xref: /openbmc/linux/drivers/gpu/drm/i915/i915_drv.h (revision 812f77b749a8ae11f58dacf0d3ed65e7ede47458)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46 
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53 
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57 
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64 
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_request.h"
71 #include "i915_gem_timeline.h"
72 
73 #include "i915_vma.h"
74 
75 #include "intel_gvt.h"
76 
77 /* General customization:
78  */
79 
80 #define DRIVER_NAME		"i915"
81 #define DRIVER_DESC		"Intel Graphics"
82 #define DRIVER_DATE		"20171117"
83 #define DRIVER_TIMESTAMP	1510958822
84 
85 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
86  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
87  * which may not necessarily be a user visible problem.  This will either
88  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
89  * enable distros and users to tailor their preferred amount of i915 abrt
90  * spam.
91  */
92 #define I915_STATE_WARN(condition, format...) ({			\
93 	int __ret_warn_on = !!(condition);				\
94 	if (unlikely(__ret_warn_on))					\
95 		if (!WARN(i915_modparams.verbose_state_checks, format))	\
96 			DRM_ERROR(format);				\
97 	unlikely(__ret_warn_on);					\
98 })
99 
100 #define I915_STATE_WARN_ON(x)						\
101 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
102 
103 bool __i915_inject_load_failure(const char *func, int line);
104 #define i915_inject_load_failure() \
105 	__i915_inject_load_failure(__func__, __LINE__)
106 
107 typedef struct {
108 	uint32_t val;
109 } uint_fixed_16_16_t;
110 
111 #define FP_16_16_MAX ({ \
112 	uint_fixed_16_16_t fp; \
113 	fp.val = UINT_MAX; \
114 	fp; \
115 })
116 
117 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
118 {
119 	if (val.val == 0)
120 		return true;
121 	return false;
122 }
123 
124 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
125 {
126 	uint_fixed_16_16_t fp;
127 
128 	WARN_ON(val > U16_MAX);
129 
130 	fp.val = val << 16;
131 	return fp;
132 }
133 
134 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
135 {
136 	return DIV_ROUND_UP(fp.val, 1 << 16);
137 }
138 
139 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
140 {
141 	return fp.val >> 16;
142 }
143 
144 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
145 						 uint_fixed_16_16_t min2)
146 {
147 	uint_fixed_16_16_t min;
148 
149 	min.val = min(min1.val, min2.val);
150 	return min;
151 }
152 
153 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
154 						 uint_fixed_16_16_t max2)
155 {
156 	uint_fixed_16_16_t max;
157 
158 	max.val = max(max1.val, max2.val);
159 	return max;
160 }
161 
162 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
163 {
164 	uint_fixed_16_16_t fp;
165 	WARN_ON(val > U32_MAX);
166 	fp.val = (uint32_t) val;
167 	return fp;
168 }
169 
170 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
171 					    uint_fixed_16_16_t d)
172 {
173 	return DIV_ROUND_UP(val.val, d.val);
174 }
175 
176 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
177 						uint_fixed_16_16_t mul)
178 {
179 	uint64_t intermediate_val;
180 
181 	intermediate_val = (uint64_t) val * mul.val;
182 	intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
183 	WARN_ON(intermediate_val > U32_MAX);
184 	return (uint32_t) intermediate_val;
185 }
186 
187 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
188 					     uint_fixed_16_16_t mul)
189 {
190 	uint64_t intermediate_val;
191 
192 	intermediate_val = (uint64_t) val.val * mul.val;
193 	intermediate_val = intermediate_val >> 16;
194 	return clamp_u64_to_fixed16(intermediate_val);
195 }
196 
197 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
198 {
199 	uint64_t interm_val;
200 
201 	interm_val = (uint64_t)val << 16;
202 	interm_val = DIV_ROUND_UP_ULL(interm_val, d);
203 	return clamp_u64_to_fixed16(interm_val);
204 }
205 
206 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
207 						uint_fixed_16_16_t d)
208 {
209 	uint64_t interm_val;
210 
211 	interm_val = (uint64_t)val << 16;
212 	interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
213 	WARN_ON(interm_val > U32_MAX);
214 	return (uint32_t) interm_val;
215 }
216 
217 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
218 						     uint_fixed_16_16_t mul)
219 {
220 	uint64_t intermediate_val;
221 
222 	intermediate_val = (uint64_t) val * mul.val;
223 	return clamp_u64_to_fixed16(intermediate_val);
224 }
225 
226 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
227 					     uint_fixed_16_16_t add2)
228 {
229 	uint64_t interm_sum;
230 
231 	interm_sum = (uint64_t) add1.val + add2.val;
232 	return clamp_u64_to_fixed16(interm_sum);
233 }
234 
235 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
236 						 uint32_t add2)
237 {
238 	uint64_t interm_sum;
239 	uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
240 
241 	interm_sum = (uint64_t) add1.val + interm_add2.val;
242 	return clamp_u64_to_fixed16(interm_sum);
243 }
244 
245 static inline const char *yesno(bool v)
246 {
247 	return v ? "yes" : "no";
248 }
249 
250 static inline const char *onoff(bool v)
251 {
252 	return v ? "on" : "off";
253 }
254 
255 static inline const char *enableddisabled(bool v)
256 {
257 	return v ? "enabled" : "disabled";
258 }
259 
260 enum pipe {
261 	INVALID_PIPE = -1,
262 	PIPE_A = 0,
263 	PIPE_B,
264 	PIPE_C,
265 	_PIPE_EDP,
266 	I915_MAX_PIPES = _PIPE_EDP
267 };
268 #define pipe_name(p) ((p) + 'A')
269 
270 enum transcoder {
271 	TRANSCODER_A = 0,
272 	TRANSCODER_B,
273 	TRANSCODER_C,
274 	TRANSCODER_EDP,
275 	TRANSCODER_DSI_A,
276 	TRANSCODER_DSI_C,
277 	I915_MAX_TRANSCODERS
278 };
279 
280 static inline const char *transcoder_name(enum transcoder transcoder)
281 {
282 	switch (transcoder) {
283 	case TRANSCODER_A:
284 		return "A";
285 	case TRANSCODER_B:
286 		return "B";
287 	case TRANSCODER_C:
288 		return "C";
289 	case TRANSCODER_EDP:
290 		return "EDP";
291 	case TRANSCODER_DSI_A:
292 		return "DSI A";
293 	case TRANSCODER_DSI_C:
294 		return "DSI C";
295 	default:
296 		return "<invalid>";
297 	}
298 }
299 
300 static inline bool transcoder_is_dsi(enum transcoder transcoder)
301 {
302 	return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
303 }
304 
305 /*
306  * Global legacy plane identifier. Valid only for primary/sprite
307  * planes on pre-g4x, and only for primary planes on g4x+.
308  */
309 enum plane {
310 	PLANE_A,
311 	PLANE_B,
312 	PLANE_C,
313 };
314 #define plane_name(p) ((p) + 'A')
315 
316 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
317 
318 /*
319  * Per-pipe plane identifier.
320  * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
321  * number of planes per CRTC.  Not all platforms really have this many planes,
322  * which means some arrays of size I915_MAX_PLANES may have unused entries
323  * between the topmost sprite plane and the cursor plane.
324  *
325  * This is expected to be passed to various register macros
326  * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
327  */
328 enum plane_id {
329 	PLANE_PRIMARY,
330 	PLANE_SPRITE0,
331 	PLANE_SPRITE1,
332 	PLANE_SPRITE2,
333 	PLANE_CURSOR,
334 	I915_MAX_PLANES,
335 };
336 
337 #define for_each_plane_id_on_crtc(__crtc, __p) \
338 	for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
339 		for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
340 
341 enum port {
342 	PORT_NONE = -1,
343 	PORT_A = 0,
344 	PORT_B,
345 	PORT_C,
346 	PORT_D,
347 	PORT_E,
348 	I915_MAX_PORTS
349 };
350 #define port_name(p) ((p) + 'A')
351 
352 #define I915_NUM_PHYS_VLV 2
353 
354 enum dpio_channel {
355 	DPIO_CH0,
356 	DPIO_CH1
357 };
358 
359 enum dpio_phy {
360 	DPIO_PHY0,
361 	DPIO_PHY1,
362 	DPIO_PHY2,
363 };
364 
365 enum intel_display_power_domain {
366 	POWER_DOMAIN_PIPE_A,
367 	POWER_DOMAIN_PIPE_B,
368 	POWER_DOMAIN_PIPE_C,
369 	POWER_DOMAIN_PIPE_A_PANEL_FITTER,
370 	POWER_DOMAIN_PIPE_B_PANEL_FITTER,
371 	POWER_DOMAIN_PIPE_C_PANEL_FITTER,
372 	POWER_DOMAIN_TRANSCODER_A,
373 	POWER_DOMAIN_TRANSCODER_B,
374 	POWER_DOMAIN_TRANSCODER_C,
375 	POWER_DOMAIN_TRANSCODER_EDP,
376 	POWER_DOMAIN_TRANSCODER_DSI_A,
377 	POWER_DOMAIN_TRANSCODER_DSI_C,
378 	POWER_DOMAIN_PORT_DDI_A_LANES,
379 	POWER_DOMAIN_PORT_DDI_B_LANES,
380 	POWER_DOMAIN_PORT_DDI_C_LANES,
381 	POWER_DOMAIN_PORT_DDI_D_LANES,
382 	POWER_DOMAIN_PORT_DDI_E_LANES,
383 	POWER_DOMAIN_PORT_DDI_A_IO,
384 	POWER_DOMAIN_PORT_DDI_B_IO,
385 	POWER_DOMAIN_PORT_DDI_C_IO,
386 	POWER_DOMAIN_PORT_DDI_D_IO,
387 	POWER_DOMAIN_PORT_DDI_E_IO,
388 	POWER_DOMAIN_PORT_DSI,
389 	POWER_DOMAIN_PORT_CRT,
390 	POWER_DOMAIN_PORT_OTHER,
391 	POWER_DOMAIN_VGA,
392 	POWER_DOMAIN_AUDIO,
393 	POWER_DOMAIN_PLLS,
394 	POWER_DOMAIN_AUX_A,
395 	POWER_DOMAIN_AUX_B,
396 	POWER_DOMAIN_AUX_C,
397 	POWER_DOMAIN_AUX_D,
398 	POWER_DOMAIN_GMBUS,
399 	POWER_DOMAIN_MODESET,
400 	POWER_DOMAIN_INIT,
401 
402 	POWER_DOMAIN_NUM,
403 };
404 
405 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
406 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
407 		((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
408 #define POWER_DOMAIN_TRANSCODER(tran) \
409 	((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
410 	 (tran) + POWER_DOMAIN_TRANSCODER_A)
411 
412 enum hpd_pin {
413 	HPD_NONE = 0,
414 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
415 	HPD_CRT,
416 	HPD_SDVO_B,
417 	HPD_SDVO_C,
418 	HPD_PORT_A,
419 	HPD_PORT_B,
420 	HPD_PORT_C,
421 	HPD_PORT_D,
422 	HPD_PORT_E,
423 	HPD_NUM_PINS
424 };
425 
426 #define for_each_hpd_pin(__pin) \
427 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
428 
429 #define HPD_STORM_DEFAULT_THRESHOLD 5
430 
431 struct i915_hotplug {
432 	struct work_struct hotplug_work;
433 
434 	struct {
435 		unsigned long last_jiffies;
436 		int count;
437 		enum {
438 			HPD_ENABLED = 0,
439 			HPD_DISABLED = 1,
440 			HPD_MARK_DISABLED = 2
441 		} state;
442 	} stats[HPD_NUM_PINS];
443 	u32 event_bits;
444 	struct delayed_work reenable_work;
445 
446 	struct intel_digital_port *irq_port[I915_MAX_PORTS];
447 	u32 long_port_mask;
448 	u32 short_port_mask;
449 	struct work_struct dig_port_work;
450 
451 	struct work_struct poll_init_work;
452 	bool poll_enabled;
453 
454 	unsigned int hpd_storm_threshold;
455 
456 	/*
457 	 * if we get a HPD irq from DP and a HPD irq from non-DP
458 	 * the non-DP HPD could block the workqueue on a mode config
459 	 * mutex getting, that userspace may have taken. However
460 	 * userspace is waiting on the DP workqueue to run which is
461 	 * blocked behind the non-DP one.
462 	 */
463 	struct workqueue_struct *dp_wq;
464 };
465 
466 #define I915_GEM_GPU_DOMAINS \
467 	(I915_GEM_DOMAIN_RENDER | \
468 	 I915_GEM_DOMAIN_SAMPLER | \
469 	 I915_GEM_DOMAIN_COMMAND | \
470 	 I915_GEM_DOMAIN_INSTRUCTION | \
471 	 I915_GEM_DOMAIN_VERTEX)
472 
473 #define for_each_pipe(__dev_priv, __p) \
474 	for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
475 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
476 	for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
477 		for_each_if ((__mask) & (1 << (__p)))
478 #define for_each_universal_plane(__dev_priv, __pipe, __p)		\
479 	for ((__p) = 0;							\
480 	     (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1;	\
481 	     (__p)++)
482 #define for_each_sprite(__dev_priv, __p, __s)				\
483 	for ((__s) = 0;							\
484 	     (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)];	\
485 	     (__s)++)
486 
487 #define for_each_port_masked(__port, __ports_mask) \
488 	for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++)	\
489 		for_each_if ((__ports_mask) & (1 << (__port)))
490 
491 #define for_each_crtc(dev, crtc) \
492 	list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
493 
494 #define for_each_intel_plane(dev, intel_plane) \
495 	list_for_each_entry(intel_plane,			\
496 			    &(dev)->mode_config.plane_list,	\
497 			    base.head)
498 
499 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask)		\
500 	list_for_each_entry(intel_plane,				\
501 			    &(dev)->mode_config.plane_list,		\
502 			    base.head)					\
503 		for_each_if ((plane_mask) &				\
504 			     (1 << drm_plane_index(&intel_plane->base)))
505 
506 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane)	\
507 	list_for_each_entry(intel_plane,				\
508 			    &(dev)->mode_config.plane_list,		\
509 			    base.head)					\
510 		for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
511 
512 #define for_each_intel_crtc(dev, intel_crtc)				\
513 	list_for_each_entry(intel_crtc,					\
514 			    &(dev)->mode_config.crtc_list,		\
515 			    base.head)
516 
517 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask)		\
518 	list_for_each_entry(intel_crtc,					\
519 			    &(dev)->mode_config.crtc_list,		\
520 			    base.head)					\
521 		for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
522 
523 #define for_each_intel_encoder(dev, intel_encoder)		\
524 	list_for_each_entry(intel_encoder,			\
525 			    &(dev)->mode_config.encoder_list,	\
526 			    base.head)
527 
528 #define for_each_intel_connector_iter(intel_connector, iter) \
529 	while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
530 
531 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
532 	list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
533 		for_each_if ((intel_encoder)->base.crtc == (__crtc))
534 
535 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
536 	list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
537 		for_each_if ((intel_connector)->base.encoder == (__encoder))
538 
539 #define for_each_power_domain(domain, mask)				\
540 	for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)	\
541 		for_each_if (BIT_ULL(domain) & (mask))
542 
543 #define for_each_power_well(__dev_priv, __power_well)				\
544 	for ((__power_well) = (__dev_priv)->power_domains.power_wells;	\
545 	     (__power_well) - (__dev_priv)->power_domains.power_wells <	\
546 		(__dev_priv)->power_domains.power_well_count;		\
547 	     (__power_well)++)
548 
549 #define for_each_power_well_rev(__dev_priv, __power_well)			\
550 	for ((__power_well) = (__dev_priv)->power_domains.power_wells +		\
551 			      (__dev_priv)->power_domains.power_well_count - 1;	\
552 	     (__power_well) - (__dev_priv)->power_domains.power_wells >= 0;	\
553 	     (__power_well)--)
554 
555 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask)	\
556 	for_each_power_well(__dev_priv, __power_well)				\
557 		for_each_if ((__power_well)->domains & (__domain_mask))
558 
559 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
560 	for_each_power_well_rev(__dev_priv, __power_well)		        \
561 		for_each_if ((__power_well)->domains & (__domain_mask))
562 
563 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
564 	for ((__i) = 0; \
565 	     (__i) < (__state)->base.dev->mode_config.num_total_plane && \
566 		     ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
567 		      (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
568 	     (__i)++) \
569 		for_each_if (plane_state)
570 
571 #define for_each_new_intel_crtc_in_state(__state, crtc, new_crtc_state, __i) \
572 	for ((__i) = 0; \
573 	     (__i) < (__state)->base.dev->mode_config.num_crtc && \
574 		     ((crtc) = to_intel_crtc((__state)->base.crtcs[__i].ptr), \
575 		      (new_crtc_state) = to_intel_crtc_state((__state)->base.crtcs[__i].new_state), 1); \
576 	     (__i)++) \
577 		for_each_if (crtc)
578 
579 
580 #define for_each_oldnew_intel_plane_in_state(__state, plane, old_plane_state, new_plane_state, __i) \
581 	for ((__i) = 0; \
582 	     (__i) < (__state)->base.dev->mode_config.num_total_plane && \
583 		     ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
584 		      (old_plane_state) = to_intel_plane_state((__state)->base.planes[__i].old_state), \
585 		      (new_plane_state) = to_intel_plane_state((__state)->base.planes[__i].new_state), 1); \
586 	     (__i)++) \
587 		for_each_if (plane)
588 
589 struct drm_i915_private;
590 struct i915_mm_struct;
591 struct i915_mmu_object;
592 
593 struct drm_i915_file_private {
594 	struct drm_i915_private *dev_priv;
595 	struct drm_file *file;
596 
597 	struct {
598 		spinlock_t lock;
599 		struct list_head request_list;
600 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
601  * chosen to prevent the CPU getting more than a frame ahead of the GPU
602  * (when using lax throttling for the frontbuffer). We also use it to
603  * offer free GPU waitboosts for severely congested workloads.
