xref: /openbmc/linux/drivers/gpu/drm/i915/i915_drv.h (revision 423997ff)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/mm_types.h>
44 #include <linux/perf_event.h>
45 #include <linux/pm_qos.h>
46 #include <linux/reservation.h>
47 #include <linux/shmem_fs.h>
48 #include <linux/stackdepot.h>
49 
50 #include <drm/intel-gtt.h>
51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
52 #include <drm/drm_gem.h>
53 #include <drm/drm_auth.h>
54 #include <drm/drm_cache.h>
55 #include <drm/drm_util.h>
56 #include <drm/drm_dsc.h>
57 #include <drm/drm_connector.h>
58 #include <drm/i915_mei_hdcp_interface.h>
59 
60 #include "i915_fixed.h"
61 #include "i915_params.h"
62 #include "i915_reg.h"
63 #include "i915_utils.h"
64 
65 #include "gt/intel_lrc.h"
66 #include "gt/intel_engine.h"
67 #include "gt/intel_workarounds.h"
68 
69 #include "intel_bios.h"
70 #include "intel_device_info.h"
71 #include "intel_display.h"
72 #include "intel_dpll_mgr.h"
73 #include "intel_frontbuffer.h"
74 #include "intel_opregion.h"
75 #include "intel_runtime_pm.h"
76 #include "intel_uc.h"
77 #include "intel_uncore.h"
78 #include "intel_wakeref.h"
79 #include "intel_wopcm.h"
80 
81 #include "i915_gem.h"
82 #include "i915_gem_context.h"
83 #include "i915_gem_fence_reg.h"
84 #include "i915_gem_object.h"
85 #include "i915_gem_gtt.h"
86 #include "i915_gpu_error.h"
87 #include "i915_request.h"
88 #include "i915_scheduler.h"
89 #include "i915_timeline.h"
90 #include "i915_vma.h"
91 
92 #include "intel_gvt.h"
93 
94 /* General customization:
95  */
96 
97 #define DRIVER_NAME		"i915"
98 #define DRIVER_DESC		"Intel Graphics"
99 #define DRIVER_DATE		"20190524"
100 #define DRIVER_TIMESTAMP	1558719322
101 
102 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
103  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
104  * which may not necessarily be a user visible problem.  This will either
105  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
106  * enable distros and users to tailor their preferred amount of i915 abrt
107  * spam.
108  */
109 #define I915_STATE_WARN(condition, format...) ({			\
110 	int __ret_warn_on = !!(condition);				\
111 	if (unlikely(__ret_warn_on))					\
112 		if (!WARN(i915_modparams.verbose_state_checks, format))	\
113 			DRM_ERROR(format);				\
114 	unlikely(__ret_warn_on);					\
115 })
116 
117 #define I915_STATE_WARN_ON(x)						\
118 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
119 
120 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
121 
122 bool __i915_inject_load_failure(const char *func, int line);
123 #define i915_inject_load_failure() \
124 	__i915_inject_load_failure(__func__, __LINE__)
125 
126 bool i915_error_injected(void);
127 
128 #else
129 
130 #define i915_inject_load_failure() false
131 #define i915_error_injected() false
132 
133 #endif
134 
135 #define i915_load_error(i915, fmt, ...)					 \
136 	__i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
137 		      fmt, ##__VA_ARGS__)
138 
139 enum hpd_pin {
140 	HPD_NONE = 0,
141 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
142 	HPD_CRT,
143 	HPD_SDVO_B,
144 	HPD_SDVO_C,
145 	HPD_PORT_A,
146 	HPD_PORT_B,
147 	HPD_PORT_C,
148 	HPD_PORT_D,
149 	HPD_PORT_E,
150 	HPD_PORT_F,
151 	HPD_NUM_PINS
152 };
153 
154 #define for_each_hpd_pin(__pin) \
155 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
156 
157 /* Threshold == 5 for long IRQs, 50 for short */
158 #define HPD_STORM_DEFAULT_THRESHOLD 50
159 
160 struct i915_hotplug {
161 	struct work_struct hotplug_work;
162 
163 	struct {
164 		unsigned long last_jiffies;
165 		int count;
166 		enum {
167 			HPD_ENABLED = 0,
168 			HPD_DISABLED = 1,
169 			HPD_MARK_DISABLED = 2
170 		} state;
171 	} stats[HPD_NUM_PINS];
172 	u32 event_bits;
173 	struct delayed_work reenable_work;
174 
175 	u32 long_port_mask;
176 	u32 short_port_mask;
177 	struct work_struct dig_port_work;
178 
179 	struct work_struct poll_init_work;
180 	bool poll_enabled;
181 
182 	unsigned int hpd_storm_threshold;
183 	/* Whether or not to count short HPD IRQs in HPD storms */
184 	u8 hpd_short_storm_enabled;
185 
186 	/*
187 	 * if we get a HPD irq from DP and a HPD irq from non-DP
188 	 * the non-DP HPD could block the workqueue on a mode config
189 	 * mutex getting, that userspace may have taken. However
190 	 * userspace is waiting on the DP workqueue to run which is
191 	 * blocked behind the non-DP one.
192 	 */
193 	struct workqueue_struct *dp_wq;
194 };
195 
196 #define I915_GEM_GPU_DOMAINS \
197 	(I915_GEM_DOMAIN_RENDER | \
198 	 I915_GEM_DOMAIN_SAMPLER | \
199 	 I915_GEM_DOMAIN_COMMAND | \
200 	 I915_GEM_DOMAIN_INSTRUCTION | \
201 	 I915_GEM_DOMAIN_VERTEX)
202 
203 struct drm_i915_private;
204 struct i915_mm_struct;
205 struct i915_mmu_object;
206 
207 struct drm_i915_file_private {
208 	struct drm_i915_private *dev_priv;
209 	struct drm_file *file;
210 
211 	struct {
212 		spinlock_t lock;
213 		struct list_head request_list;
214 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
215  * chosen to prevent the CPU getting more than a frame ahead of the GPU
216  * (when using lax throttling for the frontbuffer). We also use it to
217  * offer free GPU waitboosts for severely congested workloads.
218  */
219 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
220 	} mm;
221 
222 	struct idr context_idr;
223 	struct mutex context_idr_lock; /* guards context_idr */
224 
225 	struct idr vm_idr;
226 	struct mutex vm_idr_lock; /* guards vm_idr */
227 
228 	unsigned int bsd_engine;
229 
230 /*
231  * Every context ban increments per client ban score. Also
232  * hangs in short succession increments ban score. If ban threshold
233  * is reached, client is considered banned and submitting more work
234  * will fail. This is a stop gap measure to limit the badly behaving
235  * clients access to gpu. Note that unbannable contexts never increment
236  * the client ban score.
237  */
238 #define I915_CLIENT_SCORE_HANG_FAST	1
239 #define   I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ)
240 #define I915_CLIENT_SCORE_CONTEXT_BAN   3
241 #define I915_CLIENT_SCORE_BANNED	9
242 	/** ban_score: Accumulated score of all ctx bans and fast hangs. */
243 	atomic_t ban_score;
244 	unsigned long hang_timestamp;
245 };
246 
247 /* Interface history:
248  *
249  * 1.1: Original.
250  * 1.2: Add Power Management
251  * 1.3: Add vblank support
252  * 1.4: Fix cmdbuffer path, add heap destroy
253  * 1.5: Add vblank pipe configuration
254  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
255  *      - Support vertical blank on secondary display pipe
256  */
257 #define DRIVER_MAJOR		1
258 #define DRIVER_MINOR		6
259 #define DRIVER_PATCHLEVEL	0
260 
261 struct intel_overlay;
262 struct intel_overlay_error_state;
263 
264 struct sdvo_device_mapping {
265 	u8 initialized;
266 	u8 dvo_port;
267 	u8 slave_addr;
268 	u8 dvo_wiring;
269 	u8 i2c_pin;
270 	u8 ddc_pin;
271 };
272 
273 struct intel_connector;
274 struct intel_encoder;
275 struct intel_atomic_state;
276 struct intel_crtc_state;
277 struct intel_initial_plane_config;
278 struct intel_crtc;
279 struct intel_limit;
280 struct dpll;
281 struct intel_cdclk_state;
282 
283 struct drm_i915_display_funcs {
284 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
285 			  struct intel_cdclk_state *cdclk_state);
286 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
287 			  const struct intel_cdclk_state *cdclk_state,
288 			  enum pipe pipe);
289 	int (*get_fifo_size)(struct drm_i915_private *dev_priv,
290 			     enum i9xx_plane_id i9xx_plane);
291 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
292 	int (*compute_intermediate_wm)(struct intel_crtc_state *newstate);
293 	void (*initial_watermarks)(struct intel_atomic_state *state,
294 				   struct intel_crtc_state *cstate);
295 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
296 					 struct intel_crtc_state *cstate);
297 	void (*optimize_watermarks)(struct intel_atomic_state *state,
298 				    struct intel_crtc_state *cstate);
299 	int (*compute_global_watermarks)(struct intel_atomic_state *state);
300 	void (*update_wm)(struct intel_crtc *crtc);
301 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
302 	/* Returns the active state of the crtc, and if the crtc is active,
303 	 * fills out the pipe-config with the hw state. */
304 	bool (*get_pipe_config)(struct intel_crtc *,
305 				struct intel_crtc_state *);
306 	void (*get_initial_plane_config)(struct intel_crtc *,
307 					 struct intel_initial_plane_config *);
308 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
309 				  struct intel_crtc_state *crtc_state);
310 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
311 			    struct drm_atomic_state *old_state);
312 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
313 			     struct drm_atomic_state *old_state);
314 	void (*update_crtcs)(struct drm_atomic_state *state);
315 	void (*audio_codec_enable)(struct intel_encoder *encoder,
316 				   const struct intel_crtc_state *crtc_state,
317 				   const struct drm_connector_state *conn_state);
318 	void (*audio_codec_disable)(struct intel_encoder *encoder,
319 				    const struct intel_crtc_state *old_crtc_state,
320 				    const struct drm_connector_state *old_conn_state);
321 	void (*fdi_link_train)(struct intel_crtc *crtc,
322 			       const struct intel_crtc_state *crtc_state);
323 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
324 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
325 	/* clock updates for mode set */
326 	/* cursor updates */
327 	/* render clock increase/decrease */
328 	/* display clock increase/decrease */
329 	/* pll clock increase/decrease */
330 
331 	int (*color_check)(struct intel_crtc_state *crtc_state);
332 	/*
333 	 * Program double buffered color management registers during
334 	 * vblank evasion. The registers should then latch during the
335 	 * next vblank start, alongside any other double buffered registers
336 	 * involved with the same commit.
