1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hash.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/pm_qos.h> 44 #include <linux/reservation.h> 45 #include <linux/shmem_fs.h> 46 47 #include <drm/drmP.h> 48 #include <drm/intel-gtt.h> 49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 50 #include <drm/drm_gem.h> 51 #include <drm/drm_auth.h> 52 #include <drm/drm_cache.h> 53 54 #include "i915_params.h" 55 #include "i915_reg.h" 56 #include "i915_utils.h" 57 58 #include "intel_uncore.h" 59 #include "intel_bios.h" 60 #include "intel_dpll_mgr.h" 61 #include "intel_uc.h" 62 #include "intel_lrc.h" 63 #include "intel_ringbuffer.h" 64 65 #include "i915_gem.h" 66 #include "i915_gem_context.h" 67 #include "i915_gem_fence_reg.h" 68 #include "i915_gem_object.h" 69 #include "i915_gem_gtt.h" 70 #include "i915_gem_request.h" 71 #include "i915_gem_timeline.h" 72 73 #include "i915_vma.h" 74 75 #include "intel_gvt.h" 76 77 /* General customization: 78 */ 79 80 #define DRIVER_NAME "i915" 81 #define DRIVER_DESC "Intel Graphics" 82 #define DRIVER_DATE "20171117" 83 #define DRIVER_TIMESTAMP 1510958822 84 85 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 86 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 87 * which may not necessarily be a user visible problem. This will either 88 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 89 * enable distros and users to tailor their preferred amount of i915 abrt 90 * spam. 91 */ 92 #define I915_STATE_WARN(condition, format...) ({ \ 93 int __ret_warn_on = !!(condition); \ 94 if (unlikely(__ret_warn_on)) \ 95 if (!WARN(i915_modparams.verbose_state_checks, format)) \ 96 DRM_ERROR(format); \ 97 unlikely(__ret_warn_on); \ 98 }) 99 100 #define I915_STATE_WARN_ON(x) \ 101 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 102 103 bool __i915_inject_load_failure(const char *func, int line); 104 #define i915_inject_load_failure() \ 105 __i915_inject_load_failure(__func__, __LINE__) 106 107 typedef struct { 108 uint32_t val; 109 } uint_fixed_16_16_t; 110 111 #define FP_16_16_MAX ({ \ 112 uint_fixed_16_16_t fp; \ 113 fp.val = UINT_MAX; \ 114 fp; \ 115 }) 116 117 static inline bool is_fixed16_zero(uint_fixed_16_16_t val) 118 { 119 if (val.val == 0) 120 return true; 121 return false; 122 } 123 124 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val) 125 { 126 uint_fixed_16_16_t fp; 127 128 WARN_ON(val > U16_MAX); 129 130 fp.val = val << 16; 131 return fp; 132 } 133 134 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp) 135 { 136 return DIV_ROUND_UP(fp.val, 1 << 16); 137 } 138 139 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp) 140 { 141 return fp.val >> 16; 142 } 143 144 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1, 145 uint_fixed_16_16_t min2) 146 { 147 uint_fixed_16_16_t min; 148 149 min.val = min(min1.val, min2.val); 150 return min; 151 } 152 153 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1, 154 uint_fixed_16_16_t max2) 155 { 156 uint_fixed_16_16_t max; 157 158 max.val = max(max1.val, max2.val); 159 return max; 160 } 161 162 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val) 163 { 164 uint_fixed_16_16_t fp; 165 WARN_ON(val > U32_MAX); 166 fp.val = (uint32_t) val; 167 return fp; 168 } 169 170 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val, 171 uint_fixed_16_16_t d) 172 { 173 return DIV_ROUND_UP(val.val, d.val); 174 } 175 176 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val, 177 uint_fixed_16_16_t mul) 178 { 179 uint64_t intermediate_val; 180 181 intermediate_val = (uint64_t) val * mul.val; 182 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16); 183 WARN_ON(intermediate_val > U32_MAX); 184 return (uint32_t) intermediate_val; 185 } 186 187 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val, 188 uint_fixed_16_16_t mul) 189 { 190 uint64_t intermediate_val; 191 192 intermediate_val = (uint64_t) val.val * mul.val; 193 intermediate_val = intermediate_val >> 16; 194 return clamp_u64_to_fixed16(intermediate_val); 195 } 196 197 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d) 198 { 199 uint64_t interm_val; 200 201 interm_val = (uint64_t)val << 16; 202 interm_val = DIV_ROUND_UP_ULL(interm_val, d); 203 return clamp_u64_to_fixed16(interm_val); 204 } 205 206 static inline uint32_t div_round_up_u32_fixed16(uint32_t val, 207 uint_fixed_16_16_t d) 208 { 209 uint64_t interm_val; 210 211 interm_val = (uint64_t)val << 16; 212 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val); 213 WARN_ON(interm_val > U32_MAX); 214 return (uint32_t) interm_val; 215 } 216 217 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val, 218 uint_fixed_16_16_t mul) 219 { 220 uint64_t intermediate_val; 221 222 intermediate_val = (uint64_t) val * mul.val; 223 return clamp_u64_to_fixed16(intermediate_val); 224 } 225 226 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1, 227 uint_fixed_16_16_t add2) 228 { 229 uint64_t interm_sum; 230 231 interm_sum = (uint64_t) add1.val + add2.val; 232 return clamp_u64_to_fixed16(interm_sum); 233 } 234 235 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1, 236 uint32_t add2) 237 { 238 uint64_t interm_sum; 239 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2); 240 241 interm_sum = (uint64_t) add1.val + interm_add2.val; 242 return clamp_u64_to_fixed16(interm_sum); 243 } 244 245 static inline const char *yesno(bool v) 246 { 247 return v ? "yes" : "no"; 248 } 249 250 static inline const char *onoff(bool v) 251 { 252 return v ? "on" : "off"; 253 } 254 255 static inline const char *enableddisabled(bool v) 256 { 257 return v ? "enabled" : "disabled"; 258 } 259 260 enum pipe { 261 INVALID_PIPE = -1, 262 PIPE_A = 0, 263 PIPE_B, 264 PIPE_C, 265 _PIPE_EDP, 266 I915_MAX_PIPES = _PIPE_EDP 267 }; 268 #define pipe_name(p) ((p) + 'A') 269 270 enum transcoder { 271 TRANSCODER_A = 0, 272 TRANSCODER_B, 273 TRANSCODER_C, 274 TRANSCODER_EDP, 275 TRANSCODER_DSI_A, 276 TRANSCODER_DSI_C, 277 I915_MAX_TRANSCODERS 278 }; 279 280 static inline const char *transcoder_name(enum transcoder transcoder) 281 { 282 switch (transcoder) { 283 case TRANSCODER_A: 284 return "A"; 285 case TRANSCODER_B: 286 return "B"; 287 case TRANSCODER_C: 288 return "C"; 289 case TRANSCODER_EDP: 290 return "EDP"; 291 case TRANSCODER_DSI_A: 292 return "DSI A"; 293 case TRANSCODER_DSI_C: 294 return "DSI C"; 295 default: 296 return "<invalid>"; 297 } 298 } 299 300 static inline bool transcoder_is_dsi(enum transcoder transcoder) 301 { 302 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C; 303 } 304 305 /* 306 * Global legacy plane identifier. Valid only for primary/sprite 307 * planes on pre-g4x, and only for primary planes on g4x+. 308 */ 309 enum plane { 310 PLANE_A, 311 PLANE_B, 312 PLANE_C, 313 }; 314 #define plane_name(p) ((p) + 'A') 315 316 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A') 317 318 /* 319 * Per-pipe plane identifier. 320 * I915_MAX_PLANES in the enum below is the maximum (across all platforms) 321 * number of planes per CRTC. Not all platforms really have this many planes, 322 * which means some arrays of size I915_MAX_PLANES may have unused entries 323 * between the topmost sprite plane and the cursor plane. 324 * 325 * This is expected to be passed to various register macros 326 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care. 327 */ 328 enum plane_id { 329 PLANE_PRIMARY, 330 PLANE_SPRITE0, 331 PLANE_SPRITE1, 332 PLANE_SPRITE2, 333 PLANE_CURSOR, 334 I915_MAX_PLANES, 335 }; 336 337 #define for_each_plane_id_on_crtc(__crtc, __p) \ 338 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \ 339 for_each_if ((__crtc)->plane_ids_mask & BIT(__p)) 340 341 enum port { 342 PORT_NONE = -1, 343 PORT_A = 0, 344 PORT_B, 345 PORT_C, 346 PORT_D, 347 PORT_E, 348 I915_MAX_PORTS 349 }; 350 #define port_name(p) ((p) + 'A') 351 352 #define I915_NUM_PHYS_VLV 2 353 354 enum dpio_channel { 355 DPIO_CH0, 356 DPIO_CH1 357 }; 358 359 enum dpio_phy { 360 DPIO_PHY0, 361 DPIO_PHY1, 362 DPIO_PHY2, 363 }; 364 365 enum intel_display_power_domain { 366 POWER_DOMAIN_PIPE_A, 367 POWER_DOMAIN_PIPE_B, 368 POWER_DOMAIN_PIPE_C, 369 POWER_DOMAIN_PIPE_A_PANEL_FITTER, 370 POWER_DOMAIN_PIPE_B_PANEL_FITTER, 371 POWER_DOMAIN_PIPE_C_PANEL_FITTER, 372 POWER_DOMAIN_TRANSCODER_A, 373 POWER_DOMAIN_TRANSCODER_B, 374 POWER_DOMAIN_TRANSCODER_C, 375 POWER_DOMAIN_TRANSCODER_EDP, 376 POWER_DOMAIN_TRANSCODER_DSI_A, 377 POWER_DOMAIN_TRANSCODER_DSI_C, 378 POWER_DOMAIN_PORT_DDI_A_LANES, 379 POWER_DOMAIN_PORT_DDI_B_LANES, 380 POWER_DOMAIN_PORT_DDI_C_LANES, 381 POWER_DOMAIN_PORT_DDI_D_LANES, 382 POWER_DOMAIN_PORT_DDI_E_LANES, 383 POWER_DOMAIN_PORT_DDI_A_IO, 384 POWER_DOMAIN_PORT_DDI_B_IO, 385 POWER_DOMAIN_PORT_DDI_C_IO, 386 POWER_DOMAIN_PORT_DDI_D_IO, 387 POWER_DOMAIN_PORT_DDI_E_IO, 388 POWER_DOMAIN_PORT_DSI, 389 POWER_DOMAIN_PORT_CRT, 390 POWER_DOMAIN_PORT_OTHER, 391 POWER_DOMAIN_VGA, 392 POWER_DOMAIN_AUDIO, 393 POWER_DOMAIN_PLLS, 394 POWER_DOMAIN_AUX_A, 395 POWER_DOMAIN_AUX_B, 396 POWER_DOMAIN_AUX_C, 397 POWER_DOMAIN_AUX_D, 398 POWER_DOMAIN_GMBUS, 399 POWER_DOMAIN_MODESET, 400 POWER_DOMAIN_INIT, 401 402 POWER_DOMAIN_NUM, 403 }; 404 405 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A) 406 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \ 407 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER) 408 #define POWER_DOMAIN_TRANSCODER(tran) \ 409 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \ 410 (tran) + POWER_DOMAIN_TRANSCODER_A) 411 412 enum hpd_pin { 413 HPD_NONE = 0, 414 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 415 HPD_CRT, 416 HPD_SDVO_B, 417 HPD_SDVO_C, 418 HPD_PORT_A, 419 HPD_PORT_B, 420 HPD_PORT_C, 421 HPD_PORT_D, 422 HPD_PORT_E, 423 HPD_NUM_PINS 424 }; 425 426 #define for_each_hpd_pin(__pin) \ 427 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 428 429 #define HPD_STORM_DEFAULT_THRESHOLD 5 430 431 struct i915_hotplug { 432 struct work_struct hotplug_work; 433 434 struct { 435 unsigned long last_jiffies; 436 int count; 437 enum { 438 HPD_ENABLED = 0, 439 HPD_DISABLED = 1, 440 HPD_MARK_DISABLED = 2 441 } state; 442 } stats[HPD_NUM_PINS]; 443 u32 event_bits; 444 struct delayed_work reenable_work; 445 446 struct intel_digital_port *irq_port[I915_MAX_PORTS]; 447 u32 long_port_mask; 448 u32 short_port_mask; 449 struct work_struct dig_port_work; 450 451 struct work_struct poll_init_work; 452 bool poll_enabled; 453 454 unsigned int hpd_storm_threshold; 455 456 /* 457 * if we get a HPD irq from DP and a HPD irq from non-DP 458 * the non-DP HPD could block the workqueue on a mode config 459 * mutex getting, that userspace may have taken. However 460 * userspace is waiting on the DP workqueue to run which is 461 * blocked behind the non-DP one. 462 */ 463 struct workqueue_struct *dp_wq; 464 }; 465 466 #define I915_GEM_GPU_DOMAINS \ 467 (I915_GEM_DOMAIN_RENDER | \ 468 I915_GEM_DOMAIN_SAMPLER | \ 469 I915_GEM_DOMAIN_COMMAND | \ 470 I915_GEM_DOMAIN_INSTRUCTION | \ 471 I915_GEM_DOMAIN_VERTEX) 472 473 #define for_each_pipe(__dev_priv, __p) \ 474 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) 475 #define for_each_pipe_masked(__dev_priv, __p, __mask) \ 476 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \ 477 for_each_if ((__mask) & (1 << (__p))) 478 #define for_each_universal_plane(__dev_priv, __pipe, __p) \ 479 for ((__p) = 0; \ 480 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \ 481 (__p)++) 482 #define for_each_sprite(__dev_priv, __p, __s) \ 483 for ((__s) = 0; \ 484 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \ 485 (__s)++) 486 487 #define for_each_port_masked(__port, __ports_mask) \ 488 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \ 489 for_each_if ((__ports_mask) & (1 << (__port))) 490 491 #define for_each_crtc(dev, crtc) \ 492 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head) 493 494 #define for_each_intel_plane(dev, intel_plane) \ 495 list_for_each_entry(intel_plane, \ 496 &(dev)->mode_config.plane_list, \ 497 base.head) 498 499 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \ 500 list_for_each_entry(intel_plane, \ 501 &(dev)->mode_config.plane_list, \ 502 base.head) \ 503 for_each_if ((plane_mask) & \ 504 (1 << drm_plane_index(&intel_plane->base))) 505 506 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \ 507 list_for_each_entry(intel_plane, \ 508 &(dev)->mode_config.plane_list, \ 509 base.head) \ 510 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe) 511 512 #define for_each_intel_crtc(dev, intel_crtc) \ 513 list_for_each_entry(intel_crtc, \ 514 &(dev)->mode_config.crtc_list, \ 515 base.head) 516 517 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \ 518 list_for_each_entry(intel_crtc, \ 519 &(dev)->mode_config.crtc_list, \ 520 base.head) \ 521 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base))) 522 523 #define for_each_intel_encoder(dev, intel_encoder) \ 524 list_for_each_entry(intel_encoder, \ 525 &(dev)->mode_config.encoder_list, \ 526 base.head) 527 528 #define for_each_intel_connector_iter(intel_connector, iter) \ 529 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter)))) 530 531 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \ 532 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \ 533 for_each_if ((intel_encoder)->base.crtc == (__crtc)) 534 535 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \ 536 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \ 537 for_each_if ((intel_connector)->base.encoder == (__encoder)) 538 539 #define for_each_power_domain(domain, mask) \ 540 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \ 541 for_each_if (BIT_ULL(domain) & (mask)) 542 543 #define for_each_power_well(__dev_priv, __power_well) \ 544 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \ 545 (__power_well) - (__dev_priv)->power_domains.power_wells < \ 546 (__dev_priv)->power_domains.power_well_count; \ 547 (__power_well)++) 548 549 #define for_each_power_well_rev(__dev_priv, __power_well) \ 550 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \ 551 (__dev_priv)->power_domains.power_well_count - 1; \ 552 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \ 553 (__power_well)--) 554 555 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \ 556 for_each_power_well(__dev_priv, __power_well) \ 557 for_each_if ((__power_well)->domains & (__domain_mask)) 558 559 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \ 560 for_each_power_well_rev(__dev_priv, __power_well) \ 561 for_each_if ((__power_well)->domains & (__domain_mask)) 562 563 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \ 564 for ((__i) = 0; \ 565 (__i) < (__state)->base.dev->mode_config.num_total_plane && \ 566 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \ 567 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \ 568 (__i)++) \ 569 for_each_if (plane_state) 570 571 #define for_each_new_intel_crtc_in_state(__state, crtc, new_crtc_state, __i) \ 572 for ((__i) = 0; \ 573 (__i) < (__state)->base.dev->mode_config.num_crtc && \ 574 ((crtc) = to_intel_crtc((__state)->base.crtcs[__i].ptr), \ 575 (new_crtc_state) = to_intel_crtc_state((__state)->base.crtcs[__i].new_state), 1); \ 576 (__i)++) \ 577 for_each_if (crtc) 578 579 580 #define for_each_oldnew_intel_plane_in_state(__state, plane, old_plane_state, new_plane_state, __i) \ 581 for ((__i) = 0; \ 582 (__i) < (__state)->base.dev->mode_config.num_total_plane && \ 583 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \ 584 (old_plane_state) = to_intel_plane_state((__state)->base.planes[__i].old_state), \ 585 (new_plane_state) = to_intel_plane_state((__state)->base.planes[__i].new_state), 1); \ 586 (__i)++) \ 587 for_each_if (plane) 588 589 struct drm_i915_private; 590 struct i915_mm_struct; 591 struct i915_mmu_object; 592 593 struct drm_i915_file_private { 594 struct drm_i915_private *dev_priv; 595 struct drm_file *file; 596 597 struct { 598 spinlock_t lock; 599 struct list_head request_list; 600 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 601 * chosen to prevent the CPU getting more than a frame ahead of the GPU 602 * (when using lax throttling for the frontbuffer). We also use it to 603 * offer free GPU waitboosts for severely congested workloads. 604 */ 605 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 606 } mm; 607 struct idr context_idr; 608 609 struct intel_rps_client { 610 atomic_t boosts; 611 } rps_client; 612 613 unsigned int bsd_engine; 614 615 /* Client can have a maximum of 3 contexts banned before 616 * it is denied of creating new contexts. As one context 617 * ban needs 4 consecutive hangs, and more if there is 618 * progress in between, this is a last resort stop gap measure 619 * to limit the badly behaving clients access to gpu. 620 */ 621 #define I915_MAX_CLIENT_CONTEXT_BANS 3 622 atomic_t context_bans; 623 }; 624 625 /* Used by dp and fdi links */ 626 struct intel_link_m_n { 627 uint32_t tu; 628 uint32_t gmch_m; 629 uint32_t gmch_n; 630 uint32_t link_m; 631 uint32_t link_n; 632 }; 633 634 void intel_link_compute_m_n(int bpp, int nlanes, 635 int pixel_clock, int link_clock, 636 struct intel_link_m_n *m_n, 637 bool reduce_m_n); 638 639 /* Interface history: 640 * 641 * 1.1: Original. 