604  */
605 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
606 	} mm;
607 	struct idr context_idr;
608 
609 	struct intel_rps_client {
610 		atomic_t boosts;
611 	} rps_client;
612 
613 	unsigned int bsd_engine;
614 
615 /* Client can have a maximum of 3 contexts banned before
616  * it is denied of creating new contexts. As one context
617  * ban needs 4 consecutive hangs, and more if there is
618  * progress in between, this is a last resort stop gap measure
619  * to limit the badly behaving clients access to gpu.
620  */
621 #define I915_MAX_CLIENT_CONTEXT_BANS 3
622 	atomic_t context_bans;
623 };
624 
625 /* Used by dp and fdi links */
626 struct intel_link_m_n {
627 	uint32_t	tu;
628 	uint32_t	gmch_m;
629 	uint32_t	gmch_n;
630 	uint32_t	link_m;
631 	uint32_t	link_n;
632 };
633 
634 void intel_link_compute_m_n(int bpp, int nlanes,
635 			    int pixel_clock, int link_clock,
636 			    struct intel_link_m_n *m_n,
637 			    bool reduce_m_n);
638 
639 /* Interface history:
640  *
641  * 1.1: Original.
642  * 1.2: Add Power Management
643  * 1.3: Add vblank support
644  * 1.4: Fix cmdbuffer path, add heap destroy
645  * 1.5: Add vblank pipe configuration
646  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
647  *      - Support vertical blank on secondary display pipe
648  */
649 #define DRIVER_MAJOR		1
650 #define DRIVER_MINOR		6
651 #define DRIVER_PATCHLEVEL	0
652 
653 struct opregion_header;
654 struct opregion_acpi;
655 struct opregion_swsci;
656 struct opregion_asle;
657 
658 struct intel_opregion {
659 	struct opregion_header *header;
660 	struct opregion_acpi *acpi;
661 	struct opregion_swsci *swsci;
662 	u32 swsci_gbda_sub_functions;
663 	u32 swsci_sbcb_sub_functions;
664 	struct opregion_asle *asle;
665 	void *rvda;
666 	void *vbt_firmware;
667 	const void *vbt;
668 	u32 vbt_size;
669 	u32 *lid_state;
670 	struct work_struct asle_work;
671 };
672 #define OPREGION_SIZE            (8*1024)
673 
674 struct intel_overlay;
675 struct intel_overlay_error_state;
676 
677 struct sdvo_device_mapping {
678 	u8 initialized;
679 	u8 dvo_port;
680 	u8 slave_addr;
681 	u8 dvo_wiring;
682 	u8 i2c_pin;
683 	u8 ddc_pin;
684 };
685 
686 struct intel_connector;
687 struct intel_encoder;
688 struct intel_atomic_state;
689 struct intel_crtc_state;
690 struct intel_initial_plane_config;
691 struct intel_crtc;
692 struct intel_limit;
693 struct dpll;
694 struct intel_cdclk_state;
695 
696 struct drm_i915_display_funcs {
697 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
698 			  struct intel_cdclk_state *cdclk_state);
699 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
700 			  const struct intel_cdclk_state *cdclk_state);
701 	int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
702 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
703 	int (*compute_intermediate_wm)(struct drm_device *dev,
704 				       struct intel_crtc *intel_crtc,
705 				       struct intel_crtc_state *newstate);
706 	void (*initial_watermarks)(struct intel_atomic_state *state,
707 				   struct intel_crtc_state *cstate);
708 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
709 					 struct intel_crtc_state *cstate);
710 	void (*optimize_watermarks)(struct intel_atomic_state *state,
711 				    struct intel_crtc_state *cstate);
712 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
713 	void (*update_wm)(struct intel_crtc *crtc);
714 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
715 	/* Returns the active state of the crtc, and if the crtc is active,
716 	 * fills out the pipe-config with the hw state. */
717 	bool (*get_pipe_config)(struct intel_crtc *,
718 				struct intel_crtc_state *);
719 	void (*get_initial_plane_config)(struct intel_crtc *,
720 					 struct intel_initial_plane_config *);
721 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
722 				  struct intel_crtc_state *crtc_state);
723 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
724 			    struct drm_atomic_state *old_state);
725 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
726 			     struct drm_atomic_state *old_state);
727 	void (*update_crtcs)(struct drm_atomic_state *state);
728 	void (*audio_codec_enable)(struct intel_encoder *encoder,
729 				   const struct intel_crtc_state *crtc_state,
730 				   const struct drm_connector_state *conn_state);
731 	void (*audio_codec_disable)(struct intel_encoder *encoder,
732 				    const struct intel_crtc_state *old_crtc_state,
733 				    const struct drm_connector_state *old_conn_state);
734 	void (*fdi_link_train)(struct intel_crtc *crtc,
735 			       const struct intel_crtc_state *crtc_state);
736 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
737 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
738 	/* clock updates for mode set */
739 	/* cursor updates */
740 	/* render clock increase/decrease */
741 	/* display clock increase/decrease */
742 	/* pll clock increase/decrease */
743 
744 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
745 	void (*load_luts)(struct drm_crtc_state *crtc_state);
746 };
747 
748 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
749 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
750 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
751 
752 struct intel_csr {
753 	struct work_struct work;
754 	const char *fw_path;
755 	uint32_t *dmc_payload;
756 	uint32_t dmc_fw_size;
757 	uint32_t version;
758 	uint32_t mmio_count;
759 	i915_reg_t mmioaddr[8];
760 	uint32_t mmiodata[8];
761 	uint32_t dc_state;
762 	uint32_t allowed_dc_mask;
763 };
764 
765 #define DEV_INFO_FOR_EACH_FLAG(func) \
766 	func(is_mobile); \
767 	func(is_lp); \
768 	func(is_alpha_support); \
769 	/* Keep has_* in alphabetical order */ \
770 	func(has_64bit_reloc); \
771 	func(has_aliasing_ppgtt); \
772 	func(has_csr); \
773 	func(has_ddi); \
774 	func(has_dp_mst); \
775 	func(has_reset_engine); \
776 	func(has_fbc); \
777 	func(has_fpga_dbg); \
778 	func(has_full_ppgtt); \
779 	func(has_full_48bit_ppgtt); \
780 	func(has_gmch_display); \
781 	func(has_guc); \
782 	func(has_guc_ct); \
783 	func(has_hotplug); \
784 	func(has_l3_dpf); \
785 	func(has_llc); \
786 	func(has_logical_ring_contexts); \
787 	func(has_logical_ring_preemption); \
788 	func(has_overlay); \
789 	func(has_pooled_eu); \
790 	func(has_psr); \
791 	func(has_rc6); \
792 	func(has_rc6p); \
793 	func(has_resource_streamer); \
794 	func(has_runtime_pm); \
795 	func(has_snoop); \
796 	func(unfenced_needs_alignment); \
797 	func(cursor_needs_physical); \
798 	func(hws_needs_physical); \
799 	func(overlay_needs_physical); \
800 	func(supports_tv); \
801 	func(has_ipc);
802 
803 struct sseu_dev_info {
804 	u8 slice_mask;
805 	u8 subslice_mask;
806 	u8 eu_total;
807 	u8 eu_per_subslice;
808 	u8 min_eu_in_pool;
809 	/* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
810 	u8 subslice_7eu[3];
811 	u8 has_slice_pg:1;
812 	u8 has_subslice_pg:1;
813 	u8 has_eu_pg:1;
814 };
815 
816 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
817 {
818 	return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
819 }
820 
821 /* Keep in gen based order, and chronological order within a gen */
822 enum intel_platform {
823 	INTEL_PLATFORM_UNINITIALIZED = 0,
824 	INTEL_I830,
825 	INTEL_I845G,
826 	INTEL_I85X,
827 	INTEL_I865G,
828 	INTEL_I915G,
829 	INTEL_I915GM,
830 	INTEL_I945G,
831 	INTEL_I945GM,
832 	INTEL_G33,
833 	INTEL_PINEVIEW,
834 	INTEL_I965G,
835 	INTEL_I965GM,
836 	INTEL_G45,
837 	INTEL_GM45,
838 	INTEL_IRONLAKE,
839 	INTEL_SANDYBRIDGE,
840 	INTEL_IVYBRIDGE,
841 	INTEL_VALLEYVIEW,
842 	INTEL_HASWELL,
843 	INTEL_BROADWELL,
844 	INTEL_CHERRYVIEW,
845 	INTEL_SKYLAKE,
846 	INTEL_BROXTON,
847 	INTEL_KABYLAKE,
848 	INTEL_GEMINILAKE,
849 	INTEL_COFFEELAKE,
850 	INTEL_CANNONLAKE,
851 	INTEL_MAX_PLATFORMS
852 };
853 
854 struct intel_device_info {
855 	u16 device_id;
856 	u16 gen_mask;
857 
858 	u8 gen;
859 	u8 gt; /* GT number, 0 if undefined */
860 	u8 num_rings;
861 	u8 ring_mask; /* Rings supported by the HW */
862 
863 	enum intel_platform platform;
864 	u32 platform_mask;
865 
866 	u32 display_mmio_offset;
867 
868 	u8 num_pipes;
869 	u8 num_sprites[I915_MAX_PIPES];
870 	u8 num_scalers[I915_MAX_PIPES];
871 
872 	unsigned int page_sizes; /* page sizes supported by the HW */
873 
874 #define DEFINE_FLAG(name) u8 name:1
875 	DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
876 #undef DEFINE_FLAG
877 	u16 ddb_size; /* in blocks */
878 
879 	/* Register offsets for the various display pipes and transcoders */
880 	int pipe_offsets[I915_MAX_TRANSCODERS];
881 	int trans_offsets[I915_MAX_TRANSCODERS];
882 	int palette_offsets[I915_MAX_PIPES];
883 	int cursor_offsets[I915_MAX_PIPES];
884 
885 	/* Slice/subslice/EU info */
886 	struct sseu_dev_info sseu;
887 
888 	u32 cs_timestamp_frequency_khz;
889 
890 	struct color_luts {
891 		u16 degamma_lut_size;
892 		u16 gamma_lut_size;
893 	} color;
894 };
895 
896 struct intel_display_error_state;
897 
898 struct i915_gpu_state {
899 	struct kref ref;
900 	struct timeval time;
901 	struct timeval boottime;
902 	struct timeval uptime;
903 
904 	struct drm_i915_private *i915;
905 
906 	char error_msg[128];
907 	bool simulated;
908 	bool awake;
909 	bool wakelock;
910 	bool suspended;
911 	int iommu;
912 	u32 reset_count;
913 	u32 suspend_count;
914 	struct intel_device_info device_info;
915 	struct i915_params params;
916 
917 	struct i915_error_uc {
918 		struct intel_uc_fw guc_fw;
919 		struct intel_uc_fw huc_fw;
920 		struct drm_i915_error_object *guc_log;
921 	} uc;
922 
923 	/* Generic register state */
924 	u32 eir;
925 	u32 pgtbl_er;
926 	u32 ier;
927 	u32 gtier[4], ngtier;
928 	u32 ccid;
929 	u32 derrmr;
930 	u32 forcewake;
931 	u32 error; /* gen6+ */
932 	u32 err_int; /* gen7 */
933 	u32 fault_data0; /* gen8, gen9 */
934 	u32 fault_data1; /* gen8, gen9 */
935 	u32 done_reg;
936 	u32 gac_eco;
937 	u32 gam_ecochk;
938 	u32 gab_ctl;
939 	u32 gfx_mode;
940 
941 	u32 nfence;
942 	u64 fence[I915_MAX_NUM_FENCES];
943 	struct intel_overlay_error_state *overlay;
944 	struct intel_display_error_state *display;
945 	struct drm_i915_error_object *semaphore;
946 
947 	struct drm_i915_error_engine {
948 		int engine_id;
949 		/* Software tracked state */
950 		bool waiting;
951 		int num_waiters;
952 		unsigned long hangcheck_timestamp;
953 		bool hangcheck_stalled;
954 		enum intel_engine_hangcheck_action hangcheck_action;
955 		struct i915_address_space *vm;
956 		int num_requests;
957 		u32 reset_count;
958 
959 		/* position of active request inside the ring */
960 		u32 rq_head, rq_post, rq_tail;
961 
962 		/* our own tracking of ring head and tail */
963 		u32 cpu_ring_head;
964 		u32 cpu_ring_tail;
965 
966 		u32 last_seqno;
967 
968 		/* Register state */
969 		u32 start;
970 		u32 tail;
971 		u32 head;
972 		u32 ctl;
973 		u32 mode;
974 		u32 hws;
975 		u32 ipeir;
976 		u32 ipehr;
977 		u32 bbstate;
978 		u32 instpm;
979 		u32 instps;
980 		u32 seqno;
981 		u64 bbaddr;
982 		u64 acthd;
983 		u32 fault_reg;
984 		u64 faddr;
985 		u32 rc_psmi; /* sleep state */
986 		u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
987 		struct intel_instdone instdone;
988 
989 		struct drm_i915_error_context {
990 			char comm[TASK_COMM_LEN];
991 			pid_t pid;
992 			u32 handle;
993 			u32 hw_id;
994 			int priority;
995 			int ban_score;
996 			int active;
997 			int guilty;
998 		} context;
999 
1000 		struct drm_i915_error_object {
1001 			u64 gtt_offset;
1002 			u64 gtt_size;
1003 			int page_count;
1004 			int unused;
1005 			u32 *pages[0];
1006 		} *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
1007 
1008 		struct drm_i915_error_object **user_bo;
1009 		long user_bo_count;
1010 
1011 		struct drm_i915_error_object *wa_ctx;
1012 
1013 		struct drm_i915_error_request {
1014 			long jiffies;
1015 			pid_t pid;
1016 			u32 context;
1017 			int priority;
1018 			int ban_score;
1019 			u32 seqno;
1020 			u32 head;
1021 			u32 tail;
1022 		} *requests, execlist[EXECLIST_MAX_PORTS];
1023 		unsigned int num_ports;
1024 
1025 		struct drm_i915_error_waiter {
1026 			char comm[TASK_COMM_LEN];
1027 			pid_t pid;
1028 			u32 seqno;
1029 		} *waiters;
1030 
1031 		struct {
1032 			u32 gfx_mode;
1033 			union {
1034 				u64 pdp[4];
1035 				u32 pp_dir_base;
1036 			};
1037 		} vm_info;
1038 	} engine[I915_NUM_ENGINES];
1039 
1040 	struct drm_i915_error_buffer {
1041 		u32 size;
1042 		u32 name;
1043 		u32 rseqno[I915_NUM_ENGINES], wseqno;
1044 		u64 gtt_offset;
1045 		u32 read_domains;
1046 		u32 write_domain;
1047 		s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1048 		u32 tiling:2;
1049 		u32 dirty:1;
1050 		u32 purgeable:1;
1051 		u32 userptr:1;
1052 		s32 engine:4;
1053 		u32 cache_level:3;
1054 	} *active_bo[I915_NUM_ENGINES], *pinned_bo;
1055 	u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1056 	struct i915_address_space *active_vm[I915_NUM_ENGINES];
1057 };
1058 
1059 enum i915_cache_level {
1060 	I915_CACHE_NONE = 0,
1061 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1062 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1063 			      caches, eg sampler/render caches, and the
1064 			      large Last-Level-Cache. LLC is coherent with
1065 			      the CPU, but L3 is only visible to the GPU. */
1066 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1067 };
1068 
1069 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1070 
1071 enum fb_op_origin {
1072 	ORIGIN_GTT,
1073 	ORIGIN_CPU,
1074 	ORIGIN_CS,
1075 	ORIGIN_FLIP,
1076 	ORIGIN_DIRTYFB,
1077 };
1078 
1079 struct intel_fbc {
1080 	/* This is always the inner lock when overlapping with struct_mutex and
1081 	 * it's the outer lock when overlapping with stolen_lock. */
1082 	struct mutex lock;
1083 	unsigned threshold;
1084 	unsigned int possible_framebuffer_bits;
1085 	unsigned int busy_bits;
1086 	unsigned int visible_pipes_mask;
1087 	struct intel_crtc *crtc;
1088 
1089 	struct drm_mm_node compressed_fb;
1090 	struct drm_mm_node *compressed_llb;
1091 
1092 	bool false_color;
1093 
1094 	bool enabled;
1095 	bool active;
1096 
1097 	bool underrun_detected;
1098 	struct work_struct underrun_work;
1099 
1100 	/*
1101 	 * Due to the atomic rules we can't access some structures without the
1102 	 * appropriate locking, so we cache information here in order to avoid
1103 	 * these problems.
1104 	 */
1105 	struct intel_fbc_state_cache {
1106 		struct i915_vma *vma;
1107 
1108 		struct {
1109 			unsigned int mode_flags;
1110 			uint32_t hsw_bdw_pixel_rate;
1111 		} crtc;
1112 
1113 		struct {
1114 			unsigned int rotation;
1115 			int src_w;
1116 			int src_h;
1117 			bool visible;
1118 			/*
1119 			 * Display surface base address adjustement for
1120 			 * pageflips. Note that on gen4+ this only adjusts up
1121 			 * to a tile, offsets within a tile are handled in
1122 			 * the hw itself (with the TILEOFF register).