337 	 */
338 	void (*color_commit)(const struct intel_crtc_state *crtc_state);
339 	/*
340 	 * Load LUTs (and other single buffered color management
341 	 * registers). Will (hopefully) be called during the vblank
342 	 * following the latching of any double buffered registers
343 	 * involved with the same commit.
344 	 */
345 	void (*load_luts)(const struct intel_crtc_state *crtc_state);
346 };
347 
348 struct intel_csr {
349 	struct work_struct work;
350 	const char *fw_path;
351 	u32 required_version;
352 	u32 max_fw_size; /* bytes */
353 	u32 *dmc_payload;
354 	u32 dmc_fw_size; /* dwords */
355 	u32 version;
356 	u32 mmio_count;
357 	i915_reg_t mmioaddr[8];
358 	u32 mmiodata[8];
359 	u32 dc_state;
360 	u32 allowed_dc_mask;
361 	intel_wakeref_t wakeref;
362 };
363 
364 enum i915_cache_level {
365 	I915_CACHE_NONE = 0,
366 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
367 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
368 			      caches, eg sampler/render caches, and the
369 			      large Last-Level-Cache. LLC is coherent with
370 			      the CPU, but L3 is only visible to the GPU. */
371 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
372 };
373 
374 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
375 
376 struct intel_fbc {
377 	/* This is always the inner lock when overlapping with struct_mutex and
378 	 * it's the outer lock when overlapping with stolen_lock. */
379 	struct mutex lock;
380 	unsigned threshold;
381 	unsigned int possible_framebuffer_bits;
382 	unsigned int busy_bits;
383 	unsigned int visible_pipes_mask;
384 	struct intel_crtc *crtc;
385 
386 	struct drm_mm_node compressed_fb;
387 	struct drm_mm_node *compressed_llb;
388 
389 	bool false_color;
390 
391 	bool enabled;
392 	bool active;
393 	bool flip_pending;
394 
395 	bool underrun_detected;
396 	struct work_struct underrun_work;
397 
398 	/*
399 	 * Due to the atomic rules we can't access some structures without the
400 	 * appropriate locking, so we cache information here in order to avoid
401 	 * these problems.
402 	 */
403 	struct intel_fbc_state_cache {
404 		struct i915_vma *vma;
405 		unsigned long flags;
406 
407 		struct {
408 			unsigned int mode_flags;
409 			u32 hsw_bdw_pixel_rate;
410 		} crtc;
411 
412 		struct {
413 			unsigned int rotation;
414 			int src_w;
415 			int src_h;
416 			bool visible;
417 			/*
418 			 * Display surface base address adjustement for
419 			 * pageflips. Note that on gen4+ this only adjusts up
420 			 * to a tile, offsets within a tile are handled in
421 			 * the hw itself (with the TILEOFF register).
422 			 */
423 			int adjusted_x;
424 			int adjusted_y;
425 
426 			int y;
427 
428 			u16 pixel_blend_mode;
429 		} plane;
430 
431 		struct {
432 			const struct drm_format_info *format;
433 			unsigned int stride;
434 		} fb;
435 	} state_cache;
436 
437 	/*
438 	 * This structure contains everything that's relevant to program the
439 	 * hardware registers. When we want to figure out if we need to disable
440 	 * and re-enable FBC for a new configuration we just check if there's
441 	 * something different in the struct. The genx_fbc_activate functions
442 	 * are supposed to read from it in order to program the registers.
443 	 */
444 	struct intel_fbc_reg_params {
445 		struct i915_vma *vma;
446 		unsigned long flags;
447 
448 		struct {
449 			enum pipe pipe;
450 			enum i9xx_plane_id i9xx_plane;
451 			unsigned int fence_y_offset;
452 		} crtc;
453 
454 		struct {
455 			const struct drm_format_info *format;
456 			unsigned int stride;
457 		} fb;
458 
459 		int cfb_size;
460 		unsigned int gen9_wa_cfb_stride;
461 	} params;
462 
463 	const char *no_fbc_reason;
464 };
465 
466 /*
467  * HIGH_RR is the highest eDP panel refresh rate read from EDID
468  * LOW_RR is the lowest eDP panel refresh rate found from EDID
469  * parsing for same resolution.
470  */
471 enum drrs_refresh_rate_type {
472 	DRRS_HIGH_RR,
473 	DRRS_LOW_RR,
474 	DRRS_MAX_RR, /* RR count */
475 };
476 
477 enum drrs_support_type {
478 	DRRS_NOT_SUPPORTED = 0,
479 	STATIC_DRRS_SUPPORT = 1,
480 	SEAMLESS_DRRS_SUPPORT = 2
481 };
482 
483 struct intel_dp;
484 struct i915_drrs {
485 	struct mutex mutex;
486 	struct delayed_work work;
487 	struct intel_dp *dp;
488 	unsigned busy_frontbuffer_bits;
489 	enum drrs_refresh_rate_type refresh_rate_type;
490 	enum drrs_support_type type;
491 };
492 
493 struct i915_psr {
494 	struct mutex lock;
495 
496 #define I915_PSR_DEBUG_MODE_MASK	0x0f
497 #define I915_PSR_DEBUG_DEFAULT		0x00
498 #define I915_PSR_DEBUG_DISABLE		0x01
499 #define I915_PSR_DEBUG_ENABLE		0x02
500 #define I915_PSR_DEBUG_FORCE_PSR1	0x03
501 #define I915_PSR_DEBUG_IRQ		0x10
502 
503 	u32 debug;
504 	bool sink_support;
505 	bool enabled;
506 	struct intel_dp *dp;
507 	enum pipe pipe;
508 	bool active;
509 	struct work_struct work;
510 	unsigned busy_frontbuffer_bits;
511 	bool sink_psr2_support;
512 	bool link_standby;
513 	bool colorimetry_support;
514 	bool psr2_enabled;
515 	u8 sink_sync_latency;
516 	ktime_t last_entry_attempt;
517 	ktime_t last_exit;
518 	bool sink_not_reliable;
519 	bool irq_aux_error;
520 	u16 su_x_granularity;
521 };
522 
523 /*
524  * Sorted by south display engine compatibility.
525  * If the new PCH comes with a south display engine that is not
526  * inherited from the latest item, please do not add it to the
527  * end. Instead, add it right after its "parent" PCH.