642 * 1.2: Add Power Management 643 * 1.3: Add vblank support 644 * 1.4: Fix cmdbuffer path, add heap destroy 645 * 1.5: Add vblank pipe configuration 646 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 647 * - Support vertical blank on secondary display pipe 648 */ 649 #define DRIVER_MAJOR 1 650 #define DRIVER_MINOR 6 651 #define DRIVER_PATCHLEVEL 0 652 653 struct opregion_header; 654 struct opregion_acpi; 655 struct opregion_swsci; 656 struct opregion_asle; 657 658 struct intel_opregion { 659 struct opregion_header *header; 660 struct opregion_acpi *acpi; 661 struct opregion_swsci *swsci; 662 u32 swsci_gbda_sub_functions; 663 u32 swsci_sbcb_sub_functions; 664 struct opregion_asle *asle; 665 void *rvda; 666 void *vbt_firmware; 667 const void *vbt; 668 u32 vbt_size; 669 u32 *lid_state; 670 struct work_struct asle_work; 671 }; 672 #define OPREGION_SIZE (8*1024) 673 674 struct intel_overlay; 675 struct intel_overlay_error_state; 676 677 struct sdvo_device_mapping { 678 u8 initialized; 679 u8 dvo_port; 680 u8 slave_addr; 681 u8 dvo_wiring; 682 u8 i2c_pin; 683 u8 ddc_pin; 684 }; 685 686 struct intel_connector; 687 struct intel_encoder; 688 struct intel_atomic_state; 689 struct intel_crtc_state; 690 struct intel_initial_plane_config; 691 struct intel_crtc; 692 struct intel_limit; 693 struct dpll; 694 struct intel_cdclk_state; 695 696 struct drm_i915_display_funcs { 697 void (*get_cdclk)(struct drm_i915_private *dev_priv, 698 struct intel_cdclk_state *cdclk_state); 699 void (*set_cdclk)(struct drm_i915_private *dev_priv, 700 const struct intel_cdclk_state *cdclk_state); 701 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane); 702 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 703 int (*compute_intermediate_wm)(struct drm_device *dev, 704 struct intel_crtc *intel_crtc, 705 struct intel_crtc_state *newstate); 706 void (*initial_watermarks)(struct intel_atomic_state *state, 707 struct intel_crtc_state *cstate); 708 void (*atomic_update_watermarks)(struct intel_atomic_state *state, 709 struct intel_crtc_state *cstate); 710 void (*optimize_watermarks)(struct intel_atomic_state *state, 711 struct intel_crtc_state *cstate); 712 int (*compute_global_watermarks)(struct drm_atomic_state *state); 713 void (*update_wm)(struct intel_crtc *crtc); 714 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 715 /* Returns the active state of the crtc, and if the crtc is active, 716 * fills out the pipe-config with the hw state. */ 717 bool (*get_pipe_config)(struct intel_crtc *, 718 struct intel_crtc_state *); 719 void (*get_initial_plane_config)(struct intel_crtc *, 720 struct intel_initial_plane_config *); 721 int (*crtc_compute_clock)(struct intel_crtc *crtc, 722 struct intel_crtc_state *crtc_state); 723 void (*crtc_enable)(struct intel_crtc_state *pipe_config, 724 struct drm_atomic_state *old_state); 725 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state, 726 struct drm_atomic_state *old_state); 727 void (*update_crtcs)(struct drm_atomic_state *state); 728 void (*audio_codec_enable)(struct intel_encoder *encoder, 729 const struct intel_crtc_state *crtc_state, 730 const struct drm_connector_state *conn_state); 731 void (*audio_codec_disable)(struct intel_encoder *encoder, 732 const struct intel_crtc_state *old_crtc_state, 733 const struct drm_connector_state *old_conn_state); 734 void (*fdi_link_train)(struct intel_crtc *crtc, 735 const struct intel_crtc_state *crtc_state); 736 void (*init_clock_gating)(struct drm_i915_private *dev_priv); 737 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 738 /* clock updates for mode set */ 739 /* cursor updates */ 740 /* render clock increase/decrease */ 741 /* display clock increase/decrease */ 742 /* pll clock increase/decrease */ 743 744 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); 745 void (*load_luts)(struct drm_crtc_state *crtc_state); 746 }; 747 748 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 749 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 750 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 751 752 struct intel_csr { 753 struct work_struct work; 754 const char *fw_path; 755 uint32_t *dmc_payload; 756 uint32_t dmc_fw_size; 757 uint32_t version; 758 uint32_t mmio_count; 759 i915_reg_t mmioaddr[8]; 760 uint32_t mmiodata[8]; 761 uint32_t dc_state; 762 uint32_t allowed_dc_mask; 763 }; 764 765 #define DEV_INFO_FOR_EACH_FLAG(func) \ 766 func(is_mobile); \ 767 func(is_lp); \ 768 func(is_alpha_support); \ 769 /* Keep has_* in alphabetical order */ \ 770 func(has_64bit_reloc); \ 771 func(has_aliasing_ppgtt); \ 772 func(has_csr); \ 773 func(has_ddi); \ 774 func(has_dp_mst); \ 775 func(has_reset_engine); \ 776 func(has_fbc); \ 777 func(has_fpga_dbg); \ 778 func(has_full_ppgtt); \ 779 func(has_full_48bit_ppgtt); \ 780 func(has_gmch_display); \ 781 func(has_guc); \ 782 func(has_guc_ct); \ 783 func(has_hotplug); \ 784 func(has_l3_dpf); \ 785 func(has_llc); \ 786 func(has_logical_ring_contexts); \ 787 func(has_logical_ring_preemption); \ 788 func(has_overlay); \ 789 func(has_pooled_eu); \ 790 func(has_psr); \ 791 func(has_rc6); \ 792 func(has_rc6p); \ 793 func(has_resource_streamer); \ 794 func(has_runtime_pm); \ 795 func(has_snoop); \ 796 func(unfenced_needs_alignment); \ 797 func(cursor_needs_physical); \ 798 func(hws_needs_physical); \ 799 func(overlay_needs_physical); \ 800 func(supports_tv); \ 801 func(has_ipc); 802 803 struct sseu_dev_info { 804 u8 slice_mask; 805 u8 subslice_mask; 806 u8 eu_total; 807 u8 eu_per_subslice; 808 u8 min_eu_in_pool; 809 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */ 810 u8 subslice_7eu[3]; 811 u8 has_slice_pg:1; 812 u8 has_subslice_pg:1; 813 u8 has_eu_pg:1; 814 }; 815 816 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu) 817 { 818 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask); 819 } 820 821 /* Keep in gen based order, and chronological order within a gen */ 822 enum intel_platform { 823 INTEL_PLATFORM_UNINITIALIZED = 0, 824 INTEL_I830, 825 INTEL_I845G, 826 INTEL_I85X, 827 INTEL_I865G, 828 INTEL_I915G, 829 INTEL_I915GM, 830 INTEL_I945G, 831 INTEL_I945GM, 832 INTEL_G33, 833 INTEL_PINEVIEW, 834 INTEL_I965G, 835 INTEL_I965GM, 836 INTEL_G45, 837 INTEL_GM45, 838 INTEL_IRONLAKE, 839 INTEL_SANDYBRIDGE, 840 INTEL_IVYBRIDGE, 841 INTEL_VALLEYVIEW, 842 INTEL_HASWELL, 843 INTEL_BROADWELL, 844 INTEL_CHERRYVIEW, 845 INTEL_SKYLAKE, 846 INTEL_BROXTON, 847 INTEL_KABYLAKE, 848 INTEL_GEMINILAKE, 849 INTEL_COFFEELAKE, 850 INTEL_CANNONLAKE, 851 INTEL_MAX_PLATFORMS 852 }; 853 854 struct intel_device_info { 855 u16 device_id; 856 u16 gen_mask; 857 858 u8 gen; 859 u8 gt; /* GT number, 0 if undefined */ 860 u8 num_rings; 861 u8 ring_mask; /* Rings supported by the HW */ 862 863 enum intel_platform platform; 864 u32 platform_mask; 865 866 u32 display_mmio_offset; 867 868 u8 num_pipes; 869 u8 num_sprites[I915_MAX_PIPES]; 870 u8 num_scalers[I915_MAX_PIPES]; 871 872 unsigned int page_sizes; /* page sizes supported by the HW */ 873 874 #define DEFINE_FLAG(name) u8 name:1 875 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG); 876 #undef DEFINE_FLAG 877 u16 ddb_size; /* in blocks */ 878 879 /* Register offsets for the various display pipes and transcoders */ 880 int pipe_offsets[I915_MAX_TRANSCODERS]; 881 int trans_offsets[I915_MAX_TRANSCODERS]; 882 int palette_offsets[I915_MAX_PIPES]; 883 int cursor_offsets[I915_MAX_PIPES]; 884 885 /* Slice/subslice/EU info */ 886 struct sseu_dev_info sseu; 887 888 u32 cs_timestamp_frequency_khz; 889 890 struct color_luts { 891 u16 degamma_lut_size; 892 u16 gamma_lut_size; 893 } color; 894 }; 895 896 struct intel_display_error_state; 897 898 struct i915_gpu_state { 899 struct kref ref; 900 struct timeval time; 901 struct timeval boottime; 902 struct timeval uptime; 903 904 struct drm_i915_private *i915; 905 906 char error_msg[128]; 907 bool simulated; 908 bool awake; 909 bool wakelock; 910 bool suspended; 911 int iommu; 912 u32 reset_count; 913 u32 suspend_count; 914 struct intel_device_info device_info; 915 struct i915_params params; 916 917 struct i915_error_uc { 918 struct intel_uc_fw guc_fw; 919 struct intel_uc_fw huc_fw; 920 struct drm_i915_error_object *guc_log; 921 } uc; 922 923 /* Generic register state */ 924 u32 eir; 925 u32 pgtbl_er; 926 u32 ier; 927 u32 gtier[4], ngtier; 928 u32 ccid; 929 u32 derrmr; 930 u32 forcewake; 931 u32 error; /* gen6+ */ 932 u32 err_int; /* gen7 */ 933 u32 fault_data0; /* gen8, gen9 */ 934 u32 fault_data1; /* gen8, gen9 */ 935 u32 done_reg; 936 u32 gac_eco; 937 u32 gam_ecochk; 938 u32 gab_ctl; 939 u32 gfx_mode; 940 941 u32 nfence; 942 u64 fence[I915_MAX_NUM_FENCES]; 943 struct intel_overlay_error_state *overlay; 944 struct intel_display_error_state *display; 945 struct drm_i915_error_object *semaphore; 946 947 struct drm_i915_error_engine { 948 int engine_id; 949 /* Software tracked state */ 950 bool waiting; 951 int num_waiters; 952 unsigned long hangcheck_timestamp; 953 bool hangcheck_stalled; 954 enum intel_engine_hangcheck_action hangcheck_action; 955 struct i915_address_space *vm; 956 int num_requests; 957 u32 reset_count; 958 959 /* position of active request inside the ring */ 960 u32 rq_head, rq_post, rq_tail; 961 962 /* our own tracking of ring head and tail */ 963 u32 cpu_ring_head; 964 u32 cpu_ring_tail; 965 966 u32 last_seqno; 967 968 /* Register state */ 969 u32 start; 970 u32 tail; 971 u32 head; 972 u32 ctl; 973 u32 mode; 974 u32 hws; 975 u32 ipeir; 976 u32 ipehr; 977 u32 bbstate; 978 u32 instpm; 979 u32 instps; 980 u32 seqno; 981 u64 bbaddr; 982 u64 acthd; 983 u32 fault_reg; 984 u64 faddr; 985 u32 rc_psmi; /* sleep state */ 986 u32 semaphore_mboxes[I915_NUM_ENGINES - 1]; 987 struct intel_instdone instdone; 988 989 struct drm_i915_error_context { 990 char comm[TASK_COMM_LEN]; 991 pid_t pid; 992 u32 handle; 993 u32 hw_id; 994 int priority; 995 int ban_score; 996 int active; 997 int guilty; 998 } context; 999 1000 struct drm_i915_error_object { 1001 u64 gtt_offset; 1002 u64 gtt_size; 1003 int page_count; 1004 int unused; 1005 u32 *pages[0]; 1006 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page; 1007 1008 struct drm_i915_error_object **user_bo; 1009 long user_bo_count; 1010 1011 struct drm_i915_error_object *wa_ctx; 1012 1013 struct drm_i915_error_request { 1014 long jiffies; 1015 pid_t pid; 1016 u32 context; 1017 int priority; 1018 int ban_score; 1019 u32 seqno; 1020 u32 head; 1021 u32 tail; 1022 } *requests, execlist[EXECLIST_MAX_PORTS]; 1023 unsigned int num_ports; 1024 1025 struct drm_i915_error_waiter { 1026 char comm[TASK_COMM_LEN]; 1027 pid_t pid; 1028 u32 seqno; 1029 } *waiters; 1030 1031 struct { 1032 u32 gfx_mode; 1033 union { 1034 u64 pdp[4]; 1035 u32 pp_dir_base; 1036 }; 1037 } vm_info; 1038 } engine[I915_NUM_ENGINES]; 1039 1040 struct drm_i915_error_buffer { 1041 u32 size; 1042 u32 name; 1043 u32 rseqno[I915_NUM_ENGINES], wseqno; 1044 u64 gtt_offset; 1045 u32 read_domains; 1046 u32 write_domain; 1047 s32 fence_reg:I915_MAX_NUM_FENCE_BITS; 1048 u32 tiling:2; 1049 u32 dirty:1; 1050 u32 purgeable:1; 1051 u32 userptr:1; 1052 s32 engine:4; 1053 u32 cache_level:3; 1054 } *active_bo[I915_NUM_ENGINES], *pinned_bo; 1055 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count; 1056 struct i915_address_space *active_vm[I915_NUM_ENGINES]; 1057 }; 1058 1059 enum i915_cache_level { 1060 I915_CACHE_NONE = 0, 1061 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 1062 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 1063 caches, eg sampler/render caches, and the 1064 large Last-Level-Cache. LLC is coherent with 1065 the CPU, but L3 is only visible to the GPU. */ 1066 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 1067 }; 1068 1069 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ 1070 1071 enum fb_op_origin { 1072 ORIGIN_GTT, 1073 ORIGIN_CPU, 1074 ORIGIN_CS, 1075 ORIGIN_FLIP, 1076 ORIGIN_DIRTYFB, 1077 }; 1078 1079 struct intel_fbc { 1080 /* This is always the inner lock when overlapping with struct_mutex and 1081 * it's the outer lock when overlapping with stolen_lock. */ 1082 struct mutex lock; 1083 unsigned threshold; 1084 unsigned int possible_framebuffer_bits; 1085 unsigned int busy_bits; 1086 unsigned int visible_pipes_mask; 1087 struct intel_crtc *crtc; 1088 1089 struct drm_mm_node compressed_fb; 1090 struct drm_mm_node *compressed_llb; 1091 1092 bool false_color; 1093 1094 bool enabled; 1095 bool active; 1096 1097 bool underrun_detected; 1098 struct work_struct underrun_work; 1099 1100 /* 1101 * Due to the atomic rules we can't access some structures without the 1102 * appropriate locking, so we cache information here in order to avoid 1103 * these problems. 1104 */ 1105 struct intel_fbc_state_cache { 1106 struct i915_vma *vma; 1107 1108 struct { 1109 unsigned int mode_flags; 1110 uint32_t hsw_bdw_pixel_rate; 1111 } crtc; 1112 1113 struct { 1114 unsigned int rotation; 1115 int src_w; 1116 int src_h; 1117 bool visible; 1118 /* 1119 * Display surface base address adjustement for 1120 * pageflips. Note that on gen4+ this only adjusts up 1121 * to a tile, offsets within a tile are handled in 1122 * the hw itself (with the TILEOFF register). 1123 */ 1124 int adjusted_x; 1125 int adjusted_y; 1126 1127 int y; 1128 } plane; 1129 1130 struct { 1131 const struct drm_format_info *format; 1132 unsigned int stride; 1133 } fb; 1134 } state_cache; 1135 1136 /* 1137 * This structure contains everything that's relevant to program the 1138 * hardware registers. When we want to figure out if we need to disable 1139 * and re-enable FBC for a new configuration we just check if there's 1140 * something different in the struct. The genx_fbc_activate functions 1141 * are supposed to read from it in order to program the registers. 1142 */ 1143 struct intel_fbc_reg_params { 1144 struct i915_vma *vma; 1145 1146 struct { 1147 enum pipe pipe; 1148 enum plane plane; 1149 unsigned int fence_y_offset; 1150 } crtc; 1151 1152 struct { 1153 const struct drm_format_info *format; 1154 unsigned int stride; 1155 } fb; 1156 1157 int cfb_size; 1158 unsigned int gen9_wa_cfb_stride; 1159 } params; 1160 1161 struct intel_fbc_work { 1162 bool scheduled; 1163 u32 scheduled_vblank; 1164 struct work_struct work; 1165 } work; 1166 1167 const char *no_fbc_reason; 1168 }; 1169 1170 /* 1171 * HIGH_RR is the highest eDP panel refresh rate read from EDID 1172 * LOW_RR is the lowest eDP panel refresh rate found from EDID 1173 * parsing for same resolution. 1174 */ 1175 enum drrs_refresh_rate_type { 1176 DRRS_HIGH_RR, 1177 DRRS_LOW_RR, 1178 DRRS_MAX_RR, /* RR count */ 1179 }; 1180 1181 enum drrs_support_type { 1182 DRRS_NOT_SUPPORTED = 0, 1183 STATIC_DRRS_SUPPORT = 1, 1184 SEAMLESS_DRRS_SUPPORT = 2 1185 }; 1186 1187 struct intel_dp; 1188 struct i915_drrs { 1189 struct mutex mutex; 1190 struct delayed_work work; 1191 struct intel_dp *dp; 1192 unsigned busy_frontbuffer_bits; 1193 enum drrs_refresh_rate_type refresh_rate_type; 1194 enum drrs_support_type type; 1195 }; 1196 1197 struct i915_psr { 1198 struct mutex lock; 1199 bool sink_support; 1200 bool source_ok; 1201 struct intel_dp *enabled; 1202 bool active; 1203 struct delayed_work work; 1204 unsigned busy_frontbuffer_bits; 1205 bool psr2_support; 1206 bool aux_frame_sync; 1207 bool link_standby; 1208 bool y_cord_support; 1209 bool colorimetry_support; 1210 bool alpm; 1211 1212 void (*enable_source)(struct intel_dp *, 1213 const struct intel_crtc_state *); 1214 void (*disable_source)(struct intel_dp *, 1215 const struct intel_crtc_state *); 1216 void (*enable_sink)(struct intel_dp *); 1217 void (*activate)(struct intel_dp *); 1218 void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *); 1219 }; 1220 1221 enum intel_pch { 1222 PCH_NONE = 0, /* No PCH present */ 1223 PCH_IBX, /* Ibexpeak PCH */ 1224 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */ 1225 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */ 1226 PCH_SPT, /* Sunrisepoint PCH */ 1227 PCH_KBP, /* Kaby Lake PCH */ 1228 PCH_CNP, /* Cannon Lake PCH */ 1229 PCH_NOP, 1230 }; 1231 1232 enum intel_sbi_destination { 1233 SBI_ICLK, 1234 SBI_MPHY, 1235 }; 1236 1237 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 1238 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 1239 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 1240 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 1241 #define QUIRK_INCREASE_T12_DELAY (1<<6) 1242 1243 struct intel_fbdev; 1244 struct intel_fbc_work; 1245 1246 struct intel_gmbus { 1247 struct i2c_adapter adapter; 1248 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 1249 u32 force_bit; 1250 u32 reg0; 1251 i915_reg_t gpio_reg; 1252 struct i2c_algo_bit_data bit_algo; 1253 struct drm_i915_private *dev_priv; 1254 }; 1255 1256 struct i915_suspend_saved_registers { 1257 u32 saveDSPARB; 1258 u32 saveFBC_CONTROL; 1259 u32 saveCACHE_MODE_0; 1260 u32 saveMI_ARB_STATE; 1261 u32 saveSWF0[16]; 1262 u32 saveSWF1[16]; 1263 u32 saveSWF3[3]; 1264 uint64_t saveFENCE[I915_MAX_NUM_FENCES]; 1265 u32 savePCH_PORT_HOTPLUG; 1266 u16 saveGCDGMBUS; 1267 }; 1268 1269 struct vlv_s0ix_state { 1270 /* GAM */ 1271 u32 wr_watermark; 1272 u32 gfx_prio_ctrl; 1273 u32 arb_mode; 1274 u32 gfx_pend_tlb0; 1275 u32 gfx_pend_tlb1; 1276 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 1277 u32 media_max_req_count; 1278 u32 gfx_max_req_count; 1279 u32 render_hwsp; 1280 u32 ecochk; 1281 u32 bsd_hwsp; 1282 u32 blt_hwsp; 1283 u32 tlb_rd_addr; 1284 1285 /* MBC */ 1286 u32 g3dctl; 1287 u32 gsckgctl; 1288 u32 mbctl; 1289 1290 /* GCP */ 1291 u32 ucgctl1; 1292 u32 ucgctl3; 1293 u32 rcgctl1; 1294 u32 rcgctl2; 1295 u32 rstctl; 1296 u32 misccpctl; 1297 1298 /* GPM */ 1299 u32 gfxpause; 1300 u32 rpdeuhwtc; 1301 u32 rpdeuc; 1302 u32 ecobus; 1303 u32 pwrdwnupctl; 1304 u32 rp_down_timeout; 1305 u32 rp_deucsw; 1306 u32 rcubmabdtmr; 1307 u32 rcedata; 1308 u32 spare2gh; 1309 1310 /* Display 1 CZ domain */ 1311 u32 gt_imr; 1312 u32 gt_ier; 1313 u32 pm_imr; 1314 u32 pm_ier; 1315 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 1316 1317 /* GT SA CZ domain */ 1318 u32 tilectl; 1319 u32 gt_fifoctl; 1320 u32 gtlc_wake_ctrl; 1321 u32 gtlc_survive; 1322 u32 pmwgicz; 1323 1324 /* Display 2 CZ domain */ 1325 u32 gu_ctl0; 1326 u32 gu_ctl1; 1327 u32 pcbr; 1328 u32 clock_gate_dis2; 1329 }; 1330 1331 struct intel_rps_ei { 1332 ktime_t ktime; 1333 u32 render_c0; 1334 u32 media_c0; 1335 }; 1336 1337 struct intel_rps { 1338 /* 1339 * work, interrupts_enabled and pm_iir are protected by 1340 * dev_priv->irq_lock 1341 */ 1342 struct work_struct work; 1343 bool interrupts_enabled; 1344 u32 pm_iir; 1345 1346 /* PM interrupt bits that should never be masked */ 1347 u32 pm_intrmsk_mbz; 1348 1349 /* Frequencies are stored in potentially platform dependent multiples. 1350 * In other words, *_freq needs to be multiplied by X to be interesting. 1351 * Soft limits are those which are used for the dynamic reclocking done 1352 * by the driver (raise frequencies under heavy loads, and lower for 1353 * lighter loads). Hard limits are those imposed by the hardware. 