xref: /openbmc/linux/drivers/gpu/drm/i915/i915_drv.h (revision 51c7b447)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/mm_types.h>
44 #include <linux/perf_event.h>
45 #include <linux/pm_qos.h>
46 #include <linux/reservation.h>
47 #include <linux/shmem_fs.h>
48 #include <linux/stackdepot.h>
49 
50 #include <drm/intel-gtt.h>
51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
52 #include <drm/drm_gem.h>
53 #include <drm/drm_auth.h>
54 #include <drm/drm_cache.h>
55 #include <drm/drm_util.h>
56 #include <drm/drm_dsc.h>
57 #include <drm/drm_connector.h>
58 #include <drm/i915_mei_hdcp_interface.h>
59 
60 #include "i915_fixed.h"
61 #include "i915_params.h"
62 #include "i915_reg.h"
63 #include "i915_utils.h"
64 
65 #include "intel_bios.h"
66 #include "intel_device_info.h"
67 #include "intel_display.h"
68 #include "intel_dpll_mgr.h"
69 #include "intel_lrc.h"
70 #include "intel_opregion.h"
71 #include "intel_ringbuffer.h"
72 #include "intel_uncore.h"
73 #include "intel_wopcm.h"
74 #include "intel_workarounds.h"
75 #include "intel_uc.h"
76 
77 #include "i915_gem.h"
78 #include "i915_gem_context.h"
79 #include "i915_gem_fence_reg.h"
80 #include "i915_gem_object.h"
81 #include "i915_gem_gtt.h"
82 #include "i915_gpu_error.h"
83 #include "i915_request.h"
84 #include "i915_scheduler.h"
85 #include "i915_timeline.h"
86 #include "i915_vma.h"
87 
88 #include "intel_gvt.h"
89 
90 /* General customization:
91  */
92 
93 #define DRIVER_NAME		"i915"
94 #define DRIVER_DESC		"Intel Graphics"
95 #define DRIVER_DATE		"20190328"
96 #define DRIVER_TIMESTAMP	1553776914
97 
98 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
99  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
100  * which may not necessarily be a user visible problem.  This will either
101  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
102  * enable distros and users to tailor their preferred amount of i915 abrt
103  * spam.
104  */
105 #define I915_STATE_WARN(condition, format...) ({			\
106 	int __ret_warn_on = !!(condition);				\
107 	if (unlikely(__ret_warn_on))					\
108 		if (!WARN(i915_modparams.verbose_state_checks, format))	\
109 			DRM_ERROR(format);				\
110 	unlikely(__ret_warn_on);					\
111 })
112 
113 #define I915_STATE_WARN_ON(x)						\
114 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
115 
116 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
117 
118 bool __i915_inject_load_failure(const char *func, int line);
119 #define i915_inject_load_failure() \
120 	__i915_inject_load_failure(__func__, __LINE__)
121 
122 bool i915_error_injected(void);
123 
124 #else
125 
126 #define i915_inject_load_failure() false
127 #define i915_error_injected() false
128 
129 #endif
130 
131 #define i915_load_error(i915, fmt, ...)					 \
132 	__i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
133 		      fmt, ##__VA_ARGS__)
134 
135 typedef depot_stack_handle_t intel_wakeref_t;
136 
137 enum hpd_pin {
138 	HPD_NONE = 0,
139 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
140 	HPD_CRT,
141 	HPD_SDVO_B,
142 	HPD_SDVO_C,
143 	HPD_PORT_A,
144 	HPD_PORT_B,
145 	HPD_PORT_C,
146 	HPD_PORT_D,
147 	HPD_PORT_E,
148 	HPD_PORT_F,
149 	HPD_NUM_PINS
150 };
151 
152 #define for_each_hpd_pin(__pin) \
153 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
154 
155 /* Threshold == 5 for long IRQs, 50 for short */
156 #define HPD_STORM_DEFAULT_THRESHOLD 50
157 
158 struct i915_hotplug {
159 	struct work_struct hotplug_work;
160 
161 	struct {
162 		unsigned long last_jiffies;
163 		int count;
164 		enum {
165 			HPD_ENABLED = 0,
166 			HPD_DISABLED = 1,
167 			HPD_MARK_DISABLED = 2
168 		} state;
169 	} stats[HPD_NUM_PINS];
170 	u32 event_bits;
171 	struct delayed_work reenable_work;
172 
173 	u32 long_port_mask;
174 	u32 short_port_mask;
175 	struct work_struct dig_port_work;
176 
177 	struct work_struct poll_init_work;
178 	bool poll_enabled;
179 
180 	unsigned int hpd_storm_threshold;
181 	/* Whether or not to count short HPD IRQs in HPD storms */
182 	u8 hpd_short_storm_enabled;
183 
184 	/*
185 	 * if we get a HPD irq from DP and a HPD irq from non-DP
186 	 * the non-DP HPD could block the workqueue on a mode config
187 	 * mutex getting, that userspace may have taken. However
188 	 * userspace is waiting on the DP workqueue to run which is
189 	 * blocked behind the non-DP one.
190 	 */
191 	struct workqueue_struct *dp_wq;
192 };
193 
194 #define I915_GEM_GPU_DOMAINS \
195 	(I915_GEM_DOMAIN_RENDER | \
196 	 I915_GEM_DOMAIN_SAMPLER | \
197 	 I915_GEM_DOMAIN_COMMAND | \
198 	 I915_GEM_DOMAIN_INSTRUCTION | \
199 	 I915_GEM_DOMAIN_VERTEX)
200 
201 struct drm_i915_private;
202 struct i915_mm_struct;
203 struct i915_mmu_object;
204 
205 struct drm_i915_file_private {
206 	struct drm_i915_private *dev_priv;
207 	struct drm_file *file;
208 
209 	struct {
210 		spinlock_t lock;
211 		struct list_head request_list;
212 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
213  * chosen to prevent the CPU getting more than a frame ahead of the GPU
214  * (when using lax throttling for the frontbuffer). We also use it to
215  * offer free GPU waitboosts for severely congested workloads.
216  */
217 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
218 	} mm;
219 
220 	struct idr context_idr;
221 	struct mutex context_idr_lock; /* guards context_idr */
222 
223 	struct idr vm_idr;
224 	struct mutex vm_idr_lock; /* guards vm_idr */
225 
226 	unsigned int bsd_engine;
227 
228 /*
229  * Every context ban increments per client ban score. Also
230  * hangs in short succession increments ban score. If ban threshold
231  * is reached, client is considered banned and submitting more work
232  * will fail. This is a stop gap measure to limit the badly behaving
233  * clients access to gpu. Note that unbannable contexts never increment
234  * the client ban score.
235  */
236 #define I915_CLIENT_SCORE_HANG_FAST	1
237 #define   I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ)
238 #define I915_CLIENT_SCORE_CONTEXT_BAN   3
239 #define I915_CLIENT_SCORE_BANNED	9
240 	/** ban_score: Accumulated score of all ctx bans and fast hangs. */
241 	atomic_t ban_score;
242 	unsigned long hang_timestamp;
243 };
244 
245 /* Interface history:
246  *
247  * 1.1: Original.
248  * 1.2: Add Power Management
249  * 1.3: Add vblank support
250  * 1.4: Fix cmdbuffer path, add heap destroy
251  * 1.5: Add vblank pipe configuration
252  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
253  *      - Support vertical blank on secondary display pipe
254  */
255 #define DRIVER_MAJOR		1
256 #define DRIVER_MINOR		6
257 #define DRIVER_PATCHLEVEL	0
258 
259 struct intel_overlay;
260 struct intel_overlay_error_state;
261 
262 struct sdvo_device_mapping {
263 	u8 initialized;
264 	u8 dvo_port;
265 	u8 slave_addr;
266 	u8 dvo_wiring;
267 	u8 i2c_pin;
268 	u8 ddc_pin;
269 };
270 
271 struct intel_connector;
272 struct intel_encoder;
273 struct intel_atomic_state;
274 struct intel_crtc_state;
275 struct intel_initial_plane_config;
276 struct intel_crtc;
277 struct intel_limit;
278 struct dpll;
279 struct intel_cdclk_state;
280 
281 struct drm_i915_display_funcs {
282 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
283 			  struct intel_cdclk_state *cdclk_state);
284 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
285 			  const struct intel_cdclk_state *cdclk_state);
286 	int (*get_fifo_size)(struct drm_i915_private *dev_priv,
287 			     enum i9xx_plane_id i9xx_plane);
288 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
289 	int (*compute_intermediate_wm)(struct intel_crtc_state *newstate);
290 	void (*initial_watermarks)(struct intel_atomic_state *state,
291 				   struct intel_crtc_state *cstate);
292 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
293 					 struct intel_crtc_state *cstate);
294 	void (*optimize_watermarks)(struct intel_atomic_state *state,
295 				    struct intel_crtc_state *cstate);
296 	int (*compute_global_watermarks)(struct intel_atomic_state *state);
297 	void (*update_wm)(struct intel_crtc *crtc);
298 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
299 	/* Returns the active state of the crtc, and if the crtc is active,
300 	 * fills out the pipe-config with the hw state. */
301 	bool (*get_pipe_config)(struct intel_crtc *,
302 				struct intel_crtc_state *);
303 	void (*get_initial_plane_config)(struct intel_crtc *,
304 					 struct intel_initial_plane_config *);
305 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
306 				  struct intel_crtc_state *crtc_state);
307 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
308 			    struct drm_atomic_state *old_state);
309 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
310 			     struct drm_atomic_state *old_state);
311 	void (*update_crtcs)(struct drm_atomic_state *state);
312 	void (*audio_codec_enable)(struct intel_encoder *encoder,
313 				   const struct intel_crtc_state *crtc_state,
314 				   const struct drm_connector_state *conn_state);
315 	void (*audio_codec_disable)(struct intel_encoder *encoder,
316 				    const struct intel_crtc_state *old_crtc_state,
317 				    const struct drm_connector_state *old_conn_state);
318 	void (*fdi_link_train)(struct intel_crtc *crtc,
319 			       const struct intel_crtc_state *crtc_state);
320 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
321 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
322 	/* clock updates for mode set */
323 	/* cursor updates */
324 	/* render clock increase/decrease */
325 	/* display clock increase/decrease */
326 	/* pll clock increase/decrease */
327 
328 	/*
329 	 * Program double buffered color management registers during
330 	 * vblank evasion. The registers should then latch during the
331 	 * next vblank start, alongside any other double buffered registers
332 	 * involved with the same commit.
333 	 */
334 	void (*color_commit)(const struct intel_crtc_state *crtc_state);
335 	/*
336 	 * Load LUTs (and other single buffered color management
337 	 * registers). Will (hopefully) be called during the vblank
338 	 * following the latching of any double buffered registers
339 	 * involved with the same commit.
340 	 */
341 	void (*load_luts)(const struct intel_crtc_state *crtc_state);
342 };
343 
344 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
345 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
346 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
347 
348 struct intel_csr {
349 	struct work_struct work;
350 	const char *fw_path;
351 	u32 required_version;
352 	u32 max_fw_size; /* bytes */
353 	u32 *dmc_payload;
354 	u32 dmc_fw_size; /* dwords */
355 	u32 version;
356 	u32 mmio_count;
357 	i915_reg_t mmioaddr[8];
358 	u32 mmiodata[8];
359 	u32 dc_state;
360 	u32 allowed_dc_mask;
361 	intel_wakeref_t wakeref;
362 };
363 
364 enum i915_cache_level {
365 	I915_CACHE_NONE = 0,
366 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
367 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
368 			      caches, eg sampler/render caches, and the
369 			      large Last-Level-Cache. LLC is coherent with
370 			      the CPU, but L3 is only visible to the GPU. */
371 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
372 };
373 
374 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
375 
376 enum fb_op_origin {
377 	ORIGIN_GTT,
378 	ORIGIN_CPU,
379 	ORIGIN_CS,
380 	ORIGIN_FLIP,
381 	ORIGIN_DIRTYFB,
382 };
383 
384 struct intel_fbc {
385 	/* This is always the inner lock when overlapping with struct_mutex and
386 	 * it's the outer lock when overlapping with stolen_lock. */
387 	struct mutex lock;
388 	unsigned threshold;
389 	unsigned int possible_framebuffer_bits;
390 	unsigned int busy_bits;
391 	unsigned int visible_pipes_mask;
392 	struct intel_crtc *crtc;
393 
394 	struct drm_mm_node compressed_fb;
395 	struct drm_mm_node *compressed_llb;
396 
397 	bool false_color;
398 
399 	bool enabled;
400 	bool active;
401 	bool flip_pending;
402 
403 	bool underrun_detected;
404 	struct work_struct underrun_work;
405 
406 	/*
407 	 * Due to the atomic rules we can't access some structures without the
408 	 * appropriate locking, so we cache information here in order to avoid
409 	 * these problems.
410 	 */
411 	struct intel_fbc_state_cache {
412 		struct i915_vma *vma;
413 		unsigned long flags;
414 
415 		struct {
416 			unsigned int mode_flags;
417 			u32 hsw_bdw_pixel_rate;
418 		} crtc;
419 
420 		struct {
421 			unsigned int rotation;
422 			int src_w;
423 			int src_h;
424 			bool visible;
425 			/*
426 			 * Display surface base address adjustement for
427 			 * pageflips. Note that on gen4+ this only adjusts up
428 			 * to a tile, offsets within a tile are handled in
429 			 * the hw itself (with the TILEOFF register).
430 			 */
431 			int adjusted_x;
432 			int adjusted_y;
433 
434 			int y;
435 
436 			u16 pixel_blend_mode;
437 		} plane;
438 
439 		struct {
440 			const struct drm_format_info *format;
441 			unsigned int stride;
442 		} fb;
443 	} state_cache;
444 
445 	/*
446 	 * This structure contains everything that's relevant to program the
447 	 * hardware registers. When we want to figure out if we need to disable
448 	 * and re-enable FBC for a new configuration we just check if there's
449 	 * something different in the struct. The genx_fbc_activate functions
450 	 * are supposed to read from it in order to program the registers.
451 	 */
452 	struct intel_fbc_reg_params {
453 		struct i915_vma *vma;
454 		unsigned long flags;
455 
456 		struct {
457 			enum pipe pipe;
458 			enum i9xx_plane_id i9xx_plane;
459 			unsigned int fence_y_offset;
460 		} crtc;
461 
462 		struct {
463 			const struct drm_format_info *format;
464 			unsigned int stride;
465 		} fb;
466 
467 		int cfb_size;
468 		unsigned int gen9_wa_cfb_stride;
469 	} params;
470 
471 	const char *no_fbc_reason;
472 };
473 
474 /*
475  * HIGH_RR is the highest eDP panel refresh rate read from EDID
476  * LOW_RR is the lowest eDP panel refresh rate found from EDID
477  * parsing for same resolution.