528  */
529 enum intel_pch {
530 	PCH_NOP = -1,	/* PCH without south display */
531 	PCH_NONE = 0,	/* No PCH present */
532 	PCH_IBX,	/* Ibexpeak PCH */
533 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
534 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
535 	PCH_SPT,        /* Sunrisepoint/Kaby Lake PCH */
536 	PCH_CNP,        /* Cannon/Comet Lake PCH */
537 	PCH_ICP,	/* Ice Lake PCH */
538 };
539 
540 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
541 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
542 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
543 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
544 #define QUIRK_INCREASE_T12_DELAY (1<<6)
545 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7)
546 
547 struct intel_fbdev;
548 struct intel_fbc_work;
549 
550 struct intel_gmbus {
551 	struct i2c_adapter adapter;
552 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
553 	u32 force_bit;
554 	u32 reg0;
555 	i915_reg_t gpio_reg;
556 	struct i2c_algo_bit_data bit_algo;
557 	struct drm_i915_private *dev_priv;
558 };
559 
560 struct i915_suspend_saved_registers {
561 	u32 saveDSPARB;
562 	u32 saveFBC_CONTROL;
563 	u32 saveCACHE_MODE_0;
564 	u32 saveMI_ARB_STATE;
565 	u32 saveSWF0[16];
566 	u32 saveSWF1[16];
567 	u32 saveSWF3[3];
568 	u64 saveFENCE[I915_MAX_NUM_FENCES];
569 	u32 savePCH_PORT_HOTPLUG;
570 	u16 saveGCDGMBUS;
571 };
572 
573 struct vlv_s0ix_state {
574 	/* GAM */
575 	u32 wr_watermark;
576 	u32 gfx_prio_ctrl;
577 	u32 arb_mode;
578 	u32 gfx_pend_tlb0;
579 	u32 gfx_pend_tlb1;
580 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
581 	u32 media_max_req_count;
582 	u32 gfx_max_req_count;
583 	u32 render_hwsp;
584 	u32 ecochk;
585 	u32 bsd_hwsp;
586 	u32 blt_hwsp;
587 	u32 tlb_rd_addr;
588 
589 	/* MBC */
590 	u32 g3dctl;
591 	u32 gsckgctl;
592 	u32 mbctl;
593 
594 	/* GCP */
595 	u32 ucgctl1;
596 	u32 ucgctl3;
597 	u32 rcgctl1;
598 	u32 rcgctl2;
599 	u32 rstctl;
600 	u32 misccpctl;
601 
602 	/* GPM */
603 	u32 gfxpause;
604 	u32 rpdeuhwtc;
605 	u32 rpdeuc;
606 	u32 ecobus;
607 	u32 pwrdwnupctl;
608 	u32 rp_down_timeout;
609 	u32 rp_deucsw;
610 	u32 rcubmabdtmr;
611 	u32 rcedata;
612 	u32 spare2gh;
613 
614 	/* Display 1 CZ domain */
615 	u32 gt_imr;
616 	u32 gt_ier;
617 	u32 pm_imr;
618 	u32 pm_ier;
619 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
620 
621 	/* GT SA CZ domain */
622 	u32 tilectl;
623 	u32 gt_fifoctl;
624 	u32 gtlc_wake_ctrl;
625 	u32 gtlc_survive;
626 	u32 pmwgicz;
627 
628 	/* Display 2 CZ domain */
629 	u32 gu_ctl0;
630 	u32 gu_ctl1;
631 	u32 pcbr;
632 	u32 clock_gate_dis2;
633 };
634 
635 struct intel_rps_ei {
636 	ktime_t ktime;
637 	u32 render_c0;
638 	u32 media_c0;
639 };
640 
641 struct intel_rps {
642 	struct mutex lock; /* protects enabling and the worker */
643 
644 	/*
645 	 * work, interrupts_enabled and pm_iir are protected by
646 	 * dev_priv->irq_lock
647 	 */
648 	struct work_struct work;
649 	bool interrupts_enabled;
650 	u32 pm_iir;
651 
652 	/* PM interrupt bits that should never be masked */
653 	u32 pm_intrmsk_mbz;
654 
655 	/* Frequencies are stored in potentially platform dependent multiples.
656 	 * In other words, *_freq needs to be multiplied by X to be interesting.
657 	 * Soft limits are those which are used for the dynamic reclocking done
658 	 * by the driver (raise frequencies under heavy loads, and lower for
659 	 * lighter loads). Hard limits are those imposed by the hardware.
660 	 *
661 	 * A distinction is made for overclocking, which is never enabled by
662 	 * default, and is considered to be above the hard limit if it's
663 	 * possible at all.
664 	 */
665 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
666 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
667 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
668 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
669 	u8 min_freq;		/* AKA RPn. Minimum frequency */
670 	u8 boost_freq;		/* Frequency to request when wait boosting */
671 	u8 idle_freq;		/* Frequency to request when we are idle */
672 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
673 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
674 	u8 rp0_freq;		/* Non-overclocked max frequency. */
675 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
676 
677 	int last_adj;
678 
679 	struct {
680 		struct mutex mutex;
681 
682 		enum { LOW_POWER, BETWEEN, HIGH_POWER } mode;
683 		unsigned int interactive;
684 
685 		u8 up_threshold; /* Current %busy required to uplock */
686 		u8 down_threshold; /* Current %busy required to downclock */
687 	} power;
688 
689 	bool enabled;
690 	atomic_t num_waiters;
691 	atomic_t boosts;
692 
693 	/* manual wa residency calculations */
694 	struct intel_rps_ei ei;
695 };
696 
697 struct intel_rc6 {
698 	bool enabled;
699 	u64 prev_hw_residency[4];
700 	u64 cur_residency[4];
701 };
702 
703 struct intel_llc_pstate {
704 	bool enabled;
705 };
706 
707 struct intel_gen6_power_mgmt {
708 	struct intel_rps rps;
709 	struct intel_rc6 rc6;
710 	struct intel_llc_pstate llc_pstate;
711 };
712 
713 /* defined intel_pm.c */
714 extern spinlock_t mchdev_lock;
715 
716 struct intel_ilk_power_mgmt {
717 	u8 cur_delay;
718 	u8 min_delay;
719 	u8 max_delay;
720 	u8 fmax;
721 	u8 fstart;
722 
723 	u64 last_count1;
724 	unsigned long last_time1;
725 	unsigned long chipset_power;
726 	u64 last_count2;
727 	u64 last_time2;
728 	unsigned long gfx_power;
729 	u8 corr;
730 
731 	int c_m;
732 	int r_t;
733 };
734 
735 struct drm_i915_private;
736 struct i915_power_well;
737 
738 struct i915_power_well_ops {
739 	/*
740 	 * Synchronize the well's hw state to match the current sw state, for
741 	 * example enable/disable it based on the current refcount. Called
742 	 * during driver init and resume time, possibly after first calling
743 	 * the enable/disable handlers.
744 	 */
745 	void (*sync_hw)(struct drm_i915_private *dev_priv,
746 			struct i915_power_well *power_well);
747 	/*
748 	 * Enable the well and resources that depend on it (for example
749 	 * interrupts located on the well). Called after the 0->1 refcount
750 	 * transition.
751 	 */
752 	void (*enable)(struct drm_i915_private *dev_priv,
753 		       struct i915_power_well *power_well);
754 	/*
755 	 * Disable the well and resources that depend on it. Called after
756 	 * the 1->0 refcount transition.
757 	 */
758 	void (*disable)(struct drm_i915_private *dev_priv,
759 			struct i915_power_well *power_well);
760 	/* Returns the hw enabled state. */
761 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
762 			   struct i915_power_well *power_well);
763 };
764 
765 struct i915_power_well_regs {
766 	i915_reg_t bios;
767 	i915_reg_t driver;
768 	i915_reg_t kvmr;
769 	i915_reg_t debug;
770 };
771 
772 /* Power well structure for haswell */
773 struct i915_power_well_desc {
774 	const char *name;
775 	bool always_on;
776 	u64 domains;
777 	/* unique identifier for this power well */
778 	enum i915_power_well_id id;
779 	/*
780 	 * Arbitraty data associated with this power well. Platform and power
781 	 * well specific.
782 	 */
783 	union {
784 		struct {
785 			/*
786 			 * request/status flag index in the PUNIT power well
787 			 * control/status registers.
788 			 */
789 			u8 idx;
790 		} vlv;
791 		struct {
792 			enum dpio_phy phy;
793 		} bxt;
794 		struct {
795 			const struct i915_power_well_regs *regs;
796 			/*
797 			 * request/status flag index in the power well
798 			 * constrol/status registers.
799 			 */
800 			u8 idx;
801 			/* Mask of pipes whose IRQ logic is backed by the pw */
802 			u8 irq_pipe_mask;
803 			/* The pw is backing the VGA functionality */
804 			bool has_vga:1;
805 			bool has_fuses:1;
806 			/*
807 			 * The pw is for an ICL+ TypeC PHY port in
808 			 * Thunderbolt mode.
809 			 */
810 			bool is_tc_tbt:1;
811 		} hsw;
812 	};
813 	const struct i915_power_well_ops *ops;
814 };
815 
816 struct i915_power_well {
817 	const struct i915_power_well_desc *desc;
818 	/* power well enable/disable usage count */
819 	int count;
820 	/* cached hw enabled state */
821 	bool hw_enabled;
822 };
823 
824 struct i915_power_domains {
825 	/*
826 	 * Power wells needed for initialization at driver init and suspend
827 	 * time are on. They are kept on until after the first modeset.
828 	 */
829 	bool initializing;
830 	bool display_core_suspended;
831 	int power_well_count;
832 
833 	intel_wakeref_t wakeref;
834 
835 	struct mutex lock;
836 	int domain_use_count[POWER_DOMAIN_NUM];
837 
838 	struct delayed_work async_put_work;
839 	intel_wakeref_t async_put_wakeref;
840 	u64 async_put_domains[2];
841 
842 	struct i915_power_well *power_wells;
843 };
844 
845 #define MAX_L3_SLICES 2
846 struct intel_l3_parity {
847 	u32 *remap_info[MAX_L3_SLICES];
848 	struct work_struct error_work;
849 	int which_slice;
850 };
851 
852 struct i915_gem_mm {
853 	/** Memory allocator for GTT stolen memory */
854 	struct drm_mm stolen;
855 	/** Protects the usage of the GTT stolen memory allocator. This is
856 	 * always the inner lock when overlapping with struct_mutex. */
857 	struct mutex stolen_lock;
858 
859 	/* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
860 	spinlock_t obj_lock;
861 
862 	/** List of all objects in gtt_space. Used to restore gtt
863 	 * mappings on resume */
864 	struct list_head bound_list;
865 	/**
866 	 * List of objects which are not bound to the GTT (thus
867 	 * are idle and not used by the GPU). These objects may or may
868 	 * not actually have any pages attached.
869 	 */
870 	struct list_head unbound_list;
871 
872 	/** List of all objects in gtt_space, currently mmaped by userspace.
873 	 * All objects within this list must also be on bound_list.
874 	 */
875 	struct list_head userfault_list;
876 
877 	/**
878 	 * List of objects which are pending destruction.
879 	 */
880 	struct llist_head free_list;
881 	struct work_struct free_work;
882 	spinlock_t free_lock;
883 	/**
884 	 * Count of objects pending destructions. Used to skip needlessly
885 	 * waiting on an RCU barrier if no objects are waiting to be freed.
