107 };
1108 
1109 struct skl_wm_level {
1110 	uint16_t plane_res_b;
1111 	uint8_t plane_res_l;
1112 	bool plane_en;
1113 };
1114 
1115 /* Stores plane specific WM parameters */
1116 struct skl_wm_params {
1117 	bool x_tiled, y_tiled;
1118 	bool rc_surface;
1119 	bool is_planar;
1120 	uint32_t width;
1121 	uint8_t cpp;
1122 	uint32_t plane_pixel_rate;
1123 	uint32_t y_min_scanlines;
1124 	uint32_t plane_bytes_per_line;
1125 	uint_fixed_16_16_t plane_blocks_per_line;
1126 	uint_fixed_16_16_t y_tile_minimum;
1127 	uint32_t linetime_us;
1128 	uint32_t dbuf_block_size;
1129 };
1130 
1131 /*
1132  * This struct helps tracking the state needed for runtime PM, which puts the
1133  * device in PCI D3 state. Notice that when this happens, nothing on the
1134  * graphics device works, even register access, so we don't get interrupts nor
1135  * anything else.
1136  *
1137  * Every piece of our code that needs to actually touch the hardware needs to
1138  * either call intel_runtime_pm_get or call intel_display_power_get with the
1139  * appropriate power domain.
1140  *
1141  * Our driver uses the autosuspend delay feature, which means we'll only really
1142  * suspend if we stay with zero refcount for a certain amount of time. The
1143  * default value is currently very conservative (see intel_runtime_pm_enable), but
1144  * it can be changed with the standard runtime PM files from sysfs.
1145  *
1146  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1147  * goes back to false exactly before we reenable the IRQs. We use this variable
1148  * to check if someone is trying to enable/disable IRQs while they're supposed
1149  * to be disabled. This shouldn't happen and we'll print some error messages in
1150  * case it happens.
1151  *
1152  * For more, read the Documentation/power/runtime_pm.txt.
1153  */
1154 struct i915_runtime_pm {
1155 	atomic_t wakeref_count;
1156 	bool suspended;
1157 	bool irqs_enabled;
1158 };
1159 
1160 enum intel_pipe_crc_source {
1161 	INTEL_PIPE_CRC_SOURCE_NONE,
1162 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1163 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1164 	INTEL_PIPE_CRC_SOURCE_PF,
1165 	INTEL_PIPE_CRC_SOURCE_PIPE,
1166 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1167 	INTEL_PIPE_CRC_SOURCE_TV,
1168 	INTEL_PIPE_CRC_SOURCE_DP_B,
1169 	INTEL_PIPE_CRC_SOURCE_DP_C,
1170 	INTEL_PIPE_CRC_SOURCE_DP_D,
1171 	INTEL_PIPE_CRC_SOURCE_AUTO,
1172 	INTEL_PIPE_CRC_SOURCE_MAX,
1173 };
1174 
1175 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1176 struct intel_pipe_crc {
1177 	spinlock_t lock;
1178 	int skipped;
1179 	enum intel_pipe_crc_source source;
1180 };
1181 
1182 struct i915_frontbuffer_tracking {
1183 	spinlock_t lock;
1184 
1185 	/*
1186 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1187 	 * scheduled flips.
1188 	 */
1189 	unsigned busy_bits;
1190 	unsigned flip_bits;
1191 };
1192 
1193 struct i915_virtual_gpu {
1194 	bool active;
1195 	u32 caps;
1196 };
1197 
1198 /* used in computing the new watermarks state */
1199 struct intel_wm_config {
1200 	unsigned int num_pipes_active;
1201 	bool sprites_enabled;
1202 	bool sprites_scaled;
1203 };
1204 
1205 struct i915_oa_format {
1206 	u32 format;
1207 	int size;
1208 };
1209 
1210 struct i915_oa_reg {
1211 	i915_reg_t addr;
1212 	u32 value;
1213 };
1214 
1215 struct i915_oa_config {
1216 	char uuid[UUID_STRING_LEN + 1];
1217 	int id;
1218 
1219 	const struct i915_oa_reg *mux_regs;
1220 	u32 mux_regs_len;
1221 	const struct i915_oa_reg *b_counter_regs;
1222 	u32 b_counter_regs_len;
1223 	const struct i915_oa_reg *flex_regs;
1224 	u32 flex_regs_len;
1225 
1226 	struct attribute_group sysfs_metric;
1227 	struct attribute *attrs[2];
1228 	struct device_attribute sysfs_metric_id;
1229 
1230 	atomic_t ref_count;
1231 };
1232 
1233 struct i915_perf_stream;
1234 
1235 /**
1236  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1237  */
1238 struct i915_perf_stream_ops {
1239 	/**
1240 	 * @enable: Enables the collection of HW samples, either in response to
1241 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1242 	 * without `I915_PERF_FLAG_DISABLED`.
1243 	 */
1244 	void (*enable)(struct i915_perf_stream *stream);
1245 
1246 	/**
1247 	 * @disable: Disables the collection of HW samples, either in response
1248 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1249 	 * the stream.
1250 	 */
1251 	void (*disable)(struct i915_perf_stream *stream);
1252 
1253 	/**
1254 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1255 	 * once there is something ready to read() for the stream
1256 	 */
1257 	void (*poll_wait)(struct i915_perf_stream *stream,
1258 			  struct file *file,
1259 			  poll_table *wait);
1260 
1261 	/**
1262 	 * @wait_unlocked: For handling a blocking read, wait until there is
1263 	 * something to ready to read() for the stream. E.g. wait on the same
1264 	 * wait queue that would be passed to poll_wait().
1265 	 */
1266 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1267 
1268 	/**
1269 	 * @read: Copy buffered metrics as records to userspace
1270 	 * **buf**: the userspace, destination buffer
1271 	 * **count**: the number of bytes to copy, requested by userspace
1272 	 * **offset**: zero at the start of the read, updated as the read
1273 	 * proceeds, it represents how many bytes have been copied so far and
1274 	 * the buffer offset for copying the next record.
1275 	 *
1276 	 * Copy as many buffered i915 perf samples and records for this stream
1277 	 * to userspace as will fit in the given buffer.
1278 	 *
1279 	 * Only write complete records; returning -%ENOSPC if there isn't room
1280 	 * for a complete record.
1281 	 *
1282 	 * Return any error condition that results in a short read such as
1283 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1284 	 * returning to userspace.
1285 	 */
1286 	int (*read)(struct i915_perf_stream *stream,
1287 		    char __user *buf,
1288 		    size_t count,
1289 		    size_t *offset);
1290 
1291 	/**
1292 	 * @destroy: Cleanup any stream specific resources.
1293 	 *
1294 	 * The stream will always be disabled before this is called.
1295 	 */
1296 	void (*destroy)(struct i915_perf_stream *stream);
1297 };
1298 
1299 /**
1300  * struct i915_perf_stream - state for a single open stream FD
1301  */
1302 struct i915_perf_stream {
1303 	/**
1304 	 * @dev_priv: i915 drm device
1305 	 */
1306 	struct drm_i915_private *dev_priv;
1307 
1308 	/**
1309 	 * @link: Links the stream into ``&drm_i915_private->streams``
1310 	 */
1311 	struct list_head link;
1312 
1313 	/**
1314 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1315 	 * properties given when opening a stream, representing the contents
1316 	 * of a single sample as read() by userspace.
1317 	 */
1318 	u32 sample_flags;
1319 
1320 	/**
1321 	 * @sample_size: Considering the configured contents of a sample
1322 	 * combined with the required header size, this is the total size
1323 	 * of a single sample record.
1324 	 */
1325 	int sample_size;
1326 
1327 	/**
1328 	 * @ctx: %NULL if measuring system-wide across all contexts or a
1329 	 * specific context that is being monitored.
1330 	 */
1331 	struct i915_gem_context *ctx;
1332 
1333 	/**
1334 	 * @enabled: Whether the stream is currently enabled, considering
1335 	 * whether the stream was opened in a disabled state and based
1336 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1337 	 */
1338 	bool enabled;
1339 
1340 	/**
1341 	 * @ops: The callbacks providing the implementation of this specific
1342 	 * type of configured stream.
1343 	 */
1344 	const struct i915_perf_stream_ops *ops;
1345 
1346 	/**
1347 	 * @oa_config: The OA configuration used by the stream.
1348 	 */
1349 	struct i915_oa_config *oa_config;
1350 };
1351 
1352 /**
1353  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1354  */
1355 struct i915_oa_ops {
1356 	/**
1357 	 * @is_valid_b_counter_reg: Validates register's address for
1358 	 * programming boolean counters for a particular platform.
1359 	 */
1360 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1361 				       u32 addr);
1362 
1363 	/**
1364 	 * @is_valid_mux_reg: Validates register's address for programming mux
1365 	 * for a particular platform.
1366 	 */
1367 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1368 
1369 	/**
1370 	 * @is_valid_flex_reg: Validates register's address for programming
1371 	 * flex EU filtering for a particular platform.
1372 	 */
1373 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1374 
1375 	/**
1376 	 * @enable_metric_set: Selects and applies any MUX configuration to set
1377 	 * up the Boolean and Custom (B/C) counters that are part of the
1378 	 * counter reports being sampled. May apply system constraints such as
1379 	 * disabling EU clock gating as required.
1380 	 */
1381 	int (*enable_metric_set)(struct i915_perf_stream *stream);
1382 
1383 	/**
1384 	 * @disable_metric_set: Remove system constraints associated with using
1385 	 * the OA unit.
1386 	 */
1387 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1388 
1389 	/**
1390 	 * @oa_enable: Enable periodic sampling
1391 	 */
1392 	void (*oa_enable)(struct i915_perf_stream *stream);
1393 
1394 	/**
1395 	 * @oa_disable: Disable periodic sampling
1396 	 */
1397 	void (*oa_disable)(struct i915_perf_stream *stream);
1398 
1399 	/**
1400 	 * @read: Copy data from the circular OA buffer into a given userspace
1401 	 * buffer.
1402 	 */
1403 	int (*read)(struct i915_perf_stream *stream,
1404 		    char __user *buf,
1405 		    size_t count,
1406 		    size_t *offset);
1407 
1408 	/**
1409 	 * @oa_hw_tail_read: read the OA tail pointer register
1410 	 *
1411 	 * In particular this enables us to share all the fiddly code for
1412 	 * handling the OA unit tail pointer race that affects multiple
1413 	 * generations.