478  */
479 enum drrs_refresh_rate_type {
480 	DRRS_HIGH_RR,
481 	DRRS_LOW_RR,
482 	DRRS_MAX_RR, /* RR count */
483 };
484 
485 enum drrs_support_type {
486 	DRRS_NOT_SUPPORTED = 0,
487 	STATIC_DRRS_SUPPORT = 1,
488 	SEAMLESS_DRRS_SUPPORT = 2
489 };
490 
491 struct intel_dp;
492 struct i915_drrs {
493 	struct mutex mutex;
494 	struct delayed_work work;
495 	struct intel_dp *dp;
496 	unsigned busy_frontbuffer_bits;
497 	enum drrs_refresh_rate_type refresh_rate_type;
498 	enum drrs_support_type type;
499 };
500 
501 struct i915_psr {
502 	struct mutex lock;
503 
504 #define I915_PSR_DEBUG_MODE_MASK	0x0f
505 #define I915_PSR_DEBUG_DEFAULT		0x00
506 #define I915_PSR_DEBUG_DISABLE		0x01
507 #define I915_PSR_DEBUG_ENABLE		0x02
508 #define I915_PSR_DEBUG_FORCE_PSR1	0x03
509 #define I915_PSR_DEBUG_IRQ		0x10
510 
511 	u32 debug;
512 	bool sink_support;
513 	bool enabled;
514 	struct intel_dp *dp;
515 	enum pipe pipe;
516 	bool active;
517 	struct work_struct work;
518 	unsigned busy_frontbuffer_bits;
519 	bool sink_psr2_support;
520 	bool link_standby;
521 	bool colorimetry_support;
522 	bool psr2_enabled;
523 	u8 sink_sync_latency;
524 	ktime_t last_entry_attempt;
525 	ktime_t last_exit;
526 	bool sink_not_reliable;
527 	bool irq_aux_error;
528 	u16 su_x_granularity;
529 };
530 
531 /*
532  * Sorted by south display engine compatibility.
533  * If the new PCH comes with a south display engine that is not
534  * inherited from the latest item, please do not add it to the
535  * end. Instead, add it right after its "parent" PCH.
536  */
537 enum intel_pch {
538 	PCH_NOP = -1,	/* PCH without south display */
539 	PCH_NONE = 0,	/* No PCH present */
540 	PCH_IBX,	/* Ibexpeak PCH */
541 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
542 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
543 	PCH_SPT,        /* Sunrisepoint PCH */
544 	PCH_KBP,        /* Kaby Lake PCH */
545 	PCH_CNP,        /* Cannon/Comet Lake PCH */
546 	PCH_ICP,	/* Ice Lake PCH */
547 };
548 
549 enum intel_sbi_destination {
550 	SBI_ICLK,
551 	SBI_MPHY,
552 };
553 
554 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
555 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
556 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
557 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
558 #define QUIRK_INCREASE_T12_DELAY (1<<6)
559 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7)
560 
561 struct intel_fbdev;
562 struct intel_fbc_work;
563 
564 struct intel_gmbus {
565 	struct i2c_adapter adapter;
566 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
567 	u32 force_bit;
568 	u32 reg0;
569 	i915_reg_t gpio_reg;
570 	struct i2c_algo_bit_data bit_algo;
571 	struct drm_i915_private *dev_priv;
572 };
573 
574 struct i915_suspend_saved_registers {
575 	u32 saveDSPARB;
576 	u32 saveFBC_CONTROL;
577 	u32 saveCACHE_MODE_0;
578 	u32 saveMI_ARB_STATE;
579 	u32 saveSWF0[16];
580 	u32 saveSWF1[16];
581 	u32 saveSWF3[3];
582 	u64 saveFENCE[I915_MAX_NUM_FENCES];
583 	u32 savePCH_PORT_HOTPLUG;
584 	u16 saveGCDGMBUS;
585 };
586 
587 struct vlv_s0ix_state {
588 	/* GAM */
589 	u32 wr_watermark;
590 	u32 gfx_prio_ctrl;
591 	u32 arb_mode;
592 	u32 gfx_pend_tlb0;
593 	u32 gfx_pend_tlb1;
594 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
595 	u32 media_max_req_count;
596 	u32 gfx_max_req_count;
597 	u32 render_hwsp;
598 	u32 ecochk;
599 	u32 bsd_hwsp;
600 	u32 blt_hwsp;
601 	u32 tlb_rd_addr;
602 
603 	/* MBC */
604 	u32 g3dctl;
605 	u32 gsckgctl;
606 	u32 mbctl;
607 
608 	/* GCP */
609 	u32 ucgctl1;
610 	u32 ucgctl3;
611 	u32 rcgctl1;
612 	u32 rcgctl2;
613 	u32 rstctl;
614 	u32 misccpctl;
615 
616 	/* GPM */
617 	u32 gfxpause;
618 	u32 rpdeuhwtc;
619 	u32 rpdeuc;
620 	u32 ecobus;
621 	u32 pwrdwnupctl;
622 	u32 rp_down_timeout;
623 	u32 rp_deucsw;
624 	u32 rcubmabdtmr;
625 	u32 rcedata;
626 	u32 spare2gh;
627 
628 	/* Display 1 CZ domain */
629 	u32 gt_imr;
630 	u32 gt_ier;
631 	u32 pm_imr;
632 	u32 pm_ier;
633 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
634 
635 	/* GT SA CZ domain */
636 	u32 tilectl;
637 	u32 gt_fifoctl;
638 	u32 gtlc_wake_ctrl;
639 	u32 gtlc_survive;
640 	u32 pmwgicz;
641 
642 	/* Display 2 CZ domain */
643 	u32 gu_ctl0;
644 	u32 gu_ctl1;
645 	u32 pcbr;
646 	u32 clock_gate_dis2;
647 };
648 
649 struct intel_rps_ei {
650 	ktime_t ktime;
651 	u32 render_c0;
652 	u32 media_c0;
653 };
654 
655 struct intel_rps {
656 	/*
657 	 * work, interrupts_enabled and pm_iir are protected by
658 	 * dev_priv->irq_lock
659 	 */
660 	struct work_struct work;
661 	bool interrupts_enabled;
662 	u32 pm_iir;
663 
664 	/* PM interrupt bits that should never be masked */
665 	u32 pm_intrmsk_mbz;
666 
667 	/* Frequencies are stored in potentially platform dependent multiples.
668 	 * In other words, *_freq needs to be multiplied by X to be interesting.
669 	 * Soft limits are those which are used for the dynamic reclocking done
670 	 * by the driver (raise frequencies under heavy loads, and lower for
671 	 * lighter loads). Hard limits are those imposed by the hardware.
672 	 *
673 	 * A distinction is made for overclocking, which is never enabled by
674 	 * default, and is considered to be above the hard limit if it's
675 	 * possible at all.
676 	 */
677 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
678 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
679 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
680 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
681 	u8 min_freq;		/* AKA RPn. Minimum frequency */
682 	u8 boost_freq;		/* Frequency to request when wait boosting */
683 	u8 idle_freq;		/* Frequency to request when we are idle */
684 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
685 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
686 	u8 rp0_freq;		/* Non-overclocked max frequency. */
687 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
688 
689 	int last_adj;
690 
691 	struct {
692 		struct mutex mutex;
693 
694 		enum { LOW_POWER, BETWEEN, HIGH_POWER } mode;
695 		unsigned int interactive;
696 
697 		u8 up_threshold; /* Current %busy required to uplock */
698 		u8 down_threshold; /* Current %busy required to downclock */
699 	} power;
700 
701 	bool enabled;
702 	atomic_t num_waiters;
703 	atomic_t boosts;
704 
705 	/* manual wa residency calculations */
706 	struct intel_rps_ei ei;
707 };
708 
709 struct intel_rc6 {
710 	bool enabled;
711 	u64 prev_hw_residency[4];
712 	u64 cur_residency[4];
713 };
714 
715 struct intel_llc_pstate {
716 	bool enabled;
717 };
718 
719 struct intel_gen6_power_mgmt {
720 	struct intel_rps rps;
721 	struct intel_rc6 rc6;
722 	struct intel_llc_pstate llc_pstate;
723 };
724 
725 /* defined intel_pm.c */
726 extern spinlock_t mchdev_lock;
727 
728 struct intel_ilk_power_mgmt {
729 	u8 cur_delay;
730 	u8 min_delay;
731 	u8 max_delay;
732 	u8 fmax;
733 	u8 fstart;
734 
735 	u64 last_count1;
736 	unsigned long last_time1;
737 	unsigned long chipset_power;
738 	u64 last_count2;
739 	u64 last_time2;
740 	unsigned long gfx_power;
741 	u8 corr;
742 
743 	int c_m;
744 	int r_t;
745 };
746 
747 struct drm_i915_private;
748 struct i915_power_well;
749 
750 struct i915_power_well_ops {
751 	/*
752 	 * Synchronize the well's hw state to match the current sw state, for
753 	 * example enable/disable it based on the current refcount. Called
754 	 * during driver init and resume time, possibly after first calling
755 	 * the enable/disable handlers.
756 	 */
757 	void (*sync_hw)(struct drm_i915_private *dev_priv,
758 			struct i915_power_well *power_well);
759 	/*
760 	 * Enable the well and resources that depend on it (for example
761 	 * interrupts located on the well). Called after the 0->1 refcount
762 	 * transition.
763 	 */
764 	void (*enable)(struct drm_i915_private *dev_priv,
765 		       struct i915_power_well *power_well);
766 	/*
767 	 * Disable the well and resources that depend on it. Called after
768 	 * the 1->0 refcount transition.
769 	 */
770 	void (*disable)(struct drm_i915_private *dev_priv,
771 			struct i915_power_well *power_well);
772 	/* Returns the hw enabled state. */
773 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
774 			   struct i915_power_well *power_well);
775 };
776 
777 struct i915_power_well_regs {
778 	i915_reg_t bios;
779 	i915_reg_t driver;
780 	i915_reg_t kvmr;
781 	i915_reg_t debug;
782 };
783 
784 /* Power well structure for haswell */
785 struct i915_power_well_desc {
786 	const char *name;
787 	bool always_on;
788 	u64 domains;
789 	/* unique identifier for this power well */
790 	enum i915_power_well_id id;
791 	/*
792 	 * Arbitraty data associated with this power well. Platform and power
793 	 * well specific.
794 	 */
795 	union {
796 		struct {
797 			/*
798 			 * request/status flag index in the PUNIT power well
799 			 * control/status registers.
800 			 */
801 			u8 idx;
802 		} vlv;
803 		struct {
804 			enum dpio_phy phy;
805 		} bxt;
806 		struct {
807 			const struct i915_power_well_regs *regs;
808 			/*
809 			 * request/status flag index in the power well
810 			 * constrol/status registers.
811 			 */
812 			u8 idx;
813 			/* Mask of pipes whose IRQ logic is backed by the pw */
814 			u8 irq_pipe_mask;
815 			/* The pw is backing the VGA functionality */
816 			bool has_vga:1;
817 			bool has_fuses:1;
818 			/*
819 			 * The pw is for an ICL+ TypeC PHY port in
820 			 * Thunderbolt mode.
821 			 */
822 			bool is_tc_tbt:1;
823 		} hsw;
824 	};
825 	const struct i915_power_well_ops *ops;
826 };
827 
828 struct i915_power_well {
829 	const struct i915_power_well_desc *desc;
830 	/* power well enable/disable usage count */
831 	int count;
832 	/* cached hw enabled state */
833 	bool hw_enabled;
834 };
835 
836 struct i915_power_domains {
837 	/*
838 	 * Power wells needed for initialization at driver init and suspend
839 	 * time are on. They are kept on until after the first modeset.
840 	 */
841 	bool initializing;
842 	bool display_core_suspended;
843 	int power_well_count;
844 
845 	intel_wakeref_t wakeref;
846 
847 	struct mutex lock;
848 	int domain_use_count[POWER_DOMAIN_NUM];
849 	struct i915_power_well *power_wells;
850 };
851 
852 #define MAX_L3_SLICES 2
853 struct intel_l3_parity {
854 	u32 *remap_info[MAX_L3_SLICES];
855 	struct work_struct error_work;
856 	int which_slice;
857 };
858 
859 struct i915_gem_mm {
860 	/** Memory allocator for GTT stolen memory */
861 	struct drm_mm stolen;
862 	/** Protects the usage of the GTT stolen memory allocator. This is
863 	 * always the inner lock when overlapping with struct_mutex. */
864 	struct mutex stolen_lock;
865 
866 	/* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
867 	spinlock_t obj_lock;
868 
869 	/** List of all objects in gtt_space. Used to restore gtt
870 	 * mappings on resume */
871 	struct list_head bound_list;
872 	/**
873 	 * List of objects which are not bound to the GTT (thus
874 	 * are idle and not used by the GPU). These objects may or may
875 	 * not actually have any pages attached.
876 	 */
877 	struct list_head unbound_list;
878 
879 	/** List of all objects in gtt_space, currently mmaped by userspace.
880 	 * All objects within this list must also be on bound_list.
881 	 */
882 	struct list_head userfault_list;
883 
884 	/**
885 	 * List of objects which are pending destruction.
886 	 */
887 	struct llist_head free_list;
888 	struct work_struct free_work;
889 	spinlock_t free_lock;
890 	/**
891 	 * Count of objects pending destructions. Used to skip needlessly
892 	 * waiting on an RCU barrier if no objects are waiting to be freed.
893 	 */
894 	atomic_t free_count;
895 
896 	/**
897 	 * Small stash of WC pages
898 	 */
899 	struct pagestash wc_stash;
900 
901 	/**
902 	 * tmpfs instance used for shmem backed objects
903 	 */
904 	struct vfsmount *gemfs;
905 
906 	/** PPGTT used for aliasing the PPGTT with the GTT */
907 	struct i915_hw_ppgtt *aliasing_ppgtt;
908 
909 	struct notifier_block oom_notifier;
910 	struct notifier_block vmap_notifier;
911 	struct shrinker shrinker;
912 
913 	/** LRU list of objects with fence regs on them. */
914 	struct list_head fence_list;
915 
916 	/**
917 	 * Workqueue to fault in userptr pages, flushed by the execbuf
918 	 * when required but otherwise left to userspace to try again
919 	 * on EAGAIN.
