1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hashtable.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/pm_qos.h> 44 #include <linux/shmem_fs.h> 45 46 #include <drm/drmP.h> 47 #include <drm/intel-gtt.h> 48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 49 #include <drm/drm_gem.h> 50 51 #include "i915_params.h" 52 #include "i915_reg.h" 53 54 #include "intel_bios.h" 55 #include "intel_dpll_mgr.h" 56 #include "intel_guc.h" 57 #include "intel_lrc.h" 58 #include "intel_ringbuffer.h" 59 60 #include "i915_gem.h" 61 #include "i915_gem_gtt.h" 62 #include "i915_gem_render_state.h" 63 64 /* General customization: 65 */ 66 67 #define DRIVER_NAME "i915" 68 #define DRIVER_DESC "Intel Graphics" 69 #define DRIVER_DATE "20160425" 70 71 #undef WARN_ON 72 /* Many gcc seem to no see through this and fall over :( */ 73 #if 0 74 #define WARN_ON(x) ({ \ 75 bool __i915_warn_cond = (x); \ 76 if (__builtin_constant_p(__i915_warn_cond)) \ 77 BUILD_BUG_ON(__i915_warn_cond); \ 78 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); }) 79 #else 80 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 81 #endif 82 83 #undef WARN_ON_ONCE 84 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")") 85 86 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \ 87 (long) (x), __func__); 88 89 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 90 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 91 * which may not necessarily be a user visible problem. This will either 92 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 93 * enable distros and users to tailor their preferred amount of i915 abrt 94 * spam. 95 */ 96 #define I915_STATE_WARN(condition, format...) ({ \ 97 int __ret_warn_on = !!(condition); \ 98 if (unlikely(__ret_warn_on)) \ 99 if (!WARN(i915.verbose_state_checks, format)) \ 100 DRM_ERROR(format); \ 101 unlikely(__ret_warn_on); \ 102 }) 103 104 #define I915_STATE_WARN_ON(x) \ 105 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 106 107 bool __i915_inject_load_failure(const char *func, int line); 108 #define i915_inject_load_failure() \ 109 __i915_inject_load_failure(__func__, __LINE__) 110 111 static inline const char *yesno(bool v) 112 { 113 return v ? "yes" : "no"; 114 } 115 116 static inline const char *onoff(bool v) 117 { 118 return v ? "on" : "off"; 119 } 120 121 enum pipe { 122 INVALID_PIPE = -1, 123 PIPE_A = 0, 124 PIPE_B, 125 PIPE_C, 126 _PIPE_EDP, 127 I915_MAX_PIPES = _PIPE_EDP 128 }; 129 #define pipe_name(p) ((p) + 'A') 130 131 enum transcoder { 132 TRANSCODER_A = 0, 133 TRANSCODER_B, 134 TRANSCODER_C, 135 TRANSCODER_EDP, 136 TRANSCODER_DSI_A, 137 TRANSCODER_DSI_C, 138 I915_MAX_TRANSCODERS 139 }; 140 141 static inline const char *transcoder_name(enum transcoder transcoder) 142 { 143 switch (transcoder) { 144 case TRANSCODER_A: 145 return "A"; 146 case TRANSCODER_B: 147 return "B"; 148 case TRANSCODER_C: 149 return "C"; 150 case TRANSCODER_EDP: 151 return "EDP"; 152 case TRANSCODER_DSI_A: 153 return "DSI A"; 154 case TRANSCODER_DSI_C: 155 return "DSI C"; 156 default: 157 return "<invalid>"; 158 } 159 } 160 161 static inline bool transcoder_is_dsi(enum transcoder transcoder) 162 { 163 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C; 164 } 165 166 /* 167 * I915_MAX_PLANES in the enum below is the maximum (across all platforms) 168 * number of planes per CRTC. Not all platforms really have this many planes, 169 * which means some arrays of size I915_MAX_PLANES may have unused entries 170 * between the topmost sprite plane and the cursor plane. 171 */ 172 enum plane { 173 PLANE_A = 0, 174 PLANE_B, 175 PLANE_C, 176 PLANE_CURSOR, 177 I915_MAX_PLANES, 178 }; 179 #define plane_name(p) ((p) + 'A') 180 181 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A') 182 183 enum port { 184 PORT_A = 0, 185 PORT_B, 186 PORT_C, 187 PORT_D, 188 PORT_E, 189 I915_MAX_PORTS 190 }; 191 #define port_name(p) ((p) + 'A') 192 193 #define I915_NUM_PHYS_VLV 2 194 195 enum dpio_channel { 196 DPIO_CH0, 197 DPIO_CH1 198 }; 199 200 enum dpio_phy { 201 DPIO_PHY0, 202 DPIO_PHY1 203 }; 204 205 enum intel_display_power_domain { 206 POWER_DOMAIN_PIPE_A, 207 POWER_DOMAIN_PIPE_B, 208 POWER_DOMAIN_PIPE_C, 209 POWER_DOMAIN_PIPE_A_PANEL_FITTER, 210 POWER_DOMAIN_PIPE_B_PANEL_FITTER, 211 POWER_DOMAIN_PIPE_C_PANEL_FITTER, 212 POWER_DOMAIN_TRANSCODER_A, 213 POWER_DOMAIN_TRANSCODER_B, 214 POWER_DOMAIN_TRANSCODER_C, 215 POWER_DOMAIN_TRANSCODER_EDP, 216 POWER_DOMAIN_TRANSCODER_DSI_A, 217 POWER_DOMAIN_TRANSCODER_DSI_C, 218 POWER_DOMAIN_PORT_DDI_A_LANES, 219 POWER_DOMAIN_PORT_DDI_B_LANES, 220 POWER_DOMAIN_PORT_DDI_C_LANES, 221 POWER_DOMAIN_PORT_DDI_D_LANES, 222 POWER_DOMAIN_PORT_DDI_E_LANES, 223 POWER_DOMAIN_PORT_DSI, 224 POWER_DOMAIN_PORT_CRT, 225 POWER_DOMAIN_PORT_OTHER, 226 POWER_DOMAIN_VGA, 227 POWER_DOMAIN_AUDIO, 228 POWER_DOMAIN_PLLS, 229 POWER_DOMAIN_AUX_A, 230 POWER_DOMAIN_AUX_B, 231 POWER_DOMAIN_AUX_C, 232 POWER_DOMAIN_AUX_D, 233 POWER_DOMAIN_GMBUS, 234 POWER_DOMAIN_MODESET, 235 POWER_DOMAIN_INIT, 236 237 POWER_DOMAIN_NUM, 238 }; 239 240 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A) 241 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \ 242 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER) 243 #define POWER_DOMAIN_TRANSCODER(tran) \ 244 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \ 245 (tran) + POWER_DOMAIN_TRANSCODER_A) 246 247 enum hpd_pin { 248 HPD_NONE = 0, 249 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 250 HPD_CRT, 251 HPD_SDVO_B, 252 HPD_SDVO_C, 253 HPD_PORT_A, 254 HPD_PORT_B, 255 HPD_PORT_C, 256 HPD_PORT_D, 257 HPD_PORT_E, 258 HPD_NUM_PINS 259 }; 260 261 #define for_each_hpd_pin(__pin) \ 262 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 263 264 struct i915_hotplug { 265 struct work_struct hotplug_work; 266 267 struct { 268 unsigned long last_jiffies; 269 int count; 270 enum { 271 HPD_ENABLED = 0, 272 HPD_DISABLED = 1, 273 HPD_MARK_DISABLED = 2 274 } state; 275 } stats[HPD_NUM_PINS]; 276 u32 event_bits; 277 struct delayed_work reenable_work; 278 279 struct intel_digital_port *irq_port[I915_MAX_PORTS]; 280 u32 long_port_mask; 281 u32 short_port_mask; 282 struct work_struct dig_port_work; 283 284 /* 285 * if we get a HPD irq from DP and a HPD irq from non-DP 286 * the non-DP HPD could block the workqueue on a mode config 287 * mutex getting, that userspace may have taken. However 288 * userspace is waiting on the DP workqueue to run which is 289 * blocked behind the non-DP one. 290 */ 291 struct workqueue_struct *dp_wq; 292 }; 293 294 #define I915_GEM_GPU_DOMAINS \ 295 (I915_GEM_DOMAIN_RENDER | \ 296 I915_GEM_DOMAIN_SAMPLER | \ 297 I915_GEM_DOMAIN_COMMAND | \ 298 I915_GEM_DOMAIN_INSTRUCTION | \ 299 I915_GEM_DOMAIN_VERTEX) 300 301 #define for_each_pipe(__dev_priv, __p) \ 302 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) 303 #define for_each_pipe_masked(__dev_priv, __p, __mask) \ 304 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \ 305 for_each_if ((__mask) & (1 << (__p))) 306 #define for_each_plane(__dev_priv, __pipe, __p) \ 307 for ((__p) = 0; \ 308 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \ 309 (__p)++) 310 #define for_each_sprite(__dev_priv, __p, __s) \ 311 for ((__s) = 0; \ 312 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \ 313 (__s)++) 314 315 #define for_each_port_masked(__port, __ports_mask) \ 316 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \ 317 for_each_if ((__ports_mask) & (1 << (__port))) 318 319 #define for_each_crtc(dev, crtc) \ 320 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) 321 322 #define for_each_intel_plane(dev, intel_plane) \ 323 list_for_each_entry(intel_plane, \ 324 &dev->mode_config.plane_list, \ 325 base.head) 326 327 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \ 328 list_for_each_entry(intel_plane, \ 329 &(dev)->mode_config.plane_list, \ 330 base.head) \ 331 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe) 332 333 #define for_each_intel_crtc(dev, intel_crtc) \ 334 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) 335 336 #define for_each_intel_encoder(dev, intel_encoder) \ 337 list_for_each_entry(intel_encoder, \ 338 &(dev)->mode_config.encoder_list, \ 339 base.head) 340 341 #define for_each_intel_connector(dev, intel_connector) \ 342 list_for_each_entry(intel_connector, \ 343 &dev->mode_config.connector_list, \ 344 base.head) 345 346 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \ 347 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \ 348 for_each_if ((intel_encoder)->base.crtc == (__crtc)) 349 350 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \ 351 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \ 352 for_each_if ((intel_connector)->base.encoder == (__encoder)) 353 354 #define for_each_power_domain(domain, mask) \ 355 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \ 356 for_each_if ((1 << (domain)) & (mask)) 357 358 struct drm_i915_private; 359 struct i915_mm_struct; 360 struct i915_mmu_object; 361 362 struct drm_i915_file_private { 363 struct drm_i915_private *dev_priv; 364 struct drm_file *file; 365 366 struct { 367 spinlock_t lock; 368 struct list_head request_list; 369 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 370 * chosen to prevent the CPU getting more than a frame ahead of the GPU 371 * (when using lax throttling for the frontbuffer). We also use it to 372 * offer free GPU waitboosts for severely congested workloads. 373 */ 374 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 375 } mm; 376 struct idr context_idr; 377 378 struct intel_rps_client { 379 struct list_head link; 380 unsigned boosts; 381 } rps; 382 383 unsigned int bsd_ring; 384 }; 385 386 /* Used by dp and fdi links */ 387 struct intel_link_m_n { 388 uint32_t tu; 389 uint32_t gmch_m; 390 uint32_t gmch_n; 391 uint32_t link_m; 392 uint32_t link_n; 393 }; 394 395 void intel_link_compute_m_n(int bpp, int nlanes, 396 int pixel_clock, int link_clock, 397 struct intel_link_m_n *m_n); 398 399 /* Interface history: 400 * 401 * 1.1: Original. 402 * 1.2: Add Power Management 403 * 1.3: Add vblank support 404 * 1.4: Fix cmdbuffer path, add heap destroy 405 * 1.5: Add vblank pipe configuration 406 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 407 * - Support vertical blank on secondary display pipe 408 */ 409 #define DRIVER_MAJOR 1 410 #define DRIVER_MINOR 6 411 #define DRIVER_PATCHLEVEL 0 412 413 #define WATCH_LISTS 0 414 415 struct opregion_header; 416 struct opregion_acpi; 417 struct opregion_swsci; 418 struct opregion_asle; 419 420 struct intel_opregion { 421 struct opregion_header *header; 422 struct opregion_acpi *acpi; 423 struct opregion_swsci *swsci; 424 u32 swsci_gbda_sub_functions; 425 u32 swsci_sbcb_sub_functions; 426 struct opregion_asle *asle; 427 void *rvda; 428 const void *vbt; 429 u32 vbt_size; 430 u32 *lid_state; 431 struct work_struct asle_work; 432 }; 433 #define OPREGION_SIZE (8*1024) 434 435 struct intel_overlay; 436 struct intel_overlay_error_state; 437 438 #define I915_FENCE_REG_NONE -1 439 #define I915_MAX_NUM_FENCES 32 440 /* 32 fences + sign bit for FENCE_REG_NONE */ 441 #define I915_MAX_NUM_FENCE_BITS 6 442 443 struct drm_i915_fence_reg { 444 struct list_head lru_list; 445 struct drm_i915_gem_object *obj; 446 int pin_count; 447 }; 448 449 struct sdvo_device_mapping { 450 u8 initialized; 451 u8 dvo_port; 452 u8 slave_addr; 453 u8 dvo_wiring; 454 u8 i2c_pin; 455 u8 ddc_pin; 456 }; 457 458 struct intel_display_error_state; 459 460 struct drm_i915_error_state { 461 struct kref ref; 462 struct timeval time; 463 464 char error_msg[128]; 465 int iommu; 466 u32 reset_count; 467 u32 suspend_count; 468 469 /* Generic register state */ 470 u32 eir; 471 u32 pgtbl_er; 472 u32 ier; 473 u32 gtier[4]; 474 u32 ccid; 475 u32 derrmr; 476 u32 forcewake; 477 u32 error; /* gen6+ */ 478 u32 err_int; /* gen7 */ 479 u32 fault_data0; /* gen8, gen9 */ 480 u32 fault_data1; /* gen8, gen9 */ 481 u32 done_reg; 482 u32 gac_eco; 483 u32 gam_ecochk; 484 u32 gab_ctl; 485 u32 gfx_mode; 486 u32 extra_instdone[I915_NUM_INSTDONE_REG]; 487 u64 fence[I915_MAX_NUM_FENCES]; 488 struct intel_overlay_error_state *overlay; 489 struct intel_display_error_state *display; 490 struct drm_i915_error_object *semaphore_obj; 491 492 struct drm_i915_error_ring { 493 bool valid; 494 /* Software tracked state */ 495 bool waiting; 496 int hangcheck_score; 497 enum intel_ring_hangcheck_action hangcheck_action; 498 int num_requests; 499 500 /* our own tracking of ring head and tail */ 501 u32 cpu_ring_head; 502 u32 cpu_ring_tail; 503 504 u32 last_seqno; 505 u32 semaphore_seqno[I915_NUM_ENGINES - 1]; 506 507 /* Register state */ 508 u32 start; 509 u32 tail; 510 u32 head; 511 u32 ctl; 512 u32 hws; 513 u32 ipeir; 514 u32 ipehr; 515 u32 instdone; 516 u32 bbstate; 517 u32 instpm; 518 u32 instps; 519 u32 seqno; 520 u64 bbaddr; 521 u64 acthd; 522 u32 fault_reg; 523 u64 faddr; 524 u32 rc_psmi; /* sleep state */ 525 u32 semaphore_mboxes[I915_NUM_ENGINES - 1]; 526 527 struct drm_i915_error_object { 528 int page_count; 529 u64 gtt_offset; 530 u32 *pages[0]; 531 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page; 532 533 struct drm_i915_error_object *wa_ctx; 534 535 struct drm_i915_error_request { 536 long jiffies; 537 u32 seqno; 538 u32 tail; 539 } *requests; 540 541 struct { 542 u32 gfx_mode; 543 union { 544 u64 pdp[4]; 545 u32 pp_dir_base; 546 }; 547 } vm_info; 548 549 pid_t pid; 550 char comm[TASK_COMM_LEN]; 551 } ring[I915_NUM_ENGINES]; 552 553 struct drm_i915_error_buffer { 554 u32 size; 555 u32 name; 556 u32 rseqno[I915_NUM_ENGINES], wseqno; 557 u64 gtt_offset; 558 u32 read_domains; 559 u32 write_domain; 560 s32 fence_reg:I915_MAX_NUM_FENCE_BITS; 561 s32 pinned:2; 562 u32 tiling:2; 563 u32 dirty:1; 564 u32 purgeable:1; 565 u32 userptr:1; 566 s32 ring:4; 567 u32 cache_level:3; 568 } **active_bo, **pinned_bo; 569 570 u32 *active_bo_count, *pinned_bo_count; 571 u32 vm_count; 572 }; 573 574 struct intel_connector; 575 struct intel_encoder; 576 struct intel_crtc_state; 577 struct intel_initial_plane_config; 578 struct intel_crtc; 579 struct intel_limit; 580 struct dpll; 581 582 struct drm_i915_display_funcs { 583 int (*get_display_clock_speed)(struct drm_device *dev); 584 int (*get_fifo_size)(struct drm_device *dev, int plane); 585 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 586 int (*compute_intermediate_wm)(struct drm_device *dev, 587 struct intel_crtc *intel_crtc, 588 struct intel_crtc_state *newstate); 589 void (*initial_watermarks)(struct intel_crtc_state *cstate); 590 void (*optimize_watermarks)(struct intel_crtc_state *cstate); 591 void (*update_wm)(struct drm_crtc *crtc); 592 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 593 void (*modeset_commit_cdclk)(struct drm_atomic_state *state); 594 /* Returns the active state of the crtc, and if the crtc is active, 595 * fills out the pipe-config with the hw state. */ 596 bool (*get_pipe_config)(struct intel_crtc *, 597 struct intel_crtc_state *); 598 void (*get_initial_plane_config)(struct intel_crtc *, 599 struct intel_initial_plane_config *); 600 int (*crtc_compute_clock)(struct intel_crtc *crtc, 601 struct intel_crtc_state *crtc_state); 602 void (*crtc_enable)(struct drm_crtc *crtc); 603 void (*crtc_disable)(struct drm_crtc *crtc); 604 void (*audio_codec_enable)(struct drm_connector *connector, 605 struct intel_encoder *encoder, 606 const struct drm_display_mode *adjusted_mode); 607 void (*audio_codec_disable)(struct intel_encoder *encoder); 608 void (*fdi_link_train)(struct drm_crtc *crtc); 609 void (*init_clock_gating)(struct drm_device *dev); 610 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc, 611 struct drm_framebuffer *fb, 612 struct drm_i915_gem_object *obj, 613 struct drm_i915_gem_request *req, 614 uint32_t flags); 615 void (*hpd_irq_setup)(struct drm_device *dev); 616 /* clock updates for mode set */ 617 /* cursor updates */ 618 /* render clock increase/decrease */ 619 /* display clock increase/decrease */ 620 /* pll clock increase/decrease */ 621 622 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); 623 void (*load_luts)(struct drm_crtc_state *crtc_state); 624 }; 625 626 enum forcewake_domain_id { 627 FW_DOMAIN_ID_RENDER = 0, 628 FW_DOMAIN_ID_BLITTER, 629 FW_DOMAIN_ID_MEDIA, 630 631 FW_DOMAIN_ID_COUNT 632 }; 633 634 enum forcewake_domains { 635 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER), 636 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER), 637 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA), 638 FORCEWAKE_ALL = (FORCEWAKE_RENDER | 639 FORCEWAKE_BLITTER | 640 FORCEWAKE_MEDIA) 641 }; 642 643 #define FW_REG_READ (1) 644 #define FW_REG_WRITE (2) 645 646 enum forcewake_domains 647 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv, 648 i915_reg_t reg, unsigned int op); 649 650 struct intel_uncore_funcs { 651 void (*force_wake_get)(struct drm_i915_private *dev_priv, 652 enum forcewake_domains domains); 653 void (*force_wake_put)(struct drm_i915_private *dev_priv, 654 enum forcewake_domains domains); 655 656 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 657 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 658 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 659 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 660 661 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r, 662 uint8_t val, bool trace); 663 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r, 664 uint16_t val, bool trace); 665 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r, 666 uint32_t val, bool trace); 667 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r, 668 uint64_t val, bool trace); 669 }; 670 671 struct intel_uncore { 672 spinlock_t lock; /** lock is also taken in irq contexts. */ 673 674 struct intel_uncore_funcs funcs; 675 676 unsigned fifo_count; 677 enum forcewake_domains fw_domains; 678 679 struct intel_uncore_forcewake_domain { 680 struct drm_i915_private *i915; 681 enum forcewake_domain_id id; 682 enum forcewake_domains mask; 683 unsigned wake_count; 684 struct hrtimer timer; 685 i915_reg_t reg_set; 686 u32 val_set; 687 u32 val_clear; 688 i915_reg_t reg_ack; 689 i915_reg_t reg_post; 690 u32 val_reset; 691 } fw_domain[FW_DOMAIN_ID_COUNT]; 692 693 int unclaimed_mmio_check; 694 }; 695 696 /* Iterate over initialised fw domains */ 697 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \ 698 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \ 699 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \ 700 (domain__)++) \ 701 for_each_if ((mask__) & (domain__)->mask) 702 703 #define for_each_fw_domain(domain__, dev_priv__) \ 704 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__) 705 706 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 707 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 708 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 709 710 struct intel_csr { 711 struct work_struct work; 712 const char *fw_path; 713 uint32_t *dmc_payload; 714 uint32_t dmc_fw_size; 715 uint32_t version; 716 uint32_t mmio_count; 717 i915_reg_t mmioaddr[8]; 718 uint32_t mmiodata[8]; 719 uint32_t dc_state; 720 uint32_t allowed_dc_mask; 721 }; 722 723 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \ 724 func(is_mobile) sep \ 725 func(is_i85x) sep \ 726 func(is_i915g) sep \ 727 func(is_i945gm) sep \ 728 func(is_g33) sep \ 729 func(need_gfx_hws) sep \ 730 func(is_g4x) sep \ 731 func(is_pineview) sep \ 732 func(is_broadwater) sep \ 733 func(is_crestline) sep \ 734 func(is_ivybridge) sep \ 735 func(is_valleyview) sep \ 736 func(is_cherryview) sep \ 737 func(is_haswell) sep \ 738 func(is_skylake) sep \ 739 func(is_broxton) sep \ 740 func(is_kabylake) sep \ 741 func(is_preliminary) sep \ 742 func(has_fbc) sep \ 743 func(has_pipe_cxsr) sep \ 744 func(has_hotplug) sep \ 745 func(cursor_needs_physical) sep \ 746 func(has_overlay) sep \ 747 func(overlay_needs_physical) sep \ 748 func(supports_tv) sep \ 749 func(has_llc) sep \ 750 func(has_snoop) sep \ 751 func(has_ddi) sep \ 752 func(has_fpga_dbg) 753 754 #define DEFINE_FLAG(name) u8 name:1 755 #define SEP_SEMICOLON ; 756 757 struct intel_device_info { 758 u32 display_mmio_offset; 759 u16 device_id; 760 u8 num_pipes:3; 761 u8 num_sprites[I915_MAX_PIPES]; 762 u8 gen; 763 u8 ring_mask; /* Rings supported by the HW */ 764 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON); 765 /* Register offsets for the various display pipes and transcoders */ 766 int pipe_offsets[I915_MAX_TRANSCODERS]; 767 int trans_offsets[I915_MAX_TRANSCODERS]; 768 int palette_offsets[I915_MAX_PIPES]; 769 int cursor_offsets[I915_MAX_PIPES]; 770 771 /* Slice/subslice/EU info */ 772 u8 slice_total; 773 u8 subslice_total; 774 u8 subslice_per_slice; 775 u8 eu_total; 776 u8 eu_per_subslice; 777 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */ 778 u8 subslice_7eu[3]; 779 u8 has_slice_pg:1; 780 u8 has_subslice_pg:1; 781 u8 has_eu_pg:1; 782 783 struct color_luts { 784 u16 degamma_lut_size; 785 u16 gamma_lut_size; 786 } color; 787 }; 788 789 #undef DEFINE_FLAG 790 #undef SEP_SEMICOLON 791 792 enum i915_cache_level { 793 I915_CACHE_NONE = 0, 794 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 795 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 796 caches, eg sampler/render caches, and the 797 large Last-Level-Cache. LLC is coherent with 798 the CPU, but L3 is only visible to the GPU. */ 799 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 800 }; 801 802 struct i915_ctx_hang_stats { 803 /* This context had batch pending when hang was declared */ 804 unsigned batch_pending; 805 806 /* This context had batch active when hang was declared */ 807 unsigned batch_active; 808 809 /* Time when this context was last blamed for a GPU reset */ 810 unsigned long guilty_ts; 811 812 /* If the contexts causes a second GPU hang within this time, 813 * it is permanently banned from submitting any more work. 814 */ 815 unsigned long ban_period_seconds; 816 817 /* This context is banned to submit more work */ 818 bool banned; 819 }; 820 821 /* This must match up with the value previously used for execbuf2.rsvd1. */ 822 #define DEFAULT_CONTEXT_HANDLE 0 823 824 #define CONTEXT_NO_ZEROMAP (1<<0) 825 /** 826 * struct intel_context - as the name implies, represents a context. 827 * @ref: reference count. 828 * @user_handle: userspace tracking identity for this context. 829 * @remap_slice: l3 row remapping information. 830 * @flags: context specific flags: 831 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0. 832 * @file_priv: filp associated with this context (NULL for global default 833 * context). 834 * @hang_stats: information about the role of this context in possible GPU 835 * hangs. 836 * @ppgtt: virtual memory space used by this context. 837 * @legacy_hw_ctx: render context backing object and whether it is correctly 838 * initialized (legacy ring submission mechanism only). 839 * @link: link in the global list of contexts. 840 * 841 * Contexts are memory images used by the hardware to store copies of their 842 * internal state. 843 */ 844 struct intel_context { 845 struct kref ref; 846 int user_handle; 847 uint8_t remap_slice; 848 struct drm_i915_private *i915; 849 int flags; 850 struct drm_i915_file_private *file_priv; 851 struct i915_ctx_hang_stats hang_stats; 852 struct i915_hw_ppgtt *ppgtt; 853 854 /* Legacy ring buffer submission */ 855 struct { 856 struct drm_i915_gem_object *rcs_state; 857 bool initialized; 858 } legacy_hw_ctx; 859 860 /* Execlists */ 861 struct { 862 struct drm_i915_gem_object *state; 863 struct intel_ringbuffer *ringbuf; 864 int pin_count; 865 struct i915_vma *lrc_vma; 866 u64 lrc_desc; 867 uint32_t *lrc_reg_state; 868 } engine[I915_NUM_ENGINES]; 869 870 struct list_head link; 871 }; 872 873 enum fb_op_origin { 874 ORIGIN_GTT, 875 ORIGIN_CPU, 876 ORIGIN_CS, 877 ORIGIN_FLIP, 878 ORIGIN_DIRTYFB, 879 }; 880 881 struct intel_fbc { 882 /* This is always the inner lock when overlapping with struct_mutex and 883 * it's the outer lock when overlapping with stolen_lock. */ 884 struct mutex lock; 885 unsigned threshold; 886 unsigned int possible_framebuffer_bits; 887 unsigned int busy_bits; 888 unsigned int visible_pipes_mask; 889 struct intel_crtc *crtc; 890 891 struct drm_mm_node compressed_fb; 892 struct drm_mm_node *compressed_llb; 893 894 bool false_color; 895 896 bool enabled; 897 bool active; 898 899 struct intel_fbc_state_cache { 900 struct { 901 unsigned int mode_flags; 902 uint32_t hsw_bdw_pixel_rate; 903 } crtc; 904 905 struct { 906 unsigned int rotation; 907 int src_w; 908 int src_h; 909 bool visible; 910 } plane; 911 912 struct { 913 u64 ilk_ggtt_offset; 914 uint32_t pixel_format; 915 unsigned int stride; 916 int fence_reg; 917 unsigned int tiling_mode; 918 } fb; 919 } state_cache; 920 921 struct intel_fbc_reg_params { 922 struct { 923 enum pipe pipe; 924 enum plane plane; 925 unsigned int fence_y_offset; 926 } crtc; 927 928 struct { 929 u64 ggtt_offset; 930 uint32_t pixel_format; 931 unsigned int stride; 932 int fence_reg; 933 } fb; 934 935 int cfb_size; 936 } params; 937 938 struct intel_fbc_work { 939 bool scheduled; 940 u32 scheduled_vblank; 941 struct work_struct work; 942 } work; 943 944 const char *no_fbc_reason; 945 }; 946 947 /** 948 * HIGH_RR is the highest eDP panel refresh rate read from EDID 949 * LOW_RR is the lowest eDP panel refresh rate found from EDID 950 * parsing for same resolution. 951 */ 952 enum drrs_refresh_rate_type { 953 DRRS_HIGH_RR, 954 DRRS_LOW_RR, 955 DRRS_MAX_RR, /* RR count */ 956 }; 957 958 enum drrs_support_type { 959 DRRS_NOT_SUPPORTED = 0, 960 STATIC_DRRS_SUPPORT = 1, 961 SEAMLESS_DRRS_SUPPORT = 2 962 }; 963 964 struct intel_dp; 965 struct i915_drrs { 966 struct mutex mutex; 967 struct delayed_work work; 968 struct intel_dp *dp; 969 unsigned busy_frontbuffer_bits; 970 enum drrs_refresh_rate_type refresh_rate_type; 971 enum drrs_support_type type; 972 }; 973 974 struct i915_psr { 975 struct mutex lock; 976 bool sink_support; 977 bool source_ok; 978 struct intel_dp *enabled; 979 bool active; 980 struct delayed_work work; 981 unsigned busy_frontbuffer_bits; 982 bool psr2_support; 983 bool aux_frame_sync; 984 bool link_standby; 985 }; 986 987 enum intel_pch { 988 PCH_NONE = 0, /* No PCH present */ 989 PCH_IBX, /* Ibexpeak PCH */ 990 PCH_CPT, /* Cougarpoint PCH */ 991 PCH_LPT, /* Lynxpoint PCH */ 992 PCH_SPT, /* Sunrisepoint PCH */ 993 PCH_KBP, /* Kabypoint PCH */ 994 PCH_NOP, 995 }; 996 997 enum intel_sbi_destination { 998 SBI_ICLK, 999 SBI_MPHY, 1000 }; 1001 1002 #define QUIRK_PIPEA_FORCE (1<<0) 1003 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 1004 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 1005 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 1006 #define QUIRK_PIPEB_FORCE (1<<4) 1007 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 1008 1009 struct intel_fbdev; 1010 struct intel_fbc_work; 1011 1012 struct intel_gmbus { 1013 struct i2c_adapter adapter; 1014 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 1015 u32 force_bit; 1016 u32 reg0; 1017 i915_reg_t gpio_reg; 1018 struct i2c_algo_bit_data bit_algo; 1019 struct drm_i915_private *dev_priv; 1020 }; 1021 1022 struct i915_suspend_saved_registers { 1023 u32 saveDSPARB; 1024 u32 saveLVDS; 1025 u32 savePP_ON_DELAYS; 1026 u32 savePP_OFF_DELAYS; 1027 u32 savePP_ON; 1028 u32 savePP_OFF; 1029 u32 savePP_CONTROL; 1030 u32 savePP_DIVISOR; 1031 u32 saveFBC_CONTROL; 1032 u32 saveCACHE_MODE_0; 1033 u32 saveMI_ARB_STATE; 1034 u32 saveSWF0[16]; 1035 u32 saveSWF1[16]; 1036 u32 saveSWF3[3]; 1037 uint64_t saveFENCE[I915_MAX_NUM_FENCES]; 1038 u32 savePCH_PORT_HOTPLUG; 1039 u16 saveGCDGMBUS; 1040 }; 1041 1042 struct vlv_s0ix_state { 1043 /* GAM */ 1044 u32 wr_watermark; 1045 u32 gfx_prio_ctrl; 1046 u32 arb_mode; 1047 u32 gfx_pend_tlb0; 1048 u32 gfx_pend_tlb1; 1049 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 1050 u32 media_max_req_count; 1051 u32 gfx_max_req_count; 1052 u32 render_hwsp; 1053 u32 ecochk; 1054 u32 bsd_hwsp; 1055 u32 blt_hwsp; 1056 u32 tlb_rd_addr; 1057 1058 /* MBC */ 1059 u32 g3dctl; 1060 u32 gsckgctl; 1061 u32 mbctl; 1062 1063 /* GCP */ 1064 u32 ucgctl1; 1065 u32 ucgctl3; 1066 u32 rcgctl1; 1067 u32 rcgctl2; 1068 u32 rstctl; 1069 u32 misccpctl; 1070 1071 /* GPM */ 1072 u32 gfxpause; 1073 u32 rpdeuhwtc; 1074 u32 rpdeuc; 1075 u32 ecobus; 1076 u32 pwrdwnupctl; 1077 u32 rp_down_timeout; 1078 u32 rp_deucsw; 1079 u32 rcubmabdtmr; 1080 u32 rcedata; 1081 u32 spare2gh; 1082 1083 /* Display 1 CZ domain */ 1084 u32 gt_imr; 1085 u32 gt_ier; 1086 u32 pm_imr; 1087 u32 pm_ier; 1088 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 1089 1090 /* GT SA CZ domain */ 1091 u32 tilectl; 1092 u32 gt_fifoctl; 1093 u32 gtlc_wake_ctrl; 1094 u32 gtlc_survive; 1095 u32 pmwgicz; 1096 1097 /* Display 2 CZ domain */ 1098 u32 gu_ctl0; 1099 u32 gu_ctl1; 1100 u32 pcbr; 1101 u32 clock_gate_dis2; 1102 }; 1103 1104 struct intel_rps_ei { 1105 u32 cz_clock; 1106 u32 render_c0; 1107 u32 media_c0; 1108 }; 1109 1110 struct intel_gen6_power_mgmt { 1111 /* 1112 * work, interrupts_enabled and pm_iir are protected by 1113 * dev_priv->irq_lock 1114 */ 1115 struct work_struct work; 1116 bool interrupts_enabled; 1117 u32 pm_iir; 1118 1119 /* Frequencies are stored in potentially platform dependent multiples. 1120 * In other words, *_freq needs to be multiplied by X to be interesting. 1121 * Soft limits are those which are used for the dynamic reclocking done 1122 * by the driver (raise frequencies under heavy loads, and lower for 1123 * lighter loads). Hard limits are those imposed by the hardware. 1124 * 1125 * A distinction is made for overclocking, which is never enabled by 1126 * default, and is considered to be above the hard limit if it's 1127 * possible at all. 1128 */ 1129 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 1130 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 1131 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 1132 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 1133 u8 min_freq; /* AKA RPn. Minimum frequency */ 1134 u8 idle_freq; /* Frequency to request when we are idle */ 1135 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 1136 u8 rp1_freq; /* "less than" RP0 power/freqency */ 1137 u8 rp0_freq; /* Non-overclocked max frequency. */ 1138 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 1139 1140 u8 up_threshold; /* Current %busy required to uplock */ 1141 u8 down_threshold; /* Current %busy required to downclock */ 1142 1143 int last_adj; 1144 enum { LOW_POWER, BETWEEN, HIGH_POWER } power; 1145 1146 spinlock_t client_lock; 1147 struct list_head clients; 1148 bool client_boost; 1149 1150 bool enabled; 1151 struct delayed_work delayed_resume_work; 1152 unsigned boosts; 1153 1154 struct intel_rps_client semaphores, mmioflips; 1155 1156 /* manual wa residency calculations */ 1157 struct intel_rps_ei up_ei, down_ei; 1158 1159 /* 1160 * Protects RPS/RC6 register access and PCU communication. 