1414 	 */
1415 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1416 };
1417 
1418 struct intel_cdclk_state {
1419 	unsigned int cdclk, vco, ref, bypass;
1420 	u8 voltage_level;
1421 };
1422 
1423 struct drm_i915_private {
1424 	struct drm_device drm;
1425 
1426 	struct kmem_cache *objects;
1427 	struct kmem_cache *vmas;
1428 	struct kmem_cache *luts;
1429 	struct kmem_cache *requests;
1430 	struct kmem_cache *dependencies;
1431 	struct kmem_cache *priorities;
1432 
1433 	const struct intel_device_info info;
1434 	struct intel_driver_caps caps;
1435 
1436 	/**
1437 	 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1438 	 * end of stolen which we can optionally use to create GEM objects
1439 	 * backed by stolen memory. Note that stolen_usable_size tells us
1440 	 * exactly how much of this we are actually allowed to use, given that
1441 	 * some portion of it is in fact reserved for use by hardware functions.
1442 	 */
1443 	struct resource dsm;
1444 	/**
1445 	 * Reseved portion of Data Stolen Memory
1446 	 */
1447 	struct resource dsm_reserved;
1448 
1449 	/*
1450 	 * Stolen memory is segmented in hardware with different portions
1451 	 * offlimits to certain functions.
1452 	 *
1453 	 * The drm_mm is initialised to the total accessible range, as found
1454 	 * from the PCI config. On Broadwell+, this is further restricted to
1455 	 * avoid the first page! The upper end of stolen memory is reserved for
1456 	 * hardware functions and similarly removed from the accessible range.
1457 	 */
1458 	resource_size_t stolen_usable_size;	/* Total size minus reserved ranges */
1459 
1460 	void __iomem *regs;
1461 
1462 	struct intel_uncore uncore;
1463 
1464 	struct i915_virtual_gpu vgpu;
1465 
1466 	struct intel_gvt *gvt;
1467 
1468 	struct intel_wopcm wopcm;
1469 
1470 	struct intel_huc huc;
1471 	struct intel_guc guc;
1472 
1473 	struct intel_csr csr;
1474 
1475 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1476 
1477 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
1478 	 * controller on different i2c buses. */
1479 	struct mutex gmbus_mutex;
1480 
1481 	/**
1482 	 * Base address of where the gmbus and gpio blocks are located (either
1483 	 * on PCH or on SoC for platforms without PCH).
1484 	 */
1485 	uint32_t gpio_mmio_base;
1486 
1487 	/* MMIO base address for MIPI regs */
1488 	uint32_t mipi_mmio_base;
1489 
1490 	uint32_t psr_mmio_base;
1491 
1492 	uint32_t pps_mmio_base;
1493 
1494 	wait_queue_head_t gmbus_wait_queue;
1495 
1496 	struct pci_dev *bridge_dev;
1497 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
1498 	/* Context used internally to idle the GPU and setup initial state */
1499 	struct i915_gem_context *kernel_context;
1500 	/* Context only to be used for injecting preemption commands */
1501 	struct i915_gem_context *preempt_context;
1502 	struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1503 					    [MAX_ENGINE_INSTANCE + 1];
1504 
1505 	struct resource mch_res;
1506 
1507 	/* protects the irq masks */
1508 	spinlock_t irq_lock;
1509 
1510 	bool display_irqs_enabled;
1511 
1512 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1513 	struct pm_qos_request pm_qos;
1514 
1515 	/* Sideband mailbox protection */
1516 	struct mutex sb_lock;
1517 
1518 	/** Cached value of IMR to avoid reads in updating the bitfield */
1519 	union {
1520 		u32 irq_mask;
1521 		u32 de_irq_mask[I915_MAX_PIPES];
1522 	};
1523 	u32 gt_irq_mask;
1524 	u32 pm_imr;
1525 	u32 pm_ier;
1526 	u32 pm_rps_events;
1527 	u32 pm_guc_events;
1528 	u32 pipestat_irq_mask[I915_MAX_PIPES];
1529 
1530 	struct i915_hotplug hotplug;
1531 	struct intel_fbc fbc;
1532 	struct i915_drrs drrs;
1533 	struct intel_opregion opregion;
1534 	struct intel_vbt_data vbt;
1535 
1536 	bool preserve_bios_swizzle;
1537 
1538 	/* overlay */
1539 	struct intel_overlay *overlay;
1540 
1541 	/* backlight registers and fields in struct intel_panel */
1542 	struct mutex backlight_lock;
1543 
1544 	/* LVDS info */
1545 	bool no_aux_handshake;
1546 
1547 	/* protects panel power sequencer state */
1548 	struct mutex pps_mutex;
1549 
1550 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1551 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1552 
1553 	unsigned int fsb_freq, mem_freq, is_ddr3;
1554 	unsigned int skl_preferred_vco_freq;
1555 	unsigned int max_cdclk_freq;
1556 
1557 	unsigned int max_dotclk_freq;
1558 	unsigned int rawclk_freq;
1559 	unsigned int hpll_freq;
1560 	unsigned int fdi_pll_freq;
1561 	unsigned int czclk_freq;
1562 
1563 	struct {
1564 		/*
1565 		 * The current logical cdclk state.
1566 		 * See intel_atomic_state.cdclk.logical
1567 		 *
1568 		 * For reading holding any crtc lock is sufficient,
1569 		 * for writing must hold all of them.
1570 		 */
1571 		struct intel_cdclk_state logical;
1572 		/*
1573 		 * The current actual cdclk state.
1574 		 * See intel_atomic_state.cdclk.actual
1575 		 */
1576 		struct intel_cdclk_state actual;
1577 		/* The current hardware cdclk state */
1578 		struct intel_cdclk_state hw;
1579 	} cdclk;
1580 
1581 	/**
1582 	 * wq - Driver workqueue for GEM.
1583 	 *
1584 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
1585 	 * locks, for otherwise the flushing done in the pageflip code will
1586 	 * result in deadlocks.
1587 	 */
1588 	struct workqueue_struct *wq;
1589 
1590 	/* ordered wq for modesets */
1591 	struct workqueue_struct *modeset_wq;
1592 
1593 	/* Display functions */
1594 	struct drm_i915_display_funcs display;
1595 
1596 	/* PCH chipset type */
1597 	enum intel_pch pch_type;
1598 	unsigned short pch_id;
1599 
1600 	unsigned long quirks;
1601 
1602 	struct drm_atomic_state *modeset_restore_state;
1603 	struct drm_modeset_acquire_ctx reset_ctx;
1604 
1605 	struct i915_ggtt ggtt; /* VM representing the global address space */
1606 
1607 	struct i915_gem_mm mm;
1608 	DECLARE_HASHTABLE(mm_structs, 7);
1609 	struct mutex mm_lock;
1610 
1611 	struct intel_ppat ppat;
1612 
1613 	/* Kernel Modesetting */
1614 
1615 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1616 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1617 
1618 #ifdef CONFIG_DEBUG_FS
1619 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1620 #endif
1621 
1622 	/* dpll and cdclk state is protected by connection_mutex */
1623 	int num_shared_dpll;
1624 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1625 	const struct intel_dpll_mgr *dpll_mgr;
1626 
1627 	/*
1628 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1629 	 * Must be global rather than per dpll, because on some platforms
1630 	 * plls share registers.
1631 	 */
1632 	struct mutex dpll_lock;
1633 
1634 	unsigned int active_crtcs;
1635 	/* minimum acceptable cdclk for each pipe */
1636 	int min_cdclk[I915_MAX_PIPES];
1637 	/* minimum acceptable voltage level for each pipe */
1638 	u8 min_voltage_level[I915_MAX_PIPES];
1639 
1640 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1641 
1642 	struct i915_wa_list gt_wa_list;
1643 
1644 	struct i915_frontbuffer_tracking fb_tracking;
1645 
1646 	struct intel_atomic_helper {
1647 		struct llist_head free_list;
1648 		struct work_struct free_work;
1649 	} atomic_helper;
1650 
1651 	u16 orig_clock;
1652 
1653 	bool mchbar_need_disable;
1654 
1655 	struct intel_l3_parity l3_parity;
1656 
1657 	/* Cannot be determined by PCIID. You must always read a register. */
1658 	u32 edram_cap;
1659 
1660 	/*
1661 	 * Protects RPS/RC6 register access and PCU communication.
1662 	 * Must be taken after struct_mutex if nested. Note that
1663 	 * this lock may be held for long periods of time when
1664 	 * talking to hw - so only take it when talking to hw!
1665 	 */
1666 	struct mutex pcu_lock;
1667 
1668 	/* gen6+ GT PM state */
1669 	struct intel_gen6_power_mgmt gt_pm;
1670 
1671 	/* ilk-only ips/rps state. Everything in here is protected by the global
1672 	 * mchdev_lock in intel_pm.c */
1673 	struct intel_ilk_power_mgmt ips;
1674 
1675 	struct i915_power_domains power_domains;
1676 
1677 	struct i915_psr psr;
1678 
1679 	struct i915_gpu_error gpu_error;
1680 
1681 	struct drm_i915_gem_object *vlv_pctx;
1682 
1683 	/* list of fbdev register on this device */
1684 	struct intel_fbdev *fbdev;
1685 	struct work_struct fbdev_suspend_work;
1686 
1687 	struct drm_property *broadcast_rgb_property;
1688 	struct drm_property *force_audio_property;
1689 
1690 	/* hda/i915 audio component */
1691 	struct i915_audio_component *audio_component;
1692 	bool audio_component_registered;
1693 	/**
1694 	 * av_mutex - mutex for audio/video sync
1695 	 *
1696 	 */
1697 	struct mutex av_mutex;
1698 
1699 	struct {
1700 		struct mutex mutex;
1701 		struct list_head list;
1702 		struct llist_head free_list;
1703 		struct work_struct free_work;
1704 
1705 		/* The hw wants to have a stable context identifier for the
1706 		 * lifetime of the context (for OA, PASID, faults, etc).
1707 		 * This is limited in execlists to 21 bits.
