xref: /openbmc/linux/drivers/gpu/drm/i915/i915_drv.h (revision 5d0e4d78)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46 
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53 
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57 
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64 
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73 
74 #include "i915_vma.h"
75 
76 #include "intel_gvt.h"
77 
78 /* General customization:
79  */
80 
81 #define DRIVER_NAME		"i915"
82 #define DRIVER_DESC		"Intel Graphics"
83 #define DRIVER_DATE		"20170619"
84 #define DRIVER_TIMESTAMP	1497857498
85 
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88  * which may not necessarily be a user visible problem.  This will either
89  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90  * enable distros and users to tailor their preferred amount of i915 abrt
91  * spam.
92  */
93 #define I915_STATE_WARN(condition, format...) ({			\
94 	int __ret_warn_on = !!(condition);				\
95 	if (unlikely(__ret_warn_on))					\
96 		if (!WARN(i915.verbose_state_checks, format))		\
97 			DRM_ERROR(format);				\
98 	unlikely(__ret_warn_on);					\
99 })
100 
101 #define I915_STATE_WARN_ON(x)						\
102 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103 
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 	__i915_inject_load_failure(__func__, __LINE__)
107 
108 typedef struct {
109 	uint32_t val;
110 } uint_fixed_16_16_t;
111 
112 #define FP_16_16_MAX ({ \
113 	uint_fixed_16_16_t fp; \
114 	fp.val = UINT_MAX; \
115 	fp; \
116 })
117 
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 	if (val.val == 0)
121 		return true;
122 	return false;
123 }
124 
125 static inline uint_fixed_16_16_t u32_to_fixed_16_16(uint32_t val)
126 {
127 	uint_fixed_16_16_t fp;
128 
129 	WARN_ON(val >> 16);
130 
131 	fp.val = val << 16;
132 	return fp;
133 }
134 
135 static inline uint32_t fixed_16_16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 	return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139 
140 static inline uint32_t fixed_16_16_to_u32(uint_fixed_16_16_t fp)
141 {
142 	return fp.val >> 16;
143 }
144 
145 static inline uint_fixed_16_16_t min_fixed_16_16(uint_fixed_16_16_t min1,
146 						 uint_fixed_16_16_t min2)
147 {
148 	uint_fixed_16_16_t min;
149 
150 	min.val = min(min1.val, min2.val);
151 	return min;
152 }
153 
154 static inline uint_fixed_16_16_t max_fixed_16_16(uint_fixed_16_16_t max1,
155 						 uint_fixed_16_16_t max2)
156 {
157 	uint_fixed_16_16_t max;
158 
159 	max.val = max(max1.val, max2.val);
160 	return max;
161 }
162 
163 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
164 					    uint_fixed_16_16_t d)
165 {
166 	return DIV_ROUND_UP(val.val, d.val);
167 }
168 
169 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
170 						uint_fixed_16_16_t mul)
171 {
172 	uint64_t intermediate_val;
173 	uint32_t result;
174 
175 	intermediate_val = (uint64_t) val * mul.val;
176 	intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
177 	WARN_ON(intermediate_val >> 32);
178 	result = clamp_t(uint32_t, intermediate_val, 0, ~0);
179 	return result;
180 }
181 
182 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
183 					     uint_fixed_16_16_t mul)
184 {
185 	uint64_t intermediate_val;
186 	uint_fixed_16_16_t fp;
187 
188 	intermediate_val = (uint64_t) val.val * mul.val;
189 	intermediate_val = intermediate_val >> 16;
190 	WARN_ON(intermediate_val >> 32);
191 	fp.val = clamp_t(uint32_t, intermediate_val, 0, ~0);
192 	return fp;
193 }
194 
195 static inline uint_fixed_16_16_t fixed_16_16_div(uint32_t val, uint32_t d)
196 {
197 	uint_fixed_16_16_t fp, res;
198 
199 	fp = u32_to_fixed_16_16(val);
200 	res.val = DIV_ROUND_UP(fp.val, d);
201 	return res;
202 }
203 
204 static inline uint_fixed_16_16_t fixed_16_16_div_u64(uint32_t val, uint32_t d)
205 {
206 	uint_fixed_16_16_t res;
207 	uint64_t interm_val;
208 
209 	interm_val = (uint64_t)val << 16;
210 	interm_val = DIV_ROUND_UP_ULL(interm_val, d);
211 	WARN_ON(interm_val >> 32);
212 	res.val = (uint32_t) interm_val;
213 
214 	return res;
215 }
216 
217 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
218 						uint_fixed_16_16_t d)
219 {
220 	uint64_t interm_val;
221 
222 	interm_val = (uint64_t)val << 16;
223 	interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
224 	WARN_ON(interm_val >> 32);
225 	return clamp_t(uint32_t, interm_val, 0, ~0);
226 }
227 
228 static inline uint_fixed_16_16_t mul_u32_fixed_16_16(uint32_t val,
229 						     uint_fixed_16_16_t mul)
230 {
231 	uint64_t intermediate_val;
232 	uint_fixed_16_16_t fp;
233 
234 	intermediate_val = (uint64_t) val * mul.val;
235 	WARN_ON(intermediate_val >> 32);
236 	fp.val = (uint32_t) intermediate_val;
237 	return fp;
238 }
239 
240 static inline const char *yesno(bool v)
241 {
242 	return v ? "yes" : "no";
243 }
244 
245 static inline const char *onoff(bool v)
246 {
247 	return v ? "on" : "off";
248 }
249 
250 static inline const char *enableddisabled(bool v)
251 {
252 	return v ? "enabled" : "disabled";
253 }
254 
255 enum pipe {
256 	INVALID_PIPE = -1,
257 	PIPE_A = 0,
258 	PIPE_B,
259 	PIPE_C,
260 	_PIPE_EDP,
261 	I915_MAX_PIPES = _PIPE_EDP
262 };
263 #define pipe_name(p) ((p) + 'A')
264 
265 enum transcoder {
266 	TRANSCODER_A = 0,
267 	TRANSCODER_B,
268 	TRANSCODER_C,
269 	TRANSCODER_EDP,
270 	TRANSCODER_DSI_A,
271 	TRANSCODER_DSI_C,
272 	I915_MAX_TRANSCODERS
273 };
274 
275 static inline const char *transcoder_name(enum transcoder transcoder)
276 {
277 	switch (transcoder) {
278 	case TRANSCODER_A:
279 		return "A";
280 	case TRANSCODER_B:
281 		return "B";
282 	case TRANSCODER_C:
283 		return "C";
284 	case TRANSCODER_EDP:
285 		return "EDP";
286 	case TRANSCODER_DSI_A:
287 		return "DSI A";
288 	case TRANSCODER_DSI_C:
289 		return "DSI C";
290 	default:
291 		return "<invalid>";
292 	}
293 }
294 
295 static inline bool transcoder_is_dsi(enum transcoder transcoder)
296 {
297 	return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
298 }
299 
300 /*
301  * Global legacy plane identifier. Valid only for primary/sprite
302  * planes on pre-g4x, and only for primary planes on g4x+.
303  */
304 enum plane {
305 	PLANE_A,
306 	PLANE_B,
307 	PLANE_C,
308 };
309 #define plane_name(p) ((p) + 'A')
310 
311 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
312 
313 /*
314  * Per-pipe plane identifier.
315  * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
316  * number of planes per CRTC.  Not all platforms really have this many planes,
317  * which means some arrays of size I915_MAX_PLANES may have unused entries
318  * between the topmost sprite plane and the cursor plane.
319  *
320  * This is expected to be passed to various register macros
321  * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
322  */
323 enum plane_id {
324 	PLANE_PRIMARY,
325 	PLANE_SPRITE0,
326 	PLANE_SPRITE1,
327 	PLANE_SPRITE2,
328 	PLANE_CURSOR,
329 	I915_MAX_PLANES,
330 };
331 
332 #define for_each_plane_id_on_crtc(__crtc, __p) \
333 	for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
334 		for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
335 
336 enum port {
337 	PORT_NONE = -1,
338 	PORT_A = 0,
339 	PORT_B,
340 	PORT_C,
341 	PORT_D,
342 	PORT_E,
343 	I915_MAX_PORTS
344 };
345 #define port_name(p) ((p) + 'A')
346 
347 #define I915_NUM_PHYS_VLV 2
348 
349 enum dpio_channel {
350 	DPIO_CH0,
351 	DPIO_CH1
352 };
353 
354 enum dpio_phy {
355 	DPIO_PHY0,
356 	DPIO_PHY1,
357 	DPIO_PHY2,
358 };
359 
360 enum intel_display_power_domain {
361 	POWER_DOMAIN_PIPE_A,
362 	POWER_DOMAIN_PIPE_B,
363 	POWER_DOMAIN_PIPE_C,
364 	POWER_DOMAIN_PIPE_A_PANEL_FITTER,
365 	POWER_DOMAIN_PIPE_B_PANEL_FITTER,
366 	POWER_DOMAIN_PIPE_C_PANEL_FITTER,
367 	POWER_DOMAIN_TRANSCODER_A,
368 	POWER_DOMAIN_TRANSCODER_B,
369 	POWER_DOMAIN_TRANSCODER_C,
370 	POWER_DOMAIN_TRANSCODER_EDP,
371 	POWER_DOMAIN_TRANSCODER_DSI_A,
372 	POWER_DOMAIN_TRANSCODER_DSI_C,
373 	POWER_DOMAIN_PORT_DDI_A_LANES,
374 	POWER_DOMAIN_PORT_DDI_B_LANES,
375 	POWER_DOMAIN_PORT_DDI_C_LANES,
376 	POWER_DOMAIN_PORT_DDI_D_LANES,
377 	POWER_DOMAIN_PORT_DDI_E_LANES,
378 	POWER_DOMAIN_PORT_DDI_A_IO,
379 	POWER_DOMAIN_PORT_DDI_B_IO,
380 	POWER_DOMAIN_PORT_DDI_C_IO,
381 	POWER_DOMAIN_PORT_DDI_D_IO,
382 	POWER_DOMAIN_PORT_DDI_E_IO,
383 	POWER_DOMAIN_PORT_DSI,
384 	POWER_DOMAIN_PORT_CRT,
385 	POWER_DOMAIN_PORT_OTHER,
386 	POWER_DOMAIN_VGA,
387 	POWER_DOMAIN_AUDIO,
388 	POWER_DOMAIN_PLLS,
389 	POWER_DOMAIN_AUX_A,
390 	POWER_DOMAIN_AUX_B,
391 	POWER_DOMAIN_AUX_C,
392 	POWER_DOMAIN_AUX_D,
393 	POWER_DOMAIN_GMBUS,
394 	POWER_DOMAIN_MODESET,
395 	POWER_DOMAIN_INIT,
396 
397 	POWER_DOMAIN_NUM,
398 };
399 
400 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
401 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
402 		((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
403 #define POWER_DOMAIN_TRANSCODER(tran) \
404 	((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
405 	 (tran) + POWER_DOMAIN_TRANSCODER_A)
406 
407 enum hpd_pin {
408 	HPD_NONE = 0,
409 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
410 	HPD_CRT,
411 	HPD_SDVO_B,
412 	HPD_SDVO_C,
413 	HPD_PORT_A,
414 	HPD_PORT_B,
415 	HPD_PORT_C,
416 	HPD_PORT_D,
417 	HPD_PORT_E,
418 	HPD_NUM_PINS
419 };
420 
421 #define for_each_hpd_pin(__pin) \
422 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
423 
424 #define HPD_STORM_DEFAULT_THRESHOLD 5
425 
426 struct i915_hotplug {
427 	struct work_struct hotplug_work;
428 
429 	struct {
430 		unsigned long last_jiffies;
431 		int count;
432 		enum {
433 			HPD_ENABLED = 0,
434 			HPD_DISABLED = 1,
435 			HPD_MARK_DISABLED = 2
436 		} state;
437 	} stats[HPD_NUM_PINS];
438 	u32 event_bits;
439 	struct delayed_work reenable_work;
440 
441 	struct intel_digital_port *irq_port[I915_MAX_PORTS];
442 	u32 long_port_mask;
443 	u32 short_port_mask;
444 	struct work_struct dig_port_work;
445 
446 	struct work_struct poll_init_work;
447 	bool poll_enabled;
448 
449 	unsigned int hpd_storm_threshold;
450 
451 	/*
452 	 * if we get a HPD irq from DP and a HPD irq from non-DP
453 	 * the non-DP HPD could block the workqueue on a mode config
454 	 * mutex getting, that userspace may have taken. However
455 	 * userspace is waiting on the DP workqueue to run which is
456 	 * blocked behind the non-DP one.
457 	 */
458 	struct workqueue_struct *dp_wq;
459 };
460 
461 #define I915_GEM_GPU_DOMAINS \
462 	(I915_GEM_DOMAIN_RENDER | \
463 	 I915_GEM_DOMAIN_SAMPLER | \
464 	 I915_GEM_DOMAIN_COMMAND | \
465 	 I915_GEM_DOMAIN_INSTRUCTION | \
466 	 I915_GEM_DOMAIN_VERTEX)
467 
468 #define for_each_pipe(__dev_priv, __p) \
469 	for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
470 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
471 	for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
472 		for_each_if ((__mask) & (1 << (__p)))
473 #define for_each_universal_plane(__dev_priv, __pipe, __p)		\
474 	for ((__p) = 0;							\
475 	     (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1;	\
476 	     (__p)++)
477 #define for_each_sprite(__dev_priv, __p, __s)				\
478 	for ((__s) = 0;							\
479 	     (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)];	\
480 	     (__s)++)
481 
482 #define for_each_port_masked(__port, __ports_mask) \
483 	for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++)	\
484 		for_each_if ((__ports_mask) & (1 << (__port)))
485 
486 #define for_each_crtc(dev, crtc) \
487 	list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
488 
489 #define for_each_intel_plane(dev, intel_plane) \
490 	list_for_each_entry(intel_plane,			\
491 			    &(dev)->mode_config.plane_list,	\
492 			    base.head)
493 
494 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask)		\
495 	list_for_each_entry(intel_plane,				\
496 			    &(dev)->mode_config.plane_list,		\
497 			    base.head)					\
498 		for_each_if ((plane_mask) &				\
499 			     (1 << drm_plane_index(&intel_plane->base)))
500 
501 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane)	\
502 	list_for_each_entry(intel_plane,				\
503 			    &(dev)->mode_config.plane_list,		\
504 			    base.head)					\
505 		for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
506 
507 #define for_each_intel_crtc(dev, intel_crtc)				\
508 	list_for_each_entry(intel_crtc,					\
509 			    &(dev)->mode_config.crtc_list,		\
510 			    base.head)
511 
512 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask)		\
513 	list_for_each_entry(intel_crtc,					\
514 			    &(dev)->mode_config.crtc_list,		\
515 			    base.head)					\
516 		for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
517 
518 #define for_each_intel_encoder(dev, intel_encoder)		\
519 	list_for_each_entry(intel_encoder,			\
520 			    &(dev)->mode_config.encoder_list,	\
521 			    base.head)
522 
523 #define for_each_intel_connector_iter(intel_connector, iter) \
524 	while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
525 
526 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
527 	list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
528 		for_each_if ((intel_encoder)->base.crtc == (__crtc))
529 
530 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
531 	list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
532 		for_each_if ((intel_connector)->base.encoder == (__encoder))
533 
534 #define for_each_power_domain(domain, mask)				\
535 	for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)	\
536 		for_each_if (BIT_ULL(domain) & (mask))
537 
538 #define for_each_power_well(__dev_priv, __power_well)				\
539 	for ((__power_well) = (__dev_priv)->power_domains.power_wells;	\
540 	     (__power_well) - (__dev_priv)->power_domains.power_wells <	\
541 		(__dev_priv)->power_domains.power_well_count;		\
542 	     (__power_well)++)
543 
544 #define for_each_power_well_rev(__dev_priv, __power_well)			\
545 	for ((__power_well) = (__dev_priv)->power_domains.power_wells +		\
546 			      (__dev_priv)->power_domains.power_well_count - 1;	\
547 	     (__power_well) - (__dev_priv)->power_domains.power_wells >= 0;	\
548 	     (__power_well)--)
549 
550 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask)	\
551 	for_each_power_well(__dev_priv, __power_well)				\
552 		for_each_if ((__power_well)->domains & (__domain_mask))
553 
554 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
555 	for_each_power_well_rev(__dev_priv, __power_well)		        \
556 		for_each_if ((__power_well)->domains & (__domain_mask))
557 
558 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
559 	for ((__i) = 0; \
560 	     (__i) < (__state)->base.dev->mode_config.num_total_plane && \
561 		     ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
562 		      (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
563 	     (__i)++) \
564 		for_each_if (plane_state)
565 
566 struct drm_i915_private;
567 struct i915_mm_struct;
568 struct i915_mmu_object;
569 
570 struct drm_i915_file_private {
571 	struct drm_i915_private *dev_priv;
572 	struct drm_file *file;
573 
574 	struct {
575 		spinlock_t lock;
576 		struct list_head request_list;
577 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
578  * chosen to prevent the CPU getting more than a frame ahead of the GPU
579  * (when using lax throttling for the frontbuffer). We also use it to
580  * offer free GPU waitboosts for severely congested workloads.