886 	 */
887 	atomic_t free_count;
888 
889 	/**
890 	 * Small stash of WC pages
891 	 */
892 	struct pagestash wc_stash;
893 
894 	/**
895 	 * tmpfs instance used for shmem backed objects
896 	 */
897 	struct vfsmount *gemfs;
898 
899 	/** PPGTT used for aliasing the PPGTT with the GTT */
900 	struct i915_hw_ppgtt *aliasing_ppgtt;
901 
902 	struct notifier_block oom_notifier;
903 	struct notifier_block vmap_notifier;
904 	struct shrinker shrinker;
905 
906 	/** LRU list of objects with fence regs on them. */
907 	struct list_head fence_list;
908 
909 	/**
910 	 * Workqueue to fault in userptr pages, flushed by the execbuf
911 	 * when required but otherwise left to userspace to try again
912 	 * on EAGAIN.
913 	 */
914 	struct workqueue_struct *userptr_wq;
915 
916 	u64 unordered_timeline;
917 
918 	/* the indicator for dispatch video commands on two BSD rings */
919 	atomic_t bsd_engine_dispatch_index;
920 
921 	/** Bit 6 swizzling required for X tiling */
922 	u32 bit_6_swizzle_x;
923 	/** Bit 6 swizzling required for Y tiling */
924 	u32 bit_6_swizzle_y;
925 
926 	/* accounting, useful for userland debugging */
927 	spinlock_t object_stat_lock;
928 	u64 object_memory;
929 	u32 object_count;
930 };
931 
932 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
933 
934 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
935 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
936 
937 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
938 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
939 
940 #define I915_ENGINE_WEDGED_TIMEOUT  (60 * HZ)  /* Reset but no recovery? */
941 
942 struct ddi_vbt_port_info {
943 	int max_tmds_clock;
944 
945 	/*
946 	 * This is an index in the HDMI/DVI DDI buffer translation table.
947 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
948 	 * populate this field.
949 	 */
950 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
951 	u8 hdmi_level_shift;
952 
953 	u8 present:1;
954 	u8 supports_dvi:1;
955 	u8 supports_hdmi:1;
956 	u8 supports_dp:1;
957 	u8 supports_edp:1;
958 	u8 supports_typec_usb:1;
959 	u8 supports_tbt:1;
960 
961 	u8 alternate_aux_channel;
962 	u8 alternate_ddc_pin;
963 
964 	u8 dp_boost_level;
965 	u8 hdmi_boost_level;
966 	int dp_max_link_rate;		/* 0 for not limited by VBT */
967 };
968 
969 enum psr_lines_to_wait {
970 	PSR_0_LINES_TO_WAIT = 0,
971 	PSR_1_LINE_TO_WAIT,
972 	PSR_4_LINES_TO_WAIT,
973 	PSR_8_LINES_TO_WAIT
974 };
975 
976 struct intel_vbt_data {
977 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
978 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
979 
980 	/* Feature bits */
981 	unsigned int int_tv_support:1;
982 	unsigned int lvds_dither:1;
983 	unsigned int int_crt_support:1;
984 	unsigned int lvds_use_ssc:1;
985 	unsigned int int_lvds_support:1;
986 	unsigned int display_clock_mode:1;
987 	unsigned int fdi_rx_polarity_inverted:1;
988 	unsigned int panel_type:4;
989 	int lvds_ssc_freq;
990 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
991 	enum drm_panel_orientation orientation;
992 
993 	enum drrs_support_type drrs_type;
994 
995 	struct {
996 		int rate;
997 		int lanes;
998 		int preemphasis;
999 		int vswing;
1000 		bool low_vswing;
1001 		bool initialized;
1002 		int bpp;
1003 		struct edp_power_seq pps;
1004 	} edp;
1005 
1006 	struct {
1007 		bool enable;
1008 		bool full_link;
1009 		bool require_aux_wakeup;
1010 		int idle_frames;
1011 		enum psr_lines_to_wait lines_to_wait;
1012 		int tp1_wakeup_time_us;
1013 		int tp2_tp3_wakeup_time_us;
1014 		int psr2_tp2_tp3_wakeup_time_us;
1015 	} psr;
1016 
1017 	struct {
1018 		u16 pwm_freq_hz;
1019 		bool present;
1020 		bool active_low_pwm;
1021 		u8 min_brightness;	/* min_brightness/255 of max */
1022 		u8 controller;		/* brightness controller number */
1023 		enum intel_backlight_type type;
1024 	} backlight;
1025 
1026 	/* MIPI DSI */
1027 	struct {
1028 		u16 panel_id;
1029 		struct mipi_config *config;
1030 		struct mipi_pps_data *pps;
1031 		u16 bl_ports;
1032 		u16 cabc_ports;
1033 		u8 seq_version;
1034 		u32 size;
1035 		u8 *data;
1036 		const u8 *sequence[MIPI_SEQ_MAX];
1037 		u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1038 		enum drm_panel_orientation orientation;
1039 	} dsi;
1040 
1041 	int crt_ddc_pin;
1042 
1043 	int child_dev_num;
1044 	struct child_device_config *child_dev;
1045 
1046 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1047 	struct sdvo_device_mapping sdvo_mappings[2];
1048 };
1049 
1050 enum intel_ddb_partitioning {
1051 	INTEL_DDB_PART_1_2,
1052 	INTEL_DDB_PART_5_6, /* IVB+ */
1053 };
1054 
1055 struct intel_wm_level {
1056 	bool enable;
1057 	u32 pri_val;
1058 	u32 spr_val;
1059 	u32 cur_val;
1060 	u32 fbc_val;
1061 };
1062 
1063 struct ilk_wm_values {
1064 	u32 wm_pipe[3];
1065 	u32 wm_lp[3];
1066 	u32 wm_lp_spr[3];
1067 	u32 wm_linetime[3];
1068 	bool enable_fbc_wm;
1069 	enum intel_ddb_partitioning partitioning;
1070 };
1071 
1072 struct g4x_pipe_wm {
1073 	u16 plane[I915_MAX_PLANES];
1074 	u16 fbc;
1075 };
1076 
1077 struct g4x_sr_wm {
1078 	u16 plane;
1079 	u16 cursor;
1080 	u16 fbc;
1081 };
1082 
1083 struct vlv_wm_ddl_values {
1084 	u8 plane[I915_MAX_PLANES];
1085 };
1086 
1087 struct vlv_wm_values {
1088 	struct g4x_pipe_wm pipe[3];
1089 	struct g4x_sr_wm sr;
1090 	struct vlv_wm_ddl_values ddl[3];
1091 	u8 level;
1092 	bool cxsr;
1093 };
1094 
1095 struct g4x_wm_values {
1096 	struct g4x_pipe_wm pipe[2];
1097 	struct g4x_sr_wm sr;
1098 	struct g4x_sr_wm hpll;
1099 	bool cxsr;
1100 	bool hpll_en;
1101 	bool fbc_en;
1102 };
1103 
1104 struct skl_ddb_entry {
1105 	u16 start, end;	/* in number of blocks, 'end' is exclusive */
1106 };
1107 
1108 static inline u16 skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1109 {
1110 	return entry->end - entry->start;
1111 }
1112 
1113 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1114 				       const struct skl_ddb_entry *e2)
1115 {
1116 	if (e1->start == e2->start && e1->end == e2->end)
1117 		return true;
1118 
1119 	return false;
1120 }
1121 
1122 struct skl_ddb_allocation {
1123 	u8 enabled_slices; /* GEN11 has configurable 2 slices */
1124 };
1125 
1126 struct skl_ddb_values {
1127 	unsigned dirty_pipes;
1128 	struct skl_ddb_allocation ddb;
1129 };
1130 
1131 struct skl_wm_level {
1132 	u16 min_ddb_alloc;
1133 	u16 plane_res_b;
1134 	u8 plane_res_l;
1135 	bool plane_en;
1136 	bool ignore_lines;
1137 };
1138 
1139 /* Stores plane specific WM parameters */
1140 struct skl_wm_params {
1141 	bool x_tiled, y_tiled;
1142 	bool rc_surface;
1143 	bool is_planar;
1144 	u32 width;
1145 	u8 cpp;
1146 	u32 plane_pixel_rate;
1147 	u32 y_min_scanlines;
1148 	u32 plane_bytes_per_line;
1149 	uint_fixed_16_16_t plane_blocks_per_line;
1150 	uint_fixed_16_16_t y_tile_minimum;
1151 	u32 linetime_us;
1152 	u32 dbuf_block_size;
1153 };
1154 
1155 /*
1156  * This struct helps tracking the state needed for runtime PM, which puts the
1157  * device in PCI D3 state. Notice that when this happens, nothing on the
1158  * graphics device works, even register access, so we don't get interrupts nor
1159  * anything else.
1160  *
1161  * Every piece of our code that needs to actually touch the hardware needs to
1162  * either call intel_runtime_pm_get or call intel_display_power_get with the
1163  * appropriate power domain.
1164  *
1165  * Our driver uses the autosuspend delay feature, which means we'll only really
1166  * suspend if we stay with zero refcount for a certain amount of time. The
1167  * default value is currently very conservative (see intel_runtime_pm_enable), but
1168  * it can be changed with the standard runtime PM files from sysfs.
1169  *
1170  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1171  * goes back to false exactly before we reenable the IRQs. We use this variable
1172  * to check if someone is trying to enable/disable IRQs while they're supposed
1173  * to be disabled. This shouldn't happen and we'll print some error messages in
1174  * case it happens.