920 	 */
921 	struct workqueue_struct *userptr_wq;
922 
923 	u64 unordered_timeline;
924 
925 	/* the indicator for dispatch video commands on two BSD rings */
926 	atomic_t bsd_engine_dispatch_index;
927 
928 	/** Bit 6 swizzling required for X tiling */
929 	u32 bit_6_swizzle_x;
930 	/** Bit 6 swizzling required for Y tiling */
931 	u32 bit_6_swizzle_y;
932 
933 	/* accounting, useful for userland debugging */
934 	spinlock_t object_stat_lock;
935 	u64 object_memory;
936 	u32 object_count;
937 };
938 
939 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
940 
941 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
942 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
943 
944 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
945 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
946 
947 #define I915_ENGINE_WEDGED_TIMEOUT  (60 * HZ)  /* Reset but no recovery? */
948 
949 struct ddi_vbt_port_info {
950 	int max_tmds_clock;
951 
952 	/*
953 	 * This is an index in the HDMI/DVI DDI buffer translation table.
954 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
955 	 * populate this field.
956 	 */
957 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
958 	u8 hdmi_level_shift;
959 
960 	u8 present:1;
961 	u8 supports_dvi:1;
962 	u8 supports_hdmi:1;
963 	u8 supports_dp:1;
964 	u8 supports_edp:1;
965 	u8 supports_typec_usb:1;
966 	u8 supports_tbt:1;
967 
968 	u8 alternate_aux_channel;
969 	u8 alternate_ddc_pin;
970 
971 	u8 dp_boost_level;
972 	u8 hdmi_boost_level;
973 	int dp_max_link_rate;		/* 0 for not limited by VBT */
974 };
975 
976 enum psr_lines_to_wait {
977 	PSR_0_LINES_TO_WAIT = 0,
978 	PSR_1_LINE_TO_WAIT,
979 	PSR_4_LINES_TO_WAIT,
980 	PSR_8_LINES_TO_WAIT
981 };
982 
983 struct intel_vbt_data {
984 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
985 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
986 
987 	/* Feature bits */
988 	unsigned int int_tv_support:1;
989 	unsigned int lvds_dither:1;
990 	unsigned int int_crt_support:1;
991 	unsigned int lvds_use_ssc:1;
992 	unsigned int int_lvds_support:1;
993 	unsigned int display_clock_mode:1;
994 	unsigned int fdi_rx_polarity_inverted:1;
995 	unsigned int panel_type:4;
996 	int lvds_ssc_freq;
997 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
998 	enum drm_panel_orientation orientation;
999 
1000 	enum drrs_support_type drrs_type;
1001 
1002 	struct {
1003 		int rate;
1004 		int lanes;
1005 		int preemphasis;
1006 		int vswing;
1007 		bool low_vswing;
1008 		bool initialized;
1009 		int bpp;
1010 		struct edp_power_seq pps;
1011 	} edp;
1012 
1013 	struct {
1014 		bool enable;
1015 		bool full_link;
1016 		bool require_aux_wakeup;
1017 		int idle_frames;
1018 		enum psr_lines_to_wait lines_to_wait;
1019 		int tp1_wakeup_time_us;
1020 		int tp2_tp3_wakeup_time_us;
1021 		int psr2_tp2_tp3_wakeup_time_us;
1022 	} psr;
1023 
1024 	struct {
1025 		u16 pwm_freq_hz;
1026 		bool present;
1027 		bool active_low_pwm;
1028 		u8 min_brightness;	/* min_brightness/255 of max */
1029 		u8 controller;		/* brightness controller number */
1030 		enum intel_backlight_type type;
1031 	} backlight;
1032 
1033 	/* MIPI DSI */
1034 	struct {
1035 		u16 panel_id;
1036 		struct mipi_config *config;
1037 		struct mipi_pps_data *pps;
1038 		u16 bl_ports;
1039 		u16 cabc_ports;
1040 		u8 seq_version;
1041 		u32 size;
1042 		u8 *data;
1043 		const u8 *sequence[MIPI_SEQ_MAX];
1044 		u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1045 		enum drm_panel_orientation orientation;
1046 	} dsi;
1047 
1048 	int crt_ddc_pin;
1049 
1050 	int child_dev_num;
1051 	struct child_device_config *child_dev;
1052 
1053 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1054 	struct sdvo_device_mapping sdvo_mappings[2];
1055 };
1056 
1057 enum intel_ddb_partitioning {
1058 	INTEL_DDB_PART_1_2,
1059 	INTEL_DDB_PART_5_6, /* IVB+ */
1060 };
1061 
1062 struct intel_wm_level {
1063 	bool enable;
1064 	u32 pri_val;
1065 	u32 spr_val;
1066 	u32 cur_val;
1067 	u32 fbc_val;
1068 };
1069 
1070 struct ilk_wm_values {
1071 	u32 wm_pipe[3];
1072 	u32 wm_lp[3];
1073 	u32 wm_lp_spr[3];
1074 	u32 wm_linetime[3];
1075 	bool enable_fbc_wm;
1076 	enum intel_ddb_partitioning partitioning;
1077 };
1078 
1079 struct g4x_pipe_wm {
1080 	u16 plane[I915_MAX_PLANES];
1081 	u16 fbc;
1082 };
1083 
1084 struct g4x_sr_wm {
1085 	u16 plane;
1086 	u16 cursor;
1087 	u16 fbc;
1088 };
1089 
1090 struct vlv_wm_ddl_values {
1091 	u8 plane[I915_MAX_PLANES];
1092 };
1093 
1094 struct vlv_wm_values {
1095 	struct g4x_pipe_wm pipe[3];
1096 	struct g4x_sr_wm sr;
1097 	struct vlv_wm_ddl_values ddl[3];
1098 	u8 level;
1099 	bool cxsr;
1100 };
1101 
1102 struct g4x_wm_values {
1103 	struct g4x_pipe_wm pipe[2];
1104 	struct g4x_sr_wm sr;
1105 	struct g4x_sr_wm hpll;
1106 	bool cxsr;
1107 	bool hpll_en;
1108 	bool fbc_en;
1109 };
1110 
1111 struct skl_ddb_entry {
1112 	u16 start, end;	/* in number of blocks, 'end' is exclusive */
1113 };
1114 
1115 static inline u16 skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1116 {
1117 	return entry->end - entry->start;
1118 }
1119 
1120 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1121 				       const struct skl_ddb_entry *e2)
1122 {
1123 	if (e1->start == e2->start && e1->end == e2->end)
1124 		return true;
1125 
1126 	return false;
1127 }
1128 
1129 struct skl_ddb_allocation {
1130 	u8 enabled_slices; /* GEN11 has configurable 2 slices */
1131 };
1132 
1133 struct skl_ddb_values {
1134 	unsigned dirty_pipes;
1135 	struct skl_ddb_allocation ddb;
1136 };
1137 
1138 struct skl_wm_level {
1139 	u16 min_ddb_alloc;
1140 	u16 plane_res_b;
1141 	u8 plane_res_l;
1142 	bool plane_en;
1143 	bool ignore_lines;
1144 };
1145 
1146 /* Stores plane specific WM parameters */
1147 struct skl_wm_params {
1148 	bool x_tiled, y_tiled;
1149 	bool rc_surface;
1150 	bool is_planar;
1151 	u32 width;
1152 	u8 cpp;
1153 	u32 plane_pixel_rate;
1154 	u32 y_min_scanlines;
1155 	u32 plane_bytes_per_line;
1156 	uint_fixed_16_16_t plane_blocks_per_line;
1157 	uint_fixed_16_16_t y_tile_minimum;
1158 	u32 linetime_us;
1159 	u32 dbuf_block_size;
1160 };
1161 
1162 /*
1163  * This struct helps tracking the state needed for runtime PM, which puts the
1164  * device in PCI D3 state. Notice that when this happens, nothing on the
1165  * graphics device works, even register access, so we don't get interrupts nor
1166  * anything else.
1167  *
1168  * Every piece of our code that needs to actually touch the hardware needs to
1169  * either call intel_runtime_pm_get or call intel_display_power_get with the
1170  * appropriate power domain.
1171  *
1172  * Our driver uses the autosuspend delay feature, which means we'll only really
1173  * suspend if we stay with zero refcount for a certain amount of time. The
1174  * default value is currently very conservative (see intel_runtime_pm_enable), but
1175  * it can be changed with the standard runtime PM files from sysfs.
1176  *
1177  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1178  * goes back to false exactly before we reenable the IRQs. We use this variable
1179  * to check if someone is trying to enable/disable IRQs while they're supposed
1180  * to be disabled. This shouldn't happen and we'll print some error messages in
1181  * case it happens.
1182  *
1183  * For more, read the Documentation/power/runtime_pm.txt.
1184  */
1185 struct i915_runtime_pm {
1186 	atomic_t wakeref_count;
1187 	bool suspended;
1188 	bool irqs_enabled;
1189 
1190 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
1191 	/*
1192 	 * To aide detection of wakeref leaks and general misuse, we
1193 	 * track all wakeref holders. With manual markup (i.e. returning
1194 	 * a cookie to each rpm_get caller which they then supply to their
1195 	 * paired rpm_put) we can remove corresponding pairs of and keep
1196 	 * the array trimmed to active wakerefs.
1197 	 */
1198 	struct intel_runtime_pm_debug {
1199 		spinlock_t lock;
1200 
1201 		depot_stack_handle_t last_acquire;
1202 		depot_stack_handle_t last_release;
1203 
1204 		depot_stack_handle_t *owners;
1205 		unsigned long count;
1206 	} debug;
1207 #endif
1208 };
1209 
1210 enum intel_pipe_crc_source {
1211 	INTEL_PIPE_CRC_SOURCE_NONE,
1212 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1213 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1214 	INTEL_PIPE_CRC_SOURCE_PLANE3,
1215 	INTEL_PIPE_CRC_SOURCE_PLANE4,
1216 	INTEL_PIPE_CRC_SOURCE_PLANE5,
1217 	INTEL_PIPE_CRC_SOURCE_PLANE6,
1218 	INTEL_PIPE_CRC_SOURCE_PLANE7,
1219 	INTEL_PIPE_CRC_SOURCE_PIPE,
1220 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1221 	INTEL_PIPE_CRC_SOURCE_TV,
1222 	INTEL_PIPE_CRC_SOURCE_DP_B,
1223 	INTEL_PIPE_CRC_SOURCE_DP_C,
1224 	INTEL_PIPE_CRC_SOURCE_DP_D,
1225 	INTEL_PIPE_CRC_SOURCE_AUTO,
1226 	INTEL_PIPE_CRC_SOURCE_MAX,
1227 };
1228 
1229 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1230 struct intel_pipe_crc {
1231 	spinlock_t lock;
1232 	int skipped;
1233 	enum intel_pipe_crc_source source;
1234 };
1235 
1236 struct i915_frontbuffer_tracking {
1237 	spinlock_t lock;
1238 
1239 	/*
1240 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1241 	 * scheduled flips.
1242 	 */
1243 	unsigned busy_bits;
1244 	unsigned flip_bits;
1245 };
1246 
1247 struct i915_virtual_gpu {
1248 	bool active;
1249 	u32 caps;
1250 };
1251 
1252 /* used in computing the new watermarks state */
1253 struct intel_wm_config {
1254 	unsigned int num_pipes_active;
1255 	bool sprites_enabled;
1256 	bool sprites_scaled;
1257 };
1258 
1259 struct i915_oa_format {
1260 	u32 format;
1261 	int size;
1262 };
1263 
1264 struct i915_oa_reg {
1265 	i915_reg_t addr;
1266 	u32 value;
1267 };
1268 
1269 struct i915_oa_config {
1270 	char uuid[UUID_STRING_LEN + 1];
1271 	int id;
1272 
1273 	const struct i915_oa_reg *mux_regs;
1274 	u32 mux_regs_len;
1275 	const struct i915_oa_reg *b_counter_regs;
1276 	u32 b_counter_regs_len;
1277 	const struct i915_oa_reg *flex_regs;
1278 	u32 flex_regs_len;
1279 
1280 	struct attribute_group sysfs_metric;
1281 	struct attribute *attrs[2];
1282 	struct device_attribute sysfs_metric_id;
1283 
1284 	atomic_t ref_count;
1285 };
1286 
1287 struct i915_perf_stream;
1288 
1289 /**
1290  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1291  */
1292 struct i915_perf_stream_ops {
1293 	/**
1294 	 * @enable: Enables the collection of HW samples, either in response to
1295 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1296 	 * without `I915_PERF_FLAG_DISABLED`.
1297 	 */
1298 	void (*enable)(struct i915_perf_stream *stream);
1299 
1300 	/**
1301 	 * @disable: Disables the collection of HW samples, either in response
1302 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1303 	 * the stream.
1304 	 */
1305 	void (*disable)(struct i915_perf_stream *stream);
1306 
1307 	/**
1308 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1309 	 * once there is something ready to read() for the stream
1310 	 */
1311 	void (*poll_wait)(struct i915_perf_stream *stream,
1312 			  struct file *file,
1313 			  poll_table *wait);
1314 
1315 	/**
1316 	 * @wait_unlocked: For handling a blocking read, wait until there is
1317 	 * something to ready to read() for the stream. E.g. wait on the same
1318 	 * wait queue that would be passed to poll_wait().
1319 	 */
1320 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1321 
1322 	/**
1323 	 * @read: Copy buffered metrics as records to userspace
1324 	 * **buf**: the userspace, destination buffer
1325 	 * **count**: the number of bytes to copy, requested by userspace
1326 	 * **offset**: zero at the start of the read, updated as the read
1327 	 * proceeds, it represents how many bytes have been copied so far and
1328 	 * the buffer offset for copying the next record.
1329 	 *
1330 	 * Copy as many buffered i915 perf samples and records for this stream
1331 	 * to userspace as will fit in the given buffer.
1332 	 *
1333 	 * Only write complete records; returning -%ENOSPC if there isn't room
1334 	 * for a complete record.
1335 	 *
1336 	 * Return any error condition that results in a short read such as
1337 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1338 	 * returning to userspace.
1339 	 */
1340 	int (*read)(struct i915_perf_stream *stream,
1341 		    char __user *buf,
1342 		    size_t count,
1343 		    size_t *offset);
1344 
1345 	/**
1346 	 * @destroy: Cleanup any stream specific resources.
1347 	 *
1348 	 * The stream will always be disabled before this is called.
1349 	 */
1350 	void (*destroy)(struct i915_perf_stream *stream);
1351 };
1352 
1353 /**
1354  * struct i915_perf_stream - state for a single open stream FD
1355  */
1356 struct i915_perf_stream {
1357 	/**
1358 	 * @dev_priv: i915 drm device
1359 	 */
1360 	struct drm_i915_private *dev_priv;
1361 
1362 	/**
1363 	 * @link: Links the stream into ``&drm_i915_private->streams``
1364 	 */
1365 	struct list_head link;
1366 
1367 	/**
1368 	 * @wakeref: As we keep the device awake while the perf stream is
1369 	 * active, we track our runtime pm reference for later release.
1370 	 */
1371 	intel_wakeref_t wakeref;
1372 
1373 	/**
1374 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1375 	 * properties given when opening a stream, representing the contents
1376 	 * of a single sample as read() by userspace.