1123 			 */
1124 			int adjusted_x;
1125 			int adjusted_y;
1126 
1127 			int y;
1128 		} plane;
1129 
1130 		struct {
1131 			const struct drm_format_info *format;
1132 			unsigned int stride;
1133 		} fb;
1134 	} state_cache;
1135 
1136 	/*
1137 	 * This structure contains everything that's relevant to program the
1138 	 * hardware registers. When we want to figure out if we need to disable
1139 	 * and re-enable FBC for a new configuration we just check if there's
1140 	 * something different in the struct. The genx_fbc_activate functions
1141 	 * are supposed to read from it in order to program the registers.
1142 	 */
1143 	struct intel_fbc_reg_params {
1144 		struct i915_vma *vma;
1145 
1146 		struct {
1147 			enum pipe pipe;
1148 			enum plane plane;
1149 			unsigned int fence_y_offset;
1150 		} crtc;
1151 
1152 		struct {
1153 			const struct drm_format_info *format;
1154 			unsigned int stride;
1155 		} fb;
1156 
1157 		int cfb_size;
1158 		unsigned int gen9_wa_cfb_stride;
1159 	} params;
1160 
1161 	struct intel_fbc_work {
1162 		bool scheduled;
1163 		u32 scheduled_vblank;
1164 		struct work_struct work;
1165 	} work;
1166 
1167 	const char *no_fbc_reason;
1168 };
1169 
1170 /*
1171  * HIGH_RR is the highest eDP panel refresh rate read from EDID
1172  * LOW_RR is the lowest eDP panel refresh rate found from EDID
1173  * parsing for same resolution.
1174  */
1175 enum drrs_refresh_rate_type {
1176 	DRRS_HIGH_RR,
1177 	DRRS_LOW_RR,
1178 	DRRS_MAX_RR, /* RR count */
1179 };
1180 
1181 enum drrs_support_type {
1182 	DRRS_NOT_SUPPORTED = 0,
1183 	STATIC_DRRS_SUPPORT = 1,
1184 	SEAMLESS_DRRS_SUPPORT = 2
1185 };
1186 
1187 struct intel_dp;
1188 struct i915_drrs {
1189 	struct mutex mutex;
1190 	struct delayed_work work;
1191 	struct intel_dp *dp;
1192 	unsigned busy_frontbuffer_bits;
1193 	enum drrs_refresh_rate_type refresh_rate_type;
1194 	enum drrs_support_type type;
1195 };
1196 
1197 struct i915_psr {
1198 	struct mutex lock;
1199 	bool sink_support;
1200 	bool source_ok;
1201 	struct intel_dp *enabled;
1202 	bool active;
1203 	struct delayed_work work;
1204 	unsigned busy_frontbuffer_bits;
1205 	bool psr2_support;
1206 	bool aux_frame_sync;
1207 	bool link_standby;
1208 	bool y_cord_support;
1209 	bool colorimetry_support;
1210 	bool alpm;
1211 
1212 	void (*enable_source)(struct intel_dp *,
1213 			      const struct intel_crtc_state *);
1214 	void (*disable_source)(struct intel_dp *,
1215 			       const struct intel_crtc_state *);
1216 	void (*enable_sink)(struct intel_dp *);
1217 	void (*activate)(struct intel_dp *);
1218 	void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *);
1219 };
1220 
1221 enum intel_pch {
1222 	PCH_NONE = 0,	/* No PCH present */
1223 	PCH_IBX,	/* Ibexpeak PCH */
1224 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
1225 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
1226 	PCH_SPT,        /* Sunrisepoint PCH */
1227 	PCH_KBP,        /* Kaby Lake PCH */
1228 	PCH_CNP,        /* Cannon Lake PCH */
1229 	PCH_NOP,
1230 };
1231 
1232 enum intel_sbi_destination {
1233 	SBI_ICLK,
1234 	SBI_MPHY,
1235 };
1236 
1237 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1238 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1239 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1240 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1241 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1242 
1243 struct intel_fbdev;
1244 struct intel_fbc_work;
1245 
1246 struct intel_gmbus {
1247 	struct i2c_adapter adapter;
1248 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1249 	u32 force_bit;
1250 	u32 reg0;
1251 	i915_reg_t gpio_reg;
1252 	struct i2c_algo_bit_data bit_algo;
1253 	struct drm_i915_private *dev_priv;
1254 };
1255 
1256 struct i915_suspend_saved_registers {
1257 	u32 saveDSPARB;
1258 	u32 saveFBC_CONTROL;
1259 	u32 saveCACHE_MODE_0;
1260 	u32 saveMI_ARB_STATE;
1261 	u32 saveSWF0[16];
1262 	u32 saveSWF1[16];
1263 	u32 saveSWF3[3];
1264 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1265 	u32 savePCH_PORT_HOTPLUG;
1266 	u16 saveGCDGMBUS;
1267 };
1268 
1269 struct vlv_s0ix_state {
1270 	/* GAM */
1271 	u32 wr_watermark;
1272 	u32 gfx_prio_ctrl;
1273 	u32 arb_mode;
1274 	u32 gfx_pend_tlb0;
1275 	u32 gfx_pend_tlb1;
1276 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1277 	u32 media_max_req_count;
1278 	u32 gfx_max_req_count;
1279 	u32 render_hwsp;
1280 	u32 ecochk;
1281 	u32 bsd_hwsp;
1282 	u32 blt_hwsp;
1283 	u32 tlb_rd_addr;
1284 
1285 	/* MBC */
1286 	u32 g3dctl;
1287 	u32 gsckgctl;
1288 	u32 mbctl;
1289 
1290 	/* GCP */
1291 	u32 ucgctl1;
1292 	u32 ucgctl3;
1293 	u32 rcgctl1;
1294 	u32 rcgctl2;
1295 	u32 rstctl;
1296 	u32 misccpctl;
1297 
1298 	/* GPM */
1299 	u32 gfxpause;
1300 	u32 rpdeuhwtc;
1301 	u32 rpdeuc;
1302 	u32 ecobus;
1303 	u32 pwrdwnupctl;
1304 	u32 rp_down_timeout;
1305 	u32 rp_deucsw;
1306 	u32 rcubmabdtmr;
1307 	u32 rcedata;
1308 	u32 spare2gh;
1309 
1310 	/* Display 1 CZ domain */
1311 	u32 gt_imr;
1312 	u32 gt_ier;
1313 	u32 pm_imr;
1314 	u32 pm_ier;
1315 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1316 
1317 	/* GT SA CZ domain */
1318 	u32 tilectl;
1319 	u32 gt_fifoctl;
1320 	u32 gtlc_wake_ctrl;
1321 	u32 gtlc_survive;
1322 	u32 pmwgicz;
1323 
1324 	/* Display 2 CZ domain */
1325 	u32 gu_ctl0;
1326 	u32 gu_ctl1;
1327 	u32 pcbr;
1328 	u32 clock_gate_dis2;
1329 };
1330 
1331 struct intel_rps_ei {
1332 	ktime_t ktime;
1333 	u32 render_c0;
1334 	u32 media_c0;
1335 };
1336 
1337 struct intel_rps {
1338 	/*
1339 	 * work, interrupts_enabled and pm_iir are protected by
1340 	 * dev_priv->irq_lock
1341 	 */
1342 	struct work_struct work;
1343 	bool interrupts_enabled;
1344 	u32 pm_iir;
1345 
1346 	/* PM interrupt bits that should never be masked */
1347 	u32 pm_intrmsk_mbz;
1348 
1349 	/* Frequencies are stored in potentially platform dependent multiples.
1350 	 * In other words, *_freq needs to be multiplied by X to be interesting.
1351 	 * Soft limits are those which are used for the dynamic reclocking done
1352 	 * by the driver (raise frequencies under heavy loads, and lower for
1353 	 * lighter loads). Hard limits are those imposed by the hardware.
1354 	 *
1355 	 * A distinction is made for overclocking, which is never enabled by
1356 	 * default, and is considered to be above the hard limit if it's
1357 	 * possible at all.
1358 	 */
1359 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
1360 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
1361 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
1362 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
1363 	u8 min_freq;		/* AKA RPn. Minimum frequency */
1364 	u8 boost_freq;		/* Frequency to request when wait boosting */
1365 	u8 idle_freq;		/* Frequency to request when we are idle */
1366 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
1367 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
1368 	u8 rp0_freq;		/* Non-overclocked max frequency. */
1369 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
1370 
1371 	u8 up_threshold; /* Current %busy required to uplock */
1372 	u8 down_threshold; /* Current %busy required to downclock */
1373 
1374 	int last_adj;
1375 	enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1376 
1377 	bool enabled;
1378 	atomic_t num_waiters;
1379 	atomic_t boosts;
1380 
1381 	/* manual wa residency calculations */
1382 	struct intel_rps_ei ei;
1383 };
1384 
1385 struct intel_rc6 {
1386 	bool enabled;
1387 };
1388 
1389 struct intel_llc_pstate {
1390 	bool enabled;
1391 };
1392 
1393 struct intel_gen6_power_mgmt {
1394 	struct intel_rps rps;
1395 	struct intel_rc6 rc6;
1396 	struct intel_llc_pstate llc_pstate;
1397 };
1398 
1399 /* defined intel_pm.c */
1400 extern spinlock_t mchdev_lock;
1401 
1402 struct intel_ilk_power_mgmt {
1403 	u8 cur_delay;
1404 	u8 min_delay;
1405 	u8 max_delay;
1406 	u8 fmax;
1407 	u8 fstart;
1408 
1409 	u64 last_count1;
1410 	unsigned long last_time1;
1411 	unsigned long chipset_power;
1412 	u64 last_count2;
1413 	u64 last_time2;
1414 	unsigned long gfx_power;
1415 	u8 corr;
1416 
1417 	int c_m;
1418 	int r_t;
1419 };
1420 
1421 struct drm_i915_private;
1422 struct i915_power_well;
1423 
1424 struct i915_power_well_ops {
1425 	/*
1426 	 * Synchronize the well's hw state to match the current sw state, for
1427 	 * example enable/disable it based on the current refcount. Called
1428 	 * during driver init and resume time, possibly after first calling
1429 	 * the enable/disable handlers.
1430 	 */
1431 	void (*sync_hw)(struct drm_i915_private *dev_priv,
1432 			struct i915_power_well *power_well);
1433 	/*
1434 	 * Enable the well and resources that depend on it (for example
1435 	 * interrupts located on the well). Called after the 0->1 refcount
1436 	 * transition.
1437 	 */
1438 	void (*enable)(struct drm_i915_private *dev_priv,
1439 		       struct i915_power_well *power_well);
1440 	/*
1441 	 * Disable the well and resources that depend on it. Called after
1442 	 * the 1->0 refcount transition.
1443 	 */
1444 	void (*disable)(struct drm_i915_private *dev_priv,
1445 			struct i915_power_well *power_well);
1446 	/* Returns the hw enabled state. */
1447 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
1448 			   struct i915_power_well *power_well);
1449 };
1450 
1451 /* Power well structure for haswell */
1452 struct i915_power_well {
1453 	const char *name;
1454 	bool always_on;
1455 	/* power well enable/disable usage count */
1456 	int count;
1457 	/* cached hw enabled state */
1458 	bool hw_enabled;
1459 	u64 domains;
1460 	/* unique identifier for this power well */
1461 	enum i915_power_well_id id;
1462 	/*
1463 	 * Arbitraty data associated with this power well. Platform and power
1464 	 * well specific.
1465 	 */
1466 	union {
1467 		struct {
1468 			enum dpio_phy phy;
1469 		} bxt;
1470 		struct {
1471 			/* Mask of pipes whose IRQ logic is backed by the pw */
1472 			u8 irq_pipe_mask;
1473 			/* The pw is backing the VGA functionality */
1474 			bool has_vga:1;
1475 			bool has_fuses:1;
1476 		} hsw;
1477 	};
1478 	const struct i915_power_well_ops *ops;
1479 };
1480 
1481 struct i915_power_domains {
1482 	/*
1483 	 * Power wells needed for initialization at driver init and suspend
1484 	 * time are on. They are kept on until after the first modeset.
1485 	 */
1486 	bool init_power_on;
1487 	bool initializing;
1488 	int power_well_count;
1489 
1490 	struct mutex lock;
1491 	int domain_use_count[POWER_DOMAIN_NUM];
1492 	struct i915_power_well *power_wells;
1493 };
1494 
1495 #define MAX_L3_SLICES 2
1496 struct intel_l3_parity {
1497 	u32 *remap_info[MAX_L3_SLICES];
1498 	struct work_struct error_work;
1499 	int which_slice;
1500 };
1501 
1502 struct i915_gem_mm {
1503 	/** Memory allocator for GTT stolen memory */
1504 	struct drm_mm stolen;
1505 	/** Protects the usage of the GTT stolen memory allocator. This is
1506 	 * always the inner lock when overlapping with struct_mutex. */
1507 	struct mutex stolen_lock;
1508 
1509 	/* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
1510 	spinlock_t obj_lock;
1511 
1512 	/** List of all objects in gtt_space. Used to restore gtt
1513 	 * mappings on resume */
1514 	struct list_head bound_list;
1515 	/**
1516 	 * List of objects which are not bound to the GTT (thus
1517 	 * are idle and not used by the GPU). These objects may or may
1518 	 * not actually have any pages attached.
1519 	 */
1520 	struct list_head unbound_list;
1521 
1522 	/** List of all objects in gtt_space, currently mmaped by userspace.
1523 	 * All objects within this list must also be on bound_list.
1524 	 */
1525 	struct list_head userfault_list;
1526 
1527 	/**
1528 	 * List of objects which are pending destruction.
1529 	 */
1530 	struct llist_head free_list;
1531 	struct work_struct free_work;
1532 	spinlock_t free_lock;
1533 
1534 	/**
1535 	 * Small stash of WC pages
1536 	 */
1537 	struct pagevec wc_stash;
1538 
1539 	/** Usable portion of the GTT for GEM */
1540 	dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1541 
1542 	/**
1543 	 * tmpfs instance used for shmem backed objects
1544 	 */
1545 	struct vfsmount *gemfs;
1546 
1547 	/** PPGTT used for aliasing the PPGTT with the GTT */
1548 	struct i915_hw_ppgtt *aliasing_ppgtt;
1549 
1550 	struct notifier_block oom_notifier;
1551 	struct notifier_block vmap_notifier;
1552 	struct shrinker shrinker;
1553 
1554 	/** LRU list of objects with fence regs on them. */
1555 	struct list_head fence_list;
1556 
1557 	/**
1558 	 * Workqueue to fault in userptr pages, flushed by the execbuf
1559 	 * when required but otherwise left to userspace to try again
1560 	 * on EAGAIN.
1561 	 */
1562 	struct workqueue_struct *userptr_wq;
1563 
1564 	u64 unordered_timeline;
1565 
1566 	/* the indicator for dispatch video commands on two BSD rings */
1567 	atomic_t bsd_engine_dispatch_index;
1568 
1569 	/** Bit 6 swizzling required for X tiling */
1570 	uint32_t bit_6_swizzle_x;
1571 	/** Bit 6 swizzling required for Y tiling */
1572 	uint32_t bit_6_swizzle_y;
1573 
1574 	/* accounting, useful for userland debugging */
1575 	spinlock_t object_stat_lock;
1576 	u64 object_memory;
1577 	u32 object_count;
1578 };
1579 
1580 struct drm_i915_error_state_buf {
1581 	struct drm_i915_private *i915;
1582 	unsigned bytes;
1583 	unsigned size;
1584 	int err;
1585 	u8 *buf;
1586 	loff_t start;
1587 	loff_t pos;
1588 };
1589 
1590 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1591 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1592 
1593 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1594 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1595 
1596 struct i915_gpu_error {
1597 	/* For hangcheck timer */
1598 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1599 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1600 
1601 	struct delayed_work hangcheck_work;
1602 
1603 	/* For reset and error_state handling. */
1604 	spinlock_t lock;
1605 	/* Protected by the above dev->gpu_error.lock. */
1606 	struct i915_gpu_state *first_error;
1607 
1608 	atomic_t pending_fb_pin;
1609 
1610 	unsigned long missed_irq_rings;
1611 
1612 	/**
1613 	 * State variable controlling the reset flow and count
1614 	 *
1615 	 * This is a counter which gets incremented when reset is triggered,
1616 	 *
1617 	 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1618 	 * meaning that any waiters holding onto the struct_mutex should
1619 	 * relinquish the lock immediately in order for the reset to start.
1620 	 *
1621 	 * If reset is not completed succesfully, the I915_WEDGE bit is
1622 	 * set meaning that hardware is terminally sour and there is no
1623 	 * recovery. All waiters on the reset_queue will be woken when
1624 	 * that happens.
1625 	 *
1626 	 * This counter is used by the wait_seqno code to notice that reset
1627 	 * event happened and it needs to restart the entire ioctl (since most
1628 	 * likely the seqno it waited for won't ever signal anytime soon).
1629 	 *
1630 	 * This is important for lock-free wait paths, where no contended lock
1631 	 * naturally enforces the correct ordering between the bail-out of the
1632 	 * waiter and the gpu reset work code.
1633 	 */
1634 	unsigned long reset_count;
1635 
1636 	/**
1637 	 * flags: Control various stages of the GPU reset
1638 	 *
1639 	 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1640 	 * other users acquiring the struct_mutex. To do this we set the
1641 	 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1642 	 * and then check for that bit before acquiring the struct_mutex (in
1643 	 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1644 	 * secondary role in preventing two concurrent global reset attempts.
