1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hash.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/perf_event.h> 44 #include <linux/pm_qos.h> 45 #include <linux/reservation.h> 46 #include <linux/shmem_fs.h> 47 48 #include <drm/drmP.h> 49 #include <drm/intel-gtt.h> 50 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 51 #include <drm/drm_gem.h> 52 #include <drm/drm_auth.h> 53 #include <drm/drm_cache.h> 54 55 #include "i915_params.h" 56 #include "i915_reg.h" 57 #include "i915_utils.h" 58 59 #include "intel_bios.h" 60 #include "intel_device_info.h" 61 #include "intel_display.h" 62 #include "intel_dpll_mgr.h" 63 #include "intel_lrc.h" 64 #include "intel_opregion.h" 65 #include "intel_ringbuffer.h" 66 #include "intel_uncore.h" 67 #include "intel_wopcm.h" 68 #include "intel_uc.h" 69 70 #include "i915_gem.h" 71 #include "i915_gem_context.h" 72 #include "i915_gem_fence_reg.h" 73 #include "i915_gem_object.h" 74 #include "i915_gem_gtt.h" 75 #include "i915_gpu_error.h" 76 #include "i915_request.h" 77 #include "i915_scheduler.h" 78 #include "i915_timeline.h" 79 #include "i915_vma.h" 80 81 #include "intel_gvt.h" 82 83 /* General customization: 84 */ 85 86 #define DRIVER_NAME "i915" 87 #define DRIVER_DESC "Intel Graphics" 88 #define DRIVER_DATE "20180514" 89 #define DRIVER_TIMESTAMP 1526300884 90 91 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 92 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 93 * which may not necessarily be a user visible problem. This will either 94 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 95 * enable distros and users to tailor their preferred amount of i915 abrt 96 * spam. 97 */ 98 #define I915_STATE_WARN(condition, format...) ({ \ 99 int __ret_warn_on = !!(condition); \ 100 if (unlikely(__ret_warn_on)) \ 101 if (!WARN(i915_modparams.verbose_state_checks, format)) \ 102 DRM_ERROR(format); \ 103 unlikely(__ret_warn_on); \ 104 }) 105 106 #define I915_STATE_WARN_ON(x) \ 107 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 108 109 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG) 110 bool __i915_inject_load_failure(const char *func, int line); 111 #define i915_inject_load_failure() \ 112 __i915_inject_load_failure(__func__, __LINE__) 113 #else 114 #define i915_inject_load_failure() false 115 #endif 116 117 typedef struct { 118 uint32_t val; 119 } uint_fixed_16_16_t; 120 121 #define FP_16_16_MAX ({ \ 122 uint_fixed_16_16_t fp; \ 123 fp.val = UINT_MAX; \ 124 fp; \ 125 }) 126 127 static inline bool is_fixed16_zero(uint_fixed_16_16_t val) 128 { 129 if (val.val == 0) 130 return true; 131 return false; 132 } 133 134 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val) 135 { 136 uint_fixed_16_16_t fp; 137 138 WARN_ON(val > U16_MAX); 139 140 fp.val = val << 16; 141 return fp; 142 } 143 144 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp) 145 { 146 return DIV_ROUND_UP(fp.val, 1 << 16); 147 } 148 149 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp) 150 { 151 return fp.val >> 16; 152 } 153 154 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1, 155 uint_fixed_16_16_t min2) 156 { 157 uint_fixed_16_16_t min; 158 159 min.val = min(min1.val, min2.val); 160 return min; 161 } 162 163 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1, 164 uint_fixed_16_16_t max2) 165 { 166 uint_fixed_16_16_t max; 167 168 max.val = max(max1.val, max2.val); 169 return max; 170 } 171 172 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val) 173 { 174 uint_fixed_16_16_t fp; 175 WARN_ON(val > U32_MAX); 176 fp.val = (uint32_t) val; 177 return fp; 178 } 179 180 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val, 181 uint_fixed_16_16_t d) 182 { 183 return DIV_ROUND_UP(val.val, d.val); 184 } 185 186 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val, 187 uint_fixed_16_16_t mul) 188 { 189 uint64_t intermediate_val; 190 191 intermediate_val = (uint64_t) val * mul.val; 192 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16); 193 WARN_ON(intermediate_val > U32_MAX); 194 return (uint32_t) intermediate_val; 195 } 196 197 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val, 198 uint_fixed_16_16_t mul) 199 { 200 uint64_t intermediate_val; 201 202 intermediate_val = (uint64_t) val.val * mul.val; 203 intermediate_val = intermediate_val >> 16; 204 return clamp_u64_to_fixed16(intermediate_val); 205 } 206 207 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d) 208 { 209 uint64_t interm_val; 210 211 interm_val = (uint64_t)val << 16; 212 interm_val = DIV_ROUND_UP_ULL(interm_val, d); 213 return clamp_u64_to_fixed16(interm_val); 214 } 215 216 static inline uint32_t div_round_up_u32_fixed16(uint32_t val, 217 uint_fixed_16_16_t d) 218 { 219 uint64_t interm_val; 220 221 interm_val = (uint64_t)val << 16; 222 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val); 223 WARN_ON(interm_val > U32_MAX); 224 return (uint32_t) interm_val; 225 } 226 227 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val, 228 uint_fixed_16_16_t mul) 229 { 230 uint64_t intermediate_val; 231 232 intermediate_val = (uint64_t) val * mul.val; 233 return clamp_u64_to_fixed16(intermediate_val); 234 } 235 236 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1, 237 uint_fixed_16_16_t add2) 238 { 239 uint64_t interm_sum; 240 241 interm_sum = (uint64_t) add1.val + add2.val; 242 return clamp_u64_to_fixed16(interm_sum); 243 } 244 245 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1, 246 uint32_t add2) 247 { 248 uint64_t interm_sum; 249 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2); 250 251 interm_sum = (uint64_t) add1.val + interm_add2.val; 252 return clamp_u64_to_fixed16(interm_sum); 253 } 254 255 enum hpd_pin { 256 HPD_NONE = 0, 257 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 258 HPD_CRT, 259 HPD_SDVO_B, 260 HPD_SDVO_C, 261 HPD_PORT_A, 262 HPD_PORT_B, 263 HPD_PORT_C, 264 HPD_PORT_D, 265 HPD_PORT_E, 266 HPD_PORT_F, 267 HPD_NUM_PINS 268 }; 269 270 #define for_each_hpd_pin(__pin) \ 271 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 272 273 #define HPD_STORM_DEFAULT_THRESHOLD 5 274 275 struct i915_hotplug { 276 struct work_struct hotplug_work; 277 278 struct { 279 unsigned long last_jiffies; 280 int count; 281 enum { 282 HPD_ENABLED = 0, 283 HPD_DISABLED = 1, 284 HPD_MARK_DISABLED = 2 285 } state; 286 } stats[HPD_NUM_PINS]; 287 u32 event_bits; 288 struct delayed_work reenable_work; 289 290 struct intel_digital_port *irq_port[I915_MAX_PORTS]; 291 u32 long_port_mask; 292 u32 short_port_mask; 293 struct work_struct dig_port_work; 294 295 struct work_struct poll_init_work; 296 bool poll_enabled; 297 298 unsigned int hpd_storm_threshold; 299 300 /* 301 * if we get a HPD irq from DP and a HPD irq from non-DP 302 * the non-DP HPD could block the workqueue on a mode config 303 * mutex getting, that userspace may have taken. However 304 * userspace is waiting on the DP workqueue to run which is 305 * blocked behind the non-DP one. 306 */ 307 struct workqueue_struct *dp_wq; 308 }; 309 310 #define I915_GEM_GPU_DOMAINS \ 311 (I915_GEM_DOMAIN_RENDER | \ 312 I915_GEM_DOMAIN_SAMPLER | \ 313 I915_GEM_DOMAIN_COMMAND | \ 314 I915_GEM_DOMAIN_INSTRUCTION | \ 315 I915_GEM_DOMAIN_VERTEX) 316 317 struct drm_i915_private; 318 struct i915_mm_struct; 319 struct i915_mmu_object; 320 321 struct drm_i915_file_private { 322 struct drm_i915_private *dev_priv; 323 struct drm_file *file; 324 325 struct { 326 spinlock_t lock; 327 struct list_head request_list; 328 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 329 * chosen to prevent the CPU getting more than a frame ahead of the GPU 330 * (when using lax throttling for the frontbuffer). We also use it to 331 * offer free GPU waitboosts for severely congested workloads. 332 */ 333 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 334 } mm; 335 struct idr context_idr; 336 337 struct intel_rps_client { 338 atomic_t boosts; 339 } rps_client; 340 341 unsigned int bsd_engine; 342 343 /* 344 * Every context ban increments per client ban score. Also 345 * hangs in short succession increments ban score. If ban threshold 346 * is reached, client is considered banned and submitting more work 347 * will fail. This is a stop gap measure to limit the badly behaving 348 * clients access to gpu. Note that unbannable contexts never increment 349 * the client ban score. 350 */ 351 #define I915_CLIENT_SCORE_HANG_FAST 1 352 #define I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ) 353 #define I915_CLIENT_SCORE_CONTEXT_BAN 3 354 #define I915_CLIENT_SCORE_BANNED 9 355 /** ban_score: Accumulated score of all ctx bans and fast hangs. */ 356 atomic_t ban_score; 357 unsigned long hang_timestamp; 358 }; 359 360 /* Interface history: 361 * 362 * 1.1: Original. 363 * 1.2: Add Power Management 364 * 1.3: Add vblank support 365 * 1.4: Fix cmdbuffer path, add heap destroy 366 * 1.5: Add vblank pipe configuration 367 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 368 * - Support vertical blank on secondary display pipe 369 */ 370 #define DRIVER_MAJOR 1 371 #define DRIVER_MINOR 6 372 #define DRIVER_PATCHLEVEL 0 373 374 struct intel_overlay; 375 struct intel_overlay_error_state; 376 377 struct sdvo_device_mapping { 378 u8 initialized; 379 u8 dvo_port; 380 u8 slave_addr; 381 u8 dvo_wiring; 382 u8 i2c_pin; 383 u8 ddc_pin; 384 }; 385 386 struct intel_connector; 387 struct intel_encoder; 388 struct intel_atomic_state; 389 struct intel_crtc_state; 390 struct intel_initial_plane_config; 391 struct intel_crtc; 392 struct intel_limit; 393 struct dpll; 394 struct intel_cdclk_state; 395 396 struct drm_i915_display_funcs { 397 void (*get_cdclk)(struct drm_i915_private *dev_priv, 398 struct intel_cdclk_state *cdclk_state); 399 void (*set_cdclk)(struct drm_i915_private *dev_priv, 400 const struct intel_cdclk_state *cdclk_state); 401 int (*get_fifo_size)(struct drm_i915_private *dev_priv, 402 enum i9xx_plane_id i9xx_plane); 403 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 404 int (*compute_intermediate_wm)(struct drm_device *dev, 405 struct intel_crtc *intel_crtc, 406 struct intel_crtc_state *newstate); 407 void (*initial_watermarks)(struct intel_atomic_state *state, 408 struct intel_crtc_state *cstate); 409 void (*atomic_update_watermarks)(struct intel_atomic_state *state, 410 struct intel_crtc_state *cstate); 411 void (*optimize_watermarks)(struct intel_atomic_state *state, 412 struct intel_crtc_state *cstate); 413 int (*compute_global_watermarks)(struct drm_atomic_state *state); 414 void (*update_wm)(struct intel_crtc *crtc); 415 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 416 /* Returns the active state of the crtc, and if the crtc is active, 417 * fills out the pipe-config with the hw state. */ 418 bool (*get_pipe_config)(struct intel_crtc *, 419 struct intel_crtc_state *); 420 void (*get_initial_plane_config)(struct intel_crtc *, 421 struct intel_initial_plane_config *); 422 int (*crtc_compute_clock)(struct intel_crtc *crtc, 423 struct intel_crtc_state *crtc_state); 424 void (*crtc_enable)(struct intel_crtc_state *pipe_config, 425 struct drm_atomic_state *old_state); 426 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state, 427 struct drm_atomic_state *old_state); 428 void (*update_crtcs)(struct drm_atomic_state *state); 429 void (*audio_codec_enable)(struct intel_encoder *encoder, 430 const struct intel_crtc_state *crtc_state, 431 const struct drm_connector_state *conn_state); 432 void (*audio_codec_disable)(struct intel_encoder *encoder, 433 const struct intel_crtc_state *old_crtc_state, 434 const struct drm_connector_state *old_conn_state); 435 void (*fdi_link_train)(struct intel_crtc *crtc, 436 const struct intel_crtc_state *crtc_state); 437 void (*init_clock_gating)(struct drm_i915_private *dev_priv); 438 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 439 /* clock updates for mode set */ 440 /* cursor updates */ 441 /* render clock increase/decrease */ 442 /* display clock increase/decrease */ 443 /* pll clock increase/decrease */ 444 445 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); 446 void (*load_luts)(struct drm_crtc_state *crtc_state); 447 }; 448 449 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 450 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 451 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 452 453 struct intel_csr { 454 struct work_struct work; 455 const char *fw_path; 456 uint32_t *dmc_payload; 457 uint32_t dmc_fw_size; 458 uint32_t version; 459 uint32_t mmio_count; 460 i915_reg_t mmioaddr[8]; 461 uint32_t mmiodata[8]; 462 uint32_t dc_state; 463 uint32_t allowed_dc_mask; 464 }; 465 466 enum i915_cache_level { 467 I915_CACHE_NONE = 0, 468 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 469 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 470 caches, eg sampler/render caches, and the 471 large Last-Level-Cache. LLC is coherent with 472 the CPU, but L3 is only visible to the GPU. */ 473 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 474 }; 475 476 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ 477 478 enum fb_op_origin { 479 ORIGIN_GTT, 480 ORIGIN_CPU, 481 ORIGIN_CS, 482 ORIGIN_FLIP, 483 ORIGIN_DIRTYFB, 484 }; 485 486 struct intel_fbc { 487 /* This is always the inner lock when overlapping with struct_mutex and 488 * it's the outer lock when overlapping with stolen_lock. */ 489 struct mutex lock; 490 unsigned threshold; 491 unsigned int possible_framebuffer_bits; 492 unsigned int busy_bits; 493 unsigned int visible_pipes_mask; 494 struct intel_crtc *crtc; 495 496 struct drm_mm_node compressed_fb; 497 struct drm_mm_node *compressed_llb; 498 499 bool false_color; 500 501 bool enabled; 502 bool active; 503 504 bool underrun_detected; 505 struct work_struct underrun_work; 506 507 /* 508 * Due to the atomic rules we can't access some structures without the 509 * appropriate locking, so we cache information here in order to avoid 510 * these problems. 511 */ 512 struct intel_fbc_state_cache { 513 struct i915_vma *vma; 514 unsigned long flags; 515 516 struct { 517 unsigned int mode_flags; 518 uint32_t hsw_bdw_pixel_rate; 519 } crtc; 520 521 struct { 522 unsigned int rotation; 523 int src_w; 524 int src_h; 525 bool visible; 526 /* 527 * Display surface base address adjustement for 528 * pageflips. Note that on gen4+ this only adjusts up 529 * to a tile, offsets within a tile are handled in 530 * the hw itself (with the TILEOFF register). 531 */ 532 int adjusted_x; 533 int adjusted_y; 534 535 int y; 536 } plane; 537 538 struct { 539 const struct drm_format_info *format; 540 unsigned int stride; 541 } fb; 542 } state_cache; 543 544 /* 545 * This structure contains everything that's relevant to program the 546 * hardware registers. When we want to figure out if we need to disable 547 * and re-enable FBC for a new configuration we just check if there's 548 * something different in the struct. The genx_fbc_activate functions 549 * are supposed to read from it in order to program the registers. 550 */ 551 struct intel_fbc_reg_params { 552 struct i915_vma *vma; 553 unsigned long flags; 554 555 struct { 556 enum pipe pipe; 557 enum i9xx_plane_id i9xx_plane; 558 unsigned int fence_y_offset; 559 } crtc; 560 561 struct { 562 const struct drm_format_info *format; 563 unsigned int stride; 564 } fb; 565 566 int cfb_size; 567 unsigned int gen9_wa_cfb_stride; 568 } params; 569 570 struct intel_fbc_work { 571 bool scheduled; 572 u64 scheduled_vblank; 573 struct work_struct work; 574 } work; 575 576 const char *no_fbc_reason; 577 }; 578 579 /* 580 * HIGH_RR is the highest eDP panel refresh rate read from EDID 581 * LOW_RR is the lowest eDP panel refresh rate found from EDID 582 * parsing for same resolution. 