1354 * 1355 * A distinction is made for overclocking, which is never enabled by 1356 * default, and is considered to be above the hard limit if it's 1357 * possible at all. 1358 */ 1359 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 1360 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 1361 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 1362 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 1363 u8 min_freq; /* AKA RPn. Minimum frequency */ 1364 u8 boost_freq; /* Frequency to request when wait boosting */ 1365 u8 idle_freq; /* Frequency to request when we are idle */ 1366 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 1367 u8 rp1_freq; /* "less than" RP0 power/freqency */ 1368 u8 rp0_freq; /* Non-overclocked max frequency. */ 1369 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 1370 1371 u8 up_threshold; /* Current %busy required to uplock */ 1372 u8 down_threshold; /* Current %busy required to downclock */ 1373 1374 int last_adj; 1375 enum { LOW_POWER, BETWEEN, HIGH_POWER } power; 1376 1377 bool enabled; 1378 atomic_t num_waiters; 1379 atomic_t boosts; 1380 1381 /* manual wa residency calculations */ 1382 struct intel_rps_ei ei; 1383 }; 1384 1385 struct intel_rc6 { 1386 bool enabled; 1387 }; 1388 1389 struct intel_llc_pstate { 1390 bool enabled; 1391 }; 1392 1393 struct intel_gen6_power_mgmt { 1394 struct intel_rps rps; 1395 struct intel_rc6 rc6; 1396 struct intel_llc_pstate llc_pstate; 1397 }; 1398 1399 /* defined intel_pm.c */ 1400 extern spinlock_t mchdev_lock; 1401 1402 struct intel_ilk_power_mgmt { 1403 u8 cur_delay; 1404 u8 min_delay; 1405 u8 max_delay; 1406 u8 fmax; 1407 u8 fstart; 1408 1409 u64 last_count1; 1410 unsigned long last_time1; 1411 unsigned long chipset_power; 1412 u64 last_count2; 1413 u64 last_time2; 1414 unsigned long gfx_power; 1415 u8 corr; 1416 1417 int c_m; 1418 int r_t; 1419 }; 1420 1421 struct drm_i915_private; 1422 struct i915_power_well; 1423 1424 struct i915_power_well_ops { 1425 /* 1426 * Synchronize the well's hw state to match the current sw state, for 1427 * example enable/disable it based on the current refcount. Called 1428 * during driver init and resume time, possibly after first calling 1429 * the enable/disable handlers. 1430 */ 1431 void (*sync_hw)(struct drm_i915_private *dev_priv, 1432 struct i915_power_well *power_well); 1433 /* 1434 * Enable the well and resources that depend on it (for example 1435 * interrupts located on the well). Called after the 0->1 refcount 1436 * transition. 1437 */ 1438 void (*enable)(struct drm_i915_private *dev_priv, 1439 struct i915_power_well *power_well); 1440 /* 1441 * Disable the well and resources that depend on it. Called after 1442 * the 1->0 refcount transition. 1443 */ 1444 void (*disable)(struct drm_i915_private *dev_priv, 1445 struct i915_power_well *power_well); 1446 /* Returns the hw enabled state. */ 1447 bool (*is_enabled)(struct drm_i915_private *dev_priv, 1448 struct i915_power_well *power_well); 1449 }; 1450 1451 /* Power well structure for haswell */ 1452 struct i915_power_well { 1453 const char *name; 1454 bool always_on; 1455 /* power well enable/disable usage count */ 1456 int count; 1457 /* cached hw enabled state */ 1458 bool hw_enabled; 1459 u64 domains; 1460 /* unique identifier for this power well */ 1461 enum i915_power_well_id id; 1462 /* 1463 * Arbitraty data associated with this power well. Platform and power 1464 * well specific. 1465 */ 1466 union { 1467 struct { 1468 enum dpio_phy phy; 1469 } bxt; 1470 struct { 1471 /* Mask of pipes whose IRQ logic is backed by the pw */ 1472 u8 irq_pipe_mask; 1473 /* The pw is backing the VGA functionality */ 1474 bool has_vga:1; 1475 bool has_fuses:1; 1476 } hsw; 1477 }; 1478 const struct i915_power_well_ops *ops; 1479 }; 1480 1481 struct i915_power_domains { 1482 /* 1483 * Power wells needed for initialization at driver init and suspend 1484 * time are on. They are kept on until after the first modeset. 1485 */ 1486 bool init_power_on; 1487 bool initializing; 1488 int power_well_count; 1489 1490 struct mutex lock; 1491 int domain_use_count[POWER_DOMAIN_NUM]; 1492 struct i915_power_well *power_wells; 1493 }; 1494 1495 #define MAX_L3_SLICES 2 1496 struct intel_l3_parity { 1497 u32 *remap_info[MAX_L3_SLICES]; 1498 struct work_struct error_work; 1499 int which_slice; 1500 }; 1501 1502 struct i915_gem_mm { 1503 /** Memory allocator for GTT stolen memory */ 1504 struct drm_mm stolen; 1505 /** Protects the usage of the GTT stolen memory allocator. This is 1506 * always the inner lock when overlapping with struct_mutex. */ 1507 struct mutex stolen_lock; 1508 1509 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */ 1510 spinlock_t obj_lock; 1511 1512 /** List of all objects in gtt_space. Used to restore gtt 1513 * mappings on resume */ 1514 struct list_head bound_list; 1515 /** 1516 * List of objects which are not bound to the GTT (thus 1517 * are idle and not used by the GPU). These objects may or may 1518 * not actually have any pages attached. 1519 */ 1520 struct list_head unbound_list; 1521 1522 /** List of all objects in gtt_space, currently mmaped by userspace. 1523 * All objects within this list must also be on bound_list. 1524 */ 1525 struct list_head userfault_list; 1526 1527 /** 1528 * List of objects which are pending destruction. 1529 */ 1530 struct llist_head free_list; 1531 struct work_struct free_work; 1532 spinlock_t free_lock; 1533 1534 /** 1535 * Small stash of WC pages 1536 */ 1537 struct pagevec wc_stash; 1538 1539 /** Usable portion of the GTT for GEM */ 1540 dma_addr_t stolen_base; /* limited to low memory (32-bit) */ 1541 1542 /** 1543 * tmpfs instance used for shmem backed objects 1544 */ 1545 struct vfsmount *gemfs; 1546 1547 /** PPGTT used for aliasing the PPGTT with the GTT */ 1548 struct i915_hw_ppgtt *aliasing_ppgtt; 1549 1550 struct notifier_block oom_notifier; 1551 struct notifier_block vmap_notifier; 1552 struct shrinker shrinker; 1553 1554 /** LRU list of objects with fence regs on them. */ 1555 struct list_head fence_list; 1556 1557 /** 1558 * Workqueue to fault in userptr pages, flushed by the execbuf 1559 * when required but otherwise left to userspace to try again 1560 * on EAGAIN. 1561 */ 1562 struct workqueue_struct *userptr_wq; 1563 1564 u64 unordered_timeline; 1565 1566 /* the indicator for dispatch video commands on two BSD rings */ 1567 atomic_t bsd_engine_dispatch_index; 1568 1569 /** Bit 6 swizzling required for X tiling */ 1570 uint32_t bit_6_swizzle_x; 1571 /** Bit 6 swizzling required for Y tiling */ 1572 uint32_t bit_6_swizzle_y; 1573 1574 /* accounting, useful for userland debugging */ 1575 spinlock_t object_stat_lock; 1576 u64 object_memory; 1577 u32 object_count; 1578 }; 1579 1580 struct drm_i915_error_state_buf { 1581 struct drm_i915_private *i915; 1582 unsigned bytes; 1583 unsigned size; 1584 int err; 1585 u8 *buf; 1586 loff_t start; 1587 loff_t pos; 1588 }; 1589 1590 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */ 1591 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */ 1592 1593 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */ 1594 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */ 1595 1596 struct i915_gpu_error { 1597 /* For hangcheck timer */ 1598 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */ 1599 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD) 1600 1601 struct delayed_work hangcheck_work; 1602 1603 /* For reset and error_state handling. */ 1604 spinlock_t lock; 1605 /* Protected by the above dev->gpu_error.lock. */ 1606 struct i915_gpu_state *first_error; 1607 1608 atomic_t pending_fb_pin; 1609 1610 unsigned long missed_irq_rings; 1611 1612 /** 1613 * State variable controlling the reset flow and count 1614 * 1615 * This is a counter which gets incremented when reset is triggered, 1616 * 1617 * Before the reset commences, the I915_RESET_BACKOFF bit is set 1618 * meaning that any waiters holding onto the struct_mutex should 1619 * relinquish the lock immediately in order for the reset to start. 1620 * 1621 * If reset is not completed succesfully, the I915_WEDGE bit is 1622 * set meaning that hardware is terminally sour and there is no 1623 * recovery. All waiters on the reset_queue will be woken when 1624 * that happens. 1625 * 1626 * This counter is used by the wait_seqno code to notice that reset 1627 * event happened and it needs to restart the entire ioctl (since most 1628 * likely the seqno it waited for won't ever signal anytime soon). 1629 * 1630 * This is important for lock-free wait paths, where no contended lock 1631 * naturally enforces the correct ordering between the bail-out of the 1632 * waiter and the gpu reset work code. 1633 */ 1634 unsigned long reset_count; 1635 1636 /** 1637 * flags: Control various stages of the GPU reset 1638 * 1639 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any 1640 * other users acquiring the struct_mutex. To do this we set the 1641 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset 1642 * and then check for that bit before acquiring the struct_mutex (in 1643 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a 1644 * secondary role in preventing two concurrent global reset attempts. 1645 * 1646 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the 1647 * struct_mutex. We try to acquire the struct_mutex in the reset worker, 1648 * but it may be held by some long running waiter (that we cannot 1649 * interrupt without causing trouble). Once we are ready to do the GPU 1650 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If 1651 * they already hold the struct_mutex and want to participate they can 1652 * inspect the bit and do the reset directly, otherwise the worker 1653 * waits for the struct_mutex. 1654 * 1655 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to 1656 * acquire the struct_mutex to reset an engine, we need an explicit 1657 * flag to prevent two concurrent reset attempts in the same engine. 1658 * As the number of engines continues to grow, allocate the flags from 1659 * the most significant bits. 1660 * 1661 * #I915_WEDGED - If reset fails and we can no longer use the GPU, 1662 * we set the #I915_WEDGED bit. Prior to command submission, e.g. 1663 * i915_gem_request_alloc(), this bit is checked and the sequence 1664 * aborted (with -EIO reported to userspace) if set. 1665 */ 1666 unsigned long flags; 1667 #define I915_RESET_BACKOFF 0 1668 #define I915_RESET_HANDOFF 1 1669 #define I915_RESET_MODESET 2 1670 #define I915_WEDGED (BITS_PER_LONG - 1) 1671 #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES) 1672 1673 /** Number of times an engine has been reset */ 1674 u32 reset_engine_count[I915_NUM_ENGINES]; 1675 1676 /** 1677 * Waitqueue to signal when a hang is detected. Used to for waiters 1678 * to release the struct_mutex for the reset to procede. 1679 */ 1680 wait_queue_head_t wait_queue; 1681 1682 /** 1683 * Waitqueue to signal when the reset has completed. Used by clients 1684 * that wait for dev_priv->mm.wedged to settle. 1685 */ 1686 wait_queue_head_t reset_queue; 1687 1688 /* For missed irq/seqno simulation. */ 1689 unsigned long test_irq_rings; 1690 }; 1691 1692 enum modeset_restore { 1693 MODESET_ON_LID_OPEN, 1694 MODESET_DONE, 1695 MODESET_SUSPENDED, 1696 }; 1697 1698 #define DP_AUX_A 0x40 1699 #define DP_AUX_B 0x10 1700 #define DP_AUX_C 0x20 1701 #define DP_AUX_D 0x30 1702 1703 #define DDC_PIN_B 0x05 1704 #define DDC_PIN_C 0x04 1705 #define DDC_PIN_D 0x06 1706 1707 struct ddi_vbt_port_info { 1708 int max_tmds_clock; 1709 1710 /* 1711 * This is an index in the HDMI/DVI DDI buffer translation table. 1712 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 1713 * populate this field. 1714 */ 1715 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 1716 uint8_t hdmi_level_shift; 1717 1718 uint8_t supports_dvi:1; 1719 uint8_t supports_hdmi:1; 1720 uint8_t supports_dp:1; 1721 uint8_t supports_edp:1; 1722 1723 uint8_t alternate_aux_channel; 1724 uint8_t alternate_ddc_pin; 1725 1726 uint8_t dp_boost_level; 1727 uint8_t hdmi_boost_level; 1728 }; 1729 1730 enum psr_lines_to_wait { 1731 PSR_0_LINES_TO_WAIT = 0, 1732 PSR_1_LINE_TO_WAIT, 1733 PSR_4_LINES_TO_WAIT, 1734 PSR_8_LINES_TO_WAIT 1735 }; 1736 1737 struct intel_vbt_data { 1738 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 1739 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 1740 1741 /* Feature bits */ 1742 unsigned int int_tv_support:1; 1743 unsigned int lvds_dither:1; 1744 unsigned int lvds_vbt:1; 1745 unsigned int int_crt_support:1; 1746 unsigned int lvds_use_ssc:1; 1747 unsigned int display_clock_mode:1; 1748 unsigned int fdi_rx_polarity_inverted:1; 1749 unsigned int panel_type:4; 1750 int lvds_ssc_freq; 1751 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 1752 1753 enum drrs_support_type drrs_type; 1754 1755 struct { 1756 int rate; 1757 int lanes; 1758 int preemphasis; 1759 int vswing; 1760 bool low_vswing; 1761 bool initialized; 1762 bool support; 1763 int bpp; 1764 struct edp_power_seq pps; 1765 } edp; 1766 1767 struct { 1768 bool full_link; 1769 bool require_aux_wakeup; 1770 int idle_frames; 1771 enum psr_lines_to_wait lines_to_wait; 1772 int tp1_wakeup_time; 1773 int tp2_tp3_wakeup_time; 1774 } psr; 1775 1776 struct { 1777 u16 pwm_freq_hz; 1778 bool present; 1779 bool active_low_pwm; 1780 u8 min_brightness; /* min_brightness/255 of max */ 1781 u8 controller; /* brightness controller number */ 1782 enum intel_backlight_type type; 1783 } backlight; 1784 1785 /* MIPI DSI */ 1786 struct { 1787 u16 panel_id; 1788 struct mipi_config *config; 1789 struct mipi_pps_data *pps; 1790 u16 bl_ports; 1791 u16 cabc_ports; 1792 u8 seq_version; 1793 u32 size; 1794 u8 *data; 1795 const u8 *sequence[MIPI_SEQ_MAX]; 1796 } dsi; 1797 1798 int crt_ddc_pin; 1799 1800 int child_dev_num; 1801 struct child_device_config *child_dev; 1802 1803 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1804 struct sdvo_device_mapping sdvo_mappings[2]; 1805 }; 1806 1807 enum intel_ddb_partitioning { 1808 INTEL_DDB_PART_1_2, 1809 INTEL_DDB_PART_5_6, /* IVB+ */ 1810 }; 1811 1812 struct intel_wm_level { 1813 bool enable; 1814 uint32_t pri_val; 1815 uint32_t spr_val; 1816 uint32_t cur_val; 1817 uint32_t fbc_val; 1818 }; 1819 1820 struct ilk_wm_values { 1821 uint32_t wm_pipe[3]; 1822 uint32_t wm_lp[3]; 1823 uint32_t wm_lp_spr[3]; 1824 uint32_t wm_linetime[3]; 1825 bool enable_fbc_wm; 1826 enum intel_ddb_partitioning partitioning; 1827 }; 1828 1829 struct g4x_pipe_wm { 1830 uint16_t plane[I915_MAX_PLANES]; 1831 uint16_t fbc; 1832 }; 1833 1834 struct g4x_sr_wm { 1835 uint16_t plane; 1836 uint16_t cursor; 1837 uint16_t fbc; 1838 }; 1839 1840 struct vlv_wm_ddl_values { 1841 uint8_t plane[I915_MAX_PLANES]; 1842 }; 1843 1844 struct vlv_wm_values { 1845 struct g4x_pipe_wm pipe[3]; 1846 struct g4x_sr_wm sr; 1847 struct vlv_wm_ddl_values ddl[3]; 1848 uint8_t level; 1849 bool cxsr; 1850 }; 1851 1852 struct g4x_wm_values { 1853 struct g4x_pipe_wm pipe[2]; 1854 struct g4x_sr_wm sr; 1855 struct g4x_sr_wm hpll; 1856 bool cxsr; 1857 bool hpll_en; 1858 bool fbc_en; 1859 }; 1860 1861 struct skl_ddb_entry { 1862 uint16_t start, end; /* in number of blocks, 'end' is exclusive */ 1863 }; 1864 1865 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1866 { 1867 return entry->end - entry->start; 1868 } 1869 1870 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1871 const struct skl_ddb_entry *e2) 1872 { 1873 if (e1->start == e2->start && e1->end == e2->end) 1874 return true; 1875 1876 return false; 1877 } 1878 1879 struct skl_ddb_allocation { 1880 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */ 1881 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1882 }; 1883 1884 struct skl_wm_values { 1885 unsigned dirty_pipes; 1886 struct skl_ddb_allocation ddb; 1887 }; 1888 1889 struct skl_wm_level { 1890 bool plane_en; 1891 uint16_t plane_res_b; 1892 uint8_t plane_res_l; 1893 }; 1894 1895 /* Stores plane specific WM parameters */ 1896 struct skl_wm_params { 1897 bool x_tiled, y_tiled; 1898 bool rc_surface; 1899 uint32_t width; 1900 uint8_t cpp; 1901 uint32_t plane_pixel_rate; 1902 uint32_t y_min_scanlines; 1903 uint32_t plane_bytes_per_line; 1904 uint_fixed_16_16_t plane_blocks_per_line; 1905 uint_fixed_16_16_t y_tile_minimum; 1906 uint32_t linetime_us; 1907 }; 1908 1909 /* 1910 * This struct helps tracking the state needed for runtime PM, which puts the 1911 * device in PCI D3 state. Notice that when this happens, nothing on the 1912 * graphics device works, even register access, so we don't get interrupts nor 1913 * anything else. 1914 * 1915 * Every piece of our code that needs to actually touch the hardware needs to 1916 * either call intel_runtime_pm_get or call intel_display_power_get with the 1917 * appropriate power domain. 1918 * 1919 * Our driver uses the autosuspend delay feature, which means we'll only really 1920 * suspend if we stay with zero refcount for a certain amount of time. The 1921 * default value is currently very conservative (see intel_runtime_pm_enable), but 1922 * it can be changed with the standard runtime PM files from sysfs. 1923 * 1924 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1925 * goes back to false exactly before we reenable the IRQs. We use this variable 1926 * to check if someone is trying to enable/disable IRQs while they're supposed 1927 * to be disabled. This shouldn't happen and we'll print some error messages in 1928 * case it happens. 