1175  *
1176  * For more, read the Documentation/power/runtime_pm.txt.
1177  */
1178 struct i915_runtime_pm {
1179 	atomic_t wakeref_count;
1180 	bool suspended;
1181 	bool irqs_enabled;
1182 
1183 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
1184 	/*
1185 	 * To aide detection of wakeref leaks and general misuse, we
1186 	 * track all wakeref holders. With manual markup (i.e. returning
1187 	 * a cookie to each rpm_get caller which they then supply to their
1188 	 * paired rpm_put) we can remove corresponding pairs of and keep
1189 	 * the array trimmed to active wakerefs.
1190 	 */
1191 	struct intel_runtime_pm_debug {
1192 		spinlock_t lock;
1193 
1194 		depot_stack_handle_t last_acquire;
1195 		depot_stack_handle_t last_release;
1196 
1197 		depot_stack_handle_t *owners;
1198 		unsigned long count;
1199 	} debug;
1200 #endif
1201 };
1202 
1203 enum intel_pipe_crc_source {
1204 	INTEL_PIPE_CRC_SOURCE_NONE,
1205 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1206 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1207 	INTEL_PIPE_CRC_SOURCE_PLANE3,
1208 	INTEL_PIPE_CRC_SOURCE_PLANE4,
1209 	INTEL_PIPE_CRC_SOURCE_PLANE5,
1210 	INTEL_PIPE_CRC_SOURCE_PLANE6,
1211 	INTEL_PIPE_CRC_SOURCE_PLANE7,
1212 	INTEL_PIPE_CRC_SOURCE_PIPE,
1213 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1214 	INTEL_PIPE_CRC_SOURCE_TV,
1215 	INTEL_PIPE_CRC_SOURCE_DP_B,
1216 	INTEL_PIPE_CRC_SOURCE_DP_C,
1217 	INTEL_PIPE_CRC_SOURCE_DP_D,
1218 	INTEL_PIPE_CRC_SOURCE_AUTO,
1219 	INTEL_PIPE_CRC_SOURCE_MAX,
1220 };
1221 
1222 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1223 struct intel_pipe_crc {
1224 	spinlock_t lock;
1225 	int skipped;
1226 	enum intel_pipe_crc_source source;
1227 };
1228 
1229 struct i915_frontbuffer_tracking {
1230 	spinlock_t lock;
1231 
1232 	/*
1233 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1234 	 * scheduled flips.
1235 	 */
1236 	unsigned busy_bits;
1237 	unsigned flip_bits;
1238 };
1239 
1240 struct i915_virtual_gpu {
1241 	bool active;
1242 	u32 caps;
1243 };
1244 
1245 /* used in computing the new watermarks state */
1246 struct intel_wm_config {
1247 	unsigned int num_pipes_active;
1248 	bool sprites_enabled;
1249 	bool sprites_scaled;
1250 };
1251 
1252 struct i915_oa_format {
1253 	u32 format;
1254 	int size;
1255 };
1256 
1257 struct i915_oa_reg {
1258 	i915_reg_t addr;
1259 	u32 value;
1260 };
1261 
1262 struct i915_oa_config {
1263 	char uuid[UUID_STRING_LEN + 1];
1264 	int id;
1265 
1266 	const struct i915_oa_reg *mux_regs;
1267 	u32 mux_regs_len;
1268 	const struct i915_oa_reg *b_counter_regs;
1269 	u32 b_counter_regs_len;
1270 	const struct i915_oa_reg *flex_regs;
1271 	u32 flex_regs_len;
1272 
1273 	struct attribute_group sysfs_metric;
1274 	struct attribute *attrs[2];
1275 	struct device_attribute sysfs_metric_id;
1276 
1277 	atomic_t ref_count;
1278 };
1279 
1280 struct i915_perf_stream;
1281 
1282 /**
1283  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1284  */
1285 struct i915_perf_stream_ops {
1286 	/**
1287 	 * @enable: Enables the collection of HW samples, either in response to
1288 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1289 	 * without `I915_PERF_FLAG_DISABLED`.
1290 	 */
1291 	void (*enable)(struct i915_perf_stream *stream);
1292 
1293 	/**
1294 	 * @disable: Disables the collection of HW samples, either in response
1295 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1296 	 * the stream.
1297 	 */
1298 	void (*disable)(struct i915_perf_stream *stream);
1299 
1300 	/**
1301 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1302 	 * once there is something ready to read() for the stream
1303 	 */
1304 	void (*poll_wait)(struct i915_perf_stream *stream,
1305 			  struct file *file,
1306 			  poll_table *wait);
1307 
1308 	/**
1309 	 * @wait_unlocked: For handling a blocking read, wait until there is
1310 	 * something to ready to read() for the stream. E.g. wait on the same
1311 	 * wait queue that would be passed to poll_wait().
1312 	 */
1313 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1314 
1315 	/**
1316 	 * @read: Copy buffered metrics as records to userspace
1317 	 * **buf**: the userspace, destination buffer
1318 	 * **count**: the number of bytes to copy, requested by userspace
1319 	 * **offset**: zero at the start of the read, updated as the read
1320 	 * proceeds, it represents how many bytes have been copied so far and
1321 	 * the buffer offset for copying the next record.
1322 	 *
1323 	 * Copy as many buffered i915 perf samples and records for this stream
1324 	 * to userspace as will fit in the given buffer.
1325 	 *
1326 	 * Only write complete records; returning -%ENOSPC if there isn't room
1327 	 * for a complete record.
1328 	 *
1329 	 * Return any error condition that results in a short read such as
1330 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1331 	 * returning to userspace.
1332 	 */
1333 	int (*read)(struct i915_perf_stream *stream,
1334 		    char __user *buf,
1335 		    size_t count,
1336 		    size_t *offset);
1337 
1338 	/**
1339 	 * @destroy: Cleanup any stream specific resources.
1340 	 *
1341 	 * The stream will always be disabled before this is called.
1342 	 */
1343 	void (*destroy)(struct i915_perf_stream *stream);
1344 };
1345 
1346 /**
1347  * struct i915_perf_stream - state for a single open stream FD
1348  */
1349 struct i915_perf_stream {
1350 	/**
1351 	 * @dev_priv: i915 drm device
1352 	 */
1353 	struct drm_i915_private *dev_priv;
1354 
1355 	/**
1356 	 * @link: Links the stream into ``&drm_i915_private->streams``
1357 	 */
1358 	struct list_head link;
1359 
1360 	/**
1361 	 * @wakeref: As we keep the device awake while the perf stream is
1362 	 * active, we track our runtime pm reference for later release.
1363 	 */
1364 	intel_wakeref_t wakeref;
1365 
1366 	/**
1367 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1368 	 * properties given when opening a stream, representing the contents
1369 	 * of a single sample as read() by userspace.
1370 	 */
1371 	u32 sample_flags;
1372 
1373 	/**
1374 	 * @sample_size: Considering the configured contents of a sample
1375 	 * combined with the required header size, this is the total size
1376 	 * of a single sample record.
1377 	 */
1378 	int sample_size;
1379 
1380 	/**
1381 	 * @ctx: %NULL if measuring system-wide across all contexts or a
1382 	 * specific context that is being monitored.
1383 	 */
1384 	struct i915_gem_context *ctx;
1385 
1386 	/**
1387 	 * @enabled: Whether the stream is currently enabled, considering
1388 	 * whether the stream was opened in a disabled state and based
1389 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1390 	 */
1391 	bool enabled;
1392 
1393 	/**
1394 	 * @ops: The callbacks providing the implementation of this specific
1395 	 * type of configured stream.
1396 	 */
1397 	const struct i915_perf_stream_ops *ops;
1398 
1399 	/**
1400 	 * @oa_config: The OA configuration used by the stream.
1401 	 */
1402 	struct i915_oa_config *oa_config;
1403 };
1404 
1405 /**
1406  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1407  */
1408 struct i915_oa_ops {
1409 	/**
1410 	 * @is_valid_b_counter_reg: Validates register's address for
1411 	 * programming boolean counters for a particular platform.
1412 	 */
1413 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1414 				       u32 addr);
1415 
1416 	/**
1417 	 * @is_valid_mux_reg: Validates register's address for programming mux
1418 	 * for a particular platform.
1419 	 */
1420 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1421 
1422 	/**
1423 	 * @is_valid_flex_reg: Validates register's address for programming
1424 	 * flex EU filtering for a particular platform.
1425 	 */
1426 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1427 
1428 	/**
1429 	 * @enable_metric_set: Selects and applies any MUX configuration to set
1430 	 * up the Boolean and Custom (B/C) counters that are part of the
1431 	 * counter reports being sampled. May apply system constraints such as
1432 	 * disabling EU clock gating as required.
1433 	 */
1434 	int (*enable_metric_set)(struct i915_perf_stream *stream);
1435 
1436 	/**
1437 	 * @disable_metric_set: Remove system constraints associated with using
1438 	 * the OA unit.
1439 	 */
1440 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1441 
1442 	/**
1443 	 * @oa_enable: Enable periodic sampling
1444 	 */
1445 	void (*oa_enable)(struct i915_perf_stream *stream);
1446 
1447 	/**
1448 	 * @oa_disable: Disable periodic sampling
1449 	 */
1450 	void (*oa_disable)(struct i915_perf_stream *stream);
1451 
1452 	/**
1453 	 * @read: Copy data from the circular OA buffer into a given userspace
1454 	 * buffer.