583 */ 584 enum drrs_refresh_rate_type { 585 DRRS_HIGH_RR, 586 DRRS_LOW_RR, 587 DRRS_MAX_RR, /* RR count */ 588 }; 589 590 enum drrs_support_type { 591 DRRS_NOT_SUPPORTED = 0, 592 STATIC_DRRS_SUPPORT = 1, 593 SEAMLESS_DRRS_SUPPORT = 2 594 }; 595 596 struct intel_dp; 597 struct i915_drrs { 598 struct mutex mutex; 599 struct delayed_work work; 600 struct intel_dp *dp; 601 unsigned busy_frontbuffer_bits; 602 enum drrs_refresh_rate_type refresh_rate_type; 603 enum drrs_support_type type; 604 }; 605 606 struct i915_psr { 607 struct mutex lock; 608 bool sink_support; 609 struct intel_dp *enabled; 610 bool active; 611 struct delayed_work work; 612 unsigned busy_frontbuffer_bits; 613 bool sink_psr2_support; 614 bool link_standby; 615 bool colorimetry_support; 616 bool alpm; 617 bool has_hw_tracking; 618 bool psr2_enabled; 619 u8 sink_sync_latency; 620 bool debug; 621 ktime_t last_entry_attempt; 622 ktime_t last_exit; 623 624 void (*enable_source)(struct intel_dp *, 625 const struct intel_crtc_state *); 626 void (*disable_source)(struct intel_dp *, 627 const struct intel_crtc_state *); 628 void (*enable_sink)(struct intel_dp *); 629 void (*activate)(struct intel_dp *); 630 void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *); 631 }; 632 633 enum intel_pch { 634 PCH_NONE = 0, /* No PCH present */ 635 PCH_IBX, /* Ibexpeak PCH */ 636 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */ 637 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */ 638 PCH_SPT, /* Sunrisepoint PCH */ 639 PCH_KBP, /* Kaby Lake PCH */ 640 PCH_CNP, /* Cannon Lake PCH */ 641 PCH_ICP, /* Ice Lake PCH */ 642 PCH_NOP, 643 }; 644 645 enum intel_sbi_destination { 646 SBI_ICLK, 647 SBI_MPHY, 648 }; 649 650 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 651 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 652 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 653 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 654 #define QUIRK_INCREASE_T12_DELAY (1<<6) 655 656 struct intel_fbdev; 657 struct intel_fbc_work; 658 659 struct intel_gmbus { 660 struct i2c_adapter adapter; 661 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 662 u32 force_bit; 663 u32 reg0; 664 i915_reg_t gpio_reg; 665 struct i2c_algo_bit_data bit_algo; 666 struct drm_i915_private *dev_priv; 667 }; 668 669 struct i915_suspend_saved_registers { 670 u32 saveDSPARB; 671 u32 saveFBC_CONTROL; 672 u32 saveCACHE_MODE_0; 673 u32 saveMI_ARB_STATE; 674 u32 saveSWF0[16]; 675 u32 saveSWF1[16]; 676 u32 saveSWF3[3]; 677 uint64_t saveFENCE[I915_MAX_NUM_FENCES]; 678 u32 savePCH_PORT_HOTPLUG; 679 u16 saveGCDGMBUS; 680 }; 681 682 struct vlv_s0ix_state { 683 /* GAM */ 684 u32 wr_watermark; 685 u32 gfx_prio_ctrl; 686 u32 arb_mode; 687 u32 gfx_pend_tlb0; 688 u32 gfx_pend_tlb1; 689 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 690 u32 media_max_req_count; 691 u32 gfx_max_req_count; 692 u32 render_hwsp; 693 u32 ecochk; 694 u32 bsd_hwsp; 695 u32 blt_hwsp; 696 u32 tlb_rd_addr; 697 698 /* MBC */ 699 u32 g3dctl; 700 u32 gsckgctl; 701 u32 mbctl; 702 703 /* GCP */ 704 u32 ucgctl1; 705 u32 ucgctl3; 706 u32 rcgctl1; 707 u32 rcgctl2; 708 u32 rstctl; 709 u32 misccpctl; 710 711 /* GPM */ 712 u32 gfxpause; 713 u32 rpdeuhwtc; 714 u32 rpdeuc; 715 u32 ecobus; 716 u32 pwrdwnupctl; 717 u32 rp_down_timeout; 718 u32 rp_deucsw; 719 u32 rcubmabdtmr; 720 u32 rcedata; 721 u32 spare2gh; 722 723 /* Display 1 CZ domain */ 724 u32 gt_imr; 725 u32 gt_ier; 726 u32 pm_imr; 727 u32 pm_ier; 728 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 729 730 /* GT SA CZ domain */ 731 u32 tilectl; 732 u32 gt_fifoctl; 733 u32 gtlc_wake_ctrl; 734 u32 gtlc_survive; 735 u32 pmwgicz; 736 737 /* Display 2 CZ domain */ 738 u32 gu_ctl0; 739 u32 gu_ctl1; 740 u32 pcbr; 741 u32 clock_gate_dis2; 742 }; 743 744 struct intel_rps_ei { 745 ktime_t ktime; 746 u32 render_c0; 747 u32 media_c0; 748 }; 749 750 struct intel_rps { 751 /* 752 * work, interrupts_enabled and pm_iir are protected by 753 * dev_priv->irq_lock 754 */ 755 struct work_struct work; 756 bool interrupts_enabled; 757 u32 pm_iir; 758 759 /* PM interrupt bits that should never be masked */ 760 u32 pm_intrmsk_mbz; 761 762 /* Frequencies are stored in potentially platform dependent multiples. 763 * In other words, *_freq needs to be multiplied by X to be interesting. 764 * Soft limits are those which are used for the dynamic reclocking done 765 * by the driver (raise frequencies under heavy loads, and lower for 766 * lighter loads). Hard limits are those imposed by the hardware. 767 * 768 * A distinction is made for overclocking, which is never enabled by 769 * default, and is considered to be above the hard limit if it's 770 * possible at all. 771 */ 772 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 773 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 774 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 775 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 776 u8 min_freq; /* AKA RPn. Minimum frequency */ 777 u8 boost_freq; /* Frequency to request when wait boosting */ 778 u8 idle_freq; /* Frequency to request when we are idle */ 779 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 780 u8 rp1_freq; /* "less than" RP0 power/freqency */ 781 u8 rp0_freq; /* Non-overclocked max frequency. */ 782 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 783 784 u8 up_threshold; /* Current %busy required to uplock */ 785 u8 down_threshold; /* Current %busy required to downclock */ 786 787 int last_adj; 788 enum { LOW_POWER, BETWEEN, HIGH_POWER } power; 789 790 bool enabled; 791 atomic_t num_waiters; 792 atomic_t boosts; 793 794 /* manual wa residency calculations */ 795 struct intel_rps_ei ei; 796 }; 797 798 struct intel_rc6 { 799 bool enabled; 800 u64 prev_hw_residency[4]; 801 u64 cur_residency[4]; 802 }; 803 804 struct intel_llc_pstate { 805 bool enabled; 806 }; 807 808 struct intel_gen6_power_mgmt { 809 struct intel_rps rps; 810 struct intel_rc6 rc6; 811 struct intel_llc_pstate llc_pstate; 812 }; 813 814 /* defined intel_pm.c */ 815 extern spinlock_t mchdev_lock; 816 817 struct intel_ilk_power_mgmt { 818 u8 cur_delay; 819 u8 min_delay; 820 u8 max_delay; 821 u8 fmax; 822 u8 fstart; 823 824 u64 last_count1; 825 unsigned long last_time1; 826 unsigned long chipset_power; 827 u64 last_count2; 828 u64 last_time2; 829 unsigned long gfx_power; 830 u8 corr; 831 832 int c_m; 833 int r_t; 834 }; 835 836 struct drm_i915_private; 837 struct i915_power_well; 838 839 struct i915_power_well_ops { 840 /* 841 * Synchronize the well's hw state to match the current sw state, for 842 * example enable/disable it based on the current refcount. Called 843 * during driver init and resume time, possibly after first calling 844 * the enable/disable handlers. 845 */ 846 void (*sync_hw)(struct drm_i915_private *dev_priv, 847 struct i915_power_well *power_well); 848 /* 849 * Enable the well and resources that depend on it (for example 850 * interrupts located on the well). Called after the 0->1 refcount 851 * transition. 852 */ 853 void (*enable)(struct drm_i915_private *dev_priv, 854 struct i915_power_well *power_well); 855 /* 856 * Disable the well and resources that depend on it. Called after 857 * the 1->0 refcount transition. 858 */ 859 void (*disable)(struct drm_i915_private *dev_priv, 860 struct i915_power_well *power_well); 861 /* Returns the hw enabled state. */ 862 bool (*is_enabled)(struct drm_i915_private *dev_priv, 863 struct i915_power_well *power_well); 864 }; 865 866 /* Power well structure for haswell */ 867 struct i915_power_well { 868 const char *name; 869 bool always_on; 870 /* power well enable/disable usage count */ 871 int count; 872 /* cached hw enabled state */ 873 bool hw_enabled; 874 u64 domains; 875 /* unique identifier for this power well */ 876 enum i915_power_well_id id; 877 /* 878 * Arbitraty data associated with this power well. Platform and power 879 * well specific. 880 */ 881 union { 882 struct { 883 enum dpio_phy phy; 884 } bxt; 885 struct { 886 /* Mask of pipes whose IRQ logic is backed by the pw */ 887 u8 irq_pipe_mask; 888 /* The pw is backing the VGA functionality */ 889 bool has_vga:1; 890 bool has_fuses:1; 891 } hsw; 892 }; 893 const struct i915_power_well_ops *ops; 894 }; 895 896 struct i915_power_domains { 897 /* 898 * Power wells needed for initialization at driver init and suspend 899 * time are on. They are kept on until after the first modeset. 900 */ 901 bool init_power_on; 902 bool initializing; 903 int power_well_count; 904 905 struct mutex lock; 906 int domain_use_count[POWER_DOMAIN_NUM]; 907 struct i915_power_well *power_wells; 908 }; 909 910 #define MAX_L3_SLICES 2 911 struct intel_l3_parity { 912 u32 *remap_info[MAX_L3_SLICES]; 913 struct work_struct error_work; 914 int which_slice; 915 }; 916 917 struct i915_gem_mm { 918 /** Memory allocator for GTT stolen memory */ 919 struct drm_mm stolen; 920 /** Protects the usage of the GTT stolen memory allocator. This is 921 * always the inner lock when overlapping with struct_mutex. */ 922 struct mutex stolen_lock; 923 924 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */ 925 spinlock_t obj_lock; 926 927 /** List of all objects in gtt_space. Used to restore gtt 928 * mappings on resume */ 929 struct list_head bound_list; 930 /** 931 * List of objects which are not bound to the GTT (thus 932 * are idle and not used by the GPU). These objects may or may 933 * not actually have any pages attached. 934 */ 935 struct list_head unbound_list; 936 937 /** List of all objects in gtt_space, currently mmaped by userspace. 938 * All objects within this list must also be on bound_list. 939 */ 940 struct list_head userfault_list; 941 942 /** 943 * List of objects which are pending destruction. 944 */ 945 struct llist_head free_list; 946 struct work_struct free_work; 947 spinlock_t free_lock; 948 /** 949 * Count of objects pending destructions. Used to skip needlessly 950 * waiting on an RCU barrier if no objects are waiting to be freed. 951 */ 952 atomic_t free_count; 953 954 /** 955 * Small stash of WC pages 956 */ 957 struct pagevec wc_stash; 958 959 /** 960 * tmpfs instance used for shmem backed objects 961 */ 962 struct vfsmount *gemfs; 963 964 /** PPGTT used for aliasing the PPGTT with the GTT */ 965 struct i915_hw_ppgtt *aliasing_ppgtt; 966 967 struct notifier_block oom_notifier; 968 struct notifier_block vmap_notifier; 969 struct shrinker shrinker; 970 971 /** LRU list of objects with fence regs on them. */ 972 struct list_head fence_list; 973 974 /** 975 * Workqueue to fault in userptr pages, flushed by the execbuf 976 * when required but otherwise left to userspace to try again 977 * on EAGAIN. 978 */ 979 struct workqueue_struct *userptr_wq; 980 981 u64 unordered_timeline; 982 983 /* the indicator for dispatch video commands on two BSD rings */ 984 atomic_t bsd_engine_dispatch_index; 985 986 /** Bit 6 swizzling required for X tiling */ 987 uint32_t bit_6_swizzle_x; 988 /** Bit 6 swizzling required for Y tiling */ 989 uint32_t bit_6_swizzle_y; 990 991 /* accounting, useful for userland debugging */ 992 spinlock_t object_stat_lock; 993 u64 object_memory; 994 u32 object_count; 995 }; 996 997 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */ 998 999 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */ 1000 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */ 1001 1002 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */ 1003 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */ 1004 1005 enum modeset_restore { 1006 MODESET_ON_LID_OPEN, 1007 MODESET_DONE, 1008 MODESET_SUSPENDED, 1009 }; 1010 1011 #define DP_AUX_A 0x40 1012 #define DP_AUX_B 0x10 1013 #define DP_AUX_C 0x20 1014 #define DP_AUX_D 0x30 1015 #define DP_AUX_F 0x60 1016 1017 #define DDC_PIN_B 0x05 1018 #define DDC_PIN_C 0x04 1019 #define DDC_PIN_D 0x06 1020 1021 struct ddi_vbt_port_info { 1022 int max_tmds_clock; 1023 1024 /* 1025 * This is an index in the HDMI/DVI DDI buffer translation table. 1026 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 1027 * populate this field. 1028 */ 1029 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 1030 uint8_t hdmi_level_shift; 1031 1032 uint8_t supports_dvi:1; 1033 uint8_t supports_hdmi:1; 1034 uint8_t supports_dp:1; 1035 uint8_t supports_edp:1; 1036 1037 uint8_t alternate_aux_channel; 1038 uint8_t alternate_ddc_pin; 1039 1040 uint8_t dp_boost_level; 1041 uint8_t hdmi_boost_level; 1042 int dp_max_link_rate; /* 0 for not limited by VBT */ 1043 }; 1044 1045 enum psr_lines_to_wait { 1046 PSR_0_LINES_TO_WAIT = 0, 1047 PSR_1_LINE_TO_WAIT, 1048 PSR_4_LINES_TO_WAIT, 1049 PSR_8_LINES_TO_WAIT 1050 }; 1051 1052 struct intel_vbt_data { 1053 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 1054 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 1055 1056 /* Feature bits */ 1057 unsigned int int_tv_support:1; 1058 unsigned int lvds_dither:1; 1059 unsigned int lvds_vbt:1; 1060 unsigned int int_crt_support:1; 1061 unsigned int lvds_use_ssc:1; 1062 unsigned int display_clock_mode:1; 1063 unsigned int fdi_rx_polarity_inverted:1; 1064 unsigned int panel_type:4; 1065 int lvds_ssc_freq; 1066 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 1067 1068 enum drrs_support_type drrs_type; 1069 1070 struct { 1071 int rate; 1072 int lanes; 1073 int preemphasis; 1074 int vswing; 1075 bool low_vswing; 1076 bool initialized; 1077 bool support; 1078 int bpp; 1079 struct edp_power_seq pps; 1080 } edp; 1081 1082 struct { 1083 bool enable; 1084 bool full_link; 1085 bool require_aux_wakeup; 1086 int idle_frames; 1087 enum psr_lines_to_wait lines_to_wait; 1088 int tp1_wakeup_time; 1089 int tp2_tp3_wakeup_time; 1090 } psr; 1091 1092 struct { 1093 u16 pwm_freq_hz; 1094 bool present; 1095 bool active_low_pwm; 1096 u8 min_brightness; /* min_brightness/255 of max */ 1097 u8 controller; /* brightness controller number */ 1098 enum intel_backlight_type type; 1099 } backlight; 1100 1101 /* MIPI DSI */ 1102 struct { 1103 u16 panel_id; 1104 struct mipi_config *config; 1105 struct mipi_pps_data *pps; 1106 u16 bl_ports; 1107 u16 cabc_ports; 1108 u8 seq_version; 1109 u32 size; 1110 u8 *data; 1111 const u8 *sequence[MIPI_SEQ_MAX]; 1112 u8 *deassert_seq; /* Used by fixup_mipi_sequences() */ 1113 } dsi; 1114 1115 int crt_ddc_pin; 1116 1117 int child_dev_num; 1118 struct child_device_config *child_dev; 1119 1120 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1121 struct sdvo_device_mapping sdvo_mappings[2]; 1122 }; 1123 1124 enum intel_ddb_partitioning { 1125 INTEL_DDB_PART_1_2, 1126 INTEL_DDB_PART_5_6, /* IVB+ */ 1127 }; 1128 1129 struct intel_wm_level { 1130 bool enable; 1131 uint32_t pri_val; 1132 uint32_t spr_val; 1133 uint32_t cur_val; 1134 uint32_t fbc_val; 1135 }; 1136 1137 struct ilk_wm_values { 1138 uint32_t wm_pipe[3]; 1139 uint32_t wm_lp[3]; 1140 uint32_t wm_lp_spr[3]; 1141 uint32_t wm_linetime[3]; 1142 bool enable_fbc_wm; 1143 enum intel_ddb_partitioning partitioning; 1144 }; 1145 1146 struct g4x_pipe_wm { 1147 uint16_t plane[I915_MAX_PLANES]; 1148 uint16_t fbc; 1149 }; 1150 1151 struct g4x_sr_wm { 1152 uint16_t plane; 1153 uint16_t cursor; 1154 uint16_t fbc; 1155 }; 1156 1157 struct vlv_wm_ddl_values { 1158 uint8_t plane[I915_MAX_PLANES]; 1159 }; 1160 1161 struct vlv_wm_values { 1162 struct g4x_pipe_wm pipe[3]; 1163 struct g4x_sr_wm sr; 1164 struct vlv_wm_ddl_values ddl[3]; 1165 uint8_t level; 1166 bool cxsr; 1167 }; 1168 1169 struct g4x_wm_values { 1170 struct g4x_pipe_wm pipe[2]; 1171 struct g4x_sr_wm sr; 1172 struct g4x_sr_wm hpll; 1173 bool cxsr; 1174 bool hpll_en; 1175 bool fbc_en; 1176 }; 1177 1178 struct skl_ddb_entry { 1179 uint16_t start, end; /* in number of blocks, 'end' is exclusive */ 1180 }; 1181 1182 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1183 { 1184 return entry->end - entry->start; 1185 } 1186 1187 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1188 const struct skl_ddb_entry *e2) 1189 { 1190 if (e1->start == e2->start && e1->end == e2->end) 1191 return true; 1192 1193 return false; 1194 } 1195 1196 struct skl_ddb_allocation { 1197 /* packed/y */ 1198 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1199 struct skl_ddb_entry uv_plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1200 u8 enabled_slices; /* GEN11 has configurable 2 slices */ 1201 }; 1202 1203 struct skl_ddb_values { 1204 unsigned dirty_pipes; 1205 struct skl_ddb_allocation ddb; 1206 }; 1207 1208 struct skl_wm_level { 1209 bool plane_en; 1210 uint16_t plane_res_b; 1211 uint8_t plane_res_l; 1212 }; 1213 1214 /* Stores plane specific WM parameters */ 1215 struct skl_wm_params { 1216 bool x_tiled, y_tiled; 1217 bool rc_surface; 1218 bool is_planar; 1219 uint32_t width; 1220 uint8_t cpp; 1221 uint32_t plane_pixel_rate; 1222 uint32_t y_min_scanlines; 1223 uint32_t plane_bytes_per_line; 1224 uint_fixed_16_16_t plane_blocks_per_line; 1225 uint_fixed_16_16_t y_tile_minimum; 1226 uint32_t linetime_us; 1227 uint32_t dbuf_block_size; 1228 }; 1229 1230 /* 1231 * This struct helps tracking the state needed for runtime PM, which puts the 1232 * device in PCI D3 state. Notice that when this happens, nothing on the 1233 * graphics device works, even register access, so we don't get interrupts nor 1234 * anything else. 1235 * 1236 * Every piece of our code that needs to actually touch the hardware needs to 1237 * either call intel_runtime_pm_get or call intel_display_power_get with the 1238 * appropriate power domain. 