1708 		 */
1709 		struct ida hw_ida;
1710 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1711 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */
1712 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1713 		struct list_head hw_id_list;
1714 	} contexts;
1715 
1716 	u32 fdi_rx_config;
1717 
1718 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1719 	u32 chv_phy_control;
1720 	/*
1721 	 * Shadows for CHV DPLL_MD regs to keep the state
1722 	 * checker somewhat working in the presence hardware
1723 	 * crappiness (can't read out DPLL_MD for pipes B & C).
1724 	 */
1725 	u32 chv_dpll_md[I915_MAX_PIPES];
1726 	u32 bxt_phy_grc;
1727 
1728 	u32 suspend_count;
1729 	bool power_domains_suspended;
1730 	struct i915_suspend_saved_registers regfile;
1731 	struct vlv_s0ix_state vlv_s0ix_state;
1732 
1733 	enum {
1734 		I915_SAGV_UNKNOWN = 0,
1735 		I915_SAGV_DISABLED,
1736 		I915_SAGV_ENABLED,
1737 		I915_SAGV_NOT_CONTROLLED
1738 	} sagv_status;
1739 
1740 	struct {
1741 		/*
1742 		 * Raw watermark latency values:
1743 		 * in 0.1us units for WM0,
1744 		 * in 0.5us units for WM1+.
1745 		 */
1746 		/* primary */
1747 		uint16_t pri_latency[5];
1748 		/* sprite */
1749 		uint16_t spr_latency[5];
1750 		/* cursor */
1751 		uint16_t cur_latency[5];
1752 		/*
1753 		 * Raw watermark memory latency values
1754 		 * for SKL for all 8 levels
1755 		 * in 1us units.
1756 		 */
1757 		uint16_t skl_latency[8];
1758 
1759 		/* current hardware state */
1760 		union {
1761 			struct ilk_wm_values hw;
1762 			struct skl_ddb_values skl_hw;
1763 			struct vlv_wm_values vlv;
1764 			struct g4x_wm_values g4x;
1765 		};
1766 
1767 		uint8_t max_level;
1768 
1769 		/*
1770 		 * Should be held around atomic WM register writing; also
1771 		 * protects * intel_crtc->wm.active and
1772 		 * cstate->wm.need_postvbl_update.
1773 		 */
1774 		struct mutex wm_mutex;
1775 
1776 		/*
1777 		 * Set during HW readout of watermarks/DDB.  Some platforms
1778 		 * need to know when we're still using BIOS-provided values
1779 		 * (which we don't fully trust).
1780 		 */
1781 		bool distrust_bios_wm;
1782 	} wm;
1783 
1784 	struct dram_info {
1785 		bool valid;
1786 		bool is_16gb_dimm;
1787 		u8 num_channels;
1788 		enum dram_rank {
1789 			I915_DRAM_RANK_INVALID = 0,
1790 			I915_DRAM_RANK_SINGLE,
1791 			I915_DRAM_RANK_DUAL
1792 		} rank;
1793 		u32 bandwidth_kbps;
1794 		bool symmetric_memory;
1795 	} dram_info;
1796 
1797 	struct i915_runtime_pm runtime_pm;
1798 
1799 	struct {
1800 		bool initialized;
1801 
1802 		struct kobject *metrics_kobj;
1803 		struct ctl_table_header *sysctl_header;
1804 
1805 		/*
1806 		 * Lock associated with adding/modifying/removing OA configs
1807 		 * in dev_priv->perf.metrics_idr.
1808 		 */
1809 		struct mutex metrics_lock;
1810 
1811 		/*
1812 		 * List of dynamic configurations, you need to hold
1813 		 * dev_priv->perf.metrics_lock to access it.
1814 		 */
1815 		struct idr metrics_idr;
1816 
1817 		/*
1818 		 * Lock associated with anything below within this structure
1819 		 * except exclusive_stream.
1820 		 */
1821 		struct mutex lock;
1822 		struct list_head streams;
1823 
1824 		struct {
1825 			/*
1826 			 * The stream currently using the OA unit. If accessed
1827 			 * outside a syscall associated to its file
1828 			 * descriptor, you need to hold
1829 			 * dev_priv->drm.struct_mutex.
1830 			 */
1831 			struct i915_perf_stream *exclusive_stream;
1832 
1833 			struct intel_context *pinned_ctx;
1834 			u32 specific_ctx_id;
1835 			u32 specific_ctx_id_mask;
1836 
1837 			struct hrtimer poll_check_timer;
1838 			wait_queue_head_t poll_wq;
1839 			bool pollin;
1840 
1841 			/**
1842 			 * For rate limiting any notifications of spurious
1843 			 * invalid OA reports
1844 			 */
1845 			struct ratelimit_state spurious_report_rs;
1846 
1847 			bool periodic;
1848 			int period_exponent;
1849 
1850 			struct i915_oa_config test_config;
1851 
1852 			struct {
1853 				struct i915_vma *vma;
1854 				u8 *vaddr;
1855 				u32 last_ctx_id;
1856 				int format;
1857 				int format_size;
1858 
1859 				/**
1860 				 * Locks reads and writes to all head/tail state
1861 				 *
1862 				 * Consider: the head and tail pointer state
1863 				 * needs to be read consistently from a hrtimer
1864 				 * callback (atomic context) and read() fop
1865 				 * (user context) with tail pointer updates
1866 				 * happening in atomic context and head updates
1867 				 * in user context and the (unlikely)
1868 				 * possibility of read() errors needing to
1869 				 * reset all head/tail state.
1870 				 *
1871 				 * Note: Contention or performance aren't
1872 				 * currently a significant concern here
1873 				 * considering the relatively low frequency of
1874 				 * hrtimer callbacks (5ms period) and that
1875 				 * reads typically only happen in response to a
1876 				 * hrtimer event and likely complete before the
1877 				 * next callback.
1878 				 *
1879 				 * Note: This lock is not held *while* reading
1880 				 * and copying data to userspace so the value
1881 				 * of head observed in htrimer callbacks won't
1882 				 * represent any partial consumption of data.
1883 				 */
1884 				spinlock_t ptr_lock;
1885 
1886 				/**
1887 				 * One 'aging' tail pointer and one 'aged'
1888 				 * tail pointer ready to used for reading.
1889 				 *
1890 				 * Initial values of 0xffffffff are invalid
1891 				 * and imply that an update is required
1892 				 * (and should be ignored by an attempted
1893 				 * read)
1894 				 */
1895 				struct {
1896 					u32 offset;
1897 				} tails[2];
1898 
1899 				/**
1900 				 * Index for the aged tail ready to read()
1901 				 * data up to.
1902 				 */
1903 				unsigned int aged_tail_idx;
1904 
1905 				/**
1906 				 * A monotonic timestamp for when the current
1907 				 * aging tail pointer was read; used to
1908 				 * determine when it is old enough to trust.
1909 				 */
1910 				u64 aging_timestamp;
1911 
1912 				/**
1913 				 * Although we can always read back the head
1914 				 * pointer register, we prefer to avoid
1915 				 * trusting the HW state, just to avoid any
1916 				 * risk that some hardware condition could
1917 				 * somehow bump the head pointer unpredictably
1918 				 * and cause us to forward the wrong OA buffer
1919 				 * data to userspace.
1920 				 */
1921 				u32 head;
1922 			} oa_buffer;
1923 
1924 			u32 gen7_latched_oastatus1;
1925 			u32 ctx_oactxctrl_offset;
1926 			u32 ctx_flexeu0_offset;
1927 
1928 			/**
1929 			 * The RPT_ID/reason field for Gen8+ includes a bit
1930 			 * to determine if the CTX ID in the report is valid
1931 			 * but the specific bit differs between Gen 8 and 9
1932 			 */
1933 			u32 gen8_valid_ctx_bit;
1934 
1935 			struct i915_oa_ops ops;
1936 			const struct i915_oa_format *oa_formats;
1937 		} oa;
1938 	} perf;
1939 
1940 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
1941 	struct {
1942 		void (*resume)(struct drm_i915_private *);
1943 		void (*cleanup_engine)(struct intel_engine_cs *engine);
1944 
1945 		struct list_head timelines;
1946 
1947 		struct list_head active_rings;
1948 		struct list_head closed_vma;
1949 		u32 active_requests;
1950 		u32 request_serial;
1951 
1952 		/**
1953 		 * Is the GPU currently considered idle, or busy executing
1954 		 * userspace requests? Whilst idle, we allow runtime power
1955 		 * management to power down the hardware and display clocks.
1956 		 * In order to reduce the effect on performance, there
1957 		 * is a slight delay before we do so.
1958 		 */
1959 		bool awake;
1960 
1961 		/**
1962 		 * The number of times we have woken up.
1963 		 */
1964 		unsigned int epoch;
1965 #define I915_EPOCH_INVALID 0
1966 
1967 		/**
1968 		 * We leave the user IRQ off as much as possible,
1969 		 * but this means that requests will finish and never
1970 		 * be retired once the system goes idle. Set a timer to
1971 		 * fire periodically while the ring is running. When it
1972 		 * fires, go retire requests.
1973 		 */
1974 		struct delayed_work retire_work;
1975 
1976 		/**
1977 		 * When we detect an idle GPU, we want to turn on
1978 		 * powersaving features. So once we see that there
1979 		 * are no more requests outstanding and no more
1980 		 * arrive within a small period of time, we fire
1981 		 * off the idle_work.
1982 		 */
1983 		struct delayed_work idle_work;
1984 
1985 		ktime_t last_init_time;
1986 
1987 		struct i915_vma *scratch;
1988 	} gt;
1989 
1990 	/* perform PHY state sanity checks? */
1991 	bool chv_phy_assert[2];
1992 
1993 	bool ipc_enabled;
1994 
1995 	/* Used to save the pipe-to-encoder mapping for audio */
1996 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
1997 
1998 	/* necessary resource sharing with HDMI LPE audio driver. */
1999 	struct {
2000 		struct platform_device *platdev;
2001 		int	irq;
2002 	} lpe_audio;
2003 
2004 	struct i915_pmu pmu;
2005 
2006 	/*
2007 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2008 	 * will be rejected. Instead look for a better place.