1455 	 */
1456 	int (*read)(struct i915_perf_stream *stream,
1457 		    char __user *buf,
1458 		    size_t count,
1459 		    size_t *offset);
1460 
1461 	/**
1462 	 * @oa_hw_tail_read: read the OA tail pointer register
1463 	 *
1464 	 * In particular this enables us to share all the fiddly code for
1465 	 * handling the OA unit tail pointer race that affects multiple
1466 	 * generations.
1467 	 */
1468 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1469 };
1470 
1471 struct intel_cdclk_state {
1472 	unsigned int cdclk, vco, ref, bypass;
1473 	u8 voltage_level;
1474 };
1475 
1476 struct drm_i915_private {
1477 	struct drm_device drm;
1478 
1479 	const struct intel_device_info __info; /* Use INTEL_INFO() to access. */
1480 	struct intel_runtime_info __runtime; /* Use RUNTIME_INFO() to access. */
1481 	struct intel_driver_caps caps;
1482 
1483 	/**
1484 	 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1485 	 * end of stolen which we can optionally use to create GEM objects
1486 	 * backed by stolen memory. Note that stolen_usable_size tells us
1487 	 * exactly how much of this we are actually allowed to use, given that
1488 	 * some portion of it is in fact reserved for use by hardware functions.
1489 	 */
1490 	struct resource dsm;
1491 	/**
1492 	 * Reseved portion of Data Stolen Memory
1493 	 */
1494 	struct resource dsm_reserved;
1495 
1496 	/*
1497 	 * Stolen memory is segmented in hardware with different portions
1498 	 * offlimits to certain functions.
1499 	 *
1500 	 * The drm_mm is initialised to the total accessible range, as found
1501 	 * from the PCI config. On Broadwell+, this is further restricted to
1502 	 * avoid the first page! The upper end of stolen memory is reserved for
1503 	 * hardware functions and similarly removed from the accessible range.
1504 	 */
1505 	resource_size_t stolen_usable_size;	/* Total size minus reserved ranges */
1506 
1507 	struct intel_uncore uncore;
1508 
1509 	struct i915_virtual_gpu vgpu;
1510 
1511 	struct intel_gvt *gvt;
1512 
1513 	struct intel_wopcm wopcm;
1514 
1515 	struct intel_huc huc;
1516 	struct intel_guc guc;
1517 
1518 	struct intel_csr csr;
1519 
1520 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1521 
1522 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
1523 	 * controller on different i2c buses. */
1524 	struct mutex gmbus_mutex;
1525 
1526 	/**
1527 	 * Base address of where the gmbus and gpio blocks are located (either
1528 	 * on PCH or on SoC for platforms without PCH).
1529 	 */
1530 	u32 gpio_mmio_base;
1531 
1532 	/* MMIO base address for MIPI regs */
1533 	u32 mipi_mmio_base;
1534 
1535 	u32 psr_mmio_base;
1536 
1537 	u32 pps_mmio_base;
1538 
1539 	wait_queue_head_t gmbus_wait_queue;
1540 
1541 	struct pci_dev *bridge_dev;
1542 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
1543 	/* Context used internally to idle the GPU and setup initial state */
1544 	struct i915_gem_context *kernel_context;
1545 	/* Context only to be used for injecting preemption commands */
1546 	struct i915_gem_context *preempt_context;
1547 	struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1548 					    [MAX_ENGINE_INSTANCE + 1];
1549 
1550 	struct resource mch_res;
1551 
1552 	/* protects the irq masks */
1553 	spinlock_t irq_lock;
1554 
1555 	bool display_irqs_enabled;
1556 
1557 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1558 	struct pm_qos_request pm_qos;
1559 
1560 	/* Sideband mailbox protection */
1561 	struct mutex sb_lock;
1562 	struct pm_qos_request sb_qos;
1563 
1564 	/** Cached value of IMR to avoid reads in updating the bitfield */
1565 	union {
1566 		u32 irq_mask;
1567 		u32 de_irq_mask[I915_MAX_PIPES];
1568 	};
1569 	u32 gt_irq_mask;
1570 	u32 pm_imr;
1571 	u32 pm_ier;
1572 	u32 pm_rps_events;
1573 	u32 pm_guc_events;
1574 	u32 pipestat_irq_mask[I915_MAX_PIPES];
1575 
1576 	struct i915_hotplug hotplug;
1577 	struct intel_fbc fbc;
1578 	struct i915_drrs drrs;
1579 	struct intel_opregion opregion;
1580 	struct intel_vbt_data vbt;
1581 
1582 	bool preserve_bios_swizzle;
1583 
1584 	/* overlay */
1585 	struct intel_overlay *overlay;
1586 
1587 	/* backlight registers and fields in struct intel_panel */
1588 	struct mutex backlight_lock;
1589 
1590 	/* LVDS info */
1591 	bool no_aux_handshake;
1592 
1593 	/* protects panel power sequencer state */
1594 	struct mutex pps_mutex;
1595 
1596 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1597 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1598 
1599 	unsigned int fsb_freq, mem_freq, is_ddr3;
1600 	unsigned int skl_preferred_vco_freq;
1601 	unsigned int max_cdclk_freq;
1602 
1603 	unsigned int max_dotclk_freq;
1604 	unsigned int rawclk_freq;
1605 	unsigned int hpll_freq;
1606 	unsigned int fdi_pll_freq;
1607 	unsigned int czclk_freq;
1608 
1609 	struct {
1610 		/*
1611 		 * The current logical cdclk state.
1612 		 * See intel_atomic_state.cdclk.logical
1613 		 *
1614 		 * For reading holding any crtc lock is sufficient,
1615 		 * for writing must hold all of them.
1616 		 */
1617 		struct intel_cdclk_state logical;
1618 		/*
1619 		 * The current actual cdclk state.
1620 		 * See intel_atomic_state.cdclk.actual
1621 		 */
1622 		struct intel_cdclk_state actual;
1623 		/* The current hardware cdclk state */
1624 		struct intel_cdclk_state hw;
1625 
1626 		int force_min_cdclk;
1627 	} cdclk;
1628 
1629 	/**
1630 	 * wq - Driver workqueue for GEM.
1631 	 *
1632 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
1633 	 * locks, for otherwise the flushing done in the pageflip code will
1634 	 * result in deadlocks.
1635 	 */
1636 	struct workqueue_struct *wq;
1637 
1638 	/* ordered wq for modesets */
1639 	struct workqueue_struct *modeset_wq;
1640 
1641 	/* Display functions */
1642 	struct drm_i915_display_funcs display;
1643 
1644 	/* PCH chipset type */
1645 	enum intel_pch pch_type;
1646 	unsigned short pch_id;
1647 
1648 	unsigned long quirks;
1649 
1650 	struct drm_atomic_state *modeset_restore_state;
1651 	struct drm_modeset_acquire_ctx reset_ctx;
1652 
1653 	struct i915_ggtt ggtt; /* VM representing the global address space */
1654 
1655 	struct i915_gem_mm mm;
1656 	DECLARE_HASHTABLE(mm_structs, 7);
1657 	struct mutex mm_lock;
1658 
1659 	struct intel_ppat ppat;
1660 
1661 	/* Kernel Modesetting */
1662 
1663 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1664 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1665 
1666 #ifdef CONFIG_DEBUG_FS
1667 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1668 #endif
1669 
1670 	/* dpll and cdclk state is protected by connection_mutex */
1671 	int num_shared_dpll;
1672 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1673 	const struct intel_dpll_mgr *dpll_mgr;
1674 
1675 	/*
1676 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1677 	 * Must be global rather than per dpll, because on some platforms
1678 	 * plls share registers.
1679 	 */
1680 	struct mutex dpll_lock;
1681 
1682 	unsigned int active_crtcs;
1683 	/* minimum acceptable cdclk for each pipe */
1684 	int min_cdclk[I915_MAX_PIPES];
1685 	/* minimum acceptable voltage level for each pipe */
1686 	u8 min_voltage_level[I915_MAX_PIPES];
1687 
1688 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1689 
1690 	struct i915_wa_list gt_wa_list;
1691 
1692 	struct i915_frontbuffer_tracking fb_tracking;
1693 
1694 	struct intel_atomic_helper {
1695 		struct llist_head free_list;
1696 		struct work_struct free_work;
1697 	} atomic_helper;
1698 
1699 	u16 orig_clock;
1700 
1701 	bool mchbar_need_disable;
1702 
1703 	struct intel_l3_parity l3_parity;
1704 
1705 	/*
1706 	 * edram size in MB.
1707 	 * Cannot be determined by PCIID. You must always read a register.
1708 	 */
1709 	u32 edram_size_mb;
1710 
1711 	/* gen6+ GT PM state */
1712 	struct intel_gen6_power_mgmt gt_pm;
1713 
1714 	/* ilk-only ips/rps state. Everything in here is protected by the global
1715 	 * mchdev_lock in intel_pm.c */
1716 	struct intel_ilk_power_mgmt ips;
1717 
1718 	struct i915_power_domains power_domains;
1719 
1720 	struct i915_psr psr;
1721 
1722 	struct i915_gpu_error gpu_error;
1723 
1724 	struct drm_i915_gem_object *vlv_pctx;
1725 
1726 	/* list of fbdev register on this device */
1727 	struct intel_fbdev *fbdev;
1728 	struct work_struct fbdev_suspend_work;
1729 
1730 	struct drm_property *broadcast_rgb_property;
1731 	struct drm_property *force_audio_property;
1732 
1733 	/* hda/i915 audio component */
1734 	struct i915_audio_component *audio_component;
1735 	bool audio_component_registered;
1736 	/**
1737 	 * av_mutex - mutex for audio/video sync
1738 	 *
1739 	 */
1740 	struct mutex av_mutex;
1741 	int audio_power_refcount;
1742 
1743 	struct {
1744 		struct mutex mutex;
1745 		struct list_head list;
1746 		struct llist_head free_list;
1747 		struct work_struct free_work;
1748 
1749 		/* The hw wants to have a stable context identifier for the
1750 		 * lifetime of the context (for OA, PASID, faults, etc).