1239 * 1240 * Our driver uses the autosuspend delay feature, which means we'll only really 1241 * suspend if we stay with zero refcount for a certain amount of time. The 1242 * default value is currently very conservative (see intel_runtime_pm_enable), but 1243 * it can be changed with the standard runtime PM files from sysfs. 1244 * 1245 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1246 * goes back to false exactly before we reenable the IRQs. We use this variable 1247 * to check if someone is trying to enable/disable IRQs while they're supposed 1248 * to be disabled. This shouldn't happen and we'll print some error messages in 1249 * case it happens. 1250 * 1251 * For more, read the Documentation/power/runtime_pm.txt. 1252 */ 1253 struct i915_runtime_pm { 1254 atomic_t wakeref_count; 1255 bool suspended; 1256 bool irqs_enabled; 1257 }; 1258 1259 enum intel_pipe_crc_source { 1260 INTEL_PIPE_CRC_SOURCE_NONE, 1261 INTEL_PIPE_CRC_SOURCE_PLANE1, 1262 INTEL_PIPE_CRC_SOURCE_PLANE2, 1263 INTEL_PIPE_CRC_SOURCE_PF, 1264 INTEL_PIPE_CRC_SOURCE_PIPE, 1265 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1266 INTEL_PIPE_CRC_SOURCE_TV, 1267 INTEL_PIPE_CRC_SOURCE_DP_B, 1268 INTEL_PIPE_CRC_SOURCE_DP_C, 1269 INTEL_PIPE_CRC_SOURCE_DP_D, 1270 INTEL_PIPE_CRC_SOURCE_AUTO, 1271 INTEL_PIPE_CRC_SOURCE_MAX, 1272 }; 1273 1274 struct intel_pipe_crc_entry { 1275 uint32_t frame; 1276 uint32_t crc[5]; 1277 }; 1278 1279 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1280 struct intel_pipe_crc { 1281 spinlock_t lock; 1282 bool opened; /* exclusive access to the result file */ 1283 struct intel_pipe_crc_entry *entries; 1284 enum intel_pipe_crc_source source; 1285 int head, tail; 1286 wait_queue_head_t wq; 1287 int skipped; 1288 }; 1289 1290 struct i915_frontbuffer_tracking { 1291 spinlock_t lock; 1292 1293 /* 1294 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1295 * scheduled flips. 1296 */ 1297 unsigned busy_bits; 1298 unsigned flip_bits; 1299 }; 1300 1301 struct i915_wa_reg { 1302 i915_reg_t addr; 1303 u32 value; 1304 /* bitmask representing WA bits */ 1305 u32 mask; 1306 }; 1307 1308 #define I915_MAX_WA_REGS 16 1309 1310 struct i915_workarounds { 1311 struct i915_wa_reg reg[I915_MAX_WA_REGS]; 1312 u32 count; 1313 }; 1314 1315 struct i915_virtual_gpu { 1316 bool active; 1317 u32 caps; 1318 }; 1319 1320 /* used in computing the new watermarks state */ 1321 struct intel_wm_config { 1322 unsigned int num_pipes_active; 1323 bool sprites_enabled; 1324 bool sprites_scaled; 1325 }; 1326 1327 struct i915_oa_format { 1328 u32 format; 1329 int size; 1330 }; 1331 1332 struct i915_oa_reg { 1333 i915_reg_t addr; 1334 u32 value; 1335 }; 1336 1337 struct i915_oa_config { 1338 char uuid[UUID_STRING_LEN + 1]; 1339 int id; 1340 1341 const struct i915_oa_reg *mux_regs; 1342 u32 mux_regs_len; 1343 const struct i915_oa_reg *b_counter_regs; 1344 u32 b_counter_regs_len; 1345 const struct i915_oa_reg *flex_regs; 1346 u32 flex_regs_len; 1347 1348 struct attribute_group sysfs_metric; 1349 struct attribute *attrs[2]; 1350 struct device_attribute sysfs_metric_id; 1351 1352 atomic_t ref_count; 1353 }; 1354 1355 struct i915_perf_stream; 1356 1357 /** 1358 * struct i915_perf_stream_ops - the OPs to support a specific stream type 1359 */ 1360 struct i915_perf_stream_ops { 1361 /** 1362 * @enable: Enables the collection of HW samples, either in response to 1363 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened 1364 * without `I915_PERF_FLAG_DISABLED`. 1365 */ 1366 void (*enable)(struct i915_perf_stream *stream); 1367 1368 /** 1369 * @disable: Disables the collection of HW samples, either in response 1370 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying 1371 * the stream. 1372 */ 1373 void (*disable)(struct i915_perf_stream *stream); 1374 1375 /** 1376 * @poll_wait: Call poll_wait, passing a wait queue that will be woken 1377 * once there is something ready to read() for the stream 1378 */ 1379 void (*poll_wait)(struct i915_perf_stream *stream, 1380 struct file *file, 1381 poll_table *wait); 1382 1383 /** 1384 * @wait_unlocked: For handling a blocking read, wait until there is 1385 * something to ready to read() for the stream. E.g. wait on the same 1386 * wait queue that would be passed to poll_wait(). 1387 */ 1388 int (*wait_unlocked)(struct i915_perf_stream *stream); 1389 1390 /** 1391 * @read: Copy buffered metrics as records to userspace 1392 * **buf**: the userspace, destination buffer 1393 * **count**: the number of bytes to copy, requested by userspace 1394 * **offset**: zero at the start of the read, updated as the read 1395 * proceeds, it represents how many bytes have been copied so far and 1396 * the buffer offset for copying the next record. 1397 * 1398 * Copy as many buffered i915 perf samples and records for this stream 1399 * to userspace as will fit in the given buffer. 1400 * 1401 * Only write complete records; returning -%ENOSPC if there isn't room 1402 * for a complete record. 1403 * 1404 * Return any error condition that results in a short read such as 1405 * -%ENOSPC or -%EFAULT, even though these may be squashed before 1406 * returning to userspace. 1407 */ 1408 int (*read)(struct i915_perf_stream *stream, 1409 char __user *buf, 1410 size_t count, 1411 size_t *offset); 1412 1413 /** 1414 * @destroy: Cleanup any stream specific resources. 1415 * 1416 * The stream will always be disabled before this is called. 1417 */ 1418 void (*destroy)(struct i915_perf_stream *stream); 1419 }; 1420 1421 /** 1422 * struct i915_perf_stream - state for a single open stream FD 1423 */ 1424 struct i915_perf_stream { 1425 /** 1426 * @dev_priv: i915 drm device 1427 */ 1428 struct drm_i915_private *dev_priv; 1429 1430 /** 1431 * @link: Links the stream into ``&drm_i915_private->streams`` 1432 */ 1433 struct list_head link; 1434 1435 /** 1436 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*` 1437 * properties given when opening a stream, representing the contents 1438 * of a single sample as read() by userspace. 1439 */ 1440 u32 sample_flags; 1441 1442 /** 1443 * @sample_size: Considering the configured contents of a sample 1444 * combined with the required header size, this is the total size 1445 * of a single sample record. 1446 */ 1447 int sample_size; 1448 1449 /** 1450 * @ctx: %NULL if measuring system-wide across all contexts or a 1451 * specific context that is being monitored. 1452 */ 1453 struct i915_gem_context *ctx; 1454 1455 /** 1456 * @enabled: Whether the stream is currently enabled, considering 1457 * whether the stream was opened in a disabled state and based 1458 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls. 1459 */ 1460 bool enabled; 1461 1462 /** 1463 * @ops: The callbacks providing the implementation of this specific 1464 * type of configured stream. 1465 */ 1466 const struct i915_perf_stream_ops *ops; 1467 1468 /** 1469 * @oa_config: The OA configuration used by the stream. 1470 */ 1471 struct i915_oa_config *oa_config; 1472 }; 1473 1474 /** 1475 * struct i915_oa_ops - Gen specific implementation of an OA unit stream 1476 */ 1477 struct i915_oa_ops { 1478 /** 1479 * @is_valid_b_counter_reg: Validates register's address for 1480 * programming boolean counters for a particular platform. 1481 */ 1482 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv, 1483 u32 addr); 1484 1485 /** 1486 * @is_valid_mux_reg: Validates register's address for programming mux 1487 * for a particular platform. 1488 */ 1489 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr); 1490 1491 /** 1492 * @is_valid_flex_reg: Validates register's address for programming 1493 * flex EU filtering for a particular platform. 1494 */ 1495 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr); 1496 1497 /** 1498 * @init_oa_buffer: Resets the head and tail pointers of the 1499 * circular buffer for periodic OA reports. 1500 * 1501 * Called when first opening a stream for OA metrics, but also may be 1502 * called in response to an OA buffer overflow or other error 1503 * condition. 1504 * 1505 * Note it may be necessary to clear the full OA buffer here as part of 1506 * maintaining the invariable that new reports must be written to 1507 * zeroed memory for us to be able to reliable detect if an expected 1508 * report has not yet landed in memory. (At least on Haswell the OA 1509 * buffer tail pointer is not synchronized with reports being visible 1510 * to the CPU) 1511 */ 1512 void (*init_oa_buffer)(struct drm_i915_private *dev_priv); 1513 1514 /** 1515 * @enable_metric_set: Selects and applies any MUX configuration to set 1516 * up the Boolean and Custom (B/C) counters that are part of the 1517 * counter reports being sampled. May apply system constraints such as 1518 * disabling EU clock gating as required. 1519 */ 1520 int (*enable_metric_set)(struct drm_i915_private *dev_priv, 1521 const struct i915_oa_config *oa_config); 1522 1523 /** 1524 * @disable_metric_set: Remove system constraints associated with using 1525 * the OA unit. 1526 */ 1527 void (*disable_metric_set)(struct drm_i915_private *dev_priv); 1528 1529 /** 1530 * @oa_enable: Enable periodic sampling 1531 */ 1532 void (*oa_enable)(struct drm_i915_private *dev_priv); 1533 1534 /** 1535 * @oa_disable: Disable periodic sampling 1536 */ 1537 void (*oa_disable)(struct drm_i915_private *dev_priv); 1538 1539 /** 1540 * @read: Copy data from the circular OA buffer into a given userspace 1541 * buffer. 1542 */ 1543 int (*read)(struct i915_perf_stream *stream, 1544 char __user *buf, 1545 size_t count, 1546 size_t *offset); 1547 1548 /** 1549 * @oa_hw_tail_read: read the OA tail pointer register 1550 * 1551 * In particular this enables us to share all the fiddly code for 1552 * handling the OA unit tail pointer race that affects multiple 1553 * generations. 1554 */ 1555 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv); 1556 }; 1557 1558 struct intel_cdclk_state { 1559 unsigned int cdclk, vco, ref, bypass; 1560 u8 voltage_level; 1561 }; 1562 1563 struct drm_i915_private { 1564 struct drm_device drm; 1565 1566 struct kmem_cache *objects; 1567 struct kmem_cache *vmas; 1568 struct kmem_cache *luts; 1569 struct kmem_cache *requests; 1570 struct kmem_cache *dependencies; 1571 struct kmem_cache *priorities; 1572 1573 const struct intel_device_info info; 1574 struct intel_driver_caps caps; 1575 1576 /** 1577 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and 1578 * end of stolen which we can optionally use to create GEM objects 1579 * backed by stolen memory. Note that stolen_usable_size tells us 1580 * exactly how much of this we are actually allowed to use, given that 1581 * some portion of it is in fact reserved for use by hardware functions. 1582 */ 1583 struct resource dsm; 1584 /** 1585 * Reseved portion of Data Stolen Memory 1586 */ 1587 struct resource dsm_reserved; 1588 1589 /* 1590 * Stolen memory is segmented in hardware with different portions 1591 * offlimits to certain functions. 1592 * 1593 * The drm_mm is initialised to the total accessible range, as found 1594 * from the PCI config. On Broadwell+, this is further restricted to 1595 * avoid the first page! The upper end of stolen memory is reserved for 1596 * hardware functions and similarly removed from the accessible range. 1597 */ 1598 resource_size_t stolen_usable_size; /* Total size minus reserved ranges */ 1599 1600 void __iomem *regs; 1601 1602 struct intel_uncore uncore; 1603 1604 struct i915_virtual_gpu vgpu; 1605 1606 struct intel_gvt *gvt; 1607 1608 struct intel_wopcm wopcm; 1609 1610 struct intel_huc huc; 1611 struct intel_guc guc; 1612 1613 struct intel_csr csr; 1614 1615 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 1616 1617 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 1618 * controller on different i2c buses. */ 1619 struct mutex gmbus_mutex; 1620 1621 /** 1622 * Base address of the gmbus and gpio block. 1623 */ 1624 uint32_t gpio_mmio_base; 1625 1626 /* MMIO base address for MIPI regs */ 1627 uint32_t mipi_mmio_base; 1628 1629 uint32_t psr_mmio_base; 1630 1631 uint32_t pps_mmio_base; 1632 1633 wait_queue_head_t gmbus_wait_queue; 1634 1635 struct pci_dev *bridge_dev; 1636 struct intel_engine_cs *engine[I915_NUM_ENGINES]; 1637 /* Context used internally to idle the GPU and setup initial state */ 1638 struct i915_gem_context *kernel_context; 1639 /* Context only to be used for injecting preemption commands */ 1640 struct i915_gem_context *preempt_context; 1641 struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1] 1642 [MAX_ENGINE_INSTANCE + 1]; 1643 1644 struct drm_dma_handle *status_page_dmah; 1645 struct resource mch_res; 1646 1647 /* protects the irq masks */ 1648 spinlock_t irq_lock; 1649 1650 bool display_irqs_enabled; 1651 1652 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 1653 struct pm_qos_request pm_qos; 1654 1655 /* Sideband mailbox protection */ 1656 struct mutex sb_lock; 1657 1658 /** Cached value of IMR to avoid reads in updating the bitfield */ 1659 union { 1660 u32 irq_mask; 1661 u32 de_irq_mask[I915_MAX_PIPES]; 1662 }; 1663 u32 gt_irq_mask; 1664 u32 pm_imr; 1665 u32 pm_ier; 1666 u32 pm_rps_events; 1667 u32 pm_guc_events; 1668 u32 pipestat_irq_mask[I915_MAX_PIPES]; 1669 1670 struct i915_hotplug hotplug; 1671 struct intel_fbc fbc; 1672 struct i915_drrs drrs; 1673 struct intel_opregion opregion; 1674 struct intel_vbt_data vbt; 1675 1676 bool preserve_bios_swizzle; 1677 1678 /* overlay */ 1679 struct intel_overlay *overlay; 1680 1681 /* backlight registers and fields in struct intel_panel */ 1682 struct mutex backlight_lock; 1683 1684 /* LVDS info */ 1685 bool no_aux_handshake; 1686 1687 /* protects panel power sequencer state */ 1688 struct mutex pps_mutex; 1689 1690 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 1691 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 1692 1693 unsigned int fsb_freq, mem_freq, is_ddr3; 1694 unsigned int skl_preferred_vco_freq; 1695 unsigned int max_cdclk_freq; 1696 1697 unsigned int max_dotclk_freq; 1698 unsigned int rawclk_freq; 1699 unsigned int hpll_freq; 1700 unsigned int fdi_pll_freq; 1701 unsigned int czclk_freq; 1702 1703 struct { 1704 /* 1705 * The current logical cdclk state. 