1929 * 1930 * For more, read the Documentation/power/runtime_pm.txt. 1931 */ 1932 struct i915_runtime_pm { 1933 atomic_t wakeref_count; 1934 bool suspended; 1935 bool irqs_enabled; 1936 }; 1937 1938 enum intel_pipe_crc_source { 1939 INTEL_PIPE_CRC_SOURCE_NONE, 1940 INTEL_PIPE_CRC_SOURCE_PLANE1, 1941 INTEL_PIPE_CRC_SOURCE_PLANE2, 1942 INTEL_PIPE_CRC_SOURCE_PF, 1943 INTEL_PIPE_CRC_SOURCE_PIPE, 1944 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1945 INTEL_PIPE_CRC_SOURCE_TV, 1946 INTEL_PIPE_CRC_SOURCE_DP_B, 1947 INTEL_PIPE_CRC_SOURCE_DP_C, 1948 INTEL_PIPE_CRC_SOURCE_DP_D, 1949 INTEL_PIPE_CRC_SOURCE_AUTO, 1950 INTEL_PIPE_CRC_SOURCE_MAX, 1951 }; 1952 1953 struct intel_pipe_crc_entry { 1954 uint32_t frame; 1955 uint32_t crc[5]; 1956 }; 1957 1958 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1959 struct intel_pipe_crc { 1960 spinlock_t lock; 1961 bool opened; /* exclusive access to the result file */ 1962 struct intel_pipe_crc_entry *entries; 1963 enum intel_pipe_crc_source source; 1964 int head, tail; 1965 wait_queue_head_t wq; 1966 int skipped; 1967 }; 1968 1969 struct i915_frontbuffer_tracking { 1970 spinlock_t lock; 1971 1972 /* 1973 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1974 * scheduled flips. 1975 */ 1976 unsigned busy_bits; 1977 unsigned flip_bits; 1978 }; 1979 1980 struct i915_wa_reg { 1981 i915_reg_t addr; 1982 u32 value; 1983 /* bitmask representing WA bits */ 1984 u32 mask; 1985 }; 1986 1987 #define I915_MAX_WA_REGS 16 1988 1989 struct i915_workarounds { 1990 struct i915_wa_reg reg[I915_MAX_WA_REGS]; 1991 u32 count; 1992 u32 hw_whitelist_count[I915_NUM_ENGINES]; 1993 }; 1994 1995 struct i915_virtual_gpu { 1996 bool active; 1997 u32 caps; 1998 }; 1999 2000 /* used in computing the new watermarks state */ 2001 struct intel_wm_config { 2002 unsigned int num_pipes_active; 2003 bool sprites_enabled; 2004 bool sprites_scaled; 2005 }; 2006 2007 struct i915_oa_format { 2008 u32 format; 2009 int size; 2010 }; 2011 2012 struct i915_oa_reg { 2013 i915_reg_t addr; 2014 u32 value; 2015 }; 2016 2017 struct i915_oa_config { 2018 char uuid[UUID_STRING_LEN + 1]; 2019 int id; 2020 2021 const struct i915_oa_reg *mux_regs; 2022 u32 mux_regs_len; 2023 const struct i915_oa_reg *b_counter_regs; 2024 u32 b_counter_regs_len; 2025 const struct i915_oa_reg *flex_regs; 2026 u32 flex_regs_len; 2027 2028 struct attribute_group sysfs_metric; 2029 struct attribute *attrs[2]; 2030 struct device_attribute sysfs_metric_id; 2031 2032 atomic_t ref_count; 2033 }; 2034 2035 struct i915_perf_stream; 2036 2037 /** 2038 * struct i915_perf_stream_ops - the OPs to support a specific stream type 2039 */ 2040 struct i915_perf_stream_ops { 2041 /** 2042 * @enable: Enables the collection of HW samples, either in response to 2043 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened 2044 * without `I915_PERF_FLAG_DISABLED`. 2045 */ 2046 void (*enable)(struct i915_perf_stream *stream); 2047 2048 /** 2049 * @disable: Disables the collection of HW samples, either in response 2050 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying 2051 * the stream. 2052 */ 2053 void (*disable)(struct i915_perf_stream *stream); 2054 2055 /** 2056 * @poll_wait: Call poll_wait, passing a wait queue that will be woken 2057 * once there is something ready to read() for the stream 2058 */ 2059 void (*poll_wait)(struct i915_perf_stream *stream, 2060 struct file *file, 2061 poll_table *wait); 2062 2063 /** 2064 * @wait_unlocked: For handling a blocking read, wait until there is 2065 * something to ready to read() for the stream. E.g. wait on the same 2066 * wait queue that would be passed to poll_wait(). 2067 */ 2068 int (*wait_unlocked)(struct i915_perf_stream *stream); 2069 2070 /** 2071 * @read: Copy buffered metrics as records to userspace 2072 * **buf**: the userspace, destination buffer 2073 * **count**: the number of bytes to copy, requested by userspace 2074 * **offset**: zero at the start of the read, updated as the read 2075 * proceeds, it represents how many bytes have been copied so far and 2076 * the buffer offset for copying the next record. 2077 * 2078 * Copy as many buffered i915 perf samples and records for this stream 2079 * to userspace as will fit in the given buffer. 2080 * 2081 * Only write complete records; returning -%ENOSPC if there isn't room 2082 * for a complete record. 2083 * 2084 * Return any error condition that results in a short read such as 2085 * -%ENOSPC or -%EFAULT, even though these may be squashed before 2086 * returning to userspace. 2087 */ 2088 int (*read)(struct i915_perf_stream *stream, 2089 char __user *buf, 2090 size_t count, 2091 size_t *offset); 2092 2093 /** 2094 * @destroy: Cleanup any stream specific resources. 2095 * 2096 * The stream will always be disabled before this is called. 2097 */ 2098 void (*destroy)(struct i915_perf_stream *stream); 2099 }; 2100 2101 /** 2102 * struct i915_perf_stream - state for a single open stream FD 2103 */ 2104 struct i915_perf_stream { 2105 /** 2106 * @dev_priv: i915 drm device 2107 */ 2108 struct drm_i915_private *dev_priv; 2109 2110 /** 2111 * @link: Links the stream into ``&drm_i915_private->streams`` 2112 */ 2113 struct list_head link; 2114 2115 /** 2116 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*` 2117 * properties given when opening a stream, representing the contents 2118 * of a single sample as read() by userspace. 2119 */ 2120 u32 sample_flags; 2121 2122 /** 2123 * @sample_size: Considering the configured contents of a sample 2124 * combined with the required header size, this is the total size 2125 * of a single sample record. 2126 */ 2127 int sample_size; 2128 2129 /** 2130 * @ctx: %NULL if measuring system-wide across all contexts or a 2131 * specific context that is being monitored. 2132 */ 2133 struct i915_gem_context *ctx; 2134 2135 /** 2136 * @enabled: Whether the stream is currently enabled, considering 2137 * whether the stream was opened in a disabled state and based 2138 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls. 2139 */ 2140 bool enabled; 2141 2142 /** 2143 * @ops: The callbacks providing the implementation of this specific 2144 * type of configured stream. 2145 */ 2146 const struct i915_perf_stream_ops *ops; 2147 2148 /** 2149 * @oa_config: The OA configuration used by the stream. 2150 */ 2151 struct i915_oa_config *oa_config; 2152 }; 2153 2154 /** 2155 * struct i915_oa_ops - Gen specific implementation of an OA unit stream 2156 */ 2157 struct i915_oa_ops { 2158 /** 2159 * @is_valid_b_counter_reg: Validates register's address for 2160 * programming boolean counters for a particular platform. 2161 */ 2162 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv, 2163 u32 addr); 2164 2165 /** 2166 * @is_valid_mux_reg: Validates register's address for programming mux 2167 * for a particular platform. 2168 */ 2169 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr); 2170 2171 /** 2172 * @is_valid_flex_reg: Validates register's address for programming 2173 * flex EU filtering for a particular platform. 2174 */ 2175 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr); 2176 2177 /** 2178 * @init_oa_buffer: Resets the head and tail pointers of the 2179 * circular buffer for periodic OA reports. 2180 * 2181 * Called when first opening a stream for OA metrics, but also may be 2182 * called in response to an OA buffer overflow or other error 2183 * condition. 2184 * 2185 * Note it may be necessary to clear the full OA buffer here as part of 2186 * maintaining the invariable that new reports must be written to 2187 * zeroed memory for us to be able to reliable detect if an expected 2188 * report has not yet landed in memory. (At least on Haswell the OA 2189 * buffer tail pointer is not synchronized with reports being visible 2190 * to the CPU) 2191 */ 2192 void (*init_oa_buffer)(struct drm_i915_private *dev_priv); 2193 2194 /** 2195 * @enable_metric_set: Selects and applies any MUX configuration to set 2196 * up the Boolean and Custom (B/C) counters that are part of the 2197 * counter reports being sampled. May apply system constraints such as 2198 * disabling EU clock gating as required. 2199 */ 2200 int (*enable_metric_set)(struct drm_i915_private *dev_priv, 2201 const struct i915_oa_config *oa_config); 2202 2203 /** 2204 * @disable_metric_set: Remove system constraints associated with using 2205 * the OA unit. 2206 */ 2207 void (*disable_metric_set)(struct drm_i915_private *dev_priv); 2208 2209 /** 2210 * @oa_enable: Enable periodic sampling 2211 */ 2212 void (*oa_enable)(struct drm_i915_private *dev_priv); 2213 2214 /** 2215 * @oa_disable: Disable periodic sampling 2216 */ 2217 void (*oa_disable)(struct drm_i915_private *dev_priv); 2218 2219 /** 2220 * @read: Copy data from the circular OA buffer into a given userspace 2221 * buffer. 2222 */ 2223 int (*read)(struct i915_perf_stream *stream, 2224 char __user *buf, 2225 size_t count, 2226 size_t *offset); 2227 2228 /** 2229 * @oa_hw_tail_read: read the OA tail pointer register 2230 * 2231 * In particular this enables us to share all the fiddly code for 2232 * handling the OA unit tail pointer race that affects multiple 2233 * generations. 2234 */ 2235 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv); 2236 }; 2237 2238 struct intel_cdclk_state { 2239 unsigned int cdclk, vco, ref; 2240 u8 voltage_level; 2241 }; 2242 2243 struct drm_i915_private { 2244 struct drm_device drm; 2245 2246 struct kmem_cache *objects; 2247 struct kmem_cache *vmas; 2248 struct kmem_cache *luts; 2249 struct kmem_cache *requests; 2250 struct kmem_cache *dependencies; 2251 struct kmem_cache *priorities; 2252 2253 const struct intel_device_info info; 2254 2255 void __iomem *regs; 2256 2257 struct intel_uncore uncore; 2258 2259 struct i915_virtual_gpu vgpu; 2260 2261 struct intel_gvt *gvt; 2262 2263 struct intel_huc huc; 2264 struct intel_guc guc; 2265 2266 struct intel_csr csr; 2267 2268 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 2269 2270 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 2271 * controller on different i2c buses. */ 2272 struct mutex gmbus_mutex; 2273 2274 /** 2275 * Base address of the gmbus and gpio block. 2276 */ 2277 uint32_t gpio_mmio_base; 2278 2279 /* MMIO base address for MIPI regs */ 2280 uint32_t mipi_mmio_base; 2281 2282 uint32_t psr_mmio_base; 2283 2284 uint32_t pps_mmio_base; 2285 2286 wait_queue_head_t gmbus_wait_queue; 2287 2288 struct pci_dev *bridge_dev; 2289 struct intel_engine_cs *engine[I915_NUM_ENGINES]; 2290 /* Context used internally to idle the GPU and setup initial state */ 2291 struct i915_gem_context *kernel_context; 2292 /* Context only to be used for injecting preemption commands */ 2293 struct i915_gem_context *preempt_context; 2294 struct i915_vma *semaphore; 2295 2296 struct drm_dma_handle *status_page_dmah; 2297 struct resource mch_res; 2298 2299 /* protects the irq masks */ 2300 spinlock_t irq_lock; 2301 2302 bool display_irqs_enabled; 2303 2304 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 2305 struct pm_qos_request pm_qos; 2306 2307 /* Sideband mailbox protection */ 2308 struct mutex sb_lock; 2309 2310 /** Cached value of IMR to avoid reads in updating the bitfield */ 2311 union { 2312 u32 irq_mask; 2313 u32 de_irq_mask[I915_MAX_PIPES]; 2314 }; 2315 u32 gt_irq_mask; 2316 u32 pm_imr; 2317 u32 pm_ier; 2318 u32 pm_rps_events; 2319 u32 pm_guc_events; 2320 u32 pipestat_irq_mask[I915_MAX_PIPES]; 2321 2322 struct i915_hotplug hotplug; 2323 struct intel_fbc fbc; 2324 struct i915_drrs drrs; 2325 struct intel_opregion opregion; 2326 struct intel_vbt_data vbt; 2327 2328 bool preserve_bios_swizzle; 2329 2330 /* overlay */ 2331 struct intel_overlay *overlay; 2332 2333 /* backlight registers and fields in struct intel_panel */ 2334 struct mutex backlight_lock; 2335 2336 /* LVDS info */ 2337 bool no_aux_handshake; 2338 2339 /* protects panel power sequencer state */ 2340 struct mutex pps_mutex; 2341 2342 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 2343 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 2344 2345 unsigned int fsb_freq, mem_freq, is_ddr3; 2346 unsigned int skl_preferred_vco_freq; 2347 unsigned int max_cdclk_freq; 2348 2349 unsigned int max_dotclk_freq; 2350 unsigned int rawclk_freq; 2351 unsigned int hpll_freq; 2352 unsigned int fdi_pll_freq; 2353 unsigned int czclk_freq; 2354 2355 struct { 2356 /* 2357 * The current logical cdclk state. 2358 * See intel_atomic_state.cdclk.logical 2359 * 2360 * For reading holding any crtc lock is sufficient, 2361 * for writing must hold all of them. 2362 */ 2363 struct intel_cdclk_state logical; 2364 /* 2365 * The current actual cdclk state. 2366 * See intel_atomic_state.cdclk.actual 2367 */ 2368 struct intel_cdclk_state actual; 2369 /* The current hardware cdclk state */ 2370 struct intel_cdclk_state hw; 2371 } cdclk; 2372 2373 /** 2374 * wq - Driver workqueue for GEM. 2375 * 2376 * NOTE: Work items scheduled here are not allowed to grab any modeset 2377 * locks, for otherwise the flushing done in the pageflip code will 2378 * result in deadlocks. 2379 */ 2380 struct workqueue_struct *wq; 2381 2382 /* Display functions */ 2383 struct drm_i915_display_funcs display; 2384 2385 /* PCH chipset type */ 2386 enum intel_pch pch_type; 2387 unsigned short pch_id; 2388 2389 unsigned long quirks; 2390 2391 enum modeset_restore modeset_restore; 2392 struct mutex modeset_restore_lock; 2393 struct drm_atomic_state *modeset_restore_state; 2394 struct drm_modeset_acquire_ctx reset_ctx; 2395 2396 struct list_head vm_list; /* Global list of all address spaces */ 2397 struct i915_ggtt ggtt; /* VM representing the global address space */ 2398 2399 struct i915_gem_mm mm; 2400 DECLARE_HASHTABLE(mm_structs, 7); 2401 struct mutex mm_lock; 2402 2403 struct intel_ppat ppat; 2404 2405 /* Kernel Modesetting */ 2406 2407 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 2408 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 2409 2410 #ifdef CONFIG_DEBUG_FS 2411 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 2412 #endif 2413 2414 /* dpll and cdclk state is protected by connection_mutex */ 2415 int num_shared_dpll; 2416 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 2417 const struct intel_dpll_mgr *dpll_mgr; 2418 2419 /* 2420 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 2421 * Must be global rather than per dpll, because on some platforms 2422 * plls share registers. 2423 */ 2424 struct mutex dpll_lock; 2425 2426 unsigned int active_crtcs; 2427 /* minimum acceptable cdclk for each pipe */ 2428 int min_cdclk[I915_MAX_PIPES]; 2429 /* minimum acceptable voltage level for each pipe */ 2430 u8 min_voltage_level[I915_MAX_PIPES]; 2431 2432 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 2433 2434 struct i915_workarounds workarounds; 2435 2436 struct i915_frontbuffer_tracking fb_tracking; 2437 2438 struct intel_atomic_helper { 2439 struct llist_head free_list; 2440 struct work_struct free_work; 2441 } atomic_helper; 2442 2443 u16 orig_clock; 2444 2445 bool mchbar_need_disable; 2446 2447 struct intel_l3_parity l3_parity; 2448 2449 /* Cannot be determined by PCIID. You must always read a register. */ 2450 u32 edram_cap; 2451 2452 /* 2453 * Protects RPS/RC6 register access and PCU communication. 2454 * Must be taken after struct_mutex if nested. Note that 2455 * this lock may be held for long periods of time when 2456 * talking to hw - so only take it when talking to hw! 2457 */ 2458 struct mutex pcu_lock; 2459 2460 /* gen6+ GT PM state */ 2461 struct intel_gen6_power_mgmt gt_pm; 2462 2463 /* ilk-only ips/rps state. Everything in here is protected by the global 2464 * mchdev_lock in intel_pm.c */ 2465 struct intel_ilk_power_mgmt ips; 2466 2467 struct i915_power_domains power_domains; 2468 2469 struct i915_psr psr; 2470 2471 struct i915_gpu_error gpu_error; 2472 2473 struct drm_i915_gem_object *vlv_pctx; 2474 2475 /* list of fbdev register on this device */ 2476 struct intel_fbdev *fbdev; 2477 struct work_struct fbdev_suspend_work; 2478 2479 struct drm_property *broadcast_rgb_property; 2480 struct drm_property *force_audio_property; 2481 2482 /* hda/i915 audio component */ 2483 struct i915_audio_component *audio_component; 2484 bool audio_component_registered; 2485 /** 2486 * av_mutex - mutex for audio/video sync 2487 * 2488 */ 2489 struct mutex av_mutex; 2490 2491 struct { 2492 struct list_head list; 2493 struct llist_head free_list; 2494 struct work_struct free_work; 2495 2496 /* The hw wants to have a stable context identifier for the 2497 * lifetime of the context (for OA, PASID, faults, etc). 2498 * This is limited in execlists to 21 bits. 2499 */ 2500 struct ida hw_ida; 2501 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 2502 } contexts; 2503 2504 u32 fdi_rx_config; 2505 2506 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 2507 u32 chv_phy_control; 2508 /* 2509 * Shadows for CHV DPLL_MD regs to keep the state 2510 * checker somewhat working in the presence hardware 2511 * crappiness (can't read out DPLL_MD for pipes B & C). 2512 */ 2513 u32 chv_dpll_md[I915_MAX_PIPES]; 2514 u32 bxt_phy_grc; 2515 2516 u32 suspend_count; 2517 bool suspended_to_idle; 2518 struct i915_suspend_saved_registers regfile; 2519 struct vlv_s0ix_state vlv_s0ix_state; 2520 2521 enum { 2522 I915_SAGV_UNKNOWN = 0, 2523 I915_SAGV_DISABLED, 2524 I915_SAGV_ENABLED, 2525 I915_SAGV_NOT_CONTROLLED 2526 } sagv_status; 2527 2528 struct { 2529 /* 2530 * Raw watermark latency values: 2531 * in 0.1us units for WM0, 2532 * in 0.5us units for WM1+. 2533 */ 2534 /* primary */ 2535 uint16_t pri_latency[5]; 2536 /* sprite */ 2537 uint16_t spr_latency[5]; 2538 /* cursor */ 2539 uint16_t cur_latency[5]; 2540 /* 2541 * Raw watermark memory latency values 2542 * for SKL for all 8 levels 2543 * in 1us units. 2544 */ 2545 uint16_t skl_latency[8]; 2546 2547 /* current hardware state */ 2548 union { 2549 struct ilk_wm_values hw; 2550 struct skl_wm_values skl_hw; 2551 struct vlv_wm_values vlv; 2552 struct g4x_wm_values g4x; 2553 }; 2554 2555 uint8_t max_level; 2556 2557 /* 2558 * Should be held around atomic WM register writing; also 2559 * protects * intel_crtc->wm.active and 2560 * cstate->wm.need_postvbl_update. 2561 */ 2562 struct mutex wm_mutex; 2563 2564 /* 2565 * Set during HW readout of watermarks/DDB. Some platforms 2566 * need to know when we're still using BIOS-provided values 2567 * (which we don't fully trust). 