581  */
582 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
583 	} mm;
584 	struct idr context_idr;
585 
586 	struct intel_rps_client {
587 		struct list_head link;
588 		unsigned boosts;
589 	} rps;
590 
591 	unsigned int bsd_engine;
592 
593 /* Client can have a maximum of 3 contexts banned before
594  * it is denied of creating new contexts. As one context
595  * ban needs 4 consecutive hangs, and more if there is
596  * progress in between, this is a last resort stop gap measure
597  * to limit the badly behaving clients access to gpu.
598  */
599 #define I915_MAX_CLIENT_CONTEXT_BANS 3
600 	int context_bans;
601 };
602 
603 /* Used by dp and fdi links */
604 struct intel_link_m_n {
605 	uint32_t	tu;
606 	uint32_t	gmch_m;
607 	uint32_t	gmch_n;
608 	uint32_t	link_m;
609 	uint32_t	link_n;
610 };
611 
612 void intel_link_compute_m_n(int bpp, int nlanes,
613 			    int pixel_clock, int link_clock,
614 			    struct intel_link_m_n *m_n,
615 			    bool reduce_m_n);
616 
617 /* Interface history:
618  *
619  * 1.1: Original.
620  * 1.2: Add Power Management
621  * 1.3: Add vblank support
622  * 1.4: Fix cmdbuffer path, add heap destroy
623  * 1.5: Add vblank pipe configuration
624  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
625  *      - Support vertical blank on secondary display pipe
626  */
627 #define DRIVER_MAJOR		1
628 #define DRIVER_MINOR		6
629 #define DRIVER_PATCHLEVEL	0
630 
631 struct opregion_header;
632 struct opregion_acpi;
633 struct opregion_swsci;
634 struct opregion_asle;
635 
636 struct intel_opregion {
637 	struct opregion_header *header;
638 	struct opregion_acpi *acpi;
639 	struct opregion_swsci *swsci;
640 	u32 swsci_gbda_sub_functions;
641 	u32 swsci_sbcb_sub_functions;
642 	struct opregion_asle *asle;
643 	void *rvda;
644 	const void *vbt;
645 	u32 vbt_size;
646 	u32 *lid_state;
647 	struct work_struct asle_work;
648 };
649 #define OPREGION_SIZE            (8*1024)
650 
651 struct intel_overlay;
652 struct intel_overlay_error_state;
653 
654 struct sdvo_device_mapping {
655 	u8 initialized;
656 	u8 dvo_port;
657 	u8 slave_addr;
658 	u8 dvo_wiring;
659 	u8 i2c_pin;
660 	u8 ddc_pin;
661 };
662 
663 struct intel_connector;
664 struct intel_encoder;
665 struct intel_atomic_state;
666 struct intel_crtc_state;
667 struct intel_initial_plane_config;
668 struct intel_crtc;
669 struct intel_limit;
670 struct dpll;
671 struct intel_cdclk_state;
672 
673 struct drm_i915_display_funcs {
674 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
675 			  struct intel_cdclk_state *cdclk_state);
676 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
677 			  const struct intel_cdclk_state *cdclk_state);
678 	int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
679 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
680 	int (*compute_intermediate_wm)(struct drm_device *dev,
681 				       struct intel_crtc *intel_crtc,
682 				       struct intel_crtc_state *newstate);
683 	void (*initial_watermarks)(struct intel_atomic_state *state,
684 				   struct intel_crtc_state *cstate);
685 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
686 					 struct intel_crtc_state *cstate);
687 	void (*optimize_watermarks)(struct intel_atomic_state *state,
688 				    struct intel_crtc_state *cstate);
689 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
690 	void (*update_wm)(struct intel_crtc *crtc);
691 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
692 	/* Returns the active state of the crtc, and if the crtc is active,
693 	 * fills out the pipe-config with the hw state. */
694 	bool (*get_pipe_config)(struct intel_crtc *,
695 				struct intel_crtc_state *);
696 	void (*get_initial_plane_config)(struct intel_crtc *,
697 					 struct intel_initial_plane_config *);
698 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
699 				  struct intel_crtc_state *crtc_state);
700 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
701 			    struct drm_atomic_state *old_state);
702 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
703 			     struct drm_atomic_state *old_state);
704 	void (*update_crtcs)(struct drm_atomic_state *state,
705 			     unsigned int *crtc_vblank_mask);
706 	void (*audio_codec_enable)(struct drm_connector *connector,
707 				   struct intel_encoder *encoder,
708 				   const struct drm_display_mode *adjusted_mode);
709 	void (*audio_codec_disable)(struct intel_encoder *encoder);
710 	void (*fdi_link_train)(struct intel_crtc *crtc,
711 			       const struct intel_crtc_state *crtc_state);
712 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
713 	int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
714 			  struct drm_framebuffer *fb,
715 			  struct drm_i915_gem_object *obj,
716 			  struct drm_i915_gem_request *req,
717 			  uint32_t flags);
718 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
719 	/* clock updates for mode set */
720 	/* cursor updates */
721 	/* render clock increase/decrease */
722 	/* display clock increase/decrease */
723 	/* pll clock increase/decrease */
724 
725 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
726 	void (*load_luts)(struct drm_crtc_state *crtc_state);
727 };
728 
729 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
730 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
731 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
732 
733 struct intel_csr {
734 	struct work_struct work;
735 	const char *fw_path;
736 	uint32_t *dmc_payload;
737 	uint32_t dmc_fw_size;
738 	uint32_t version;
739 	uint32_t mmio_count;
740 	i915_reg_t mmioaddr[8];
741 	uint32_t mmiodata[8];
742 	uint32_t dc_state;
743 	uint32_t allowed_dc_mask;
744 };
745 
746 #define DEV_INFO_FOR_EACH_FLAG(func) \
747 	func(is_mobile); \
748 	func(is_lp); \
749 	func(is_alpha_support); \
750 	/* Keep has_* in alphabetical order */ \
751 	func(has_64bit_reloc); \
752 	func(has_aliasing_ppgtt); \
753 	func(has_csr); \
754 	func(has_ddi); \
755 	func(has_dp_mst); \
756 	func(has_fbc); \
757 	func(has_fpga_dbg); \
758 	func(has_full_ppgtt); \
759 	func(has_full_48bit_ppgtt); \
760 	func(has_gmbus_irq); \
761 	func(has_gmch_display); \
762 	func(has_guc); \
763 	func(has_guc_ct); \
764 	func(has_hotplug); \
765 	func(has_l3_dpf); \
766 	func(has_llc); \
767 	func(has_logical_ring_contexts); \
768 	func(has_overlay); \
769 	func(has_pipe_cxsr); \
770 	func(has_pooled_eu); \
771 	func(has_psr); \
772 	func(has_rc6); \
773 	func(has_rc6p); \
774 	func(has_resource_streamer); \
775 	func(has_runtime_pm); \
776 	func(has_snoop); \
777 	func(unfenced_needs_alignment); \
778 	func(cursor_needs_physical); \
779 	func(hws_needs_physical); \
780 	func(overlay_needs_physical); \
781 	func(supports_tv);
782 
783 struct sseu_dev_info {
784 	u8 slice_mask;
785 	u8 subslice_mask;
786 	u8 eu_total;
787 	u8 eu_per_subslice;
788 	u8 min_eu_in_pool;
789 	/* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
790 	u8 subslice_7eu[3];
791 	u8 has_slice_pg:1;
792 	u8 has_subslice_pg:1;
793 	u8 has_eu_pg:1;
794 };
795 
796 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
797 {
798 	return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
799 }
800 
801 /* Keep in gen based order, and chronological order within a gen */
802 enum intel_platform {
803 	INTEL_PLATFORM_UNINITIALIZED = 0,
804 	INTEL_I830,
805 	INTEL_I845G,
806 	INTEL_I85X,
807 	INTEL_I865G,
808 	INTEL_I915G,
809 	INTEL_I915GM,
810 	INTEL_I945G,
811 	INTEL_I945GM,
812 	INTEL_G33,
813 	INTEL_PINEVIEW,
814 	INTEL_I965G,
815 	INTEL_I965GM,
816 	INTEL_G45,
817 	INTEL_GM45,
818 	INTEL_IRONLAKE,
819 	INTEL_SANDYBRIDGE,
820 	INTEL_IVYBRIDGE,
821 	INTEL_VALLEYVIEW,
822 	INTEL_HASWELL,
823 	INTEL_BROADWELL,
824 	INTEL_CHERRYVIEW,
825 	INTEL_SKYLAKE,
826 	INTEL_BROXTON,
827 	INTEL_KABYLAKE,
828 	INTEL_GEMINILAKE,
829 	INTEL_COFFEELAKE,
830 	INTEL_CANNONLAKE,
831 	INTEL_MAX_PLATFORMS
832 };
833 
834 struct intel_device_info {
835 	u32 display_mmio_offset;
836 	u16 device_id;
837 	u8 num_pipes;
838 	u8 num_sprites[I915_MAX_PIPES];
839 	u8 num_scalers[I915_MAX_PIPES];
840 	u8 gen;
841 	u16 gen_mask;
842 	enum intel_platform platform;
843 	u8 ring_mask; /* Rings supported by the HW */
844 	u8 num_rings;
845 #define DEFINE_FLAG(name) u8 name:1
846 	DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
847 #undef DEFINE_FLAG
848 	u16 ddb_size; /* in blocks */
849 	/* Register offsets for the various display pipes and transcoders */
850 	int pipe_offsets[I915_MAX_TRANSCODERS];
851 	int trans_offsets[I915_MAX_TRANSCODERS];
852 	int palette_offsets[I915_MAX_PIPES];
853 	int cursor_offsets[I915_MAX_PIPES];
854 
855 	/* Slice/subslice/EU info */
856 	struct sseu_dev_info sseu;
857 
858 	struct color_luts {
859 		u16 degamma_lut_size;
860 		u16 gamma_lut_size;
861 	} color;
862 };
863 
864 struct intel_display_error_state;
865 
866 struct i915_gpu_state {
867 	struct kref ref;
868 	struct timeval time;
869 	struct timeval boottime;
870 	struct timeval uptime;
871 
872 	struct drm_i915_private *i915;
873 
874 	char error_msg[128];
875 	bool simulated;
876 	bool awake;
877 	bool wakelock;
878 	bool suspended;
879 	int iommu;
880 	u32 reset_count;
881 	u32 suspend_count;
882 	struct intel_device_info device_info;
883 	struct i915_params params;
884 
885 	/* Generic register state */
886 	u32 eir;
887 	u32 pgtbl_er;
888 	u32 ier;
889 	u32 gtier[4], ngtier;
890 	u32 ccid;
891 	u32 derrmr;
892 	u32 forcewake;
893 	u32 error; /* gen6+ */
894 	u32 err_int; /* gen7 */
895 	u32 fault_data0; /* gen8, gen9 */
896 	u32 fault_data1; /* gen8, gen9 */
897 	u32 done_reg;
898 	u32 gac_eco;
899 	u32 gam_ecochk;
900 	u32 gab_ctl;
901 	u32 gfx_mode;
902 
903 	u32 nfence;
904 	u64 fence[I915_MAX_NUM_FENCES];
905 	struct intel_overlay_error_state *overlay;
906 	struct intel_display_error_state *display;
907 	struct drm_i915_error_object *semaphore;
908 	struct drm_i915_error_object *guc_log;
909 
910 	struct drm_i915_error_engine {
911 		int engine_id;
912 		/* Software tracked state */
913 		bool waiting;
914 		int num_waiters;
915 		unsigned long hangcheck_timestamp;
916 		bool hangcheck_stalled;
917 		enum intel_engine_hangcheck_action hangcheck_action;
918 		struct i915_address_space *vm;
919 		int num_requests;
920 
921 		/* position of active request inside the ring */
922 		u32 rq_head, rq_post, rq_tail;
923 
924 		/* our own tracking of ring head and tail */
925 		u32 cpu_ring_head;
926 		u32 cpu_ring_tail;
927 
928 		u32 last_seqno;
929 
930 		/* Register state */
931 		u32 start;
932 		u32 tail;
933 		u32 head;
934 		u32 ctl;
935 		u32 mode;
936 		u32 hws;
937 		u32 ipeir;
938 		u32 ipehr;
939 		u32 bbstate;
940 		u32 instpm;
941 		u32 instps;
942 		u32 seqno;
943 		u64 bbaddr;
944 		u64 acthd;
945 		u32 fault_reg;
946 		u64 faddr;
947 		u32 rc_psmi; /* sleep state */
948 		u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
949 		struct intel_instdone instdone;
950 
951 		struct drm_i915_error_context {
952 			char comm[TASK_COMM_LEN];
953 			pid_t pid;
954 			u32 handle;
955 			u32 hw_id;
956 			int ban_score;
957 			int active;
958 			int guilty;
959 		} context;
960 
961 		struct drm_i915_error_object {
962 			u64 gtt_offset;
963 			u64 gtt_size;
964 			int page_count;
965 			int unused;
966 			u32 *pages[0];
967 		} *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
968 
969 		struct drm_i915_error_object **user_bo;
970 		long user_bo_count;
971 
972 		struct drm_i915_error_object *wa_ctx;
973 
974 		struct drm_i915_error_request {
975 			long jiffies;
976 			pid_t pid;
977 			u32 context;
978 			int ban_score;
979 			u32 seqno;
980 			u32 head;
981 			u32 tail;
982 		} *requests, execlist[2];
983 
984 		struct drm_i915_error_waiter {
985 			char comm[TASK_COMM_LEN];
986 			pid_t pid;
987 			u32 seqno;
988 		} *waiters;
989 
990 		struct {
991 			u32 gfx_mode;
992 			union {
993 				u64 pdp[4];
994 				u32 pp_dir_base;
995 			};
996 		} vm_info;
997 	} engine[I915_NUM_ENGINES];
998 
999 	struct drm_i915_error_buffer {
1000 		u32 size;
1001 		u32 name;
1002 		u32 rseqno[I915_NUM_ENGINES], wseqno;
1003 		u64 gtt_offset;
1004 		u32 read_domains;
1005 		u32 write_domain;
1006 		s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1007 		u32 tiling:2;
1008 		u32 dirty:1;
1009 		u32 purgeable:1;
1010 		u32 userptr:1;
1011 		s32 engine:4;
1012 		u32 cache_level:3;
1013 	} *active_bo[I915_NUM_ENGINES], *pinned_bo;
1014 	u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1015 	struct i915_address_space *active_vm[I915_NUM_ENGINES];
1016 };
1017 
1018 enum i915_cache_level {
1019 	I915_CACHE_NONE = 0,
1020 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1021 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1022 			      caches, eg sampler/render caches, and the
1023 			      large Last-Level-Cache. LLC is coherent with
1024 			      the CPU, but L3 is only visible to the GPU. */
1025 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1026 };
1027 
1028 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1029 
1030 enum fb_op_origin {
1031 	ORIGIN_GTT,
1032 	ORIGIN_CPU,
1033 	ORIGIN_CS,
1034 	ORIGIN_FLIP,
1035 	ORIGIN_DIRTYFB,
1036 };
1037 
1038 struct intel_fbc {
1039 	/* This is always the inner lock when overlapping with struct_mutex and
1040 	 * it's the outer lock when overlapping with stolen_lock. */
1041 	struct mutex lock;
1042 	unsigned threshold;
1043 	unsigned int possible_framebuffer_bits;
1044 	unsigned int busy_bits;
1045 	unsigned int visible_pipes_mask;
1046 	struct intel_crtc *crtc;
1047 
1048 	struct drm_mm_node compressed_fb;
1049 	struct drm_mm_node *compressed_llb;
1050 
1051 	bool false_color;
1052 
1053 	bool enabled;
1054 	bool active;
1055 
1056 	bool underrun_detected;
1057 	struct work_struct underrun_work;
1058 
1059 	struct intel_fbc_state_cache {
1060 		struct i915_vma *vma;
1061 
1062 		struct {
1063 			unsigned int mode_flags;
1064 			uint32_t hsw_bdw_pixel_rate;
1065 		} crtc;
1066 
1067 		struct {
1068 			unsigned int rotation;
1069 			int src_w;
1070 			int src_h;
1071 			bool visible;
1072 		} plane;
1073 
1074 		struct {
1075 			const struct drm_format_info *format;
1076 			unsigned int stride;
1077 		} fb;
1078 	} state_cache;
1079 
1080 	struct intel_fbc_reg_params {
1081 		struct i915_vma *vma;
1082 
1083 		struct {
1084 			enum pipe pipe;
1085 			enum plane plane;
1086 			unsigned int fence_y_offset;
1087 		} crtc;
1088 
1089 		struct {
1090 			const struct drm_format_info *format;
1091 			unsigned int stride;
1092 		} fb;
1093 
1094 		int cfb_size;
1095 	} params;
1096 
1097 	struct intel_fbc_work {
1098 		bool scheduled;
1099 		u32 scheduled_vblank;
1100 		struct work_struct work;
1101 	} work;
1102 
1103 	const char *no_fbc_reason;
1104 };
1105 
1106 /*
1107  * HIGH_RR is the highest eDP panel refresh rate read from EDID
1108  * LOW_RR is the lowest eDP panel refresh rate found from EDID
1109  * parsing for same resolution.