1706 * See intel_atomic_state.cdclk.logical 1707 * 1708 * For reading holding any crtc lock is sufficient, 1709 * for writing must hold all of them. 1710 */ 1711 struct intel_cdclk_state logical; 1712 /* 1713 * The current actual cdclk state. 1714 * See intel_atomic_state.cdclk.actual 1715 */ 1716 struct intel_cdclk_state actual; 1717 /* The current hardware cdclk state */ 1718 struct intel_cdclk_state hw; 1719 } cdclk; 1720 1721 /** 1722 * wq - Driver workqueue for GEM. 1723 * 1724 * NOTE: Work items scheduled here are not allowed to grab any modeset 1725 * locks, for otherwise the flushing done in the pageflip code will 1726 * result in deadlocks. 1727 */ 1728 struct workqueue_struct *wq; 1729 1730 /* ordered wq for modesets */ 1731 struct workqueue_struct *modeset_wq; 1732 1733 /* Display functions */ 1734 struct drm_i915_display_funcs display; 1735 1736 /* PCH chipset type */ 1737 enum intel_pch pch_type; 1738 unsigned short pch_id; 1739 1740 unsigned long quirks; 1741 1742 enum modeset_restore modeset_restore; 1743 struct mutex modeset_restore_lock; 1744 struct drm_atomic_state *modeset_restore_state; 1745 struct drm_modeset_acquire_ctx reset_ctx; 1746 1747 struct list_head vm_list; /* Global list of all address spaces */ 1748 struct i915_ggtt ggtt; /* VM representing the global address space */ 1749 1750 struct i915_gem_mm mm; 1751 DECLARE_HASHTABLE(mm_structs, 7); 1752 struct mutex mm_lock; 1753 1754 struct intel_ppat ppat; 1755 1756 /* Kernel Modesetting */ 1757 1758 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 1759 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 1760 1761 #ifdef CONFIG_DEBUG_FS 1762 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 1763 #endif 1764 1765 /* dpll and cdclk state is protected by connection_mutex */ 1766 int num_shared_dpll; 1767 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 1768 const struct intel_dpll_mgr *dpll_mgr; 1769 1770 /* 1771 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 1772 * Must be global rather than per dpll, because on some platforms 1773 * plls share registers. 1774 */ 1775 struct mutex dpll_lock; 1776 1777 unsigned int active_crtcs; 1778 /* minimum acceptable cdclk for each pipe */ 1779 int min_cdclk[I915_MAX_PIPES]; 1780 /* minimum acceptable voltage level for each pipe */ 1781 u8 min_voltage_level[I915_MAX_PIPES]; 1782 1783 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 1784 1785 struct i915_workarounds workarounds; 1786 1787 struct i915_frontbuffer_tracking fb_tracking; 1788 1789 struct intel_atomic_helper { 1790 struct llist_head free_list; 1791 struct work_struct free_work; 1792 } atomic_helper; 1793 1794 u16 orig_clock; 1795 1796 bool mchbar_need_disable; 1797 1798 struct intel_l3_parity l3_parity; 1799 1800 /* Cannot be determined by PCIID. You must always read a register. */ 1801 u32 edram_cap; 1802 1803 /* 1804 * Protects RPS/RC6 register access and PCU communication. 1805 * Must be taken after struct_mutex if nested. Note that 1806 * this lock may be held for long periods of time when 1807 * talking to hw - so only take it when talking to hw! 1808 */ 1809 struct mutex pcu_lock; 1810 1811 /* gen6+ GT PM state */ 1812 struct intel_gen6_power_mgmt gt_pm; 1813 1814 /* ilk-only ips/rps state. Everything in here is protected by the global 1815 * mchdev_lock in intel_pm.c */ 1816 struct intel_ilk_power_mgmt ips; 1817 1818 struct i915_power_domains power_domains; 1819 1820 struct i915_psr psr; 1821 1822 struct i915_gpu_error gpu_error; 1823 1824 struct drm_i915_gem_object *vlv_pctx; 1825 1826 /* list of fbdev register on this device */ 1827 struct intel_fbdev *fbdev; 1828 struct work_struct fbdev_suspend_work; 1829 1830 struct drm_property *broadcast_rgb_property; 1831 struct drm_property *force_audio_property; 1832 1833 /* hda/i915 audio component */ 1834 struct i915_audio_component *audio_component; 1835 bool audio_component_registered; 1836 /** 1837 * av_mutex - mutex for audio/video sync 1838 * 1839 */ 1840 struct mutex av_mutex; 1841 1842 struct { 1843 struct list_head list; 1844 struct llist_head free_list; 1845 struct work_struct free_work; 1846 1847 /* The hw wants to have a stable context identifier for the 1848 * lifetime of the context (for OA, PASID, faults, etc). 1849 * This is limited in execlists to 21 bits. 1850 */ 1851 struct ida hw_ida; 1852 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 1853 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */ 1854 } contexts; 1855 1856 u32 fdi_rx_config; 1857 1858 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 1859 u32 chv_phy_control; 1860 /* 1861 * Shadows for CHV DPLL_MD regs to keep the state 1862 * checker somewhat working in the presence hardware 1863 * crappiness (can't read out DPLL_MD for pipes B & C). 1864 */ 1865 u32 chv_dpll_md[I915_MAX_PIPES]; 1866 u32 bxt_phy_grc; 1867 1868 u32 suspend_count; 1869 bool power_domains_suspended; 1870 struct i915_suspend_saved_registers regfile; 1871 struct vlv_s0ix_state vlv_s0ix_state; 1872 1873 enum { 1874 I915_SAGV_UNKNOWN = 0, 1875 I915_SAGV_DISABLED, 1876 I915_SAGV_ENABLED, 1877 I915_SAGV_NOT_CONTROLLED 1878 } sagv_status; 1879 1880 struct { 1881 /* 1882 * Raw watermark latency values: 1883 * in 0.1us units for WM0, 1884 * in 0.5us units for WM1+. 1885 */ 1886 /* primary */ 1887 uint16_t pri_latency[5]; 1888 /* sprite */ 1889 uint16_t spr_latency[5]; 1890 /* cursor */ 1891 uint16_t cur_latency[5]; 1892 /* 1893 * Raw watermark memory latency values 1894 * for SKL for all 8 levels 1895 * in 1us units. 1896 */ 1897 uint16_t skl_latency[8]; 1898 1899 /* current hardware state */ 1900 union { 1901 struct ilk_wm_values hw; 1902 struct skl_ddb_values skl_hw; 1903 struct vlv_wm_values vlv; 1904 struct g4x_wm_values g4x; 1905 }; 1906 1907 uint8_t max_level; 1908 1909 /* 1910 * Should be held around atomic WM register writing; also 1911 * protects * intel_crtc->wm.active and 1912 * cstate->wm.need_postvbl_update. 1913 */ 1914 struct mutex wm_mutex; 1915 1916 /* 1917 * Set during HW readout of watermarks/DDB. Some platforms 1918 * need to know when we're still using BIOS-provided values 1919 * (which we don't fully trust). 1920 */ 1921 bool distrust_bios_wm; 1922 } wm; 1923 1924 struct i915_runtime_pm runtime_pm; 1925 1926 struct { 1927 bool initialized; 1928 1929 struct kobject *metrics_kobj; 1930 struct ctl_table_header *sysctl_header; 1931 1932 /* 1933 * Lock associated with adding/modifying/removing OA configs 1934 * in dev_priv->perf.metrics_idr. 1935 */ 1936 struct mutex metrics_lock; 1937 1938 /* 1939 * List of dynamic configurations, you need to hold 1940 * dev_priv->perf.metrics_lock to access it. 1941 */ 1942 struct idr metrics_idr; 1943 1944 /* 1945 * Lock associated with anything below within this structure 1946 * except exclusive_stream. 1947 */ 1948 struct mutex lock; 1949 struct list_head streams; 1950 1951 struct { 1952 /* 1953 * The stream currently using the OA unit. If accessed 1954 * outside a syscall associated to its file 1955 * descriptor, you need to hold 1956 * dev_priv->drm.struct_mutex. 1957 */ 1958 struct i915_perf_stream *exclusive_stream; 1959 1960 u32 specific_ctx_id; 1961 1962 struct hrtimer poll_check_timer; 1963 wait_queue_head_t poll_wq; 1964 bool pollin; 1965 1966 /** 1967 * For rate limiting any notifications of spurious 1968 * invalid OA reports 1969 */ 1970 struct ratelimit_state spurious_report_rs; 1971 1972 bool periodic; 1973 int period_exponent; 1974 1975 struct i915_oa_config test_config; 1976 1977 struct { 1978 struct i915_vma *vma; 1979 u8 *vaddr; 1980 u32 last_ctx_id; 1981 int format; 1982 int format_size; 1983 1984 /** 1985 * Locks reads and writes to all head/tail state 1986 * 1987 * Consider: the head and tail pointer state 1988 * needs to be read consistently from a hrtimer 1989 * callback (atomic context) and read() fop 1990 * (user context) with tail pointer updates 1991 * happening in atomic context and head updates 1992 * in user context and the (unlikely) 1993 * possibility of read() errors needing to 1994 * reset all head/tail state. 1995 * 1996 * Note: Contention or performance aren't 1997 * currently a significant concern here 1998 * considering the relatively low frequency of 1999 * hrtimer callbacks (5ms period) and that 2000 * reads typically only happen in response to a 2001 * hrtimer event and likely complete before the 2002 * next callback. 2003 * 2004 * Note: This lock is not held *while* reading 2005 * and copying data to userspace so the value 2006 * of head observed in htrimer callbacks won't 2007 * represent any partial consumption of data. 2008 */ 2009 spinlock_t ptr_lock; 2010 2011 /** 2012 * One 'aging' tail pointer and one 'aged' 2013 * tail pointer ready to used for reading. 2014 * 2015 * Initial values of 0xffffffff are invalid 2016 * and imply that an update is required 2017 * (and should be ignored by an attempted 2018 * read) 2019 */ 2020 struct { 2021 u32 offset; 2022 } tails[2]; 2023 2024 /** 2025 * Index for the aged tail ready to read() 2026 * data up to. 2027 */ 2028 unsigned int aged_tail_idx; 2029 2030 /** 2031 * A monotonic timestamp for when the current 2032 * aging tail pointer was read; used to 2033 * determine when it is old enough to trust. 2034 */ 2035 u64 aging_timestamp; 2036 2037 /** 2038 * Although we can always read back the head 2039 * pointer register, we prefer to avoid 2040 * trusting the HW state, just to avoid any 2041 * risk that some hardware condition could 2042 * somehow bump the head pointer unpredictably 2043 * and cause us to forward the wrong OA buffer 2044 * data to userspace. 2045 */ 2046 u32 head; 2047 } oa_buffer; 2048 2049 u32 gen7_latched_oastatus1; 2050 u32 ctx_oactxctrl_offset; 2051 u32 ctx_flexeu0_offset; 2052 2053 /** 2054 * The RPT_ID/reason field for Gen8+ includes a bit 2055 * to determine if the CTX ID in the report is valid 2056 * but the specific bit differs between Gen 8 and 9 2057 */ 2058 u32 gen8_valid_ctx_bit; 2059 2060 struct i915_oa_ops ops; 2061 const struct i915_oa_format *oa_formats; 2062 } oa; 2063 } perf; 2064 2065 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 2066 struct { 2067 void (*resume)(struct drm_i915_private *); 2068 void (*cleanup_engine)(struct intel_engine_cs *engine); 2069 2070 struct list_head timelines; 2071 2072 struct list_head active_rings; 2073 struct list_head closed_vma; 2074 u32 active_requests; 2075 u32 request_serial; 2076 2077 /** 2078 * Is the GPU currently considered idle, or busy executing 2079 * userspace requests? Whilst idle, we allow runtime power 2080 * management to power down the hardware and display clocks. 2081 * In order to reduce the effect on performance, there 2082 * is a slight delay before we do so. 2083 */ 2084 bool awake; 2085 2086 /** 2087 * The number of times we have woken up. 2088 */ 2089 unsigned int epoch; 2090 #define I915_EPOCH_INVALID 0 2091 2092 /** 2093 * We leave the user IRQ off as much as possible, 2094 * but this means that requests will finish and never 2095 * be retired once the system goes idle. Set a timer to 2096 * fire periodically while the ring is running. When it 2097 * fires, go retire requests. 2098 */ 2099 struct delayed_work retire_work; 2100 2101 /** 2102 * When we detect an idle GPU, we want to turn on 2103 * powersaving features. So once we see that there 2104 * are no more requests outstanding and no more 2105 * arrive within a small period of time, we fire 2106 * off the idle_work. 2107 */ 2108 struct delayed_work idle_work; 2109 2110 ktime_t last_init_time; 2111 } gt; 2112 2113 /* perform PHY state sanity checks? */ 2114 bool chv_phy_assert[2]; 2115 2116 bool ipc_enabled; 2117 2118 /* Used to save the pipe-to-encoder mapping for audio */ 2119 struct intel_encoder *av_enc_map[I915_MAX_PIPES]; 2120 2121 /* necessary resource sharing with HDMI LPE audio driver. */ 2122 struct { 2123 struct platform_device *platdev; 2124 int irq; 2125 } lpe_audio; 2126 2127 struct i915_pmu pmu; 2128 2129 /* 2130 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2131 * will be rejected. Instead look for a better place. 2132 */ 2133 }; 2134 2135 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2136 { 2137 return container_of(dev, struct drm_i915_private, drm); 2138 } 2139 2140 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) 2141 { 2142 return to_i915(dev_get_drvdata(kdev)); 2143 } 2144 2145 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm) 2146 { 2147 return container_of(wopcm, struct drm_i915_private, wopcm); 2148 } 2149 2150 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2151 { 2152 return container_of(guc, struct drm_i915_private, guc); 2153 } 2154 2155 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc) 2156 { 2157 return container_of(huc, struct drm_i915_private, huc); 2158 } 2159 2160 /* Simple iterator over all initialised engines */ 2161 #define for_each_engine(engine__, dev_priv__, id__) \ 2162 for ((id__) = 0; \ 2163 (id__) < I915_NUM_ENGINES; \ 2164 (id__)++) \ 2165 for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) 2166 2167 /* Iterator over subset of engines selected by mask */ 2168 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \ 2169 for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \ 2170 (tmp__) ? \ 2171 ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \ 2172 0;) 2173 2174 enum hdmi_force_audio { 2175 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2176 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2177 HDMI_AUDIO_AUTO, /* trust EDID */ 2178 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2179 }; 2180 2181 #define I915_GTT_OFFSET_NONE ((u32)-1) 2182 2183 /* 2184 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2185 * considered to be the frontbuffer for the given plane interface-wise. This 2186 * doesn't mean that the hw necessarily already scans it out, but that any 2187 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2188 * 2189 * We have one bit per pipe and per scanout plane type. 2190 */ 2191 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2192 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \ 2193 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \ 2194 BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \ 2195 BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \ 2196 }) 2197 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2198 BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2199 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2200 GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \ 2201 INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2202 2203 /* 2204 * Optimised SGL iterator for GEM objects 2205 */ 2206 static __always_inline struct sgt_iter { 2207 struct scatterlist *sgp; 2208 union { 2209 unsigned long pfn; 2210 dma_addr_t dma; 2211 }; 2212 unsigned int curr; 2213 unsigned int max; 2214 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2215 struct sgt_iter s = { .sgp = sgl }; 2216 2217 if (s.sgp) { 2218 s.max = s.curr = s.sgp->offset; 2219 s.max += s.sgp->length; 2220 if (dma) 2221 s.dma = sg_dma_address(s.sgp); 2222 else 2223 s.pfn = page_to_pfn(sg_page(s.sgp)); 2224 } 2225 2226 return s; 2227 } 2228 2229 static inline struct scatterlist *____sg_next(struct scatterlist *sg) 2230 { 2231 ++sg; 2232 if (unlikely(sg_is_chain(sg))) 2233 sg = sg_chain_ptr(sg); 2234 return sg; 2235 } 2236 2237 /** 2238 * __sg_next - return the next scatterlist entry in a list 2239 * @sg: The current sg entry 2240 * 2241 * Description: 2242 * If the entry is the last, return NULL; otherwise, step to the next 2243 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2244 * otherwise just return the pointer to the current element. 