2568 */ 2569 bool distrust_bios_wm; 2570 } wm; 2571 2572 struct i915_runtime_pm runtime_pm; 2573 2574 struct { 2575 bool initialized; 2576 2577 struct kobject *metrics_kobj; 2578 struct ctl_table_header *sysctl_header; 2579 2580 /* 2581 * Lock associated with adding/modifying/removing OA configs 2582 * in dev_priv->perf.metrics_idr. 2583 */ 2584 struct mutex metrics_lock; 2585 2586 /* 2587 * List of dynamic configurations, you need to hold 2588 * dev_priv->perf.metrics_lock to access it. 2589 */ 2590 struct idr metrics_idr; 2591 2592 /* 2593 * Lock associated with anything below within this structure 2594 * except exclusive_stream. 2595 */ 2596 struct mutex lock; 2597 struct list_head streams; 2598 2599 struct { 2600 /* 2601 * The stream currently using the OA unit. If accessed 2602 * outside a syscall associated to its file 2603 * descriptor, you need to hold 2604 * dev_priv->drm.struct_mutex. 2605 */ 2606 struct i915_perf_stream *exclusive_stream; 2607 2608 u32 specific_ctx_id; 2609 2610 struct hrtimer poll_check_timer; 2611 wait_queue_head_t poll_wq; 2612 bool pollin; 2613 2614 /** 2615 * For rate limiting any notifications of spurious 2616 * invalid OA reports 2617 */ 2618 struct ratelimit_state spurious_report_rs; 2619 2620 bool periodic; 2621 int period_exponent; 2622 int timestamp_frequency; 2623 2624 struct i915_oa_config test_config; 2625 2626 struct { 2627 struct i915_vma *vma; 2628 u8 *vaddr; 2629 u32 last_ctx_id; 2630 int format; 2631 int format_size; 2632 2633 /** 2634 * Locks reads and writes to all head/tail state 2635 * 2636 * Consider: the head and tail pointer state 2637 * needs to be read consistently from a hrtimer 2638 * callback (atomic context) and read() fop 2639 * (user context) with tail pointer updates 2640 * happening in atomic context and head updates 2641 * in user context and the (unlikely) 2642 * possibility of read() errors needing to 2643 * reset all head/tail state. 2644 * 2645 * Note: Contention or performance aren't 2646 * currently a significant concern here 2647 * considering the relatively low frequency of 2648 * hrtimer callbacks (5ms period) and that 2649 * reads typically only happen in response to a 2650 * hrtimer event and likely complete before the 2651 * next callback. 2652 * 2653 * Note: This lock is not held *while* reading 2654 * and copying data to userspace so the value 2655 * of head observed in htrimer callbacks won't 2656 * represent any partial consumption of data. 2657 */ 2658 spinlock_t ptr_lock; 2659 2660 /** 2661 * One 'aging' tail pointer and one 'aged' 2662 * tail pointer ready to used for reading. 2663 * 2664 * Initial values of 0xffffffff are invalid 2665 * and imply that an update is required 2666 * (and should be ignored by an attempted 2667 * read) 2668 */ 2669 struct { 2670 u32 offset; 2671 } tails[2]; 2672 2673 /** 2674 * Index for the aged tail ready to read() 2675 * data up to. 2676 */ 2677 unsigned int aged_tail_idx; 2678 2679 /** 2680 * A monotonic timestamp for when the current 2681 * aging tail pointer was read; used to 2682 * determine when it is old enough to trust. 2683 */ 2684 u64 aging_timestamp; 2685 2686 /** 2687 * Although we can always read back the head 2688 * pointer register, we prefer to avoid 2689 * trusting the HW state, just to avoid any 2690 * risk that some hardware condition could 2691 * somehow bump the head pointer unpredictably 2692 * and cause us to forward the wrong OA buffer 2693 * data to userspace. 2694 */ 2695 u32 head; 2696 } oa_buffer; 2697 2698 u32 gen7_latched_oastatus1; 2699 u32 ctx_oactxctrl_offset; 2700 u32 ctx_flexeu0_offset; 2701 2702 /** 2703 * The RPT_ID/reason field for Gen8+ includes a bit 2704 * to determine if the CTX ID in the report is valid 2705 * but the specific bit differs between Gen 8 and 9 2706 */ 2707 u32 gen8_valid_ctx_bit; 2708 2709 struct i915_oa_ops ops; 2710 const struct i915_oa_format *oa_formats; 2711 } oa; 2712 } perf; 2713 2714 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 2715 struct { 2716 void (*resume)(struct drm_i915_private *); 2717 void (*cleanup_engine)(struct intel_engine_cs *engine); 2718 2719 struct list_head timelines; 2720 struct i915_gem_timeline global_timeline; 2721 u32 active_requests; 2722 2723 /** 2724 * Is the GPU currently considered idle, or busy executing 2725 * userspace requests? Whilst idle, we allow runtime power 2726 * management to power down the hardware and display clocks. 2727 * In order to reduce the effect on performance, there 2728 * is a slight delay before we do so. 2729 */ 2730 bool awake; 2731 2732 /** 2733 * We leave the user IRQ off as much as possible, 2734 * but this means that requests will finish and never 2735 * be retired once the system goes idle. Set a timer to 2736 * fire periodically while the ring is running. When it 2737 * fires, go retire requests. 2738 */ 2739 struct delayed_work retire_work; 2740 2741 /** 2742 * When we detect an idle GPU, we want to turn on 2743 * powersaving features. So once we see that there 2744 * are no more requests outstanding and no more 2745 * arrive within a small period of time, we fire 2746 * off the idle_work. 2747 */ 2748 struct delayed_work idle_work; 2749 2750 ktime_t last_init_time; 2751 } gt; 2752 2753 /* perform PHY state sanity checks? */ 2754 bool chv_phy_assert[2]; 2755 2756 bool ipc_enabled; 2757 2758 /* Used to save the pipe-to-encoder mapping for audio */ 2759 struct intel_encoder *av_enc_map[I915_MAX_PIPES]; 2760 2761 /* necessary resource sharing with HDMI LPE audio driver. */ 2762 struct { 2763 struct platform_device *platdev; 2764 int irq; 2765 } lpe_audio; 2766 2767 /* 2768 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2769 * will be rejected. Instead look for a better place. 2770 */ 2771 }; 2772 2773 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2774 { 2775 return container_of(dev, struct drm_i915_private, drm); 2776 } 2777 2778 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) 2779 { 2780 return to_i915(dev_get_drvdata(kdev)); 2781 } 2782 2783 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2784 { 2785 return container_of(guc, struct drm_i915_private, guc); 2786 } 2787 2788 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc) 2789 { 2790 return container_of(huc, struct drm_i915_private, huc); 2791 } 2792 2793 /* Simple iterator over all initialised engines */ 2794 #define for_each_engine(engine__, dev_priv__, id__) \ 2795 for ((id__) = 0; \ 2796 (id__) < I915_NUM_ENGINES; \ 2797 (id__)++) \ 2798 for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) 2799 2800 /* Iterator over subset of engines selected by mask */ 2801 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \ 2802 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \ 2803 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; ) 2804 2805 enum hdmi_force_audio { 2806 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2807 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2808 HDMI_AUDIO_AUTO, /* trust EDID */ 2809 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2810 }; 2811 2812 #define I915_GTT_OFFSET_NONE ((u32)-1) 2813 2814 /* 2815 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2816 * considered to be the frontbuffer for the given plane interface-wise. This 2817 * doesn't mean that the hw necessarily already scans it out, but that any 2818 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2819 * 2820 * We have one bit per pipe and per scanout plane type. 2821 */ 2822 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5 2823 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2824 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \ 2825 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2826 #define INTEL_FRONTBUFFER_CURSOR(pipe) \ 2827 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2828 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \ 2829 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2830 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2831 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2832 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2833 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2834 2835 /* 2836 * Optimised SGL iterator for GEM objects 2837 */ 2838 static __always_inline struct sgt_iter { 2839 struct scatterlist *sgp; 2840 union { 2841 unsigned long pfn; 2842 dma_addr_t dma; 2843 }; 2844 unsigned int curr; 2845 unsigned int max; 2846 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2847 struct sgt_iter s = { .sgp = sgl }; 2848 2849 if (s.sgp) { 2850 s.max = s.curr = s.sgp->offset; 2851 s.max += s.sgp->length; 2852 if (dma) 2853 s.dma = sg_dma_address(s.sgp); 2854 else 2855 s.pfn = page_to_pfn(sg_page(s.sgp)); 2856 } 2857 2858 return s; 2859 } 2860 2861 static inline struct scatterlist *____sg_next(struct scatterlist *sg) 2862 { 2863 ++sg; 2864 if (unlikely(sg_is_chain(sg))) 2865 sg = sg_chain_ptr(sg); 2866 return sg; 2867 } 2868 2869 /** 2870 * __sg_next - return the next scatterlist entry in a list 2871 * @sg: The current sg entry 2872 * 2873 * Description: 2874 * If the entry is the last, return NULL; otherwise, step to the next 2875 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2876 * otherwise just return the pointer to the current element. 2877 **/ 2878 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2879 { 2880 #ifdef CONFIG_DEBUG_SG 2881 BUG_ON(sg->sg_magic != SG_MAGIC); 2882 #endif 2883 return sg_is_last(sg) ? NULL : ____sg_next(sg); 2884 } 2885 2886 /** 2887 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2888 * @__dmap: DMA address (output) 2889 * @__iter: 'struct sgt_iter' (iterator state, internal) 2890 * @__sgt: sg_table to iterate over (input) 2891 */ 2892 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2893 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2894 ((__dmap) = (__iter).dma + (__iter).curr); \ 2895 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2896 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0) 2897 2898 /** 2899 * for_each_sgt_page - iterate over the pages of the given sg_table 2900 * @__pp: page pointer (output) 2901 * @__iter: 'struct sgt_iter' (iterator state, internal) 2902 * @__sgt: sg_table to iterate over (input) 2903 */ 2904 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2905 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2906 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2907 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2908 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2909 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0) 2910 2911 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg) 2912 { 2913 unsigned int page_sizes; 2914 2915 page_sizes = 0; 2916 while (sg) { 2917 GEM_BUG_ON(sg->offset); 2918 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE)); 2919 page_sizes |= sg->length; 2920 sg = __sg_next(sg); 2921 } 2922 2923 return page_sizes; 2924 } 2925 2926 static inline unsigned int i915_sg_segment_size(void) 2927 { 2928 unsigned int size = swiotlb_max_segment(); 2929 2930 if (size == 0) 2931 return SCATTERLIST_MAX_SEGMENT; 2932 2933 size = rounddown(size, PAGE_SIZE); 2934 /* swiotlb_max_segment_size can return 1 byte when it means one page. */ 2935 if (size < PAGE_SIZE) 2936 size = PAGE_SIZE; 2937 2938 return size; 2939 } 2940 2941 static inline const struct intel_device_info * 2942 intel_info(const struct drm_i915_private *dev_priv) 2943 { 2944 return &dev_priv->info; 2945 } 2946 2947 #define INTEL_INFO(dev_priv) intel_info((dev_priv)) 2948 2949 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen) 2950 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id) 2951 2952 #define REVID_FOREVER 0xff 2953 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision) 2954 2955 #define GEN_FOREVER (0) 2956 2957 #define INTEL_GEN_MASK(s, e) ( \ 2958 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \ 2959 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \ 2960 GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \ 2961 (s) != GEN_FOREVER ? (s) - 1 : 0) \ 2962 ) 2963 2964 /* 2965 * Returns true if Gen is in inclusive range [Start, End]. 2966 * 2967 * Use GEN_FOREVER for unbound start and or end. 2968 */ 2969 #define IS_GEN(dev_priv, s, e) \ 2970 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e)))) 2971 2972 /* 2973 * Return true if revision is in range [since,until] inclusive. 2974 * 2975 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2976 */ 2977 #define IS_REVID(p, since, until) \ 2978 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2979 2980 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p)) 2981 2982 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830) 2983 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G) 2984 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X) 2985 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G) 2986 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G) 2987 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM) 2988 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G) 2989 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM) 2990 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G) 2991 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM) 2992 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45) 2993 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45) 2994 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) 2995 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001) 2996 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011) 2997 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW) 2998 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33) 2999 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046) 3000 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE) 3001 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \ 3002 (dev_priv)->info.gt == 1) 3003 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW) 3004 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW) 3005 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL) 3006 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL) 3007 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE) 3008 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON) 3009 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE) 3010 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE) 3011 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE) 3012 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE) 3013 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile) 3014 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ 3015 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) 3016 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \ 3017 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \ 3018 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \ 3019 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)) 3020 /* ULX machines are also considered ULT. */ 3021 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \ 3022 (INTEL_DEVID(dev_priv) & 0xf) == 0xe) 3023 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ 3024 (dev_priv)->info.gt == 3) 3025 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \ 3026 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00) 3027 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ 3028 (dev_priv)->info.gt == 3) 3029 /* ULX machines are also considered ULT. */ 3030 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \ 3031 INTEL_DEVID(dev_priv) == 0x0A1E) 3032 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \ 3033 INTEL_DEVID(dev_priv) == 0x1913 || \ 3034 INTEL_DEVID(dev_priv) == 0x1916 || \ 3035 INTEL_DEVID(dev_priv) == 0x1921 || \ 3036 INTEL_DEVID(dev_priv) == 0x1926) 3037 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \ 3038 INTEL_DEVID(dev_priv) == 0x1915 || \ 3039 INTEL_DEVID(dev_priv) == 0x191E) 3040 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \ 3041 INTEL_DEVID(dev_priv) == 0x5913 || \ 3042 INTEL_DEVID(dev_priv) == 0x5916 || \ 3043 INTEL_DEVID(dev_priv) == 0x5921 || \ 3044 INTEL_DEVID(dev_priv) == 0x5926) 3045 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \ 3046 INTEL_DEVID(dev_priv) == 0x5915 || \ 3047 INTEL_DEVID(dev_priv) == 0x591E) 3048 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \ 3049 (dev_priv)->info.gt == 2) 3050 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ 3051 (dev_priv)->info.gt == 3) 3052 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ 3053 (dev_priv)->info.gt == 4) 3054 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \ 3055 (dev_priv)->info.gt == 2) 3056 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \ 3057 (dev_priv)->info.gt == 3) 3058 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 3059 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0) 3060 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 3061 (dev_priv)->info.gt == 2) 3062 #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 3063 (dev_priv)->info.gt == 3) 3064 3065 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support) 3066 3067 #define SKL_REVID_A0 0x0 3068 #define SKL_REVID_B0 0x1 3069 #define SKL_REVID_C0 0x2 3070 #define SKL_REVID_D0 0x3 3071 #define SKL_REVID_E0 0x4 3072 #define SKL_REVID_F0 0x5 3073 #define SKL_REVID_G0 0x6 3074 #define SKL_REVID_H0 0x7 3075 3076 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 3077 3078 #define BXT_REVID_A0 0x0 3079 #define BXT_REVID_A1 0x1 3080 #define BXT_REVID_B0 0x3 3081 #define BXT_REVID_B_LAST 0x8 3082 #define BXT_REVID_C0 0x9 3083 3084 #define IS_BXT_REVID(dev_priv, since, until) \ 3085 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until)) 3086 3087 #define KBL_REVID_A0 0x0 3088 #define KBL_REVID_B0 0x1 3089 #define KBL_REVID_C0 0x2 3090 #define KBL_REVID_D0 0x3 3091 #define KBL_REVID_E0 0x4 3092 3093 #define IS_KBL_REVID(dev_priv, since, until) \ 3094 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 3095 3096 #define GLK_REVID_A0 0x0 3097 #define GLK_REVID_A1 0x1 3098 3099 #define IS_GLK_REVID(dev_priv, since, until) \ 3100 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 3101 3102 #define CNL_REVID_A0 0x0 3103 #define CNL_REVID_B0 0x1 3104 #define CNL_REVID_C0 0x2 3105 3106 #define IS_CNL_REVID(p, since, until) \ 3107 (IS_CANNONLAKE(p) && IS_REVID(p, since, until)) 3108 3109 /* 3110 * The genX designation typically refers to the render engine, so render 3111 * capability related checks should use IS_GEN, while display and other checks 3112 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular 3113 * chips, etc.). 