1377 	 */
1378 	u32 sample_flags;
1379 
1380 	/**
1381 	 * @sample_size: Considering the configured contents of a sample
1382 	 * combined with the required header size, this is the total size
1383 	 * of a single sample record.
1384 	 */
1385 	int sample_size;
1386 
1387 	/**
1388 	 * @ctx: %NULL if measuring system-wide across all contexts or a
1389 	 * specific context that is being monitored.
1390 	 */
1391 	struct i915_gem_context *ctx;
1392 
1393 	/**
1394 	 * @enabled: Whether the stream is currently enabled, considering
1395 	 * whether the stream was opened in a disabled state and based
1396 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1397 	 */
1398 	bool enabled;
1399 
1400 	/**
1401 	 * @ops: The callbacks providing the implementation of this specific
1402 	 * type of configured stream.
1403 	 */
1404 	const struct i915_perf_stream_ops *ops;
1405 
1406 	/**
1407 	 * @oa_config: The OA configuration used by the stream.
1408 	 */
1409 	struct i915_oa_config *oa_config;
1410 };
1411 
1412 /**
1413  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1414  */
1415 struct i915_oa_ops {
1416 	/**
1417 	 * @is_valid_b_counter_reg: Validates register's address for
1418 	 * programming boolean counters for a particular platform.
1419 	 */
1420 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1421 				       u32 addr);
1422 
1423 	/**
1424 	 * @is_valid_mux_reg: Validates register's address for programming mux
1425 	 * for a particular platform.
1426 	 */
1427 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1428 
1429 	/**
1430 	 * @is_valid_flex_reg: Validates register's address for programming
1431 	 * flex EU filtering for a particular platform.
1432 	 */
1433 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1434 
1435 	/**
1436 	 * @enable_metric_set: Selects and applies any MUX configuration to set
1437 	 * up the Boolean and Custom (B/C) counters that are part of the
1438 	 * counter reports being sampled. May apply system constraints such as
1439 	 * disabling EU clock gating as required.
1440 	 */
1441 	int (*enable_metric_set)(struct i915_perf_stream *stream);
1442 
1443 	/**
1444 	 * @disable_metric_set: Remove system constraints associated with using
1445 	 * the OA unit.
1446 	 */
1447 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1448 
1449 	/**
1450 	 * @oa_enable: Enable periodic sampling
1451 	 */
1452 	void (*oa_enable)(struct i915_perf_stream *stream);
1453 
1454 	/**
1455 	 * @oa_disable: Disable periodic sampling
1456 	 */
1457 	void (*oa_disable)(struct i915_perf_stream *stream);
1458 
1459 	/**
1460 	 * @read: Copy data from the circular OA buffer into a given userspace
1461 	 * buffer.
1462 	 */
1463 	int (*read)(struct i915_perf_stream *stream,
1464 		    char __user *buf,
1465 		    size_t count,
1466 		    size_t *offset);
1467 
1468 	/**
1469 	 * @oa_hw_tail_read: read the OA tail pointer register
1470 	 *
1471 	 * In particular this enables us to share all the fiddly code for
1472 	 * handling the OA unit tail pointer race that affects multiple
1473 	 * generations.
1474 	 */
1475 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1476 };
1477 
1478 struct intel_cdclk_state {
1479 	unsigned int cdclk, vco, ref, bypass;
1480 	u8 voltage_level;
1481 };
1482 
1483 struct drm_i915_private {
1484 	struct drm_device drm;
1485 
1486 	const struct intel_device_info __info; /* Use INTEL_INFO() to access. */
1487 	struct intel_runtime_info __runtime; /* Use RUNTIME_INFO() to access. */
1488 	struct intel_driver_caps caps;
1489 
1490 	/**
1491 	 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1492 	 * end of stolen which we can optionally use to create GEM objects
1493 	 * backed by stolen memory. Note that stolen_usable_size tells us
1494 	 * exactly how much of this we are actually allowed to use, given that
1495 	 * some portion of it is in fact reserved for use by hardware functions.
1496 	 */
1497 	struct resource dsm;
1498 	/**
1499 	 * Reseved portion of Data Stolen Memory
1500 	 */
1501 	struct resource dsm_reserved;
1502 
1503 	/*
1504 	 * Stolen memory is segmented in hardware with different portions
1505 	 * offlimits to certain functions.
1506 	 *
1507 	 * The drm_mm is initialised to the total accessible range, as found
1508 	 * from the PCI config. On Broadwell+, this is further restricted to
1509 	 * avoid the first page! The upper end of stolen memory is reserved for
1510 	 * hardware functions and similarly removed from the accessible range.
1511 	 */
1512 	resource_size_t stolen_usable_size;	/* Total size minus reserved ranges */
1513 
1514 	struct intel_uncore uncore;
1515 
1516 	struct i915_virtual_gpu vgpu;
1517 
1518 	struct intel_gvt *gvt;
1519 
1520 	struct intel_wopcm wopcm;
1521 
1522 	struct intel_huc huc;
1523 	struct intel_guc guc;
1524 
1525 	struct intel_csr csr;
1526 
1527 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1528 
1529 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
1530 	 * controller on different i2c buses. */
1531 	struct mutex gmbus_mutex;
1532 
1533 	/**
1534 	 * Base address of where the gmbus and gpio blocks are located (either
1535 	 * on PCH or on SoC for platforms without PCH).
1536 	 */
1537 	u32 gpio_mmio_base;
1538 
1539 	/* MMIO base address for MIPI regs */
1540 	u32 mipi_mmio_base;
1541 
1542 	u32 psr_mmio_base;
1543 
1544 	u32 pps_mmio_base;
1545 
1546 	wait_queue_head_t gmbus_wait_queue;
1547 
1548 	struct pci_dev *bridge_dev;
1549 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
1550 	/* Context used internally to idle the GPU and setup initial state */
1551 	struct i915_gem_context *kernel_context;
1552 	/* Context only to be used for injecting preemption commands */
1553 	struct i915_gem_context *preempt_context;
1554 	struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1555 					    [MAX_ENGINE_INSTANCE + 1];
1556 
1557 	struct resource mch_res;
1558 
1559 	/* protects the irq masks */
1560 	spinlock_t irq_lock;
1561 
1562 	bool display_irqs_enabled;
1563 
1564 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1565 	struct pm_qos_request pm_qos;
1566 
1567 	/* Sideband mailbox protection */
1568 	struct mutex sb_lock;
1569 
1570 	/** Cached value of IMR to avoid reads in updating the bitfield */
1571 	union {
1572 		u32 irq_mask;
1573 		u32 de_irq_mask[I915_MAX_PIPES];
1574 	};
1575 	u32 gt_irq_mask;
1576 	u32 pm_imr;
1577 	u32 pm_ier;
1578 	u32 pm_rps_events;
1579 	u32 pm_guc_events;
1580 	u32 pipestat_irq_mask[I915_MAX_PIPES];
1581 
1582 	struct i915_hotplug hotplug;
1583 	struct intel_fbc fbc;
1584 	struct i915_drrs drrs;
1585 	struct intel_opregion opregion;
1586 	struct intel_vbt_data vbt;
1587 
1588 	bool preserve_bios_swizzle;
1589 
1590 	/* overlay */
1591 	struct intel_overlay *overlay;
1592 
1593 	/* backlight registers and fields in struct intel_panel */
1594 	struct mutex backlight_lock;
1595 
1596 	/* LVDS info */
1597 	bool no_aux_handshake;
1598 
1599 	/* protects panel power sequencer state */
1600 	struct mutex pps_mutex;
1601 
1602 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1603 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1604 
1605 	unsigned int fsb_freq, mem_freq, is_ddr3;
1606 	unsigned int skl_preferred_vco_freq;
1607 	unsigned int max_cdclk_freq;
1608 
1609 	unsigned int max_dotclk_freq;
1610 	unsigned int rawclk_freq;
1611 	unsigned int hpll_freq;
1612 	unsigned int fdi_pll_freq;
1613 	unsigned int czclk_freq;
1614 
1615 	struct {
1616 		/*
1617 		 * The current logical cdclk state.
1618 		 * See intel_atomic_state.cdclk.logical
1619 		 *
1620 		 * For reading holding any crtc lock is sufficient,
1621 		 * for writing must hold all of them.
1622 		 */
1623 		struct intel_cdclk_state logical;
1624 		/*
1625 		 * The current actual cdclk state.
1626 		 * See intel_atomic_state.cdclk.actual
1627 		 */
1628 		struct intel_cdclk_state actual;
1629 		/* The current hardware cdclk state */
1630 		struct intel_cdclk_state hw;
1631 	} cdclk;
1632 
1633 	/**
1634 	 * wq - Driver workqueue for GEM.
1635 	 *
1636 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
1637 	 * locks, for otherwise the flushing done in the pageflip code will
1638 	 * result in deadlocks.
1639 	 */
1640 	struct workqueue_struct *wq;
1641 
1642 	/* ordered wq for modesets */
1643 	struct workqueue_struct *modeset_wq;
1644 
1645 	/* Display functions */
1646 	struct drm_i915_display_funcs display;
1647 
1648 	/* PCH chipset type */
1649 	enum intel_pch pch_type;
1650 	unsigned short pch_id;
1651 
1652 	unsigned long quirks;
1653 
1654 	struct drm_atomic_state *modeset_restore_state;
1655 	struct drm_modeset_acquire_ctx reset_ctx;
1656 
1657 	struct i915_ggtt ggtt; /* VM representing the global address space */
1658 
1659 	struct i915_gem_mm mm;
1660 	DECLARE_HASHTABLE(mm_structs, 7);
1661 	struct mutex mm_lock;
1662 
1663 	struct intel_ppat ppat;
1664 
1665 	/* Kernel Modesetting */
1666 
1667 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1668 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1669 
1670 #ifdef CONFIG_DEBUG_FS
1671 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1672 #endif
1673 
1674 	/* dpll and cdclk state is protected by connection_mutex */
1675 	int num_shared_dpll;
1676 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1677 	const struct intel_dpll_mgr *dpll_mgr;
1678 
1679 	/*
1680 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1681 	 * Must be global rather than per dpll, because on some platforms
1682 	 * plls share registers.
1683 	 */
1684 	struct mutex dpll_lock;
1685 
1686 	unsigned int active_crtcs;
1687 	/* minimum acceptable cdclk for each pipe */
1688 	int min_cdclk[I915_MAX_PIPES];
1689 	/* minimum acceptable voltage level for each pipe */
1690 	u8 min_voltage_level[I915_MAX_PIPES];
1691 
1692 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1693 
1694 	struct i915_wa_list gt_wa_list;
1695 
1696 	struct i915_frontbuffer_tracking fb_tracking;
1697 
1698 	struct intel_atomic_helper {
1699 		struct llist_head free_list;
1700 		struct work_struct free_work;
1701 	} atomic_helper;
1702 
1703 	u16 orig_clock;
1704 
1705 	bool mchbar_need_disable;
1706 
1707 	struct intel_l3_parity l3_parity;
1708 
1709 	/* Cannot be determined by PCIID. You must always read a register. */
1710 	u32 edram_cap;
1711 
1712 	/*
1713 	 * Protects RPS/RC6 register access and PCU communication.
1714 	 * Must be taken after struct_mutex if nested. Note that
1715 	 * this lock may be held for long periods of time when
1716 	 * talking to hw - so only take it when talking to hw!
1717 	 */
1718 	struct mutex pcu_lock;
1719 
1720 	/* gen6+ GT PM state */
1721 	struct intel_gen6_power_mgmt gt_pm;
1722 
1723 	/* ilk-only ips/rps state. Everything in here is protected by the global
1724 	 * mchdev_lock in intel_pm.c */
1725 	struct intel_ilk_power_mgmt ips;
1726 
1727 	struct i915_power_domains power_domains;
1728 
1729 	struct i915_psr psr;
1730 
1731 	struct i915_gpu_error gpu_error;
1732 
1733 	struct drm_i915_gem_object *vlv_pctx;
1734 
1735 	/* list of fbdev register on this device */
1736 	struct intel_fbdev *fbdev;
1737 	struct work_struct fbdev_suspend_work;
1738 
1739 	struct drm_property *broadcast_rgb_property;
1740 	struct drm_property *force_audio_property;
1741 
1742 	/* hda/i915 audio component */
1743 	struct i915_audio_component *audio_component;
1744 	bool audio_component_registered;
1745 	/**
1746 	 * av_mutex - mutex for audio/video sync
1747 	 *
1748 	 */
1749 	struct mutex av_mutex;
1750 
1751 	struct {
1752 		struct mutex mutex;
1753 		struct list_head list;
1754 		struct llist_head free_list;
1755 		struct work_struct free_work;
1756 
1757 		/* The hw wants to have a stable context identifier for the
1758 		 * lifetime of the context (for OA, PASID, faults, etc).
1759 		 * This is limited in execlists to 21 bits.
1760 		 */
1761 		struct ida hw_ida;
1762 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1763 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */
1764 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1765 		struct list_head hw_id_list;
1766 	} contexts;
1767 
1768 	u32 fdi_rx_config;
1769 
1770 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1771 	u32 chv_phy_control;
1772 	/*
1773 	 * Shadows for CHV DPLL_MD regs to keep the state
1774 	 * checker somewhat working in the presence hardware
1775 	 * crappiness (can't read out DPLL_MD for pipes B & C).
1776 	 */
1777 	u32 chv_dpll_md[I915_MAX_PIPES];
1778 	u32 bxt_phy_grc;
1779 
1780 	u32 suspend_count;
1781 	bool power_domains_suspended;
1782 	struct i915_suspend_saved_registers regfile;
1783 	struct vlv_s0ix_state vlv_s0ix_state;
1784 
1785 	enum {
1786 		I915_SAGV_UNKNOWN = 0,
1787 		I915_SAGV_DISABLED,
1788 		I915_SAGV_ENABLED,
1789 		I915_SAGV_NOT_CONTROLLED
1790 	} sagv_status;
1791 
1792 	struct {
1793 		/*
1794 		 * Raw watermark latency values:
1795 		 * in 0.1us units for WM0,
1796 		 * in 0.5us units for WM1+.
1797 		 */
1798 		/* primary */
1799 		u16 pri_latency[5];
1800 		/* sprite */
1801 		u16 spr_latency[5];
1802 		/* cursor */
1803 		u16 cur_latency[5];
1804 		/*
1805 		 * Raw watermark memory latency values
1806 		 * for SKL for all 8 levels
1807 		 * in 1us units.