2245 **/ 2246 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2247 { 2248 #ifdef CONFIG_DEBUG_SG 2249 BUG_ON(sg->sg_magic != SG_MAGIC); 2250 #endif 2251 return sg_is_last(sg) ? NULL : ____sg_next(sg); 2252 } 2253 2254 /** 2255 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2256 * @__dmap: DMA address (output) 2257 * @__iter: 'struct sgt_iter' (iterator state, internal) 2258 * @__sgt: sg_table to iterate over (input) 2259 */ 2260 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2261 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2262 ((__dmap) = (__iter).dma + (__iter).curr); \ 2263 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2264 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0) 2265 2266 /** 2267 * for_each_sgt_page - iterate over the pages of the given sg_table 2268 * @__pp: page pointer (output) 2269 * @__iter: 'struct sgt_iter' (iterator state, internal) 2270 * @__sgt: sg_table to iterate over (input) 2271 */ 2272 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2273 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2274 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2275 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2276 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2277 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0) 2278 2279 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg) 2280 { 2281 unsigned int page_sizes; 2282 2283 page_sizes = 0; 2284 while (sg) { 2285 GEM_BUG_ON(sg->offset); 2286 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE)); 2287 page_sizes |= sg->length; 2288 sg = __sg_next(sg); 2289 } 2290 2291 return page_sizes; 2292 } 2293 2294 static inline unsigned int i915_sg_segment_size(void) 2295 { 2296 unsigned int size = swiotlb_max_segment(); 2297 2298 if (size == 0) 2299 return SCATTERLIST_MAX_SEGMENT; 2300 2301 size = rounddown(size, PAGE_SIZE); 2302 /* swiotlb_max_segment_size can return 1 byte when it means one page. */ 2303 if (size < PAGE_SIZE) 2304 size = PAGE_SIZE; 2305 2306 return size; 2307 } 2308 2309 static inline const struct intel_device_info * 2310 intel_info(const struct drm_i915_private *dev_priv) 2311 { 2312 return &dev_priv->info; 2313 } 2314 2315 #define INTEL_INFO(dev_priv) intel_info((dev_priv)) 2316 2317 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen) 2318 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id) 2319 2320 #define REVID_FOREVER 0xff 2321 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision) 2322 2323 #define GEN_FOREVER (0) 2324 2325 #define INTEL_GEN_MASK(s, e) ( \ 2326 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \ 2327 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \ 2328 GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \ 2329 (s) != GEN_FOREVER ? (s) - 1 : 0) \ 2330 ) 2331 2332 /* 2333 * Returns true if Gen is in inclusive range [Start, End]. 2334 * 2335 * Use GEN_FOREVER for unbound start and or end. 2336 */ 2337 #define IS_GEN(dev_priv, s, e) \ 2338 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e)))) 2339 2340 /* 2341 * Return true if revision is in range [since,until] inclusive. 2342 * 2343 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2344 */ 2345 #define IS_REVID(p, since, until) \ 2346 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2347 2348 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p)) 2349 2350 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830) 2351 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G) 2352 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X) 2353 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G) 2354 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G) 2355 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM) 2356 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G) 2357 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM) 2358 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G) 2359 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM) 2360 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45) 2361 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45) 2362 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) 2363 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001) 2364 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011) 2365 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW) 2366 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33) 2367 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046) 2368 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE) 2369 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \ 2370 (dev_priv)->info.gt == 1) 2371 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW) 2372 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW) 2373 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL) 2374 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL) 2375 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE) 2376 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON) 2377 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE) 2378 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE) 2379 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE) 2380 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE) 2381 #define IS_ICELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ICELAKE) 2382 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile) 2383 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ 2384 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) 2385 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \ 2386 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \ 2387 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \ 2388 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)) 2389 /* ULX machines are also considered ULT. */ 2390 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \ 2391 (INTEL_DEVID(dev_priv) & 0xf) == 0xe) 2392 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ 2393 (dev_priv)->info.gt == 3) 2394 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \ 2395 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00) 2396 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ 2397 (dev_priv)->info.gt == 3) 2398 /* ULX machines are also considered ULT. */ 2399 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \ 2400 INTEL_DEVID(dev_priv) == 0x0A1E) 2401 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \ 2402 INTEL_DEVID(dev_priv) == 0x1913 || \ 2403 INTEL_DEVID(dev_priv) == 0x1916 || \ 2404 INTEL_DEVID(dev_priv) == 0x1921 || \ 2405 INTEL_DEVID(dev_priv) == 0x1926) 2406 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \ 2407 INTEL_DEVID(dev_priv) == 0x1915 || \ 2408 INTEL_DEVID(dev_priv) == 0x191E) 2409 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \ 2410 INTEL_DEVID(dev_priv) == 0x5913 || \ 2411 INTEL_DEVID(dev_priv) == 0x5916 || \ 2412 INTEL_DEVID(dev_priv) == 0x5921 || \ 2413 INTEL_DEVID(dev_priv) == 0x5926) 2414 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \ 2415 INTEL_DEVID(dev_priv) == 0x5915 || \ 2416 INTEL_DEVID(dev_priv) == 0x591E) 2417 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2418 (dev_priv)->info.gt == 2) 2419 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2420 (dev_priv)->info.gt == 3) 2421 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2422 (dev_priv)->info.gt == 4) 2423 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2424 (dev_priv)->info.gt == 2) 2425 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2426 (dev_priv)->info.gt == 3) 2427 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2428 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0) 2429 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2430 (dev_priv)->info.gt == 2) 2431 #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2432 (dev_priv)->info.gt == 3) 2433 #define IS_CNL_WITH_PORT_F(dev_priv) (IS_CANNONLAKE(dev_priv) && \ 2434 (INTEL_DEVID(dev_priv) & 0x0004) == 0x0004) 2435 2436 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support) 2437 2438 #define SKL_REVID_A0 0x0 2439 #define SKL_REVID_B0 0x1 2440 #define SKL_REVID_C0 0x2 2441 #define SKL_REVID_D0 0x3 2442 #define SKL_REVID_E0 0x4 2443 #define SKL_REVID_F0 0x5 2444 #define SKL_REVID_G0 0x6 2445 #define SKL_REVID_H0 0x7 2446 2447 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2448 2449 #define BXT_REVID_A0 0x0 2450 #define BXT_REVID_A1 0x1 2451 #define BXT_REVID_B0 0x3 2452 #define BXT_REVID_B_LAST 0x8 2453 #define BXT_REVID_C0 0x9 2454 2455 #define IS_BXT_REVID(dev_priv, since, until) \ 2456 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until)) 2457 2458 #define KBL_REVID_A0 0x0 2459 #define KBL_REVID_B0 0x1 2460 #define KBL_REVID_C0 0x2 2461 #define KBL_REVID_D0 0x3 2462 #define KBL_REVID_E0 0x4 2463 2464 #define IS_KBL_REVID(dev_priv, since, until) \ 2465 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2466 2467 #define GLK_REVID_A0 0x0 2468 #define GLK_REVID_A1 0x1 2469 2470 #define IS_GLK_REVID(dev_priv, since, until) \ 2471 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2472 2473 #define CNL_REVID_A0 0x0 2474 #define CNL_REVID_B0 0x1 2475 #define CNL_REVID_C0 0x2 2476 2477 #define IS_CNL_REVID(p, since, until) \ 2478 (IS_CANNONLAKE(p) && IS_REVID(p, since, until)) 2479 2480 #define ICL_REVID_A0 0x0 2481 #define ICL_REVID_A2 0x1 2482 #define ICL_REVID_B0 0x3 2483 #define ICL_REVID_B2 0x4 2484 #define ICL_REVID_C0 0x5 2485 2486 #define IS_ICL_REVID(p, since, until) \ 2487 (IS_ICELAKE(p) && IS_REVID(p, since, until)) 2488 2489 /* 2490 * The genX designation typically refers to the render engine, so render 2491 * capability related checks should use IS_GEN, while display and other checks 2492 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular 2493 * chips, etc.). 2494 */ 2495 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1))) 2496 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2))) 2497 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3))) 2498 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4))) 2499 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5))) 2500 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6))) 2501 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7))) 2502 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8))) 2503 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9))) 2504 #define IS_GEN11(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(10))) 2505 2506 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) 2507 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv)) 2508 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv)) 2509 2510 #define ENGINE_MASK(id) BIT(id) 2511 #define RENDER_RING ENGINE_MASK(RCS) 2512 #define BSD_RING ENGINE_MASK(VCS) 2513 #define BLT_RING ENGINE_MASK(BCS) 2514 #define VEBOX_RING ENGINE_MASK(VECS) 2515 #define BSD2_RING ENGINE_MASK(VCS2) 2516 #define BSD3_RING ENGINE_MASK(VCS3) 2517 #define BSD4_RING ENGINE_MASK(VCS4) 2518 #define VEBOX2_RING ENGINE_MASK(VECS2) 2519 #define ALL_ENGINES (~0) 2520 2521 #define HAS_ENGINE(dev_priv, id) \ 2522 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id))) 2523 2524 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) 2525 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) 2526 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) 2527 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) 2528 2529 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv) 2530 2531 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc) 2532 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop) 2533 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED)) 2534 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \ 2535 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv)) 2536 2537 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical) 2538 2539 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ 2540 ((dev_priv)->info.has_logical_ring_contexts) 2541 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \ 2542 ((dev_priv)->info.has_logical_ring_elsq) 2543 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \ 2544 ((dev_priv)->info.has_logical_ring_preemption) 2545 2546 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv) 2547 2548 #define USES_PPGTT(dev_priv) (i915_modparams.enable_ppgtt) 2549 #define USES_FULL_PPGTT(dev_priv) (i915_modparams.enable_ppgtt >= 2) 2550 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915_modparams.enable_ppgtt == 3) 2551 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \ 2552 GEM_BUG_ON((sizes) == 0); \ 2553 ((sizes) & ~(dev_priv)->info.page_sizes) == 0; \ 2554 }) 2555 2556 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay) 2557 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ 2558 ((dev_priv)->info.overlay_needs_physical) 2559 2560 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2561 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) 2562 2563 /* WaRsDisableCoarsePowerGating:skl,cnl */ 2564 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 2565 (IS_CANNONLAKE(dev_priv) || \ 2566 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv)) 2567 2568 /* 2569 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts 2570 * even when in MSI mode. This results in spurious interrupt warnings if the 2571 * legacy irq no. is shared with another device. The kernel then disables that 2572 * interrupt source and so prevents the other device from working properly. 2573 * 2574 * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX 2575 * interrupts. 2576 */ 2577 #define HAS_AUX_IRQ(dev_priv) true 2578 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4) 2579 2580 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2581 * rows, which changed the alignment requirements and fence programming. 2582 */ 2583 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \ 2584 !