3114 */ 3115 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1))) 3116 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2))) 3117 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3))) 3118 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4))) 3119 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5))) 3120 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6))) 3121 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7))) 3122 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8))) 3123 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9))) 3124 3125 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) 3126 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv)) 3127 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv)) 3128 3129 #define ENGINE_MASK(id) BIT(id) 3130 #define RENDER_RING ENGINE_MASK(RCS) 3131 #define BSD_RING ENGINE_MASK(VCS) 3132 #define BLT_RING ENGINE_MASK(BCS) 3133 #define VEBOX_RING ENGINE_MASK(VECS) 3134 #define BSD2_RING ENGINE_MASK(VCS2) 3135 #define ALL_ENGINES (~0) 3136 3137 #define HAS_ENGINE(dev_priv, id) \ 3138 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id))) 3139 3140 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) 3141 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) 3142 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) 3143 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) 3144 3145 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc) 3146 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop) 3147 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED)) 3148 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \ 3149 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv)) 3150 3151 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical) 3152 3153 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ 3154 ((dev_priv)->info.has_logical_ring_contexts) 3155 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \ 3156 ((dev_priv)->info.has_logical_ring_preemption) 3157 #define USES_PPGTT(dev_priv) (i915_modparams.enable_ppgtt) 3158 #define USES_FULL_PPGTT(dev_priv) (i915_modparams.enable_ppgtt >= 2) 3159 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915_modparams.enable_ppgtt == 3) 3160 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \ 3161 GEM_BUG_ON((sizes) == 0); \ 3162 ((sizes) & ~(dev_priv)->info.page_sizes) == 0; \ 3163 }) 3164 3165 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay) 3166 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ 3167 ((dev_priv)->info.overlay_needs_physical) 3168 3169 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 3170 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) 3171 3172 /* WaRsDisableCoarsePowerGating:skl,bxt */ 3173 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 3174 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv)) 3175 3176 /* 3177 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts 3178 * even when in MSI mode. This results in spurious interrupt warnings if the 3179 * legacy irq no. is shared with another device. The kernel then disables that 3180 * interrupt source and so prevents the other device from working properly. 3181 * 3182 * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX 3183 * interrupts. 3184 */ 3185 #define HAS_AUX_IRQ(dev_priv) true 3186 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4) 3187 3188 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 3189 * rows, which changed the alignment requirements and fence programming. 3190 */ 3191 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \ 3192 !(IS_I915G(dev_priv) || \ 3193 IS_I915GM(dev_priv))) 3194 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv) 3195 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug) 3196 3197 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2) 3198 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc) 3199 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7) 3200 3201 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) 3202 3203 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst) 3204 3205 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi) 3206 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg) 3207 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr) 3208 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6) 3209 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p) 3210 3211 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr) 3212 3213 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm) 3214 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc) 3215 3216 #define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc) 3217 3218 /* 3219 * For now, anything with a GuC requires uCode loading, and then supports 3220 * command submission once loaded. But these are logically independent 3221 * properties, so we have separate macros to test them. 3222 */ 3223 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc) 3224 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct) 3225 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 3226 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv)) 3227 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 3228 3229 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer) 3230 3231 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu) 3232 3233 #define INTEL_PCH_DEVICE_ID_MASK 0xff80 3234 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 3235 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 3236 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 3237 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 3238 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 3239 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80 3240 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80 3241 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 3242 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 3243 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280 3244 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300 3245 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80 3246 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 3247 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 3248 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 3249 3250 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type) 3251 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP) 3252 #define HAS_PCH_CNP_LP(dev_priv) \ 3253 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) 3254 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP) 3255 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT) 3256 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT) 3257 #define HAS_PCH_LPT_LP(dev_priv) \ 3258 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \ 3259 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) 3260 #define HAS_PCH_LPT_H(dev_priv) \ 3261 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \ 3262 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE) 3263 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT) 3264 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX) 3265 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP) 3266 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE) 3267 3268 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display) 3269 3270 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9) 3271 3272 /* DPF == dynamic parity feature */ 3273 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf) 3274 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 3275 2 : HAS_L3_DPF(dev_priv)) 3276 3277 #define GT_FREQUENCY_MULTIPLIER 50 3278 #define GEN9_FREQ_SCALER 3 3279 3280 #include "i915_trace.h" 3281 3282 static inline bool intel_vtd_active(void) 3283 { 3284 #ifdef CONFIG_INTEL_IOMMU 3285 if (intel_iommu_gfx_mapped) 3286 return true; 3287 #endif 3288 return false; 3289 } 3290 3291 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 3292 { 3293 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active(); 3294 } 3295 3296 static inline bool 3297 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv) 3298 { 3299 return IS_BROXTON(dev_priv) && intel_vtd_active(); 3300 } 3301 3302 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, 3303 int enable_ppgtt); 3304 3305 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value); 3306 3307 /* i915_drv.c */ 3308 void __printf(3, 4) 3309 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 3310 const char *fmt, ...); 3311 3312 #define i915_report_error(dev_priv, fmt, ...) \ 3313 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 3314 3315 #ifdef CONFIG_COMPAT 3316 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 3317 unsigned long arg); 3318 #else 3319 #define i915_compat_ioctl NULL 3320 #endif 3321 extern const struct dev_pm_ops i915_pm_ops; 3322 3323 extern int i915_driver_load(struct pci_dev *pdev, 3324 const struct pci_device_id *ent); 3325 extern void i915_driver_unload(struct drm_device *dev); 3326 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask); 3327 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv); 3328 3329 #define I915_RESET_QUIET BIT(0) 3330 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags); 3331 extern int i915_reset_engine(struct intel_engine_cs *engine, 3332 unsigned int flags); 3333 3334 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv); 3335 extern int intel_reset_guc(struct drm_i915_private *dev_priv); 3336 extern int intel_guc_reset_engine(struct intel_guc *guc, 3337 struct intel_engine_cs *engine); 3338 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 3339 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv); 3340 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 3341 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 3342 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 3343 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 3344 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 3345 3346 int intel_engines_init_mmio(struct drm_i915_private *dev_priv); 3347 int intel_engines_init(struct drm_i915_private *dev_priv); 3348 3349 /* intel_hotplug.c */ 3350 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, 3351 u32 pin_mask, u32 long_mask); 3352 void intel_hpd_init(struct drm_i915_private *dev_priv); 3353 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 3354 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 3355 enum port intel_hpd_pin_to_port(enum hpd_pin pin); 3356 enum hpd_pin intel_hpd_pin(enum port port); 3357 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 3358 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 3359 3360 /* i915_irq.c */ 3361 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 3362 { 3363 unsigned long delay; 3364 3365 if (unlikely(!i915_modparams.enable_hangcheck)) 3366 return; 3367 3368 /* Don't continually defer the hangcheck so that it is always run at 3369 * least once after work has been scheduled on any ring. Otherwise, 3370 * we will ignore a hung ring if a second ring is kept busy. 3371 */ 3372 3373 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 3374 queue_delayed_work(system_long_wq, 3375 &dev_priv->gpu_error.hangcheck_work, delay); 3376 } 3377 3378 __printf(3, 4) 3379 void i915_handle_error(struct drm_i915_private *dev_priv, 3380 u32 engine_mask, 3381 const char *fmt, ...); 3382 3383 extern void intel_irq_init(struct drm_i915_private *dev_priv); 3384 extern void intel_irq_fini(struct drm_i915_private *dev_priv); 3385 int intel_irq_install(struct drm_i915_private *dev_priv); 3386 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 3387 3388 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 3389 { 3390 return dev_priv->gvt; 3391 } 3392 3393 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 3394 { 3395 return dev_priv->vgpu.active; 3396 } 3397 3398 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 3399 enum pipe pipe); 3400 void 3401 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 3402 u32 status_mask); 3403 3404 void 3405 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 3406 u32 status_mask); 3407 3408 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 3409 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 3410 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 3411 uint32_t mask, 3412 uint32_t bits); 3413 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 3414 uint32_t interrupt_mask, 3415 uint32_t enabled_irq_mask); 3416 static inline void 3417 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 3418 { 3419 ilk_update_display_irq(dev_priv, bits, bits); 3420 } 3421 static inline void 3422 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 3423 { 3424 ilk_update_display_irq(dev_priv, bits, 0); 3425 } 3426 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 3427 enum pipe pipe, 3428 uint32_t interrupt_mask, 3429 uint32_t enabled_irq_mask); 3430 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 3431 enum pipe pipe, uint32_t bits) 3432 { 3433 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 3434 } 3435 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 3436 enum pipe pipe, uint32_t bits) 3437 { 3438 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 3439 } 3440 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 3441 uint32_t interrupt_mask, 3442 uint32_t enabled_irq_mask); 3443 static inline void 3444 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 3445 { 3446 ibx_display_interrupt_update(dev_priv, bits, bits); 3447 } 3448 static inline void 3449 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 3450 { 3451 ibx_display_interrupt_update(dev_priv, bits, 0); 3452 } 3453 3454 /* i915_gem.c */ 3455 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 3456 struct drm_file *file_priv); 3457 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 3458 struct drm_file *file_priv); 3459 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 3460 struct drm_file *file_priv); 3461 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 3462 struct drm_file *file_priv); 3463 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 3464 struct drm_file *file_priv); 3465 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 3466 struct drm_file *file_priv); 3467 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 3468 struct drm_file *file_priv); 3469 int i915_gem_execbuffer(struct drm_device *dev, void *data, 3470 struct drm_file *file_priv); 3471 int i915_gem_execbuffer2(struct drm_device *dev, void *data, 3472 struct drm_file *file_priv); 3473 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3474 struct drm_file *file_priv); 3475 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3476 struct drm_file *file); 3477 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3478 struct drm_file *file); 3479 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3480 struct drm_file *file_priv); 3481 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3482 struct drm_file *file_priv); 3483 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, 3484 struct drm_file *file_priv); 3485 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, 3486 struct drm_file *file_priv); 3487 int i915_gem_init_userptr(struct drm_i915_private *dev_priv); 3488 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv); 3489 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 3490 struct drm_file *file); 3491 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 3492 struct drm_file *file_priv); 3493 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 3494 struct drm_file *file_priv); 3495 void i915_gem_sanitize(struct drm_i915_private *i915); 3496 int i915_gem_load_init(struct drm_i915_private *dev_priv); 3497 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv); 3498 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 3499 int i915_gem_freeze(struct drm_i915_private *dev_priv); 3500 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 3501 3502 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv); 3503 void i915_gem_object_free(struct drm_i915_gem_object *obj); 3504 void i915_gem_object_init(struct drm_i915_gem_object *obj, 3505 const struct drm_i915_gem_object_ops *ops); 3506 struct drm_i915_gem_object * 3507 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size); 3508 struct drm_i915_gem_object * 3509 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 3510 const void *data, size_t size); 3511 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); 3512 void i915_gem_free_object(struct drm_gem_object *obj); 3513 3514 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 3515 { 3516 /* A single pass should suffice to release all the freed objects (along 3517 * most call paths) , but be a little more paranoid in that freeing 3518 * the objects does take a little amount of time, during which the rcu 3519 * callbacks could have added new objects into the freed list, and 3520 * armed the work again. 