1751 		 * This is limited in execlists to 21 bits.
1752 		 */
1753 		struct ida hw_ida;
1754 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1755 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */
1756 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1757 		struct list_head hw_id_list;
1758 	} contexts;
1759 
1760 	u32 fdi_rx_config;
1761 
1762 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1763 	u32 chv_phy_control;
1764 	/*
1765 	 * Shadows for CHV DPLL_MD regs to keep the state
1766 	 * checker somewhat working in the presence hardware
1767 	 * crappiness (can't read out DPLL_MD for pipes B & C).
1768 	 */
1769 	u32 chv_dpll_md[I915_MAX_PIPES];
1770 	u32 bxt_phy_grc;
1771 
1772 	u32 suspend_count;
1773 	bool power_domains_suspended;
1774 	struct i915_suspend_saved_registers regfile;
1775 	struct vlv_s0ix_state vlv_s0ix_state;
1776 
1777 	enum {
1778 		I915_SAGV_UNKNOWN = 0,
1779 		I915_SAGV_DISABLED,
1780 		I915_SAGV_ENABLED,
1781 		I915_SAGV_NOT_CONTROLLED
1782 	} sagv_status;
1783 
1784 	struct {
1785 		/*
1786 		 * Raw watermark latency values:
1787 		 * in 0.1us units for WM0,
1788 		 * in 0.5us units for WM1+.
1789 		 */
1790 		/* primary */
1791 		u16 pri_latency[5];
1792 		/* sprite */
1793 		u16 spr_latency[5];
1794 		/* cursor */
1795 		u16 cur_latency[5];
1796 		/*
1797 		 * Raw watermark memory latency values
1798 		 * for SKL for all 8 levels
1799 		 * in 1us units.
1800 		 */
1801 		u16 skl_latency[8];
1802 
1803 		/* current hardware state */
1804 		union {
1805 			struct ilk_wm_values hw;
1806 			struct skl_ddb_values skl_hw;
1807 			struct vlv_wm_values vlv;
1808 			struct g4x_wm_values g4x;
1809 		};
1810 
1811 		u8 max_level;
1812 
1813 		/*
1814 		 * Should be held around atomic WM register writing; also
1815 		 * protects * intel_crtc->wm.active and
1816 		 * cstate->wm.need_postvbl_update.
1817 		 */
1818 		struct mutex wm_mutex;
1819 
1820 		/*
1821 		 * Set during HW readout of watermarks/DDB.  Some platforms
1822 		 * need to know when we're still using BIOS-provided values
1823 		 * (which we don't fully trust).
1824 		 */
1825 		bool distrust_bios_wm;
1826 	} wm;
1827 
1828 	struct dram_info {
1829 		bool valid;
1830 		bool is_16gb_dimm;
1831 		u8 num_channels;
1832 		u8 ranks;
1833 		u32 bandwidth_kbps;
1834 		bool symmetric_memory;
1835 		enum intel_dram_type {
1836 			INTEL_DRAM_UNKNOWN,
1837 			INTEL_DRAM_DDR3,
1838 			INTEL_DRAM_DDR4,
1839 			INTEL_DRAM_LPDDR3,
1840 			INTEL_DRAM_LPDDR4
1841 		} type;
1842 	} dram_info;
1843 
1844 	struct i915_runtime_pm runtime_pm;
1845 
1846 	struct {
1847 		bool initialized;
1848 
1849 		struct kobject *metrics_kobj;
1850 		struct ctl_table_header *sysctl_header;
1851 
1852 		/*
1853 		 * Lock associated with adding/modifying/removing OA configs
1854 		 * in dev_priv->perf.metrics_idr.
1855 		 */
1856 		struct mutex metrics_lock;
1857 
1858 		/*
1859 		 * List of dynamic configurations, you need to hold
1860 		 * dev_priv->perf.metrics_lock to access it.
1861 		 */
1862 		struct idr metrics_idr;
1863 
1864 		/*
1865 		 * Lock associated with anything below within this structure
1866 		 * except exclusive_stream.
1867 		 */
1868 		struct mutex lock;
1869 		struct list_head streams;
1870 
1871 		struct {
1872 			/*
1873 			 * The stream currently using the OA unit. If accessed
1874 			 * outside a syscall associated to its file
1875 			 * descriptor, you need to hold
1876 			 * dev_priv->drm.struct_mutex.
1877 			 */
1878 			struct i915_perf_stream *exclusive_stream;
1879 
1880 			struct intel_context *pinned_ctx;
1881 			u32 specific_ctx_id;
1882 			u32 specific_ctx_id_mask;
1883 
1884 			struct hrtimer poll_check_timer;
1885 			wait_queue_head_t poll_wq;
1886 			bool pollin;
1887 
1888 			/**
1889 			 * For rate limiting any notifications of spurious
1890 			 * invalid OA reports
1891 			 */
1892 			struct ratelimit_state spurious_report_rs;
1893 
1894 			bool periodic;
1895 			int period_exponent;
1896 
1897 			struct i915_oa_config test_config;
1898 
1899 			struct {
1900 				struct i915_vma *vma;
1901 				u8 *vaddr;
1902 				u32 last_ctx_id;
1903 				int format;
1904 				int format_size;
1905 
1906 				/**
1907 				 * Locks reads and writes to all head/tail state
1908 				 *
1909 				 * Consider: the head and tail pointer state
1910 				 * needs to be read consistently from a hrtimer
1911 				 * callback (atomic context) and read() fop
1912 				 * (user context) with tail pointer updates
1913 				 * happening in atomic context and head updates
1914 				 * in user context and the (unlikely)
1915 				 * possibility of read() errors needing to
1916 				 * reset all head/tail state.
1917 				 *
1918 				 * Note: Contention or performance aren't
1919 				 * currently a significant concern here
1920 				 * considering the relatively low frequency of
1921 				 * hrtimer callbacks (5ms period) and that
1922 				 * reads typically only happen in response to a
1923 				 * hrtimer event and likely complete before the
1924 				 * next callback.
1925 				 *
1926 				 * Note: This lock is not held *while* reading
1927 				 * and copying data to userspace so the value
1928 				 * of head observed in htrimer callbacks won't
1929 				 * represent any partial consumption of data.
1930 				 */
1931 				spinlock_t ptr_lock;
1932 
1933 				/**
1934 				 * One 'aging' tail pointer and one 'aged'
1935 				 * tail pointer ready to used for reading.
1936 				 *
1937 				 * Initial values of 0xffffffff are invalid
1938 				 * and imply that an update is required
1939 				 * (and should be ignored by an attempted
1940 				 * read)
1941 				 */
1942 				struct {
1943 					u32 offset;
1944 				} tails[2];
1945 
1946 				/**
1947 				 * Index for the aged tail ready to read()
1948 				 * data up to.
1949 				 */
1950 				unsigned int aged_tail_idx;
1951 
1952 				/**
1953 				 * A monotonic timestamp for when the current
1954 				 * aging tail pointer was read; used to
1955 				 * determine when it is old enough to trust.
1956 				 */
1957 				u64 aging_timestamp;
1958 
1959 				/**
1960 				 * Although we can always read back the head
1961 				 * pointer register, we prefer to avoid
1962 				 * trusting the HW state, just to avoid any
1963 				 * risk that some hardware condition could
1964 				 * somehow bump the head pointer unpredictably
1965 				 * and cause us to forward the wrong OA buffer
1966 				 * data to userspace.
1967 				 */
1968 				u32 head;
1969 			} oa_buffer;
1970 
1971 			u32 gen7_latched_oastatus1;
1972 			u32 ctx_oactxctrl_offset;
1973 			u32 ctx_flexeu0_offset;
1974 
1975 			/**
1976 			 * The RPT_ID/reason field for Gen8+ includes a bit
1977 			 * to determine if the CTX ID in the report is valid
1978 			 * but the specific bit differs between Gen 8 and 9
1979 			 */
1980 			u32 gen8_valid_ctx_bit;
1981 
1982 			struct i915_oa_ops ops;
1983 			const struct i915_oa_format *oa_formats;
1984 		} oa;
1985 	} perf;
1986 
1987 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
1988 	struct {
1989 		struct i915_gt_timelines {
1990 			struct mutex mutex; /* protects list, tainted by GPU */
1991 			struct list_head active_list;
1992 
1993 			/* Pack multiple timelines' seqnos into the same page */
1994 			spinlock_t hwsp_lock;
1995 			struct list_head hwsp_free_list;
1996 		} timelines;
1997 
1998 		struct list_head active_rings;
1999 		struct list_head closed_vma;
2000 
2001 		struct intel_wakeref wakeref;
2002 
2003 		/**
2004 		 * Is the GPU currently considered idle, or busy executing
2005 		 * userspace requests? Whilst idle, we allow runtime power
2006 		 * management to power down the hardware and display clocks.
2007 		 * In order to reduce the effect on performance, there
2008 		 * is a slight delay before we do so.