2009 	 */
2010 };
2011 
2012 struct dram_channel_info {
2013 	struct info {
2014 		u8 size, width;
2015 		enum dram_rank rank;
2016 	} l_info, s_info;
2017 	enum dram_rank rank;
2018 	bool is_16gb_dimm;
2019 };
2020 
2021 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2022 {
2023 	return container_of(dev, struct drm_i915_private, drm);
2024 }
2025 
2026 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2027 {
2028 	return to_i915(dev_get_drvdata(kdev));
2029 }
2030 
2031 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2032 {
2033 	return container_of(wopcm, struct drm_i915_private, wopcm);
2034 }
2035 
2036 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2037 {
2038 	return container_of(guc, struct drm_i915_private, guc);
2039 }
2040 
2041 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2042 {
2043 	return container_of(huc, struct drm_i915_private, huc);
2044 }
2045 
2046 /* Simple iterator over all initialised engines */
2047 #define for_each_engine(engine__, dev_priv__, id__) \
2048 	for ((id__) = 0; \
2049 	     (id__) < I915_NUM_ENGINES; \
2050 	     (id__)++) \
2051 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2052 
2053 /* Iterator over subset of engines selected by mask */
2054 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2055 	for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \
2056 	     (tmp__) ? \
2057 	     ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2058 	     0;)
2059 
2060 enum hdmi_force_audio {
2061 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2062 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2063 	HDMI_AUDIO_AUTO,		/* trust EDID */
2064 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2065 };
2066 
2067 #define I915_GTT_OFFSET_NONE ((u32)-1)
2068 
2069 /*
2070  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2071  * considered to be the frontbuffer for the given plane interface-wise. This
2072  * doesn't mean that the hw necessarily already scans it out, but that any
2073  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2074  *
2075  * We have one bit per pipe and per scanout plane type.
2076  */
2077 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2078 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2079 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2080 	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2081 	BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2082 })
2083 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2084 	BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2085 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2086 	GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2087 		INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2088 
2089 /*
2090  * Optimised SGL iterator for GEM objects
2091  */
2092 static __always_inline struct sgt_iter {
2093 	struct scatterlist *sgp;
2094 	union {
2095 		unsigned long pfn;
2096 		dma_addr_t dma;
2097 	};
2098 	unsigned int curr;
2099 	unsigned int max;
2100 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2101 	struct sgt_iter s = { .sgp = sgl };
2102 
2103 	if (s.sgp) {
2104 		s.max = s.curr = s.sgp->offset;
2105 		s.max += s.sgp->length;
2106 		if (dma)
2107 			s.dma = sg_dma_address(s.sgp);
2108 		else
2109 			s.pfn = page_to_pfn(sg_page(s.sgp));
2110 	}
2111 
2112 	return s;
2113 }
2114 
2115 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2116 {
2117 	++sg;
2118 	if (unlikely(sg_is_chain(sg)))
2119 		sg = sg_chain_ptr(sg);
2120 	return sg;
2121 }
2122 
2123 /**
2124  * __sg_next - return the next scatterlist entry in a list
2125  * @sg:		The current sg entry
2126  *
2127  * Description:
2128  *   If the entry is the last, return NULL; otherwise, step to the next
2129  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2130  *   otherwise just return the pointer to the current element.
2131  **/
2132 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2133 {
2134 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2135 }
2136 
2137 /**
2138  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2139  * @__dmap:	DMA address (output)
2140  * @__iter:	'struct sgt_iter' (iterator state, internal)
2141  * @__sgt:	sg_table to iterate over (input)
2142  */
2143 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2144 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2145 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2146 	     (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ?	\
2147 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2148 
2149 /**
2150  * for_each_sgt_page - iterate over the pages of the given sg_table
2151  * @__pp:	page pointer (output)
2152  * @__iter:	'struct sgt_iter' (iterator state, internal)
2153  * @__sgt:	sg_table to iterate over (input)
2154  */
2155 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2156 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2157 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2158 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2159 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2160 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2161 
2162 bool i915_sg_trim(struct sg_table *orig_st);
2163 
2164 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2165 {
2166 	unsigned int page_sizes;
2167 
2168 	page_sizes = 0;
2169 	while (sg) {
2170 		GEM_BUG_ON(sg->offset);
2171 		GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2172 		page_sizes |= sg->length;
2173 		sg = __sg_next(sg);
2174 	}
2175 
2176 	return page_sizes;
2177 }
2178 
2179 static inline unsigned int i915_sg_segment_size(void)
2180 {
2181 	unsigned int size = swiotlb_max_segment();
2182 
2183 	if (size == 0)
2184 		return SCATTERLIST_MAX_SEGMENT;
2185 
2186 	size = rounddown(size, PAGE_SIZE);
2187 	/* swiotlb_max_segment_size can return 1 byte when it means one page. */
2188 	if (size < PAGE_SIZE)
2189 		size = PAGE_SIZE;
2190 
2191 	return size;
2192 }
2193 
2194 static inline const struct intel_device_info *
2195 intel_info(const struct drm_i915_private *dev_priv)
2196 {
2197 	return &dev_priv->info;
2198 }
2199 
2200 #define INTEL_INFO(dev_priv)	intel_info((dev_priv))
2201 #define DRIVER_CAPS(dev_priv)	(&(dev_priv)->caps)
2202 
2203 #define INTEL_GEN(dev_priv)	((dev_priv)->info.gen)
2204 #define INTEL_DEVID(dev_priv)	((dev_priv)->info.device_id)
2205 
2206 #define REVID_FOREVER		0xff
2207 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2208 
2209 #define INTEL_GEN_MASK(s, e) ( \
2210 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2211 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2212 	GENMASK((e) - 1, (s) - 1))
2213 
2214 /* Returns true if Gen is in inclusive range [Start, End] */
2215 #define IS_GEN(dev_priv, s, e) \
2216 	(!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2217 
2218 /*
2219  * Return true if revision is in range [since,until] inclusive.
2220  *
2221  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2222  */
2223 #define IS_REVID(p, since, until) \
2224 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2225 
2226 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2227 
2228 #define IS_I830(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I830)
2229 #define IS_I845G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I845G)
2230 #define IS_I85X(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I85X)
2231 #define IS_I865G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I865G)
2232 #define IS_I915G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915G)
2233 #define IS_I915GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915GM)
2234 #define IS_I945G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945G)
2235 #define IS_I945GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945GM)
2236 #define IS_I965G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965G)
2237 #define IS_I965GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965GM)
2238 #define IS_G45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G45)
2239 #define IS_GM45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GM45)
2240 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2241 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2242 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2243 #define IS_PINEVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2244 #define IS_G33(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G33)
2245 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2246 #define IS_IVYBRIDGE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2247 #define IS_IVB_GT1(dev_priv)	(IS_IVYBRIDGE(dev_priv) && \
2248 				 (dev_priv)->info.gt == 1)
2249 #define IS_VALLEYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2250 #define IS_CHERRYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2251 #define IS_HASWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_HASWELL)
2252 #define IS_BROADWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2253 #define IS_SKYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2254 #define IS_BROXTON(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROXTON)
2255 #define IS_KABYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2256 #define IS_GEMINILAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2257 #define IS_COFFEELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2258 #define IS_CANNONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2259 #define IS_ICELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2260 #define IS_MOBILE(dev_priv)	((dev_priv)->info.is_mobile)
2261 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2262 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2263 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2264 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2265 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2266 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2267 /* ULX machines are also considered ULT. */
2268 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2269 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2270 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2271 				 (dev_priv)->info.gt == 3)
2272 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2273 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2274 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2275 				 (dev_priv)->info.gt == 3)
2276 /* ULX machines are also considered ULT. */
2277 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2278 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2279 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2280 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2281 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2282 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2283 				 INTEL_DEVID(dev_priv) == 0x1926)
2284 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2285 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2286 				 INTEL_DEVID(dev_priv) == 0x191E)
2287 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2288 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2289 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2290 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2291 				 INTEL_DEVID(dev_priv) == 0x5926)
2292 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2293 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2294 				 INTEL_DEVID(dev_priv) == 0x591E)
2295 #define IS_AML_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x591C || \
2296 				 INTEL_DEVID(dev_priv) == 0x87C0)
2297 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2298 				 (dev_priv)->info.gt == 2)
2299 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2300 				 (dev_priv)->info.gt == 3)
2301 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2302 				 (dev_priv)->info.gt == 4)
2303 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2304 				 (dev_priv)->info.gt == 2)
2305 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2306 				 (dev_priv)->info.gt == 3)
2307 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2308 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2309 #define IS_CFL_GT2(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2310 				 (dev_priv)->info.gt == 2)
2311 #define IS_CFL_GT3(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2312 				 (dev_priv)->info.gt == 3)
2313 #define IS_CNL_WITH_PORT_F(dev_priv)   (IS_CANNONLAKE(dev_priv) && \
2314 					(INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2315 
2316 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2317 
2318 #define SKL_REVID_A0		0x0
2319 #define SKL_REVID_B0		0x1
2320 #define SKL_REVID_C0		0x2
2321 #define SKL_REVID_D0		0x3
2322 #define SKL_REVID_E0		0x4
2323 #define SKL_REVID_F0		0x5
2324 #define SKL_REVID_G0		0x6
2325 #define SKL_REVID_H0		0x7
2326 
2327 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2328 
2329 #define BXT_REVID_A0		0x0
2330 #define BXT_REVID_A1		0x1
2331 #define BXT_REVID_B0		0x3
2332 #define BXT_REVID_B_LAST	0x8
2333 #define BXT_REVID_C0		0x9
2334 
2335 #define IS_BXT_REVID(dev_priv, since, until) \
2336 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2337 
2338 #define KBL_REVID_A0		0x0
2339 #define KBL_REVID_B0		0x1
2340 #define KBL_REVID_C0		0x2
2341 #define KBL_REVID_D0		0x3
2342 #define KBL_REVID_E0		0x4
2343 
2344 #define IS_KBL_REVID(dev_priv, since, until) \
2345 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2346 
2347 #define GLK_REVID_A0		0x0
2348 #define GLK_REVID_A1		0x1
2349 
2350 #define IS_GLK_REVID(dev_priv, since, until) \
2351 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2352 
2353 #define CNL_REVID_A0		0x0
2354 #define CNL_REVID_B0		0x1
2355 #define CNL_REVID_C0		0x2
2356 
2357 #define IS_CNL_REVID(p, since, until) \
2358 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2359 
2360 #define ICL_REVID_A0		0x0
2361 #define ICL_REVID_A2		0x1
2362 #define ICL_REVID_B0		0x3
2363 #define ICL_REVID_B2		0x4
2364 #define ICL_REVID_C0		0x5
2365 
2366 #define IS_ICL_REVID(p, since, until) \
2367 	(IS_ICELAKE(p) && IS_REVID(p, since, until))
2368 
2369 /*
2370  * The genX designation typically refers to the render engine, so render
2371  * capability related checks should use IS_GEN, while display and other checks
2372  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2373  * chips, etc.).