1110  */
1111 enum drrs_refresh_rate_type {
1112 	DRRS_HIGH_RR,
1113 	DRRS_LOW_RR,
1114 	DRRS_MAX_RR, /* RR count */
1115 };
1116 
1117 enum drrs_support_type {
1118 	DRRS_NOT_SUPPORTED = 0,
1119 	STATIC_DRRS_SUPPORT = 1,
1120 	SEAMLESS_DRRS_SUPPORT = 2
1121 };
1122 
1123 struct intel_dp;
1124 struct i915_drrs {
1125 	struct mutex mutex;
1126 	struct delayed_work work;
1127 	struct intel_dp *dp;
1128 	unsigned busy_frontbuffer_bits;
1129 	enum drrs_refresh_rate_type refresh_rate_type;
1130 	enum drrs_support_type type;
1131 };
1132 
1133 struct i915_psr {
1134 	struct mutex lock;
1135 	bool sink_support;
1136 	bool source_ok;
1137 	struct intel_dp *enabled;
1138 	bool active;
1139 	struct delayed_work work;
1140 	unsigned busy_frontbuffer_bits;
1141 	bool psr2_support;
1142 	bool aux_frame_sync;
1143 	bool link_standby;
1144 	bool y_cord_support;
1145 	bool colorimetry_support;
1146 	bool alpm;
1147 };
1148 
1149 enum intel_pch {
1150 	PCH_NONE = 0,	/* No PCH present */
1151 	PCH_IBX,	/* Ibexpeak PCH */
1152 	PCH_CPT,	/* Cougarpoint PCH */
1153 	PCH_LPT,	/* Lynxpoint PCH */
1154 	PCH_SPT,        /* Sunrisepoint PCH */
1155 	PCH_KBP,        /* Kabypoint PCH */
1156 	PCH_CNP,        /* Cannonpoint PCH */
1157 	PCH_NOP,
1158 };
1159 
1160 enum intel_sbi_destination {
1161 	SBI_ICLK,
1162 	SBI_MPHY,
1163 };
1164 
1165 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1166 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1167 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1168 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1169 
1170 struct intel_fbdev;
1171 struct intel_fbc_work;
1172 
1173 struct intel_gmbus {
1174 	struct i2c_adapter adapter;
1175 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1176 	u32 force_bit;
1177 	u32 reg0;
1178 	i915_reg_t gpio_reg;
1179 	struct i2c_algo_bit_data bit_algo;
1180 	struct drm_i915_private *dev_priv;
1181 };
1182 
1183 struct i915_suspend_saved_registers {
1184 	u32 saveDSPARB;
1185 	u32 saveFBC_CONTROL;
1186 	u32 saveCACHE_MODE_0;
1187 	u32 saveMI_ARB_STATE;
1188 	u32 saveSWF0[16];
1189 	u32 saveSWF1[16];
1190 	u32 saveSWF3[3];
1191 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1192 	u32 savePCH_PORT_HOTPLUG;
1193 	u16 saveGCDGMBUS;
1194 };
1195 
1196 struct vlv_s0ix_state {
1197 	/* GAM */
1198 	u32 wr_watermark;
1199 	u32 gfx_prio_ctrl;
1200 	u32 arb_mode;
1201 	u32 gfx_pend_tlb0;
1202 	u32 gfx_pend_tlb1;
1203 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1204 	u32 media_max_req_count;
1205 	u32 gfx_max_req_count;
1206 	u32 render_hwsp;
1207 	u32 ecochk;
1208 	u32 bsd_hwsp;
1209 	u32 blt_hwsp;
1210 	u32 tlb_rd_addr;
1211 
1212 	/* MBC */
1213 	u32 g3dctl;
1214 	u32 gsckgctl;
1215 	u32 mbctl;
1216 
1217 	/* GCP */
1218 	u32 ucgctl1;
1219 	u32 ucgctl3;
1220 	u32 rcgctl1;
1221 	u32 rcgctl2;
1222 	u32 rstctl;
1223 	u32 misccpctl;
1224 
1225 	/* GPM */
1226 	u32 gfxpause;
1227 	u32 rpdeuhwtc;
1228 	u32 rpdeuc;
1229 	u32 ecobus;
1230 	u32 pwrdwnupctl;
1231 	u32 rp_down_timeout;
1232 	u32 rp_deucsw;
1233 	u32 rcubmabdtmr;
1234 	u32 rcedata;
1235 	u32 spare2gh;
1236 
1237 	/* Display 1 CZ domain */
1238 	u32 gt_imr;
1239 	u32 gt_ier;
1240 	u32 pm_imr;
1241 	u32 pm_ier;
1242 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1243 
1244 	/* GT SA CZ domain */
1245 	u32 tilectl;
1246 	u32 gt_fifoctl;
1247 	u32 gtlc_wake_ctrl;
1248 	u32 gtlc_survive;
1249 	u32 pmwgicz;
1250 
1251 	/* Display 2 CZ domain */
1252 	u32 gu_ctl0;
1253 	u32 gu_ctl1;
1254 	u32 pcbr;
1255 	u32 clock_gate_dis2;
1256 };
1257 
1258 struct intel_rps_ei {
1259 	ktime_t ktime;
1260 	u32 render_c0;
1261 	u32 media_c0;
1262 };
1263 
1264 struct intel_gen6_power_mgmt {
1265 	/*
1266 	 * work, interrupts_enabled and pm_iir are protected by
1267 	 * dev_priv->irq_lock
1268 	 */
1269 	struct work_struct work;
1270 	bool interrupts_enabled;
1271 	u32 pm_iir;
1272 
1273 	/* PM interrupt bits that should never be masked */
1274 	u32 pm_intrmsk_mbz;
1275 
1276 	/* Frequencies are stored in potentially platform dependent multiples.
1277 	 * In other words, *_freq needs to be multiplied by X to be interesting.
1278 	 * Soft limits are those which are used for the dynamic reclocking done
1279 	 * by the driver (raise frequencies under heavy loads, and lower for
1280 	 * lighter loads). Hard limits are those imposed by the hardware.
1281 	 *
1282 	 * A distinction is made for overclocking, which is never enabled by
1283 	 * default, and is considered to be above the hard limit if it's
1284 	 * possible at all.
1285 	 */
1286 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
1287 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
1288 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
1289 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
1290 	u8 min_freq;		/* AKA RPn. Minimum frequency */
1291 	u8 boost_freq;		/* Frequency to request when wait boosting */
1292 	u8 idle_freq;		/* Frequency to request when we are idle */
1293 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
1294 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
1295 	u8 rp0_freq;		/* Non-overclocked max frequency. */
1296 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
1297 
1298 	u8 up_threshold; /* Current %busy required to uplock */
1299 	u8 down_threshold; /* Current %busy required to downclock */
1300 
1301 	int last_adj;
1302 	enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1303 
1304 	spinlock_t client_lock;
1305 	struct list_head clients;
1306 	bool client_boost;
1307 
1308 	bool enabled;
1309 	struct delayed_work autoenable_work;
1310 	unsigned boosts;
1311 
1312 	/* manual wa residency calculations */
1313 	struct intel_rps_ei ei;
1314 
1315 	/*
1316 	 * Protects RPS/RC6 register access and PCU communication.
1317 	 * Must be taken after struct_mutex if nested. Note that
1318 	 * this lock may be held for long periods of time when
1319 	 * talking to hw - so only take it when talking to hw!
1320 	 */
1321 	struct mutex hw_lock;
1322 };
1323 
1324 /* defined intel_pm.c */
1325 extern spinlock_t mchdev_lock;
1326 
1327 struct intel_ilk_power_mgmt {
1328 	u8 cur_delay;
1329 	u8 min_delay;
1330 	u8 max_delay;
1331 	u8 fmax;
1332 	u8 fstart;
1333 
1334 	u64 last_count1;
1335 	unsigned long last_time1;
1336 	unsigned long chipset_power;
1337 	u64 last_count2;
1338 	u64 last_time2;
1339 	unsigned long gfx_power;
1340 	u8 corr;
1341 
1342 	int c_m;
1343 	int r_t;
1344 };
1345 
1346 struct drm_i915_private;
1347 struct i915_power_well;
1348 
1349 struct i915_power_well_ops {
1350 	/*
1351 	 * Synchronize the well's hw state to match the current sw state, for
1352 	 * example enable/disable it based on the current refcount. Called
1353 	 * during driver init and resume time, possibly after first calling
1354 	 * the enable/disable handlers.
1355 	 */
1356 	void (*sync_hw)(struct drm_i915_private *dev_priv,
1357 			struct i915_power_well *power_well);
1358 	/*
1359 	 * Enable the well and resources that depend on it (for example
1360 	 * interrupts located on the well). Called after the 0->1 refcount
1361 	 * transition.
1362 	 */
1363 	void (*enable)(struct drm_i915_private *dev_priv,
1364 		       struct i915_power_well *power_well);
1365 	/*
1366 	 * Disable the well and resources that depend on it. Called after
1367 	 * the 1->0 refcount transition.
1368 	 */
1369 	void (*disable)(struct drm_i915_private *dev_priv,
1370 			struct i915_power_well *power_well);
1371 	/* Returns the hw enabled state. */
1372 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
1373 			   struct i915_power_well *power_well);
1374 };
1375 
1376 /* Power well structure for haswell */
1377 struct i915_power_well {
1378 	const char *name;
1379 	bool always_on;
1380 	/* power well enable/disable usage count */
1381 	int count;
1382 	/* cached hw enabled state */
1383 	bool hw_enabled;
1384 	u64 domains;
1385 	/* unique identifier for this power well */
1386 	unsigned long id;
1387 	/*
1388 	 * Arbitraty data associated with this power well. Platform and power
1389 	 * well specific.
1390 	 */
1391 	unsigned long data;
1392 	const struct i915_power_well_ops *ops;
1393 };
1394 
1395 struct i915_power_domains {
1396 	/*
1397 	 * Power wells needed for initialization at driver init and suspend
1398 	 * time are on. They are kept on until after the first modeset.
1399 	 */
1400 	bool init_power_on;
1401 	bool initializing;
1402 	int power_well_count;
1403 
1404 	struct mutex lock;
1405 	int domain_use_count[POWER_DOMAIN_NUM];
1406 	struct i915_power_well *power_wells;
1407 };
1408 
1409 #define MAX_L3_SLICES 2
1410 struct intel_l3_parity {
1411 	u32 *remap_info[MAX_L3_SLICES];
1412 	struct work_struct error_work;
1413 	int which_slice;
1414 };
1415 
1416 struct i915_gem_mm {
1417 	/** Memory allocator for GTT stolen memory */
1418 	struct drm_mm stolen;
1419 	/** Protects the usage of the GTT stolen memory allocator. This is
1420 	 * always the inner lock when overlapping with struct_mutex. */
1421 	struct mutex stolen_lock;
1422 
1423 	/** List of all objects in gtt_space. Used to restore gtt
1424 	 * mappings on resume */
1425 	struct list_head bound_list;
1426 	/**
1427 	 * List of objects which are not bound to the GTT (thus
1428 	 * are idle and not used by the GPU). These objects may or may
1429 	 * not actually have any pages attached.
1430 	 */
1431 	struct list_head unbound_list;
1432 
1433 	/** List of all objects in gtt_space, currently mmaped by userspace.
1434 	 * All objects within this list must also be on bound_list.
1435 	 */
1436 	struct list_head userfault_list;
1437 
1438 	/**
1439 	 * List of objects which are pending destruction.
1440 	 */
1441 	struct llist_head free_list;
1442 	struct work_struct free_work;
1443 
1444 	/** Usable portion of the GTT for GEM */
1445 	dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1446 
1447 	/** PPGTT used for aliasing the PPGTT with the GTT */
1448 	struct i915_hw_ppgtt *aliasing_ppgtt;
1449 
1450 	struct notifier_block oom_notifier;
1451 	struct notifier_block vmap_notifier;
1452 	struct shrinker shrinker;
1453 
1454 	/** LRU list of objects with fence regs on them. */
1455 	struct list_head fence_list;
1456 
1457 	/**
1458 	 * Workqueue to fault in userptr pages, flushed by the execbuf
1459 	 * when required but otherwise left to userspace to try again
1460 	 * on EAGAIN.
1461 	 */
1462 	struct workqueue_struct *userptr_wq;
1463 
1464 	u64 unordered_timeline;
1465 
1466 	/* the indicator for dispatch video commands on two BSD rings */
1467 	atomic_t bsd_engine_dispatch_index;
1468 
1469 	/** Bit 6 swizzling required for X tiling */
1470 	uint32_t bit_6_swizzle_x;
1471 	/** Bit 6 swizzling required for Y tiling */
1472 	uint32_t bit_6_swizzle_y;
1473 
1474 	/* accounting, useful for userland debugging */
1475 	spinlock_t object_stat_lock;
1476 	u64 object_memory;
1477 	u32 object_count;
1478 };
1479 
1480 struct drm_i915_error_state_buf {
1481 	struct drm_i915_private *i915;
1482 	unsigned bytes;
1483 	unsigned size;
1484 	int err;
1485 	u8 *buf;
1486 	loff_t start;
1487 	loff_t pos;
1488 };
1489 
1490 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1491 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1492 
1493 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1494 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1495 
1496 struct i915_gpu_error {
1497 	/* For hangcheck timer */
1498 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1499 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1500 
1501 	struct delayed_work hangcheck_work;
1502 
1503 	/* For reset and error_state handling. */
1504 	spinlock_t lock;
1505 	/* Protected by the above dev->gpu_error.lock. */
1506 	struct i915_gpu_state *first_error;
1507 
1508 	unsigned long missed_irq_rings;
1509 
1510 	/**
1511 	 * State variable controlling the reset flow and count
1512 	 *
1513 	 * This is a counter which gets incremented when reset is triggered,
1514 	 *
1515 	 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1516 	 * meaning that any waiters holding onto the struct_mutex should
1517 	 * relinquish the lock immediately in order for the reset to start.
1518 	 *
1519 	 * If reset is not completed succesfully, the I915_WEDGE bit is
1520 	 * set meaning that hardware is terminally sour and there is no
1521 	 * recovery. All waiters on the reset_queue will be woken when
1522 	 * that happens.
1523 	 *
1524 	 * This counter is used by the wait_seqno code to notice that reset
1525 	 * event happened and it needs to restart the entire ioctl (since most
1526 	 * likely the seqno it waited for won't ever signal anytime soon).
1527 	 *
1528 	 * This is important for lock-free wait paths, where no contended lock
1529 	 * naturally enforces the correct ordering between the bail-out of the
1530 	 * waiter and the gpu reset work code.
1531 	 */
1532 	unsigned long reset_count;
1533 
1534 	/**
1535 	 * flags: Control various stages of the GPU reset
1536 	 *
1537 	 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1538 	 * other users acquiring the struct_mutex. To do this we set the
1539 	 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1540 	 * and then check for that bit before acquiring the struct_mutex (in
1541 	 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1542 	 * secondary role in preventing two concurrent global reset attempts.