1161 * Must be taken after struct_mutex if nested. Note that 1162 * this lock may be held for long periods of time when 1163 * talking to hw - so only take it when talking to hw! 1164 */ 1165 struct mutex hw_lock; 1166 }; 1167 1168 /* defined intel_pm.c */ 1169 extern spinlock_t mchdev_lock; 1170 1171 struct intel_ilk_power_mgmt { 1172 u8 cur_delay; 1173 u8 min_delay; 1174 u8 max_delay; 1175 u8 fmax; 1176 u8 fstart; 1177 1178 u64 last_count1; 1179 unsigned long last_time1; 1180 unsigned long chipset_power; 1181 u64 last_count2; 1182 u64 last_time2; 1183 unsigned long gfx_power; 1184 u8 corr; 1185 1186 int c_m; 1187 int r_t; 1188 }; 1189 1190 struct drm_i915_private; 1191 struct i915_power_well; 1192 1193 struct i915_power_well_ops { 1194 /* 1195 * Synchronize the well's hw state to match the current sw state, for 1196 * example enable/disable it based on the current refcount. Called 1197 * during driver init and resume time, possibly after first calling 1198 * the enable/disable handlers. 1199 */ 1200 void (*sync_hw)(struct drm_i915_private *dev_priv, 1201 struct i915_power_well *power_well); 1202 /* 1203 * Enable the well and resources that depend on it (for example 1204 * interrupts located on the well). Called after the 0->1 refcount 1205 * transition. 1206 */ 1207 void (*enable)(struct drm_i915_private *dev_priv, 1208 struct i915_power_well *power_well); 1209 /* 1210 * Disable the well and resources that depend on it. Called after 1211 * the 1->0 refcount transition. 1212 */ 1213 void (*disable)(struct drm_i915_private *dev_priv, 1214 struct i915_power_well *power_well); 1215 /* Returns the hw enabled state. */ 1216 bool (*is_enabled)(struct drm_i915_private *dev_priv, 1217 struct i915_power_well *power_well); 1218 }; 1219 1220 /* Power well structure for haswell */ 1221 struct i915_power_well { 1222 const char *name; 1223 bool always_on; 1224 /* power well enable/disable usage count */ 1225 int count; 1226 /* cached hw enabled state */ 1227 bool hw_enabled; 1228 unsigned long domains; 1229 unsigned long data; 1230 const struct i915_power_well_ops *ops; 1231 }; 1232 1233 struct i915_power_domains { 1234 /* 1235 * Power wells needed for initialization at driver init and suspend 1236 * time are on. They are kept on until after the first modeset. 1237 */ 1238 bool init_power_on; 1239 bool initializing; 1240 int power_well_count; 1241 1242 struct mutex lock; 1243 int domain_use_count[POWER_DOMAIN_NUM]; 1244 struct i915_power_well *power_wells; 1245 }; 1246 1247 #define MAX_L3_SLICES 2 1248 struct intel_l3_parity { 1249 u32 *remap_info[MAX_L3_SLICES]; 1250 struct work_struct error_work; 1251 int which_slice; 1252 }; 1253 1254 struct i915_gem_mm { 1255 /** Memory allocator for GTT stolen memory */ 1256 struct drm_mm stolen; 1257 /** Protects the usage of the GTT stolen memory allocator. This is 1258 * always the inner lock when overlapping with struct_mutex. */ 1259 struct mutex stolen_lock; 1260 1261 /** List of all objects in gtt_space. Used to restore gtt 1262 * mappings on resume */ 1263 struct list_head bound_list; 1264 /** 1265 * List of objects which are not bound to the GTT (thus 1266 * are idle and not used by the GPU) but still have 1267 * (presumably uncached) pages still attached. 1268 */ 1269 struct list_head unbound_list; 1270 1271 /** Usable portion of the GTT for GEM */ 1272 unsigned long stolen_base; /* limited to low memory (32-bit) */ 1273 1274 /** PPGTT used for aliasing the PPGTT with the GTT */ 1275 struct i915_hw_ppgtt *aliasing_ppgtt; 1276 1277 struct notifier_block oom_notifier; 1278 struct notifier_block vmap_notifier; 1279 struct shrinker shrinker; 1280 bool shrinker_no_lock_stealing; 1281 1282 /** LRU list of objects with fence regs on them. */ 1283 struct list_head fence_list; 1284 1285 /** 1286 * We leave the user IRQ off as much as possible, 1287 * but this means that requests will finish and never 1288 * be retired once the system goes idle. Set a timer to 1289 * fire periodically while the ring is running. When it 1290 * fires, go retire requests. 1291 */ 1292 struct delayed_work retire_work; 1293 1294 /** 1295 * When we detect an idle GPU, we want to turn on 1296 * powersaving features. So once we see that there 1297 * are no more requests outstanding and no more 1298 * arrive within a small period of time, we fire 1299 * off the idle_work. 1300 */ 1301 struct delayed_work idle_work; 1302 1303 /** 1304 * Are we in a non-interruptible section of code like 1305 * modesetting? 1306 */ 1307 bool interruptible; 1308 1309 /** 1310 * Is the GPU currently considered idle, or busy executing userspace 1311 * requests? Whilst idle, we attempt to power down the hardware and 1312 * display clocks. In order to reduce the effect on performance, there 1313 * is a slight delay before we do so. 1314 */ 1315 bool busy; 1316 1317 /* the indicator for dispatch video commands on two BSD rings */ 1318 unsigned int bsd_ring_dispatch_index; 1319 1320 /** Bit 6 swizzling required for X tiling */ 1321 uint32_t bit_6_swizzle_x; 1322 /** Bit 6 swizzling required for Y tiling */ 1323 uint32_t bit_6_swizzle_y; 1324 1325 /* accounting, useful for userland debugging */ 1326 spinlock_t object_stat_lock; 1327 size_t object_memory; 1328 u32 object_count; 1329 }; 1330 1331 struct drm_i915_error_state_buf { 1332 struct drm_i915_private *i915; 1333 unsigned bytes; 1334 unsigned size; 1335 int err; 1336 u8 *buf; 1337 loff_t start; 1338 loff_t pos; 1339 }; 1340 1341 struct i915_error_state_file_priv { 1342 struct drm_device *dev; 1343 struct drm_i915_error_state *error; 1344 }; 1345 1346 struct i915_gpu_error { 1347 /* For hangcheck timer */ 1348 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */ 1349 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD) 1350 /* Hang gpu twice in this window and your context gets banned */ 1351 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000) 1352 1353 struct workqueue_struct *hangcheck_wq; 1354 struct delayed_work hangcheck_work; 1355 1356 /* For reset and error_state handling. */ 1357 spinlock_t lock; 1358 /* Protected by the above dev->gpu_error.lock. */ 1359 struct drm_i915_error_state *first_error; 1360 1361 unsigned long missed_irq_rings; 1362 1363 /** 1364 * State variable controlling the reset flow and count 1365 * 1366 * This is a counter which gets incremented when reset is triggered, 1367 * and again when reset has been handled. So odd values (lowest bit set) 1368 * means that reset is in progress and even values that 1369 * (reset_counter >> 1):th reset was successfully completed. 1370 * 1371 * If reset is not completed succesfully, the I915_WEDGE bit is 1372 * set meaning that hardware is terminally sour and there is no 1373 * recovery. All waiters on the reset_queue will be woken when 1374 * that happens. 1375 * 1376 * This counter is used by the wait_seqno code to notice that reset 1377 * event happened and it needs to restart the entire ioctl (since most 1378 * likely the seqno it waited for won't ever signal anytime soon). 1379 * 1380 * This is important for lock-free wait paths, where no contended lock 1381 * naturally enforces the correct ordering between the bail-out of the 1382 * waiter and the gpu reset work code. 1383 */ 1384 atomic_t reset_counter; 1385 1386 #define I915_RESET_IN_PROGRESS_FLAG 1 1387 #define I915_WEDGED (1 << 31) 1388 1389 /** 1390 * Waitqueue to signal when the reset has completed. Used by clients 1391 * that wait for dev_priv->mm.wedged to settle. 1392 */ 1393 wait_queue_head_t reset_queue; 1394 1395 /* Userspace knobs for gpu hang simulation; 1396 * combines both a ring mask, and extra flags 1397 */ 1398 u32 stop_rings; 1399 #define I915_STOP_RING_ALLOW_BAN (1 << 31) 1400 #define I915_STOP_RING_ALLOW_WARN (1 << 30) 1401 1402 /* For missed irq/seqno simulation. */ 1403 unsigned int test_irq_rings; 1404 }; 1405 1406 enum modeset_restore { 1407 MODESET_ON_LID_OPEN, 1408 MODESET_DONE, 1409 MODESET_SUSPENDED, 1410 }; 1411 1412 #define DP_AUX_A 0x40 1413 #define DP_AUX_B 0x10 1414 #define DP_AUX_C 0x20 1415 #define DP_AUX_D 0x30 1416 1417 #define DDC_PIN_B 0x05 1418 #define DDC_PIN_C 0x04 1419 #define DDC_PIN_D 0x06 1420 1421 struct ddi_vbt_port_info { 1422 /* 1423 * This is an index in the HDMI/DVI DDI buffer translation table. 1424 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 1425 * populate this field. 1426 */ 1427 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 1428 uint8_t hdmi_level_shift; 1429 1430 uint8_t supports_dvi:1; 1431 uint8_t supports_hdmi:1; 1432 uint8_t supports_dp:1; 1433 1434 uint8_t alternate_aux_channel; 1435 uint8_t alternate_ddc_pin; 1436 1437 uint8_t dp_boost_level; 1438 uint8_t hdmi_boost_level; 1439 }; 1440 1441 enum psr_lines_to_wait { 1442 PSR_0_LINES_TO_WAIT = 0, 1443 PSR_1_LINE_TO_WAIT, 1444 PSR_4_LINES_TO_WAIT, 1445 PSR_8_LINES_TO_WAIT 1446 }; 1447 1448 struct intel_vbt_data { 1449 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 1450 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 1451 1452 /* Feature bits */ 1453 unsigned int int_tv_support:1; 1454 unsigned int lvds_dither:1; 1455 unsigned int lvds_vbt:1; 1456 unsigned int int_crt_support:1; 1457 unsigned int lvds_use_ssc:1; 1458 unsigned int display_clock_mode:1; 1459 unsigned int fdi_rx_polarity_inverted:1; 1460 unsigned int panel_type:4; 1461 int lvds_ssc_freq; 1462 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 1463 1464 enum drrs_support_type drrs_type; 1465 1466 struct { 1467 int rate; 1468 int lanes; 1469 int preemphasis; 1470 int vswing; 1471 bool low_vswing; 1472 bool initialized; 1473 bool support; 1474 int bpp; 1475 struct edp_power_seq pps; 1476 } edp; 1477 1478 struct { 1479 bool full_link; 1480 bool require_aux_wakeup; 1481 int idle_frames; 1482 enum psr_lines_to_wait lines_to_wait; 1483 int tp1_wakeup_time; 1484 int tp2_tp3_wakeup_time; 1485 } psr; 1486 1487 struct { 1488 u16 pwm_freq_hz; 1489 bool present; 1490 bool active_low_pwm; 1491 u8 min_brightness; /* min_brightness/255 of max */ 1492 } backlight; 1493 1494 /* MIPI DSI */ 1495 struct { 1496 u16 panel_id; 1497 struct mipi_config *config; 1498 struct mipi_pps_data *pps; 1499 u8 seq_version; 1500 u32 size; 1501 u8 *data; 1502 const u8 *sequence[MIPI_SEQ_MAX]; 1503 } dsi; 1504 1505 int crt_ddc_pin; 1506 1507 int child_dev_num; 1508 union child_device_config *child_dev; 1509 1510 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1511 struct sdvo_device_mapping sdvo_mappings[2]; 1512 }; 1513 1514 enum intel_ddb_partitioning { 1515 INTEL_DDB_PART_1_2, 1516 INTEL_DDB_PART_5_6, /* IVB+ */ 1517 }; 1518 1519 struct intel_wm_level { 1520 bool enable; 1521 uint32_t pri_val; 1522 uint32_t spr_val; 1523 uint32_t cur_val; 1524 uint32_t fbc_val; 1525 }; 1526 1527 struct ilk_wm_values { 1528 uint32_t wm_pipe[3]; 1529 uint32_t wm_lp[3]; 1530 uint32_t wm_lp_spr[3]; 1531 uint32_t wm_linetime[3]; 1532 bool enable_fbc_wm; 1533 enum intel_ddb_partitioning partitioning; 1534 }; 1535 1536 struct vlv_pipe_wm { 1537 uint16_t primary; 1538 uint16_t sprite[2]; 1539 uint8_t cursor; 1540 }; 1541 1542 struct vlv_sr_wm { 1543 uint16_t plane; 1544 uint8_t cursor; 1545 }; 1546 1547 struct vlv_wm_values { 1548 struct vlv_pipe_wm pipe[3]; 1549 struct vlv_sr_wm sr; 1550 struct { 1551 uint8_t cursor; 1552 uint8_t sprite[2]; 1553 uint8_t primary; 1554 } ddl[3]; 1555 uint8_t level; 1556 bool cxsr; 1557 }; 1558 1559 struct skl_ddb_entry { 1560 uint16_t start, end; /* in number of blocks, 'end' is exclusive */ 1561 }; 1562 1563 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1564 { 1565 return entry->end - entry->start; 1566 } 1567 1568 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1569 const struct skl_ddb_entry *e2) 1570 { 1571 if (e1->start == e2->start && e1->end == e2->end) 1572 return true; 1573 1574 return false; 1575 } 1576 1577 struct skl_ddb_allocation { 1578 struct skl_ddb_entry pipe[I915_MAX_PIPES]; 1579 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */ 1580 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1581 }; 1582 1583 struct skl_wm_values { 1584 bool dirty[I915_MAX_PIPES]; 1585 struct skl_ddb_allocation ddb; 1586 uint32_t wm_linetime[I915_MAX_PIPES]; 1587 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8]; 1588 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES]; 1589 }; 1590 1591 struct skl_wm_level { 1592 bool plane_en[I915_MAX_PLANES]; 1593 uint16_t plane_res_b[I915_MAX_PLANES]; 1594 uint8_t plane_res_l[I915_MAX_PLANES]; 1595 }; 1596 1597 /* 1598 * This struct helps tracking the state needed for runtime PM, which puts the 1599 * device in PCI D3 state. Notice that when this happens, nothing on the 1600 * graphics device works, even register access, so we don't get interrupts nor 1601 * anything else. 1602 * 1603 * Every piece of our code that needs to actually touch the hardware needs to 1604 * either call intel_runtime_pm_get or call intel_display_power_get with the 1605 * appropriate power domain. 1606 * 1607 * Our driver uses the autosuspend delay feature, which means we'll only really 1608 * suspend if we stay with zero refcount for a certain amount of time. The 1609 * default value is currently very conservative (see intel_runtime_pm_enable), but 1610 * it can be changed with the standard runtime PM files from sysfs. 1611 * 1612 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1613 * goes back to false exactly before we reenable the IRQs. We use this variable 1614 * to check if someone is trying to enable/disable IRQs while they're supposed 1615 * to be disabled. This shouldn't happen and we'll print some error messages in 1616 * case it happens. 1617 * 1618 * For more, read the Documentation/power/runtime_pm.txt. 1619 */ 1620 struct i915_runtime_pm { 1621 atomic_t wakeref_count; 1622 atomic_t atomic_seq; 1623 bool suspended; 1624 bool irqs_enabled; 1625 }; 1626 1627 enum intel_pipe_crc_source { 1628 INTEL_PIPE_CRC_SOURCE_NONE, 1629 INTEL_PIPE_CRC_SOURCE_PLANE1, 1630 INTEL_PIPE_CRC_SOURCE_PLANE2, 1631 INTEL_PIPE_CRC_SOURCE_PF, 1632 INTEL_PIPE_CRC_SOURCE_PIPE, 1633 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1634 INTEL_PIPE_CRC_SOURCE_TV, 1635 INTEL_PIPE_CRC_SOURCE_DP_B, 1636 INTEL_PIPE_CRC_SOURCE_DP_C, 1637 INTEL_PIPE_CRC_SOURCE_DP_D, 1638 INTEL_PIPE_CRC_SOURCE_AUTO, 1639 INTEL_PIPE_CRC_SOURCE_MAX, 1640 }; 1641 1642 struct intel_pipe_crc_entry { 1643 uint32_t frame; 1644 uint32_t crc[5]; 1645 }; 1646 1647 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1648 struct intel_pipe_crc { 1649 spinlock_t lock; 1650 bool opened; /* exclusive access to the result file */ 1651 struct intel_pipe_crc_entry *entries; 1652 enum intel_pipe_crc_source source; 1653 int head, tail; 1654 wait_queue_head_t wq; 1655 }; 1656 1657 struct i915_frontbuffer_tracking { 1658 struct mutex lock; 1659 1660 /* 1661 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1662 * scheduled flips. 