(IS_I915G(dev_priv) || \ 2585 IS_I915GM(dev_priv))) 2586 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv) 2587 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug) 2588 2589 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2) 2590 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc) 2591 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7) 2592 2593 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) 2594 2595 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst) 2596 2597 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi) 2598 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg) 2599 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr) 2600 2601 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6) 2602 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p) 2603 #define HAS_RC6pp(dev_priv) (false) /* HW was never validated */ 2604 2605 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr) 2606 2607 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm) 2608 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc) 2609 2610 #define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc) 2611 2612 /* 2613 * For now, anything with a GuC requires uCode loading, and then supports 2614 * command submission once loaded. But these are logically independent 2615 * properties, so we have separate macros to test them. 2616 */ 2617 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc) 2618 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct) 2619 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2620 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv)) 2621 2622 /* For now, anything with a GuC has also HuC */ 2623 #define HAS_HUC(dev_priv) (HAS_GUC(dev_priv)) 2624 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2625 2626 /* Having a GuC is not the same as using a GuC */ 2627 #define USES_GUC(dev_priv) intel_uc_is_using_guc() 2628 #define USES_GUC_SUBMISSION(dev_priv) intel_uc_is_using_guc_submission() 2629 #define USES_HUC(dev_priv) intel_uc_is_using_huc() 2630 2631 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer) 2632 2633 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu) 2634 2635 #define INTEL_PCH_DEVICE_ID_MASK 0xff80 2636 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2637 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2638 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2639 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2640 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2641 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80 2642 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80 2643 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2644 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2645 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280 2646 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300 2647 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80 2648 #define INTEL_PCH_ICP_DEVICE_ID_TYPE 0x3480 2649 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2650 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2651 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2652 2653 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type) 2654 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id) 2655 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP) 2656 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP) 2657 #define HAS_PCH_CNP_LP(dev_priv) \ 2658 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) 2659 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP) 2660 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT) 2661 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT) 2662 #define HAS_PCH_LPT_LP(dev_priv) \ 2663 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \ 2664 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) 2665 #define HAS_PCH_LPT_H(dev_priv) \ 2666 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \ 2667 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE) 2668 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT) 2669 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX) 2670 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP) 2671 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE) 2672 2673 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display) 2674 2675 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9) 2676 2677 /* DPF == dynamic parity feature */ 2678 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf) 2679 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 2680 2 : HAS_L3_DPF(dev_priv)) 2681 2682 #define GT_FREQUENCY_MULTIPLIER 50 2683 #define GEN9_FREQ_SCALER 3 2684 2685 #include "i915_trace.h" 2686 2687 static inline bool intel_vtd_active(void) 2688 { 2689 #ifdef CONFIG_INTEL_IOMMU 2690 if (intel_iommu_gfx_mapped) 2691 return true; 2692 #endif 2693 return false; 2694 } 2695 2696 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 2697 { 2698 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active(); 2699 } 2700 2701 static inline bool 2702 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv) 2703 { 2704 return IS_BROXTON(dev_priv) && intel_vtd_active(); 2705 } 2706 2707 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, 2708 int enable_ppgtt); 2709 2710 /* i915_drv.c */ 2711 void __printf(3, 4) 2712 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 2713 const char *fmt, ...); 2714 2715 #define i915_report_error(dev_priv, fmt, ...) \ 2716 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 2717 2718 #ifdef CONFIG_COMPAT 2719 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2720 unsigned long arg); 2721 #else 2722 #define i915_compat_ioctl NULL 2723 #endif 2724 extern const struct dev_pm_ops i915_pm_ops; 2725 2726 extern int i915_driver_load(struct pci_dev *pdev, 2727 const struct pci_device_id *ent); 2728 extern void i915_driver_unload(struct drm_device *dev); 2729 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask); 2730 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv); 2731 2732 extern void i915_reset(struct drm_i915_private *i915, 2733 unsigned int stalled_mask, 2734 const char *reason); 2735 extern int i915_reset_engine(struct intel_engine_cs *engine, 2736 const char *reason); 2737 2738 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv); 2739 extern int intel_reset_guc(struct drm_i915_private *dev_priv); 2740 extern int intel_guc_reset_engine(struct intel_guc *guc, 2741 struct intel_engine_cs *engine); 2742 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 2743 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv); 2744 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2745 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2746 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2747 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2748 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2749 2750 int intel_engines_init_mmio(struct drm_i915_private *dev_priv); 2751 int intel_engines_init(struct drm_i915_private *dev_priv); 2752 2753 /* intel_hotplug.c */ 2754 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, 2755 u32 pin_mask, u32 long_mask); 2756 void intel_hpd_init(struct drm_i915_private *dev_priv); 2757 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 2758 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 2759 enum port intel_hpd_pin_to_port(struct drm_i915_private *dev_priv, 2760 enum hpd_pin pin); 2761 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv, 2762 enum port port); 2763 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2764 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2765 2766 /* i915_irq.c */ 2767 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 2768 { 2769 unsigned long delay; 2770 2771 if (unlikely(!i915_modparams.enable_hangcheck)) 2772 return; 2773 2774 /* Don't continually defer the hangcheck so that it is always run at 2775 * least once after work has been scheduled on any ring. Otherwise, 2776 * we will ignore a hung ring if a second ring is kept busy. 2777 */ 2778 2779 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 2780 queue_delayed_work(system_long_wq, 2781 &dev_priv->gpu_error.hangcheck_work, delay); 2782 } 2783 2784 __printf(4, 5) 2785 void i915_handle_error(struct drm_i915_private *dev_priv, 2786 u32 engine_mask, 2787 unsigned long flags, 2788 const char *fmt, ...); 2789 #define I915_ERROR_CAPTURE BIT(0) 2790 2791 extern void intel_irq_init(struct drm_i915_private *dev_priv); 2792 extern void intel_irq_fini(struct drm_i915_private *dev_priv); 2793 int intel_irq_install(struct drm_i915_private *dev_priv); 2794 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 2795 2796 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 2797 { 2798 return dev_priv->gvt; 2799 } 2800 2801 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 2802 { 2803 return dev_priv->vgpu.active; 2804 } 2805 2806 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 2807 enum pipe pipe); 2808 void 2809 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2810 u32 status_mask); 2811 2812 void 2813 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2814 u32 status_mask); 2815 2816 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 2817 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 2818 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 2819 uint32_t mask, 2820 uint32_t bits); 2821 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 2822 uint32_t interrupt_mask, 2823 uint32_t enabled_irq_mask); 2824 static inline void 2825 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2826 { 2827 ilk_update_display_irq(dev_priv, bits, bits); 2828 } 2829 static inline void 2830 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2831 { 2832 ilk_update_display_irq(dev_priv, bits, 0); 2833 } 2834 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 2835 enum pipe pipe, 2836 uint32_t interrupt_mask, 2837 uint32_t enabled_irq_mask); 2838 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 2839 enum pipe pipe, uint32_t bits) 2840 { 2841 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 2842 } 2843 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 2844 enum pipe pipe, uint32_t bits) 2845 { 2846 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 2847 } 2848 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 2849 uint32_t interrupt_mask, 2850 uint32_t enabled_irq_mask); 2851 static inline void 2852 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2853 { 2854 ibx_display_interrupt_update(dev_priv, bits, bits); 2855 } 2856 static inline void 2857 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2858 { 2859 ibx_display_interrupt_update(dev_priv, bits, 0); 2860 } 2861 2862 /* i915_gem.c */ 2863 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 2864 struct drm_file *file_priv); 2865 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 2866 struct drm_file *file_priv); 2867 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 2868 struct drm_file *file_priv); 2869 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 2870 struct drm_file *file_priv); 2871 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2872 struct drm_file *file_priv); 2873 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 2874 struct drm_file *file_priv); 2875 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 2876 struct drm_file *file_priv); 2877 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2878 struct drm_file *file_priv); 2879 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 2880 struct drm_file *file_priv); 2881 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 2882 struct drm_file *file_priv); 2883 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 2884 struct drm_file *file); 2885 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 2886 struct drm_file *file); 2887 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 2888 struct drm_file *file_priv); 2889 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 2890 struct drm_file *file_priv); 2891 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, 2892 struct drm_file *file_priv); 2893 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, 2894 struct drm_file *file_priv); 2895 int i915_gem_init_userptr(struct drm_i915_private *dev_priv); 2896 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv); 2897 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 2898 struct drm_file *file); 2899 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 2900 struct drm_file *file_priv); 2901 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 2902 struct drm_file *file_priv); 2903 void i915_gem_sanitize(struct drm_i915_private *i915); 2904 int i915_gem_init_early(struct drm_i915_private *dev_priv); 2905 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv); 2906 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 2907 int i915_gem_freeze(struct drm_i915_private *dev_priv); 2908 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 2909 2910 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv); 2911 void i915_gem_object_free(struct drm_i915_gem_object *obj); 2912 void i915_gem_object_init(struct drm_i915_gem_object *obj, 2913 const struct drm_i915_gem_object_ops *ops); 2914 struct drm_i915_gem_object * 2915 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size); 2916 struct drm_i915_gem_object * 2917 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 2918 const void *data, size_t size); 2919 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); 2920 void i915_gem_free_object(struct drm_gem_object *obj); 2921 2922 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 2923 { 2924 if (!atomic_read(&i915->mm.free_count)) 2925 return; 2926 2927 /* A single pass should suffice to release all the freed objects (along 2928 * most call paths) , but be a little more paranoid in that freeing 2929 * the objects does take a little amount of time, during which the rcu 2930 * callbacks could have added new objects into the freed list, and 2931 * armed the work again. 2932 */ 2933 do { 2934 rcu_barrier(); 2935 } while (flush_work(&i915->mm.free_work)); 2936 } 2937 2938 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915) 2939 { 2940 /* 2941 * Similar to objects above (see i915_gem_drain_freed-objects), in 2942 * general we have workers that are armed by RCU and then rearm 2943 * themselves in their callbacks. To be paranoid, we need to 2944 * drain the workqueue a second time after waiting for the RCU 2945 * grace period so that we catch work queued via RCU from the first 2946 * pass. As neither drain_workqueue() nor flush_workqueue() report 2947 * a result, we make an assumption that we only don't require more 2948 * than 2 passes to catch all recursive RCU delayed work. 2949 * 2950 */ 2951 int pass = 2; 2952 do { 2953 rcu_barrier(); 2954 drain_workqueue(i915->wq); 2955 } while (--pass); 2956 } 2957 2958 struct i915_vma * __must_check 2959 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 2960 const struct i915_ggtt_view *view, 2961 u64 size, 2962 u64 alignment, 2963 u64 flags); 2964 2965 int i915_gem_object_unbind(struct drm_i915_gem_object *obj); 2966 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 2967 2968 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); 2969 2970 static inline int __sg_page_count(const struct scatterlist *sg) 2971 { 2972 return sg->length >> PAGE_SHIFT; 2973 } 2974 2975 struct scatterlist * 2976 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 2977 unsigned int n, unsigned int *offset); 2978 2979 struct page * 2980 i915_gem_object_get_page(struct drm_i915_gem_object *obj, 2981 unsigned int n); 2982 2983 struct page * 2984 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 2985 unsigned int n); 2986 2987 dma_addr_t 2988 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 2989 unsigned long n); 2990 2991 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 2992 struct sg_table *pages, 2993 unsigned int sg_page_sizes); 2994 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 2995 2996 static inline int __must_check 2997 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 2998 { 2999 might_lock(&obj->mm.lock); 3000 3001 if (atomic_inc_not_zero(&obj->mm.pages_pin_count)) 3002 return 0; 3003 3004 return __i915_gem_object_get_pages(obj); 3005 } 3006 3007 static inline bool 3008 i915_gem_object_has_pages(struct drm_i915_gem_object *obj) 3009 { 3010 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages)); 3011 } 3012 3013 static inline void 3014 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3015 { 3016 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 3017 3018 atomic_inc(&obj->mm.pages_pin_count); 3019 } 3020 3021 static inline bool 3022 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj) 3023 { 3024 return atomic_read(&obj->mm.pages_pin_count); 3025 } 3026 3027 static inline void 3028 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3029 { 3030 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 3031 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 3032 3033 atomic_dec(&obj->mm.pages_pin_count); 3034 } 3035 3036 static inline void 3037 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3038 { 3039 __i915_gem_object_unpin_pages(obj); 3040 } 3041 3042 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */ 3043 I915_MM_NORMAL = 0, 3044 I915_MM_SHRINKER 3045 }; 3046 3047 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 3048 enum i915_mm_subclass subclass); 3049 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj); 3050 3051 enum i915_map_type { 3052 I915_MAP_WB = 0, 3053 I915_MAP_WC, 3054 #define I915_MAP_OVERRIDE BIT(31) 3055 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE, 3056 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE, 3057 }; 3058 3059 /** 3060 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 3061 * @obj: the object to map into kernel address space 3062 * @type: the type of mapping, used to select pgprot_t 3063 * 3064 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 3065 * pages and then returns a contiguous mapping of the backing storage into 3066 * the kernel address space. Based on the @type of mapping, the PTE will be 3067 * set to either WriteBack or WriteCombine (via pgprot_t). 