2374  */
2375 #define IS_GEN2(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(1)))
2376 #define IS_GEN3(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(2)))
2377 #define IS_GEN4(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(3)))
2378 #define IS_GEN5(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(4)))
2379 #define IS_GEN6(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(5)))
2380 #define IS_GEN7(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(6)))
2381 #define IS_GEN8(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(7)))
2382 #define IS_GEN9(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(8)))
2383 #define IS_GEN10(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(9)))
2384 #define IS_GEN11(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(10)))
2385 
2386 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2387 #define IS_GEN9_LP(dev_priv)	(IS_GEN9(dev_priv) && IS_LP(dev_priv))
2388 #define IS_GEN9_BC(dev_priv)	(IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2389 
2390 #define ENGINE_MASK(id)	BIT(id)
2391 #define RENDER_RING	ENGINE_MASK(RCS)
2392 #define BSD_RING	ENGINE_MASK(VCS)
2393 #define BLT_RING	ENGINE_MASK(BCS)
2394 #define VEBOX_RING	ENGINE_MASK(VECS)
2395 #define BSD2_RING	ENGINE_MASK(VCS2)
2396 #define BSD3_RING	ENGINE_MASK(VCS3)
2397 #define BSD4_RING	ENGINE_MASK(VCS4)
2398 #define VEBOX2_RING	ENGINE_MASK(VECS2)
2399 #define ALL_ENGINES	(~0)
2400 
2401 #define HAS_ENGINE(dev_priv, id) \
2402 	(!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2403 
2404 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
2405 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
2406 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
2407 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
2408 
2409 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv)
2410 
2411 #define HAS_LLC(dev_priv)	((dev_priv)->info.has_llc)
2412 #define HAS_SNOOP(dev_priv)	((dev_priv)->info.has_snoop)
2413 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2414 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2415 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2416 
2417 #define HWS_NEEDS_PHYSICAL(dev_priv)	((dev_priv)->info.hws_needs_physical)
2418 
2419 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2420 		((dev_priv)->info.has_logical_ring_contexts)
2421 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2422 		((dev_priv)->info.has_logical_ring_elsq)
2423 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2424 		((dev_priv)->info.has_logical_ring_preemption)
2425 
2426 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2427 
2428 #define INTEL_PPGTT(dev_priv) (INTEL_INFO(dev_priv)->ppgtt)
2429 #define HAS_PPGTT(dev_priv) \
2430 	(INTEL_PPGTT(dev_priv) != INTEL_PPGTT_NONE)
2431 #define HAS_FULL_PPGTT(dev_priv) \
2432 	(INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL)
2433 #define HAS_FULL_48BIT_PPGTT(dev_priv)	\
2434 	(INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL_4LVL)
2435 
2436 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2437 	GEM_BUG_ON((sizes) == 0); \
2438 	((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
2439 })
2440 
2441 #define HAS_OVERLAY(dev_priv)		 ((dev_priv)->info.display.has_overlay)
2442 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2443 		((dev_priv)->info.display.overlay_needs_physical)
2444 
2445 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2446 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
2447 
2448 /* WaRsDisableCoarsePowerGating:skl,cnl */
2449 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2450 	(IS_CANNONLAKE(dev_priv) || \
2451 	 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2452 
2453 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2454 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \
2455 					IS_GEMINILAKE(dev_priv) || \
2456 					IS_KABYLAKE(dev_priv))
2457 
2458 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2459  * rows, which changed the alignment requirements and fence programming.
2460  */
2461 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2462 					 !(IS_I915G(dev_priv) || \
2463 					 IS_I915GM(dev_priv)))
2464 #define SUPPORTS_TV(dev_priv)		((dev_priv)->info.display.supports_tv)
2465 #define I915_HAS_HOTPLUG(dev_priv)	((dev_priv)->info.display.has_hotplug)
2466 
2467 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
2468 #define HAS_FBC(dev_priv)	((dev_priv)->info.display.has_fbc)
2469 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2470 
2471 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2472 
2473 #define HAS_DP_MST(dev_priv)	((dev_priv)->info.display.has_dp_mst)
2474 
2475 #define HAS_DDI(dev_priv)		 ((dev_priv)->info.display.has_ddi)
2476 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2477 #define HAS_PSR(dev_priv)		 ((dev_priv)->info.display.has_psr)
2478 
2479 #define HAS_RC6(dev_priv)		 ((dev_priv)->info.has_rc6)
2480 #define HAS_RC6p(dev_priv)		 ((dev_priv)->info.has_rc6p)
2481 #define HAS_RC6pp(dev_priv)		 (false) /* HW was never validated */
2482 
2483 #define HAS_CSR(dev_priv)	((dev_priv)->info.display.has_csr)
2484 
2485 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2486 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2487 
2488 #define HAS_IPC(dev_priv)		 ((dev_priv)->info.display.has_ipc)
2489 
2490 /*
2491  * For now, anything with a GuC requires uCode loading, and then supports
2492  * command submission once loaded. But these are logically independent
2493  * properties, so we have separate macros to test them.
2494  */
2495 #define HAS_GUC(dev_priv)	((dev_priv)->info.has_guc)
2496 #define HAS_GUC_CT(dev_priv)	((dev_priv)->info.has_guc_ct)
2497 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2498 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
2499 
2500 /* For now, anything with a GuC has also HuC */
2501 #define HAS_HUC(dev_priv)	(HAS_GUC(dev_priv))
2502 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2503 
2504 /* Having a GuC is not the same as using a GuC */
2505 #define USES_GUC(dev_priv)		intel_uc_is_using_guc()
2506 #define USES_GUC_SUBMISSION(dev_priv)	intel_uc_is_using_guc_submission()
2507 #define USES_HUC(dev_priv)		intel_uc_is_using_huc()
2508 
2509 #define HAS_POOLED_EU(dev_priv)	((dev_priv)->info.has_pooled_eu)
2510 
2511 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
2512 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2513 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2514 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2515 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2516 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2517 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
2518 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
2519 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2520 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2521 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
2522 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
2523 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
2524 #define INTEL_PCH_ICP_DEVICE_ID_TYPE		0x3480
2525 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2526 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2527 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2528 
2529 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2530 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2531 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2532 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2533 #define HAS_PCH_CNP_LP(dev_priv) \
2534 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2535 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2536 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2537 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2538 #define HAS_PCH_LPT_LP(dev_priv) \
2539 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2540 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2541 #define HAS_PCH_LPT_H(dev_priv) \
2542 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2543 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2544 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2545 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2546 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2547 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2548 
2549 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.display.has_gmch_display)
2550 
2551 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2552 
2553 /* DPF == dynamic parity feature */
2554 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2555 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2556 				 2 : HAS_L3_DPF(dev_priv))
2557 
2558 #define GT_FREQUENCY_MULTIPLIER 50
2559 #define GEN9_FREQ_SCALER 3
2560 
2561 #define HAS_DISPLAY(dev_priv) (INTEL_INFO(dev_priv)->num_pipes > 0)
2562 
2563 #include "i915_trace.h"
2564 
2565 static inline bool intel_vtd_active(void)
2566 {
2567 #ifdef CONFIG_INTEL_IOMMU
2568 	if (intel_iommu_gfx_mapped)
2569 		return true;
2570 #endif
2571 	return false;
2572 }
2573 
2574 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2575 {
2576 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2577 }
2578 
2579 static inline bool
2580 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2581 {
2582 	return IS_BROXTON(dev_priv) && intel_vtd_active();
2583 }
2584 
2585 /* i915_drv.c */
2586 void __printf(3, 4)
2587 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2588 	      const char *fmt, ...);
2589 
2590 #define i915_report_error(dev_priv, fmt, ...)				   \
2591 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2592 
2593 #ifdef CONFIG_COMPAT
2594 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2595 			      unsigned long arg);
2596 #else
2597 #define i915_compat_ioctl NULL
2598 #endif
2599 extern const struct dev_pm_ops i915_pm_ops;
2600 
2601 extern int i915_driver_load(struct pci_dev *pdev,
2602 			    const struct pci_device_id *ent);
2603 extern void i915_driver_unload(struct drm_device *dev);
2604 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2605 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2606 
2607 extern void i915_reset(struct drm_i915_private *i915,
2608 		       unsigned int stalled_mask,
2609 		       const char *reason);
2610 extern int i915_reset_engine(struct intel_engine_cs *engine,
2611 			     const char *reason);
2612 
2613 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
2614 extern int intel_reset_guc(struct drm_i915_private *dev_priv);
2615 extern int intel_guc_reset_engine(struct intel_guc *guc,
2616 				  struct intel_engine_cs *engine);
2617 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2618 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2619 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2620 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2621 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2622 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2623 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2624 
2625 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2626 int intel_engines_init(struct drm_i915_private *dev_priv);
2627 
2628 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv);
2629 
2630 /* intel_hotplug.c */
2631 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2632 			   u32 pin_mask, u32 long_mask);
2633 void intel_hpd_init(struct drm_i915_private *dev_priv);
2634 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2635 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2636 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2637 				   enum port port);
2638 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2639 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2640 
2641 /* i915_irq.c */
2642 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2643 {
2644 	unsigned long delay;
2645 
2646 	if (unlikely(!i915_modparams.enable_hangcheck))
2647 		return;
2648 
2649 	/* Don't continually defer the hangcheck so that it is always run at
2650 	 * least once after work has been scheduled on any ring. Otherwise,
2651 	 * we will ignore a hung ring if a second ring is kept busy.