1543 	 *
1544 	 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1545 	 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1546 	 * but it may be held by some long running waiter (that we cannot
1547 	 * interrupt without causing trouble). Once we are ready to do the GPU
1548 	 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1549 	 * they already hold the struct_mutex and want to participate they can
1550 	 * inspect the bit and do the reset directly, otherwise the worker
1551 	 * waits for the struct_mutex.
1552 	 *
1553 	 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1554 	 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1555 	 * i915_gem_request_alloc(), this bit is checked and the sequence
1556 	 * aborted (with -EIO reported to userspace) if set.
1557 	 */
1558 	unsigned long flags;
1559 #define I915_RESET_BACKOFF	0
1560 #define I915_RESET_HANDOFF	1
1561 #define I915_WEDGED		(BITS_PER_LONG - 1)
1562 
1563 	/**
1564 	 * Waitqueue to signal when a hang is detected. Used to for waiters
1565 	 * to release the struct_mutex for the reset to procede.
1566 	 */
1567 	wait_queue_head_t wait_queue;
1568 
1569 	/**
1570 	 * Waitqueue to signal when the reset has completed. Used by clients
1571 	 * that wait for dev_priv->mm.wedged to settle.
1572 	 */
1573 	wait_queue_head_t reset_queue;
1574 
1575 	/* For missed irq/seqno simulation. */
1576 	unsigned long test_irq_rings;
1577 };
1578 
1579 enum modeset_restore {
1580 	MODESET_ON_LID_OPEN,
1581 	MODESET_DONE,
1582 	MODESET_SUSPENDED,
1583 };
1584 
1585 #define DP_AUX_A 0x40
1586 #define DP_AUX_B 0x10
1587 #define DP_AUX_C 0x20
1588 #define DP_AUX_D 0x30
1589 
1590 #define DDC_PIN_B  0x05
1591 #define DDC_PIN_C  0x04
1592 #define DDC_PIN_D  0x06
1593 
1594 struct ddi_vbt_port_info {
1595 	/*
1596 	 * This is an index in the HDMI/DVI DDI buffer translation table.
1597 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1598 	 * populate this field.
1599 	 */
1600 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
1601 	uint8_t hdmi_level_shift;
1602 
1603 	uint8_t supports_dvi:1;
1604 	uint8_t supports_hdmi:1;
1605 	uint8_t supports_dp:1;
1606 	uint8_t supports_edp:1;
1607 
1608 	uint8_t alternate_aux_channel;
1609 	uint8_t alternate_ddc_pin;
1610 
1611 	uint8_t dp_boost_level;
1612 	uint8_t hdmi_boost_level;
1613 };
1614 
1615 enum psr_lines_to_wait {
1616 	PSR_0_LINES_TO_WAIT = 0,
1617 	PSR_1_LINE_TO_WAIT,
1618 	PSR_4_LINES_TO_WAIT,
1619 	PSR_8_LINES_TO_WAIT
1620 };
1621 
1622 struct intel_vbt_data {
1623 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1624 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1625 
1626 	/* Feature bits */
1627 	unsigned int int_tv_support:1;
1628 	unsigned int lvds_dither:1;
1629 	unsigned int lvds_vbt:1;
1630 	unsigned int int_crt_support:1;
1631 	unsigned int lvds_use_ssc:1;
1632 	unsigned int display_clock_mode:1;
1633 	unsigned int fdi_rx_polarity_inverted:1;
1634 	unsigned int panel_type:4;
1635 	int lvds_ssc_freq;
1636 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1637 
1638 	enum drrs_support_type drrs_type;
1639 
1640 	struct {
1641 		int rate;
1642 		int lanes;
1643 		int preemphasis;
1644 		int vswing;
1645 		bool low_vswing;
1646 		bool initialized;
1647 		bool support;
1648 		int bpp;
1649 		struct edp_power_seq pps;
1650 	} edp;
1651 
1652 	struct {
1653 		bool full_link;
1654 		bool require_aux_wakeup;
1655 		int idle_frames;
1656 		enum psr_lines_to_wait lines_to_wait;
1657 		int tp1_wakeup_time;
1658 		int tp2_tp3_wakeup_time;
1659 	} psr;
1660 
1661 	struct {
1662 		u16 pwm_freq_hz;
1663 		bool present;
1664 		bool active_low_pwm;
1665 		u8 min_brightness;	/* min_brightness/255 of max */
1666 		u8 controller;		/* brightness controller number */
1667 		enum intel_backlight_type type;
1668 	} backlight;
1669 
1670 	/* MIPI DSI */
1671 	struct {
1672 		u16 panel_id;
1673 		struct mipi_config *config;
1674 		struct mipi_pps_data *pps;
1675 		u8 seq_version;
1676 		u32 size;
1677 		u8 *data;
1678 		const u8 *sequence[MIPI_SEQ_MAX];
1679 	} dsi;
1680 
1681 	int crt_ddc_pin;
1682 
1683 	int child_dev_num;
1684 	union child_device_config *child_dev;
1685 
1686 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1687 	struct sdvo_device_mapping sdvo_mappings[2];
1688 };
1689 
1690 enum intel_ddb_partitioning {
1691 	INTEL_DDB_PART_1_2,
1692 	INTEL_DDB_PART_5_6, /* IVB+ */
1693 };
1694 
1695 struct intel_wm_level {
1696 	bool enable;
1697 	uint32_t pri_val;
1698 	uint32_t spr_val;
1699 	uint32_t cur_val;
1700 	uint32_t fbc_val;
1701 };
1702 
1703 struct ilk_wm_values {
1704 	uint32_t wm_pipe[3];
1705 	uint32_t wm_lp[3];
1706 	uint32_t wm_lp_spr[3];
1707 	uint32_t wm_linetime[3];
1708 	bool enable_fbc_wm;
1709 	enum intel_ddb_partitioning partitioning;
1710 };
1711 
1712 struct g4x_pipe_wm {
1713 	uint16_t plane[I915_MAX_PLANES];
1714 	uint16_t fbc;
1715 };
1716 
1717 struct g4x_sr_wm {
1718 	uint16_t plane;
1719 	uint16_t cursor;
1720 	uint16_t fbc;
1721 };
1722 
1723 struct vlv_wm_ddl_values {
1724 	uint8_t plane[I915_MAX_PLANES];
1725 };
1726 
1727 struct vlv_wm_values {
1728 	struct g4x_pipe_wm pipe[3];
1729 	struct g4x_sr_wm sr;
1730 	struct vlv_wm_ddl_values ddl[3];
1731 	uint8_t level;
1732 	bool cxsr;
1733 };
1734 
1735 struct g4x_wm_values {
1736 	struct g4x_pipe_wm pipe[2];
1737 	struct g4x_sr_wm sr;
1738 	struct g4x_sr_wm hpll;
1739 	bool cxsr;
1740 	bool hpll_en;
1741 	bool fbc_en;
1742 };
1743 
1744 struct skl_ddb_entry {
1745 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1746 };
1747 
1748 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1749 {
1750 	return entry->end - entry->start;
1751 }
1752 
1753 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1754 				       const struct skl_ddb_entry *e2)
1755 {
1756 	if (e1->start == e2->start && e1->end == e2->end)
1757 		return true;
1758 
1759 	return false;
1760 }
1761 
1762 struct skl_ddb_allocation {
1763 	struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1764 	struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1765 };
1766 
1767 struct skl_wm_values {
1768 	unsigned dirty_pipes;
1769 	struct skl_ddb_allocation ddb;
1770 };
1771 
1772 struct skl_wm_level {
1773 	bool plane_en;
1774 	uint16_t plane_res_b;
1775 	uint8_t plane_res_l;
1776 };
1777 
1778 /*
1779  * This struct helps tracking the state needed for runtime PM, which puts the
1780  * device in PCI D3 state. Notice that when this happens, nothing on the
1781  * graphics device works, even register access, so we don't get interrupts nor
1782  * anything else.
1783  *
1784  * Every piece of our code that needs to actually touch the hardware needs to
1785  * either call intel_runtime_pm_get or call intel_display_power_get with the
1786  * appropriate power domain.
1787  *
1788  * Our driver uses the autosuspend delay feature, which means we'll only really
1789  * suspend if we stay with zero refcount for a certain amount of time. The
1790  * default value is currently very conservative (see intel_runtime_pm_enable), but
1791  * it can be changed with the standard runtime PM files from sysfs.
1792  *
1793  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1794  * goes back to false exactly before we reenable the IRQs. We use this variable
1795  * to check if someone is trying to enable/disable IRQs while they're supposed
1796  * to be disabled. This shouldn't happen and we'll print some error messages in
1797  * case it happens.
1798  *
1799  * For more, read the Documentation/power/runtime_pm.txt.
1800  */
1801 struct i915_runtime_pm {
1802 	atomic_t wakeref_count;
1803 	bool suspended;
1804 	bool irqs_enabled;
1805 };
1806 
1807 enum intel_pipe_crc_source {
1808 	INTEL_PIPE_CRC_SOURCE_NONE,
1809 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1810 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1811 	INTEL_PIPE_CRC_SOURCE_PF,
1812 	INTEL_PIPE_CRC_SOURCE_PIPE,
1813 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1814 	INTEL_PIPE_CRC_SOURCE_TV,
1815 	INTEL_PIPE_CRC_SOURCE_DP_B,
1816 	INTEL_PIPE_CRC_SOURCE_DP_C,
1817 	INTEL_PIPE_CRC_SOURCE_DP_D,
1818 	INTEL_PIPE_CRC_SOURCE_AUTO,
1819 	INTEL_PIPE_CRC_SOURCE_MAX,
1820 };
1821 
1822 struct intel_pipe_crc_entry {
1823 	uint32_t frame;
1824 	uint32_t crc[5];
1825 };
1826 
1827 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1828 struct intel_pipe_crc {
1829 	spinlock_t lock;
1830 	bool opened;		/* exclusive access to the result file */
1831 	struct intel_pipe_crc_entry *entries;
1832 	enum intel_pipe_crc_source source;
1833 	int head, tail;
1834 	wait_queue_head_t wq;
1835 	int skipped;
1836 };
1837 
1838 struct i915_frontbuffer_tracking {
1839 	spinlock_t lock;
1840 
1841 	/*
1842 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1843 	 * scheduled flips.
1844 	 */
1845 	unsigned busy_bits;
1846 	unsigned flip_bits;
1847 };
1848 
1849 struct i915_wa_reg {
1850 	i915_reg_t addr;
1851 	u32 value;
1852 	/* bitmask representing WA bits */
1853 	u32 mask;
1854 };
1855 
1856 /*
1857  * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1858  * allowing it for RCS as we don't foresee any requirement of having
1859  * a whitelist for other engines. When it is really required for
1860  * other engines then the limit need to be increased.
1861  */
1862 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1863 
1864 struct i915_workarounds {
1865 	struct i915_wa_reg reg[I915_MAX_WA_REGS];
1866 	u32 count;
1867 	u32 hw_whitelist_count[I915_NUM_ENGINES];
1868 };
1869 
1870 struct i915_virtual_gpu {
1871 	bool active;
1872 };
1873 
1874 /* used in computing the new watermarks state */
1875 struct intel_wm_config {
1876 	unsigned int num_pipes_active;
1877 	bool sprites_enabled;
1878 	bool sprites_scaled;
1879 };
1880 
1881 struct i915_oa_format {
1882 	u32 format;
1883 	int size;
1884 };
1885 
1886 struct i915_oa_reg {
1887 	i915_reg_t addr;
1888 	u32 value;
1889 };
1890 
1891 struct i915_perf_stream;
1892 
1893 /**
1894  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1895  */
1896 struct i915_perf_stream_ops {
1897 	/**
1898 	 * @enable: Enables the collection of HW samples, either in response to
1899 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1900 	 * without `I915_PERF_FLAG_DISABLED`.
1901 	 */
1902 	void (*enable)(struct i915_perf_stream *stream);
1903 
1904 	/**
1905 	 * @disable: Disables the collection of HW samples, either in response
1906 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1907 	 * the stream.
1908 	 */
1909 	void (*disable)(struct i915_perf_stream *stream);
1910 
1911 	/**
1912 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1913 	 * once there is something ready to read() for the stream
1914 	 */
1915 	void (*poll_wait)(struct i915_perf_stream *stream,
1916 			  struct file *file,
1917 			  poll_table *wait);
1918 
1919 	/**
1920 	 * @wait_unlocked: For handling a blocking read, wait until there is
1921 	 * something to ready to read() for the stream. E.g. wait on the same
1922 	 * wait queue that would be passed to poll_wait().
1923 	 */
1924 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1925 
1926 	/**
1927 	 * @read: Copy buffered metrics as records to userspace
1928 	 * **buf**: the userspace, destination buffer
1929 	 * **count**: the number of bytes to copy, requested by userspace
1930 	 * **offset**: zero at the start of the read, updated as the read
1931 	 * proceeds, it represents how many bytes have been copied so far and
1932 	 * the buffer offset for copying the next record.
1933 	 *
1934 	 * Copy as many buffered i915 perf samples and records for this stream
1935 	 * to userspace as will fit in the given buffer.
1936 	 *
1937 	 * Only write complete records; returning -%ENOSPC if there isn't room
1938 	 * for a complete record.
1939 	 *
1940 	 * Return any error condition that results in a short read such as
1941 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1942 	 * returning to userspace.
1943 	 */
1944 	int (*read)(struct i915_perf_stream *stream,
1945 		    char __user *buf,
1946 		    size_t count,
1947 		    size_t *offset);
1948 
1949 	/**
1950 	 * @destroy: Cleanup any stream specific resources.
1951 	 *
1952 	 * The stream will always be disabled before this is called.
1953 	 */
1954 	void (*destroy)(struct i915_perf_stream *stream);
1955 };
1956 
1957 /**
1958  * struct i915_perf_stream - state for a single open stream FD
1959  */
1960 struct i915_perf_stream {
1961 	/**
1962 	 * @dev_priv: i915 drm device
1963 	 */
1964 	struct drm_i915_private *dev_priv;
1965 
1966 	/**
1967 	 * @link: Links the stream into ``&drm_i915_private->streams``
1968 	 */
1969 	struct list_head link;
1970 
1971 	/**
1972 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1973 	 * properties given when opening a stream, representing the contents
1974 	 * of a single sample as read() by userspace.
1975 	 */
1976 	u32 sample_flags;
1977 
1978 	/**
1979 	 * @sample_size: Considering the configured contents of a sample
1980 	 * combined with the required header size, this is the total size
1981 	 * of a single sample record.
1982 	 */
1983 	int sample_size;
1984 
1985 	/**
1986 	 * @ctx: %NULL if measuring system-wide across all contexts or a
1987 	 * specific context that is being monitored.
1988 	 */
1989 	struct i915_gem_context *ctx;
1990 
1991 	/**
1992 	 * @enabled: Whether the stream is currently enabled, considering
1993 	 * whether the stream was opened in a disabled state and based
1994 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1995 	 */
1996 	bool enabled;
1997 
1998 	/**
1999 	 * @ops: The callbacks providing the implementation of this specific
2000 	 * type of configured stream.
2001 	 */
2002 	const struct i915_perf_stream_ops *ops;
2003 };
2004 
2005 /**
2006  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2007  */
2008 struct i915_oa_ops {
2009 	/**
2010 	 * @init_oa_buffer: Resets the head and tail pointers of the
2011 	 * circular buffer for periodic OA reports.
2012 	 *
2013 	 * Called when first opening a stream for OA metrics, but also may be
2014 	 * called in response to an OA buffer overflow or other error
2015 	 * condition.
2016 	 *
2017 	 * Note it may be necessary to clear the full OA buffer here as part of
2018 	 * maintaining the invariable that new reports must be written to
2019 	 * zeroed memory for us to be able to reliable detect if an expected
2020 	 * report has not yet landed in memory.  (At least on Haswell the OA
2021 	 * buffer tail pointer is not synchronized with reports being visible
2022 	 * to the CPU)
2023 	 */
2024 	void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2025 
2026 	/**
2027 	 * @select_metric_set: The auto generated code that checks whether a
2028 	 * requested OA config is applicable to the system and if so sets up
2029 	 * the mux, oa and flex eu register config pointers according to the
2030 	 * current dev_priv->perf.oa.metrics_set.
2031 	 */
2032 	int (*select_metric_set)(struct drm_i915_private *dev_priv);
2033 
2034 	/**
2035 	 * @enable_metric_set: Selects and applies any MUX configuration to set
2036 	 * up the Boolean and Custom (B/C) counters that are part of the
2037 	 * counter reports being sampled. May apply system constraints such as
2038 	 * disabling EU clock gating as required.