3068 * 3069 * The caller is responsible for calling i915_gem_object_unpin_map() when the 3070 * mapping is no longer required. 3071 * 3072 * Returns the pointer through which to access the mapped object, or an 3073 * ERR_PTR() on error. 3074 */ 3075 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 3076 enum i915_map_type type); 3077 3078 /** 3079 * i915_gem_object_unpin_map - releases an earlier mapping 3080 * @obj: the object to unmap 3081 * 3082 * After pinning the object and mapping its pages, once you are finished 3083 * with your access, call i915_gem_object_unpin_map() to release the pin 3084 * upon the mapping. Once the pin count reaches zero, that mapping may be 3085 * removed. 3086 */ 3087 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 3088 { 3089 i915_gem_object_unpin_pages(obj); 3090 } 3091 3092 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 3093 unsigned int *needs_clflush); 3094 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 3095 unsigned int *needs_clflush); 3096 #define CLFLUSH_BEFORE BIT(0) 3097 #define CLFLUSH_AFTER BIT(1) 3098 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER) 3099 3100 static inline void 3101 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj) 3102 { 3103 i915_gem_object_unpin_pages(obj); 3104 } 3105 3106 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 3107 void i915_vma_move_to_active(struct i915_vma *vma, 3108 struct i915_request *rq, 3109 unsigned int flags); 3110 int i915_gem_dumb_create(struct drm_file *file_priv, 3111 struct drm_device *dev, 3112 struct drm_mode_create_dumb *args); 3113 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3114 uint32_t handle, uint64_t *offset); 3115 int i915_gem_mmap_gtt_version(void); 3116 3117 void i915_gem_track_fb(struct drm_i915_gem_object *old, 3118 struct drm_i915_gem_object *new, 3119 unsigned frontbuffer_bits); 3120 3121 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); 3122 3123 struct i915_request * 3124 i915_gem_find_active_request(struct intel_engine_cs *engine); 3125 3126 static inline bool i915_reset_backoff(struct i915_gpu_error *error) 3127 { 3128 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags)); 3129 } 3130 3131 static inline bool i915_reset_handoff(struct i915_gpu_error *error) 3132 { 3133 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags)); 3134 } 3135 3136 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3137 { 3138 return unlikely(test_bit(I915_WEDGED, &error->flags)); 3139 } 3140 3141 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error) 3142 { 3143 return i915_reset_backoff(error) | i915_terminally_wedged(error); 3144 } 3145 3146 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3147 { 3148 return READ_ONCE(error->reset_count); 3149 } 3150 3151 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error, 3152 struct intel_engine_cs *engine) 3153 { 3154 return READ_ONCE(error->reset_engine_count[engine->id]); 3155 } 3156 3157 struct i915_request * 3158 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine); 3159 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv); 3160 void i915_gem_reset(struct drm_i915_private *dev_priv, 3161 unsigned int stalled_mask); 3162 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine); 3163 void i915_gem_reset_finish(struct drm_i915_private *dev_priv); 3164 void i915_gem_set_wedged(struct drm_i915_private *dev_priv); 3165 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv); 3166 void i915_gem_reset_engine(struct intel_engine_cs *engine, 3167 struct i915_request *request, 3168 bool stalled); 3169 3170 void i915_gem_init_mmio(struct drm_i915_private *i915); 3171 int __must_check i915_gem_init(struct drm_i915_private *dev_priv); 3172 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv); 3173 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv); 3174 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv); 3175 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, 3176 unsigned int flags); 3177 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv); 3178 void i915_gem_resume(struct drm_i915_private *dev_priv); 3179 int i915_gem_fault(struct vm_fault *vmf); 3180 int i915_gem_object_wait(struct drm_i915_gem_object *obj, 3181 unsigned int flags, 3182 long timeout, 3183 struct intel_rps_client *rps); 3184 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 3185 unsigned int flags, 3186 const struct i915_sched_attr *attr); 3187 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX 3188 3189 int __must_check 3190 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write); 3191 int __must_check 3192 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write); 3193 int __must_check 3194 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3195 struct i915_vma * __must_check 3196 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3197 u32 alignment, 3198 const struct i915_ggtt_view *view, 3199 unsigned int flags); 3200 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma); 3201 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3202 int align); 3203 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file); 3204 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3205 3206 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3207 enum i915_cache_level cache_level); 3208 3209 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3210 struct dma_buf *dma_buf); 3211 3212 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3213 struct drm_gem_object *gem_obj, int flags); 3214 3215 static inline struct i915_hw_ppgtt * 3216 i915_vm_to_ppgtt(struct i915_address_space *vm) 3217 { 3218 return container_of(vm, struct i915_hw_ppgtt, base); 3219 } 3220 3221 /* i915_gem_fence_reg.c */ 3222 struct drm_i915_fence_reg * 3223 i915_reserve_fence(struct drm_i915_private *dev_priv); 3224 void i915_unreserve_fence(struct drm_i915_fence_reg *fence); 3225 3226 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv); 3227 void i915_gem_restore_fences(struct drm_i915_private *dev_priv); 3228 3229 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv); 3230 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 3231 struct sg_table *pages); 3232 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 3233 struct sg_table *pages); 3234 3235 static inline struct i915_gem_context * 3236 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id) 3237 { 3238 return idr_find(&file_priv->context_idr, id); 3239 } 3240 3241 static inline struct i915_gem_context * 3242 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3243 { 3244 struct i915_gem_context *ctx; 3245 3246 rcu_read_lock(); 3247 ctx = __i915_gem_context_lookup_rcu(file_priv, id); 3248 if (ctx && !kref_get_unless_zero(&ctx->ref)) 3249 ctx = NULL; 3250 rcu_read_unlock(); 3251 3252 return ctx; 3253 } 3254 3255 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3256 struct drm_file *file); 3257 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3258 struct drm_file *file); 3259 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3260 struct drm_file *file); 3261 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 3262 struct i915_gem_context *ctx, 3263 uint32_t *reg_state); 3264 3265 /* i915_gem_evict.c */ 3266 int __must_check i915_gem_evict_something(struct i915_address_space *vm, 3267 u64 min_size, u64 alignment, 3268 unsigned cache_level, 3269 u64 start, u64 end, 3270 unsigned flags); 3271 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, 3272 struct drm_mm_node *node, 3273 unsigned int flags); 3274 int i915_gem_evict_vm(struct i915_address_space *vm); 3275 3276 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv); 3277 3278 /* belongs in i915_gem_gtt.h */ 3279 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3280 { 3281 wmb(); 3282 if (INTEL_GEN(dev_priv) < 6) 3283 intel_gtt_chipset_flush(); 3284 } 3285 3286 /* i915_gem_stolen.c */ 3287 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3288 struct drm_mm_node *node, u64 size, 3289 unsigned alignment); 3290 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3291 struct drm_mm_node *node, u64 size, 3292 unsigned alignment, u64 start, 3293 u64 end); 3294 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3295 struct drm_mm_node *node); 3296 int i915_gem_init_stolen(struct drm_i915_private *dev_priv); 3297 void i915_gem_cleanup_stolen(struct drm_device *dev); 3298 struct drm_i915_gem_object * 3299 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, 3300 resource_size_t size); 3301 struct drm_i915_gem_object * 3302 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv, 3303 resource_size_t stolen_offset, 3304 resource_size_t gtt_offset, 3305 resource_size_t size); 3306 3307 /* i915_gem_internal.c */ 3308 struct drm_i915_gem_object * 3309 i915_gem_object_create_internal(struct drm_i915_private *dev_priv, 3310 phys_addr_t size); 3311 3312 /* i915_gem_shrinker.c */ 3313 unsigned long i915_gem_shrink(struct drm_i915_private *i915, 3314 unsigned long target, 3315 unsigned long *nr_scanned, 3316 unsigned flags); 3317 #define I915_SHRINK_PURGEABLE 0x1 3318 #define I915_SHRINK_UNBOUND 0x2 3319 #define I915_SHRINK_BOUND 0x4 3320 #define I915_SHRINK_ACTIVE 0x8 3321 #define I915_SHRINK_VMAPS 0x10 3322 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915); 3323 void i915_gem_shrinker_register(struct drm_i915_private *i915); 3324 void i915_gem_shrinker_unregister(struct drm_i915_private *i915); 3325 3326 3327 /* i915_gem_tiling.c */ 3328 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3329 { 3330 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3331 3332 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3333 i915_gem_object_is_tiled(obj); 3334 } 3335 3336 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, 3337 unsigned int tiling, unsigned int stride); 3338 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, 3339 unsigned int tiling, unsigned int stride); 3340 3341 /* i915_debugfs.c */ 3342 #ifdef CONFIG_DEBUG_FS 3343 int i915_debugfs_register(struct drm_i915_private *dev_priv); 3344 int i915_debugfs_connector_add(struct drm_connector *connector); 3345 void intel_display_crc_init(struct drm_i915_private *dev_priv); 3346 #else 3347 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} 3348 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3349 { return 0; } 3350 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {} 3351 #endif 3352 3353 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3354 3355 /* i915_cmd_parser.c */ 3356 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 3357 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine); 3358 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); 3359 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 3360 struct drm_i915_gem_object *batch_obj, 3361 struct drm_i915_gem_object *shadow_batch_obj, 3362 u32 batch_start_offset, 3363 u32 batch_len, 3364 bool is_master); 3365 3366 /* i915_perf.c */ 3367 extern void i915_perf_init(struct drm_i915_private *dev_priv); 3368 extern void i915_perf_fini(struct drm_i915_private *dev_priv); 3369 extern void i915_perf_register(struct drm_i915_private *dev_priv); 3370 extern void i915_perf_unregister(struct drm_i915_private *dev_priv); 3371 3372 /* i915_suspend.c */ 3373 extern int i915_save_state(struct drm_i915_private *dev_priv); 3374 extern int i915_restore_state(struct drm_i915_private *dev_priv); 3375 3376 /* i915_sysfs.c */ 3377 void i915_setup_sysfs(struct drm_i915_private *dev_priv); 3378 void i915_teardown_sysfs(struct drm_i915_private *dev_priv); 3379 3380 /* intel_lpe_audio.c */ 3381 int intel_lpe_audio_init(struct drm_i915_private *dev_priv); 3382 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv); 3383 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv); 3384 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv, 3385 enum pipe pipe, enum port port, 3386 const void *eld, int ls_clock, bool dp_output); 3387 3388 /* intel_i2c.c */ 3389 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv); 3390 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv); 3391 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3392 unsigned int pin); 3393 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter); 3394 3395 extern struct i2c_adapter * 3396 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3397 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3398 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3399 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3400 { 3401 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3402 } 3403 extern void intel_i2c_reset(struct drm_i915_private *dev_priv); 3404 3405 /* intel_bios.c */ 3406 void intel_bios_init(struct drm_i915_private *dev_priv); 3407 void intel_bios_cleanup(struct drm_i915_private *dev_priv); 3408 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3409 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3410 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3411 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3412 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3413 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3414 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3415 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3416 enum port port); 3417 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv, 3418 enum port port); 3419 3420 /* intel_acpi.c */ 3421 #ifdef CONFIG_ACPI 3422 extern void intel_register_dsm_handler(void); 3423 extern void intel_unregister_dsm_handler(void); 3424 #else 3425 static inline void intel_register_dsm_handler(void) { return; } 3426 static inline void intel_unregister_dsm_handler(void) { return; } 3427 #endif /* CONFIG_ACPI */ 3428 3429 /* intel_device_info.c */ 3430 static inline struct intel_device_info * 3431 mkwrite_device_info(struct drm_i915_private *dev_priv) 3432 { 3433 return (struct intel_device_info *)&dev_priv->info; 3434 } 3435 3436 /* modesetting */ 3437 extern void intel_modeset_init_hw(struct drm_device *dev); 3438 extern int intel_modeset_init(struct drm_device *dev); 3439 extern void intel_modeset_cleanup(struct drm_device *dev); 3440 extern int intel_connector_register(struct drm_connector *); 3441 extern void intel_connector_unregister(struct drm_connector *); 3442 