1645 	 *
1646 	 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1647 	 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1648 	 * but it may be held by some long running waiter (that we cannot
1649 	 * interrupt without causing trouble). Once we are ready to do the GPU
1650 	 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1651 	 * they already hold the struct_mutex and want to participate they can
1652 	 * inspect the bit and do the reset directly, otherwise the worker
1653 	 * waits for the struct_mutex.
1654 	 *
1655 	 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1656 	 * acquire the struct_mutex to reset an engine, we need an explicit
1657 	 * flag to prevent two concurrent reset attempts in the same engine.
1658 	 * As the number of engines continues to grow, allocate the flags from
1659 	 * the most significant bits.
1660 	 *
1661 	 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1662 	 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1663 	 * i915_gem_request_alloc(), this bit is checked and the sequence
1664 	 * aborted (with -EIO reported to userspace) if set.
1665 	 */
1666 	unsigned long flags;
1667 #define I915_RESET_BACKOFF	0
1668 #define I915_RESET_HANDOFF	1
1669 #define I915_RESET_MODESET	2
1670 #define I915_WEDGED		(BITS_PER_LONG - 1)
1671 #define I915_RESET_ENGINE	(I915_WEDGED - I915_NUM_ENGINES)
1672 
1673 	/** Number of times an engine has been reset */
1674 	u32 reset_engine_count[I915_NUM_ENGINES];
1675 
1676 	/**
1677 	 * Waitqueue to signal when a hang is detected. Used to for waiters
1678 	 * to release the struct_mutex for the reset to procede.
1679 	 */
1680 	wait_queue_head_t wait_queue;
1681 
1682 	/**
1683 	 * Waitqueue to signal when the reset has completed. Used by clients
1684 	 * that wait for dev_priv->mm.wedged to settle.
1685 	 */
1686 	wait_queue_head_t reset_queue;
1687 
1688 	/* For missed irq/seqno simulation. */
1689 	unsigned long test_irq_rings;
1690 };
1691 
1692 enum modeset_restore {
1693 	MODESET_ON_LID_OPEN,
1694 	MODESET_DONE,
1695 	MODESET_SUSPENDED,
1696 };
1697 
1698 #define DP_AUX_A 0x40
1699 #define DP_AUX_B 0x10
1700 #define DP_AUX_C 0x20
1701 #define DP_AUX_D 0x30
1702 
1703 #define DDC_PIN_B  0x05
1704 #define DDC_PIN_C  0x04
1705 #define DDC_PIN_D  0x06
1706 
1707 struct ddi_vbt_port_info {
1708 	int max_tmds_clock;
1709 
1710 	/*
1711 	 * This is an index in the HDMI/DVI DDI buffer translation table.
1712 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1713 	 * populate this field.
1714 	 */
1715 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
1716 	uint8_t hdmi_level_shift;
1717 
1718 	uint8_t supports_dvi:1;
1719 	uint8_t supports_hdmi:1;
1720 	uint8_t supports_dp:1;
1721 	uint8_t supports_edp:1;
1722 
1723 	uint8_t alternate_aux_channel;
1724 	uint8_t alternate_ddc_pin;
1725 
1726 	uint8_t dp_boost_level;
1727 	uint8_t hdmi_boost_level;
1728 };
1729 
1730 enum psr_lines_to_wait {
1731 	PSR_0_LINES_TO_WAIT = 0,
1732 	PSR_1_LINE_TO_WAIT,
1733 	PSR_4_LINES_TO_WAIT,
1734 	PSR_8_LINES_TO_WAIT
1735 };
1736 
1737 struct intel_vbt_data {
1738 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1739 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1740 
1741 	/* Feature bits */
1742 	unsigned int int_tv_support:1;
1743 	unsigned int lvds_dither:1;
1744 	unsigned int lvds_vbt:1;
1745 	unsigned int int_crt_support:1;
1746 	unsigned int lvds_use_ssc:1;
1747 	unsigned int display_clock_mode:1;
1748 	unsigned int fdi_rx_polarity_inverted:1;
1749 	unsigned int panel_type:4;
1750 	int lvds_ssc_freq;
1751 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1752 
1753 	enum drrs_support_type drrs_type;
1754 
1755 	struct {
1756 		int rate;
1757 		int lanes;
1758 		int preemphasis;
1759 		int vswing;
1760 		bool low_vswing;
1761 		bool initialized;
1762 		bool support;
1763 		int bpp;
1764 		struct edp_power_seq pps;
1765 	} edp;
1766 
1767 	struct {
1768 		bool full_link;
1769 		bool require_aux_wakeup;
1770 		int idle_frames;
1771 		enum psr_lines_to_wait lines_to_wait;
1772 		int tp1_wakeup_time;
1773 		int tp2_tp3_wakeup_time;
1774 	} psr;
1775 
1776 	struct {
1777 		u16 pwm_freq_hz;
1778 		bool present;
1779 		bool active_low_pwm;
1780 		u8 min_brightness;	/* min_brightness/255 of max */
1781 		u8 controller;		/* brightness controller number */
1782 		enum intel_backlight_type type;
1783 	} backlight;
1784 
1785 	/* MIPI DSI */
1786 	struct {
1787 		u16 panel_id;
1788 		struct mipi_config *config;
1789 		struct mipi_pps_data *pps;
1790 		u16 bl_ports;
1791 		u16 cabc_ports;
1792 		u8 seq_version;
1793 		u32 size;
1794 		u8 *data;
1795 		const u8 *sequence[MIPI_SEQ_MAX];
1796 	} dsi;
1797 
1798 	int crt_ddc_pin;
1799 
1800 	int child_dev_num;
1801 	struct child_device_config *child_dev;
1802 
1803 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1804 	struct sdvo_device_mapping sdvo_mappings[2];
1805 };
1806 
1807 enum intel_ddb_partitioning {
1808 	INTEL_DDB_PART_1_2,
1809 	INTEL_DDB_PART_5_6, /* IVB+ */
1810 };
1811 
1812 struct intel_wm_level {
1813 	bool enable;
1814 	uint32_t pri_val;
1815 	uint32_t spr_val;
1816 	uint32_t cur_val;
1817 	uint32_t fbc_val;
1818 };
1819 
1820 struct ilk_wm_values {
1821 	uint32_t wm_pipe[3];
1822 	uint32_t wm_lp[3];
1823 	uint32_t wm_lp_spr[3];
1824 	uint32_t wm_linetime[3];
1825 	bool enable_fbc_wm;
1826 	enum intel_ddb_partitioning partitioning;
1827 };
1828 
1829 struct g4x_pipe_wm {
1830 	uint16_t plane[I915_MAX_PLANES];
1831 	uint16_t fbc;
1832 };
1833 
1834 struct g4x_sr_wm {
1835 	uint16_t plane;
1836 	uint16_t cursor;
1837 	uint16_t fbc;
1838 };
1839 
1840 struct vlv_wm_ddl_values {
1841 	uint8_t plane[I915_MAX_PLANES];
1842 };
1843 
1844 struct vlv_wm_values {
1845 	struct g4x_pipe_wm pipe[3];
1846 	struct g4x_sr_wm sr;
1847 	struct vlv_wm_ddl_values ddl[3];
1848 	uint8_t level;
1849 	bool cxsr;
1850 };
1851 
1852 struct g4x_wm_values {
1853 	struct g4x_pipe_wm pipe[2];
1854 	struct g4x_sr_wm sr;
1855 	struct g4x_sr_wm hpll;
1856 	bool cxsr;
1857 	bool hpll_en;
1858 	bool fbc_en;
1859 };
1860 
1861 struct skl_ddb_entry {
1862 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1863 };
1864 
1865 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1866 {
1867 	return entry->end - entry->start;
1868 }
1869 
1870 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1871 				       const struct skl_ddb_entry *e2)
1872 {
1873 	if (e1->start == e2->start && e1->end == e2->end)
1874 		return true;
1875 
1876 	return false;
1877 }
1878 
1879 struct skl_ddb_allocation {
1880 	struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1881 	struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1882 };
1883 
1884 struct skl_wm_values {
1885 	unsigned dirty_pipes;
1886 	struct skl_ddb_allocation ddb;
1887 };
1888 
1889 struct skl_wm_level {
1890 	bool plane_en;
1891 	uint16_t plane_res_b;
1892 	uint8_t plane_res_l;
1893 };
1894 
1895 /* Stores plane specific WM parameters */
1896 struct skl_wm_params {
1897 	bool x_tiled, y_tiled;
1898 	bool rc_surface;
1899 	uint32_t width;
1900 	uint8_t cpp;
1901 	uint32_t plane_pixel_rate;
1902 	uint32_t y_min_scanlines;
1903 	uint32_t plane_bytes_per_line;
1904 	uint_fixed_16_16_t plane_blocks_per_line;
1905 	uint_fixed_16_16_t y_tile_minimum;
1906 	uint32_t linetime_us;
1907 };
1908 
1909 /*
1910  * This struct helps tracking the state needed for runtime PM, which puts the
1911  * device in PCI D3 state. Notice that when this happens, nothing on the
1912  * graphics device works, even register access, so we don't get interrupts nor
1913  * anything else.
1914  *
1915  * Every piece of our code that needs to actually touch the hardware needs to
1916  * either call intel_runtime_pm_get or call intel_display_power_get with the
1917  * appropriate power domain.
1918  *
1919  * Our driver uses the autosuspend delay feature, which means we'll only really
1920  * suspend if we stay with zero refcount for a certain amount of time. The
1921  * default value is currently very conservative (see intel_runtime_pm_enable), but
1922  * it can be changed with the standard runtime PM files from sysfs.
1923  *
1924  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1925  * goes back to false exactly before we reenable the IRQs. We use this variable
1926  * to check if someone is trying to enable/disable IRQs while they're supposed
1927  * to be disabled. This shouldn't happen and we'll print some error messages in
1928  * case it happens.
1929  *
1930  * For more, read the Documentation/power/runtime_pm.txt.
1931  */
1932 struct i915_runtime_pm {
1933 	atomic_t wakeref_count;
1934 	bool suspended;
1935 	bool irqs_enabled;
1936 };
1937 
1938 enum intel_pipe_crc_source {
1939 	INTEL_PIPE_CRC_SOURCE_NONE,
1940 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1941 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1942 	INTEL_PIPE_CRC_SOURCE_PF,
1943 	INTEL_PIPE_CRC_SOURCE_PIPE,
1944 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1945 	INTEL_PIPE_CRC_SOURCE_TV,
1946 	INTEL_PIPE_CRC_SOURCE_DP_B,
1947 	INTEL_PIPE_CRC_SOURCE_DP_C,
1948 	INTEL_PIPE_CRC_SOURCE_DP_D,
1949 	INTEL_PIPE_CRC_SOURCE_AUTO,
1950 	INTEL_PIPE_CRC_SOURCE_MAX,
1951 };
1952 
1953 struct intel_pipe_crc_entry {
1954 	uint32_t frame;
1955 	uint32_t crc[5];
1956 };
1957 
1958 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1959 struct intel_pipe_crc {
1960 	spinlock_t lock;
1961 	bool opened;		/* exclusive access to the result file */
1962 	struct intel_pipe_crc_entry *entries;
1963 	enum intel_pipe_crc_source source;
1964 	int head, tail;
1965 	wait_queue_head_t wq;
1966 	int skipped;
1967 };
1968 
1969 struct i915_frontbuffer_tracking {
1970 	spinlock_t lock;
1971 
1972 	/*
1973 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1974 	 * scheduled flips.
1975 	 */
1976 	unsigned busy_bits;
1977 	unsigned flip_bits;
1978 };
1979 
1980 struct i915_wa_reg {
1981 	i915_reg_t addr;
1982 	u32 value;
1983 	/* bitmask representing WA bits */
1984 	u32 mask;
1985 };
1986 
1987 #define I915_MAX_WA_REGS 16
1988 
1989 struct i915_workarounds {
1990 	struct i915_wa_reg reg[I915_MAX_WA_REGS];
1991 	u32 count;
1992 	u32 hw_whitelist_count[I915_NUM_ENGINES];
1993 };
1994 
1995 struct i915_virtual_gpu {
1996 	bool active;
1997 	u32 caps;
1998 };
1999 
2000 /* used in computing the new watermarks state */
2001 struct intel_wm_config {
2002 	unsigned int num_pipes_active;
2003 	bool sprites_enabled;
2004 	bool sprites_scaled;
2005 };
2006 
2007 struct i915_oa_format {
2008 	u32 format;
2009 	int size;
2010 };
2011 
2012 struct i915_oa_reg {
2013 	i915_reg_t addr;
2014 	u32 value;
2015 };
2016 
2017 struct i915_oa_config {
2018 	char uuid[UUID_STRING_LEN + 1];
2019 	int id;
2020 
2021 	const struct i915_oa_reg *mux_regs;
2022 	u32 mux_regs_len;
2023 	const struct i915_oa_reg *b_counter_regs;
2024 	u32 b_counter_regs_len;
2025 	const struct i915_oa_reg *flex_regs;
2026 	u32 flex_regs_len;
2027 
2028 	struct attribute_group sysfs_metric;
2029 	struct attribute *attrs[2];
2030 	struct device_attribute sysfs_metric_id;
2031 
2032 	atomic_t ref_count;
2033 };
2034 
2035 struct i915_perf_stream;
2036 
2037 /**
2038  * struct i915_perf_stream_ops - the OPs to support a specific stream type
2039  */
2040 struct i915_perf_stream_ops {
2041 	/**
2042 	 * @enable: Enables the collection of HW samples, either in response to
2043 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
2044 	 * without `I915_PERF_FLAG_DISABLED`.
2045 	 */
2046 	void (*enable)(struct i915_perf_stream *stream);
2047 
2048 	/**
2049 	 * @disable: Disables the collection of HW samples, either in response
2050 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
2051 	 * the stream.
2052 	 */
2053 	void (*disable)(struct i915_perf_stream *stream);
2054 
2055 	/**
2056 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
2057 	 * once there is something ready to read() for the stream
2058 	 */
2059 	void (*poll_wait)(struct i915_perf_stream *stream,
2060 			  struct file *file,
2061 			  poll_table *wait);
2062 
2063 	/**
2064 	 * @wait_unlocked: For handling a blocking read, wait until there is
2065 	 * something to ready to read() for the stream. E.g. wait on the same
2066 	 * wait queue that would be passed to poll_wait().
2067 	 */
2068 	int (*wait_unlocked)(struct i915_perf_stream *stream);
2069 
2070 	/**
2071 	 * @read: Copy buffered metrics as records to userspace
2072 	 * **buf**: the userspace, destination buffer
2073 	 * **count**: the number of bytes to copy, requested by userspace
2074 	 * **offset**: zero at the start of the read, updated as the read
2075 	 * proceeds, it represents how many bytes have been copied so far and
2076 	 * the buffer offset for copying the next record.
2077 	 *
2078 	 * Copy as many buffered i915 perf samples and records for this stream
2079 	 * to userspace as will fit in the given buffer.
2080 	 *
2081 	 * Only write complete records; returning -%ENOSPC if there isn't room
2082 	 * for a complete record.
2083 	 *
2084 	 * Return any error condition that results in a short read such as
2085 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
2086 	 * returning to userspace.
2087 	 */
2088 	int (*read)(struct i915_perf_stream *stream,
2089 		    char __user *buf,
2090 		    size_t count,
2091 		    size_t *offset);
2092 
2093 	/**
2094 	 * @destroy: Cleanup any stream specific resources.
2095 	 *
2096 	 * The stream will always be disabled before this is called.
2097 	 */
2098 	void (*destroy)(struct i915_perf_stream *stream);
2099 };
2100 
2101 /**
2102  * struct i915_perf_stream - state for a single open stream FD
2103  */
2104 struct i915_perf_stream {
2105 	/**
2106 	 * @dev_priv: i915 drm device
2107 	 */
2108 	struct drm_i915_private *dev_priv;
2109 
2110 	/**
2111 	 * @link: Links the stream into ``&drm_i915_private->streams``
2112 	 */
2113 	struct list_head link;
2114 
2115 	/**
2116 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2117 	 * properties given when opening a stream, representing the contents
2118 	 * of a single sample as read() by userspace.
2119 	 */
2120 	u32 sample_flags;
2121 
2122 	/**
2123 	 * @sample_size: Considering the configured contents of a sample
2124 	 * combined with the required header size, this is the total size
2125 	 * of a single sample record.
2126 	 */
2127 	int sample_size;
2128 
2129 	/**
2130 	 * @ctx: %NULL if measuring system-wide across all contexts or a
2131 	 * specific context that is being monitored.
2132 	 */
2133 	struct i915_gem_context *ctx;
2134 
2135 	/**
2136 	 * @enabled: Whether the stream is currently enabled, considering
2137 	 * whether the stream was opened in a disabled state and based
2138 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2139 	 */
2140 	bool enabled;
2141 
2142 	/**
2143 	 * @ops: The callbacks providing the implementation of this specific
2144 	 * type of configured stream.
2145 	 */
2146 	const struct i915_perf_stream_ops *ops;
2147 
2148 	/**
2149 	 * @oa_config: The OA configuration used by the stream.
2150 	 */
2151 	struct i915_oa_config *oa_config;
2152 };
2153 
2154 /**
2155  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2156  */
2157 struct i915_oa_ops {
2158 	/**
2159 	 * @is_valid_b_counter_reg: Validates register's address for
2160 	 * programming boolean counters for a particular platform.
2161 	 */
2162 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2163 				       u32 addr);
2164 
2165 	/**
2166 	 * @is_valid_mux_reg: Validates register's address for programming mux
2167 	 * for a particular platform.