1663 */ 1664 unsigned busy_bits; 1665 unsigned flip_bits; 1666 }; 1667 1668 struct i915_wa_reg { 1669 i915_reg_t addr; 1670 u32 value; 1671 /* bitmask representing WA bits */ 1672 u32 mask; 1673 }; 1674 1675 /* 1676 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only 1677 * allowing it for RCS as we don't foresee any requirement of having 1678 * a whitelist for other engines. When it is really required for 1679 * other engines then the limit need to be increased. 1680 */ 1681 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS) 1682 1683 struct i915_workarounds { 1684 struct i915_wa_reg reg[I915_MAX_WA_REGS]; 1685 u32 count; 1686 u32 hw_whitelist_count[I915_NUM_ENGINES]; 1687 }; 1688 1689 struct i915_virtual_gpu { 1690 bool active; 1691 }; 1692 1693 struct i915_execbuffer_params { 1694 struct drm_device *dev; 1695 struct drm_file *file; 1696 uint32_t dispatch_flags; 1697 uint32_t args_batch_start_offset; 1698 uint64_t batch_obj_vm_offset; 1699 struct intel_engine_cs *engine; 1700 struct drm_i915_gem_object *batch_obj; 1701 struct intel_context *ctx; 1702 struct drm_i915_gem_request *request; 1703 }; 1704 1705 /* used in computing the new watermarks state */ 1706 struct intel_wm_config { 1707 unsigned int num_pipes_active; 1708 bool sprites_enabled; 1709 bool sprites_scaled; 1710 }; 1711 1712 struct drm_i915_private { 1713 struct drm_device *dev; 1714 struct kmem_cache *objects; 1715 struct kmem_cache *vmas; 1716 struct kmem_cache *requests; 1717 1718 const struct intel_device_info info; 1719 1720 int relative_constants_mode; 1721 1722 void __iomem *regs; 1723 1724 struct intel_uncore uncore; 1725 1726 struct i915_virtual_gpu vgpu; 1727 1728 struct intel_guc guc; 1729 1730 struct intel_csr csr; 1731 1732 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 1733 1734 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 1735 * controller on different i2c buses. */ 1736 struct mutex gmbus_mutex; 1737 1738 /** 1739 * Base address of the gmbus and gpio block. 1740 */ 1741 uint32_t gpio_mmio_base; 1742 1743 /* MMIO base address for MIPI regs */ 1744 uint32_t mipi_mmio_base; 1745 1746 uint32_t psr_mmio_base; 1747 1748 wait_queue_head_t gmbus_wait_queue; 1749 1750 struct pci_dev *bridge_dev; 1751 struct intel_engine_cs engine[I915_NUM_ENGINES]; 1752 struct drm_i915_gem_object *semaphore_obj; 1753 uint32_t last_seqno, next_seqno; 1754 1755 struct drm_dma_handle *status_page_dmah; 1756 struct resource mch_res; 1757 1758 /* protects the irq masks */ 1759 spinlock_t irq_lock; 1760 1761 /* protects the mmio flip data */ 1762 spinlock_t mmio_flip_lock; 1763 1764 bool display_irqs_enabled; 1765 1766 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 1767 struct pm_qos_request pm_qos; 1768 1769 /* Sideband mailbox protection */ 1770 struct mutex sb_lock; 1771 1772 /** Cached value of IMR to avoid reads in updating the bitfield */ 1773 union { 1774 u32 irq_mask; 1775 u32 de_irq_mask[I915_MAX_PIPES]; 1776 }; 1777 u32 gt_irq_mask; 1778 u32 pm_irq_mask; 1779 u32 pm_rps_events; 1780 u32 pipestat_irq_mask[I915_MAX_PIPES]; 1781 1782 struct i915_hotplug hotplug; 1783 struct intel_fbc fbc; 1784 struct i915_drrs drrs; 1785 struct intel_opregion opregion; 1786 struct intel_vbt_data vbt; 1787 1788 bool preserve_bios_swizzle; 1789 1790 /* overlay */ 1791 struct intel_overlay *overlay; 1792 1793 /* backlight registers and fields in struct intel_panel */ 1794 struct mutex backlight_lock; 1795 1796 /* LVDS info */ 1797 bool no_aux_handshake; 1798 1799 /* protects panel power sequencer state */ 1800 struct mutex pps_mutex; 1801 1802 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 1803 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 1804 1805 unsigned int fsb_freq, mem_freq, is_ddr3; 1806 unsigned int skl_boot_cdclk; 1807 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq; 1808 unsigned int max_dotclk_freq; 1809 unsigned int rawclk_freq; 1810 unsigned int hpll_freq; 1811 unsigned int czclk_freq; 1812 1813 /** 1814 * wq - Driver workqueue for GEM. 1815 * 1816 * NOTE: Work items scheduled here are not allowed to grab any modeset 1817 * locks, for otherwise the flushing done in the pageflip code will 1818 * result in deadlocks. 1819 */ 1820 struct workqueue_struct *wq; 1821 1822 /* Display functions */ 1823 struct drm_i915_display_funcs display; 1824 1825 /* PCH chipset type */ 1826 enum intel_pch pch_type; 1827 unsigned short pch_id; 1828 1829 unsigned long quirks; 1830 1831 enum modeset_restore modeset_restore; 1832 struct mutex modeset_restore_lock; 1833 struct drm_atomic_state *modeset_restore_state; 1834 1835 struct list_head vm_list; /* Global list of all address spaces */ 1836 struct i915_ggtt ggtt; /* VM representing the global address space */ 1837 1838 struct i915_gem_mm mm; 1839 DECLARE_HASHTABLE(mm_structs, 7); 1840 struct mutex mm_lock; 1841 1842 /* Kernel Modesetting */ 1843 1844 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 1845 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 1846 wait_queue_head_t pending_flip_queue; 1847 1848 #ifdef CONFIG_DEBUG_FS 1849 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 1850 #endif 1851 1852 /* dpll and cdclk state is protected by connection_mutex */ 1853 int num_shared_dpll; 1854 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 1855 const struct intel_dpll_mgr *dpll_mgr; 1856 1857 /* 1858 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 1859 * Must be global rather than per dpll, because on some platforms 1860 * plls share registers. 1861 */ 1862 struct mutex dpll_lock; 1863 1864 unsigned int active_crtcs; 1865 unsigned int min_pixclk[I915_MAX_PIPES]; 1866 1867 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 1868 1869 struct i915_workarounds workarounds; 1870 1871 struct i915_frontbuffer_tracking fb_tracking; 1872 1873 u16 orig_clock; 1874 1875 bool mchbar_need_disable; 1876 1877 struct intel_l3_parity l3_parity; 1878 1879 /* Cannot be determined by PCIID. You must always read a register. */ 1880 u32 edram_cap; 1881 1882 /* gen6+ rps state */ 1883 struct intel_gen6_power_mgmt rps; 1884 1885 /* ilk-only ips/rps state. Everything in here is protected by the global 1886 * mchdev_lock in intel_pm.c */ 1887 struct intel_ilk_power_mgmt ips; 1888 1889 struct i915_power_domains power_domains; 1890 1891 struct i915_psr psr; 1892 1893 struct i915_gpu_error gpu_error; 1894 1895 struct drm_i915_gem_object *vlv_pctx; 1896 1897 #ifdef CONFIG_DRM_FBDEV_EMULATION 1898 /* list of fbdev register on this device */ 1899 struct intel_fbdev *fbdev; 1900 struct work_struct fbdev_suspend_work; 1901 #endif 1902 1903 struct drm_property *broadcast_rgb_property; 1904 struct drm_property *force_audio_property; 1905 1906 /* hda/i915 audio component */ 1907 struct i915_audio_component *audio_component; 1908 bool audio_component_registered; 1909 /** 1910 * av_mutex - mutex for audio/video sync 1911 * 1912 */ 1913 struct mutex av_mutex; 1914 1915 uint32_t hw_context_size; 1916 struct list_head context_list; 1917 1918 u32 fdi_rx_config; 1919 1920 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 1921 u32 chv_phy_control; 1922 /* 1923 * Shadows for CHV DPLL_MD regs to keep the state 1924 * checker somewhat working in the presence hardware 1925 * crappiness (can't read out DPLL_MD for pipes B & C). 1926 */ 1927 u32 chv_dpll_md[I915_MAX_PIPES]; 1928 u32 bxt_phy_grc; 1929 1930 u32 suspend_count; 1931 bool suspended_to_idle; 1932 struct i915_suspend_saved_registers regfile; 1933 struct vlv_s0ix_state vlv_s0ix_state; 1934 1935 struct { 1936 /* 1937 * Raw watermark latency values: 1938 * in 0.1us units for WM0, 1939 * in 0.5us units for WM1+. 1940 */ 1941 /* primary */ 1942 uint16_t pri_latency[5]; 1943 /* sprite */ 1944 uint16_t spr_latency[5]; 1945 /* cursor */ 1946 uint16_t cur_latency[5]; 1947 /* 1948 * Raw watermark memory latency values 1949 * for SKL for all 8 levels 1950 * in 1us units. 1951 */ 1952 uint16_t skl_latency[8]; 1953 1954 /* Committed wm config */ 1955 struct intel_wm_config config; 1956 1957 /* 1958 * The skl_wm_values structure is a bit too big for stack 1959 * allocation, so we keep the staging struct where we store 1960 * intermediate results here instead. 1961 */ 1962 struct skl_wm_values skl_results; 1963 1964 /* current hardware state */ 1965 union { 1966 struct ilk_wm_values hw; 1967 struct skl_wm_values skl_hw; 1968 struct vlv_wm_values vlv; 1969 }; 1970 1971 uint8_t max_level; 1972 1973 /* 1974 * Should be held around atomic WM register writing; also 1975 * protects * intel_crtc->wm.active and 1976 * cstate->wm.need_postvbl_update. 1977 */ 1978 struct mutex wm_mutex; 1979 } wm; 1980 1981 struct i915_runtime_pm pm; 1982 1983 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 1984 struct { 1985 int (*execbuf_submit)(struct i915_execbuffer_params *params, 1986 struct drm_i915_gem_execbuffer2 *args, 1987 struct list_head *vmas); 1988 int (*init_engines)(struct drm_device *dev); 1989 void (*cleanup_engine)(struct intel_engine_cs *engine); 1990 void (*stop_engine)(struct intel_engine_cs *engine); 1991 } gt; 1992 1993 struct intel_context *kernel_context; 1994 1995 /* perform PHY state sanity checks? */ 1996 bool chv_phy_assert[2]; 1997 1998 struct intel_encoder *dig_port_map[I915_MAX_PORTS]; 1999 2000 /* 2001 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2002 * will be rejected. Instead look for a better place. 2003 */ 2004 }; 2005 2006 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2007 { 2008 return dev->dev_private; 2009 } 2010 2011 static inline struct drm_i915_private *dev_to_i915(struct device *dev) 2012 { 2013 return to_i915(dev_get_drvdata(dev)); 2014 } 2015 2016 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2017 { 2018 return container_of(guc, struct drm_i915_private, guc); 2019 } 2020 2021 /* Simple iterator over all initialised engines */ 2022 #define for_each_engine(engine__, dev_priv__) \ 2023 for ((engine__) = &(dev_priv__)->engine[0]; \ 2024 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \ 2025 (engine__)++) \ 2026 for_each_if (intel_engine_initialized(engine__)) 2027 2028 /* Iterator with engine_id */ 2029 #define for_each_engine_id(engine__, dev_priv__, id__) \ 2030 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \ 2031 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \ 2032 (engine__)++) \ 2033 for_each_if (((id__) = (engine__)->id, \ 2034 intel_engine_initialized(engine__))) 2035 2036 /* Iterator over subset of engines selected by mask */ 2037 #define for_each_engine_masked(engine__, dev_priv__, mask__) \ 2038 for ((engine__) = &(dev_priv__)->engine[0]; \ 2039 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \ 2040 (engine__)++) \ 2041 for_each_if (((mask__) & intel_engine_flag(engine__)) && \ 2042 intel_engine_initialized(engine__)) 2043 2044 enum hdmi_force_audio { 2045 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2046 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2047 HDMI_AUDIO_AUTO, /* trust EDID */ 2048 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2049 }; 2050 2051 #define I915_GTT_OFFSET_NONE ((u32)-1) 2052 2053 struct drm_i915_gem_object_ops { 2054 unsigned int flags; 2055 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1 2056 2057 /* Interface between the GEM object and its backing storage. 2058 * get_pages() is called once prior to the use of the associated set 2059 * of pages before to binding them into the GTT, and put_pages() is 2060 * called after we no longer need them. As we expect there to be 2061 * associated cost with migrating pages between the backing storage 2062 * and making them available for the GPU (e.g. clflush), we may hold 2063 * onto the pages after they are no longer referenced by the GPU 2064 * in case they may be used again shortly (for example migrating the 2065 * pages to a different memory domain within the GTT). put_pages() 2066 * will therefore most likely be called when the object itself is 2067 * being released or under memory pressure (where we attempt to 2068 * reap pages for the shrinker). 2069 */ 2070 int (*get_pages)(struct drm_i915_gem_object *); 2071 void (*put_pages)(struct drm_i915_gem_object *); 2072 2073 int (*dmabuf_export)(struct drm_i915_gem_object *); 2074 void (*release)(struct drm_i915_gem_object *); 2075 }; 2076 2077 /* 2078 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2079 * considered to be the frontbuffer for the given plane interface-wise. This 2080 * doesn't mean that the hw necessarily already scans it out, but that any 2081 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2082 * 2083 * We have one bit per pipe and per scanout plane type. 2084 */ 2085 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5 2086 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2087 #define INTEL_FRONTBUFFER_BITS \ 2088 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES) 2089 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \ 2090 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2091 #define INTEL_FRONTBUFFER_CURSOR(pipe) \ 2092 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2093 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \ 2094 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2095 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2096 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2097 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2098 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2099 2100 struct drm_i915_gem_object { 2101 struct drm_gem_object base; 2102 2103 const struct drm_i915_gem_object_ops *ops; 2104 2105 /** List of VMAs backed by this object */ 2106 struct list_head vma_list; 2107 2108 /** Stolen memory for this object, instead of being backed by shmem. */ 2109 struct drm_mm_node *stolen; 2110 struct list_head global_list; 2111 2112 struct list_head engine_list[I915_NUM_ENGINES]; 2113 /** Used in execbuf to temporarily hold a ref */ 2114 struct list_head obj_exec_link; 2115 2116 struct list_head batch_pool_link; 2117 2118 /** 2119 * This is set if the object is on the active lists (has pending 2120 * rendering and so a non-zero seqno), and is not set if it i s on 2121 * inactive (ready to be unbound) list. 2122 */ 2123 unsigned int active:I915_NUM_ENGINES; 2124 2125 /** 2126 * This is set if the object has been written to since last bound 2127 * to the GTT 2128 */ 2129 unsigned int dirty:1; 2130 2131 /** 2132 * Fence register bits (if any) for this object. Will be set 2133 * as needed when mapped into the GTT. 2134 * Protected by dev->struct_mutex. 2135 */ 2136 signed int fence_reg:I915_MAX_NUM_FENCE_BITS; 2137 2138 /** 2139 * Advice: are the backing pages purgeable? 2140 */ 2141 unsigned int madv:2; 2142 2143 /** 2144 * Current tiling mode for the object. 2145 */ 2146 unsigned int tiling_mode:2; 2147 /** 2148 * Whether the tiling parameters for the currently associated fence 2149 * register have changed. Note that for the purposes of tracking 2150 * tiling changes we also treat the unfenced register, the register 2151 * slot that the object occupies whilst it executes a fenced 2152 * command (such as BLT on gen2/3), as a "fence". 2153 */ 2154 unsigned int fence_dirty:1; 2155 2156 /** 2157 * Is the object at the current location in the gtt mappable and 2158 * fenceable? Used to avoid costly recalculations. 