2652 	 */
2653 
2654 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2655 	queue_delayed_work(system_long_wq,
2656 			   &dev_priv->gpu_error.hangcheck_work, delay);
2657 }
2658 
2659 __printf(4, 5)
2660 void i915_handle_error(struct drm_i915_private *dev_priv,
2661 		       u32 engine_mask,
2662 		       unsigned long flags,
2663 		       const char *fmt, ...);
2664 #define I915_ERROR_CAPTURE BIT(0)
2665 
2666 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2667 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2668 int intel_irq_install(struct drm_i915_private *dev_priv);
2669 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2670 
2671 void i915_clear_error_registers(struct drm_i915_private *dev_priv);
2672 
2673 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2674 {
2675 	return dev_priv->gvt;
2676 }
2677 
2678 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2679 {
2680 	return dev_priv->vgpu.active;
2681 }
2682 
2683 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2684 			      enum pipe pipe);
2685 void
2686 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2687 		     u32 status_mask);
2688 
2689 void
2690 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2691 		      u32 status_mask);
2692 
2693 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2694 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2695 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2696 				   uint32_t mask,
2697 				   uint32_t bits);
2698 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2699 			    uint32_t interrupt_mask,
2700 			    uint32_t enabled_irq_mask);
2701 static inline void
2702 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2703 {
2704 	ilk_update_display_irq(dev_priv, bits, bits);
2705 }
2706 static inline void
2707 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2708 {
2709 	ilk_update_display_irq(dev_priv, bits, 0);
2710 }
2711 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2712 			 enum pipe pipe,
2713 			 uint32_t interrupt_mask,
2714 			 uint32_t enabled_irq_mask);
2715 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2716 				       enum pipe pipe, uint32_t bits)
2717 {
2718 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2719 }
2720 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2721 					enum pipe pipe, uint32_t bits)
2722 {
2723 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2724 }
2725 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2726 				  uint32_t interrupt_mask,
2727 				  uint32_t enabled_irq_mask);
2728 static inline void
2729 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2730 {
2731 	ibx_display_interrupt_update(dev_priv, bits, bits);
2732 }
2733 static inline void
2734 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2735 {
2736 	ibx_display_interrupt_update(dev_priv, bits, 0);
2737 }
2738 
2739 /* i915_gem.c */
2740 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2741 			  struct drm_file *file_priv);
2742 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2743 			 struct drm_file *file_priv);
2744 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2745 			  struct drm_file *file_priv);
2746 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2747 			struct drm_file *file_priv);
2748 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2749 			struct drm_file *file_priv);
2750 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2751 			      struct drm_file *file_priv);
2752 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2753 			     struct drm_file *file_priv);
2754 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2755 			      struct drm_file *file_priv);
2756 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2757 			       struct drm_file *file_priv);
2758 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2759 			struct drm_file *file_priv);
2760 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2761 			       struct drm_file *file);
2762 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2763 			       struct drm_file *file);
2764 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2765 			    struct drm_file *file_priv);
2766 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2767 			   struct drm_file *file_priv);
2768 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2769 			      struct drm_file *file_priv);
2770 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2771 			      struct drm_file *file_priv);
2772 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2773 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2774 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2775 			   struct drm_file *file);
2776 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2777 				struct drm_file *file_priv);
2778 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2779 			struct drm_file *file_priv);
2780 void i915_gem_sanitize(struct drm_i915_private *i915);
2781 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2782 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2783 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2784 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2785 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2786 
2787 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
2788 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2789 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2790 			 const struct drm_i915_gem_object_ops *ops);
2791 struct drm_i915_gem_object *
2792 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2793 struct drm_i915_gem_object *
2794 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2795 				 const void *data, size_t size);
2796 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2797 void i915_gem_free_object(struct drm_gem_object *obj);
2798 
2799 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2800 {
2801 	if (!atomic_read(&i915->mm.free_count))
2802 		return;
2803 
2804 	/* A single pass should suffice to release all the freed objects (along
2805 	 * most call paths) , but be a little more paranoid in that freeing
2806 	 * the objects does take a little amount of time, during which the rcu
2807 	 * callbacks could have added new objects into the freed list, and
2808 	 * armed the work again.
2809 	 */
2810 	do {
2811 		rcu_barrier();
2812 	} while (flush_work(&i915->mm.free_work));
2813 }
2814 
2815 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2816 {
2817 	/*
2818 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
2819 	 * general we have workers that are armed by RCU and then rearm
2820 	 * themselves in their callbacks. To be paranoid, we need to
2821 	 * drain the workqueue a second time after waiting for the RCU
2822 	 * grace period so that we catch work queued via RCU from the first
2823 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
2824 	 * a result, we make an assumption that we only don't require more
2825 	 * than 2 passes to catch all recursive RCU delayed work.
2826 	 *
2827 	 */
2828 	int pass = 2;
2829 	do {
2830 		rcu_barrier();
2831 		drain_workqueue(i915->wq);
2832 	} while (--pass);
2833 }
2834 
2835 struct i915_vma * __must_check
2836 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2837 			 const struct i915_ggtt_view *view,
2838 			 u64 size,
2839 			 u64 alignment,
2840 			 u64 flags);
2841 
2842 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
2843 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2844 
2845 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
2846 
2847 static inline int __sg_page_count(const struct scatterlist *sg)
2848 {
2849 	return sg->length >> PAGE_SHIFT;
2850 }
2851 
2852 struct scatterlist *
2853 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
2854 		       unsigned int n, unsigned int *offset);
2855 
2856 struct page *
2857 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
2858 			 unsigned int n);
2859 
2860 struct page *
2861 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
2862 			       unsigned int n);
2863 
2864 dma_addr_t
2865 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
2866 				unsigned long n);
2867 
2868 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2869 				 struct sg_table *pages,
2870 				 unsigned int sg_page_sizes);
2871 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2872 
2873 static inline int __must_check
2874 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2875 {
2876 	might_lock(&obj->mm.lock);
2877 
2878 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
2879 		return 0;
2880 
2881 	return __i915_gem_object_get_pages(obj);
2882 }
2883 
2884 static inline bool
2885 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
2886 {
2887 	return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
2888 }
2889 
2890 static inline void
2891 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2892 {
2893 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2894 
2895 	atomic_inc(&obj->mm.pages_pin_count);
2896 }
2897 
2898 static inline bool
2899 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
2900 {
2901 	return atomic_read(&obj->mm.pages_pin_count);
2902 }
2903 
2904 static inline void
2905 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2906 {
2907 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2908 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
2909 
2910 	atomic_dec(&obj->mm.pages_pin_count);
2911 }
2912 
2913 static inline void
2914 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2915 {
2916 	__i915_gem_object_unpin_pages(obj);
2917 }
2918 
2919 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
2920 	I915_MM_NORMAL = 0,
2921 	I915_MM_SHRINKER
2922 };
2923 
2924 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2925 				 enum i915_mm_subclass subclass);
2926 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
2927 
2928 enum i915_map_type {
2929 	I915_MAP_WB = 0,
2930 	I915_MAP_WC,
2931 #define I915_MAP_OVERRIDE BIT(31)
2932 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
2933 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
2934 };
2935 
2936 static inline enum i915_map_type
2937 i915_coherent_map_type(struct drm_i915_private *i915)
2938 {
2939 	return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
2940 }
2941 
2942 /**
2943  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
2944  * @obj: the object to map into kernel address space
2945  * @type: the type of mapping, used to select pgprot_t
2946  *
2947  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
2948  * pages and then returns a contiguous mapping of the backing storage into
2949  * the kernel address space. Based on the @type of mapping, the PTE will be
2950  * set to either WriteBack or WriteCombine (via pgprot_t).
2951  *
2952  * The caller is responsible for calling i915_gem_object_unpin_map() when the
2953  * mapping is no longer required.
2954  *
2955  * Returns the pointer through which to access the mapped object, or an
2956  * ERR_PTR() on error.
2957  */
2958 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2959 					   enum i915_map_type type);
2960 
2961 /**
2962  * i915_gem_object_unpin_map - releases an earlier mapping
2963  * @obj: the object to unmap
2964  *
2965  * After pinning the object and mapping its pages, once you are finished
2966  * with your access, call i915_gem_object_unpin_map() to release the pin
2967  * upon the mapping. Once the pin count reaches zero, that mapping may be
2968  * removed.