1808 		 */
1809 		u16 skl_latency[8];
1810 
1811 		/* current hardware state */
1812 		union {
1813 			struct ilk_wm_values hw;
1814 			struct skl_ddb_values skl_hw;
1815 			struct vlv_wm_values vlv;
1816 			struct g4x_wm_values g4x;
1817 		};
1818 
1819 		u8 max_level;
1820 
1821 		/*
1822 		 * Should be held around atomic WM register writing; also
1823 		 * protects * intel_crtc->wm.active and
1824 		 * cstate->wm.need_postvbl_update.
1825 		 */
1826 		struct mutex wm_mutex;
1827 
1828 		/*
1829 		 * Set during HW readout of watermarks/DDB.  Some platforms
1830 		 * need to know when we're still using BIOS-provided values
1831 		 * (which we don't fully trust).
1832 		 */
1833 		bool distrust_bios_wm;
1834 	} wm;
1835 
1836 	struct dram_info {
1837 		bool valid;
1838 		bool is_16gb_dimm;
1839 		u8 num_channels;
1840 		u8 ranks;
1841 		u32 bandwidth_kbps;
1842 		bool symmetric_memory;
1843 		enum intel_dram_type {
1844 			INTEL_DRAM_UNKNOWN,
1845 			INTEL_DRAM_DDR3,
1846 			INTEL_DRAM_DDR4,
1847 			INTEL_DRAM_LPDDR3,
1848 			INTEL_DRAM_LPDDR4
1849 		} type;
1850 	} dram_info;
1851 
1852 	struct i915_runtime_pm runtime_pm;
1853 
1854 	struct {
1855 		bool initialized;
1856 
1857 		struct kobject *metrics_kobj;
1858 		struct ctl_table_header *sysctl_header;
1859 
1860 		/*
1861 		 * Lock associated with adding/modifying/removing OA configs
1862 		 * in dev_priv->perf.metrics_idr.
1863 		 */
1864 		struct mutex metrics_lock;
1865 
1866 		/*
1867 		 * List of dynamic configurations, you need to hold
1868 		 * dev_priv->perf.metrics_lock to access it.
1869 		 */
1870 		struct idr metrics_idr;
1871 
1872 		/*
1873 		 * Lock associated with anything below within this structure
1874 		 * except exclusive_stream.
1875 		 */
1876 		struct mutex lock;
1877 		struct list_head streams;
1878 
1879 		struct {
1880 			/*
1881 			 * The stream currently using the OA unit. If accessed
1882 			 * outside a syscall associated to its file
1883 			 * descriptor, you need to hold
1884 			 * dev_priv->drm.struct_mutex.
1885 			 */
1886 			struct i915_perf_stream *exclusive_stream;
1887 
1888 			struct intel_context *pinned_ctx;
1889 			u32 specific_ctx_id;
1890 			u32 specific_ctx_id_mask;
1891 
1892 			struct hrtimer poll_check_timer;
1893 			wait_queue_head_t poll_wq;
1894 			bool pollin;
1895 
1896 			/**
1897 			 * For rate limiting any notifications of spurious
1898 			 * invalid OA reports
1899 			 */
1900 			struct ratelimit_state spurious_report_rs;
1901 
1902 			bool periodic;
1903 			int period_exponent;
1904 
1905 			struct i915_oa_config test_config;
1906 
1907 			struct {
1908 				struct i915_vma *vma;
1909 				u8 *vaddr;
1910 				u32 last_ctx_id;
1911 				int format;
1912 				int format_size;
1913 
1914 				/**
1915 				 * Locks reads and writes to all head/tail state
1916 				 *
1917 				 * Consider: the head and tail pointer state
1918 				 * needs to be read consistently from a hrtimer
1919 				 * callback (atomic context) and read() fop
1920 				 * (user context) with tail pointer updates
1921 				 * happening in atomic context and head updates
1922 				 * in user context and the (unlikely)
1923 				 * possibility of read() errors needing to
1924 				 * reset all head/tail state.
1925 				 *
1926 				 * Note: Contention or performance aren't
1927 				 * currently a significant concern here
1928 				 * considering the relatively low frequency of
1929 				 * hrtimer callbacks (5ms period) and that
1930 				 * reads typically only happen in response to a
1931 				 * hrtimer event and likely complete before the
1932 				 * next callback.
1933 				 *
1934 				 * Note: This lock is not held *while* reading
1935 				 * and copying data to userspace so the value
1936 				 * of head observed in htrimer callbacks won't
1937 				 * represent any partial consumption of data.
1938 				 */
1939 				spinlock_t ptr_lock;
1940 
1941 				/**
1942 				 * One 'aging' tail pointer and one 'aged'
1943 				 * tail pointer ready to used for reading.
1944 				 *
1945 				 * Initial values of 0xffffffff are invalid
1946 				 * and imply that an update is required
1947 				 * (and should be ignored by an attempted
1948 				 * read)
1949 				 */
1950 				struct {
1951 					u32 offset;
1952 				} tails[2];
1953 
1954 				/**
1955 				 * Index for the aged tail ready to read()
1956 				 * data up to.
1957 				 */
1958 				unsigned int aged_tail_idx;
1959 
1960 				/**
1961 				 * A monotonic timestamp for when the current
1962 				 * aging tail pointer was read; used to
1963 				 * determine when it is old enough to trust.
1964 				 */
1965 				u64 aging_timestamp;
1966 
1967 				/**
1968 				 * Although we can always read back the head
1969 				 * pointer register, we prefer to avoid
1970 				 * trusting the HW state, just to avoid any
1971 				 * risk that some hardware condition could
1972 				 * somehow bump the head pointer unpredictably
1973 				 * and cause us to forward the wrong OA buffer
1974 				 * data to userspace.
1975 				 */
1976 				u32 head;
1977 			} oa_buffer;
1978 
1979 			u32 gen7_latched_oastatus1;
1980 			u32 ctx_oactxctrl_offset;
1981 			u32 ctx_flexeu0_offset;
1982 
1983 			/**
1984 			 * The RPT_ID/reason field for Gen8+ includes a bit
1985 			 * to determine if the CTX ID in the report is valid
1986 			 * but the specific bit differs between Gen 8 and 9
1987 			 */
1988 			u32 gen8_valid_ctx_bit;
1989 
1990 			struct i915_oa_ops ops;
1991 			const struct i915_oa_format *oa_formats;
1992 		} oa;
1993 	} perf;
1994 
1995 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
1996 	struct {
1997 		void (*resume)(struct drm_i915_private *);
1998 		void (*cleanup_engine)(struct intel_engine_cs *engine);
1999 
2000 		struct i915_gt_timelines {
2001 			struct mutex mutex; /* protects list, tainted by GPU */
2002 			struct list_head active_list;
2003 
2004 			/* Pack multiple timelines' seqnos into the same page */
2005 			spinlock_t hwsp_lock;
2006 			struct list_head hwsp_free_list;
2007 		} timelines;
2008 
2009 		intel_engine_mask_t active_engines;
2010 		struct list_head active_rings;
2011 		struct list_head closed_vma;
2012 		u32 active_requests;
2013 
2014 		/**
2015 		 * Is the GPU currently considered idle, or busy executing
2016 		 * userspace requests? Whilst idle, we allow runtime power
2017 		 * management to power down the hardware and display clocks.
2018 		 * In order to reduce the effect on performance, there
2019 		 * is a slight delay before we do so.
2020 		 */
2021 		intel_wakeref_t awake;
2022 
2023 		/**
2024 		 * We leave the user IRQ off as much as possible,
2025 		 * but this means that requests will finish and never
2026 		 * be retired once the system goes idle. Set a timer to
2027 		 * fire periodically while the ring is running. When it
2028 		 * fires, go retire requests.
2029 		 */
2030 		struct delayed_work retire_work;
2031 
2032 		/**
2033 		 * When we detect an idle GPU, we want to turn on
2034 		 * powersaving features. So once we see that there
2035 		 * are no more requests outstanding and no more
2036 		 * arrive within a small period of time, we fire
2037 		 * off the idle_work.
2038 		 */
2039 		struct delayed_work idle_work;
2040 
2041 		ktime_t last_init_time;
2042 
2043 		struct i915_vma *scratch;
2044 	} gt;
2045 
2046 	/* For i945gm vblank irq vs. C3 workaround */
2047 	struct {
2048 		struct work_struct work;
2049 		struct pm_qos_request pm_qos;
2050 		u8 c3_disable_latency;
2051 		u8 enabled;
2052 	} i945gm_vblank;
2053 
2054 	/* perform PHY state sanity checks? */
2055 	bool chv_phy_assert[2];
2056 
2057 	bool ipc_enabled;
2058 
2059 	/* Used to save the pipe-to-encoder mapping for audio */
2060 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2061 
2062 	/* necessary resource sharing with HDMI LPE audio driver. */
2063 	struct {
2064 		struct platform_device *platdev;
2065 		int	irq;
2066 	} lpe_audio;
2067 
2068 	struct i915_pmu pmu;
2069 
2070 	struct i915_hdcp_comp_master *hdcp_master;
2071 	bool hdcp_comp_added;
2072 
2073 	/* Mutex to protect the above hdcp component related values. */
2074 	struct mutex hdcp_comp_mutex;
2075 
2076 	/*
2077 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2078 	 * will be rejected. Instead look for a better place.
2079 	 */
2080 };
2081 
2082 struct dram_dimm_info {
2083 	u8 size, width, ranks;
2084 };
2085 
2086 struct dram_channel_info {
2087 	struct dram_dimm_info dimm_l, dimm_s;
2088 	u8 ranks;
2089 	bool is_16gb_dimm;
2090 };
2091 
2092 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2093 {
2094 	return container_of(dev, struct drm_i915_private, drm);
2095 }
2096 
2097 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2098 {
2099 	return to_i915(dev_get_drvdata(kdev));
2100 }
2101 
2102 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2103 {
2104 	return container_of(wopcm, struct drm_i915_private, wopcm);
2105 }
2106 
2107 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2108 {
2109 	return container_of(guc, struct drm_i915_private, guc);
2110 }
2111 
2112 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2113 {
2114 	return container_of(huc, struct drm_i915_private, huc);
2115 }
2116 
2117 static inline struct drm_i915_private *uncore_to_i915(struct intel_uncore *uncore)
2118 {
2119 	return container_of(uncore, struct drm_i915_private, uncore);
2120 }
2121 
2122 /* Simple iterator over all initialised engines */
2123 #define for_each_engine(engine__, dev_priv__, id__) \
2124 	for ((id__) = 0; \
2125 	     (id__) < I915_NUM_ENGINES; \
2126 	     (id__)++) \
2127 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2128 
2129 /* Iterator over subset of engines selected by mask */
2130 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2131 	for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->engine_mask; \
2132 	     (tmp__) ? \
2133 	     ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2134 	     0;)
2135 
2136 enum hdmi_force_audio {
2137 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2138 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2139 	HDMI_AUDIO_AUTO,		/* trust EDID */
2140 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2141 };
2142 
2143 #define I915_GTT_OFFSET_NONE ((u32)-1)
2144 
2145 /*
2146  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2147  * considered to be the frontbuffer for the given plane interface-wise. This
2148  * doesn't mean that the hw necessarily already scans it out, but that any
2149  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2150  *
2151  * We have one bit per pipe and per scanout plane type.
2152  */
2153 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2154 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2155 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2156 	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2157 	BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2158 })
2159 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2160 	BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2161 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2162 	GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2163 		INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2164 
2165 /*
2166  * Optimised SGL iterator for GEM objects
2167  */
2168 static __always_inline struct sgt_iter {
2169 	struct scatterlist *sgp;
2170 	union {
2171 		unsigned long pfn;
2172 		dma_addr_t dma;
2173 	};
2174 	unsigned int curr;
2175 	unsigned int max;
2176 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2177 	struct sgt_iter s = { .sgp = sgl };
2178 
2179 	if (s.sgp) {
2180 		s.max = s.curr = s.sgp->offset;
2181 		s.max += s.sgp->length;
2182 		if (dma)
2183 			s.dma = sg_dma_address(s.sgp);
2184 		else
2185 			s.pfn = page_to_pfn(sg_page(s.sgp));
2186 	}
2187 
2188 	return s;
2189 }
2190 
2191 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2192 {
2193 	++sg;
2194 	if (unlikely(sg_is_chain(sg)))
2195 		sg = sg_chain_ptr(sg);
2196 	return sg;
2197 }
2198 
2199 /**
2200  * __sg_next - return the next scatterlist entry in a list
2201  * @sg:		The current sg entry
2202  *
2203  * Description:
2204  *   If the entry is the last, return NULL; otherwise, step to the next
2205  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2206  *   otherwise just return the pointer to the current element.
2207  **/
2208 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2209 {
2210 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2211 }
2212 
2213 /**
2214  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2215  * @__dmap:	DMA address (output)
2216  * @__iter:	'struct sgt_iter' (iterator state, internal)
2217  * @__sgt:	sg_table to iterate over (input)
2218  */
2219 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2220 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2221 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2222 	     (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ?	\
2223 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2224 
2225 /**
2226  * for_each_sgt_page - iterate over the pages of the given sg_table
2227  * @__pp:	page pointer (output)
2228  * @__iter:	'struct sgt_iter' (iterator state, internal)
2229  * @__sgt:	sg_table to iterate over (input)
2230  */
2231 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2232 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2233 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2234 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2235 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2236 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2237 
2238 bool i915_sg_trim(struct sg_table *orig_st);
2239 
2240 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2241 {
2242 	unsigned int page_sizes;
2243 
2244 	page_sizes = 0;
2245 	while (sg) {
2246 		GEM_BUG_ON(sg->offset);
2247 		GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2248 		page_sizes |= sg->length;
2249 		sg = __sg_next(sg);
2250 	}
2251 
2252 	return page_sizes;
2253 }
2254 
2255 static inline unsigned int i915_sg_segment_size(void)
2256 {
2257 	unsigned int size = swiotlb_max_segment();
2258 
2259 	if (size == 0)
2260 		return SCATTERLIST_MAX_SEGMENT;
2261 
2262 	size = rounddown(size, PAGE_SIZE);
2263 	/* swiotlb_max_segment_size can return 1 byte when it means one page. */
2264 	if (size < PAGE_SIZE)
2265 		size = PAGE_SIZE;
2266 
2267 	return size;
2268 }
2269 
2270 #define INTEL_INFO(dev_priv)	(&(dev_priv)->__info)
2271 #define RUNTIME_INFO(dev_priv)	(&(dev_priv)->__runtime)
2272 #define DRIVER_CAPS(dev_priv)	(&(dev_priv)->caps)
2273 
2274 #define INTEL_GEN(dev_priv)	(INTEL_INFO(dev_priv)->gen)
2275 #define INTEL_DEVID(dev_priv)	(RUNTIME_INFO(dev_priv)->device_id)
2276 
2277 #define REVID_FOREVER		0xff
2278 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2279 
2280 #define INTEL_GEN_MASK(s, e) ( \
2281 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2282 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2283 	GENMASK((e) - 1, (s) - 1))
2284 
2285 /* Returns true if Gen is in inclusive range [Start, End] */
2286 #define IS_GEN_RANGE(dev_priv, s, e) \
2287 	(!!(INTEL_INFO(dev_priv)->gen_mask & INTEL_GEN_MASK((s), (e))))
2288 
2289 #define IS_GEN(dev_priv, n) \
2290 	(BUILD_BUG_ON_ZERO(!__builtin_constant_p(n)) + \
2291 	 INTEL_INFO(dev_priv)->gen == (n))
2292 
2293 /*
2294  * Return true if revision is in range [since,until] inclusive.