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, 3443 bool state); 3444 extern void intel_display_resume(struct drm_device *dev); 3445 extern void i915_redisable_vga(struct drm_i915_private *dev_priv); 3446 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv); 3447 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 3448 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv); 3449 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 3450 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3451 bool enable); 3452 3453 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3454 struct drm_file *file); 3455 3456 /* overlay */ 3457 extern struct intel_overlay_error_state * 3458 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); 3459 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3460 struct intel_overlay_error_state *error); 3461 3462 extern struct intel_display_error_state * 3463 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 3464 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3465 struct intel_display_error_state *error); 3466 3467 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3468 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox, 3469 u32 val, int fast_timeout_us, 3470 int slow_timeout_ms); 3471 #define sandybridge_pcode_write(dev_priv, mbox, val) \ 3472 sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0) 3473 3474 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, 3475 u32 reply_mask, u32 reply, int timeout_base_ms); 3476 3477 /* intel_sideband.c */ 3478 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3479 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3480 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3481 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 3482 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 3483 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3484 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3485 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3486 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3487 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3488 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3489 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 3490 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 3491 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3492 enum intel_sbi_destination destination); 3493 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3494 enum intel_sbi_destination destination); 3495 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3496 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3497 3498 /* intel_dpio_phy.c */ 3499 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 3500 enum dpio_phy *phy, enum dpio_channel *ch); 3501 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv, 3502 enum port port, u32 margin, u32 scale, 3503 u32 enable, u32 deemphasis); 3504 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3505 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3506 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 3507 enum dpio_phy phy); 3508 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 3509 enum dpio_phy phy); 3510 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count); 3511 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 3512 uint8_t lane_lat_optim_mask); 3513 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder); 3514 3515 void chv_set_phy_signal_level(struct intel_encoder *encoder, 3516 u32 deemph_reg_value, u32 margin_reg_value, 3517 bool uniq_trans_scale); 3518 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 3519 const struct intel_crtc_state *crtc_state, 3520 bool reset); 3521 void chv_phy_pre_pll_enable(struct intel_encoder *encoder, 3522 const struct intel_crtc_state *crtc_state); 3523 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3524 const struct intel_crtc_state *crtc_state); 3525 void chv_phy_release_cl2_override(struct intel_encoder *encoder); 3526 void chv_phy_post_pll_disable(struct intel_encoder *encoder, 3527 const struct intel_crtc_state *old_crtc_state); 3528 3529 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 3530 u32 demph_reg_value, u32 preemph_reg_value, 3531 u32 uniqtranscale_reg_value, u32 tx3_demph); 3532 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, 3533 const struct intel_crtc_state *crtc_state); 3534 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3535 const struct intel_crtc_state *crtc_state); 3536 void vlv_phy_reset_lanes(struct intel_encoder *encoder, 3537 const struct intel_crtc_state *old_crtc_state); 3538 3539 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3540 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3541 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv, 3542 const i915_reg_t reg); 3543 3544 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1); 3545 3546 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv, 3547 const i915_reg_t reg) 3548 { 3549 return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000); 3550 } 3551 3552 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 3553 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 3554 3555 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 3556 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 3557 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 3558 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 3559 3560 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 3561 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 3562 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 3563 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 3564 3565 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3566 * will be implemented using 2 32-bit writes in an arbitrary order with 3567 * an arbitrary delay between them. This can cause the hardware to 3568 * act upon the intermediate value, possibly leading to corruption and 3569 * machine death. For this reason we do not support I915_WRITE64, or 3570 * dev_priv->uncore.funcs.mmio_writeq. 3571 * 3572 * When reading a 64-bit value as two 32-bit values, the delay may cause 3573 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that 3574 * occasionally a 64-bit register does not actualy support a full readq 3575 * and must be read using two 32-bit reads. 3576 * 3577 * You have been warned. 3578 */ 3579 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 3580 3581 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 3582 u32 upper, lower, old_upper, loop = 0; \ 3583 upper = I915_READ(upper_reg); \ 3584 do { \ 3585 old_upper = upper; \ 3586 lower = I915_READ(lower_reg); \ 3587 upper = I915_READ(upper_reg); \ 3588 } while (upper != old_upper && loop++ < 2); \ 3589 (u64)upper << 32 | lower; }) 3590 3591 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 3592 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 3593 3594 #define __raw_read(x, s) \ 3595 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \ 3596 i915_reg_t reg) \ 3597 { \ 3598 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3599 } 3600 3601 #define __raw_write(x, s) \ 3602 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \ 3603 i915_reg_t reg, uint##x##_t val) \ 3604 { \ 3605 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3606 } 3607 __raw_read(8, b) 3608 __raw_read(16, w) 3609 __raw_read(32, l) 3610 __raw_read(64, q) 3611 3612 __raw_write(8, b) 3613 __raw_write(16, w) 3614 __raw_write(32, l) 3615 __raw_write(64, q) 3616 3617 #undef __raw_read 3618 #undef __raw_write 3619 3620 /* These are untraced mmio-accessors that are only valid to be used inside 3621 * critical sections, such as inside IRQ handlers, where forcewake is explicitly 3622 * controlled. 3623 * 3624 * Think twice, and think again, before using these. 3625 * 3626 * As an example, these accessors can possibly be used between: 3627 * 3628 * spin_lock_irq(&dev_priv->uncore.lock); 3629 * intel_uncore_forcewake_get__locked(); 3630 * 3631 * and 3632 * 3633 * intel_uncore_forcewake_put__locked(); 3634 * spin_unlock_irq(&dev_priv->uncore.lock); 3635 * 3636 * 3637 * Note: some registers may not need forcewake held, so 3638 * intel_uncore_forcewake_{get,put} can be omitted, see 3639 * intel_uncore_forcewake_for_reg(). 3640 * 3641 * Certain architectures will die if the same cacheline is concurrently accessed 3642 * by different clients (e.g. on Ivybridge). Access to registers should 3643 * therefore generally be serialised, by either the dev_priv->uncore.lock or 3644 * a more localised lock guarding all access to that bank of registers. 3645 */ 3646 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 3647 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 3648 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) 3649 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 3650 3651 /* "Broadcast RGB" property */ 3652 #define INTEL_BROADCAST_RGB_AUTO 0 3653 #define INTEL_BROADCAST_RGB_FULL 1 3654 #define INTEL_BROADCAST_RGB_LIMITED 2 3655 3656 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) 3657 { 3658 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3659 return VLV_VGACNTRL; 3660 else if (INTEL_GEN(dev_priv) >= 5) 3661 return CPU_VGACNTRL; 3662 else 3663 return VGACNTRL; 3664 } 3665 3666 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 3667 { 3668 unsigned long j = msecs_to_jiffies(m); 3669 3670 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3671 } 3672 3673 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 3674 { 3675 /* nsecs_to_jiffies64() does not guard against overflow */ 3676 if (NSEC_PER_SEC % HZ && 3677 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ) 3678 return MAX_JIFFY_OFFSET; 3679 3680 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 3681 } 3682 3683 static inline unsigned long 3684 timespec_to_jiffies_timeout(const struct timespec *value) 3685 { 3686 unsigned long j = timespec_to_jiffies(value); 3687 3688 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3689 } 3690 3691 /* 3692 * If you need to wait X milliseconds between events A and B, but event B 3693 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 3694 * when event A happened, then just before event B you call this function and 3695 * pass the timestamp as the first argument, and X as the second argument. 3696 */ 3697 static inline void 3698 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 3699 { 3700 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 3701 3702 /* 3703 * Don't re-read the value of "jiffies" every time since it may change 3704 * behind our back and break the math. 3705 */ 3706 tmp_jiffies = jiffies; 3707 target_jiffies = timestamp_jiffies + 3708 msecs_to_jiffies_timeout(to_wait_ms); 3709 3710 if (time_after(target_jiffies, tmp_jiffies)) { 3711 remaining_jiffies = target_jiffies - tmp_jiffies; 3712 while (remaining_jiffies) 3713 remaining_jiffies = 3714 schedule_timeout_uninterruptible(remaining_jiffies); 3715 } 3716 } 3717 3718 static inline bool 3719 __i915_request_irq_complete(const struct i915_request *rq) 3720 { 3721 struct intel_engine_cs *engine = rq->engine; 3722 u32 seqno; 3723 3724 /* Note that the engine may have wrapped around the seqno, and 3725 * so our request->global_seqno will be ahead of the hardware, 3726 * even though it completed the request before wrapping. We catch 3727 * this by kicking all the waiters before resetting the seqno 3728 * in hardware, and also signal the fence. 3729 */ 3730 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 3731 return true; 3732 3733 /* The request was dequeued before we were awoken. We check after 3734 * inspecting the hw to confirm that this was the same request 3735 * that generated the HWS update. The memory barriers within 3736 * the request execution are sufficient to ensure that a check 3737 * after reading the value from hw matches this request. 3738 */ 3739 seqno = i915_request_global_seqno(rq); 3740 if (!seqno) 3741 return false; 3742 3743 /* Before we do the heavier coherent read of the seqno, 3744 * check the value (hopefully) in the CPU cacheline. 3745 */ 3746 if (__i915_request_completed(rq, seqno)) 3747 return true; 3748 3749 /* Ensure our read of the seqno is coherent so that we 3750 * do not "miss an interrupt" (i.e. if this is the last 3751 * request and the seqno write from the GPU is not visible 3752 * by the time the interrupt fires, we will see that the 3753 * request is incomplete and go back to sleep awaiting 3754 * another interrupt that will never come.) 3755 * 3756 * Strictly, we only need to do this once after an interrupt, 3757 * but it is easier and safer to do it every time the waiter 3758 * is woken. 3759 */ 3760 if (engine->irq_seqno_barrier && 3761 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) { 3762 struct intel_breadcrumbs *b = &engine->breadcrumbs; 3763 3764 /* The ordering of irq_posted versus applying the barrier 3765 * is crucial. The clearing of the current irq_posted must 3766 * be visible before we perform the barrier operation, 3767 * such that if a subsequent interrupt arrives, irq_posted 3768 * is reasserted and our task rewoken (which causes us to 3769 * do another __i915_request_irq_complete() immediately 3770 * and reapply the barrier). Conversely, if the clear 3771 * occurs after the barrier, then an interrupt that arrived 3772 * whilst we waited on the barrier would not trigger a 3773 * barrier on the next pass, and the read may not see the 3774 * seqno update. 3775 */ 3776 engine->irq_seqno_barrier(engine); 3777 3778 /* If we consume the irq, but we are no longer the bottom-half, 3779 * the real bottom-half may not have serialised their own 3780 * seqno check with the irq-barrier (i.e. may have inspected 3781 * the seqno before we believe it coherent since they see 3782 * irq_posted == false but we are still running). 3783 */ 3784 spin_lock_irq(&b->irq_lock); 3785 if (b->irq_wait && b->irq_wait->tsk != current) 3786 /* Note that if the bottom-half is changed as we 3787 * are sending the wake-up, the new bottom-half will 3788 * be woken by whomever made the change. We only have 3789 * to worry about when we steal the irq-posted for 3790 * ourself. 3791 */ 3792 wake_up_process(b->irq_wait->tsk); 3793 spin_unlock_irq(&b->irq_lock); 3794 3795 if (__i915_request_completed(rq, seqno)) 3796 return true; 3797 } 3798 3799 return false; 3800 } 3801 3802 void i915_memcpy_init_early(struct drm_i915_private *dev_priv); 3803 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len); 3804 3805 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment, 3806 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot 3807 * perform the operation. To check beforehand, pass in the parameters to 3808 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits, 3809 * you only need to pass in the minor offsets, page-aligned pointers are 3810 * always valid. 3811 * 3812 * For just checking for SSE4.1, in the foreknowledge that the future use 3813 * will be correctly aligned, just use i915_has_memcpy_from_wc(). 3814 */ 3815 #define i915_can_memcpy_from_wc(dst, src, len) \ 3816 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0) 3817 3818 #define i915_has_memcpy_from_wc() \ 3819 i915_memcpy_from_wc(NULL, NULL, 0) 3820 3821 /* i915_mm.c */ 3822 int remap_io_mapping(struct vm_area_struct *vma, 3823 unsigned long addr, unsigned long pfn, unsigned long size, 3824 struct io_mapping *iomap); 3825 3826 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915) 3827 { 3828 if (INTEL_GEN(i915) >= 10) 3829 return CNL_HWS_CSB_WRITE_INDEX; 3830 else 3831 return I915_HWS_CSB_WRITE_INDEX; 3832 } 3833 3834 #endif 3835