2039 	 */
2040 	int (*enable_metric_set)(struct drm_i915_private *dev_priv);
2041 
2042 	/**
2043 	 * @disable_metric_set: Remove system constraints associated with using
2044 	 * the OA unit.
2045 	 */
2046 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2047 
2048 	/**
2049 	 * @oa_enable: Enable periodic sampling
2050 	 */
2051 	void (*oa_enable)(struct drm_i915_private *dev_priv);
2052 
2053 	/**
2054 	 * @oa_disable: Disable periodic sampling
2055 	 */
2056 	void (*oa_disable)(struct drm_i915_private *dev_priv);
2057 
2058 	/**
2059 	 * @read: Copy data from the circular OA buffer into a given userspace
2060 	 * buffer.
2061 	 */
2062 	int (*read)(struct i915_perf_stream *stream,
2063 		    char __user *buf,
2064 		    size_t count,
2065 		    size_t *offset);
2066 
2067 	/**
2068 	 * @oa_hw_tail_read: read the OA tail pointer register
2069 	 *
2070 	 * In particular this enables us to share all the fiddly code for
2071 	 * handling the OA unit tail pointer race that affects multiple
2072 	 * generations.
2073 	 */
2074 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2075 };
2076 
2077 struct intel_cdclk_state {
2078 	unsigned int cdclk, vco, ref;
2079 };
2080 
2081 struct drm_i915_private {
2082 	struct drm_device drm;
2083 
2084 	struct kmem_cache *objects;
2085 	struct kmem_cache *vmas;
2086 	struct kmem_cache *requests;
2087 	struct kmem_cache *dependencies;
2088 	struct kmem_cache *priorities;
2089 
2090 	const struct intel_device_info info;
2091 
2092 	void __iomem *regs;
2093 
2094 	struct intel_uncore uncore;
2095 
2096 	struct i915_virtual_gpu vgpu;
2097 
2098 	struct intel_gvt *gvt;
2099 
2100 	struct intel_huc huc;
2101 	struct intel_guc guc;
2102 
2103 	struct intel_csr csr;
2104 
2105 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2106 
2107 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
2108 	 * controller on different i2c buses. */
2109 	struct mutex gmbus_mutex;
2110 
2111 	/**
2112 	 * Base address of the gmbus and gpio block.
2113 	 */
2114 	uint32_t gpio_mmio_base;
2115 
2116 	/* MMIO base address for MIPI regs */
2117 	uint32_t mipi_mmio_base;
2118 
2119 	uint32_t psr_mmio_base;
2120 
2121 	uint32_t pps_mmio_base;
2122 
2123 	wait_queue_head_t gmbus_wait_queue;
2124 
2125 	struct pci_dev *bridge_dev;
2126 	struct i915_gem_context *kernel_context;
2127 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
2128 	struct i915_vma *semaphore;
2129 
2130 	struct drm_dma_handle *status_page_dmah;
2131 	struct resource mch_res;
2132 
2133 	/* protects the irq masks */
2134 	spinlock_t irq_lock;
2135 
2136 	/* protects the mmio flip data */
2137 	spinlock_t mmio_flip_lock;
2138 
2139 	bool display_irqs_enabled;
2140 
2141 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2142 	struct pm_qos_request pm_qos;
2143 
2144 	/* Sideband mailbox protection */
2145 	struct mutex sb_lock;
2146 
2147 	/** Cached value of IMR to avoid reads in updating the bitfield */
2148 	union {
2149 		u32 irq_mask;
2150 		u32 de_irq_mask[I915_MAX_PIPES];
2151 	};
2152 	u32 gt_irq_mask;
2153 	u32 pm_imr;
2154 	u32 pm_ier;
2155 	u32 pm_rps_events;
2156 	u32 pm_guc_events;
2157 	u32 pipestat_irq_mask[I915_MAX_PIPES];
2158 
2159 	struct i915_hotplug hotplug;
2160 	struct intel_fbc fbc;
2161 	struct i915_drrs drrs;
2162 	struct intel_opregion opregion;
2163 	struct intel_vbt_data vbt;
2164 
2165 	bool preserve_bios_swizzle;
2166 
2167 	/* overlay */
2168 	struct intel_overlay *overlay;
2169 
2170 	/* backlight registers and fields in struct intel_panel */
2171 	struct mutex backlight_lock;
2172 
2173 	/* LVDS info */
2174 	bool no_aux_handshake;
2175 
2176 	/* protects panel power sequencer state */
2177 	struct mutex pps_mutex;
2178 
2179 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2180 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2181 
2182 	unsigned int fsb_freq, mem_freq, is_ddr3;
2183 	unsigned int skl_preferred_vco_freq;
2184 	unsigned int max_cdclk_freq;
2185 
2186 	unsigned int max_dotclk_freq;
2187 	unsigned int rawclk_freq;
2188 	unsigned int hpll_freq;
2189 	unsigned int czclk_freq;
2190 
2191 	struct {
2192 		/*
2193 		 * The current logical cdclk state.
2194 		 * See intel_atomic_state.cdclk.logical
2195 		 *
2196 		 * For reading holding any crtc lock is sufficient,
2197 		 * for writing must hold all of them.
2198 		 */
2199 		struct intel_cdclk_state logical;
2200 		/*
2201 		 * The current actual cdclk state.
2202 		 * See intel_atomic_state.cdclk.actual
2203 		 */
2204 		struct intel_cdclk_state actual;
2205 		/* The current hardware cdclk state */
2206 		struct intel_cdclk_state hw;
2207 	} cdclk;
2208 
2209 	/**
2210 	 * wq - Driver workqueue for GEM.
2211 	 *
2212 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
2213 	 * locks, for otherwise the flushing done in the pageflip code will
2214 	 * result in deadlocks.
2215 	 */
2216 	struct workqueue_struct *wq;
2217 
2218 	/* Display functions */
2219 	struct drm_i915_display_funcs display;
2220 
2221 	/* PCH chipset type */
2222 	enum intel_pch pch_type;
2223 	unsigned short pch_id;
2224 
2225 	unsigned long quirks;
2226 
2227 	enum modeset_restore modeset_restore;
2228 	struct mutex modeset_restore_lock;
2229 	struct drm_atomic_state *modeset_restore_state;
2230 	struct drm_modeset_acquire_ctx reset_ctx;
2231 
2232 	struct list_head vm_list; /* Global list of all address spaces */
2233 	struct i915_ggtt ggtt; /* VM representing the global address space */
2234 
2235 	struct i915_gem_mm mm;
2236 	DECLARE_HASHTABLE(mm_structs, 7);
2237 	struct mutex mm_lock;
2238 
2239 	/* The hw wants to have a stable context identifier for the lifetime
2240 	 * of the context (for OA, PASID, faults, etc). This is limited
2241 	 * in execlists to 21 bits.
2242 	 */
2243 	struct ida context_hw_ida;
2244 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2245 
2246 	/* Kernel Modesetting */
2247 
2248 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2249 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2250 	wait_queue_head_t pending_flip_queue;
2251 
2252 #ifdef CONFIG_DEBUG_FS
2253 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2254 #endif
2255 
2256 	/* dpll and cdclk state is protected by connection_mutex */
2257 	int num_shared_dpll;
2258 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2259 	const struct intel_dpll_mgr *dpll_mgr;
2260 
2261 	/*
2262 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2263 	 * Must be global rather than per dpll, because on some platforms
2264 	 * plls share registers.
2265 	 */
2266 	struct mutex dpll_lock;
2267 
2268 	unsigned int active_crtcs;
2269 	unsigned int min_pixclk[I915_MAX_PIPES];
2270 
2271 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2272 
2273 	struct i915_workarounds workarounds;
2274 
2275 	struct i915_frontbuffer_tracking fb_tracking;
2276 
2277 	struct intel_atomic_helper {
2278 		struct llist_head free_list;
2279 		struct work_struct free_work;
2280 	} atomic_helper;
2281 
2282 	u16 orig_clock;
2283 
2284 	bool mchbar_need_disable;
2285 
2286 	struct intel_l3_parity l3_parity;
2287 
2288 	/* Cannot be determined by PCIID. You must always read a register. */
2289 	u32 edram_cap;
2290 
2291 	/* gen6+ rps state */
2292 	struct intel_gen6_power_mgmt rps;
2293 
2294 	/* ilk-only ips/rps state. Everything in here is protected by the global
2295 	 * mchdev_lock in intel_pm.c */
2296 	struct intel_ilk_power_mgmt ips;
2297 
2298 	struct i915_power_domains power_domains;
2299 
2300 	struct i915_psr psr;
2301 
2302 	struct i915_gpu_error gpu_error;
2303 
2304 	struct drm_i915_gem_object *vlv_pctx;
2305 
2306 #ifdef CONFIG_DRM_FBDEV_EMULATION
2307 	/* list of fbdev register on this device */
2308 	struct intel_fbdev *fbdev;
2309 	struct work_struct fbdev_suspend_work;
2310 #endif
2311 
2312 	struct drm_property *broadcast_rgb_property;
2313 	struct drm_property *force_audio_property;
2314 
2315 	/* hda/i915 audio component */
2316 	struct i915_audio_component *audio_component;
2317 	bool audio_component_registered;
2318 	/**
2319 	 * av_mutex - mutex for audio/video sync
2320 	 *
2321 	 */
2322 	struct mutex av_mutex;
2323 
2324 	struct list_head context_list;
2325 
2326 	u32 fdi_rx_config;
2327 
2328 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2329 	u32 chv_phy_control;
2330 	/*
2331 	 * Shadows for CHV DPLL_MD regs to keep the state
2332 	 * checker somewhat working in the presence hardware
2333 	 * crappiness (can't read out DPLL_MD for pipes B & C).
2334 	 */
2335 	u32 chv_dpll_md[I915_MAX_PIPES];
2336 	u32 bxt_phy_grc;
2337 
2338 	u32 suspend_count;
2339 	bool suspended_to_idle;
2340 	struct i915_suspend_saved_registers regfile;
2341 	struct vlv_s0ix_state vlv_s0ix_state;
2342 
2343 	enum {
2344 		I915_SAGV_UNKNOWN = 0,
2345 		I915_SAGV_DISABLED,
2346 		I915_SAGV_ENABLED,
2347 		I915_SAGV_NOT_CONTROLLED
2348 	} sagv_status;
2349 
2350 	struct {
2351 		/*
2352 		 * Raw watermark latency values:
2353 		 * in 0.1us units for WM0,
2354 		 * in 0.5us units for WM1+.
2355 		 */
2356 		/* primary */
2357 		uint16_t pri_latency[5];
2358 		/* sprite */
2359 		uint16_t spr_latency[5];
2360 		/* cursor */
2361 		uint16_t cur_latency[5];
2362 		/*
2363 		 * Raw watermark memory latency values
2364 		 * for SKL for all 8 levels
2365 		 * in 1us units.
2366 		 */
2367 		uint16_t skl_latency[8];
2368 
2369 		/* current hardware state */
2370 		union {
2371 			struct ilk_wm_values hw;
2372 			struct skl_wm_values skl_hw;
2373 			struct vlv_wm_values vlv;
2374 			struct g4x_wm_values g4x;
2375 		};
2376 
2377 		uint8_t max_level;
2378 
2379 		/*
2380 		 * Should be held around atomic WM register writing; also
2381 		 * protects * intel_crtc->wm.active and
2382 		 * cstate->wm.need_postvbl_update.
2383 		 */
2384 		struct mutex wm_mutex;
2385 
2386 		/*
2387 		 * Set during HW readout of watermarks/DDB.  Some platforms
2388 		 * need to know when we're still using BIOS-provided values
2389 		 * (which we don't fully trust).
2390 		 */
2391 		bool distrust_bios_wm;
2392 	} wm;
2393 
2394 	struct i915_runtime_pm pm;
2395 
2396 	struct {
2397 		bool initialized;
2398 
2399 		struct kobject *metrics_kobj;
2400 		struct ctl_table_header *sysctl_header;
2401 
2402 		struct mutex lock;
2403 		struct list_head streams;
2404 
2405 		struct {
2406 			struct i915_perf_stream *exclusive_stream;
2407 
2408 			u32 specific_ctx_id;
2409 
2410 			struct hrtimer poll_check_timer;
2411 			wait_queue_head_t poll_wq;
2412 			bool pollin;
2413 
2414 			/**
2415 			 * For rate limiting any notifications of spurious
2416 			 * invalid OA reports
2417 			 */
2418 			struct ratelimit_state spurious_report_rs;
2419 
2420 			bool periodic;
2421 			int period_exponent;
2422 			int timestamp_frequency;
2423 
2424 			int metrics_set;
2425 
2426 			const struct i915_oa_reg *mux_regs[6];
2427 			int mux_regs_lens[6];
2428 			int n_mux_configs;
2429 
2430 			const struct i915_oa_reg *b_counter_regs;
2431 			int b_counter_regs_len;
2432 			const struct i915_oa_reg *flex_regs;
2433 			int flex_regs_len;
2434 
2435 			struct {
2436 				struct i915_vma *vma;
2437 				u8 *vaddr;
2438 				u32 last_ctx_id;
2439 				int format;
2440 				int format_size;
2441 
2442 				/**
2443 				 * Locks reads and writes to all head/tail state
2444 				 *
2445 				 * Consider: the head and tail pointer state
2446 				 * needs to be read consistently from a hrtimer
2447 				 * callback (atomic context) and read() fop
2448 				 * (user context) with tail pointer updates
2449 				 * happening in atomic context and head updates
2450 				 * in user context and the (unlikely)
2451 				 * possibility of read() errors needing to
2452 				 * reset all head/tail state.
2453 				 *
2454 				 * Note: Contention or performance aren't
2455 				 * currently a significant concern here
2456 				 * considering the relatively low frequency of
2457 				 * hrtimer callbacks (5ms period) and that
2458 				 * reads typically only happen in response to a
2459 				 * hrtimer event and likely complete before the
2460 				 * next callback.
2461 				 *
2462 				 * Note: This lock is not held *while* reading
2463 				 * and copying data to userspace so the value
2464 				 * of head observed in htrimer callbacks won't
2465 				 * represent any partial consumption of data.
2466 				 */
2467 				spinlock_t ptr_lock;
2468 
2469 				/**
2470 				 * One 'aging' tail pointer and one 'aged'
2471 				 * tail pointer ready to used for reading.
2472 				 *
2473 				 * Initial values of 0xffffffff are invalid
2474 				 * and imply that an update is required
2475 				 * (and should be ignored by an attempted
2476 				 * read)
2477 				 */
2478 				struct {
2479 					u32 offset;
2480 				} tails[2];
2481 
2482 				/**
2483 				 * Index for the aged tail ready to read()
2484 				 * data up to.
2485 				 */
2486 				unsigned int aged_tail_idx;
2487 
2488 				/**
2489 				 * A monotonic timestamp for when the current
2490 				 * aging tail pointer was read; used to
2491 				 * determine when it is old enough to trust.
2492 				 */
2493 				u64 aging_timestamp;
2494 
2495 				/**
2496 				 * Although we can always read back the head
2497 				 * pointer register, we prefer to avoid
2498 				 * trusting the HW state, just to avoid any
2499 				 * risk that some hardware condition could
2500 				 * somehow bump the head pointer unpredictably
2501 				 * and cause us to forward the wrong OA buffer
2502 				 * data to userspace.
2503 				 */
2504 				u32 head;
2505 			} oa_buffer;
2506 
2507 			u32 gen7_latched_oastatus1;
2508 			u32 ctx_oactxctrl_offset;
2509 			u32 ctx_flexeu0_offset;
2510 
2511 			/**
2512 			 * The RPT_ID/reason field for Gen8+ includes a bit
2513 			 * to determine if the CTX ID in the report is valid
2514 			 * but the specific bit differs between Gen 8 and 9
2515 			 */
2516 			u32 gen8_valid_ctx_bit;
2517 
2518 			struct i915_oa_ops ops;
2519 			const struct i915_oa_format *oa_formats;
2520 			int n_builtin_sets;
2521 		} oa;
2522 	} perf;
2523 
2524 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2525 	struct {
2526 		void (*resume)(struct drm_i915_private *);
2527 		void (*cleanup_engine)(struct intel_engine_cs *engine);
2528 
2529 		struct list_head timelines;
2530 		struct i915_gem_timeline global_timeline;
2531 		u32 active_requests;
2532 
2533 		/**
2534 		 * Is the GPU currently considered idle, or busy executing
2535 		 * userspace requests? Whilst idle, we allow runtime power
2536 		 * management to power down the hardware and display clocks.