2295  *
2296  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2297  */
2298 #define IS_REVID(p, since, until) \
2299 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2300 
2301 #define IS_PLATFORM(dev_priv, p) (INTEL_INFO(dev_priv)->platform_mask & BIT(p))
2302 
2303 #define IS_I830(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I830)
2304 #define IS_I845G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I845G)
2305 #define IS_I85X(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I85X)
2306 #define IS_I865G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I865G)
2307 #define IS_I915G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915G)
2308 #define IS_I915GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915GM)
2309 #define IS_I945G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945G)
2310 #define IS_I945GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945GM)
2311 #define IS_I965G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965G)
2312 #define IS_I965GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965GM)
2313 #define IS_G45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G45)
2314 #define IS_GM45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GM45)
2315 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2316 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2317 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2318 #define IS_PINEVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2319 #define IS_G33(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G33)
2320 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2321 #define IS_IVYBRIDGE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2322 #define IS_IVB_GT1(dev_priv)	(IS_IVYBRIDGE(dev_priv) && \
2323 				 INTEL_INFO(dev_priv)->gt == 1)
2324 #define IS_VALLEYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2325 #define IS_CHERRYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2326 #define IS_HASWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_HASWELL)
2327 #define IS_BROADWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2328 #define IS_SKYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2329 #define IS_BROXTON(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROXTON)
2330 #define IS_KABYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2331 #define IS_GEMINILAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2332 #define IS_COFFEELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2333 #define IS_CANNONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2334 #define IS_ICELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2335 #define IS_ELKHARTLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ELKHARTLAKE)
2336 #define IS_MOBILE(dev_priv)	(INTEL_INFO(dev_priv)->is_mobile)
2337 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2338 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2339 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2340 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2341 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2342 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2343 /* ULX machines are also considered ULT. */
2344 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2345 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2346 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2347 				 INTEL_INFO(dev_priv)->gt == 3)
2348 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2349 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2350 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2351 				 INTEL_INFO(dev_priv)->gt == 3)
2352 #define IS_HSW_GT1(dev_priv)	(IS_HASWELL(dev_priv) && \
2353 				 INTEL_INFO(dev_priv)->gt == 1)
2354 /* ULX machines are also considered ULT. */
2355 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2356 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2357 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2358 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2359 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2360 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2361 				 INTEL_DEVID(dev_priv) == 0x1926)
2362 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2363 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2364 				 INTEL_DEVID(dev_priv) == 0x191E)
2365 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2366 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2367 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2368 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2369 				 INTEL_DEVID(dev_priv) == 0x5926)
2370 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2371 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2372 				 INTEL_DEVID(dev_priv) == 0x591E)
2373 #define IS_AML_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x591C || \
2374 				 INTEL_DEVID(dev_priv) == 0x87C0 || \
2375 				 INTEL_DEVID(dev_priv) == 0x87CA)
2376 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2377 				 INTEL_INFO(dev_priv)->gt == 2)
2378 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2379 				 INTEL_INFO(dev_priv)->gt == 3)
2380 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2381 				 INTEL_INFO(dev_priv)->gt == 4)
2382 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2383 				 INTEL_INFO(dev_priv)->gt == 2)
2384 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2385 				 INTEL_INFO(dev_priv)->gt == 3)
2386 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2387 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2388 #define IS_CFL_GT2(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2389 				 INTEL_INFO(dev_priv)->gt == 2)
2390 #define IS_CFL_GT3(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2391 				 INTEL_INFO(dev_priv)->gt == 3)
2392 #define IS_CNL_WITH_PORT_F(dev_priv)   (IS_CANNONLAKE(dev_priv) && \
2393 					(INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2394 #define IS_ICL_WITH_PORT_F(dev_priv)   (IS_ICELAKE(dev_priv) && \
2395 					INTEL_DEVID(dev_priv) != 0x8A51)
2396 
2397 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2398 
2399 #define SKL_REVID_A0		0x0
2400 #define SKL_REVID_B0		0x1
2401 #define SKL_REVID_C0		0x2
2402 #define SKL_REVID_D0		0x3
2403 #define SKL_REVID_E0		0x4
2404 #define SKL_REVID_F0		0x5
2405 #define SKL_REVID_G0		0x6
2406 #define SKL_REVID_H0		0x7
2407 
2408 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2409 
2410 #define BXT_REVID_A0		0x0
2411 #define BXT_REVID_A1		0x1
2412 #define BXT_REVID_B0		0x3
2413 #define BXT_REVID_B_LAST	0x8
2414 #define BXT_REVID_C0		0x9
2415 
2416 #define IS_BXT_REVID(dev_priv, since, until) \
2417 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2418 
2419 #define KBL_REVID_A0		0x0
2420 #define KBL_REVID_B0		0x1
2421 #define KBL_REVID_C0		0x2
2422 #define KBL_REVID_D0		0x3
2423 #define KBL_REVID_E0		0x4
2424 
2425 #define IS_KBL_REVID(dev_priv, since, until) \
2426 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2427 
2428 #define GLK_REVID_A0		0x0
2429 #define GLK_REVID_A1		0x1
2430 
2431 #define IS_GLK_REVID(dev_priv, since, until) \
2432 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2433 
2434 #define CNL_REVID_A0		0x0
2435 #define CNL_REVID_B0		0x1
2436 #define CNL_REVID_C0		0x2
2437 
2438 #define IS_CNL_REVID(p, since, until) \
2439 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2440 
2441 #define ICL_REVID_A0		0x0
2442 #define ICL_REVID_A2		0x1
2443 #define ICL_REVID_B0		0x3
2444 #define ICL_REVID_B2		0x4
2445 #define ICL_REVID_C0		0x5
2446 
2447 #define IS_ICL_REVID(p, since, until) \
2448 	(IS_ICELAKE(p) && IS_REVID(p, since, until))
2449 
2450 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2451 #define IS_GEN9_LP(dev_priv)	(IS_GEN(dev_priv, 9) && IS_LP(dev_priv))
2452 #define IS_GEN9_BC(dev_priv)	(IS_GEN(dev_priv, 9) && !IS_LP(dev_priv))
2453 
2454 #define ALL_ENGINES	(~0u)
2455 #define HAS_ENGINE(dev_priv, id) (INTEL_INFO(dev_priv)->engine_mask & BIT(id))
2456 
2457 #define ENGINE_INSTANCES_MASK(dev_priv, first, count) ({		\
2458 	unsigned int first__ = (first);					\
2459 	unsigned int count__ = (count);					\
2460 	(INTEL_INFO(dev_priv)->engine_mask &				\
2461 	 GENMASK(first__ + count__ - 1, first__)) >> first__;		\
2462 })
2463 #define VDBOX_MASK(dev_priv) \
2464 	ENGINE_INSTANCES_MASK(dev_priv, VCS0, I915_MAX_VCS)
2465 #define VEBOX_MASK(dev_priv) \
2466 	ENGINE_INSTANCES_MASK(dev_priv, VECS0, I915_MAX_VECS)
2467 
2468 #define HAS_LLC(dev_priv)	(INTEL_INFO(dev_priv)->has_llc)
2469 #define HAS_SNOOP(dev_priv)	(INTEL_INFO(dev_priv)->has_snoop)
2470 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2471 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2472 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2473 
2474 #define HWS_NEEDS_PHYSICAL(dev_priv)	(INTEL_INFO(dev_priv)->hws_needs_physical)
2475 
2476 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2477 		(INTEL_INFO(dev_priv)->has_logical_ring_contexts)
2478 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2479 		(INTEL_INFO(dev_priv)->has_logical_ring_elsq)
2480 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2481 		(INTEL_INFO(dev_priv)->has_logical_ring_preemption)
2482 
2483 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2484 
2485 #define INTEL_PPGTT(dev_priv) (INTEL_INFO(dev_priv)->ppgtt_type)
2486 #define HAS_PPGTT(dev_priv) \
2487 	(INTEL_PPGTT(dev_priv) != INTEL_PPGTT_NONE)
2488 #define HAS_FULL_PPGTT(dev_priv) \
2489 	(INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL)
2490 
2491 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2492 	GEM_BUG_ON((sizes) == 0); \
2493 	((sizes) & ~INTEL_INFO(dev_priv)->page_sizes) == 0; \
2494 })
2495 
2496 #define HAS_OVERLAY(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_overlay)
2497 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2498 		(INTEL_INFO(dev_priv)->display.overlay_needs_physical)
2499 
2500 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2501 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
2502 
2503 /* WaRsDisableCoarsePowerGating:skl,cnl */
2504 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2505 	(IS_CANNONLAKE(dev_priv) || \
2506 	 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2507 
2508 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2509 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \
2510 					IS_GEMINILAKE(dev_priv) || \
2511 					IS_KABYLAKE(dev_priv))
2512 
2513 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2514  * rows, which changed the alignment requirements and fence programming.
2515  */
2516 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN(dev_priv, 2) && \
2517 					 !(IS_I915G(dev_priv) || \
2518 					 IS_I915GM(dev_priv)))
2519 #define SUPPORTS_TV(dev_priv)		(INTEL_INFO(dev_priv)->display.supports_tv)
2520 #define I915_HAS_HOTPLUG(dev_priv)	(INTEL_INFO(dev_priv)->display.has_hotplug)
2521 
2522 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
2523 #define HAS_FBC(dev_priv)	(INTEL_INFO(dev_priv)->display.has_fbc)
2524 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2525 
2526 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2527 
2528 #define HAS_DP_MST(dev_priv)	(INTEL_INFO(dev_priv)->display.has_dp_mst)
2529 
2530 #define HAS_DDI(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_ddi)
2531 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) (INTEL_INFO(dev_priv)->has_fpga_dbg)
2532 #define HAS_PSR(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_psr)
2533 #define HAS_TRANSCODER_EDP(dev_priv)	 (INTEL_INFO(dev_priv)->trans_offsets[TRANSCODER_EDP] != 0)
2534 
2535 #define HAS_RC6(dev_priv)		 (INTEL_INFO(dev_priv)->has_rc6)
2536 #define HAS_RC6p(dev_priv)		 (INTEL_INFO(dev_priv)->has_rc6p)
2537 #define HAS_RC6pp(dev_priv)		 (false) /* HW was never validated */
2538 
2539 #define HAS_CSR(dev_priv)	(INTEL_INFO(dev_priv)->display.has_csr)
2540 
2541 #define HAS_RUNTIME_PM(dev_priv) (INTEL_INFO(dev_priv)->has_runtime_pm)
2542 #define HAS_64BIT_RELOC(dev_priv) (INTEL_INFO(dev_priv)->has_64bit_reloc)
2543 
2544 #define HAS_IPC(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_ipc)
2545 
2546 /*
2547  * For now, anything with a GuC requires uCode loading, and then supports
2548  * command submission once loaded. But these are logically independent
2549  * properties, so we have separate macros to test them.
2550  */
2551 #define HAS_GUC(dev_priv)	(INTEL_INFO(dev_priv)->has_guc)
2552 #define HAS_GUC_CT(dev_priv)	(INTEL_INFO(dev_priv)->has_guc_ct)
2553 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2554 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
2555 
2556 /* For now, anything with a GuC has also HuC */
2557 #define HAS_HUC(dev_priv)	(HAS_GUC(dev_priv))
2558 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2559 
2560 /* Having a GuC is not the same as using a GuC */
2561 #define USES_GUC(dev_priv)		intel_uc_is_using_guc(dev_priv)
2562 #define USES_GUC_SUBMISSION(dev_priv)	intel_uc_is_using_guc_submission(dev_priv)
2563 #define USES_HUC(dev_priv)		intel_uc_is_using_huc(dev_priv)
2564 
2565 #define HAS_POOLED_EU(dev_priv)	(INTEL_INFO(dev_priv)->has_pooled_eu)
2566 
2567 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
2568 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2569 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2570 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2571 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2572 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2573 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
2574 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
2575 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2576 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2577 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
2578 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
2579 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
2580 #define INTEL_PCH_CMP_DEVICE_ID_TYPE		0x0280
2581 #define INTEL_PCH_ICP_DEVICE_ID_TYPE		0x3480
2582 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2583 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2584 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2585 
2586 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2587 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2588 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2589 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2590 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2591 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2592 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2593 #define HAS_PCH_LPT_LP(dev_priv) \
2594 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2595 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2596 #define HAS_PCH_LPT_H(dev_priv) \
2597 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2598 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2599 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2600 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2601 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2602 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2603 
2604 #define HAS_GMCH(dev_priv) (INTEL_INFO(dev_priv)->display.has_gmch)
2605 
2606 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2607 
2608 /* DPF == dynamic parity feature */
2609 #define HAS_L3_DPF(dev_priv) (INTEL_INFO(dev_priv)->has_l3_dpf)
2610 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2611 				 2 : HAS_L3_DPF(dev_priv))
2612 
2613 #define GT_FREQUENCY_MULTIPLIER 50
2614 #define GEN9_FREQ_SCALER 3
2615 
2616 #define HAS_DISPLAY(dev_priv) (INTEL_INFO(dev_priv)->num_pipes > 0)
2617 
2618 #include "i915_trace.h"
2619 
2620 static inline bool intel_vtd_active(void)
2621 {
2622 #ifdef CONFIG_INTEL_IOMMU
2623 	if (intel_iommu_gfx_mapped)
2624 		return true;
2625 #endif
2626 	return false;
2627 }
2628 
2629 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2630 {
2631 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2632 }
2633 
2634 static inline bool
2635 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2636 {
2637 	return IS_BROXTON(dev_priv) && intel_vtd_active();
2638 }
2639 
2640 /* i915_drv.c */
2641 void __printf(3, 4)
2642 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2643 	      const char *fmt, ...);
2644 
2645 #define i915_report_error(dev_priv, fmt, ...)				   \
2646 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2647 
2648 #ifdef CONFIG_COMPAT
2649 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2650 			      unsigned long arg);
2651 #else
2652 #define i915_compat_ioctl NULL
2653 #endif
2654 extern const struct dev_pm_ops i915_pm_ops;
2655 
2656 extern int i915_driver_load(struct pci_dev *pdev,
2657 			    const struct pci_device_id *ent);
2658 extern void i915_driver_unload(struct drm_device *dev);
2659 
2660 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2661 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2662 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2663 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2664 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2665 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2666 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2667 
2668 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2669 int intel_engines_init(struct drm_i915_private *dev_priv);
2670 
2671 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv);
2672 
2673 /* intel_hotplug.c */
2674 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2675 			   u32 pin_mask, u32 long_mask);
2676 void intel_hpd_init(struct drm_i915_private *dev_priv);
2677 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2678 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2679 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2680 				   enum port port);
2681 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2682 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2683 
2684 /* i915_irq.c */
2685 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2686 {
2687 	unsigned long delay;
2688 
2689 	if (unlikely(!i915_modparams.enable_hangcheck))
2690 		return;
2691 
2692 	/* Don't continually defer the hangcheck so that it is always run at
2693 	 * least once after work has been scheduled on any ring. Otherwise,
2694 	 * we will ignore a hung ring if a second ring is kept busy.