2159 */ 2160 unsigned int map_and_fenceable:1; 2161 2162 /** 2163 * Whether the current gtt mapping needs to be mappable (and isn't just 2164 * mappable by accident). Track pin and fault separate for a more 2165 * accurate mappable working set. 2166 */ 2167 unsigned int fault_mappable:1; 2168 2169 /* 2170 * Is the object to be mapped as read-only to the GPU 2171 * Only honoured if hardware has relevant pte bit 2172 */ 2173 unsigned long gt_ro:1; 2174 unsigned int cache_level:3; 2175 unsigned int cache_dirty:1; 2176 2177 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS; 2178 2179 unsigned int pin_display; 2180 2181 struct sg_table *pages; 2182 int pages_pin_count; 2183 struct get_page { 2184 struct scatterlist *sg; 2185 int last; 2186 } get_page; 2187 void *mapping; 2188 2189 /** Breadcrumb of last rendering to the buffer. 2190 * There can only be one writer, but we allow for multiple readers. 2191 * If there is a writer that necessarily implies that all other 2192 * read requests are complete - but we may only be lazily clearing 2193 * the read requests. A read request is naturally the most recent 2194 * request on a ring, so we may have two different write and read 2195 * requests on one ring where the write request is older than the 2196 * read request. This allows for the CPU to read from an active 2197 * buffer by only waiting for the write to complete. 2198 * */ 2199 struct drm_i915_gem_request *last_read_req[I915_NUM_ENGINES]; 2200 struct drm_i915_gem_request *last_write_req; 2201 /** Breadcrumb of last fenced GPU access to the buffer. */ 2202 struct drm_i915_gem_request *last_fenced_req; 2203 2204 /** Current tiling stride for the object, if it's tiled. */ 2205 uint32_t stride; 2206 2207 /** References from framebuffers, locks out tiling changes. */ 2208 unsigned long framebuffer_references; 2209 2210 /** Record of address bit 17 of each page at last unbind. */ 2211 unsigned long *bit_17; 2212 2213 union { 2214 /** for phy allocated objects */ 2215 struct drm_dma_handle *phys_handle; 2216 2217 struct i915_gem_userptr { 2218 uintptr_t ptr; 2219 unsigned read_only :1; 2220 unsigned workers :4; 2221 #define I915_GEM_USERPTR_MAX_WORKERS 15 2222 2223 struct i915_mm_struct *mm; 2224 struct i915_mmu_object *mmu_object; 2225 struct work_struct *work; 2226 } userptr; 2227 }; 2228 }; 2229 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base) 2230 2231 void i915_gem_track_fb(struct drm_i915_gem_object *old, 2232 struct drm_i915_gem_object *new, 2233 unsigned frontbuffer_bits); 2234 2235 /** 2236 * Request queue structure. 2237 * 2238 * The request queue allows us to note sequence numbers that have been emitted 2239 * and may be associated with active buffers to be retired. 2240 * 2241 * By keeping this list, we can avoid having to do questionable sequence 2242 * number comparisons on buffer last_read|write_seqno. It also allows an 2243 * emission time to be associated with the request for tracking how far ahead 2244 * of the GPU the submission is. 2245 * 2246 * The requests are reference counted, so upon creation they should have an 2247 * initial reference taken using kref_init 2248 */ 2249 struct drm_i915_gem_request { 2250 struct kref ref; 2251 2252 /** On Which ring this request was generated */ 2253 struct drm_i915_private *i915; 2254 struct intel_engine_cs *engine; 2255 unsigned reset_counter; 2256 2257 /** GEM sequence number associated with the previous request, 2258 * when the HWS breadcrumb is equal to this the GPU is processing 2259 * this request. 2260 */ 2261 u32 previous_seqno; 2262 2263 /** GEM sequence number associated with this request, 2264 * when the HWS breadcrumb is equal or greater than this the GPU 2265 * has finished processing this request. 2266 */ 2267 u32 seqno; 2268 2269 /** Position in the ringbuffer of the start of the request */ 2270 u32 head; 2271 2272 /** 2273 * Position in the ringbuffer of the start of the postfix. 2274 * This is required to calculate the maximum available ringbuffer 2275 * space without overwriting the postfix. 2276 */ 2277 u32 postfix; 2278 2279 /** Position in the ringbuffer of the end of the whole request */ 2280 u32 tail; 2281 2282 /** 2283 * Context and ring buffer related to this request 2284 * Contexts are refcounted, so when this request is associated with a 2285 * context, we must increment the context's refcount, to guarantee that 2286 * it persists while any request is linked to it. Requests themselves 2287 * are also refcounted, so the request will only be freed when the last 2288 * reference to it is dismissed, and the code in 2289 * i915_gem_request_free() will then decrement the refcount on the 2290 * context. 2291 */ 2292 struct intel_context *ctx; 2293 struct intel_ringbuffer *ringbuf; 2294 2295 /** Batch buffer related to this request if any (used for 2296 error state dump only) */ 2297 struct drm_i915_gem_object *batch_obj; 2298 2299 /** Time at which this request was emitted, in jiffies. */ 2300 unsigned long emitted_jiffies; 2301 2302 /** global list entry for this request */ 2303 struct list_head list; 2304 2305 struct drm_i915_file_private *file_priv; 2306 /** file_priv list entry for this request */ 2307 struct list_head client_list; 2308 2309 /** process identifier submitting this request */ 2310 struct pid *pid; 2311 2312 /** 2313 * The ELSP only accepts two elements at a time, so we queue 2314 * context/tail pairs on a given queue (ring->execlist_queue) until the 2315 * hardware is available. The queue serves a double purpose: we also use 2316 * it to keep track of the up to 2 contexts currently in the hardware 2317 * (usually one in execution and the other queued up by the GPU): We 2318 * only remove elements from the head of the queue when the hardware 2319 * informs us that an element has been completed. 2320 * 2321 * All accesses to the queue are mediated by a spinlock 2322 * (ring->execlist_lock). 2323 */ 2324 2325 /** Execlist link in the submission queue.*/ 2326 struct list_head execlist_link; 2327 2328 /** Execlists no. of times this request has been sent to the ELSP */ 2329 int elsp_submitted; 2330 2331 }; 2332 2333 struct drm_i915_gem_request * __must_check 2334 i915_gem_request_alloc(struct intel_engine_cs *engine, 2335 struct intel_context *ctx); 2336 void i915_gem_request_free(struct kref *req_ref); 2337 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req, 2338 struct drm_file *file); 2339 2340 static inline uint32_t 2341 i915_gem_request_get_seqno(struct drm_i915_gem_request *req) 2342 { 2343 return req ? req->seqno : 0; 2344 } 2345 2346 static inline struct intel_engine_cs * 2347 i915_gem_request_get_engine(struct drm_i915_gem_request *req) 2348 { 2349 return req ? req->engine : NULL; 2350 } 2351 2352 static inline struct drm_i915_gem_request * 2353 i915_gem_request_reference(struct drm_i915_gem_request *req) 2354 { 2355 if (req) 2356 kref_get(&req->ref); 2357 return req; 2358 } 2359 2360 static inline void 2361 i915_gem_request_unreference(struct drm_i915_gem_request *req) 2362 { 2363 WARN_ON(!mutex_is_locked(&req->engine->dev->struct_mutex)); 2364 kref_put(&req->ref, i915_gem_request_free); 2365 } 2366 2367 static inline void 2368 i915_gem_request_unreference__unlocked(struct drm_i915_gem_request *req) 2369 { 2370 struct drm_device *dev; 2371 2372 if (!req) 2373 return; 2374 2375 dev = req->engine->dev; 2376 if (kref_put_mutex(&req->ref, i915_gem_request_free, &dev->struct_mutex)) 2377 mutex_unlock(&dev->struct_mutex); 2378 } 2379 2380 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst, 2381 struct drm_i915_gem_request *src) 2382 { 2383 if (src) 2384 i915_gem_request_reference(src); 2385 2386 if (*pdst) 2387 i915_gem_request_unreference(*pdst); 2388 2389 *pdst = src; 2390 } 2391 2392 /* 2393 * XXX: i915_gem_request_completed should be here but currently needs the 2394 * definition of i915_seqno_passed() which is below. It will be moved in 2395 * a later patch when the call to i915_seqno_passed() is obsoleted... 2396 */ 2397 2398 /* 2399 * A command that requires special handling by the command parser. 2400 */ 2401 struct drm_i915_cmd_descriptor { 2402 /* 2403 * Flags describing how the command parser processes the command. 2404 * 2405 * CMD_DESC_FIXED: The command has a fixed length if this is set, 2406 * a length mask if not set 2407 * CMD_DESC_SKIP: The command is allowed but does not follow the 2408 * standard length encoding for the opcode range in 2409 * which it falls 2410 * CMD_DESC_REJECT: The command is never allowed 2411 * CMD_DESC_REGISTER: The command should be checked against the 2412 * register whitelist for the appropriate ring 2413 * CMD_DESC_MASTER: The command is allowed if the submitting process 2414 * is the DRM master 2415 */ 2416 u32 flags; 2417 #define CMD_DESC_FIXED (1<<0) 2418 #define CMD_DESC_SKIP (1<<1) 2419 #define CMD_DESC_REJECT (1<<2) 2420 #define CMD_DESC_REGISTER (1<<3) 2421 #define CMD_DESC_BITMASK (1<<4) 2422 #define CMD_DESC_MASTER (1<<5) 2423 2424 /* 2425 * The command's unique identification bits and the bitmask to get them. 2426 * This isn't strictly the opcode field as defined in the spec and may 2427 * also include type, subtype, and/or subop fields. 2428 */ 2429 struct { 2430 u32 value; 2431 u32 mask; 2432 } cmd; 2433 2434 /* 2435 * The command's length. The command is either fixed length (i.e. does 2436 * not include a length field) or has a length field mask. The flag 2437 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has 2438 * a length mask. All command entries in a command table must include 2439 * length information. 2440 */ 2441 union { 2442 u32 fixed; 2443 u32 mask; 2444 } length; 2445 2446 /* 2447 * Describes where to find a register address in the command to check 2448 * against the ring's register whitelist. Only valid if flags has the 2449 * CMD_DESC_REGISTER bit set. 2450 * 2451 * A non-zero step value implies that the command may access multiple 2452 * registers in sequence (e.g. LRI), in that case step gives the 2453 * distance in dwords between individual offset fields. 2454 */ 2455 struct { 2456 u32 offset; 2457 u32 mask; 2458 u32 step; 2459 } reg; 2460 2461 #define MAX_CMD_DESC_BITMASKS 3 2462 /* 2463 * Describes command checks where a particular dword is masked and 2464 * compared against an expected value. If the command does not match 2465 * the expected value, the parser rejects it. Only valid if flags has 2466 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero 2467 * are valid. 2468 * 2469 * If the check specifies a non-zero condition_mask then the parser 2470 * only performs the check when the bits specified by condition_mask 2471 * are non-zero. 2472 */ 2473 struct { 2474 u32 offset; 2475 u32 mask; 2476 u32 expected; 2477 u32 condition_offset; 2478 u32 condition_mask; 2479 } bits[MAX_CMD_DESC_BITMASKS]; 2480 }; 2481 2482 /* 2483 * A table of commands requiring special handling by the command parser. 2484 * 2485 * Each ring has an array of tables. Each table consists of an array of command 2486 * descriptors, which must be sorted with command opcodes in ascending order. 2487 */ 2488 struct drm_i915_cmd_table { 2489 const struct drm_i915_cmd_descriptor *table; 2490 int count; 2491 }; 2492 2493 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */ 2494 #define __I915__(p) ({ \ 2495 struct drm_i915_private *__p; \ 2496 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \ 2497 __p = (struct drm_i915_private *)p; \ 2498 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \ 2499 __p = to_i915((struct drm_device *)p); \ 2500 else \ 2501 BUILD_BUG(); \ 2502 __p; \ 2503 }) 2504 #define INTEL_INFO(p) (&__I915__(p)->info) 2505 #define INTEL_GEN(p) (INTEL_INFO(p)->gen) 2506 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id) 2507 #define INTEL_REVID(p) (__I915__(p)->dev->pdev->revision) 2508 2509 #define REVID_FOREVER 0xff 2510 /* 2511 * Return true if revision is in range [since,until] inclusive. 2512 * 2513 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2514 */ 2515 #define IS_REVID(p, since, until) \ 2516 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2517 2518 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577) 2519 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562) 2520 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x) 2521 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572) 2522 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g) 2523 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592) 2524 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772) 2525 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm) 2526 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater) 2527 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline) 2528 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42) 2529 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x) 2530 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001) 2531 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011) 2532 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview) 2533 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33) 2534 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046) 2535 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge) 2536 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \ 2537 INTEL_DEVID(dev) == 0x0152 || \ 2538 INTEL_DEVID(dev) == 0x015a) 2539 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview) 2540 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview) 2541 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell) 2542 #define IS_BROADWELL(dev) (!INTEL_INFO(dev)->is_cherryview && IS_GEN8(dev)) 2543 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake) 2544 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton) 2545 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake) 2546 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile) 2547 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \ 2548 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00) 2549 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \ 2550 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \ 2551 (INTEL_DEVID(dev) & 0xf) == 0xb || \ 2552 (INTEL_DEVID(dev) & 0xf) == 0xe)) 2553 /* ULX machines are also considered ULT. */ 2554 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \ 2555 (INTEL_DEVID(dev) & 0xf) == 0xe) 2556 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \ 2557 (INTEL_DEVID(dev) & 0x00F0) == 0x0020) 2558 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \ 2559 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00) 2560 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \ 2561 (INTEL_DEVID(dev) & 0x00F0) == 0x0020) 2562 /* ULX machines are also considered ULT. */ 2563 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \ 2564 INTEL_DEVID(dev) == 0x0A1E) 2565 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \ 2566 INTEL_DEVID(dev) == 0x1913 || \ 2567 INTEL_DEVID(dev) == 0x1916 || \ 2568 INTEL_DEVID(dev) == 0x1921 || \ 2569 INTEL_DEVID(dev) == 0x1926) 2570 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \ 2571 INTEL_DEVID(dev) == 0x1915 || \ 2572 INTEL_DEVID(dev) == 0x191E) 2573 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \ 2574 INTEL_DEVID(dev) == 0x5913 || \ 2575 INTEL_DEVID(dev) == 0x5916 || \ 2576 INTEL_DEVID(dev) == 0x5921 || \ 2577 INTEL_DEVID(dev) == 0x5926) 2578 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \ 2579 INTEL_DEVID(dev) == 0x5915 || \ 2580 INTEL_DEVID(dev) == 0x591E) 2581 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \ 2582 (INTEL_DEVID(dev) & 0x00F0) == 0x0020) 2583 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \ 2584 (INTEL_DEVID(dev) & 0x00F0) == 0x0030) 2585 2586 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary) 2587 2588 #define SKL_REVID_A0 0x0 2589 #define SKL_REVID_B0 0x1 2590 #define SKL_REVID_C0 0x2 2591 #define SKL_REVID_D0 0x3 2592 #define SKL_REVID_E0 0x4 2593 #define SKL_REVID_F0 0x5 2594 2595 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2596 2597 #define BXT_REVID_A0 0x0 2598 #define BXT_REVID_A1 0x1 2599 #define BXT_REVID_B0 0x3 2600 #define BXT_REVID_C0 0x9 2601 2602 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until)) 2603 2604 #define KBL_REVID_A0 0x0 2605 #define KBL_REVID_B0 0x1 2606 #define KBL_REVID_C0 0x2 2607 #define KBL_REVID_D0 0x3 2608 #define KBL_REVID_E0 0x4 2609 2610 #define IS_KBL_REVID(p, since, until) \ 2611 (IS_KABYLAKE(p) && IS_REVID(p, since, until)) 2612 2613 /* 2614 * The genX designation typically refers to the render engine, so render 2615 * capability related checks should use IS_GEN, while display and other checks 2616 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular 2617 * chips, etc.). 