2537 		 * In order to reduce the effect on performance, there
2538 		 * is a slight delay before we do so.
2539 		 */
2540 		bool awake;
2541 
2542 		/**
2543 		 * We leave the user IRQ off as much as possible,
2544 		 * but this means that requests will finish and never
2545 		 * be retired once the system goes idle. Set a timer to
2546 		 * fire periodically while the ring is running. When it
2547 		 * fires, go retire requests.
2548 		 */
2549 		struct delayed_work retire_work;
2550 
2551 		/**
2552 		 * When we detect an idle GPU, we want to turn on
2553 		 * powersaving features. So once we see that there
2554 		 * are no more requests outstanding and no more
2555 		 * arrive within a small period of time, we fire
2556 		 * off the idle_work.
2557 		 */
2558 		struct delayed_work idle_work;
2559 
2560 		ktime_t last_init_time;
2561 	} gt;
2562 
2563 	/* perform PHY state sanity checks? */
2564 	bool chv_phy_assert[2];
2565 
2566 	bool ipc_enabled;
2567 
2568 	/* Used to save the pipe-to-encoder mapping for audio */
2569 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2570 
2571 	/* necessary resource sharing with HDMI LPE audio driver. */
2572 	struct {
2573 		struct platform_device *platdev;
2574 		int	irq;
2575 	} lpe_audio;
2576 
2577 	/*
2578 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2579 	 * will be rejected. Instead look for a better place.
2580 	 */
2581 };
2582 
2583 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2584 {
2585 	return container_of(dev, struct drm_i915_private, drm);
2586 }
2587 
2588 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2589 {
2590 	return to_i915(dev_get_drvdata(kdev));
2591 }
2592 
2593 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2594 {
2595 	return container_of(guc, struct drm_i915_private, guc);
2596 }
2597 
2598 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2599 {
2600 	return container_of(huc, struct drm_i915_private, huc);
2601 }
2602 
2603 /* Simple iterator over all initialised engines */
2604 #define for_each_engine(engine__, dev_priv__, id__) \
2605 	for ((id__) = 0; \
2606 	     (id__) < I915_NUM_ENGINES; \
2607 	     (id__)++) \
2608 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2609 
2610 /* Iterator over subset of engines selected by mask */
2611 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2612 	for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask;	\
2613 	     tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2614 
2615 enum hdmi_force_audio {
2616 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2617 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2618 	HDMI_AUDIO_AUTO,		/* trust EDID */
2619 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2620 };
2621 
2622 #define I915_GTT_OFFSET_NONE ((u32)-1)
2623 
2624 /*
2625  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2626  * considered to be the frontbuffer for the given plane interface-wise. This
2627  * doesn't mean that the hw necessarily already scans it out, but that any
2628  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2629  *
2630  * We have one bit per pipe and per scanout plane type.
2631  */
2632 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2633 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2634 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2635 	(1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2636 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2637 	(1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2638 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2639 	(1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2640 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2641 	(1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2642 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2643 	(0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2644 
2645 /*
2646  * Optimised SGL iterator for GEM objects
2647  */
2648 static __always_inline struct sgt_iter {
2649 	struct scatterlist *sgp;
2650 	union {
2651 		unsigned long pfn;
2652 		dma_addr_t dma;
2653 	};
2654 	unsigned int curr;
2655 	unsigned int max;
2656 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2657 	struct sgt_iter s = { .sgp = sgl };
2658 
2659 	if (s.sgp) {
2660 		s.max = s.curr = s.sgp->offset;
2661 		s.max += s.sgp->length;
2662 		if (dma)
2663 			s.dma = sg_dma_address(s.sgp);
2664 		else
2665 			s.pfn = page_to_pfn(sg_page(s.sgp));
2666 	}
2667 
2668 	return s;
2669 }
2670 
2671 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2672 {
2673 	++sg;
2674 	if (unlikely(sg_is_chain(sg)))
2675 		sg = sg_chain_ptr(sg);
2676 	return sg;
2677 }
2678 
2679 /**
2680  * __sg_next - return the next scatterlist entry in a list
2681  * @sg:		The current sg entry
2682  *
2683  * Description:
2684  *   If the entry is the last, return NULL; otherwise, step to the next
2685  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2686  *   otherwise just return the pointer to the current element.
2687  **/
2688 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2689 {
2690 #ifdef CONFIG_DEBUG_SG
2691 	BUG_ON(sg->sg_magic != SG_MAGIC);
2692 #endif
2693 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2694 }
2695 
2696 /**
2697  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2698  * @__dmap:	DMA address (output)
2699  * @__iter:	'struct sgt_iter' (iterator state, internal)
2700  * @__sgt:	sg_table to iterate over (input)
2701  */
2702 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2703 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2704 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2705 	     (((__iter).curr += PAGE_SIZE) < (__iter).max) ||		\
2706 	     ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2707 
2708 /**
2709  * for_each_sgt_page - iterate over the pages of the given sg_table
2710  * @__pp:	page pointer (output)
2711  * @__iter:	'struct sgt_iter' (iterator state, internal)
2712  * @__sgt:	sg_table to iterate over (input)
2713  */
2714 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2715 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2716 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2717 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2718 	     (((__iter).curr += PAGE_SIZE) < (__iter).max) ||		\
2719 	     ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2720 
2721 static inline const struct intel_device_info *
2722 intel_info(const struct drm_i915_private *dev_priv)
2723 {
2724 	return &dev_priv->info;
2725 }
2726 
2727 #define INTEL_INFO(dev_priv)	intel_info((dev_priv))
2728 
2729 #define INTEL_GEN(dev_priv)	((dev_priv)->info.gen)
2730 #define INTEL_DEVID(dev_priv)	((dev_priv)->info.device_id)
2731 
2732 #define REVID_FOREVER		0xff
2733 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2734 
2735 #define GEN_FOREVER (0)
2736 /*
2737  * Returns true if Gen is in inclusive range [Start, End].
2738  *
2739  * Use GEN_FOREVER for unbound start and or end.
2740  */
2741 #define IS_GEN(dev_priv, s, e) ({ \
2742 	unsigned int __s = (s), __e = (e); \
2743 	BUILD_BUG_ON(!__builtin_constant_p(s)); \
2744 	BUILD_BUG_ON(!__builtin_constant_p(e)); \
2745 	if ((__s) != GEN_FOREVER) \
2746 		__s = (s) - 1; \
2747 	if ((__e) == GEN_FOREVER) \
2748 		__e = BITS_PER_LONG - 1; \
2749 	else \
2750 		__e = (e) - 1; \
2751 	!!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2752 })
2753 
2754 /*
2755  * Return true if revision is in range [since,until] inclusive.
2756  *
2757  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2758  */
2759 #define IS_REVID(p, since, until) \
2760 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2761 
2762 #define IS_I830(dev_priv)	((dev_priv)->info.platform == INTEL_I830)
2763 #define IS_I845G(dev_priv)	((dev_priv)->info.platform == INTEL_I845G)
2764 #define IS_I85X(dev_priv)	((dev_priv)->info.platform == INTEL_I85X)
2765 #define IS_I865G(dev_priv)	((dev_priv)->info.platform == INTEL_I865G)
2766 #define IS_I915G(dev_priv)	((dev_priv)->info.platform == INTEL_I915G)
2767 #define IS_I915GM(dev_priv)	((dev_priv)->info.platform == INTEL_I915GM)
2768 #define IS_I945G(dev_priv)	((dev_priv)->info.platform == INTEL_I945G)
2769 #define IS_I945GM(dev_priv)	((dev_priv)->info.platform == INTEL_I945GM)
2770 #define IS_I965G(dev_priv)	((dev_priv)->info.platform == INTEL_I965G)
2771 #define IS_I965GM(dev_priv)	((dev_priv)->info.platform == INTEL_I965GM)
2772 #define IS_G45(dev_priv)	((dev_priv)->info.platform == INTEL_G45)
2773 #define IS_GM45(dev_priv)	((dev_priv)->info.platform == INTEL_GM45)
2774 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2775 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2776 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2777 #define IS_PINEVIEW(dev_priv)	((dev_priv)->info.platform == INTEL_PINEVIEW)
2778 #define IS_G33(dev_priv)	((dev_priv)->info.platform == INTEL_G33)
2779 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2780 #define IS_IVYBRIDGE(dev_priv)	((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2781 #define IS_IVB_GT1(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0156 || \
2782 				 INTEL_DEVID(dev_priv) == 0x0152 || \
2783 				 INTEL_DEVID(dev_priv) == 0x015a)
2784 #define IS_VALLEYVIEW(dev_priv)	((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2785 #define IS_CHERRYVIEW(dev_priv)	((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2786 #define IS_HASWELL(dev_priv)	((dev_priv)->info.platform == INTEL_HASWELL)
2787 #define IS_BROADWELL(dev_priv)	((dev_priv)->info.platform == INTEL_BROADWELL)
2788 #define IS_SKYLAKE(dev_priv)	((dev_priv)->info.platform == INTEL_SKYLAKE)
2789 #define IS_BROXTON(dev_priv)	((dev_priv)->info.platform == INTEL_BROXTON)
2790 #define IS_KABYLAKE(dev_priv)	((dev_priv)->info.platform == INTEL_KABYLAKE)
2791 #define IS_GEMINILAKE(dev_priv)	((dev_priv)->info.platform == INTEL_GEMINILAKE)
2792 #define IS_COFFEELAKE(dev_priv)	((dev_priv)->info.platform == INTEL_COFFEELAKE)
2793 #define IS_CANNONLAKE(dev_priv)	((dev_priv)->info.platform == INTEL_CANNONLAKE)
2794 #define IS_MOBILE(dev_priv)	((dev_priv)->info.is_mobile)
2795 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2796 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2797 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2798 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2799 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2800 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2801 /* ULX machines are also considered ULT. */
2802 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2803 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2804 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2805 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2806 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2807 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2808 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2809 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2810 /* ULX machines are also considered ULT. */
2811 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2812 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2813 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2814 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2815 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2816 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2817 				 INTEL_DEVID(dev_priv) == 0x1926)
2818 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2819 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2820 				 INTEL_DEVID(dev_priv) == 0x191E)
2821 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2822 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2823 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2824 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2825 				 INTEL_DEVID(dev_priv) == 0x5926)
2826 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2827 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2828 				 INTEL_DEVID(dev_priv) == 0x591E)
2829 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2830 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2831 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2832 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2833 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2834 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2835 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2836 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2837 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2838 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2839 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2840 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2841 
2842 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2843 
2844 #define SKL_REVID_A0		0x0
2845 #define SKL_REVID_B0		0x1
2846 #define SKL_REVID_C0		0x2
2847 #define SKL_REVID_D0		0x3
2848 #define SKL_REVID_E0		0x4
2849 #define SKL_REVID_F0		0x5
2850 #define SKL_REVID_G0		0x6
2851 #define SKL_REVID_H0		0x7
2852 
2853 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2854 
2855 #define BXT_REVID_A0		0x0
2856 #define BXT_REVID_A1		0x1
2857 #define BXT_REVID_B0		0x3
2858 #define BXT_REVID_B_LAST	0x8
2859 #define BXT_REVID_C0		0x9
2860 
2861 #define IS_BXT_REVID(dev_priv, since, until) \
2862 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2863 
2864 #define KBL_REVID_A0		0x0
2865 #define KBL_REVID_B0		0x1
2866 #define KBL_REVID_C0		0x2
2867 #define KBL_REVID_D0		0x3
2868 #define KBL_REVID_E0		0x4
2869 
2870 #define IS_KBL_REVID(dev_priv, since, until) \
2871 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2872 
2873 #define GLK_REVID_A0		0x0
2874 #define GLK_REVID_A1		0x1
2875 
2876 #define IS_GLK_REVID(dev_priv, since, until) \
2877 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2878 
2879 #define CNL_REVID_A0		0x0
2880 #define CNL_REVID_B0		0x1
2881 
2882 #define IS_CNL_REVID(p, since, until) \
2883 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2884 
2885 /*
2886  * The genX designation typically refers to the render engine, so render
2887  * capability related checks should use IS_GEN, while display and other checks
2888  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2889  * chips, etc.).
2890  */
2891 #define IS_GEN2(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(1)))
2892 #define IS_GEN3(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(2)))
2893 #define IS_GEN4(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(3)))
2894 #define IS_GEN5(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(4)))
2895 #define IS_GEN6(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(5)))
2896 #define IS_GEN7(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(6)))
2897 #define IS_GEN8(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(7)))
2898 #define IS_GEN9(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(8)))
2899 #define IS_GEN10(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(9)))
2900 
2901 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2902 #define IS_GEN9_LP(dev_priv)	(IS_GEN9(dev_priv) && IS_LP(dev_priv))
2903 #define IS_GEN9_BC(dev_priv)	(IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2904 
2905 #define ENGINE_MASK(id)	BIT(id)
2906 #define RENDER_RING	ENGINE_MASK(RCS)
2907 #define BSD_RING	ENGINE_MASK(VCS)
2908 #define BLT_RING	ENGINE_MASK(BCS)
2909 #define VEBOX_RING	ENGINE_MASK(VECS)
2910 #define BSD2_RING	ENGINE_MASK(VCS2)
2911 #define ALL_ENGINES	(~0)
2912 
2913 #define HAS_ENGINE(dev_priv, id) \
2914 	(!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2915 
2916 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
2917 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
2918 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
2919 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
2920 
2921 #define HAS_LLC(dev_priv)	((dev_priv)->info.has_llc)
2922 #define HAS_SNOOP(dev_priv)	((dev_priv)->info.has_snoop)
2923 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2924 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2925 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2926 
2927 #define HWS_NEEDS_PHYSICAL(dev_priv)	((dev_priv)->info.hws_needs_physical)
2928 
2929 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2930 		((dev_priv)->info.has_logical_ring_contexts)
2931 #define USES_PPGTT(dev_priv)		(i915.enable_ppgtt)
2932 #define USES_FULL_PPGTT(dev_priv)	(i915.enable_ppgtt >= 2)
2933 #define USES_FULL_48BIT_PPGTT(dev_priv)	(i915.enable_ppgtt == 3)
2934 
2935 #define HAS_OVERLAY(dev_priv)		 ((dev_priv)->info.has_overlay)
2936 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2937 		((dev_priv)->info.overlay_needs_physical)
2938 
2939 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2940 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
2941 
2942 /* WaRsDisableCoarsePowerGating:skl,bxt */
2943 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2944 	(IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2945 
2946 /*
2947  * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2948  * even when in MSI mode. This results in spurious interrupt warnings if the
2949  * legacy irq no. is shared with another device. The kernel then disables that
2950  * interrupt source and so prevents the other device from working properly.
2951  */
2952 #define HAS_AUX_IRQ(dev_priv)   ((dev_priv)->info.gen >= 5)
2953 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
2954 
2955 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2956  * rows, which changed the alignment requirements and fence programming.
2957  */
2958 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2959 					 !(IS_I915G(dev_priv) || \
2960 					 IS_I915GM(dev_priv)))
2961 #define SUPPORTS_TV(dev_priv)		((dev_priv)->info.supports_tv)
2962 #define I915_HAS_HOTPLUG(dev_priv)	((dev_priv)->info.has_hotplug)
2963 
2964 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
2965 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
2966 #define HAS_FBC(dev_priv)	((dev_priv)->info.has_fbc)
2967 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
2968 
2969 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2970 
2971 #define HAS_DP_MST(dev_priv)	((dev_priv)->info.has_dp_mst)
2972 
2973 #define HAS_DDI(dev_priv)		 ((dev_priv)->info.has_ddi)
2974 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2975 #define HAS_PSR(dev_priv)		 ((dev_priv)->info.has_psr)
2976 #define HAS_RC6(dev_priv)		 ((dev_priv)->info.has_rc6)
2977 #define HAS_RC6p(dev_priv)		 ((dev_priv)->info.has_rc6p)
2978 
2979 #define HAS_CSR(dev_priv)	((dev_priv)->info.has_csr)
2980 
2981 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2982 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2983 
2984 /*
2985  * For now, anything with a GuC requires uCode loading, and then supports
2986  * command submission once loaded. But these are logically independent
2987  * properties, so we have separate macros to test them.