3521 */ 3522 do { 3523 rcu_barrier(); 3524 } while (flush_work(&i915->mm.free_work)); 3525 } 3526 3527 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915) 3528 { 3529 /* 3530 * Similar to objects above (see i915_gem_drain_freed-objects), in 3531 * general we have workers that are armed by RCU and then rearm 3532 * themselves in their callbacks. To be paranoid, we need to 3533 * drain the workqueue a second time after waiting for the RCU 3534 * grace period so that we catch work queued via RCU from the first 3535 * pass. As neither drain_workqueue() nor flush_workqueue() report 3536 * a result, we make an assumption that we only don't require more 3537 * than 2 passes to catch all recursive RCU delayed work. 3538 * 3539 */ 3540 int pass = 2; 3541 do { 3542 rcu_barrier(); 3543 drain_workqueue(i915->wq); 3544 } while (--pass); 3545 } 3546 3547 struct i915_vma * __must_check 3548 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 3549 const struct i915_ggtt_view *view, 3550 u64 size, 3551 u64 alignment, 3552 u64 flags); 3553 3554 int i915_gem_object_unbind(struct drm_i915_gem_object *obj); 3555 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 3556 3557 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); 3558 3559 static inline int __sg_page_count(const struct scatterlist *sg) 3560 { 3561 return sg->length >> PAGE_SHIFT; 3562 } 3563 3564 struct scatterlist * 3565 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 3566 unsigned int n, unsigned int *offset); 3567 3568 struct page * 3569 i915_gem_object_get_page(struct drm_i915_gem_object *obj, 3570 unsigned int n); 3571 3572 struct page * 3573 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 3574 unsigned int n); 3575 3576 dma_addr_t 3577 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 3578 unsigned long n); 3579 3580 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 3581 struct sg_table *pages, 3582 unsigned int sg_page_sizes); 3583 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 3584 3585 static inline int __must_check 3586 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3587 { 3588 might_lock(&obj->mm.lock); 3589 3590 if (atomic_inc_not_zero(&obj->mm.pages_pin_count)) 3591 return 0; 3592 3593 return __i915_gem_object_get_pages(obj); 3594 } 3595 3596 static inline bool 3597 i915_gem_object_has_pages(struct drm_i915_gem_object *obj) 3598 { 3599 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages)); 3600 } 3601 3602 static inline void 3603 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3604 { 3605 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 3606 3607 atomic_inc(&obj->mm.pages_pin_count); 3608 } 3609 3610 static inline bool 3611 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj) 3612 { 3613 return atomic_read(&obj->mm.pages_pin_count); 3614 } 3615 3616 static inline void 3617 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3618 { 3619 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 3620 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 3621 3622 atomic_dec(&obj->mm.pages_pin_count); 3623 } 3624 3625 static inline void 3626 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3627 { 3628 __i915_gem_object_unpin_pages(obj); 3629 } 3630 3631 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */ 3632 I915_MM_NORMAL = 0, 3633 I915_MM_SHRINKER 3634 }; 3635 3636 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 3637 enum i915_mm_subclass subclass); 3638 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj); 3639 3640 enum i915_map_type { 3641 I915_MAP_WB = 0, 3642 I915_MAP_WC, 3643 #define I915_MAP_OVERRIDE BIT(31) 3644 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE, 3645 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE, 3646 }; 3647 3648 /** 3649 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 3650 * @obj: the object to map into kernel address space 3651 * @type: the type of mapping, used to select pgprot_t 3652 * 3653 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 3654 * pages and then returns a contiguous mapping of the backing storage into 3655 * the kernel address space. Based on the @type of mapping, the PTE will be 3656 * set to either WriteBack or WriteCombine (via pgprot_t). 3657 * 3658 * The caller is responsible for calling i915_gem_object_unpin_map() when the 3659 * mapping is no longer required. 3660 * 3661 * Returns the pointer through which to access the mapped object, or an 3662 * ERR_PTR() on error. 3663 */ 3664 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 3665 enum i915_map_type type); 3666 3667 /** 3668 * i915_gem_object_unpin_map - releases an earlier mapping 3669 * @obj: the object to unmap 3670 * 3671 * After pinning the object and mapping its pages, once you are finished 3672 * with your access, call i915_gem_object_unpin_map() to release the pin 3673 * upon the mapping. Once the pin count reaches zero, that mapping may be 3674 * removed. 3675 */ 3676 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 3677 { 3678 i915_gem_object_unpin_pages(obj); 3679 } 3680 3681 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 3682 unsigned int *needs_clflush); 3683 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 3684 unsigned int *needs_clflush); 3685 #define CLFLUSH_BEFORE BIT(0) 3686 #define CLFLUSH_AFTER BIT(1) 3687 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER) 3688 3689 static inline void 3690 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj) 3691 { 3692 i915_gem_object_unpin_pages(obj); 3693 } 3694 3695 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 3696 void i915_vma_move_to_active(struct i915_vma *vma, 3697 struct drm_i915_gem_request *req, 3698 unsigned int flags); 3699 int i915_gem_dumb_create(struct drm_file *file_priv, 3700 struct drm_device *dev, 3701 struct drm_mode_create_dumb *args); 3702 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3703 uint32_t handle, uint64_t *offset); 3704 int i915_gem_mmap_gtt_version(void); 3705 3706 void i915_gem_track_fb(struct drm_i915_gem_object *old, 3707 struct drm_i915_gem_object *new, 3708 unsigned frontbuffer_bits); 3709 3710 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); 3711 3712 struct drm_i915_gem_request * 3713 i915_gem_find_active_request(struct intel_engine_cs *engine); 3714 3715 void i915_gem_retire_requests(struct drm_i915_private *dev_priv); 3716 3717 static inline bool i915_reset_backoff(struct i915_gpu_error *error) 3718 { 3719 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags)); 3720 } 3721 3722 static inline bool i915_reset_handoff(struct i915_gpu_error *error) 3723 { 3724 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags)); 3725 } 3726 3727 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3728 { 3729 return unlikely(test_bit(I915_WEDGED, &error->flags)); 3730 } 3731 3732 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error) 3733 { 3734 return i915_reset_backoff(error) | i915_terminally_wedged(error); 3735 } 3736 3737 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3738 { 3739 return READ_ONCE(error->reset_count); 3740 } 3741 3742 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error, 3743 struct intel_engine_cs *engine) 3744 { 3745 return READ_ONCE(error->reset_engine_count[engine->id]); 3746 } 3747 3748 struct drm_i915_gem_request * 3749 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine); 3750 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv); 3751 void i915_gem_reset(struct drm_i915_private *dev_priv); 3752 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine); 3753 void i915_gem_reset_finish(struct drm_i915_private *dev_priv); 3754 void i915_gem_set_wedged(struct drm_i915_private *dev_priv); 3755 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv); 3756 void i915_gem_reset_engine(struct intel_engine_cs *engine, 3757 struct drm_i915_gem_request *request); 3758 3759 void i915_gem_init_mmio(struct drm_i915_private *i915); 3760 int __must_check i915_gem_init(struct drm_i915_private *dev_priv); 3761 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv); 3762 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv); 3763 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv); 3764 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, 3765 unsigned int flags); 3766 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv); 3767 void i915_gem_resume(struct drm_i915_private *dev_priv); 3768 int i915_gem_fault(struct vm_fault *vmf); 3769 int i915_gem_object_wait(struct drm_i915_gem_object *obj, 3770 unsigned int flags, 3771 long timeout, 3772 struct intel_rps_client *rps); 3773 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 3774 unsigned int flags, 3775 int priority); 3776 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX 3777 3778 int __must_check 3779 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write); 3780 int __must_check 3781 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write); 3782 int __must_check 3783 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3784 struct i915_vma * __must_check 3785 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3786 u32 alignment, 3787 const struct i915_ggtt_view *view); 3788 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma); 3789 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3790 int align); 3791 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file); 3792 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3793 3794 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3795 enum i915_cache_level cache_level); 3796 3797 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3798 struct dma_buf *dma_buf); 3799 3800 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3801 struct drm_gem_object *gem_obj, int flags); 3802 3803 static inline struct i915_hw_ppgtt * 3804 i915_vm_to_ppgtt(struct i915_address_space *vm) 3805 { 3806 return container_of(vm, struct i915_hw_ppgtt, base); 3807 } 3808 3809 /* i915_gem_fence_reg.c */ 3810 struct drm_i915_fence_reg * 3811 i915_reserve_fence(struct drm_i915_private *dev_priv); 3812 void i915_unreserve_fence(struct drm_i915_fence_reg *fence); 3813 3814 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv); 3815 void i915_gem_restore_fences(struct drm_i915_private *dev_priv); 3816 3817 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv); 3818 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 3819 struct sg_table *pages); 3820 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 3821 struct sg_table *pages); 3822 3823 static inline struct i915_gem_context * 3824 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id) 3825 { 3826 return idr_find(&file_priv->context_idr, id); 3827 } 3828 3829 static inline struct i915_gem_context * 3830 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3831 { 3832 struct i915_gem_context *ctx; 3833 3834 rcu_read_lock(); 3835 ctx = __i915_gem_context_lookup_rcu(file_priv, id); 3836 if (ctx && !kref_get_unless_zero(&ctx->ref)) 3837 ctx = NULL; 3838 rcu_read_unlock(); 3839 3840 return ctx; 3841 } 3842 3843 static inline struct intel_timeline * 3844 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx, 3845 struct intel_engine_cs *engine) 3846 { 3847 struct i915_address_space *vm; 3848 3849 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base; 3850 return &vm->timeline.engine[engine->id]; 3851 } 3852 3853 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3854 struct drm_file *file); 3855 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3856 struct drm_file *file); 3857 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3858 struct drm_file *file); 3859 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 3860 struct i915_gem_context *ctx, 3861 uint32_t *reg_state); 3862 3863 /* i915_gem_evict.c */ 3864 int __must_check i915_gem_evict_something(struct i915_address_space *vm, 3865 u64 min_size, u64 alignment, 3866 unsigned cache_level, 3867 u64 start, u64 end, 3868 unsigned flags); 3869 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, 3870 struct drm_mm_node *node, 3871 unsigned int flags); 3872 int i915_gem_evict_vm(struct i915_address_space *vm); 3873 3874 /* belongs in i915_gem_gtt.h */ 3875 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3876 { 3877 wmb(); 3878 if (INTEL_GEN(dev_priv) < 6) 3879 intel_gtt_chipset_flush(); 3880 } 3881 3882 /* i915_gem_stolen.c */ 3883 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3884 struct drm_mm_node *node, u64 size, 3885 unsigned alignment); 3886 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3887 struct drm_mm_node *node, u64 size, 3888 unsigned alignment, u64 start, 3889 u64 end); 3890 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3891 struct drm_mm_node *node); 3892 int i915_gem_init_stolen(struct drm_i915_private *dev_priv); 3893 void i915_gem_cleanup_stolen(struct drm_device *dev); 3894 struct drm_i915_gem_object * 3895 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size); 3896 struct drm_i915_gem_object * 3897 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv, 3898 u32 stolen_offset, 3899 u32 gtt_offset, 3900 u32 size); 3901 3902 /* i915_gem_internal.c */ 3903 struct drm_i915_gem_object * 3904 i915_gem_object_create_internal(struct drm_i915_private *dev_priv, 3905 phys_addr_t size); 3906 3907 /* i915_gem_shrinker.c */ 3908 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv, 3909 unsigned long target, 3910 unsigned long *nr_scanned, 3911 unsigned flags); 3912 #define I915_SHRINK_PURGEABLE 0x1 3913 #define I915_SHRINK_UNBOUND 0x2 3914 #define I915_SHRINK_BOUND 0x4 3915 #define I915_SHRINK_ACTIVE 0x8 3916 #define I915_SHRINK_VMAPS 0x10 3917 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); 3918 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv); 3919 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv); 3920 3921 3922 /* i915_gem_tiling.c */ 3923 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3924 { 3925 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3926 3927 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3928 i915_gem_object_is_tiled(obj); 3929 } 3930 3931 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, 3932 unsigned int tiling, unsigned int stride); 3933 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, 3934 unsigned int tiling, unsigned int stride); 3935 3936 /* i915_debugfs.c */ 3937 #ifdef CONFIG_DEBUG_FS 3938 int i915_debugfs_register(struct drm_i915_private *dev_priv); 3939 int i915_debugfs_connector_add(struct drm_connector *connector); 3940 void intel_display_crc_init(struct drm_i915_private *dev_priv); 3941 #else 3942 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} 3943 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3944 { return 0; } 3945 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {} 3946 #endif 3947 3948 /* i915_gpu_error.c */ 3949 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 3950 3951 __printf(2, 3) 3952 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...); 3953 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr, 3954 const struct i915_gpu_state *gpu); 3955 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb, 3956 struct drm_i915_private *i915, 3957 size_t count, loff_t pos); 3958 static inline void i915_error_state_buf_release( 3959 struct drm_i915_error_state_buf *eb) 3960 { 3961 kfree(eb->buf); 3962 } 3963 3964 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915); 3965 void i915_capture_error_state(struct drm_i915_private *dev_priv, 3966 u32 engine_mask, 3967 const char *error_msg); 3968 3969 static inline struct i915_gpu_state * 3970 i915_gpu_state_get(struct i915_gpu_state *gpu) 3971 { 3972 kref_get(&gpu->ref); 3973 return gpu; 3974 } 3975 3976 void __i915_gpu_state_free(struct kref *kref); 3977 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu) 3978 { 3979 if (gpu) 3980 kref_put(&gpu->ref, __i915_gpu_state_free); 3981 } 3982 3983 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915); 3984 void i915_reset_error_state(struct drm_i915_private *i915); 3985 3986 #else 3987 3988 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv, 3989 u32 engine_mask, 3990 const char *error_msg) 3991 { 3992 } 3993 3994 static inline struct i915_gpu_state * 3995 i915_first_error_state(struct drm_i915_private *i915) 3996 { 3997 return NULL; 3998 } 3999 4000 static inline void i915_reset_error_state(struct drm_i915_private *i915) 4001 { 4002 } 4003 4004 #endif 4005 4006 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 4007 4008 /* i915_cmd_parser.c */ 4009 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 4010 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine); 4011 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); 4012 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 4013 struct drm_i915_gem_object *batch_obj, 4014 struct drm_i915_gem_object *shadow_batch_obj, 4015 u32 batch_start_offset, 4016 u32 batch_len, 4017 bool is_master); 4018 4019 /* i915_perf.c */ 4020 extern void i915_perf_init(struct drm_i915_private *dev_priv); 4021 extern void i915_perf_fini(struct drm_i915_private *dev_priv); 4022 extern void i915_perf_register(struct drm_i915_private *dev_priv); 4023 extern void i915_perf_unregister(struct drm_i915_private *dev_priv); 4024 4025 /* i915_suspend.c */ 4026 extern int i915_save_state(struct drm_i915_private *dev_priv); 4027 extern int i915_restore_state(struct drm_i915_private *dev_priv); 4028 4029 /* i915_sysfs.c */ 4030 void i915_setup_sysfs(struct drm_i915_private *dev_priv); 4031 void i915_teardown_sysfs(struct drm_i915_private *dev_priv); 4032 4033 /* intel_lpe_audio.c */ 4034 int intel_lpe_audio_init(struct drm_i915_private *dev_priv); 4035 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv); 4036 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv); 4037 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv, 4038 enum pipe pipe, enum port port, 4039 const void *eld, int ls_clock, bool dp_output); 4040 4041 /* intel_i2c.c */ 4042 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv); 4043 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv); 4044 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 4045 unsigned int pin); 4046 4047 extern struct i2c_adapter * 4048 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 4049 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 4050 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 4051 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 4052 { 4053 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 4054 } 4055 extern void intel_i2c_reset(struct drm_i915_private *dev_priv); 4056 4057 /* intel_bios.c */ 4058 void intel_bios_init(struct drm_i915_private *dev_priv); 4059 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 4060 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 