2618 */ 2619 #define IS_GEN2(dev) (INTEL_INFO(dev)->gen == 2) 2620 #define IS_GEN3(dev) (INTEL_INFO(dev)->gen == 3) 2621 #define IS_GEN4(dev) (INTEL_INFO(dev)->gen == 4) 2622 #define IS_GEN5(dev) (INTEL_INFO(dev)->gen == 5) 2623 #define IS_GEN6(dev) (INTEL_INFO(dev)->gen == 6) 2624 #define IS_GEN7(dev) (INTEL_INFO(dev)->gen == 7) 2625 #define IS_GEN8(dev) (INTEL_INFO(dev)->gen == 8) 2626 #define IS_GEN9(dev) (INTEL_INFO(dev)->gen == 9) 2627 2628 #define RENDER_RING (1<<RCS) 2629 #define BSD_RING (1<<VCS) 2630 #define BLT_RING (1<<BCS) 2631 #define VEBOX_RING (1<<VECS) 2632 #define BSD2_RING (1<<VCS2) 2633 #define ALL_ENGINES (~0) 2634 2635 #define HAS_BSD(dev) (INTEL_INFO(dev)->ring_mask & BSD_RING) 2636 #define HAS_BSD2(dev) (INTEL_INFO(dev)->ring_mask & BSD2_RING) 2637 #define HAS_BLT(dev) (INTEL_INFO(dev)->ring_mask & BLT_RING) 2638 #define HAS_VEBOX(dev) (INTEL_INFO(dev)->ring_mask & VEBOX_RING) 2639 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc) 2640 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop) 2641 #define HAS_EDRAM(dev) (__I915__(dev)->edram_cap & EDRAM_ENABLED) 2642 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \ 2643 HAS_EDRAM(dev)) 2644 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws) 2645 2646 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6) 2647 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8) 2648 #define USES_PPGTT(dev) (i915.enable_ppgtt) 2649 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2) 2650 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3) 2651 2652 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay) 2653 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical) 2654 2655 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2656 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev)) 2657 2658 /* WaRsDisableCoarsePowerGating:skl,bxt */ 2659 #define NEEDS_WaRsDisableCoarsePowerGating(dev) (IS_BXT_REVID(dev, 0, BXT_REVID_A1) || \ 2660 IS_SKL_GT3(dev) || \ 2661 IS_SKL_GT4(dev)) 2662 2663 /* 2664 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts 2665 * even when in MSI mode. This results in spurious interrupt warnings if the 2666 * legacy irq no. is shared with another device. The kernel then disables that 2667 * interrupt source and so prevents the other device from working properly. 2668 */ 2669 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5) 2670 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5) 2671 2672 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2673 * rows, which changed the alignment requirements and fence programming. 2674 */ 2675 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \ 2676 IS_I915GM(dev))) 2677 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv) 2678 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug) 2679 2680 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2) 2681 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr) 2682 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc) 2683 2684 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev)) 2685 2686 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \ 2687 INTEL_INFO(dev)->gen >= 9) 2688 2689 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi) 2690 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg) 2691 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \ 2692 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \ 2693 IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) 2694 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \ 2695 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \ 2696 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \ 2697 IS_KABYLAKE(dev) || IS_BROXTON(dev)) 2698 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6) 2699 #define HAS_RC6p(dev) (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev)) 2700 2701 #define HAS_CSR(dev) (IS_GEN9(dev)) 2702 2703 #define HAS_GUC_UCODE(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev)) 2704 #define HAS_GUC_SCHED(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev)) 2705 2706 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \ 2707 INTEL_INFO(dev)->gen >= 8) 2708 2709 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \ 2710 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \ 2711 !IS_BROXTON(dev)) 2712 2713 #define INTEL_PCH_DEVICE_ID_MASK 0xff00 2714 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2715 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2716 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2717 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2718 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2719 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2720 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2721 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200 2722 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2723 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2724 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2725 2726 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type) 2727 #define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP) 2728 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT) 2729 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT) 2730 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) 2731 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) 2732 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT) 2733 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX) 2734 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP) 2735 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE) 2736 2737 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \ 2738 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) 2739 2740 /* DPF == dynamic parity feature */ 2741 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) 2742 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev)) 2743 2744 #define GT_FREQUENCY_MULTIPLIER 50 2745 #define GEN9_FREQ_SCALER 3 2746 2747 #include "i915_trace.h" 2748 2749 extern const struct drm_ioctl_desc i915_ioctls[]; 2750 extern int i915_max_ioctl; 2751 2752 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state); 2753 extern int i915_resume_switcheroo(struct drm_device *dev); 2754 2755 /* i915_dma.c */ 2756 void __printf(3, 4) 2757 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 2758 const char *fmt, ...); 2759 2760 #define i915_report_error(dev_priv, fmt, ...) \ 2761 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 2762 2763 extern int i915_driver_load(struct drm_device *, unsigned long flags); 2764 extern int i915_driver_unload(struct drm_device *); 2765 extern int i915_driver_open(struct drm_device *dev, struct drm_file *file); 2766 extern void i915_driver_lastclose(struct drm_device * dev); 2767 extern void i915_driver_preclose(struct drm_device *dev, 2768 struct drm_file *file); 2769 extern void i915_driver_postclose(struct drm_device *dev, 2770 struct drm_file *file); 2771 #ifdef CONFIG_COMPAT 2772 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2773 unsigned long arg); 2774 #endif 2775 extern int intel_gpu_reset(struct drm_device *dev, u32 engine_mask); 2776 extern bool intel_has_gpu_reset(struct drm_device *dev); 2777 extern int i915_reset(struct drm_device *dev); 2778 extern int intel_guc_reset(struct drm_i915_private *dev_priv); 2779 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 2780 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2781 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2782 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2783 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2784 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2785 2786 /* intel_hotplug.c */ 2787 void intel_hpd_irq_handler(struct drm_device *dev, u32 pin_mask, u32 long_mask); 2788 void intel_hpd_init(struct drm_i915_private *dev_priv); 2789 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 2790 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 2791 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port); 2792 2793 /* i915_irq.c */ 2794 void i915_queue_hangcheck(struct drm_device *dev); 2795 __printf(3, 4) 2796 void i915_handle_error(struct drm_device *dev, u32 engine_mask, 2797 const char *fmt, ...); 2798 2799 extern void intel_irq_init(struct drm_i915_private *dev_priv); 2800 int intel_irq_install(struct drm_i915_private *dev_priv); 2801 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 2802 2803 extern void intel_uncore_sanitize(struct drm_device *dev); 2804 extern void intel_uncore_early_sanitize(struct drm_device *dev, 2805 bool restore_forcewake); 2806 extern void intel_uncore_init(struct drm_device *dev); 2807 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv); 2808 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv); 2809 extern void intel_uncore_fini(struct drm_device *dev); 2810 extern void intel_uncore_forcewake_reset(struct drm_device *dev, bool restore); 2811 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id); 2812 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv, 2813 enum forcewake_domains domains); 2814 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv, 2815 enum forcewake_domains domains); 2816 /* Like above but the caller must manage the uncore.lock itself. 2817 * Must be used with I915_READ_FW and friends. 2818 */ 2819 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv, 2820 enum forcewake_domains domains); 2821 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv, 2822 enum forcewake_domains domains); 2823 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv); 2824 2825 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv); 2826 static inline bool intel_vgpu_active(struct drm_device *dev) 2827 { 2828 return to_i915(dev)->vgpu.active; 2829 } 2830 2831 void 2832 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2833 u32 status_mask); 2834 2835 void 2836 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2837 u32 status_mask); 2838 2839 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 2840 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 2841 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 2842 uint32_t mask, 2843 uint32_t bits); 2844 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 2845 uint32_t interrupt_mask, 2846 uint32_t enabled_irq_mask); 2847 static inline void 2848 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2849 { 2850 ilk_update_display_irq(dev_priv, bits, bits); 2851 } 2852 static inline void 2853 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2854 { 2855 ilk_update_display_irq(dev_priv, bits, 0); 2856 } 2857 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 2858 enum pipe pipe, 2859 uint32_t interrupt_mask, 2860 uint32_t enabled_irq_mask); 2861 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 2862 enum pipe pipe, uint32_t bits) 2863 { 2864 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 2865 } 2866 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 2867 enum pipe pipe, uint32_t bits) 2868 { 2869 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 2870 } 2871 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 2872 uint32_t interrupt_mask, 2873 uint32_t enabled_irq_mask); 2874 static inline void 2875 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2876 { 2877 ibx_display_interrupt_update(dev_priv, bits, bits); 2878 } 2879 static inline void 2880 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2881 { 2882 ibx_display_interrupt_update(dev_priv, bits, 0); 2883 } 2884 2885 2886 /* i915_gem.c */ 2887 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 2888 struct drm_file *file_priv); 2889 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 2890 struct drm_file *file_priv); 2891 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 2892 struct drm_file *file_priv); 2893 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 2894 struct drm_file *file_priv); 2895 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2896 struct drm_file *file_priv); 2897 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 2898 struct drm_file *file_priv); 2899 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 2900 struct drm_file *file_priv); 2901 void i915_gem_execbuffer_move_to_active(struct list_head *vmas, 2902 struct drm_i915_gem_request *req); 2903 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params, 2904 struct drm_i915_gem_execbuffer2 *args, 2905 struct list_head *vmas); 2906 int i915_gem_execbuffer(struct drm_device *dev, void *data, 2907 struct drm_file *file_priv); 2908 int i915_gem_execbuffer2(struct drm_device *dev, void *data, 2909 struct drm_file *file_priv); 2910 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 2911 struct drm_file *file_priv); 2912 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 2913 struct drm_file *file); 2914 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 2915 struct drm_file *file); 2916 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 2917 struct drm_file *file_priv); 2918 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 2919 struct drm_file *file_priv); 2920 int i915_gem_set_tiling(struct drm_device *dev, void *data, 2921 struct drm_file *file_priv); 2922 int i915_gem_get_tiling(struct drm_device *dev, void *data, 2923 struct drm_file *file_priv); 2924 int i915_gem_init_userptr(struct drm_device *dev); 2925 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 2926 struct drm_file *file); 2927 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 2928 struct drm_file *file_priv); 2929 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 2930 struct drm_file *file_priv); 2931 void i915_gem_load_init(struct drm_device *dev); 2932 void i915_gem_load_cleanup(struct drm_device *dev); 2933 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 2934 void *i915_gem_object_alloc(struct drm_device *dev); 2935 void i915_gem_object_free(struct drm_i915_gem_object *obj); 2936 void i915_gem_object_init(struct drm_i915_gem_object *obj, 2937 const struct drm_i915_gem_object_ops *ops); 2938 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 2939 size_t size); 2940 struct drm_i915_gem_object *i915_gem_object_create_from_data( 2941 struct drm_device *dev, const void *data, size_t size); 2942 void i915_gem_free_object(struct drm_gem_object *obj); 2943 void i915_gem_vma_destroy(struct i915_vma *vma); 2944 2945 /* Flags used by pin/bind&friends. */ 2946 #define PIN_MAPPABLE (1<<0) 2947 #define PIN_NONBLOCK (1<<1) 2948 #define PIN_GLOBAL (1<<2) 2949 #define PIN_OFFSET_BIAS (1<<3) 2950 #define PIN_USER (1<<4) 2951 #define PIN_UPDATE (1<<5) 2952 #define PIN_ZONE_4G (1<<6) 2953 #define PIN_HIGH (1<<7) 2954 #define PIN_OFFSET_FIXED (1<<8) 2955 #define PIN_OFFSET_MASK (~4095) 2956 int __must_check 2957 i915_gem_object_pin(struct drm_i915_gem_object *obj, 2958 struct i915_address_space *vm, 2959 uint32_t alignment, 2960 uint64_t flags); 2961 int __must_check 2962 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 2963 const struct i915_ggtt_view *view, 2964 uint32_t alignment, 2965 uint64_t flags); 2966 2967 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level, 2968 u32 flags); 2969 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma); 2970 int __must_check i915_vma_unbind(struct i915_vma *vma); 2971 /* 2972 * BEWARE: Do not use the function below unless you can _absolutely_ 2973 * _guarantee_ VMA in question is _not in use_ anywhere. 