2988  */
2989 #define HAS_GUC(dev_priv)	((dev_priv)->info.has_guc)
2990 #define HAS_GUC_CT(dev_priv)	((dev_priv)->info.has_guc_ct)
2991 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2992 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
2993 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2994 
2995 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
2996 
2997 #define HAS_POOLED_EU(dev_priv)	((dev_priv)->info.has_pooled_eu)
2998 
2999 #define INTEL_PCH_DEVICE_ID_MASK		0xff00
3000 #define INTEL_PCH_DEVICE_ID_MASK_EXT		0xff80
3001 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
3002 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
3003 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
3004 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
3005 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
3006 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
3007 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
3008 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA200
3009 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
3010 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
3011 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
3012 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
3013 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
3014 
3015 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3016 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3017 #define HAS_PCH_CNP_LP(dev_priv) \
3018 	((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3019 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3020 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3021 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3022 #define HAS_PCH_LPT_LP(dev_priv) \
3023 	((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3024 #define HAS_PCH_LPT_H(dev_priv) \
3025 	((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
3026 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3027 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3028 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3029 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3030 
3031 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3032 
3033 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3034 
3035 /* DPF == dynamic parity feature */
3036 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3037 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3038 				 2 : HAS_L3_DPF(dev_priv))
3039 
3040 #define GT_FREQUENCY_MULTIPLIER 50
3041 #define GEN9_FREQ_SCALER 3
3042 
3043 #include "i915_trace.h"
3044 
3045 static inline bool intel_vtd_active(void)
3046 {
3047 #ifdef CONFIG_INTEL_IOMMU
3048 	if (intel_iommu_gfx_mapped)
3049 		return true;
3050 #endif
3051 	return false;
3052 }
3053 
3054 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3055 {
3056 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3057 }
3058 
3059 static inline bool
3060 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3061 {
3062 	return IS_BROXTON(dev_priv) && intel_vtd_active();
3063 }
3064 
3065 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3066 				int enable_ppgtt);
3067 
3068 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3069 
3070 /* i915_drv.c */
3071 void __printf(3, 4)
3072 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3073 	      const char *fmt, ...);
3074 
3075 #define i915_report_error(dev_priv, fmt, ...)				   \
3076 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3077 
3078 #ifdef CONFIG_COMPAT
3079 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3080 			      unsigned long arg);
3081 #else
3082 #define i915_compat_ioctl NULL
3083 #endif
3084 extern const struct dev_pm_ops i915_pm_ops;
3085 
3086 extern int i915_driver_load(struct pci_dev *pdev,
3087 			    const struct pci_device_id *ent);
3088 extern void i915_driver_unload(struct drm_device *dev);
3089 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3090 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3091 extern void i915_reset(struct drm_i915_private *dev_priv);
3092 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3093 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3094 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3095 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3096 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3097 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3098 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3099 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3100 
3101 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3102 int intel_engines_init(struct drm_i915_private *dev_priv);
3103 
3104 /* intel_hotplug.c */
3105 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3106 			   u32 pin_mask, u32 long_mask);
3107 void intel_hpd_init(struct drm_i915_private *dev_priv);
3108 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3109 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3110 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
3111 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3112 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3113 
3114 /* i915_irq.c */
3115 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3116 {
3117 	unsigned long delay;
3118 
3119 	if (unlikely(!i915.enable_hangcheck))
3120 		return;
3121 
3122 	/* Don't continually defer the hangcheck so that it is always run at
3123 	 * least once after work has been scheduled on any ring. Otherwise,
3124 	 * we will ignore a hung ring if a second ring is kept busy.
3125 	 */
3126 
3127 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3128 	queue_delayed_work(system_long_wq,
3129 			   &dev_priv->gpu_error.hangcheck_work, delay);
3130 }
3131 
3132 __printf(3, 4)
3133 void i915_handle_error(struct drm_i915_private *dev_priv,
3134 		       u32 engine_mask,
3135 		       const char *fmt, ...);
3136 
3137 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3138 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3139 int intel_irq_install(struct drm_i915_private *dev_priv);
3140 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3141 
3142 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3143 {
3144 	return dev_priv->gvt;
3145 }
3146 
3147 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3148 {
3149 	return dev_priv->vgpu.active;
3150 }
3151 
3152 void
3153 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3154 		     u32 status_mask);
3155 
3156 void
3157 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3158 		      u32 status_mask);
3159 
3160 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3161 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3162 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3163 				   uint32_t mask,
3164 				   uint32_t bits);
3165 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3166 			    uint32_t interrupt_mask,
3167 			    uint32_t enabled_irq_mask);
3168 static inline void
3169 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3170 {
3171 	ilk_update_display_irq(dev_priv, bits, bits);
3172 }
3173 static inline void
3174 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3175 {
3176 	ilk_update_display_irq(dev_priv, bits, 0);
3177 }
3178 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3179 			 enum pipe pipe,
3180 			 uint32_t interrupt_mask,
3181 			 uint32_t enabled_irq_mask);
3182 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3183 				       enum pipe pipe, uint32_t bits)
3184 {
3185 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3186 }
3187 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3188 					enum pipe pipe, uint32_t bits)
3189 {
3190 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3191 }
3192 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3193 				  uint32_t interrupt_mask,
3194 				  uint32_t enabled_irq_mask);
3195 static inline void
3196 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3197 {
3198 	ibx_display_interrupt_update(dev_priv, bits, bits);
3199 }
3200 static inline void
3201 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3202 {
3203 	ibx_display_interrupt_update(dev_priv, bits, 0);
3204 }
3205 
3206 /* i915_gem.c */
3207 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3208 			  struct drm_file *file_priv);
3209 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3210 			 struct drm_file *file_priv);
3211 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3212 			  struct drm_file *file_priv);
3213 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3214 			struct drm_file *file_priv);
3215 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3216 			struct drm_file *file_priv);
3217 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3218 			      struct drm_file *file_priv);
3219 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3220 			     struct drm_file *file_priv);
3221 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3222 			struct drm_file *file_priv);
3223 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3224 			 struct drm_file *file_priv);
3225 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3226 			struct drm_file *file_priv);
3227 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3228 			       struct drm_file *file);
3229 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3230 			       struct drm_file *file);
3231 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3232 			    struct drm_file *file_priv);
3233 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3234 			   struct drm_file *file_priv);
3235 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3236 			      struct drm_file *file_priv);
3237 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3238 			      struct drm_file *file_priv);
3239 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3240 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3241 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3242 			   struct drm_file *file);
3243 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3244 				struct drm_file *file_priv);
3245 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3246 			struct drm_file *file_priv);
3247 void i915_gem_sanitize(struct drm_i915_private *i915);
3248 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3249 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3250 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3251 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3252 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3253 
3254 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3255 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3256 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3257 			 const struct drm_i915_gem_object_ops *ops);
3258 struct drm_i915_gem_object *
3259 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3260 struct drm_i915_gem_object *
3261 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3262 				 const void *data, size_t size);
3263 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3264 void i915_gem_free_object(struct drm_gem_object *obj);
3265 
3266 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3267 {
3268 	/* A single pass should suffice to release all the freed objects (along
3269 	 * most call paths) , but be a little more paranoid in that freeing
3270 	 * the objects does take a little amount of time, during which the rcu
3271 	 * callbacks could have added new objects into the freed list, and
3272 	 * armed the work again.
3273 	 */
3274 	do {
3275 		rcu_barrier();
3276 	} while (flush_work(&i915->mm.free_work));
3277 }
3278 
3279 struct i915_vma * __must_check
3280 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3281 			 const struct i915_ggtt_view *view,
3282 			 u64 size,
3283 			 u64 alignment,
3284 			 u64 flags);
3285 
3286 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3287 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3288 
3289 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3290 
3291 static inline int __sg_page_count(const struct scatterlist *sg)
3292 {
3293 	return sg->length >> PAGE_SHIFT;
3294 }
3295 
3296 struct scatterlist *
3297 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3298 		       unsigned int n, unsigned int *offset);
3299 
3300 struct page *
3301 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3302 			 unsigned int n);
3303 
3304 struct page *
3305 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3306 			       unsigned int n);
3307 
3308 dma_addr_t
3309 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3310 				unsigned long n);
3311 
3312 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3313 				 struct sg_table *pages);
3314 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3315 
3316 static inline int __must_check
3317 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3318 {
3319 	might_lock(&obj->mm.lock);
3320 
3321 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3322 		return 0;
3323 
3324 	return __i915_gem_object_get_pages(obj);
3325 }
3326 
3327 static inline void
3328 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3329 {
3330 	GEM_BUG_ON(!obj->mm.pages);
3331 
3332 	atomic_inc(&obj->mm.pages_pin_count);
3333 }
3334 
3335 static inline bool
3336 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3337 {
3338 	return atomic_read(&obj->mm.pages_pin_count);
3339 }
3340 
3341 static inline void
3342 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3343 {
3344 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3345 	GEM_BUG_ON(!obj->mm.pages);
3346 
3347 	atomic_dec(&obj->mm.pages_pin_count);
3348 }
3349 
3350 static inline void
3351 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3352 {
3353 	__i915_gem_object_unpin_pages(obj);
3354 }
3355 
3356 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3357 	I915_MM_NORMAL = 0,
3358 	I915_MM_SHRINKER
3359 };
3360 
3361 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3362 				 enum i915_mm_subclass subclass);
3363 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3364 
3365 enum i915_map_type {
3366 	I915_MAP_WB = 0,
3367 	I915_MAP_WC,
3368 };
3369 
3370 /**
3371  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3372  * @obj: the object to map into kernel address space
3373  * @type: the type of mapping, used to select pgprot_t
3374  *
3375  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3376  * pages and then returns a contiguous mapping of the backing storage into
3377  * the kernel address space. Based on the @type of mapping, the PTE will be
3378  * set to either WriteBack or WriteCombine (via pgprot_t).
3379  *
3380  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3381  * mapping is no longer required.
3382  *
3383  * Returns the pointer through which to access the mapped object, or an
3384  * ERR_PTR() on error.
3385  */
3386 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3387 					   enum i915_map_type type);
3388 
3389 /**
3390  * i915_gem_object_unpin_map - releases an earlier mapping
3391  * @obj: the object to unmap
3392  *
3393  * After pinning the object and mapping its pages, once you are finished
3394  * with your access, call i915_gem_object_unpin_map() to release the pin
3395  * upon the mapping. Once the pin count reaches zero, that mapping may be
3396  * removed.
3397  */
3398 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3399 {
3400 	i915_gem_object_unpin_pages(obj);
3401 }
3402 
3403 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3404 				    unsigned int *needs_clflush);
3405 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3406 				     unsigned int *needs_clflush);
3407 #define CLFLUSH_BEFORE	BIT(0)
3408 #define CLFLUSH_AFTER	BIT(1)
3409 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
3410 
3411 static inline void
3412 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3413 {
3414 	i915_gem_object_unpin_pages(obj);
3415 }
3416 
3417 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3418 void i915_vma_move_to_active(struct i915_vma *vma,
3419 			     struct drm_i915_gem_request *req,
3420 			     unsigned int flags);
3421 int i915_gem_dumb_create(struct drm_file *file_priv,
3422 			 struct drm_device *dev,
3423 			 struct drm_mode_create_dumb *args);
3424 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3425 		      uint32_t handle, uint64_t *offset);
3426 int i915_gem_mmap_gtt_version(void);
3427 
3428 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3429 		       struct drm_i915_gem_object *new,
3430 		       unsigned frontbuffer_bits);
3431 
3432 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3433 
3434 struct drm_i915_gem_request *
3435 i915_gem_find_active_request(struct intel_engine_cs *engine);
3436 
3437 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3438 
3439 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3440 {
3441 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3442 }
3443 
3444 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3445 {
3446 	return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3447 }
3448 
3449 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3450 {
3451 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3452 }
3453 
3454 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3455 {
3456 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3457 }
3458 
3459 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3460 {
3461 	return READ_ONCE(error->reset_count);
3462 }
3463 
3464 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3465 void i915_gem_reset(struct drm_i915_private *dev_priv);
3466 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3467 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3468 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3469 
3470 void i915_gem_init_mmio(struct drm_i915_private *i915);
3471 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3472 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3473 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3474 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3475 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3476 			   unsigned int flags);
3477 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3478 void i915_gem_resume(struct drm_i915_private *dev_priv);
3479 int i915_gem_fault(struct vm_fault *vmf);
3480 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3481 			 unsigned int flags,
3482 			 long timeout,
3483 			 struct intel_rps_client *rps);
3484 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3485 				  unsigned int flags,
3486 				  int priority);
3487 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3488 
3489 int __must_check
3490 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3491 int __must_check
3492 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3493 int __must_check
3494 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3495 struct i915_vma * __must_check
3496 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3497 				     u32 alignment,
3498 				     const struct i915_ggtt_view *view);
3499 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3500 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3501 				int align);
3502 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3503 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3504 
3505 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3506 				    enum i915_cache_level cache_level);
3507 
3508 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3509 				struct dma_buf *dma_buf);
3510 
3511 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3512 				struct drm_gem_object *gem_obj, int flags);
3513 
3514 static inline struct i915_hw_ppgtt *
3515 i915_vm_to_ppgtt(struct i915_address_space *vm)
3516 {
3517 	return container_of(vm, struct i915_hw_ppgtt, base);
3518 }
3519 
3520 /* i915_gem_fence_reg.c */
3521 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3522 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3523 
3524 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3525 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3526 
3527 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3528 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3529 				       struct sg_table *pages);
3530 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3531 					 struct sg_table *pages);
3532 
3533 static inline struct i915_gem_context *
3534 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3535 {
3536 	struct i915_gem_context *ctx;
3537 
3538 	lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3539 
3540 	ctx = idr_find(&file_priv->context_idr, id);
3541 	if (!ctx)
3542 		return ERR_PTR(-ENOENT);
3543 
3544 	return ctx;
3545 }
3546 
3547 static inline struct i915_gem_context *
3548 i915_gem_context_get(struct i915_gem_context *ctx)
3549 {
3550 	kref_get(&ctx->ref);
3551 	return ctx;
3552 }
3553 
3554 static inline void i915_gem_context_put(struct i915_gem_context *ctx)
3555 {
3556 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3557 	kref_put(&ctx->ref, i915_gem_context_free);
3558 }
3559 
3560 static inline void i915_gem_context_put_unlocked(struct i915_gem_context *ctx)
3561 {
3562 	struct mutex *lock = &ctx->i915->drm.struct_mutex;
3563 
3564 	if (kref_put_mutex(&ctx->ref, i915_gem_context_free, lock))
3565 		mutex_unlock(lock);
3566 }
3567 
3568 static inline struct intel_timeline *
3569 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3570 				 struct intel_engine_cs *engine)
3571 {
3572 	struct i915_address_space *vm;
3573 
3574 	vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3575 	return &vm->timeline.engine[engine->id];
3576 }
3577 
3578 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3579 			 struct drm_file *file);
3580 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3581 			    struct i915_gem_context *ctx,
3582 			    uint32_t *reg_state);
3583 
3584 /* i915_gem_evict.c */
3585 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3586 					  u64 min_size, u64 alignment,
3587 					  unsigned cache_level,
3588 					  u64 start, u64 end,
3589 					  unsigned flags);
3590 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3591 					 struct drm_mm_node *node,
3592 					 unsigned int flags);
3593 int i915_gem_evict_vm(struct i915_address_space *vm);
3594 
3595 /* belongs in i915_gem_gtt.h */
3596 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3597 {
3598 	wmb();
3599 	if (INTEL_GEN(dev_priv) < 6)
3600 		intel_gtt_chipset_flush();
3601 }
3602 
3603 /* i915_gem_stolen.c */
3604 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3605 				struct drm_mm_node *node, u64 size,
3606 				unsigned alignment);
3607 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3608 					 struct drm_mm_node *node, u64 size,
3609 					 unsigned alignment, u64 start,
3610 					 u64 end);
3611 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3612 				 struct drm_mm_node *node);
3613 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3614 void i915_gem_cleanup_stolen(struct drm_device *dev);
3615 struct drm_i915_gem_object *
3616 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3617 struct drm_i915_gem_object *
3618 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3619 					       u32 stolen_offset,
3620 					       u32 gtt_offset,
3621 					       u32 size);
3622 