2168 	 */
2169 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2170 
2171 	/**
2172 	 * @is_valid_flex_reg: Validates register's address for programming
2173 	 * flex EU filtering for a particular platform.
2174 	 */
2175 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2176 
2177 	/**
2178 	 * @init_oa_buffer: Resets the head and tail pointers of the
2179 	 * circular buffer for periodic OA reports.
2180 	 *
2181 	 * Called when first opening a stream for OA metrics, but also may be
2182 	 * called in response to an OA buffer overflow or other error
2183 	 * condition.
2184 	 *
2185 	 * Note it may be necessary to clear the full OA buffer here as part of
2186 	 * maintaining the invariable that new reports must be written to
2187 	 * zeroed memory for us to be able to reliable detect if an expected
2188 	 * report has not yet landed in memory.  (At least on Haswell the OA
2189 	 * buffer tail pointer is not synchronized with reports being visible
2190 	 * to the CPU)
2191 	 */
2192 	void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2193 
2194 	/**
2195 	 * @enable_metric_set: Selects and applies any MUX configuration to set
2196 	 * up the Boolean and Custom (B/C) counters that are part of the
2197 	 * counter reports being sampled. May apply system constraints such as
2198 	 * disabling EU clock gating as required.
2199 	 */
2200 	int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2201 				 const struct i915_oa_config *oa_config);
2202 
2203 	/**
2204 	 * @disable_metric_set: Remove system constraints associated with using
2205 	 * the OA unit.
2206 	 */
2207 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2208 
2209 	/**
2210 	 * @oa_enable: Enable periodic sampling
2211 	 */
2212 	void (*oa_enable)(struct drm_i915_private *dev_priv);
2213 
2214 	/**
2215 	 * @oa_disable: Disable periodic sampling
2216 	 */
2217 	void (*oa_disable)(struct drm_i915_private *dev_priv);
2218 
2219 	/**
2220 	 * @read: Copy data from the circular OA buffer into a given userspace
2221 	 * buffer.
2222 	 */
2223 	int (*read)(struct i915_perf_stream *stream,
2224 		    char __user *buf,
2225 		    size_t count,
2226 		    size_t *offset);
2227 
2228 	/**
2229 	 * @oa_hw_tail_read: read the OA tail pointer register
2230 	 *
2231 	 * In particular this enables us to share all the fiddly code for
2232 	 * handling the OA unit tail pointer race that affects multiple
2233 	 * generations.
2234 	 */
2235 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2236 };
2237 
2238 struct intel_cdclk_state {
2239 	unsigned int cdclk, vco, ref;
2240 	u8 voltage_level;
2241 };
2242 
2243 struct drm_i915_private {
2244 	struct drm_device drm;
2245 
2246 	struct kmem_cache *objects;
2247 	struct kmem_cache *vmas;
2248 	struct kmem_cache *luts;
2249 	struct kmem_cache *requests;
2250 	struct kmem_cache *dependencies;
2251 	struct kmem_cache *priorities;
2252 
2253 	const struct intel_device_info info;
2254 
2255 	void __iomem *regs;
2256 
2257 	struct intel_uncore uncore;
2258 
2259 	struct i915_virtual_gpu vgpu;
2260 
2261 	struct intel_gvt *gvt;
2262 
2263 	struct intel_huc huc;
2264 	struct intel_guc guc;
2265 
2266 	struct intel_csr csr;
2267 
2268 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2269 
2270 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
2271 	 * controller on different i2c buses. */
2272 	struct mutex gmbus_mutex;
2273 
2274 	/**
2275 	 * Base address of the gmbus and gpio block.
2276 	 */
2277 	uint32_t gpio_mmio_base;
2278 
2279 	/* MMIO base address for MIPI regs */
2280 	uint32_t mipi_mmio_base;
2281 
2282 	uint32_t psr_mmio_base;
2283 
2284 	uint32_t pps_mmio_base;
2285 
2286 	wait_queue_head_t gmbus_wait_queue;
2287 
2288 	struct pci_dev *bridge_dev;
2289 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
2290 	/* Context used internally to idle the GPU and setup initial state */
2291 	struct i915_gem_context *kernel_context;
2292 	/* Context only to be used for injecting preemption commands */
2293 	struct i915_gem_context *preempt_context;
2294 	struct i915_vma *semaphore;
2295 
2296 	struct drm_dma_handle *status_page_dmah;
2297 	struct resource mch_res;
2298 
2299 	/* protects the irq masks */
2300 	spinlock_t irq_lock;
2301 
2302 	bool display_irqs_enabled;
2303 
2304 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2305 	struct pm_qos_request pm_qos;
2306 
2307 	/* Sideband mailbox protection */
2308 	struct mutex sb_lock;
2309 
2310 	/** Cached value of IMR to avoid reads in updating the bitfield */
2311 	union {
2312 		u32 irq_mask;
2313 		u32 de_irq_mask[I915_MAX_PIPES];
2314 	};
2315 	u32 gt_irq_mask;
2316 	u32 pm_imr;
2317 	u32 pm_ier;
2318 	u32 pm_rps_events;
2319 	u32 pm_guc_events;
2320 	u32 pipestat_irq_mask[I915_MAX_PIPES];
2321 
2322 	struct i915_hotplug hotplug;
2323 	struct intel_fbc fbc;
2324 	struct i915_drrs drrs;
2325 	struct intel_opregion opregion;
2326 	struct intel_vbt_data vbt;
2327 
2328 	bool preserve_bios_swizzle;
2329 
2330 	/* overlay */
2331 	struct intel_overlay *overlay;
2332 
2333 	/* backlight registers and fields in struct intel_panel */
2334 	struct mutex backlight_lock;
2335 
2336 	/* LVDS info */
2337 	bool no_aux_handshake;
2338 
2339 	/* protects panel power sequencer state */
2340 	struct mutex pps_mutex;
2341 
2342 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2343 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2344 
2345 	unsigned int fsb_freq, mem_freq, is_ddr3;
2346 	unsigned int skl_preferred_vco_freq;
2347 	unsigned int max_cdclk_freq;
2348 
2349 	unsigned int max_dotclk_freq;
2350 	unsigned int rawclk_freq;
2351 	unsigned int hpll_freq;
2352 	unsigned int fdi_pll_freq;
2353 	unsigned int czclk_freq;
2354 
2355 	struct {
2356 		/*
2357 		 * The current logical cdclk state.
2358 		 * See intel_atomic_state.cdclk.logical
2359 		 *
2360 		 * For reading holding any crtc lock is sufficient,
2361 		 * for writing must hold all of them.
2362 		 */
2363 		struct intel_cdclk_state logical;
2364 		/*
2365 		 * The current actual cdclk state.
2366 		 * See intel_atomic_state.cdclk.actual
2367 		 */
2368 		struct intel_cdclk_state actual;
2369 		/* The current hardware cdclk state */
2370 		struct intel_cdclk_state hw;
2371 	} cdclk;
2372 
2373 	/**
2374 	 * wq - Driver workqueue for GEM.
2375 	 *
2376 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
2377 	 * locks, for otherwise the flushing done in the pageflip code will
2378 	 * result in deadlocks.
2379 	 */
2380 	struct workqueue_struct *wq;
2381 
2382 	/* Display functions */
2383 	struct drm_i915_display_funcs display;
2384 
2385 	/* PCH chipset type */
2386 	enum intel_pch pch_type;
2387 	unsigned short pch_id;
2388 
2389 	unsigned long quirks;
2390 
2391 	enum modeset_restore modeset_restore;
2392 	struct mutex modeset_restore_lock;
2393 	struct drm_atomic_state *modeset_restore_state;
2394 	struct drm_modeset_acquire_ctx reset_ctx;
2395 
2396 	struct list_head vm_list; /* Global list of all address spaces */
2397 	struct i915_ggtt ggtt; /* VM representing the global address space */
2398 
2399 	struct i915_gem_mm mm;
2400 	DECLARE_HASHTABLE(mm_structs, 7);
2401 	struct mutex mm_lock;
2402 
2403 	struct intel_ppat ppat;
2404 
2405 	/* Kernel Modesetting */
2406 
2407 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2408 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2409 
2410 #ifdef CONFIG_DEBUG_FS
2411 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2412 #endif
2413 
2414 	/* dpll and cdclk state is protected by connection_mutex */
2415 	int num_shared_dpll;
2416 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2417 	const struct intel_dpll_mgr *dpll_mgr;
2418 
2419 	/*
2420 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2421 	 * Must be global rather than per dpll, because on some platforms
2422 	 * plls share registers.
2423 	 */
2424 	struct mutex dpll_lock;
2425 
2426 	unsigned int active_crtcs;
2427 	/* minimum acceptable cdclk for each pipe */
2428 	int min_cdclk[I915_MAX_PIPES];
2429 	/* minimum acceptable voltage level for each pipe */
2430 	u8 min_voltage_level[I915_MAX_PIPES];
2431 
2432 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2433 
2434 	struct i915_workarounds workarounds;
2435 
2436 	struct i915_frontbuffer_tracking fb_tracking;
2437 
2438 	struct intel_atomic_helper {
2439 		struct llist_head free_list;
2440 		struct work_struct free_work;
2441 	} atomic_helper;
2442 
2443 	u16 orig_clock;
2444 
2445 	bool mchbar_need_disable;
2446 
2447 	struct intel_l3_parity l3_parity;
2448 
2449 	/* Cannot be determined by PCIID. You must always read a register. */
2450 	u32 edram_cap;
2451 
2452 	/*
2453 	 * Protects RPS/RC6 register access and PCU communication.
2454 	 * Must be taken after struct_mutex if nested. Note that
2455 	 * this lock may be held for long periods of time when
2456 	 * talking to hw - so only take it when talking to hw!
2457 	 */
2458 	struct mutex pcu_lock;
2459 
2460 	/* gen6+ GT PM state */
2461 	struct intel_gen6_power_mgmt gt_pm;
2462 
2463 	/* ilk-only ips/rps state. Everything in here is protected by the global
2464 	 * mchdev_lock in intel_pm.c */
2465 	struct intel_ilk_power_mgmt ips;
2466 
2467 	struct i915_power_domains power_domains;
2468 
2469 	struct i915_psr psr;
2470 
2471 	struct i915_gpu_error gpu_error;
2472 
2473 	struct drm_i915_gem_object *vlv_pctx;
2474 
2475 	/* list of fbdev register on this device */
2476 	struct intel_fbdev *fbdev;
2477 	struct work_struct fbdev_suspend_work;
2478 
2479 	struct drm_property *broadcast_rgb_property;
2480 	struct drm_property *force_audio_property;
2481 
2482 	/* hda/i915 audio component */
2483 	struct i915_audio_component *audio_component;
2484 	bool audio_component_registered;
2485 	/**
2486 	 * av_mutex - mutex for audio/video sync
2487 	 *
2488 	 */
2489 	struct mutex av_mutex;
2490 
2491 	struct {
2492 		struct list_head list;
2493 		struct llist_head free_list;
2494 		struct work_struct free_work;
2495 
2496 		/* The hw wants to have a stable context identifier for the
2497 		 * lifetime of the context (for OA, PASID, faults, etc).
2498 		 * This is limited in execlists to 21 bits.
2499 		 */
2500 		struct ida hw_ida;
2501 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2502 	} contexts;
2503 
2504 	u32 fdi_rx_config;
2505 
2506 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2507 	u32 chv_phy_control;
2508 	/*
2509 	 * Shadows for CHV DPLL_MD regs to keep the state
2510 	 * checker somewhat working in the presence hardware
2511 	 * crappiness (can't read out DPLL_MD for pipes B & C).
2512 	 */
2513 	u32 chv_dpll_md[I915_MAX_PIPES];
2514 	u32 bxt_phy_grc;
2515 
2516 	u32 suspend_count;
2517 	bool suspended_to_idle;
2518 	struct i915_suspend_saved_registers regfile;
2519 	struct vlv_s0ix_state vlv_s0ix_state;
2520 
2521 	enum {
2522 		I915_SAGV_UNKNOWN = 0,
2523 		I915_SAGV_DISABLED,
2524 		I915_SAGV_ENABLED,
2525 		I915_SAGV_NOT_CONTROLLED
2526 	} sagv_status;
2527 
2528 	struct {
2529 		/*
2530 		 * Raw watermark latency values:
2531 		 * in 0.1us units for WM0,
2532 		 * in 0.5us units for WM1+.
2533 		 */
2534 		/* primary */
2535 		uint16_t pri_latency[5];
2536 		/* sprite */
2537 		uint16_t spr_latency[5];
2538 		/* cursor */
2539 		uint16_t cur_latency[5];
2540 		/*
2541 		 * Raw watermark memory latency values
2542 		 * for SKL for all 8 levels
2543 		 * in 1us units.
2544 		 */
2545 		uint16_t skl_latency[8];
2546 
2547 		/* current hardware state */
2548 		union {
2549 			struct ilk_wm_values hw;
2550 			struct skl_wm_values skl_hw;
2551 			struct vlv_wm_values vlv;
2552 			struct g4x_wm_values g4x;
2553 		};
2554 
2555 		uint8_t max_level;
2556 
2557 		/*
2558 		 * Should be held around atomic WM register writing; also
2559 		 * protects * intel_crtc->wm.active and
2560 		 * cstate->wm.need_postvbl_update.
2561 		 */
2562 		struct mutex wm_mutex;
2563 
2564 		/*
2565 		 * Set during HW readout of watermarks/DDB.  Some platforms
2566 		 * need to know when we're still using BIOS-provided values
2567 		 * (which we don't fully trust).
2568 		 */
2569 		bool distrust_bios_wm;
2570 	} wm;
2571 
2572 	struct i915_runtime_pm runtime_pm;
2573 
2574 	struct {
2575 		bool initialized;
2576 
2577 		struct kobject *metrics_kobj;
2578 		struct ctl_table_header *sysctl_header;
2579 
2580 		/*
2581 		 * Lock associated with adding/modifying/removing OA configs
2582 		 * in dev_priv->perf.metrics_idr.
2583 		 */
2584 		struct mutex metrics_lock;
2585 
2586 		/*
2587 		 * List of dynamic configurations, you need to hold
2588 		 * dev_priv->perf.metrics_lock to access it.
2589 		 */
2590 		struct idr metrics_idr;
2591 
2592 		/*
2593 		 * Lock associated with anything below within this structure
2594 		 * except exclusive_stream.
2595 		 */
2596 		struct mutex lock;
2597 		struct list_head streams;
2598 
2599 		struct {
2600 			/*
2601 			 * The stream currently using the OA unit. If accessed
2602 			 * outside a syscall associated to its file
2603 			 * descriptor, you need to hold
2604 			 * dev_priv->drm.struct_mutex.
2605 			 */
2606 			struct i915_perf_stream *exclusive_stream;
2607 
2608 			u32 specific_ctx_id;
2609 
2610 			struct hrtimer poll_check_timer;
2611 			wait_queue_head_t poll_wq;
2612 			bool pollin;
2613 
2614 			/**
2615 			 * For rate limiting any notifications of spurious
2616 			 * invalid OA reports
2617 			 */
2618 			struct ratelimit_state spurious_report_rs;
2619 
2620 			bool periodic;
2621 			int period_exponent;
2622 			int timestamp_frequency;
2623 
2624 			struct i915_oa_config test_config;
2625 
2626 			struct {
2627 				struct i915_vma *vma;
2628 				u8 *vaddr;
2629 				u32 last_ctx_id;
2630 				int format;
2631 				int format_size;
2632 
2633 				/**
2634 				 * Locks reads and writes to all head/tail state
2635 				 *
2636 				 * Consider: the head and tail pointer state
2637 				 * needs to be read consistently from a hrtimer
2638 				 * callback (atomic context) and read() fop
2639 				 * (user context) with tail pointer updates
2640 				 * happening in atomic context and head updates
2641 				 * in user context and the (unlikely)
2642 				 * possibility of read() errors needing to
2643 				 * reset all head/tail state.
2644 				 *
2645 				 * Note: Contention or performance aren't
2646 				 * currently a significant concern here
2647 				 * considering the relatively low frequency of
2648 				 * hrtimer callbacks (5ms period) and that
2649 				 * reads typically only happen in response to a
2650 				 * hrtimer event and likely complete before the
2651 				 * next callback.
2652 				 *
2653 				 * Note: This lock is not held *while* reading
2654 				 * and copying data to userspace so the value
2655 				 * of head observed in htrimer callbacks won't
2656 				 * represent any partial consumption of data.
2657 				 */
2658 				spinlock_t ptr_lock;
2659 
2660 				/**
2661 				 * One 'aging' tail pointer and one 'aged'
2662 				 * tail pointer ready to used for reading.
2663 				 *
2664 				 * Initial values of 0xffffffff are invalid
2665 				 * and imply that an update is required
2666 				 * (and should be ignored by an attempted
2667 				 * read)
2668 				 */
2669 				struct {
2670 					u32 offset;
2671 				} tails[2];
2672 
2673 				/**
2674 				 * Index for the aged tail ready to read()
2675 				 * data up to.
2676 				 */
2677 				unsigned int aged_tail_idx;
2678 
2679 				/**
2680 				 * A monotonic timestamp for when the current
2681 				 * aging tail pointer was read; used to
2682 				 * determine when it is old enough to trust.
2683 				 */
2684 				u64 aging_timestamp;
2685 
2686 				/**
2687 				 * Although we can always read back the head
2688 				 * pointer register, we prefer to avoid
2689 				 * trusting the HW state, just to avoid any
2690 				 * risk that some hardware condition could
2691 				 * somehow bump the head pointer unpredictably
2692 				 * and cause us to forward the wrong OA buffer
2693 				 * data to userspace.