2969  */
2970 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
2971 {
2972 	i915_gem_object_unpin_pages(obj);
2973 }
2974 
2975 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
2976 				    unsigned int *needs_clflush);
2977 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
2978 				     unsigned int *needs_clflush);
2979 #define CLFLUSH_BEFORE	BIT(0)
2980 #define CLFLUSH_AFTER	BIT(1)
2981 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
2982 
2983 static inline void
2984 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
2985 {
2986 	i915_gem_object_unpin_pages(obj);
2987 }
2988 
2989 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
2990 int i915_gem_dumb_create(struct drm_file *file_priv,
2991 			 struct drm_device *dev,
2992 			 struct drm_mode_create_dumb *args);
2993 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
2994 		      uint32_t handle, uint64_t *offset);
2995 int i915_gem_mmap_gtt_version(void);
2996 
2997 void i915_gem_track_fb(struct drm_i915_gem_object *old,
2998 		       struct drm_i915_gem_object *new,
2999 		       unsigned frontbuffer_bits);
3000 
3001 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3002 
3003 struct i915_request *
3004 i915_gem_find_active_request(struct intel_engine_cs *engine);
3005 
3006 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3007 {
3008 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3009 }
3010 
3011 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3012 {
3013 	return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3014 }
3015 
3016 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3017 {
3018 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3019 }
3020 
3021 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3022 {
3023 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3024 }
3025 
3026 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3027 {
3028 	return READ_ONCE(error->reset_count);
3029 }
3030 
3031 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3032 					  struct intel_engine_cs *engine)
3033 {
3034 	return READ_ONCE(error->reset_engine_count[engine->id]);
3035 }
3036 
3037 struct i915_request *
3038 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3039 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3040 void i915_gem_reset(struct drm_i915_private *dev_priv,
3041 		    unsigned int stalled_mask);
3042 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3043 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3044 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3045 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3046 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3047 			   struct i915_request *request,
3048 			   bool stalled);
3049 
3050 void i915_gem_init_mmio(struct drm_i915_private *i915);
3051 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3052 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3053 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3054 void i915_gem_fini(struct drm_i915_private *dev_priv);
3055 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3056 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3057 			   unsigned int flags, long timeout);
3058 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3059 void i915_gem_suspend_late(struct drm_i915_private *dev_priv);
3060 void i915_gem_resume(struct drm_i915_private *dev_priv);
3061 vm_fault_t i915_gem_fault(struct vm_fault *vmf);
3062 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3063 			 unsigned int flags,
3064 			 long timeout,
3065 			 struct intel_rps_client *rps);
3066 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3067 				  unsigned int flags,
3068 				  const struct i915_sched_attr *attr);
3069 #define I915_PRIORITY_DISPLAY I915_USER_PRIORITY(I915_PRIORITY_MAX)
3070 
3071 int __must_check
3072 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3073 int __must_check
3074 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3075 int __must_check
3076 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3077 struct i915_vma * __must_check
3078 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3079 				     u32 alignment,
3080 				     const struct i915_ggtt_view *view,
3081 				     unsigned int flags);
3082 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3083 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3084 				int align);
3085 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3086 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3087 
3088 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3089 				    enum i915_cache_level cache_level);
3090 
3091 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3092 				struct dma_buf *dma_buf);
3093 
3094 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3095 				struct drm_gem_object *gem_obj, int flags);
3096 
3097 static inline struct i915_hw_ppgtt *
3098 i915_vm_to_ppgtt(struct i915_address_space *vm)
3099 {
3100 	return container_of(vm, struct i915_hw_ppgtt, vm);
3101 }
3102 
3103 /* i915_gem_fence_reg.c */
3104 struct drm_i915_fence_reg *
3105 i915_reserve_fence(struct drm_i915_private *dev_priv);
3106 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3107 
3108 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3109 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3110 
3111 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3112 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3113 				       struct sg_table *pages);
3114 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3115 					 struct sg_table *pages);
3116 
3117 static inline struct i915_gem_context *
3118 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3119 {
3120 	return idr_find(&file_priv->context_idr, id);
3121 }
3122 
3123 static inline struct i915_gem_context *
3124 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3125 {
3126 	struct i915_gem_context *ctx;
3127 
3128 	rcu_read_lock();
3129 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3130 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3131 		ctx = NULL;
3132 	rcu_read_unlock();
3133 
3134 	return ctx;
3135 }
3136 
3137 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3138 			 struct drm_file *file);
3139 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3140 			       struct drm_file *file);
3141 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3142 				  struct drm_file *file);
3143 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3144 			    struct i915_gem_context *ctx,
3145 			    uint32_t *reg_state);
3146 
3147 /* i915_gem_evict.c */
3148 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3149 					  u64 min_size, u64 alignment,
3150 					  unsigned cache_level,
3151 					  u64 start, u64 end,
3152 					  unsigned flags);
3153 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3154 					 struct drm_mm_node *node,
3155 					 unsigned int flags);
3156 int i915_gem_evict_vm(struct i915_address_space *vm);
3157 
3158 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3159 
3160 /* belongs in i915_gem_gtt.h */
3161 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3162 {
3163 	wmb();
3164 	if (INTEL_GEN(dev_priv) < 6)
3165 		intel_gtt_chipset_flush();
3166 }
3167 
3168 /* i915_gem_stolen.c */
3169 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3170 				struct drm_mm_node *node, u64 size,
3171 				unsigned alignment);
3172 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3173 					 struct drm_mm_node *node, u64 size,
3174 					 unsigned alignment, u64 start,
3175 					 u64 end);
3176 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3177 				 struct drm_mm_node *node);
3178 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3179 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv);
3180 struct drm_i915_gem_object *
3181 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3182 			      resource_size_t size);
3183 struct drm_i915_gem_object *
3184 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3185 					       resource_size_t stolen_offset,
3186 					       resource_size_t gtt_offset,
3187 					       resource_size_t size);
3188 
3189 /* i915_gem_internal.c */
3190 struct drm_i915_gem_object *
3191 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3192 				phys_addr_t size);
3193 
3194 /* i915_gem_shrinker.c */
3195 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3196 			      unsigned long target,
3197 			      unsigned long *nr_scanned,
3198 			      unsigned flags);
3199 #define I915_SHRINK_PURGEABLE 0x1
3200 #define I915_SHRINK_UNBOUND 0x2
3201 #define I915_SHRINK_BOUND 0x4
3202 #define I915_SHRINK_ACTIVE 0x8
3203 #define I915_SHRINK_VMAPS 0x10
3204 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3205 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3206 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3207 void i915_gem_shrinker_taints_mutex(struct mutex *mutex);
3208 
3209 /* i915_gem_tiling.c */
3210 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3211 {
3212 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3213 
3214 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3215 		i915_gem_object_is_tiled(obj);
3216 }
3217 
3218 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3219 			unsigned int tiling, unsigned int stride);
3220 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3221 			     unsigned int tiling, unsigned int stride);
3222 
3223 /* i915_debugfs.c */
3224 #ifdef CONFIG_DEBUG_FS
3225 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3226 int i915_debugfs_connector_add(struct drm_connector *connector);
3227 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3228 #else
3229 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3230 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3231 { return 0; }
3232 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3233 #endif
3234 
3235 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3236 
3237 /* i915_cmd_parser.c */
3238 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3239 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3240 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3241 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3242 			    struct drm_i915_gem_object *batch_obj,
3243 			    struct drm_i915_gem_object *shadow_batch_obj,
3244 			    u32 batch_start_offset,
3245 			    u32 batch_len,
3246 			    bool is_master);
3247 
3248 /* i915_perf.c */
3249 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3250 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3251 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3252 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3253 
3254 /* i915_suspend.c */
3255 extern int i915_save_state(struct drm_i915_private *dev_priv);
3256 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3257 
3258 /* i915_sysfs.c */
3259 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3260 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3261 
3262 /* intel_lpe_audio.c */
3263 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3264 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3265 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3266 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3267 			    enum pipe pipe, enum port port,
3268 			    const void *eld, int ls_clock, bool dp_output);
3269 
3270 /* intel_i2c.c */
3271 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3272 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3273 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3274 				     unsigned int pin);
3275 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3276 
3277 extern struct i2c_adapter *
3278 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3279 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3280 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3281 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3282 {
3283 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3284 }
3285 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3286 
3287 /* intel_bios.c */
3288 void intel_bios_init(struct drm_i915_private *dev_priv);
3289 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3290 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3291 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3292 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3293 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3294 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3295 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3296 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3297 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3298 				     enum port port);
3299 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3300 				enum port port);
3301 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv, enum port port);
3302 
3303 /* intel_acpi.c */
3304 #ifdef CONFIG_ACPI
3305 extern void intel_register_dsm_handler(void);
3306 extern void intel_unregister_dsm_handler(void);
3307 #else
3308 static inline void intel_register_dsm_handler(void) { return; }
3309 static inline void intel_unregister_dsm_handler(void) { return; }
3310 #endif /* CONFIG_ACPI */
3311 
3312 /* intel_device_info.c */
3313 static inline struct intel_device_info *
3314 mkwrite_device_info(struct drm_i915_private *dev_priv)
3315 {
3316 	return (struct intel_device_info *)&dev_priv->info;
3317 }
3318 
3319 /* modesetting */
3320 extern void intel_modeset_init_hw(struct drm_device *dev);
3321 extern int intel_modeset_init(struct drm_device *dev);
3322 extern void intel_modeset_cleanup(struct drm_device *dev);
3323 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3324 				       bool state);
3325 extern void intel_display_resume(struct drm_device *dev);
3326 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3327 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3328 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3329 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3330 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3331 extern void intel_rps_mark_interactive(struct drm_i915_private *i915,
3332 				       bool interactive);
3333 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3334 				  bool enable);
3335 void intel_dsc_enable(struct intel_encoder *encoder,
3336 		      const struct intel_crtc_state *crtc_state);
3337 void intel_dsc_disable(const struct intel_crtc_state *crtc_state);
3338 
3339 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3340 			struct drm_file *file);
3341 
3342 /* overlay */
3343 extern struct intel_overlay_error_state *
3344 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3345 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3346 					    struct intel_overlay_error_state *error);
3347 
3348 extern struct intel_display_error_state *
3349 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3350 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3351 					    struct intel_display_error_state *error);
3352 
3353 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3354 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3355 				    u32 val, int fast_timeout_us,
3356 				    int slow_timeout_ms);
3357 #define sandybridge_pcode_write(dev_priv, mbox, val)	\
3358 	sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3359 
3360 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3361 		      u32 reply_mask, u32 reply, int timeout_base_ms);
3362 
3363 /* intel_sideband.c */
3364 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3365 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3366 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3367 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3368 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3369 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3370 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3371 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3372 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3373 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3374 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3375 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3376 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3377 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3378 		   enum intel_sbi_destination destination);
3379 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3380 		     enum intel_sbi_destination destination);
3381 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3382 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3383 
3384 /* intel_dpio_phy.c */
3385 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3386 			     enum dpio_phy *phy, enum dpio_channel *ch);
3387 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3388 				  enum port port, u32 margin, u32 scale,
3389 				  u32 enable, u32 deemphasis);
3390 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3391 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3392 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3393 			    enum dpio_phy phy);
3394 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3395 			      enum dpio_phy phy);
3396 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count);
3397 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3398 				     uint8_t lane_lat_optim_mask);
3399 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3400 
3401 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3402 			      u32 deemph_reg_value, u32 margin_reg_value,
3403 			      bool uniq_trans_scale);
3404 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3405 			      const struct intel_crtc_state *crtc_state,
3406 			      bool reset);
3407 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3408 			    const struct intel_crtc_state *crtc_state);
3409 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3410 				const struct intel_crtc_state *crtc_state);
3411 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3412 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3413 			      const struct intel_crtc_state *old_crtc_state);
3414 
3415 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3416 			      u32 demph_reg_value, u32 preemph_reg_value,
3417 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3418 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3419 			    const struct intel_crtc_state *crtc_state);
3420 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3421 				const struct intel_crtc_state *crtc_state);
3422 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3423 			 const struct intel_crtc_state *old_crtc_state);
3424 
3425 /* intel_combo_phy.c */
3426 void icl_combo_phys_init(struct drm_i915_private *dev_priv);
3427 void icl_combo_phys_uninit(struct drm_i915_private *dev_priv);
3428 void cnl_combo_phys_init(struct drm_i915_private *dev_priv);
3429 void cnl_combo_phys_uninit(struct drm_i915_private *dev_priv);
3430 
3431 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3432 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3433 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3434 			   const i915_reg_t reg);
3435 
3436 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3437 
3438 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3439 					 const i915_reg_t reg)
3440 {
3441 	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3442 }
3443 
3444 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3445 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3446 
3447 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3448 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3449 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3450 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3451 
3452 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3453 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3454 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3455 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3456 
3457 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3458  * will be implemented using 2 32-bit writes in an arbitrary order with
3459  * an arbitrary delay between them. This can cause the hardware to
3460  * act upon the intermediate value, possibly leading to corruption and
3461  * machine death. For this reason we do not support I915_WRITE64, or
3462  * dev_priv->uncore.funcs.mmio_writeq.