3623 /* i915_gem_internal.c */
3624 struct drm_i915_gem_object *
3625 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3626 				phys_addr_t size);
3627 
3628 /* i915_gem_shrinker.c */
3629 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3630 			      unsigned long target,
3631 			      unsigned flags);
3632 #define I915_SHRINK_PURGEABLE 0x1
3633 #define I915_SHRINK_UNBOUND 0x2
3634 #define I915_SHRINK_BOUND 0x4
3635 #define I915_SHRINK_ACTIVE 0x8
3636 #define I915_SHRINK_VMAPS 0x10
3637 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3638 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3639 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3640 
3641 
3642 /* i915_gem_tiling.c */
3643 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3644 {
3645 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3646 
3647 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3648 		i915_gem_object_is_tiled(obj);
3649 }
3650 
3651 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3652 			unsigned int tiling, unsigned int stride);
3653 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3654 			     unsigned int tiling, unsigned int stride);
3655 
3656 /* i915_debugfs.c */
3657 #ifdef CONFIG_DEBUG_FS
3658 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3659 int i915_debugfs_connector_add(struct drm_connector *connector);
3660 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3661 #else
3662 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3663 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3664 { return 0; }
3665 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3666 #endif
3667 
3668 /* i915_gpu_error.c */
3669 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3670 
3671 __printf(2, 3)
3672 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3673 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3674 			    const struct i915_gpu_state *gpu);
3675 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3676 			      struct drm_i915_private *i915,
3677 			      size_t count, loff_t pos);
3678 static inline void i915_error_state_buf_release(
3679 	struct drm_i915_error_state_buf *eb)
3680 {
3681 	kfree(eb->buf);
3682 }
3683 
3684 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3685 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3686 			      u32 engine_mask,
3687 			      const char *error_msg);
3688 
3689 static inline struct i915_gpu_state *
3690 i915_gpu_state_get(struct i915_gpu_state *gpu)
3691 {
3692 	kref_get(&gpu->ref);
3693 	return gpu;
3694 }
3695 
3696 void __i915_gpu_state_free(struct kref *kref);
3697 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3698 {
3699 	if (gpu)
3700 		kref_put(&gpu->ref, __i915_gpu_state_free);
3701 }
3702 
3703 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3704 void i915_reset_error_state(struct drm_i915_private *i915);
3705 
3706 #else
3707 
3708 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3709 					    u32 engine_mask,
3710 					    const char *error_msg)
3711 {
3712 }
3713 
3714 static inline struct i915_gpu_state *
3715 i915_first_error_state(struct drm_i915_private *i915)
3716 {
3717 	return NULL;
3718 }
3719 
3720 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3721 {
3722 }
3723 
3724 #endif
3725 
3726 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3727 
3728 /* i915_cmd_parser.c */
3729 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3730 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3731 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3732 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3733 			    struct drm_i915_gem_object *batch_obj,
3734 			    struct drm_i915_gem_object *shadow_batch_obj,
3735 			    u32 batch_start_offset,
3736 			    u32 batch_len,
3737 			    bool is_master);
3738 
3739 /* i915_perf.c */
3740 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3741 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3742 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3743 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3744 
3745 /* i915_suspend.c */
3746 extern int i915_save_state(struct drm_i915_private *dev_priv);
3747 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3748 
3749 /* i915_sysfs.c */
3750 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3751 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3752 
3753 /* intel_lpe_audio.c */
3754 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3755 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3756 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3757 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3758 			    enum pipe pipe, enum port port,
3759 			    const void *eld, int ls_clock, bool dp_output);
3760 
3761 /* intel_i2c.c */
3762 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3763 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3764 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3765 				     unsigned int pin);
3766 
3767 extern struct i2c_adapter *
3768 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3769 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3770 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3771 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3772 {
3773 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3774 }
3775 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3776 
3777 /* intel_bios.c */
3778 void intel_bios_init(struct drm_i915_private *dev_priv);
3779 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3780 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3781 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3782 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3783 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3784 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3785 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3786 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3787 				     enum port port);
3788 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3789 				enum port port);
3790 
3791 
3792 /* intel_opregion.c */
3793 #ifdef CONFIG_ACPI
3794 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3795 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3796 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3797 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3798 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3799 					 bool enable);
3800 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3801 					 pci_power_t state);
3802 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3803 #else
3804 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3805 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3806 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3807 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3808 {
3809 }
3810 static inline int
3811 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3812 {
3813 	return 0;
3814 }
3815 static inline int
3816 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3817 {
3818 	return 0;
3819 }
3820 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3821 {
3822 	return -ENODEV;
3823 }
3824 #endif
3825 
3826 /* intel_acpi.c */
3827 #ifdef CONFIG_ACPI
3828 extern void intel_register_dsm_handler(void);
3829 extern void intel_unregister_dsm_handler(void);
3830 #else
3831 static inline void intel_register_dsm_handler(void) { return; }
3832 static inline void intel_unregister_dsm_handler(void) { return; }
3833 #endif /* CONFIG_ACPI */
3834 
3835 /* intel_device_info.c */
3836 static inline struct intel_device_info *
3837 mkwrite_device_info(struct drm_i915_private *dev_priv)
3838 {
3839 	return (struct intel_device_info *)&dev_priv->info;
3840 }
3841 
3842 const char *intel_platform_name(enum intel_platform platform);
3843 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3844 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3845 
3846 /* modesetting */
3847 extern void intel_modeset_init_hw(struct drm_device *dev);
3848 extern int intel_modeset_init(struct drm_device *dev);
3849 extern void intel_modeset_gem_init(struct drm_device *dev);
3850 extern void intel_modeset_cleanup(struct drm_device *dev);
3851 extern int intel_connector_register(struct drm_connector *);
3852 extern void intel_connector_unregister(struct drm_connector *);
3853 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3854 				       bool state);
3855 extern void intel_display_resume(struct drm_device *dev);
3856 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3857 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3858 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3859 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3860 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3861 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3862 				  bool enable);
3863 
3864 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3865 			struct drm_file *file);
3866 
3867 /* overlay */
3868 extern struct intel_overlay_error_state *
3869 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3870 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3871 					    struct intel_overlay_error_state *error);
3872 
3873 extern struct intel_display_error_state *
3874 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3875 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3876 					    struct intel_display_error_state *error);
3877 
3878 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3879 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3880 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3881 		      u32 reply_mask, u32 reply, int timeout_base_ms);
3882 
3883 /* intel_sideband.c */
3884 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3885 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3886 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3887 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3888 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3889 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3890 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3891 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3892 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3893 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3894 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3895 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3896 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3897 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3898 		   enum intel_sbi_destination destination);
3899 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3900 		     enum intel_sbi_destination destination);
3901 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3902 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3903 
3904 /* intel_dpio_phy.c */
3905 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3906 			     enum dpio_phy *phy, enum dpio_channel *ch);
3907 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3908 				  enum port port, u32 margin, u32 scale,
3909 				  u32 enable, u32 deemphasis);
3910 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3911 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3912 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3913 			    enum dpio_phy phy);
3914 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3915 			      enum dpio_phy phy);
3916 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
3917 					     uint8_t lane_count);
3918 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3919 				     uint8_t lane_lat_optim_mask);
3920 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3921 
3922 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3923 			      u32 deemph_reg_value, u32 margin_reg_value,
3924 			      bool uniq_trans_scale);
3925 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3926 			      bool reset);
3927 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3928 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3929 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3930 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3931 
3932 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3933 			      u32 demph_reg_value, u32 preemph_reg_value,
3934 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3935 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3936 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3937 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3938 
3939 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3940 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3941 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3942 			   const i915_reg_t reg);
3943 
3944 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3945 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3946 
3947 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3948 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3949 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3950 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3951 
3952 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3953 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3954 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3955 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3956 
3957 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3958  * will be implemented using 2 32-bit writes in an arbitrary order with
3959  * an arbitrary delay between them. This can cause the hardware to
3960  * act upon the intermediate value, possibly leading to corruption and
3961  * machine death. For this reason we do not support I915_WRITE64, or
3962  * dev_priv->uncore.funcs.mmio_writeq.
3963  *
3964  * When reading a 64-bit value as two 32-bit values, the delay may cause
3965  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3966  * occasionally a 64-bit register does not actualy support a full readq
3967  * and must be read using two 32-bit reads.
3968  *
3969  * You have been warned.
3970  */
3971 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3972 
3973 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
3974 	u32 upper, lower, old_upper, loop = 0;				\
3975 	upper = I915_READ(upper_reg);					\
3976 	do {								\
3977 		old_upper = upper;					\
3978 		lower = I915_READ(lower_reg);				\
3979 		upper = I915_READ(upper_reg);				\
3980 	} while (upper != old_upper && loop++ < 2);			\
3981 	(u64)upper << 32 | lower; })
3982 
3983 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
3984 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
3985 
3986 #define __raw_read(x, s) \
3987 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3988 					     i915_reg_t reg) \
3989 { \
3990 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3991 }
3992 
3993 #define __raw_write(x, s) \
3994 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3995 				       i915_reg_t reg, uint##x##_t val) \
3996 { \
3997 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3998 }
3999 __raw_read(8, b)
4000 __raw_read(16, w)
4001 __raw_read(32, l)
4002 __raw_read(64, q)
4003 
4004 __raw_write(8, b)
4005 __raw_write(16, w)
4006 __raw_write(32, l)
4007 __raw_write(64, q)
4008 
4009 #undef __raw_read
4010 #undef __raw_write
4011 
4012 /* These are untraced mmio-accessors that are only valid to be used inside
4013  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4014  * controlled.
4015  *
4016  * Think twice, and think again, before using these.
4017  *
4018  * As an example, these accessors can possibly be used between:
4019  *
4020  * spin_lock_irq(&dev_priv->uncore.lock);
4021  * intel_uncore_forcewake_get__locked();
4022  *
4023  * and
4024  *
4025  * intel_uncore_forcewake_put__locked();
4026  * spin_unlock_irq(&dev_priv->uncore.lock);
4027  *
4028  *
4029  * Note: some registers may not need forcewake held, so
4030  * intel_uncore_forcewake_{get,put} can be omitted, see
4031  * intel_uncore_forcewake_for_reg().
4032  *
4033  * Certain architectures will die if the same cacheline is concurrently accessed
4034  * by different clients (e.g. on Ivybridge). Access to registers should
4035  * therefore generally be serialised, by either the dev_priv->uncore.lock or
4036  * a more localised lock guarding all access to that bank of registers.
4037  */
4038 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4039 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4040 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4041 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4042 
4043 /* "Broadcast RGB" property */
4044 #define INTEL_BROADCAST_RGB_AUTO 0
4045 #define INTEL_BROADCAST_RGB_FULL 1
4046 #define INTEL_BROADCAST_RGB_LIMITED 2
4047 
4048 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4049 {
4050 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4051 		return VLV_VGACNTRL;
4052 	else if (INTEL_GEN(dev_priv) >= 5)
4053 		return CPU_VGACNTRL;
4054 	else
4055 		return VGACNTRL;
4056 }
4057 
4058 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4059 {
4060 	unsigned long j = msecs_to_jiffies(m);
4061 
4062 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4063 }
4064 
4065 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4066 {
4067         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4068 }
4069 
4070 static inline unsigned long
4071 timespec_to_jiffies_timeout(const struct timespec *value)
4072 {
4073 	unsigned long j = timespec_to_jiffies(value);
4074 
4075 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4076 }
4077 
4078 /*
4079  * If you need to wait X milliseconds between events A and B, but event B
4080  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4081  * when event A happened, then just before event B you call this function and
4082  * pass the timestamp as the first argument, and X as the second argument.
4083  */
4084 static inline void
4085 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4086 {
4087 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4088 
4089 	/*
4090 	 * Don't re-read the value of "jiffies" every time since it may change
4091 	 * behind our back and break the math.
4092 	 */
4093 	tmp_jiffies = jiffies;
4094 	target_jiffies = timestamp_jiffies +
4095 			 msecs_to_jiffies_timeout(to_wait_ms);
4096 
4097 	if (time_after(target_jiffies, tmp_jiffies)) {
4098 		remaining_jiffies = target_jiffies - tmp_jiffies;
4099 		while (remaining_jiffies)
4100 			remaining_jiffies =
4101 			    schedule_timeout_uninterruptible(remaining_jiffies);
4102 	}
4103 }
4104 
4105 static inline bool
4106 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4107 {
4108 	struct intel_engine_cs *engine = req->engine;
4109 	u32 seqno;
4110 
4111 	/* Note that the engine may have wrapped around the seqno, and
4112 	 * so our request->global_seqno will be ahead of the hardware,
4113 	 * even though it completed the request before wrapping. We catch
4114 	 * this by kicking all the waiters before resetting the seqno
4115 	 * in hardware, and also signal the fence.
4116 	 */
4117 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4118 		return true;
4119 
4120 	/* The request was dequeued before we were awoken. We check after
4121 	 * inspecting the hw to confirm that this was the same request
4122 	 * that generated the HWS update. The memory barriers within
4123 	 * the request execution are sufficient to ensure that a check
4124 	 * after reading the value from hw matches this request.
4125 	 */
4126 	seqno = i915_gem_request_global_seqno(req);
4127 	if (!seqno)
4128 		return false;
4129 
4130 	/* Before we do the heavier coherent read of the seqno,
4131 	 * check the value (hopefully) in the CPU cacheline.
4132 	 */
4133 	if (__i915_gem_request_completed(req, seqno))
4134 		return true;
4135 
4136 	/* Ensure our read of the seqno is coherent so that we
4137 	 * do not "miss an interrupt" (i.e. if this is the last
4138 	 * request and the seqno write from the GPU is not visible
4139 	 * by the time the interrupt fires, we will see that the
4140 	 * request is incomplete and go back to sleep awaiting
4141 	 * another interrupt that will never come.)
4142 	 *
4143 	 * Strictly, we only need to do this once after an interrupt,
4144 	 * but it is easier and safer to do it every time the waiter
4145 	 * is woken.
4146 	 */
4147 	if (engine->irq_seqno_barrier &&
4148 	    test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4149 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
4150 
4151 		/* The ordering of irq_posted versus applying the barrier
4152 		 * is crucial. The clearing of the current irq_posted must
4153 		 * be visible before we perform the barrier operation,
4154 		 * such that if a subsequent interrupt arrives, irq_posted
4155 		 * is reasserted and our task rewoken (which causes us to
4156 		 * do another __i915_request_irq_complete() immediately
4157 		 * and reapply the barrier). Conversely, if the clear
4158 		 * occurs after the barrier, then an interrupt that arrived
4159 		 * whilst we waited on the barrier would not trigger a
4160 		 * barrier on the next pass, and the read may not see the
4161 		 * seqno update.
4162 		 */
4163 		engine->irq_seqno_barrier(engine);
4164 
4165 		/* If we consume the irq, but we are no longer the bottom-half,
4166 		 * the real bottom-half may not have serialised their own
4167 		 * seqno check with the irq-barrier (i.e. may have inspected
4168 		 * the seqno before we believe it coherent since they see
4169 		 * irq_posted == false but we are still running).
4170 		 */
4171 		spin_lock_irq(&b->irq_lock);
4172 		if (b->irq_wait && b->irq_wait->tsk != current)
4173 			/* Note that if the bottom-half is changed as we
4174 			 * are sending the wake-up, the new bottom-half will
4175 			 * be woken by whomever made the change. We only have
4176 			 * to worry about when we steal the irq-posted for
4177 			 * ourself.
4178 			 */
4179 			wake_up_process(b->irq_wait->tsk);
4180 		spin_unlock_irq(&b->irq_lock);
4181 
4182 		if (__i915_gem_request_completed(req, seqno))
4183 			return true;
4184 	}
4185 
4186 	return false;
4187 }
4188 
4189 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4190 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4191 
4192 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4193  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4194  * perform the operation. To check beforehand, pass in the parameters to
4195  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4196  * you only need to pass in the minor offsets, page-aligned pointers are
4197  * always valid.
4198  *
4199  * For just checking for SSE4.1, in the foreknowledge that the future use
4200  * will be correctly aligned, just use i915_has_memcpy_from_wc().
4201  */
4202 #define i915_can_memcpy_from_wc(dst, src, len) \
4203 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4204 
4205 #define i915_has_memcpy_from_wc() \
4206 	i915_memcpy_from_wc(NULL, NULL, 0)
4207 
4208 /* i915_mm.c */
4209 int remap_io_mapping(struct vm_area_struct *vma,
4210 		     unsigned long addr, unsigned long pfn, unsigned long size,
4211 		     struct io_mapping *iomap);
4212 
4213 static inline bool i915_gem_object_is_coherent(struct drm_i915_gem_object *obj)
4214 {
4215 	return (obj->cache_level != I915_CACHE_NONE ||
4216 		HAS_LLC(to_i915(obj->base.dev)));
4217 }
4218 
4219 #endif
4220