2694 				 */
2695 				u32 head;
2696 			} oa_buffer;
2697 
2698 			u32 gen7_latched_oastatus1;
2699 			u32 ctx_oactxctrl_offset;
2700 			u32 ctx_flexeu0_offset;
2701 
2702 			/**
2703 			 * The RPT_ID/reason field for Gen8+ includes a bit
2704 			 * to determine if the CTX ID in the report is valid
2705 			 * but the specific bit differs between Gen 8 and 9
2706 			 */
2707 			u32 gen8_valid_ctx_bit;
2708 
2709 			struct i915_oa_ops ops;
2710 			const struct i915_oa_format *oa_formats;
2711 		} oa;
2712 	} perf;
2713 
2714 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2715 	struct {
2716 		void (*resume)(struct drm_i915_private *);
2717 		void (*cleanup_engine)(struct intel_engine_cs *engine);
2718 
2719 		struct list_head timelines;
2720 		struct i915_gem_timeline global_timeline;
2721 		u32 active_requests;
2722 
2723 		/**
2724 		 * Is the GPU currently considered idle, or busy executing
2725 		 * userspace requests? Whilst idle, we allow runtime power
2726 		 * management to power down the hardware and display clocks.
2727 		 * In order to reduce the effect on performance, there
2728 		 * is a slight delay before we do so.
2729 		 */
2730 		bool awake;
2731 
2732 		/**
2733 		 * We leave the user IRQ off as much as possible,
2734 		 * but this means that requests will finish and never
2735 		 * be retired once the system goes idle. Set a timer to
2736 		 * fire periodically while the ring is running. When it
2737 		 * fires, go retire requests.
2738 		 */
2739 		struct delayed_work retire_work;
2740 
2741 		/**
2742 		 * When we detect an idle GPU, we want to turn on
2743 		 * powersaving features. So once we see that there
2744 		 * are no more requests outstanding and no more
2745 		 * arrive within a small period of time, we fire
2746 		 * off the idle_work.
2747 		 */
2748 		struct delayed_work idle_work;
2749 
2750 		ktime_t last_init_time;
2751 	} gt;
2752 
2753 	/* perform PHY state sanity checks? */
2754 	bool chv_phy_assert[2];
2755 
2756 	bool ipc_enabled;
2757 
2758 	/* Used to save the pipe-to-encoder mapping for audio */
2759 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2760 
2761 	/* necessary resource sharing with HDMI LPE audio driver. */
2762 	struct {
2763 		struct platform_device *platdev;
2764 		int	irq;
2765 	} lpe_audio;
2766 
2767 	/*
2768 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2769 	 * will be rejected. Instead look for a better place.
2770 	 */
2771 };
2772 
2773 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2774 {
2775 	return container_of(dev, struct drm_i915_private, drm);
2776 }
2777 
2778 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2779 {
2780 	return to_i915(dev_get_drvdata(kdev));
2781 }
2782 
2783 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2784 {
2785 	return container_of(guc, struct drm_i915_private, guc);
2786 }
2787 
2788 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2789 {
2790 	return container_of(huc, struct drm_i915_private, huc);
2791 }
2792 
2793 /* Simple iterator over all initialised engines */
2794 #define for_each_engine(engine__, dev_priv__, id__) \
2795 	for ((id__) = 0; \
2796 	     (id__) < I915_NUM_ENGINES; \
2797 	     (id__)++) \
2798 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2799 
2800 /* Iterator over subset of engines selected by mask */
2801 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2802 	for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask;	\
2803 	     tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2804 
2805 enum hdmi_force_audio {
2806 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2807 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2808 	HDMI_AUDIO_AUTO,		/* trust EDID */
2809 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2810 };
2811 
2812 #define I915_GTT_OFFSET_NONE ((u32)-1)
2813 
2814 /*
2815  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2816  * considered to be the frontbuffer for the given plane interface-wise. This
2817  * doesn't mean that the hw necessarily already scans it out, but that any
2818  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2819  *
2820  * We have one bit per pipe and per scanout plane type.
2821  */
2822 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2823 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2824 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2825 	(1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2826 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2827 	(1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2828 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2829 	(1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2830 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2831 	(1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2832 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2833 	(0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2834 
2835 /*
2836  * Optimised SGL iterator for GEM objects
2837  */
2838 static __always_inline struct sgt_iter {
2839 	struct scatterlist *sgp;
2840 	union {
2841 		unsigned long pfn;
2842 		dma_addr_t dma;
2843 	};
2844 	unsigned int curr;
2845 	unsigned int max;
2846 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2847 	struct sgt_iter s = { .sgp = sgl };
2848 
2849 	if (s.sgp) {
2850 		s.max = s.curr = s.sgp->offset;
2851 		s.max += s.sgp->length;
2852 		if (dma)
2853 			s.dma = sg_dma_address(s.sgp);
2854 		else
2855 			s.pfn = page_to_pfn(sg_page(s.sgp));
2856 	}
2857 
2858 	return s;
2859 }
2860 
2861 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2862 {
2863 	++sg;
2864 	if (unlikely(sg_is_chain(sg)))
2865 		sg = sg_chain_ptr(sg);
2866 	return sg;
2867 }
2868 
2869 /**
2870  * __sg_next - return the next scatterlist entry in a list
2871  * @sg:		The current sg entry
2872  *
2873  * Description:
2874  *   If the entry is the last, return NULL; otherwise, step to the next
2875  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2876  *   otherwise just return the pointer to the current element.
2877  **/
2878 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2879 {
2880 #ifdef CONFIG_DEBUG_SG
2881 	BUG_ON(sg->sg_magic != SG_MAGIC);
2882 #endif
2883 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2884 }
2885 
2886 /**
2887  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2888  * @__dmap:	DMA address (output)
2889  * @__iter:	'struct sgt_iter' (iterator state, internal)
2890  * @__sgt:	sg_table to iterate over (input)
2891  */
2892 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2893 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2894 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2895 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2896 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2897 
2898 /**
2899  * for_each_sgt_page - iterate over the pages of the given sg_table
2900  * @__pp:	page pointer (output)
2901  * @__iter:	'struct sgt_iter' (iterator state, internal)
2902  * @__sgt:	sg_table to iterate over (input)
2903  */
2904 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2905 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2906 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2907 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2908 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2909 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2910 
2911 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2912 {
2913 	unsigned int page_sizes;
2914 
2915 	page_sizes = 0;
2916 	while (sg) {
2917 		GEM_BUG_ON(sg->offset);
2918 		GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2919 		page_sizes |= sg->length;
2920 		sg = __sg_next(sg);
2921 	}
2922 
2923 	return page_sizes;
2924 }
2925 
2926 static inline unsigned int i915_sg_segment_size(void)
2927 {
2928 	unsigned int size = swiotlb_max_segment();
2929 
2930 	if (size == 0)
2931 		return SCATTERLIST_MAX_SEGMENT;
2932 
2933 	size = rounddown(size, PAGE_SIZE);
2934 	/* swiotlb_max_segment_size can return 1 byte when it means one page. */
2935 	if (size < PAGE_SIZE)
2936 		size = PAGE_SIZE;
2937 
2938 	return size;
2939 }
2940 
2941 static inline const struct intel_device_info *
2942 intel_info(const struct drm_i915_private *dev_priv)
2943 {
2944 	return &dev_priv->info;
2945 }
2946 
2947 #define INTEL_INFO(dev_priv)	intel_info((dev_priv))
2948 
2949 #define INTEL_GEN(dev_priv)	((dev_priv)->info.gen)
2950 #define INTEL_DEVID(dev_priv)	((dev_priv)->info.device_id)
2951 
2952 #define REVID_FOREVER		0xff
2953 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2954 
2955 #define GEN_FOREVER (0)
2956 
2957 #define INTEL_GEN_MASK(s, e) ( \
2958 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2959 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2960 	GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2961 		(s) != GEN_FOREVER ? (s) - 1 : 0) \
2962 )
2963 
2964 /*
2965  * Returns true if Gen is in inclusive range [Start, End].
2966  *
2967  * Use GEN_FOREVER for unbound start and or end.
2968  */
2969 #define IS_GEN(dev_priv, s, e) \
2970 	(!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2971 
2972 /*
2973  * Return true if revision is in range [since,until] inclusive.
2974  *
2975  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2976  */
2977 #define IS_REVID(p, since, until) \
2978 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2979 
2980 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2981 
2982 #define IS_I830(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I830)
2983 #define IS_I845G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I845G)
2984 #define IS_I85X(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I85X)
2985 #define IS_I865G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I865G)
2986 #define IS_I915G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915G)
2987 #define IS_I915GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915GM)
2988 #define IS_I945G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945G)
2989 #define IS_I945GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945GM)
2990 #define IS_I965G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965G)
2991 #define IS_I965GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965GM)
2992 #define IS_G45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G45)
2993 #define IS_GM45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GM45)
2994 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2995 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2996 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2997 #define IS_PINEVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2998 #define IS_G33(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G33)
2999 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
3000 #define IS_IVYBRIDGE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
3001 #define IS_IVB_GT1(dev_priv)	(IS_IVYBRIDGE(dev_priv) && \
3002 				 (dev_priv)->info.gt == 1)
3003 #define IS_VALLEYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
3004 #define IS_CHERRYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
3005 #define IS_HASWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_HASWELL)
3006 #define IS_BROADWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROADWELL)
3007 #define IS_SKYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
3008 #define IS_BROXTON(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROXTON)
3009 #define IS_KABYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
3010 #define IS_GEMINILAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
3011 #define IS_COFFEELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
3012 #define IS_CANNONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
3013 #define IS_MOBILE(dev_priv)	((dev_priv)->info.is_mobile)
3014 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
3015 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
3016 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
3017 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
3018 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
3019 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
3020 /* ULX machines are also considered ULT. */
3021 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
3022 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
3023 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
3024 				 (dev_priv)->info.gt == 3)
3025 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
3026 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
3027 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
3028 				 (dev_priv)->info.gt == 3)
3029 /* ULX machines are also considered ULT. */
3030 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
3031 				 INTEL_DEVID(dev_priv) == 0x0A1E)
3032 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
3033 				 INTEL_DEVID(dev_priv) == 0x1913 || \
3034 				 INTEL_DEVID(dev_priv) == 0x1916 || \
3035 				 INTEL_DEVID(dev_priv) == 0x1921 || \
3036 				 INTEL_DEVID(dev_priv) == 0x1926)
3037 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
3038 				 INTEL_DEVID(dev_priv) == 0x1915 || \
3039 				 INTEL_DEVID(dev_priv) == 0x191E)
3040 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
3041 				 INTEL_DEVID(dev_priv) == 0x5913 || \
3042 				 INTEL_DEVID(dev_priv) == 0x5916 || \
3043 				 INTEL_DEVID(dev_priv) == 0x5921 || \
3044 				 INTEL_DEVID(dev_priv) == 0x5926)
3045 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
3046 				 INTEL_DEVID(dev_priv) == 0x5915 || \
3047 				 INTEL_DEVID(dev_priv) == 0x591E)
3048 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
3049 				 (dev_priv)->info.gt == 2)
3050 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
3051 				 (dev_priv)->info.gt == 3)
3052 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
3053 				 (dev_priv)->info.gt == 4)
3054 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
3055 				 (dev_priv)->info.gt == 2)
3056 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
3057 				 (dev_priv)->info.gt == 3)
3058 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
3059 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
3060 #define IS_CFL_GT2(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
3061 				 (dev_priv)->info.gt == 2)
3062 #define IS_CFL_GT3(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
3063 				 (dev_priv)->info.gt == 3)
3064 
3065 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
3066 
3067 #define SKL_REVID_A0		0x0
3068 #define SKL_REVID_B0		0x1
3069 #define SKL_REVID_C0		0x2
3070 #define SKL_REVID_D0		0x3
3071 #define SKL_REVID_E0		0x4
3072 #define SKL_REVID_F0		0x5
3073 #define SKL_REVID_G0		0x6
3074 #define SKL_REVID_H0		0x7
3075 
3076 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
3077 
3078 #define BXT_REVID_A0		0x0
3079 #define BXT_REVID_A1		0x1
3080 #define BXT_REVID_B0		0x3
3081 #define BXT_REVID_B_LAST	0x8
3082 #define BXT_REVID_C0		0x9
3083 
3084 #define IS_BXT_REVID(dev_priv, since, until) \
3085 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
3086 
3087 #define KBL_REVID_A0		0x0
3088 #define KBL_REVID_B0		0x1
3089 #define KBL_REVID_C0		0x2
3090 #define KBL_REVID_D0		0x3
3091 #define KBL_REVID_E0		0x4
3092 
3093 #define IS_KBL_REVID(dev_priv, since, until) \
3094 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3095 
3096 #define GLK_REVID_A0		0x0
3097 #define GLK_REVID_A1		0x1
3098 
3099 #define IS_GLK_REVID(dev_priv, since, until) \
3100 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3101 
3102 #define CNL_REVID_A0		0x0
3103 #define CNL_REVID_B0		0x1
3104 #define CNL_REVID_C0		0x2
3105 
3106 #define IS_CNL_REVID(p, since, until) \
3107 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
3108 
3109 /*
3110  * The genX designation typically refers to the render engine, so render
3111  * capability related checks should use IS_GEN, while display and other checks
3112  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
3113  * chips, etc.).
3114  */
3115 #define IS_GEN2(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(1)))
3116 #define IS_GEN3(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(2)))
3117 #define IS_GEN4(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(3)))
3118 #define IS_GEN5(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(4)))
3119 #define IS_GEN6(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(5)))
3120 #define IS_GEN7(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(6)))
3121 #define IS_GEN8(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(7)))
3122 #define IS_GEN9(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(8)))
3123 #define IS_GEN10(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(9)))
3124 
3125 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
3126 #define IS_GEN9_LP(dev_priv)	(IS_GEN9(dev_priv) && IS_LP(dev_priv))
3127 #define IS_GEN9_BC(dev_priv)	(IS_GEN9(dev_priv) && !IS_LP(dev_priv))
3128 
3129 #define ENGINE_MASK(id)	BIT(id)
3130 #define RENDER_RING	ENGINE_MASK(RCS)
3131 #define BSD_RING	ENGINE_MASK(VCS)
3132 #define BLT_RING	ENGINE_MASK(BCS)
3133 #define VEBOX_RING	ENGINE_MASK(VECS)
3134 #define BSD2_RING	ENGINE_MASK(VCS2)
3135 #define ALL_ENGINES	(~0)
3136 
3137 #define HAS_ENGINE(dev_priv, id) \
3138 	(!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
3139 
3140 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
3141 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
3142 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
3143 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
3144 
3145 #define HAS_LLC(dev_priv)	((dev_priv)->info.has_llc)
3146 #define HAS_SNOOP(dev_priv)	((dev_priv)->info.has_snoop)
3147 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3148 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
3149 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3150 
3151 #define HWS_NEEDS_PHYSICAL(dev_priv)	((dev_priv)->info.hws_needs_physical)
3152 
3153 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3154 		((dev_priv)->info.has_logical_ring_contexts)
3155 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
3156 		((dev_priv)->info.has_logical_ring_preemption)
3157 #define USES_PPGTT(dev_priv)		(i915_modparams.enable_ppgtt)
3158 #define USES_FULL_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt >= 2)
3159 #define USES_FULL_48BIT_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt == 3)
3160 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
3161 	GEM_BUG_ON((sizes) == 0); \
3162 	((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
3163 })
3164 
3165 #define HAS_OVERLAY(dev_priv)		 ((dev_priv)->info.has_overlay)
3166 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3167 		((dev_priv)->info.overlay_needs_physical)
3168 
3169 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
3170 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
3171 
3172 /* WaRsDisableCoarsePowerGating:skl,bxt */
3173 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3174 	(IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
3175 
3176 /*
3177  * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3178  * even when in MSI mode. This results in spurious interrupt warnings if the
3179  * legacy irq no. is shared with another device. The kernel then disables that
3180  * interrupt source and so prevents the other device from working properly.
3181  *
3182  * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX
3183  * interrupts.
3184  */
3185 #define HAS_AUX_IRQ(dev_priv)   true
3186 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
3187 
3188 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3189  * rows, which changed the alignment requirements and fence programming.
3190  */
3191 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3192 					 !(IS_I915G(dev_priv) || \
3193 					 IS_I915GM(dev_priv)))
3194 #define SUPPORTS_TV(dev_priv)		((dev_priv)->info.supports_tv)
3195 #define I915_HAS_HOTPLUG(dev_priv)	((dev_priv)->info.has_hotplug)
3196 
3197 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
3198 #define HAS_FBC(dev_priv)	((dev_priv)->info.has_fbc)
3199 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3200 
3201 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3202 
3203 #define HAS_DP_MST(dev_priv)	((dev_priv)->info.has_dp_mst)
3204 
3205 #define HAS_DDI(dev_priv)		 ((dev_priv)->info.has_ddi)
3206 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3207 #define HAS_PSR(dev_priv)		 ((dev_priv)->info.has_psr)
3208 #define HAS_RC6(dev_priv)		 ((dev_priv)->info.has_rc6)
3209 #define HAS_RC6p(dev_priv)		 ((dev_priv)->info.has_rc6p)
3210 
3211 #define HAS_CSR(dev_priv)	((dev_priv)->info.has_csr)
3212 
3213 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3214 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3215 
3216 #define HAS_IPC(dev_priv)		 ((dev_priv)->info.has_ipc)
3217 
3218 /*
3219  * For now, anything with a GuC requires uCode loading, and then supports
3220  * command submission once loaded. But these are logically independent
3221  * properties, so we have separate macros to test them.