2695 	 */
2696 
2697 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2698 	queue_delayed_work(system_long_wq,
2699 			   &dev_priv->gpu_error.hangcheck_work, delay);
2700 }
2701 
2702 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2703 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2704 int intel_irq_install(struct drm_i915_private *dev_priv);
2705 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2706 
2707 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2708 {
2709 	return dev_priv->gvt;
2710 }
2711 
2712 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2713 {
2714 	return dev_priv->vgpu.active;
2715 }
2716 
2717 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2718 			      enum pipe pipe);
2719 void
2720 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2721 		     u32 status_mask);
2722 
2723 void
2724 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2725 		      u32 status_mask);
2726 
2727 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2728 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2729 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2730 				   u32 mask,
2731 				   u32 bits);
2732 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2733 			    u32 interrupt_mask,
2734 			    u32 enabled_irq_mask);
2735 static inline void
2736 ilk_enable_display_irq(struct drm_i915_private *dev_priv, u32 bits)
2737 {
2738 	ilk_update_display_irq(dev_priv, bits, bits);
2739 }
2740 static inline void
2741 ilk_disable_display_irq(struct drm_i915_private *dev_priv, u32 bits)
2742 {
2743 	ilk_update_display_irq(dev_priv, bits, 0);
2744 }
2745 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2746 			 enum pipe pipe,
2747 			 u32 interrupt_mask,
2748 			 u32 enabled_irq_mask);
2749 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2750 				       enum pipe pipe, u32 bits)
2751 {
2752 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2753 }
2754 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2755 					enum pipe pipe, u32 bits)
2756 {
2757 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2758 }
2759 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2760 				  u32 interrupt_mask,
2761 				  u32 enabled_irq_mask);
2762 static inline void
2763 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, u32 bits)
2764 {
2765 	ibx_display_interrupt_update(dev_priv, bits, bits);
2766 }
2767 static inline void
2768 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, u32 bits)
2769 {
2770 	ibx_display_interrupt_update(dev_priv, bits, 0);
2771 }
2772 
2773 /* i915_gem.c */
2774 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2775 			  struct drm_file *file_priv);
2776 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2777 			 struct drm_file *file_priv);
2778 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2779 			  struct drm_file *file_priv);
2780 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2781 			struct drm_file *file_priv);
2782 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2783 			struct drm_file *file_priv);
2784 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2785 			      struct drm_file *file_priv);
2786 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2787 			     struct drm_file *file_priv);
2788 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2789 			      struct drm_file *file_priv);
2790 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2791 			       struct drm_file *file_priv);
2792 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2793 			struct drm_file *file_priv);
2794 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2795 			       struct drm_file *file);
2796 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2797 			       struct drm_file *file);
2798 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2799 			    struct drm_file *file_priv);
2800 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2801 			   struct drm_file *file_priv);
2802 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2803 			      struct drm_file *file_priv);
2804 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2805 			      struct drm_file *file_priv);
2806 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2807 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2808 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2809 			   struct drm_file *file);
2810 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2811 				struct drm_file *file_priv);
2812 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2813 			struct drm_file *file_priv);
2814 void i915_gem_sanitize(struct drm_i915_private *i915);
2815 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2816 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2817 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2818 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2819 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2820 
2821 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2822 			 const struct drm_i915_gem_object_ops *ops);
2823 struct drm_i915_gem_object *
2824 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2825 struct drm_i915_gem_object *
2826 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2827 				 const void *data, size_t size);
2828 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2829 void i915_gem_free_object(struct drm_gem_object *obj);
2830 
2831 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2832 {
2833 	if (!atomic_read(&i915->mm.free_count))
2834 		return;
2835 
2836 	/* A single pass should suffice to release all the freed objects (along
2837 	 * most call paths) , but be a little more paranoid in that freeing
2838 	 * the objects does take a little amount of time, during which the rcu
2839 	 * callbacks could have added new objects into the freed list, and
2840 	 * armed the work again.
2841 	 */
2842 	do {
2843 		rcu_barrier();
2844 	} while (flush_work(&i915->mm.free_work));
2845 }
2846 
2847 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2848 {
2849 	/*
2850 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
2851 	 * general we have workers that are armed by RCU and then rearm
2852 	 * themselves in their callbacks. To be paranoid, we need to
2853 	 * drain the workqueue a second time after waiting for the RCU
2854 	 * grace period so that we catch work queued via RCU from the first
2855 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
2856 	 * a result, we make an assumption that we only don't require more
2857 	 * than 2 passes to catch all recursive RCU delayed work.
2858 	 *
2859 	 */
2860 	int pass = 2;
2861 	do {
2862 		rcu_barrier();
2863 		drain_workqueue(i915->wq);
2864 	} while (--pass);
2865 }
2866 
2867 struct i915_vma * __must_check
2868 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2869 			 const struct i915_ggtt_view *view,
2870 			 u64 size,
2871 			 u64 alignment,
2872 			 u64 flags);
2873 
2874 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
2875 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2876 
2877 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
2878 
2879 static inline int __sg_page_count(const struct scatterlist *sg)
2880 {
2881 	return sg->length >> PAGE_SHIFT;
2882 }
2883 
2884 struct scatterlist *
2885 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
2886 		       unsigned int n, unsigned int *offset);
2887 
2888 struct page *
2889 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
2890 			 unsigned int n);
2891 
2892 struct page *
2893 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
2894 			       unsigned int n);
2895 
2896 dma_addr_t
2897 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
2898 				unsigned long n);
2899 
2900 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2901 				 struct sg_table *pages,
2902 				 unsigned int sg_page_sizes);
2903 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2904 
2905 static inline int __must_check
2906 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2907 {
2908 	might_lock(&obj->mm.lock);
2909 
2910 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
2911 		return 0;
2912 
2913 	return __i915_gem_object_get_pages(obj);
2914 }
2915 
2916 static inline bool
2917 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
2918 {
2919 	return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
2920 }
2921 
2922 static inline void
2923 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2924 {
2925 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2926 
2927 	atomic_inc(&obj->mm.pages_pin_count);
2928 }
2929 
2930 static inline bool
2931 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
2932 {
2933 	return atomic_read(&obj->mm.pages_pin_count);
2934 }
2935 
2936 static inline void
2937 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2938 {
2939 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2940 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
2941 
2942 	atomic_dec(&obj->mm.pages_pin_count);
2943 }
2944 
2945 static inline void
2946 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2947 {
2948 	__i915_gem_object_unpin_pages(obj);
2949 }
2950 
2951 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock/struct_mutex */
2952 	I915_MM_NORMAL = 0,
2953 	I915_MM_SHRINKER /* called "recursively" from direct-reclaim-esque */
2954 };
2955 
2956 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2957 				enum i915_mm_subclass subclass);
2958 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
2959 
2960 enum i915_map_type {
2961 	I915_MAP_WB = 0,
2962 	I915_MAP_WC,
2963 #define I915_MAP_OVERRIDE BIT(31)
2964 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
2965 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
2966 };
2967 
2968 static inline enum i915_map_type
2969 i915_coherent_map_type(struct drm_i915_private *i915)
2970 {
2971 	return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
2972 }
2973 
2974 /**
2975  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
2976  * @obj: the object to map into kernel address space
2977  * @type: the type of mapping, used to select pgprot_t
2978  *
2979  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
2980  * pages and then returns a contiguous mapping of the backing storage into
2981  * the kernel address space. Based on the @type of mapping, the PTE will be
2982  * set to either WriteBack or WriteCombine (via pgprot_t).
2983  *
2984  * The caller is responsible for calling i915_gem_object_unpin_map() when the
2985  * mapping is no longer required.
2986  *
2987  * Returns the pointer through which to access the mapped object, or an
2988  * ERR_PTR() on error.
2989  */
2990 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2991 					   enum i915_map_type type);
2992 
2993 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
2994 				 unsigned long offset,
2995 				 unsigned long size);
2996 static inline void i915_gem_object_flush_map(struct drm_i915_gem_object *obj)
2997 {
2998 	__i915_gem_object_flush_map(obj, 0, obj->base.size);
2999 }
3000 
3001 /**
3002  * i915_gem_object_unpin_map - releases an earlier mapping
3003  * @obj: the object to unmap
3004  *
3005  * After pinning the object and mapping its pages, once you are finished
3006  * with your access, call i915_gem_object_unpin_map() to release the pin
3007  * upon the mapping. Once the pin count reaches zero, that mapping may be
3008  * removed.
3009  */
3010 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3011 {
3012 	i915_gem_object_unpin_pages(obj);
3013 }
3014 
3015 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3016 				    unsigned int *needs_clflush);
3017 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3018 				     unsigned int *needs_clflush);
3019 #define CLFLUSH_BEFORE	BIT(0)
3020 #define CLFLUSH_AFTER	BIT(1)
3021 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
3022 
3023 static inline void
3024 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3025 {
3026 	i915_gem_object_unpin_pages(obj);
3027 }
3028 
3029 static inline int __must_check
3030 i915_mutex_lock_interruptible(struct drm_device *dev)
3031 {
3032 	return mutex_lock_interruptible(&dev->struct_mutex);
3033 }
3034 
3035 int i915_gem_dumb_create(struct drm_file *file_priv,
3036 			 struct drm_device *dev,
3037 			 struct drm_mode_create_dumb *args);
3038 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3039 		      u32 handle, u64 *offset);
3040 int i915_gem_mmap_gtt_version(void);
3041 
3042 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3043 		       struct drm_i915_gem_object *new,
3044 		       unsigned frontbuffer_bits);
3045 
3046 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3047 
3048 static inline bool __i915_wedged(struct i915_gpu_error *error)
3049 {
3050 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3051 }
3052 
3053 static inline bool i915_reset_failed(struct drm_i915_private *i915)
3054 {
3055 	return __i915_wedged(&i915->gpu_error);
3056 }
3057 
3058 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3059 {
3060 	return READ_ONCE(error->reset_count);
3061 }
3062 
3063 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3064 					  struct intel_engine_cs *engine)
3065 {
3066 	return READ_ONCE(error->reset_engine_count[engine->id]);
3067 }
3068 
3069 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3070 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3071 
3072 void i915_gem_init_mmio(struct drm_i915_private *i915);
3073 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3074 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3075 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3076 void i915_gem_fini(struct drm_i915_private *dev_priv);
3077 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3078 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3079 			   unsigned int flags, long timeout);
3080 void i915_gem_suspend(struct drm_i915_private *dev_priv);
3081 void i915_gem_suspend_late(struct drm_i915_private *dev_priv);
3082 void i915_gem_resume(struct drm_i915_private *dev_priv);
3083 vm_fault_t i915_gem_fault(struct vm_fault *vmf);
3084 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3085 			 unsigned int flags,
3086 			 long timeout);
3087 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3088 				  unsigned int flags,
3089 				  const struct i915_sched_attr *attr);
3090 #define I915_PRIORITY_DISPLAY I915_USER_PRIORITY(I915_PRIORITY_MAX)
3091 
3092 int __must_check
3093 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3094 int __must_check
3095 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3096 int __must_check
3097 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3098 struct i915_vma * __must_check
3099 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3100 				     u32 alignment,
3101 				     const struct i915_ggtt_view *view,
3102 				     unsigned int flags);
3103 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3104 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3105 				int align);
3106 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3107 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3108 
3109 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3110 				    enum i915_cache_level cache_level);
3111 
3112 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3113 				struct dma_buf *dma_buf);
3114 
3115 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3116 				struct drm_gem_object *gem_obj, int flags);
3117 
3118 static inline struct i915_hw_ppgtt *
3119 i915_vm_to_ppgtt(struct i915_address_space *vm)
3120 {
3121 	return container_of(vm, struct i915_hw_ppgtt, vm);
3122 }
3123 
3124 /* i915_gem_fence_reg.c */
3125 struct drm_i915_fence_reg *
3126 i915_reserve_fence(struct drm_i915_private *dev_priv);
3127 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3128 
3129 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3130 
3131 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3132 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3133 				       struct sg_table *pages);
3134 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3135 					 struct sg_table *pages);
3136 
3137 static inline struct i915_gem_context *
3138 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3139 {
3140 	return idr_find(&file_priv->context_idr, id);
3141 }
3142 
3143 static inline struct i915_gem_context *
3144 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3145 {
3146 	struct i915_gem_context *ctx;
3147 
3148 	rcu_read_lock();
3149 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3150 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3151 		ctx = NULL;
3152 	rcu_read_unlock();
3153 
3154 	return ctx;
3155 }
3156 
3157 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3158 			 struct drm_file *file);
3159 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3160 			       struct drm_file *file);
3161 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3162 				  struct drm_file *file);
3163 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3164 			    struct intel_context *ce,
3165 			    u32 *reg_state);
3166 
3167 /* i915_gem_evict.c */
3168 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3169 					  u64 min_size, u64 alignment,
3170 					  unsigned cache_level,
3171 					  u64 start, u64 end,
3172 					  unsigned flags);
3173 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3174 					 struct drm_mm_node *node,
3175 					 unsigned int flags);
3176 int i915_gem_evict_vm(struct i915_address_space *vm);
3177 
3178 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3179 
3180 /* belongs in i915_gem_gtt.h */
3181 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3182 {
3183 	wmb();
3184 	if (INTEL_GEN(dev_priv) < 6)
3185 		intel_gtt_chipset_flush();
3186 }
3187 
3188 /* i915_gem_stolen.c */
3189 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3190 				struct drm_mm_node *node, u64 size,
3191 				unsigned alignment);
3192 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3193 					 struct drm_mm_node *node, u64 size,
3194 					 unsigned alignment, u64 start,
3195 					 u64 end);
3196 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3197 				 struct drm_mm_node *node);
3198 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3199 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv);
3200 struct drm_i915_gem_object *
3201 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3202 			      resource_size_t size);
3203 struct drm_i915_gem_object *
3204 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3205 					       resource_size_t stolen_offset,
3206 					       resource_size_t gtt_offset,