4061 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 4062 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 4063 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 4064 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 4065 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 4066 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 4067 enum port port); 4068 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv, 4069 enum port port); 4070 4071 4072 /* intel_opregion.c */ 4073 #ifdef CONFIG_ACPI 4074 extern int intel_opregion_setup(struct drm_i915_private *dev_priv); 4075 extern void intel_opregion_register(struct drm_i915_private *dev_priv); 4076 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv); 4077 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv); 4078 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, 4079 bool enable); 4080 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv, 4081 pci_power_t state); 4082 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv); 4083 #else 4084 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; } 4085 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { } 4086 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { } 4087 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv) 4088 { 4089 } 4090 static inline int 4091 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable) 4092 { 4093 return 0; 4094 } 4095 static inline int 4096 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state) 4097 { 4098 return 0; 4099 } 4100 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev) 4101 { 4102 return -ENODEV; 4103 } 4104 #endif 4105 4106 /* intel_acpi.c */ 4107 #ifdef CONFIG_ACPI 4108 extern void intel_register_dsm_handler(void); 4109 extern void intel_unregister_dsm_handler(void); 4110 #else 4111 static inline void intel_register_dsm_handler(void) { return; } 4112 static inline void intel_unregister_dsm_handler(void) { return; } 4113 #endif /* CONFIG_ACPI */ 4114 4115 /* intel_device_info.c */ 4116 static inline struct intel_device_info * 4117 mkwrite_device_info(struct drm_i915_private *dev_priv) 4118 { 4119 return (struct intel_device_info *)&dev_priv->info; 4120 } 4121 4122 const char *intel_platform_name(enum intel_platform platform); 4123 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv); 4124 void intel_device_info_dump(struct drm_i915_private *dev_priv); 4125 4126 /* modesetting */ 4127 extern void intel_modeset_init_hw(struct drm_device *dev); 4128 extern int intel_modeset_init(struct drm_device *dev); 4129 extern void intel_modeset_cleanup(struct drm_device *dev); 4130 extern int intel_connector_register(struct drm_connector *); 4131 extern void intel_connector_unregister(struct drm_connector *); 4132 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, 4133 bool state); 4134 extern void intel_display_resume(struct drm_device *dev); 4135 extern void i915_redisable_vga(struct drm_i915_private *dev_priv); 4136 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv); 4137 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 4138 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv); 4139 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 4140 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 4141 bool enable); 4142 4143 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 4144 struct drm_file *file); 4145 4146 /* overlay */ 4147 extern struct intel_overlay_error_state * 4148 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); 4149 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 4150 struct intel_overlay_error_state *error); 4151 4152 extern struct intel_display_error_state * 4153 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 4154 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 4155 struct intel_display_error_state *error); 4156 4157 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 4158 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val); 4159 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, 4160 u32 reply_mask, u32 reply, int timeout_base_ms); 4161 4162 /* intel_sideband.c */ 4163 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 4164 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 4165 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 4166 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 4167 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 4168 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 4169 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 4170 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 4171 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 4172 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 4173 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 4174 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 4175 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 4176 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 4177 enum intel_sbi_destination destination); 4178 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 4179 enum intel_sbi_destination destination); 4180 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 4181 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 4182 4183 /* intel_dpio_phy.c */ 4184 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 4185 enum dpio_phy *phy, enum dpio_channel *ch); 4186 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv, 4187 enum port port, u32 margin, u32 scale, 4188 u32 enable, u32 deemphasis); 4189 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy); 4190 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy); 4191 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 4192 enum dpio_phy phy); 4193 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 4194 enum dpio_phy phy); 4195 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count); 4196 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 4197 uint8_t lane_lat_optim_mask); 4198 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder); 4199 4200 void chv_set_phy_signal_level(struct intel_encoder *encoder, 4201 u32 deemph_reg_value, u32 margin_reg_value, 4202 bool uniq_trans_scale); 4203 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 4204 const struct intel_crtc_state *crtc_state, 4205 bool reset); 4206 void chv_phy_pre_pll_enable(struct intel_encoder *encoder, 4207 const struct intel_crtc_state *crtc_state); 4208 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, 4209 const struct intel_crtc_state *crtc_state); 4210 void chv_phy_release_cl2_override(struct intel_encoder *encoder); 4211 void chv_phy_post_pll_disable(struct intel_encoder *encoder, 4212 const struct intel_crtc_state *old_crtc_state); 4213 4214 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 4215 u32 demph_reg_value, u32 preemph_reg_value, 4216 u32 uniqtranscale_reg_value, u32 tx3_demph); 4217 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, 4218 const struct intel_crtc_state *crtc_state); 4219 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, 4220 const struct intel_crtc_state *crtc_state); 4221 void vlv_phy_reset_lanes(struct intel_encoder *encoder, 4222 const struct intel_crtc_state *old_crtc_state); 4223 4224 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 4225 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 4226 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv, 4227 const i915_reg_t reg); 4228 4229 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 4230 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 4231 4232 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 4233 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 4234 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 4235 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 4236 4237 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 4238 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 4239 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 4240 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 4241 4242 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 4243 * will be implemented using 2 32-bit writes in an arbitrary order with 4244 * an arbitrary delay between them. This can cause the hardware to 4245 * act upon the intermediate value, possibly leading to corruption and 4246 * machine death. For this reason we do not support I915_WRITE64, or 4247 * dev_priv->uncore.funcs.mmio_writeq. 4248 * 4249 * When reading a 64-bit value as two 32-bit values, the delay may cause 4250 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that 4251 * occasionally a 64-bit register does not actualy support a full readq 4252 * and must be read using two 32-bit reads. 4253 * 4254 * You have been warned. 4255 */ 4256 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 4257 4258 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 4259 u32 upper, lower, old_upper, loop = 0; \ 4260 upper = I915_READ(upper_reg); \ 4261 do { \ 4262 old_upper = upper; \ 4263 lower = I915_READ(lower_reg); \ 4264 upper = I915_READ(upper_reg); \ 4265 } while (upper != old_upper && loop++ < 2); \ 4266 (u64)upper << 32 | lower; }) 4267 4268 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 4269 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 4270 4271 #define __raw_read(x, s) \ 4272 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \ 4273 i915_reg_t reg) \ 4274 { \ 4275 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 4276 } 4277 4278 #define __raw_write(x, s) \ 4279 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \ 4280 i915_reg_t reg, uint##x##_t val) \ 4281 { \ 4282 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 4283 } 4284 __raw_read(8, b) 4285 __raw_read(16, w) 4286 __raw_read(32, l) 4287 __raw_read(64, q) 4288 4289 __raw_write(8, b) 4290 __raw_write(16, w) 4291 __raw_write(32, l) 4292 __raw_write(64, q) 4293 4294 #undef __raw_read 4295 #undef __raw_write 4296 4297 /* These are untraced mmio-accessors that are only valid to be used inside 4298 * critical sections, such as inside IRQ handlers, where forcewake is explicitly 4299 * controlled. 4300 * 4301 * Think twice, and think again, before using these. 4302 * 4303 * As an example, these accessors can possibly be used between: 4304 * 4305 * spin_lock_irq(&dev_priv->uncore.lock); 4306 * intel_uncore_forcewake_get__locked(); 4307 * 4308 * and 4309 * 4310 * intel_uncore_forcewake_put__locked(); 4311 * spin_unlock_irq(&dev_priv->uncore.lock); 4312 * 4313 * 4314 * Note: some registers may not need forcewake held, so 4315 * intel_uncore_forcewake_{get,put} can be omitted, see 4316 * intel_uncore_forcewake_for_reg(). 4317 * 4318 * Certain architectures will die if the same cacheline is concurrently accessed 4319 * by different clients (e.g. on Ivybridge). Access to registers should 4320 * therefore generally be serialised, by either the dev_priv->uncore.lock or 4321 * a more localised lock guarding all access to that bank of registers. 4322 */ 4323 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 4324 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 4325 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) 4326 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 4327 4328 /* "Broadcast RGB" property */ 4329 #define INTEL_BROADCAST_RGB_AUTO 0 4330 #define INTEL_BROADCAST_RGB_FULL 1 4331 #define INTEL_BROADCAST_RGB_LIMITED 2 4332 4333 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) 4334 { 4335 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 4336 return VLV_VGACNTRL; 4337 else if (INTEL_GEN(dev_priv) >= 5) 4338 return CPU_VGACNTRL; 4339 else 4340 return VGACNTRL; 4341 } 4342 4343 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 4344 { 4345 unsigned long j = msecs_to_jiffies(m); 4346 4347 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 4348 } 4349 4350 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 4351 { 4352 /* nsecs_to_jiffies64() does not guard against overflow */ 4353 if (NSEC_PER_SEC % HZ && 4354 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ) 4355 return MAX_JIFFY_OFFSET; 4356 4357 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 4358 } 4359 4360 static inline unsigned long 4361 timespec_to_jiffies_timeout(const struct timespec *value) 4362 { 4363 unsigned long j = timespec_to_jiffies(value); 4364 4365 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 4366 } 4367 4368 /* 4369 * If you need to wait X milliseconds between events A and B, but event B 4370 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 4371 * when event A happened, then just before event B you call this function and 4372 * pass the timestamp as the first argument, and X as the second argument. 4373 */ 4374 static inline void 4375 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 4376 { 4377 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 4378 4379 /* 4380 * Don't re-read the value of "jiffies" every time since it may change 4381 * behind our back and break the math. 4382 */ 4383 tmp_jiffies = jiffies; 4384 target_jiffies = timestamp_jiffies + 4385 msecs_to_jiffies_timeout(to_wait_ms); 4386 4387 if (time_after(target_jiffies, tmp_jiffies)) { 4388 remaining_jiffies = target_jiffies - tmp_jiffies; 4389 while (remaining_jiffies) 4390 remaining_jiffies = 4391 schedule_timeout_uninterruptible(remaining_jiffies); 4392 } 4393 } 4394 4395 static inline bool 4396 __i915_request_irq_complete(const struct drm_i915_gem_request *req) 4397 { 4398 struct intel_engine_cs *engine = req->engine; 4399 u32 seqno; 4400 4401 /* Note that the engine may have wrapped around the seqno, and 4402 * so our request->global_seqno will be ahead of the hardware, 4403 * even though it completed the request before wrapping. We catch 4404 * this by kicking all the waiters before resetting the seqno 4405 * in hardware, and also signal the fence. 4406 */ 4407 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags)) 4408 return true; 4409 4410 /* The request was dequeued before we were awoken. We check after 4411 * inspecting the hw to confirm that this was the same request 4412 * that generated the HWS update. The memory barriers within 4413 * the request execution are sufficient to ensure that a check 4414 * after reading the value from hw matches this request. 4415 */ 4416 seqno = i915_gem_request_global_seqno(req); 4417 if (!seqno) 4418 return false; 4419 4420 /* Before we do the heavier coherent read of the seqno, 4421 * check the value (hopefully) in the CPU cacheline. 4422 */ 4423 if (__i915_gem_request_completed(req, seqno)) 4424 return true; 4425 4426 /* Ensure our read of the seqno is coherent so that we 4427 * do not "miss an interrupt" (i.e. if this is the last 4428 * request and the seqno write from the GPU is not visible 4429 * by the time the interrupt fires, we will see that the 4430 * request is incomplete and go back to sleep awaiting 4431 * another interrupt that will never come.) 4432 * 4433 * Strictly, we only need to do this once after an interrupt, 4434 * but it is easier and safer to do it every time the waiter 4435 * is woken. 4436 */ 4437 if (engine->irq_seqno_barrier && 4438 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) { 4439 struct intel_breadcrumbs *b = &engine->breadcrumbs; 4440 4441 /* The ordering of irq_posted versus applying the barrier 4442 * is crucial. The clearing of the current irq_posted must 4443 * be visible before we perform the barrier operation, 4444 * such that if a subsequent interrupt arrives, irq_posted 4445 * is reasserted and our task rewoken (which causes us to 4446 * do another __i915_request_irq_complete() immediately 4447 * and reapply the barrier). Conversely, if the clear 4448 * occurs after the barrier, then an interrupt that arrived 4449 * whilst we waited on the barrier would not trigger a 4450 * barrier on the next pass, and the read may not see the 4451 * seqno update. 4452 */ 4453 engine->irq_seqno_barrier(engine); 4454 4455 /* If we consume the irq, but we are no longer the bottom-half, 4456 * the real bottom-half may not have serialised their own 4457 * seqno check with the irq-barrier (i.e. may have inspected 4458 * the seqno before we believe it coherent since they see 4459 * irq_posted == false but we are still running). 4460 */ 4461 spin_lock_irq(&b->irq_lock); 4462 if (b->irq_wait && b->irq_wait->tsk != current) 4463 /* Note that if the bottom-half is changed as we 4464 * are sending the wake-up, the new bottom-half will 4465 * be woken by whomever made the change. We only have 4466 * to worry about when we steal the irq-posted for 4467 * ourself. 4468 */ 4469 wake_up_process(b->irq_wait->tsk); 4470 spin_unlock_irq(&b->irq_lock); 4471 4472 if (__i915_gem_request_completed(req, seqno)) 4473 return true; 4474 } 4475 4476 return false; 4477 } 4478 4479 void i915_memcpy_init_early(struct drm_i915_private *dev_priv); 4480 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len); 4481 4482 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment, 4483 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot 4484 * perform the operation. To check beforehand, pass in the parameters to 4485 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits, 4486 * you only need to pass in the minor offsets, page-aligned pointers are 4487 * always valid. 4488 * 4489 * For just checking for SSE4.1, in the foreknowledge that the future use 4490 * will be correctly aligned, just use i915_has_memcpy_from_wc(). 4491 */ 4492 #define i915_can_memcpy_from_wc(dst, src, len) \ 4493 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0) 4494 4495 #define i915_has_memcpy_from_wc() \ 4496 i915_memcpy_from_wc(NULL, NULL, 0) 4497 4498 /* i915_mm.c */ 4499 int remap_io_mapping(struct vm_area_struct *vma, 4500 unsigned long addr, unsigned long pfn, unsigned long size, 4501 struct io_mapping *iomap); 4502 4503 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915) 4504 { 4505 if (INTEL_GEN(i915) >= 10) 4506 return CNL_HWS_CSB_WRITE_INDEX; 4507 else 4508 return I915_HWS_CSB_WRITE_INDEX; 4509 } 4510 4511 #endif 4512