3463  *
3464  * When reading a 64-bit value as two 32-bit values, the delay may cause
3465  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3466  * occasionally a 64-bit register does not actualy support a full readq
3467  * and must be read using two 32-bit reads.
3468  *
3469  * You have been warned.
3470  */
3471 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3472 
3473 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
3474 	u32 upper, lower, old_upper, loop = 0;				\
3475 	upper = I915_READ(upper_reg);					\
3476 	do {								\
3477 		old_upper = upper;					\
3478 		lower = I915_READ(lower_reg);				\
3479 		upper = I915_READ(upper_reg);				\
3480 	} while (upper != old_upper && loop++ < 2);			\
3481 	(u64)upper << 32 | lower; })
3482 
3483 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
3484 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
3485 
3486 #define __raw_read(x, s) \
3487 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3488 					     i915_reg_t reg) \
3489 { \
3490 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3491 }
3492 
3493 #define __raw_write(x, s) \
3494 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3495 				       i915_reg_t reg, uint##x##_t val) \
3496 { \
3497 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3498 }
3499 __raw_read(8, b)
3500 __raw_read(16, w)
3501 __raw_read(32, l)
3502 __raw_read(64, q)
3503 
3504 __raw_write(8, b)
3505 __raw_write(16, w)
3506 __raw_write(32, l)
3507 __raw_write(64, q)
3508 
3509 #undef __raw_read
3510 #undef __raw_write
3511 
3512 /* These are untraced mmio-accessors that are only valid to be used inside
3513  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3514  * controlled.
3515  *
3516  * Think twice, and think again, before using these.
3517  *
3518  * As an example, these accessors can possibly be used between:
3519  *
3520  * spin_lock_irq(&dev_priv->uncore.lock);
3521  * intel_uncore_forcewake_get__locked();
3522  *
3523  * and
3524  *
3525  * intel_uncore_forcewake_put__locked();
3526  * spin_unlock_irq(&dev_priv->uncore.lock);
3527  *
3528  *
3529  * Note: some registers may not need forcewake held, so
3530  * intel_uncore_forcewake_{get,put} can be omitted, see
3531  * intel_uncore_forcewake_for_reg().
3532  *
3533  * Certain architectures will die if the same cacheline is concurrently accessed
3534  * by different clients (e.g. on Ivybridge). Access to registers should
3535  * therefore generally be serialised, by either the dev_priv->uncore.lock or
3536  * a more localised lock guarding all access to that bank of registers.
3537  */
3538 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3539 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3540 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3541 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3542 
3543 /* "Broadcast RGB" property */
3544 #define INTEL_BROADCAST_RGB_AUTO 0
3545 #define INTEL_BROADCAST_RGB_FULL 1
3546 #define INTEL_BROADCAST_RGB_LIMITED 2
3547 
3548 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3549 {
3550 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3551 		return VLV_VGACNTRL;
3552 	else if (INTEL_GEN(dev_priv) >= 5)
3553 		return CPU_VGACNTRL;
3554 	else
3555 		return VGACNTRL;
3556 }
3557 
3558 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3559 {
3560 	unsigned long j = msecs_to_jiffies(m);
3561 
3562 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3563 }
3564 
3565 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3566 {
3567 	/* nsecs_to_jiffies64() does not guard against overflow */
3568 	if (NSEC_PER_SEC % HZ &&
3569 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3570 		return MAX_JIFFY_OFFSET;
3571 
3572         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3573 }
3574 
3575 /*
3576  * If you need to wait X milliseconds between events A and B, but event B
3577  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3578  * when event A happened, then just before event B you call this function and
3579  * pass the timestamp as the first argument, and X as the second argument.
3580  */
3581 static inline void
3582 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3583 {
3584 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3585 
3586 	/*
3587 	 * Don't re-read the value of "jiffies" every time since it may change
3588 	 * behind our back and break the math.
3589 	 */
3590 	tmp_jiffies = jiffies;
3591 	target_jiffies = timestamp_jiffies +
3592 			 msecs_to_jiffies_timeout(to_wait_ms);
3593 
3594 	if (time_after(target_jiffies, tmp_jiffies)) {
3595 		remaining_jiffies = target_jiffies - tmp_jiffies;
3596 		while (remaining_jiffies)
3597 			remaining_jiffies =
3598 			    schedule_timeout_uninterruptible(remaining_jiffies);
3599 	}
3600 }
3601 
3602 static inline bool
3603 __i915_request_irq_complete(const struct i915_request *rq)
3604 {
3605 	struct intel_engine_cs *engine = rq->engine;
3606 	u32 seqno;
3607 
3608 	/* Note that the engine may have wrapped around the seqno, and
3609 	 * so our request->global_seqno will be ahead of the hardware,
3610 	 * even though it completed the request before wrapping. We catch
3611 	 * this by kicking all the waiters before resetting the seqno
3612 	 * in hardware, and also signal the fence.
3613 	 */
3614 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
3615 		return true;
3616 
3617 	/* The request was dequeued before we were awoken. We check after
3618 	 * inspecting the hw to confirm that this was the same request
3619 	 * that generated the HWS update. The memory barriers within
3620 	 * the request execution are sufficient to ensure that a check
3621 	 * after reading the value from hw matches this request.
3622 	 */
3623 	seqno = i915_request_global_seqno(rq);
3624 	if (!seqno)
3625 		return false;
3626 
3627 	/* Before we do the heavier coherent read of the seqno,
3628 	 * check the value (hopefully) in the CPU cacheline.
3629 	 */
3630 	if (__i915_request_completed(rq, seqno))
3631 		return true;
3632 
3633 	/* Ensure our read of the seqno is coherent so that we
3634 	 * do not "miss an interrupt" (i.e. if this is the last
3635 	 * request and the seqno write from the GPU is not visible
3636 	 * by the time the interrupt fires, we will see that the
3637 	 * request is incomplete and go back to sleep awaiting
3638 	 * another interrupt that will never come.)
3639 	 *
3640 	 * Strictly, we only need to do this once after an interrupt,
3641 	 * but it is easier and safer to do it every time the waiter
3642 	 * is woken.
3643 	 */
3644 	if (engine->irq_seqno_barrier &&
3645 	    test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
3646 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
3647 
3648 		/* The ordering of irq_posted versus applying the barrier
3649 		 * is crucial. The clearing of the current irq_posted must
3650 		 * be visible before we perform the barrier operation,
3651 		 * such that if a subsequent interrupt arrives, irq_posted
3652 		 * is reasserted and our task rewoken (which causes us to
3653 		 * do another __i915_request_irq_complete() immediately
3654 		 * and reapply the barrier). Conversely, if the clear
3655 		 * occurs after the barrier, then an interrupt that arrived
3656 		 * whilst we waited on the barrier would not trigger a
3657 		 * barrier on the next pass, and the read may not see the
3658 		 * seqno update.
3659 		 */
3660 		engine->irq_seqno_barrier(engine);
3661 
3662 		/* If we consume the irq, but we are no longer the bottom-half,
3663 		 * the real bottom-half may not have serialised their own
3664 		 * seqno check with the irq-barrier (i.e. may have inspected
3665 		 * the seqno before we believe it coherent since they see
3666 		 * irq_posted == false but we are still running).
3667 		 */
3668 		spin_lock_irq(&b->irq_lock);
3669 		if (b->irq_wait && b->irq_wait->tsk != current)
3670 			/* Note that if the bottom-half is changed as we
3671 			 * are sending the wake-up, the new bottom-half will
3672 			 * be woken by whomever made the change. We only have
3673 			 * to worry about when we steal the irq-posted for
3674 			 * ourself.
3675 			 */
3676 			wake_up_process(b->irq_wait->tsk);
3677 		spin_unlock_irq(&b->irq_lock);
3678 
3679 		if (__i915_request_completed(rq, seqno))
3680 			return true;
3681 	}
3682 
3683 	return false;
3684 }
3685 
3686 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3687 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3688 
3689 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3690  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3691  * perform the operation. To check beforehand, pass in the parameters to
3692  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3693  * you only need to pass in the minor offsets, page-aligned pointers are
3694  * always valid.
3695  *
3696  * For just checking for SSE4.1, in the foreknowledge that the future use
3697  * will be correctly aligned, just use i915_has_memcpy_from_wc().
3698  */
3699 #define i915_can_memcpy_from_wc(dst, src, len) \
3700 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3701 
3702 #define i915_has_memcpy_from_wc() \
3703 	i915_memcpy_from_wc(NULL, NULL, 0)
3704 
3705 /* i915_mm.c */
3706 int remap_io_mapping(struct vm_area_struct *vma,
3707 		     unsigned long addr, unsigned long pfn, unsigned long size,
3708 		     struct io_mapping *iomap);
3709 
3710 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3711 {
3712 	if (INTEL_GEN(i915) >= 10)
3713 		return CNL_HWS_CSB_WRITE_INDEX;
3714 	else
3715 		return I915_HWS_CSB_WRITE_INDEX;
3716 }
3717 
3718 static inline u32 i915_scratch_offset(const struct drm_i915_private *i915)
3719 {
3720 	return i915_ggtt_offset(i915->gt.scratch);
3721 }
3722 
3723 #endif
3724