3222  */
3223 #define HAS_GUC(dev_priv)	((dev_priv)->info.has_guc)
3224 #define HAS_GUC_CT(dev_priv)	((dev_priv)->info.has_guc_ct)
3225 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
3226 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
3227 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
3228 
3229 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3230 
3231 #define HAS_POOLED_EU(dev_priv)	((dev_priv)->info.has_pooled_eu)
3232 
3233 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
3234 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
3235 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
3236 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
3237 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
3238 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
3239 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
3240 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
3241 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
3242 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
3243 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
3244 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
3245 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
3246 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
3247 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
3248 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
3249 
3250 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3251 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3252 #define HAS_PCH_CNP_LP(dev_priv) \
3253 	((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3254 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3255 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3256 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3257 #define HAS_PCH_LPT_LP(dev_priv) \
3258 	((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3259 	 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3260 #define HAS_PCH_LPT_H(dev_priv) \
3261 	((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3262 	 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3263 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3264 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3265 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3266 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3267 
3268 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3269 
3270 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3271 
3272 /* DPF == dynamic parity feature */
3273 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3274 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3275 				 2 : HAS_L3_DPF(dev_priv))
3276 
3277 #define GT_FREQUENCY_MULTIPLIER 50
3278 #define GEN9_FREQ_SCALER 3
3279 
3280 #include "i915_trace.h"
3281 
3282 static inline bool intel_vtd_active(void)
3283 {
3284 #ifdef CONFIG_INTEL_IOMMU
3285 	if (intel_iommu_gfx_mapped)
3286 		return true;
3287 #endif
3288 	return false;
3289 }
3290 
3291 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3292 {
3293 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3294 }
3295 
3296 static inline bool
3297 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3298 {
3299 	return IS_BROXTON(dev_priv) && intel_vtd_active();
3300 }
3301 
3302 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3303 				int enable_ppgtt);
3304 
3305 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3306 
3307 /* i915_drv.c */
3308 void __printf(3, 4)
3309 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3310 	      const char *fmt, ...);
3311 
3312 #define i915_report_error(dev_priv, fmt, ...)				   \
3313 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3314 
3315 #ifdef CONFIG_COMPAT
3316 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3317 			      unsigned long arg);
3318 #else
3319 #define i915_compat_ioctl NULL
3320 #endif
3321 extern const struct dev_pm_ops i915_pm_ops;
3322 
3323 extern int i915_driver_load(struct pci_dev *pdev,
3324 			    const struct pci_device_id *ent);
3325 extern void i915_driver_unload(struct drm_device *dev);
3326 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3327 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3328 
3329 #define I915_RESET_QUIET BIT(0)
3330 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3331 extern int i915_reset_engine(struct intel_engine_cs *engine,
3332 			     unsigned int flags);
3333 
3334 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3335 extern int intel_reset_guc(struct drm_i915_private *dev_priv);
3336 extern int intel_guc_reset_engine(struct intel_guc *guc,
3337 				  struct intel_engine_cs *engine);
3338 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3339 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3340 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3341 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3342 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3343 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3344 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3345 
3346 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3347 int intel_engines_init(struct drm_i915_private *dev_priv);
3348 
3349 /* intel_hotplug.c */
3350 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3351 			   u32 pin_mask, u32 long_mask);
3352 void intel_hpd_init(struct drm_i915_private *dev_priv);
3353 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3354 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3355 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3356 enum hpd_pin intel_hpd_pin(enum port port);
3357 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3358 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3359 
3360 /* i915_irq.c */
3361 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3362 {
3363 	unsigned long delay;
3364 
3365 	if (unlikely(!i915_modparams.enable_hangcheck))
3366 		return;
3367 
3368 	/* Don't continually defer the hangcheck so that it is always run at
3369 	 * least once after work has been scheduled on any ring. Otherwise,
3370 	 * we will ignore a hung ring if a second ring is kept busy.
3371 	 */
3372 
3373 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3374 	queue_delayed_work(system_long_wq,
3375 			   &dev_priv->gpu_error.hangcheck_work, delay);
3376 }
3377 
3378 __printf(3, 4)
3379 void i915_handle_error(struct drm_i915_private *dev_priv,
3380 		       u32 engine_mask,
3381 		       const char *fmt, ...);
3382 
3383 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3384 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3385 int intel_irq_install(struct drm_i915_private *dev_priv);
3386 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3387 
3388 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3389 {
3390 	return dev_priv->gvt;
3391 }
3392 
3393 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3394 {
3395 	return dev_priv->vgpu.active;
3396 }
3397 
3398 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
3399 			      enum pipe pipe);
3400 void
3401 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3402 		     u32 status_mask);
3403 
3404 void
3405 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3406 		      u32 status_mask);
3407 
3408 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3409 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3410 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3411 				   uint32_t mask,
3412 				   uint32_t bits);
3413 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3414 			    uint32_t interrupt_mask,
3415 			    uint32_t enabled_irq_mask);
3416 static inline void
3417 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3418 {
3419 	ilk_update_display_irq(dev_priv, bits, bits);
3420 }
3421 static inline void
3422 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3423 {
3424 	ilk_update_display_irq(dev_priv, bits, 0);
3425 }
3426 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3427 			 enum pipe pipe,
3428 			 uint32_t interrupt_mask,
3429 			 uint32_t enabled_irq_mask);
3430 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3431 				       enum pipe pipe, uint32_t bits)
3432 {
3433 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3434 }
3435 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3436 					enum pipe pipe, uint32_t bits)
3437 {
3438 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3439 }
3440 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3441 				  uint32_t interrupt_mask,
3442 				  uint32_t enabled_irq_mask);
3443 static inline void
3444 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3445 {
3446 	ibx_display_interrupt_update(dev_priv, bits, bits);
3447 }
3448 static inline void
3449 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3450 {
3451 	ibx_display_interrupt_update(dev_priv, bits, 0);
3452 }
3453 
3454 /* i915_gem.c */
3455 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3456 			  struct drm_file *file_priv);
3457 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3458 			 struct drm_file *file_priv);
3459 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3460 			  struct drm_file *file_priv);
3461 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3462 			struct drm_file *file_priv);
3463 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3464 			struct drm_file *file_priv);
3465 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3466 			      struct drm_file *file_priv);
3467 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3468 			     struct drm_file *file_priv);
3469 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3470 			struct drm_file *file_priv);
3471 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3472 			 struct drm_file *file_priv);
3473 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3474 			struct drm_file *file_priv);
3475 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3476 			       struct drm_file *file);
3477 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3478 			       struct drm_file *file);
3479 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3480 			    struct drm_file *file_priv);
3481 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3482 			   struct drm_file *file_priv);
3483 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3484 			      struct drm_file *file_priv);
3485 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3486 			      struct drm_file *file_priv);
3487 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3488 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3489 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3490 			   struct drm_file *file);
3491 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3492 				struct drm_file *file_priv);
3493 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3494 			struct drm_file *file_priv);
3495 void i915_gem_sanitize(struct drm_i915_private *i915);
3496 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3497 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3498 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3499 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3500 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3501 
3502 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3503 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3504 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3505 			 const struct drm_i915_gem_object_ops *ops);
3506 struct drm_i915_gem_object *
3507 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3508 struct drm_i915_gem_object *
3509 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3510 				 const void *data, size_t size);
3511 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3512 void i915_gem_free_object(struct drm_gem_object *obj);
3513 
3514 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3515 {
3516 	/* A single pass should suffice to release all the freed objects (along
3517 	 * most call paths) , but be a little more paranoid in that freeing
3518 	 * the objects does take a little amount of time, during which the rcu
3519 	 * callbacks could have added new objects into the freed list, and
3520 	 * armed the work again.
3521 	 */
3522 	do {
3523 		rcu_barrier();
3524 	} while (flush_work(&i915->mm.free_work));
3525 }
3526 
3527 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3528 {
3529 	/*
3530 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
3531 	 * general we have workers that are armed by RCU and then rearm
3532 	 * themselves in their callbacks. To be paranoid, we need to
3533 	 * drain the workqueue a second time after waiting for the RCU
3534 	 * grace period so that we catch work queued via RCU from the first
3535 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
3536 	 * a result, we make an assumption that we only don't require more
3537 	 * than 2 passes to catch all recursive RCU delayed work.
3538 	 *
3539 	 */
3540 	int pass = 2;
3541 	do {
3542 		rcu_barrier();
3543 		drain_workqueue(i915->wq);
3544 	} while (--pass);
3545 }
3546 
3547 struct i915_vma * __must_check
3548 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3549 			 const struct i915_ggtt_view *view,
3550 			 u64 size,
3551 			 u64 alignment,
3552 			 u64 flags);
3553 
3554 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3555 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3556 
3557 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3558 
3559 static inline int __sg_page_count(const struct scatterlist *sg)
3560 {
3561 	return sg->length >> PAGE_SHIFT;
3562 }
3563 
3564 struct scatterlist *
3565 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3566 		       unsigned int n, unsigned int *offset);
3567 
3568 struct page *
3569 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3570 			 unsigned int n);
3571 
3572 struct page *
3573 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3574 			       unsigned int n);
3575 
3576 dma_addr_t
3577 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3578 				unsigned long n);
3579 
3580 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3581 				 struct sg_table *pages,
3582 				 unsigned int sg_page_sizes);
3583 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3584 
3585 static inline int __must_check
3586 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3587 {
3588 	might_lock(&obj->mm.lock);
3589 
3590 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3591 		return 0;
3592 
3593 	return __i915_gem_object_get_pages(obj);
3594 }
3595 
3596 static inline bool
3597 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
3598 {
3599 	return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
3600 }
3601 
3602 static inline void
3603 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3604 {
3605 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3606 
3607 	atomic_inc(&obj->mm.pages_pin_count);
3608 }
3609 
3610 static inline bool
3611 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3612 {
3613 	return atomic_read(&obj->mm.pages_pin_count);
3614 }
3615 
3616 static inline void
3617 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3618 {
3619 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3620 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3621 
3622 	atomic_dec(&obj->mm.pages_pin_count);
3623 }
3624 
3625 static inline void
3626 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3627 {
3628 	__i915_gem_object_unpin_pages(obj);
3629 }
3630 
3631 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3632 	I915_MM_NORMAL = 0,
3633 	I915_MM_SHRINKER
3634 };
3635 
3636 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3637 				 enum i915_mm_subclass subclass);
3638 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3639 
3640 enum i915_map_type {
3641 	I915_MAP_WB = 0,
3642 	I915_MAP_WC,
3643 #define I915_MAP_OVERRIDE BIT(31)
3644 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3645 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3646 };
3647 
3648 /**
3649  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3650  * @obj: the object to map into kernel address space
3651  * @type: the type of mapping, used to select pgprot_t
3652  *
3653  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3654  * pages and then returns a contiguous mapping of the backing storage into
3655  * the kernel address space. Based on the @type of mapping, the PTE will be
3656  * set to either WriteBack or WriteCombine (via pgprot_t).
3657  *
3658  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3659  * mapping is no longer required.
3660  *
3661  * Returns the pointer through which to access the mapped object, or an
3662  * ERR_PTR() on error.
3663  */
3664 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3665 					   enum i915_map_type type);
3666 
3667 /**
3668  * i915_gem_object_unpin_map - releases an earlier mapping
3669  * @obj: the object to unmap
3670  *
3671  * After pinning the object and mapping its pages, once you are finished
3672  * with your access, call i915_gem_object_unpin_map() to release the pin
3673  * upon the mapping. Once the pin count reaches zero, that mapping may be
3674  * removed.
3675  */
3676 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3677 {
3678 	i915_gem_object_unpin_pages(obj);
3679 }
3680 
3681 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3682 				    unsigned int *needs_clflush);
3683 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3684 				     unsigned int *needs_clflush);
3685 #define CLFLUSH_BEFORE	BIT(0)
3686 #define CLFLUSH_AFTER	BIT(1)
3687 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
3688 
3689 static inline void
3690 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3691 {
3692 	i915_gem_object_unpin_pages(obj);
3693 }
3694 
3695 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3696 void i915_vma_move_to_active(struct i915_vma *vma,
3697 			     struct drm_i915_gem_request *req,
3698 			     unsigned int flags);
3699 int i915_gem_dumb_create(struct drm_file *file_priv,
3700 			 struct drm_device *dev,
3701 			 struct drm_mode_create_dumb *args);
3702 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3703 		      uint32_t handle, uint64_t *offset);
3704 int i915_gem_mmap_gtt_version(void);
3705 
3706 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3707 		       struct drm_i915_gem_object *new,
3708 		       unsigned frontbuffer_bits);
3709 
3710 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3711 
3712 struct drm_i915_gem_request *
3713 i915_gem_find_active_request(struct intel_engine_cs *engine);
3714 
3715 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3716 
3717 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3718 {
3719 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3720 }
3721 
3722 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3723 {
3724 	return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3725 }
3726 
3727 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3728 {
3729 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3730 }
3731 
3732 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3733 {
3734 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3735 }
3736 
3737 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3738 {
3739 	return READ_ONCE(error->reset_count);
3740 }
3741 
3742 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3743 					  struct intel_engine_cs *engine)
3744 {
3745 	return READ_ONCE(error->reset_engine_count[engine->id]);
3746 }
3747 
3748 struct drm_i915_gem_request *
3749 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3750 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3751 void i915_gem_reset(struct drm_i915_private *dev_priv);
3752 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3753 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3754 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3755 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3756 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3757 			   struct drm_i915_gem_request *request);
3758 
3759 void i915_gem_init_mmio(struct drm_i915_private *i915);
3760 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3761 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3762 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3763 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3764 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3765 			   unsigned int flags);
3766 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3767 void i915_gem_resume(struct drm_i915_private *dev_priv);
3768 int i915_gem_fault(struct vm_fault *vmf);
3769 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3770 			 unsigned int flags,
3771 			 long timeout,
3772 			 struct intel_rps_client *rps);
3773 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3774 				  unsigned int flags,
3775 				  int priority);
3776 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3777 
3778 int __must_check
3779 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3780 int __must_check
3781 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3782 int __must_check
3783 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3784 struct i915_vma * __must_check
3785 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3786 				     u32 alignment,
3787 				     const struct i915_ggtt_view *view);
3788 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3789 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3790 				int align);
3791 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3792 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3793 
3794 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3795 				    enum i915_cache_level cache_level);
3796 
3797 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3798 				struct dma_buf *dma_buf);
3799 
3800 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3801 				struct drm_gem_object *gem_obj, int flags);
3802 
3803 static inline struct i915_hw_ppgtt *
3804 i915_vm_to_ppgtt(struct i915_address_space *vm)
3805 {
3806 	return container_of(vm, struct i915_hw_ppgtt, base);
3807 }
3808 
3809 /* i915_gem_fence_reg.c */
3810 struct drm_i915_fence_reg *
3811 i915_reserve_fence(struct drm_i915_private *dev_priv);
3812 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3813 
3814 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3815 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3816 
3817 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3818 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3819 				       struct sg_table *pages);
3820 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3821 					 struct sg_table *pages);
3822 
3823 static inline struct i915_gem_context *
3824 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3825 {
3826 	return idr_find(&file_priv->context_idr, id);
3827 }
3828 
3829 static inline struct i915_gem_context *
3830 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3831 {
3832 	struct i915_gem_context *ctx;
3833 
3834 	rcu_read_lock();
3835 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3836 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3837 		ctx = NULL;
3838 	rcu_read_unlock();
3839 
3840 	return ctx;
3841 }
3842 
3843 static inline struct intel_timeline *
3844 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3845 				 struct intel_engine_cs *engine)
3846 {
3847 	struct i915_address_space *vm;
3848 
3849 	vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3850 	return &vm->timeline.engine[engine->id];
3851 }
3852 
3853 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3854 			 struct drm_file *file);
3855 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3856 			       struct drm_file *file);
3857 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3858 				  struct drm_file *file);
3859 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3860 			    struct i915_gem_context *ctx,
3861 			    uint32_t *reg_state);
3862 
3863 /* i915_gem_evict.c */
3864 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3865 					  u64 min_size, u64 alignment,
3866 					  unsigned cache_level,
3867 					  u64 start, u64 end,
3868 					  unsigned flags);
3869 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3870 					 struct drm_mm_node *node,
3871 					 unsigned int flags);
3872 int i915_gem_evict_vm(struct i915_address_space *vm);
3873 
3874 /* belongs in i915_gem_gtt.h */
3875 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3876 {
3877 	wmb();
3878 	if (INTEL_GEN(dev_priv) < 6)
3879 		intel_gtt_chipset_flush();
3880 }
3881 
3882 /* i915_gem_stolen.c */
3883 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3884 				struct drm_mm_node *node, u64 size,
3885 				unsigned alignment);