2974 */ 2975 int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma); 2976 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj); 2977 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv); 2978 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 2979 2980 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 2981 int *needs_clflush); 2982 2983 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 2984 2985 static inline int __sg_page_count(struct scatterlist *sg) 2986 { 2987 return sg->length >> PAGE_SHIFT; 2988 } 2989 2990 struct page * 2991 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n); 2992 2993 static inline struct page * 2994 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n) 2995 { 2996 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT)) 2997 return NULL; 2998 2999 if (n < obj->get_page.last) { 3000 obj->get_page.sg = obj->pages->sgl; 3001 obj->get_page.last = 0; 3002 } 3003 3004 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) { 3005 obj->get_page.last += __sg_page_count(obj->get_page.sg++); 3006 if (unlikely(sg_is_chain(obj->get_page.sg))) 3007 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg); 3008 } 3009 3010 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last); 3011 } 3012 3013 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3014 { 3015 BUG_ON(obj->pages == NULL); 3016 obj->pages_pin_count++; 3017 } 3018 3019 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3020 { 3021 BUG_ON(obj->pages_pin_count == 0); 3022 obj->pages_pin_count--; 3023 } 3024 3025 /** 3026 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 3027 * @obj - the object to map into kernel address space 3028 * 3029 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 3030 * pages and then returns a contiguous mapping of the backing storage into 3031 * the kernel address space. 3032 * 3033 * The caller must hold the struct_mutex, and is responsible for calling 3034 * i915_gem_object_unpin_map() when the mapping is no longer required. 3035 * 3036 * Returns the pointer through which to access the mapped object, or an 3037 * ERR_PTR() on error. 3038 */ 3039 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj); 3040 3041 /** 3042 * i915_gem_object_unpin_map - releases an earlier mapping 3043 * @obj - the object to unmap 3044 * 3045 * After pinning the object and mapping its pages, once you are finished 3046 * with your access, call i915_gem_object_unpin_map() to release the pin 3047 * upon the mapping. Once the pin count reaches zero, that mapping may be 3048 * removed. 3049 * 3050 * The caller must hold the struct_mutex. 3051 */ 3052 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 3053 { 3054 lockdep_assert_held(&obj->base.dev->struct_mutex); 3055 i915_gem_object_unpin_pages(obj); 3056 } 3057 3058 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 3059 int i915_gem_object_sync(struct drm_i915_gem_object *obj, 3060 struct intel_engine_cs *to, 3061 struct drm_i915_gem_request **to_req); 3062 void i915_vma_move_to_active(struct i915_vma *vma, 3063 struct drm_i915_gem_request *req); 3064 int i915_gem_dumb_create(struct drm_file *file_priv, 3065 struct drm_device *dev, 3066 struct drm_mode_create_dumb *args); 3067 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3068 uint32_t handle, uint64_t *offset); 3069 /** 3070 * Returns true if seq1 is later than seq2. 3071 */ 3072 static inline bool 3073 i915_seqno_passed(uint32_t seq1, uint32_t seq2) 3074 { 3075 return (int32_t)(seq1 - seq2) >= 0; 3076 } 3077 3078 static inline bool i915_gem_request_started(struct drm_i915_gem_request *req, 3079 bool lazy_coherency) 3080 { 3081 if (!lazy_coherency && req->engine->irq_seqno_barrier) 3082 req->engine->irq_seqno_barrier(req->engine); 3083 return i915_seqno_passed(req->engine->get_seqno(req->engine), 3084 req->previous_seqno); 3085 } 3086 3087 static inline bool i915_gem_request_completed(struct drm_i915_gem_request *req, 3088 bool lazy_coherency) 3089 { 3090 if (!lazy_coherency && req->engine->irq_seqno_barrier) 3091 req->engine->irq_seqno_barrier(req->engine); 3092 return i915_seqno_passed(req->engine->get_seqno(req->engine), 3093 req->seqno); 3094 } 3095 3096 int __must_check i915_gem_get_seqno(struct drm_device *dev, u32 *seqno); 3097 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno); 3098 3099 struct drm_i915_gem_request * 3100 i915_gem_find_active_request(struct intel_engine_cs *engine); 3101 3102 bool i915_gem_retire_requests(struct drm_device *dev); 3103 void i915_gem_retire_requests_ring(struct intel_engine_cs *engine); 3104 3105 static inline u32 i915_reset_counter(struct i915_gpu_error *error) 3106 { 3107 return atomic_read(&error->reset_counter); 3108 } 3109 3110 static inline bool __i915_reset_in_progress(u32 reset) 3111 { 3112 return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG); 3113 } 3114 3115 static inline bool __i915_reset_in_progress_or_wedged(u32 reset) 3116 { 3117 return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED)); 3118 } 3119 3120 static inline bool __i915_terminally_wedged(u32 reset) 3121 { 3122 return unlikely(reset & I915_WEDGED); 3123 } 3124 3125 static inline bool i915_reset_in_progress(struct i915_gpu_error *error) 3126 { 3127 return __i915_reset_in_progress(i915_reset_counter(error)); 3128 } 3129 3130 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error) 3131 { 3132 return __i915_reset_in_progress_or_wedged(i915_reset_counter(error)); 3133 } 3134 3135 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3136 { 3137 return __i915_terminally_wedged(i915_reset_counter(error)); 3138 } 3139 3140 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3141 { 3142 return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2; 3143 } 3144 3145 static inline bool i915_stop_ring_allow_ban(struct drm_i915_private *dev_priv) 3146 { 3147 return dev_priv->gpu_error.stop_rings == 0 || 3148 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_BAN; 3149 } 3150 3151 static inline bool i915_stop_ring_allow_warn(struct drm_i915_private *dev_priv) 3152 { 3153 return dev_priv->gpu_error.stop_rings == 0 || 3154 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_WARN; 3155 } 3156 3157 void i915_gem_reset(struct drm_device *dev); 3158 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force); 3159 int __must_check i915_gem_init(struct drm_device *dev); 3160 int i915_gem_init_engines(struct drm_device *dev); 3161 int __must_check i915_gem_init_hw(struct drm_device *dev); 3162 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice); 3163 void i915_gem_init_swizzling(struct drm_device *dev); 3164 void i915_gem_cleanup_engines(struct drm_device *dev); 3165 int __must_check i915_gpu_idle(struct drm_device *dev); 3166 int __must_check i915_gem_suspend(struct drm_device *dev); 3167 void __i915_add_request(struct drm_i915_gem_request *req, 3168 struct drm_i915_gem_object *batch_obj, 3169 bool flush_caches); 3170 #define i915_add_request(req) \ 3171 __i915_add_request(req, NULL, true) 3172 #define i915_add_request_no_flush(req) \ 3173 __i915_add_request(req, NULL, false) 3174 int __i915_wait_request(struct drm_i915_gem_request *req, 3175 bool interruptible, 3176 s64 *timeout, 3177 struct intel_rps_client *rps); 3178 int __must_check i915_wait_request(struct drm_i915_gem_request *req); 3179 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf); 3180 int __must_check 3181 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 3182 bool readonly); 3183 int __must_check 3184 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, 3185 bool write); 3186 int __must_check 3187 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3188 int __must_check 3189 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3190 u32 alignment, 3191 const struct i915_ggtt_view *view); 3192 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj, 3193 const struct i915_ggtt_view *view); 3194 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3195 int align); 3196 int i915_gem_open(struct drm_device *dev, struct drm_file *file); 3197 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3198 3199 uint32_t 3200 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode); 3201 uint32_t 3202 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 3203 int tiling_mode, bool fenced); 3204 3205 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3206 enum i915_cache_level cache_level); 3207 3208 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3209 struct dma_buf *dma_buf); 3210 3211 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3212 struct drm_gem_object *gem_obj, int flags); 3213 3214 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o, 3215 const struct i915_ggtt_view *view); 3216 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o, 3217 struct i915_address_space *vm); 3218 static inline u64 3219 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o) 3220 { 3221 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal); 3222 } 3223 3224 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o); 3225 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o, 3226 const struct i915_ggtt_view *view); 3227 bool i915_gem_obj_bound(struct drm_i915_gem_object *o, 3228 struct i915_address_space *vm); 3229 3230 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o, 3231 struct i915_address_space *vm); 3232 struct i915_vma * 3233 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, 3234 struct i915_address_space *vm); 3235 struct i915_vma * 3236 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj, 3237 const struct i915_ggtt_view *view); 3238 3239 struct i915_vma * 3240 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj, 3241 struct i915_address_space *vm); 3242 struct i915_vma * 3243 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj, 3244 const struct i915_ggtt_view *view); 3245 3246 static inline struct i915_vma * 3247 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj) 3248 { 3249 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal); 3250 } 3251 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj); 3252 3253 /* Some GGTT VM helpers */ 3254 static inline struct i915_hw_ppgtt * 3255 i915_vm_to_ppgtt(struct i915_address_space *vm) 3256 { 3257 return container_of(vm, struct i915_hw_ppgtt, base); 3258 } 3259 3260 3261 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj) 3262 { 3263 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal); 3264 } 3265 3266 static inline unsigned long 3267 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj) 3268 { 3269 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3270 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3271 3272 return i915_gem_obj_size(obj, &ggtt->base); 3273 } 3274 3275 static inline int __must_check 3276 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj, 3277 uint32_t alignment, 3278 unsigned flags) 3279 { 3280 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3281 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3282 3283 return i915_gem_object_pin(obj, &ggtt->base, 3284 alignment, flags | PIN_GLOBAL); 3285 } 3286 3287 static inline int 3288 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj) 3289 { 3290 return i915_vma_unbind(i915_gem_obj_to_ggtt(obj)); 3291 } 3292 3293 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj, 3294 const struct i915_ggtt_view *view); 3295 static inline void 3296 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj) 3297 { 3298 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal); 3299 } 3300 3301 /* i915_gem_fence.c */ 3302 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj); 3303 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj); 3304 3305 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj); 3306 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj); 3307 3308 void i915_gem_restore_fences(struct drm_device *dev); 3309 3310 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev); 3311 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj); 3312 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj); 3313 3314 /* i915_gem_context.c */ 3315 int __must_check i915_gem_context_init(struct drm_device *dev); 3316 void i915_gem_context_fini(struct drm_device *dev); 3317 void i915_gem_context_reset(struct drm_device *dev); 3318 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file); 3319 int i915_gem_context_enable(struct drm_i915_gem_request *req); 3320 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file); 3321 int i915_switch_context(struct drm_i915_gem_request *req); 3322 struct intel_context * 3323 i915_gem_context_get(struct drm_i915_file_private *file_priv, u32 id); 3324 void i915_gem_context_free(struct kref *ctx_ref); 3325 struct drm_i915_gem_object * 3326 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size); 3327 static inline void i915_gem_context_reference(struct intel_context *ctx) 3328 { 3329 kref_get(&ctx->ref); 3330 } 3331 3332 static inline void i915_gem_context_unreference(struct intel_context *ctx) 3333 { 3334 kref_put(&ctx->ref, i915_gem_context_free); 3335 } 3336 3337 static inline bool i915_gem_context_is_default(const struct intel_context *c) 3338 { 3339 return c->user_handle == DEFAULT_CONTEXT_HANDLE; 3340 } 3341 3342 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data, 3343 struct drm_file *file); 3344 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data, 3345 struct drm_file *file); 3346 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data, 3347 struct drm_file *file_priv); 3348 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data, 3349 struct drm_file *file_priv); 3350 3351 /* i915_gem_evict.c */ 3352 int __must_check i915_gem_evict_something(struct drm_device *dev, 3353 struct i915_address_space *vm, 3354 int min_size, 3355 unsigned alignment, 3356 unsigned