3207 					       resource_size_t size);
3208 
3209 /* i915_gem_internal.c */
3210 struct drm_i915_gem_object *
3211 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3212 				phys_addr_t size);
3213 
3214 /* i915_gem_shrinker.c */
3215 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3216 			      unsigned long target,
3217 			      unsigned long *nr_scanned,
3218 			      unsigned flags);
3219 #define I915_SHRINK_PURGEABLE 0x1
3220 #define I915_SHRINK_UNBOUND 0x2
3221 #define I915_SHRINK_BOUND 0x4
3222 #define I915_SHRINK_ACTIVE 0x8
3223 #define I915_SHRINK_VMAPS 0x10
3224 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3225 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3226 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3227 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915,
3228 				    struct mutex *mutex);
3229 
3230 /* i915_gem_tiling.c */
3231 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3232 {
3233 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3234 
3235 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3236 		i915_gem_object_is_tiled(obj);
3237 }
3238 
3239 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3240 			unsigned int tiling, unsigned int stride);
3241 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3242 			     unsigned int tiling, unsigned int stride);
3243 
3244 /* i915_debugfs.c */
3245 #ifdef CONFIG_DEBUG_FS
3246 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3247 int i915_debugfs_connector_add(struct drm_connector *connector);
3248 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3249 #else
3250 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3251 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3252 { return 0; }
3253 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3254 #endif
3255 
3256 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3257 
3258 /* i915_cmd_parser.c */
3259 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3260 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3261 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3262 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3263 			    struct drm_i915_gem_object *batch_obj,
3264 			    struct drm_i915_gem_object *shadow_batch_obj,
3265 			    u32 batch_start_offset,
3266 			    u32 batch_len,
3267 			    bool is_master);
3268 
3269 /* i915_perf.c */
3270 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3271 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3272 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3273 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3274 
3275 /* i915_suspend.c */
3276 extern int i915_save_state(struct drm_i915_private *dev_priv);
3277 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3278 
3279 /* i915_sysfs.c */
3280 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3281 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3282 
3283 /* intel_lpe_audio.c */
3284 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3285 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3286 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3287 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3288 			    enum pipe pipe, enum port port,
3289 			    const void *eld, int ls_clock, bool dp_output);
3290 
3291 /* intel_i2c.c */
3292 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3293 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3294 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3295 				     unsigned int pin);
3296 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3297 
3298 extern struct i2c_adapter *
3299 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3300 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3301 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3302 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3303 {
3304 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3305 }
3306 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3307 
3308 /* intel_bios.c */
3309 void intel_bios_init(struct drm_i915_private *dev_priv);
3310 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3311 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3312 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3313 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3314 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3315 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3316 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3317 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3318 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3319 				     enum port port);
3320 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3321 				enum port port);
3322 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv, enum port port);
3323 
3324 /* intel_acpi.c */
3325 #ifdef CONFIG_ACPI
3326 extern void intel_register_dsm_handler(void);
3327 extern void intel_unregister_dsm_handler(void);
3328 #else
3329 static inline void intel_register_dsm_handler(void) { return; }
3330 static inline void intel_unregister_dsm_handler(void) { return; }
3331 #endif /* CONFIG_ACPI */
3332 
3333 /* intel_device_info.c */
3334 static inline struct intel_device_info *
3335 mkwrite_device_info(struct drm_i915_private *dev_priv)
3336 {
3337 	return (struct intel_device_info *)INTEL_INFO(dev_priv);
3338 }
3339 
3340 static inline struct intel_sseu
3341 intel_device_default_sseu(struct drm_i915_private *i915)
3342 {
3343 	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
3344 	struct intel_sseu value = {
3345 		.slice_mask = sseu->slice_mask,
3346 		.subslice_mask = sseu->subslice_mask[0],
3347 		.min_eus_per_subslice = sseu->max_eus_per_subslice,
3348 		.max_eus_per_subslice = sseu->max_eus_per_subslice,
3349 	};
3350 
3351 	return value;
3352 }
3353 
3354 /* modesetting */
3355 extern void intel_modeset_init_hw(struct drm_device *dev);
3356 extern int intel_modeset_init(struct drm_device *dev);
3357 extern void intel_modeset_cleanup(struct drm_device *dev);
3358 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3359 				       bool state);
3360 extern void intel_display_resume(struct drm_device *dev);
3361 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3362 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3363 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3364 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3365 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3366 extern void intel_rps_mark_interactive(struct drm_i915_private *i915,
3367 				       bool interactive);
3368 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3369 				  bool enable);
3370 void intel_dsc_enable(struct intel_encoder *encoder,
3371 		      const struct intel_crtc_state *crtc_state);
3372 void intel_dsc_disable(const struct intel_crtc_state *crtc_state);
3373 
3374 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3375 			struct drm_file *file);
3376 
3377 /* overlay */
3378 extern struct intel_overlay_error_state *
3379 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3380 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3381 					    struct intel_overlay_error_state *error);
3382 
3383 extern struct intel_display_error_state *
3384 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3385 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3386 					    struct intel_display_error_state *error);
3387 
3388 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3389 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3390 				    u32 val, int fast_timeout_us,
3391 				    int slow_timeout_ms);
3392 #define sandybridge_pcode_write(dev_priv, mbox, val)	\
3393 	sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3394 
3395 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3396 		      u32 reply_mask, u32 reply, int timeout_base_ms);
3397 
3398 /* intel_sideband.c */
3399 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3400 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3401 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3402 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3403 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3404 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3405 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3406 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3407 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3408 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3409 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3410 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3411 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3412 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3413 		   enum intel_sbi_destination destination);
3414 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3415 		     enum intel_sbi_destination destination);
3416 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3417 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3418 
3419 /* intel_dpio_phy.c */
3420 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3421 			     enum dpio_phy *phy, enum dpio_channel *ch);
3422 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3423 				  enum port port, u32 margin, u32 scale,
3424 				  u32 enable, u32 deemphasis);
3425 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3426 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3427 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3428 			    enum dpio_phy phy);
3429 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3430 			      enum dpio_phy phy);
3431 u8 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count);
3432 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3433 				     u8 lane_lat_optim_mask);
3434 u8 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3435 
3436 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3437 			      u32 deemph_reg_value, u32 margin_reg_value,
3438 			      bool uniq_trans_scale);
3439 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3440 			      const struct intel_crtc_state *crtc_state,
3441 			      bool reset);
3442 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3443 			    const struct intel_crtc_state *crtc_state);
3444 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3445 				const struct intel_crtc_state *crtc_state);
3446 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3447 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3448 			      const struct intel_crtc_state *old_crtc_state);
3449 
3450 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3451 			      u32 demph_reg_value, u32 preemph_reg_value,
3452 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3453 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3454 			    const struct intel_crtc_state *crtc_state);
3455 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3456 				const struct intel_crtc_state *crtc_state);
3457 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3458 			 const struct intel_crtc_state *old_crtc_state);
3459 
3460 /* intel_combo_phy.c */
3461 void icl_combo_phys_init(struct drm_i915_private *dev_priv);
3462 void icl_combo_phys_uninit(struct drm_i915_private *dev_priv);
3463 void cnl_combo_phys_init(struct drm_i915_private *dev_priv);
3464 void cnl_combo_phys_uninit(struct drm_i915_private *dev_priv);
3465 
3466 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3467 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3468 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3469 			   const i915_reg_t reg);
3470 
3471 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3472 
3473 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3474 					 const i915_reg_t reg)
3475 {
3476 	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3477 }
3478 
3479 #define __I915_REG_OP(op__, dev_priv__, ...) \
3480 	intel_uncore_##op__(&(dev_priv__)->uncore, __VA_ARGS__)
3481 
3482 #define I915_READ8(reg__)	  __I915_REG_OP(read8, dev_priv, (reg__))
3483 #define I915_WRITE8(reg__, val__) __I915_REG_OP(write8, dev_priv, (reg__), (val__))
3484 
3485 #define I915_READ16(reg__)	   __I915_REG_OP(read16, dev_priv, (reg__))
3486 #define I915_WRITE16(reg__, val__) __I915_REG_OP(write16, dev_priv, (reg__), (val__))
3487 #define I915_READ16_NOTRACE(reg__)	   __I915_REG_OP(read16_notrace, dev_priv, (reg__))
3488 #define I915_WRITE16_NOTRACE(reg__, val__) __I915_REG_OP(write16_notrace, dev_priv, (reg__), (val__))
3489 
3490 #define I915_READ(reg__)	 __I915_REG_OP(read, dev_priv, (reg__))
3491 #define I915_WRITE(reg__, val__) __I915_REG_OP(write, dev_priv, (reg__), (val__))
3492 #define I915_READ_NOTRACE(reg__)	 __I915_REG_OP(read_notrace, dev_priv, (reg__))
3493 #define I915_WRITE_NOTRACE(reg__, val__) __I915_REG_OP(write_notrace, dev_priv, (reg__), (val__))
3494 
3495 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3496  * will be implemented using 2 32-bit writes in an arbitrary order with
3497  * an arbitrary delay between them. This can cause the hardware to
3498  * act upon the intermediate value, possibly leading to corruption and
3499  * machine death. For this reason we do not support I915_WRITE64, or
3500  * dev_priv->uncore.funcs.mmio_writeq.
3501  *
3502  * When reading a 64-bit value as two 32-bit values, the delay may cause
3503  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3504  * occasionally a 64-bit register does not actualy support a full readq
3505  * and must be read using two 32-bit reads.
3506  *
3507  * You have been warned.
3508  */
3509 #define I915_READ64(reg__)	__I915_REG_OP(read64, dev_priv, (reg__))
3510 #define I915_READ64_2x32(lower_reg__, upper_reg__) \
3511 	__I915_REG_OP(read64_2x32, dev_priv, (lower_reg__), (upper_reg__))
3512 
3513 #define POSTING_READ(reg__)	__I915_REG_OP(posting_read, dev_priv, (reg__))
3514 #define POSTING_READ16(reg__)	__I915_REG_OP(posting_read16, dev_priv, (reg__))
3515 
3516 /* These are untraced mmio-accessors that are only valid to be used inside
3517  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3518  * controlled.
3519  *
3520  * Think twice, and think again, before using these.
3521  *
3522  * As an example, these accessors can possibly be used between:
3523  *
3524  * spin_lock_irq(&dev_priv->uncore.lock);
3525  * intel_uncore_forcewake_get__locked();
3526  *
3527  * and
3528  *
3529  * intel_uncore_forcewake_put__locked();
3530  * spin_unlock_irq(&dev_priv->uncore.lock);
3531  *
3532  *
3533  * Note: some registers may not need forcewake held, so
3534  * intel_uncore_forcewake_{get,put} can be omitted, see
3535  * intel_uncore_forcewake_for_reg().
3536  *
3537  * Certain architectures will die if the same cacheline is concurrently accessed
3538  * by different clients (e.g. on Ivybridge). Access to registers should
3539  * therefore generally be serialised, by either the dev_priv->uncore.lock or
3540  * a more localised lock guarding all access to that bank of registers.
3541  */
3542 #define I915_READ_FW(reg__) __I915_REG_OP(read_fw, dev_priv, (reg__))
3543 #define I915_WRITE_FW(reg__, val__) __I915_REG_OP(write_fw, dev_priv, (reg__), (val__))
3544 #define I915_WRITE64_FW(reg__, val__) __I915_REG_OP(write64_fw, dev_priv, (reg__), (val__))
3545 #define POSTING_READ_FW(reg__) __I915_REG_OP(posting_read_fw, dev_priv, (reg__))
3546 
3547 /* "Broadcast RGB" property */
3548 #define INTEL_BROADCAST_RGB_AUTO 0
3549 #define INTEL_BROADCAST_RGB_FULL 1
3550 #define INTEL_BROADCAST_RGB_LIMITED 2
3551 
3552 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3553 {
3554 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3555 		return VLV_VGACNTRL;
3556 	else if (INTEL_GEN(dev_priv) >= 5)
3557 		return CPU_VGACNTRL;
3558 	else
3559 		return VGACNTRL;
3560 }
3561 
3562 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3563 {
3564 	unsigned long j = msecs_to_jiffies(m);
3565 
3566 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3567 }
3568 
3569 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3570 {
3571 	/* nsecs_to_jiffies64() does not guard against overflow */
3572 	if (NSEC_PER_SEC % HZ &&
3573 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3574 		return MAX_JIFFY_OFFSET;
3575 
3576         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3577 }
3578 
3579 /*
3580  * If you need to wait X milliseconds between events A and B, but event B
3581  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3582  * when event A happened, then just before event B you call this function and
3583  * pass the timestamp as the first argument, and X as the second argument.
3584  */
3585 static inline void
3586 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3587 {
3588 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3589 
3590 	/*
3591 	 * Don't re-read the value of "jiffies" every time since it may change
3592 	 * behind our back and break the math.
3593 	 */
3594 	tmp_jiffies = jiffies;
3595 	target_jiffies = timestamp_jiffies +
3596 			 msecs_to_jiffies_timeout(to_wait_ms);
3597 
3598 	if (time_after(target_jiffies, tmp_jiffies)) {
3599 		remaining_jiffies = target_jiffies - tmp_jiffies;
3600 		while (remaining_jiffies)
3601 			remaining_jiffies =
3602 			    schedule_timeout_uninterruptible(remaining_jiffies);
3603 	}
3604 }
3605 
3606 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3607 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3608 
3609 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3610  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3611  * perform the operation. To check beforehand, pass in the parameters to
3612  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3613  * you only need to pass in the minor offsets, page-aligned pointers are
3614  * always valid.
3615  *
3616  * For just checking for SSE4.1, in the foreknowledge that the future use
3617  * will be correctly aligned, just use i915_has_memcpy_from_wc().
3618  */
3619 #define i915_can_memcpy_from_wc(dst, src, len) \
3620 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3621 
3622 #define i915_has_memcpy_from_wc() \
3623 	i915_memcpy_from_wc(NULL, NULL, 0)
3624 
3625 /* i915_mm.c */
3626 int remap_io_mapping(struct vm_area_struct *vma,
3627 		     unsigned long addr, unsigned long pfn, unsigned long size,
3628 		     struct io_mapping *iomap);
3629 
3630 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3631 {
3632 	if (INTEL_GEN(i915) >= 10)
3633 		return CNL_HWS_CSB_WRITE_INDEX;
3634 	else
3635 		return I915_HWS_CSB_WRITE_INDEX;
3636 }
3637 
3638 static inline u32 i915_scratch_offset(const struct drm_i915_private *i915)
3639 {
3640 	return i915_ggtt_offset(i915->gt.scratch);
3641 }
3642 
3643 #endif
3644