3886 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3887 					 struct drm_mm_node *node, u64 size,
3888 					 unsigned alignment, u64 start,
3889 					 u64 end);
3890 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3891 				 struct drm_mm_node *node);
3892 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3893 void i915_gem_cleanup_stolen(struct drm_device *dev);
3894 struct drm_i915_gem_object *
3895 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3896 struct drm_i915_gem_object *
3897 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3898 					       u32 stolen_offset,
3899 					       u32 gtt_offset,
3900 					       u32 size);
3901 
3902 /* i915_gem_internal.c */
3903 struct drm_i915_gem_object *
3904 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3905 				phys_addr_t size);
3906 
3907 /* i915_gem_shrinker.c */
3908 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3909 			      unsigned long target,
3910 			      unsigned long *nr_scanned,
3911 			      unsigned flags);
3912 #define I915_SHRINK_PURGEABLE 0x1
3913 #define I915_SHRINK_UNBOUND 0x2
3914 #define I915_SHRINK_BOUND 0x4
3915 #define I915_SHRINK_ACTIVE 0x8
3916 #define I915_SHRINK_VMAPS 0x10
3917 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3918 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3919 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3920 
3921 
3922 /* i915_gem_tiling.c */
3923 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3924 {
3925 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3926 
3927 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3928 		i915_gem_object_is_tiled(obj);
3929 }
3930 
3931 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3932 			unsigned int tiling, unsigned int stride);
3933 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3934 			     unsigned int tiling, unsigned int stride);
3935 
3936 /* i915_debugfs.c */
3937 #ifdef CONFIG_DEBUG_FS
3938 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3939 int i915_debugfs_connector_add(struct drm_connector *connector);
3940 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3941 #else
3942 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3943 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3944 { return 0; }
3945 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3946 #endif
3947 
3948 /* i915_gpu_error.c */
3949 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3950 
3951 __printf(2, 3)
3952 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3953 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3954 			    const struct i915_gpu_state *gpu);
3955 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3956 			      struct drm_i915_private *i915,
3957 			      size_t count, loff_t pos);
3958 static inline void i915_error_state_buf_release(
3959 	struct drm_i915_error_state_buf *eb)
3960 {
3961 	kfree(eb->buf);
3962 }
3963 
3964 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3965 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3966 			      u32 engine_mask,
3967 			      const char *error_msg);
3968 
3969 static inline struct i915_gpu_state *
3970 i915_gpu_state_get(struct i915_gpu_state *gpu)
3971 {
3972 	kref_get(&gpu->ref);
3973 	return gpu;
3974 }
3975 
3976 void __i915_gpu_state_free(struct kref *kref);
3977 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3978 {
3979 	if (gpu)
3980 		kref_put(&gpu->ref, __i915_gpu_state_free);
3981 }
3982 
3983 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3984 void i915_reset_error_state(struct drm_i915_private *i915);
3985 
3986 #else
3987 
3988 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3989 					    u32 engine_mask,
3990 					    const char *error_msg)
3991 {
3992 }
3993 
3994 static inline struct i915_gpu_state *
3995 i915_first_error_state(struct drm_i915_private *i915)
3996 {
3997 	return NULL;
3998 }
3999 
4000 static inline void i915_reset_error_state(struct drm_i915_private *i915)
4001 {
4002 }
4003 
4004 #endif
4005 
4006 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
4007 
4008 /* i915_cmd_parser.c */
4009 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
4010 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
4011 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
4012 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
4013 			    struct drm_i915_gem_object *batch_obj,
4014 			    struct drm_i915_gem_object *shadow_batch_obj,
4015 			    u32 batch_start_offset,
4016 			    u32 batch_len,
4017 			    bool is_master);
4018 
4019 /* i915_perf.c */
4020 extern void i915_perf_init(struct drm_i915_private *dev_priv);
4021 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
4022 extern void i915_perf_register(struct drm_i915_private *dev_priv);
4023 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
4024 
4025 /* i915_suspend.c */
4026 extern int i915_save_state(struct drm_i915_private *dev_priv);
4027 extern int i915_restore_state(struct drm_i915_private *dev_priv);
4028 
4029 /* i915_sysfs.c */
4030 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
4031 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
4032 
4033 /* intel_lpe_audio.c */
4034 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
4035 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
4036 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
4037 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
4038 			    enum pipe pipe, enum port port,
4039 			    const void *eld, int ls_clock, bool dp_output);
4040 
4041 /* intel_i2c.c */
4042 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
4043 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
4044 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
4045 				     unsigned int pin);
4046 
4047 extern struct i2c_adapter *
4048 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
4049 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
4050 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
4051 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
4052 {
4053 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
4054 }
4055 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
4056 
4057 /* intel_bios.c */
4058 void intel_bios_init(struct drm_i915_private *dev_priv);
4059 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
4060 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
4061 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
4062 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
4063 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
4064 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
4065 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
4066 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
4067 				     enum port port);
4068 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
4069 				enum port port);
4070 
4071 
4072 /* intel_opregion.c */
4073 #ifdef CONFIG_ACPI
4074 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
4075 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
4076 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
4077 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
4078 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
4079 					 bool enable);
4080 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
4081 					 pci_power_t state);
4082 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
4083 #else
4084 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
4085 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
4086 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
4087 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
4088 {
4089 }
4090 static inline int
4091 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
4092 {
4093 	return 0;
4094 }
4095 static inline int
4096 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
4097 {
4098 	return 0;
4099 }
4100 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
4101 {
4102 	return -ENODEV;
4103 }
4104 #endif
4105 
4106 /* intel_acpi.c */
4107 #ifdef CONFIG_ACPI
4108 extern void intel_register_dsm_handler(void);
4109 extern void intel_unregister_dsm_handler(void);
4110 #else
4111 static inline void intel_register_dsm_handler(void) { return; }
4112 static inline void intel_unregister_dsm_handler(void) { return; }
4113 #endif /* CONFIG_ACPI */
4114 
4115 /* intel_device_info.c */
4116 static inline struct intel_device_info *
4117 mkwrite_device_info(struct drm_i915_private *dev_priv)
4118 {
4119 	return (struct intel_device_info *)&dev_priv->info;
4120 }
4121 
4122 const char *intel_platform_name(enum intel_platform platform);
4123 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
4124 void intel_device_info_dump(struct drm_i915_private *dev_priv);
4125 
4126 /* modesetting */
4127 extern void intel_modeset_init_hw(struct drm_device *dev);
4128 extern int intel_modeset_init(struct drm_device *dev);
4129 extern void intel_modeset_cleanup(struct drm_device *dev);
4130 extern int intel_connector_register(struct drm_connector *);
4131 extern void intel_connector_unregister(struct drm_connector *);
4132 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
4133 				       bool state);
4134 extern void intel_display_resume(struct drm_device *dev);
4135 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
4136 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
4137 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
4138 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
4139 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
4140 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
4141 				  bool enable);
4142 
4143 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
4144 			struct drm_file *file);
4145 
4146 /* overlay */
4147 extern struct intel_overlay_error_state *
4148 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
4149 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
4150 					    struct intel_overlay_error_state *error);
4151 
4152 extern struct intel_display_error_state *
4153 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
4154 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
4155 					    struct intel_display_error_state *error);
4156 
4157 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
4158 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
4159 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
4160 		      u32 reply_mask, u32 reply, int timeout_base_ms);
4161 
4162 /* intel_sideband.c */
4163 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4164 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4165 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4166 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4167 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4168 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4169 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4170 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4171 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4172 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4173 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4174 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4175 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4176 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4177 		   enum intel_sbi_destination destination);
4178 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4179 		     enum intel_sbi_destination destination);
4180 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4181 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4182 
4183 /* intel_dpio_phy.c */
4184 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4185 			     enum dpio_phy *phy, enum dpio_channel *ch);
4186 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4187 				  enum port port, u32 margin, u32 scale,
4188 				  u32 enable, u32 deemphasis);
4189 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4190 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4191 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4192 			    enum dpio_phy phy);
4193 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4194 			      enum dpio_phy phy);
4195 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count);
4196 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4197 				     uint8_t lane_lat_optim_mask);
4198 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4199 
4200 void chv_set_phy_signal_level(struct intel_encoder *encoder,
4201 			      u32 deemph_reg_value, u32 margin_reg_value,
4202 			      bool uniq_trans_scale);
4203 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4204 			      const struct intel_crtc_state *crtc_state,
4205 			      bool reset);
4206 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
4207 			    const struct intel_crtc_state *crtc_state);
4208 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
4209 				const struct intel_crtc_state *crtc_state);
4210 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4211 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
4212 			      const struct intel_crtc_state *old_crtc_state);
4213 
4214 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4215 			      u32 demph_reg_value, u32 preemph_reg_value,
4216 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
4217 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
4218 			    const struct intel_crtc_state *crtc_state);
4219 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
4220 				const struct intel_crtc_state *crtc_state);
4221 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
4222 			 const struct intel_crtc_state *old_crtc_state);
4223 
4224 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4225 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4226 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4227 			   const i915_reg_t reg);
4228 
4229 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4230 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4231 
4232 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4233 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4234 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4235 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4236 
4237 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4238 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4239 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4240 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4241 
4242 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4243  * will be implemented using 2 32-bit writes in an arbitrary order with
4244  * an arbitrary delay between them. This can cause the hardware to
4245  * act upon the intermediate value, possibly leading to corruption and
4246  * machine death. For this reason we do not support I915_WRITE64, or
4247  * dev_priv->uncore.funcs.mmio_writeq.
4248  *
4249  * When reading a 64-bit value as two 32-bit values, the delay may cause
4250  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4251  * occasionally a 64-bit register does not actualy support a full readq
4252  * and must be read using two 32-bit reads.
4253  *
4254  * You have been warned.
4255  */
4256 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4257 
4258 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
4259 	u32 upper, lower, old_upper, loop = 0;				\
4260 	upper = I915_READ(upper_reg);					\
4261 	do {								\
4262 		old_upper = upper;					\
4263 		lower = I915_READ(lower_reg);				\
4264 		upper = I915_READ(upper_reg);				\
4265 	} while (upper != old_upper && loop++ < 2);			\
4266 	(u64)upper << 32 | lower; })
4267 
4268 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
4269 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
4270 
4271 #define __raw_read(x, s) \
4272 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4273 					     i915_reg_t reg) \
4274 { \
4275 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4276 }
4277 
4278 #define __raw_write(x, s) \
4279 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4280 				       i915_reg_t reg, uint##x##_t val) \
4281 { \
4282 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4283 }
4284 __raw_read(8, b)
4285 __raw_read(16, w)
4286 __raw_read(32, l)
4287 __raw_read(64, q)
4288 
4289 __raw_write(8, b)
4290 __raw_write(16, w)
4291 __raw_write(32, l)
4292 __raw_write(64, q)
4293 
4294 #undef __raw_read
4295 #undef __raw_write
4296 
4297 /* These are untraced mmio-accessors that are only valid to be used inside
4298  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4299  * controlled.
4300  *
4301  * Think twice, and think again, before using these.
4302  *
4303  * As an example, these accessors can possibly be used between:
4304  *
4305  * spin_lock_irq(&dev_priv->uncore.lock);
4306  * intel_uncore_forcewake_get__locked();
4307  *
4308  * and
4309  *
4310  * intel_uncore_forcewake_put__locked();
4311  * spin_unlock_irq(&dev_priv->uncore.lock);
4312  *
4313  *
4314  * Note: some registers may not need forcewake held, so
4315  * intel_uncore_forcewake_{get,put} can be omitted, see
4316  * intel_uncore_forcewake_for_reg().
4317  *
4318  * Certain architectures will die if the same cacheline is concurrently accessed
4319  * by different clients (e.g. on Ivybridge). Access to registers should
4320  * therefore generally be serialised, by either the dev_priv->uncore.lock or
4321  * a more localised lock guarding all access to that bank of registers.
4322  */
4323 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4324 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4325 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4326 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4327 
4328 /* "Broadcast RGB" property */
4329 #define INTEL_BROADCAST_RGB_AUTO 0
4330 #define INTEL_BROADCAST_RGB_FULL 1
4331 #define INTEL_BROADCAST_RGB_LIMITED 2
4332 
4333 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4334 {
4335 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4336 		return VLV_VGACNTRL;
4337 	else if (INTEL_GEN(dev_priv) >= 5)
4338 		return CPU_VGACNTRL;
4339 	else
4340 		return VGACNTRL;
4341 }
4342 
4343 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4344 {
4345 	unsigned long j = msecs_to_jiffies(m);
4346 
4347 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4348 }
4349 
4350 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4351 {
4352 	/* nsecs_to_jiffies64() does not guard against overflow */
4353 	if (NSEC_PER_SEC % HZ &&
4354 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4355 		return MAX_JIFFY_OFFSET;
4356 
4357         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4358 }
4359 
4360 static inline unsigned long
4361 timespec_to_jiffies_timeout(const struct timespec *value)
4362 {
4363 	unsigned long j = timespec_to_jiffies(value);
4364 
4365 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4366 }
4367 
4368 /*
4369  * If you need to wait X milliseconds between events A and B, but event B
4370  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4371  * when event A happened, then just before event B you call this function and
4372  * pass the timestamp as the first argument, and X as the second argument.
4373  */
4374 static inline void
4375 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4376 {
4377 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4378 
4379 	/*
4380 	 * Don't re-read the value of "jiffies" every time since it may change
4381 	 * behind our back and break the math.
4382 	 */
4383 	tmp_jiffies = jiffies;
4384 	target_jiffies = timestamp_jiffies +
4385 			 msecs_to_jiffies_timeout(to_wait_ms);
4386 
4387 	if (time_after(target_jiffies, tmp_jiffies)) {
4388 		remaining_jiffies = target_jiffies - tmp_jiffies;
4389 		while (remaining_jiffies)
4390 			remaining_jiffies =
4391 			    schedule_timeout_uninterruptible(remaining_jiffies);
4392 	}
4393 }
4394 
4395 static inline bool
4396 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4397 {
4398 	struct intel_engine_cs *engine = req->engine;
4399 	u32 seqno;
4400 
4401 	/* Note that the engine may have wrapped around the seqno, and
4402 	 * so our request->global_seqno will be ahead of the hardware,
4403 	 * even though it completed the request before wrapping. We catch
4404 	 * this by kicking all the waiters before resetting the seqno
4405 	 * in hardware, and also signal the fence.
4406 	 */
4407 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4408 		return true;
4409 
4410 	/* The request was dequeued before we were awoken. We check after
4411 	 * inspecting the hw to confirm that this was the same request
4412 	 * that generated the HWS update. The memory barriers within
4413 	 * the request execution are sufficient to ensure that a check
4414 	 * after reading the value from hw matches this request.
4415 	 */
4416 	seqno = i915_gem_request_global_seqno(req);
4417 	if (!seqno)
4418 		return false;
4419 
4420 	/* Before we do the heavier coherent read of the seqno,
4421 	 * check the value (hopefully) in the CPU cacheline.
4422 	 */
4423 	if (__i915_gem_request_completed(req, seqno))
4424 		return true;
4425 
4426 	/* Ensure our read of the seqno is coherent so that we
4427 	 * do not "miss an interrupt" (i.e. if this is the last
4428 	 * request and the seqno write from the GPU is not visible
4429 	 * by the time the interrupt fires, we will see that the
4430 	 * request is incomplete and go back to sleep awaiting
4431 	 * another interrupt that will never come.)
4432 	 *
4433 	 * Strictly, we only need to do this once after an interrupt,
4434 	 * but it is easier and safer to do it every time the waiter
4435 	 * is woken.
4436 	 */
4437 	if (engine->irq_seqno_barrier &&
4438 	    test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4439 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
4440 
4441 		/* The ordering of irq_posted versus applying the barrier
4442 		 * is crucial. The clearing of the current irq_posted must
4443 		 * be visible before we perform the barrier operation,
4444 		 * such that if a subsequent interrupt arrives, irq_posted
4445 		 * is reasserted and our task rewoken (which causes us to
4446 		 * do another __i915_request_irq_complete() immediately
4447 		 * and reapply the barrier). Conversely, if the clear
4448 		 * occurs after the barrier, then an interrupt that arrived
4449 		 * whilst we waited on the barrier would not trigger a
4450 		 * barrier on the next pass, and the read may not see the
4451 		 * seqno update.
4452 		 */
4453 		engine->irq_seqno_barrier(engine);
4454 
4455 		/* If we consume the irq, but we are no longer the bottom-half,
4456 		 * the real bottom-half may not have serialised their own
4457 		 * seqno check with the irq-barrier (i.e. may have inspected
4458 		 * the seqno before we believe it coherent since they see
4459 		 * irq_posted == false but we are still running).
4460 		 */
4461 		spin_lock_irq(&b->irq_lock);
4462 		if (b->irq_wait && b->irq_wait->tsk != current)
4463 			/* Note that if the bottom-half is changed as we
4464 			 * are sending the wake-up, the new bottom-half will
4465 			 * be woken by whomever made the change. We only have
4466 			 * to worry about when we steal the irq-posted for
4467 			 * ourself.
4468 			 */
4469 			wake_up_process(b->irq_wait->tsk);
4470 		spin_unlock_irq(&b->irq_lock);
4471 
4472 		if (__i915_gem_request_completed(req, seqno))
4473 			return true;
4474 	}
4475 
4476 	return false;
4477 }
4478 
4479 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4480 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4481 
4482 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4483  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4484  * perform the operation. To check beforehand, pass in the parameters to
4485  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4486  * you only need to pass in the minor offsets, page-aligned pointers are
4487  * always valid.
4488  *
4489  * For just checking for SSE4.1, in the foreknowledge that the future use
4490  * will be correctly aligned, just use i915_has_memcpy_from_wc().
4491  */
4492 #define i915_can_memcpy_from_wc(dst, src, len) \
4493 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4494 
4495 #define i915_has_memcpy_from_wc() \
4496 	i915_memcpy_from_wc(NULL, NULL, 0)
4497 
4498 /* i915_mm.c */
4499 int remap_io_mapping(struct vm_area_struct *vma,
4500 		     unsigned long addr, unsigned long pfn, unsigned long size,
4501 		     struct io_mapping *iomap);
4502 
4503 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
4504 {
4505 	if (INTEL_GEN(i915) >= 10)
4506 		return CNL_HWS_CSB_WRITE_INDEX;
4507 	else
4508 		return I915_HWS_CSB_WRITE_INDEX;
4509 }
4510 
4511 #endif
4512