cache_level, 3357 unsigned long start, 3358 unsigned long end, 3359 unsigned flags); 3360 int __must_check i915_gem_evict_for_vma(struct i915_vma *target); 3361 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle); 3362 3363 /* belongs in i915_gem_gtt.h */ 3364 static inline void i915_gem_chipset_flush(struct drm_device *dev) 3365 { 3366 if (INTEL_INFO(dev)->gen < 6) 3367 intel_gtt_chipset_flush(); 3368 } 3369 3370 /* i915_gem_stolen.c */ 3371 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3372 struct drm_mm_node *node, u64 size, 3373 unsigned alignment); 3374 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3375 struct drm_mm_node *node, u64 size, 3376 unsigned alignment, u64 start, 3377 u64 end); 3378 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3379 struct drm_mm_node *node); 3380 int i915_gem_init_stolen(struct drm_device *dev); 3381 void i915_gem_cleanup_stolen(struct drm_device *dev); 3382 struct drm_i915_gem_object * 3383 i915_gem_object_create_stolen(struct drm_device *dev, u32 size); 3384 struct drm_i915_gem_object * 3385 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev, 3386 u32 stolen_offset, 3387 u32 gtt_offset, 3388 u32 size); 3389 3390 /* i915_gem_shrinker.c */ 3391 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv, 3392 unsigned long target, 3393 unsigned flags); 3394 #define I915_SHRINK_PURGEABLE 0x1 3395 #define I915_SHRINK_UNBOUND 0x2 3396 #define I915_SHRINK_BOUND 0x4 3397 #define I915_SHRINK_ACTIVE 0x8 3398 #define I915_SHRINK_VMAPS 0x10 3399 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); 3400 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv); 3401 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv); 3402 3403 3404 /* i915_gem_tiling.c */ 3405 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3406 { 3407 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3408 3409 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3410 obj->tiling_mode != I915_TILING_NONE; 3411 } 3412 3413 /* i915_gem_debug.c */ 3414 #if WATCH_LISTS 3415 int i915_verify_lists(struct drm_device *dev); 3416 #else 3417 #define i915_verify_lists(dev) 0 3418 #endif 3419 3420 /* i915_debugfs.c */ 3421 int i915_debugfs_init(struct drm_minor *minor); 3422 void i915_debugfs_cleanup(struct drm_minor *minor); 3423 #ifdef CONFIG_DEBUG_FS 3424 int i915_debugfs_connector_add(struct drm_connector *connector); 3425 void intel_display_crc_init(struct drm_device *dev); 3426 #else 3427 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3428 { return 0; } 3429 static inline void intel_display_crc_init(struct drm_device *dev) {} 3430 #endif 3431 3432 /* i915_gpu_error.c */ 3433 __printf(2, 3) 3434 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...); 3435 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr, 3436 const struct i915_error_state_file_priv *error); 3437 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb, 3438 struct drm_i915_private *i915, 3439 size_t count, loff_t pos); 3440 static inline void i915_error_state_buf_release( 3441 struct drm_i915_error_state_buf *eb) 3442 { 3443 kfree(eb->buf); 3444 } 3445 void i915_capture_error_state(struct drm_device *dev, u32 engine_mask, 3446 const char *error_msg); 3447 void i915_error_state_get(struct drm_device *dev, 3448 struct i915_error_state_file_priv *error_priv); 3449 void i915_error_state_put(struct i915_error_state_file_priv *error_priv); 3450 void i915_destroy_error_state(struct drm_device *dev); 3451 3452 void i915_get_extra_instdone(struct drm_device *dev, uint32_t *instdone); 3453 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3454 3455 /* i915_cmd_parser.c */ 3456 int i915_cmd_parser_get_version(void); 3457 int i915_cmd_parser_init_ring(struct intel_engine_cs *engine); 3458 void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine); 3459 bool i915_needs_cmd_parser(struct intel_engine_cs *engine); 3460 int i915_parse_cmds(struct intel_engine_cs *engine, 3461 struct drm_i915_gem_object *batch_obj, 3462 struct drm_i915_gem_object *shadow_batch_obj, 3463 u32 batch_start_offset, 3464 u32 batch_len, 3465 bool is_master); 3466 3467 /* i915_suspend.c */ 3468 extern int i915_save_state(struct drm_device *dev); 3469 extern int i915_restore_state(struct drm_device *dev); 3470 3471 /* i915_sysfs.c */ 3472 void i915_setup_sysfs(struct drm_device *dev_priv); 3473 void i915_teardown_sysfs(struct drm_device *dev_priv); 3474 3475 /* intel_i2c.c */ 3476 extern int intel_setup_gmbus(struct drm_device *dev); 3477 extern void intel_teardown_gmbus(struct drm_device *dev); 3478 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3479 unsigned int pin); 3480 3481 extern struct i2c_adapter * 3482 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3483 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3484 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3485 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3486 { 3487 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3488 } 3489 extern void intel_i2c_reset(struct drm_device *dev); 3490 3491 /* intel_bios.c */ 3492 int intel_bios_init(struct drm_i915_private *dev_priv); 3493 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3494 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3495 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3496 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3497 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3498 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3499 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3500 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3501 enum port port); 3502 3503 /* intel_opregion.c */ 3504 #ifdef CONFIG_ACPI 3505 extern int intel_opregion_setup(struct drm_device *dev); 3506 extern void intel_opregion_init(struct drm_device *dev); 3507 extern void intel_opregion_fini(struct drm_device *dev); 3508 extern void intel_opregion_asle_intr(struct drm_device *dev); 3509 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, 3510 bool enable); 3511 extern int intel_opregion_notify_adapter(struct drm_device *dev, 3512 pci_power_t state); 3513 extern int intel_opregion_get_panel_type(struct drm_device *dev); 3514 #else 3515 static inline int intel_opregion_setup(struct drm_device *dev) { return 0; } 3516 static inline void intel_opregion_init(struct drm_device *dev) { return; } 3517 static inline void intel_opregion_fini(struct drm_device *dev) { return; } 3518 static inline void intel_opregion_asle_intr(struct drm_device *dev) { return; } 3519 static inline int 3520 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable) 3521 { 3522 return 0; 3523 } 3524 static inline int 3525 intel_opregion_notify_adapter(struct drm_device *dev, pci_power_t state) 3526 { 3527 return 0; 3528 } 3529 static inline int intel_opregion_get_panel_type(struct drm_device *dev) 3530 { 3531 return -ENODEV; 3532 } 3533 #endif 3534 3535 /* intel_acpi.c */ 3536 #ifdef CONFIG_ACPI 3537 extern void intel_register_dsm_handler(void); 3538 extern void intel_unregister_dsm_handler(void); 3539 #else 3540 static inline void intel_register_dsm_handler(void) { return; } 3541 static inline void intel_unregister_dsm_handler(void) { return; } 3542 #endif /* CONFIG_ACPI */ 3543 3544 /* modesetting */ 3545 extern void intel_modeset_init_hw(struct drm_device *dev); 3546 extern void intel_modeset_init(struct drm_device *dev); 3547 extern void intel_modeset_gem_init(struct drm_device *dev); 3548 extern void intel_modeset_cleanup(struct drm_device *dev); 3549 extern void intel_connector_unregister(struct intel_connector *); 3550 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state); 3551 extern void intel_display_resume(struct drm_device *dev); 3552 extern void i915_redisable_vga(struct drm_device *dev); 3553 extern void i915_redisable_vga_power_on(struct drm_device *dev); 3554 extern bool ironlake_set_drps(struct drm_device *dev, u8 val); 3555 extern void intel_init_pch_refclk(struct drm_device *dev); 3556 extern void intel_set_rps(struct drm_device *dev, u8 val); 3557 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3558 bool enable); 3559 extern void intel_detect_pch(struct drm_device *dev); 3560 extern int intel_enable_rc6(const struct drm_device *dev); 3561 3562 extern bool i915_semaphore_is_enabled(struct drm_device *dev); 3563 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3564 struct drm_file *file); 3565 int i915_get_reset_stats_ioctl(struct drm_device *dev, void *data, 3566 struct drm_file *file); 3567 3568 /* overlay */ 3569 extern struct intel_overlay_error_state *intel_overlay_capture_error_state(struct drm_device *dev); 3570 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3571 struct intel_overlay_error_state *error); 3572 3573 extern struct intel_display_error_state *intel_display_capture_error_state(struct drm_device *dev); 3574 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3575 struct drm_device *dev, 3576 struct intel_display_error_state *error); 3577 3578 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3579 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val); 3580 3581 /* intel_sideband.c */ 3582 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3583 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3584 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3585 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 3586 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 3587 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3588 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3589 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3590 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3591 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3592 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3593 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 3594 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 3595 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3596 enum intel_sbi_destination destination); 3597 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3598 enum intel_sbi_destination destination); 3599 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3600 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3601 3602 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3603 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3604 3605 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 3606 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 3607 3608 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 3609 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 3610 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 3611 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 3612 3613 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 3614 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 3615 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 3616 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 3617 3618 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3619 * will be implemented using 2 32-bit writes in an arbitrary order with 3620 * an arbitrary delay between them. This can cause the hardware to 3621 * act upon the intermediate value, possibly leading to corruption and 3622 * machine death. You have been warned. 3623 */ 3624 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true) 3625 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 3626 3627 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 3628 u32 upper, lower, old_upper, loop = 0; \ 3629 upper = I915_READ(upper_reg); \ 3630 do { \ 3631 old_upper = upper; \ 3632 lower = I915_READ(lower_reg); \ 3633 upper = I915_READ(upper_reg); \ 3634 } while (upper != old_upper && loop++ < 2); \ 3635 (u64)upper << 32 | lower; }) 3636 3637 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 3638 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 3639 3640 #define __raw_read(x, s) \ 3641 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \ 3642 i915_reg_t reg) \ 3643 { \ 3644 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3645 } 3646 3647 #define __raw_write(x, s) \ 3648 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \ 3649 i915_reg_t reg, uint##x##_t val) \ 3650 { \ 3651 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3652 } 3653 __raw_read(8, b) 3654 __raw_read(16, w) 3655 __raw_read(32, l) 3656 __raw_read(64, q) 3657 3658 __raw_write(8, b) 3659 __raw_write(16, w) 3660 __raw_write(32, l) 3661 __raw_write(64, q) 3662 3663 #undef __raw_read 3664 #undef __raw_write 3665 3666 /* These are untraced mmio-accessors that are only valid to be used inside 3667 * criticial sections inside IRQ handlers where forcewake is explicitly 3668 * controlled. 3669 * Think twice, and think again, before using these. 3670 * Note: Should only be used between intel_uncore_forcewake_irqlock() and 3671 * intel_uncore_forcewake_irqunlock(). 3672 */ 3673 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 3674 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 3675 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 3676 3677 /* "Broadcast RGB" property */ 3678 #define INTEL_BROADCAST_RGB_AUTO 0 3679 #define INTEL_BROADCAST_RGB_FULL 1 3680 #define INTEL_BROADCAST_RGB_LIMITED 2 3681 3682 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev) 3683 { 3684 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) 3685 return VLV_VGACNTRL; 3686 else if (INTEL_INFO(dev)->gen >= 5) 3687 return CPU_VGACNTRL; 3688 else 3689 return VGACNTRL; 3690 } 3691 3692 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 3693 { 3694 unsigned long j = msecs_to_jiffies(m); 3695 3696 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3697 } 3698 3699 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 3700 { 3701 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 3702 } 3703 3704 static inline unsigned long 3705 timespec_to_jiffies_timeout(const struct timespec *value) 3706 { 3707 unsigned long j = timespec_to_jiffies(value); 3708 3709 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3710 } 3711 3712 /* 3713 * If you need to wait X milliseconds between events A and B, but event B 3714 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 3715 * when event A happened, then just before event B you call this function and 3716 * pass the timestamp as the first argument, and X as the second argument. 3717 */ 3718 static inline void 3719 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 3720 { 3721 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 3722 3723 /* 3724 * Don't re-read the value of "jiffies" every time since it may change 3725 * behind our back and break the math. 3726 */ 3727 tmp_jiffies = jiffies; 3728 target_jiffies = timestamp_jiffies + 3729 msecs_to_jiffies_timeout(to_wait_ms); 3730 3731 if (time_after(target_jiffies, tmp_jiffies)) { 3732 remaining_jiffies = target_jiffies - tmp_jiffies; 3733 while (remaining_jiffies) 3734 remaining_jiffies = 3735 schedule_timeout_uninterruptible(remaining_jiffies); 3736 } 3737 } 3738 3739 static inline void i915_trace_irq_get(struct intel_engine_cs *engine, 3740 struct drm_i915_gem_request *req) 3741 { 3742 if (engine->trace_irq_req == NULL && engine->irq_get(engine)) 3743 i915_gem_request_assign(&engine->trace_irq_req, req); 3744 } 3745 3746 #endif 3747