2009 		 */
2010 		intel_wakeref_t awake;
2011 
2012 		struct blocking_notifier_head pm_notifications;
2013 
2014 		ktime_t last_init_time;
2015 
2016 		struct i915_vma *scratch;
2017 	} gt;
2018 
2019 	struct {
2020 		struct notifier_block pm_notifier;
2021 
2022 		/**
2023 		 * We leave the user IRQ off as much as possible,
2024 		 * but this means that requests will finish and never
2025 		 * be retired once the system goes idle. Set a timer to
2026 		 * fire periodically while the ring is running. When it
2027 		 * fires, go retire requests.
2028 		 */
2029 		struct delayed_work retire_work;
2030 
2031 		/**
2032 		 * When we detect an idle GPU, we want to turn on
2033 		 * powersaving features. So once we see that there
2034 		 * are no more requests outstanding and no more
2035 		 * arrive within a small period of time, we fire
2036 		 * off the idle_work.
2037 		 */
2038 		struct work_struct idle_work;
2039 	} gem;
2040 
2041 	/* For i945gm vblank irq vs. C3 workaround */
2042 	struct {
2043 		struct work_struct work;
2044 		struct pm_qos_request pm_qos;
2045 		u8 c3_disable_latency;
2046 		u8 enabled;
2047 	} i945gm_vblank;
2048 
2049 	/* perform PHY state sanity checks? */
2050 	bool chv_phy_assert[2];
2051 
2052 	bool ipc_enabled;
2053 
2054 	/* Used to save the pipe-to-encoder mapping for audio */
2055 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2056 
2057 	/* necessary resource sharing with HDMI LPE audio driver. */
2058 	struct {
2059 		struct platform_device *platdev;
2060 		int	irq;
2061 	} lpe_audio;
2062 
2063 	struct i915_pmu pmu;
2064 
2065 	struct i915_hdcp_comp_master *hdcp_master;
2066 	bool hdcp_comp_added;
2067 
2068 	/* Mutex to protect the above hdcp component related values. */
2069 	struct mutex hdcp_comp_mutex;
2070 
2071 	/*
2072 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2073 	 * will be rejected. Instead look for a better place.
2074 	 */
2075 };
2076 
2077 struct dram_dimm_info {
2078 	u8 size, width, ranks;
2079 };
2080 
2081 struct dram_channel_info {
2082 	struct dram_dimm_info dimm_l, dimm_s;
2083 	u8 ranks;
2084 	bool is_16gb_dimm;
2085 };
2086 
2087 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2088 {
2089 	return container_of(dev, struct drm_i915_private, drm);
2090 }
2091 
2092 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2093 {
2094 	return to_i915(dev_get_drvdata(kdev));
2095 }
2096 
2097 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2098 {
2099 	return container_of(wopcm, struct drm_i915_private, wopcm);
2100 }
2101 
2102 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2103 {
2104 	return container_of(guc, struct drm_i915_private, guc);
2105 }
2106 
2107 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2108 {
2109 	return container_of(huc, struct drm_i915_private, huc);
2110 }
2111 
2112 static inline struct drm_i915_private *uncore_to_i915(struct intel_uncore *uncore)
2113 {
2114 	return container_of(uncore, struct drm_i915_private, uncore);
2115 }
2116 
2117 /* Simple iterator over all initialised engines */
2118 #define for_each_engine(engine__, dev_priv__, id__) \
2119 	for ((id__) = 0; \
2120 	     (id__) < I915_NUM_ENGINES; \
2121 	     (id__)++) \
2122 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2123 
2124 /* Iterator over subset of engines selected by mask */
2125 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2126 	for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->engine_mask; \
2127 	     (tmp__) ? \
2128 	     ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2129 	     0;)
2130 
2131 enum hdmi_force_audio {
2132 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2133 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2134 	HDMI_AUDIO_AUTO,		/* trust EDID */
2135 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2136 };
2137 
2138 #define I915_GTT_OFFSET_NONE ((u32)-1)
2139 
2140 /*
2141  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2142  * considered to be the frontbuffer for the given plane interface-wise. This
2143  * doesn't mean that the hw necessarily already scans it out, but that any
2144  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2145  *
2146  * We have one bit per pipe and per scanout plane type.
2147  */
2148 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2149 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2150 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2151 	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2152 	BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2153 })
2154 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2155 	BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2156 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2157 	GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2158 		INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2159 
2160 /*
2161  * Optimised SGL iterator for GEM objects
2162  */
2163 static __always_inline struct sgt_iter {
2164 	struct scatterlist *sgp;
2165 	union {
2166 		unsigned long pfn;
2167 		dma_addr_t dma;
2168 	};
2169 	unsigned int curr;
2170 	unsigned int max;
2171 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2172 	struct sgt_iter s = { .sgp = sgl };
2173 
2174 	if (s.sgp) {
2175 		s.max = s.curr = s.sgp->offset;
2176 		s.max += s.sgp->length;
2177 		if (dma)
2178 			s.dma = sg_dma_address(s.sgp);
2179 		else
2180 			s.pfn = page_to_pfn(sg_page(s.sgp));
2181 	}
2182 
2183 	return s;
2184 }
2185 
2186 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2187 {
2188 	++sg;
2189 	if (unlikely(sg_is_chain(sg)))
2190 		sg = sg_chain_ptr(sg);
2191 	return sg;
2192 }
2193 
2194 /**
2195  * __sg_next - return the next scatterlist entry in a list
2196  * @sg:		The current sg entry
2197  *
2198  * Description:
2199  *   If the entry is the last, return NULL; otherwise, step to the next
2200  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2201  *   otherwise just return the pointer to the current element.
2202  **/
2203 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2204 {
2205 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2206 }
2207 
2208 /**
2209  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2210  * @__dmap:	DMA address (output)
2211  * @__iter:	'struct sgt_iter' (iterator state, internal)
2212  * @__sgt:	sg_table to iterate over (input)
2213  */
2214 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2215 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2216 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2217 	     (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ?	\
2218 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2219 
2220 /**
2221  * for_each_sgt_page - iterate over the pages of the given sg_table
2222  * @__pp:	page pointer (output)
2223  * @__iter:	'struct sgt_iter' (iterator state, internal)
2224  * @__sgt:	sg_table to iterate over (input)
2225  */
2226 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2227 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2228 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2229 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2230 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2231 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2232 
2233 bool i915_sg_trim(struct sg_table *orig_st);
2234 
2235 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2236 {
2237 	unsigned int page_sizes;
2238 
2239 	page_sizes = 0;
2240 	while (sg) {
2241 		GEM_BUG_ON(sg->offset);
2242 		GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2243 		page_sizes |= sg->length;
2244 		sg = __sg_next(sg);
2245 	}
2246 
2247 	return page_sizes;
2248 }
2249 
2250 static inline unsigned int i915_sg_segment_size(void)
2251 {
2252 	unsigned int size = swiotlb_max_segment();
2253 
2254 	if (size == 0)
2255 		return SCATTERLIST_MAX_SEGMENT;
2256 
2257 	size = rounddown(size, PAGE_SIZE);
2258 	/* swiotlb_max_segment_size can return 1 byte when it means one page. */
2259 	if (size < PAGE_SIZE)
2260 		size = PAGE_SIZE;
2261 
2262 	return size;
2263 }
2264 
2265 #define INTEL_INFO(dev_priv)	(&(dev_priv)->__info)
2266 #define RUNTIME_INFO(dev_priv)	(&(dev_priv)->__runtime)
2267 #define DRIVER_CAPS(dev_priv)	(&(dev_priv)->caps)
2268 
2269 #define INTEL_GEN(dev_priv)	(INTEL_INFO(dev_priv)->gen)
2270 #define INTEL_DEVID(dev_priv)	(RUNTIME_INFO(dev_priv)->device_id)
2271 
2272 #define REVID_FOREVER		0xff
2273 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2274 
2275 #define INTEL_GEN_MASK(s, e) ( \
2276 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2277 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2278 	GENMASK((e) - 1, (s) - 1))
2279 
2280 /* Returns true if Gen is in inclusive range [Start, End] */
2281 #define IS_GEN_RANGE(dev_priv, s, e) \
2282 	(!!(INTEL_INFO(dev_priv)->gen_mask & INTEL_GEN_MASK((s), (e))))
2283 
2284 #define IS_GEN(dev_priv, n) \
2285 	(BUILD_BUG_ON_ZERO(!__builtin_constant_p(n)) + \
2286 	 INTEL_INFO(dev_priv)->gen == (n))
2287 
2288 /*
2289  * Return true if revision is in range [since,until] inclusive.
2290  *
2291  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2292  */
2293 #define IS_REVID(p, since, until) \
2294 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2295 
2296 static __always_inline unsigned int
2297 __platform_mask_index(const struct intel_runtime_info *info,
2298 		      enum intel_platform p)
2299 {
2300 	const unsigned int pbits =
2301 		BITS_PER_TYPE(info->platform_mask[0]) - INTEL_SUBPLATFORM_BITS;
2302 
2303 	/* Expand the platform_mask array if this fails. */
2304 	BUILD_BUG_ON(INTEL_MAX_PLATFORMS >
2305 		     pbits * ARRAY_SIZE(info->platform_mask));
2306 
2307 	return p / pbits;
2308 }
2309 
2310 static __always_inline unsigned int
2311 __platform_mask_bit(const struct intel_runtime_info *info,
2312 		    enum intel_platform p)
2313 {
2314 	const unsigned int pbits =
2315 		BITS_PER_TYPE(info->platform_mask[0]) - INTEL_SUBPLATFORM_BITS;
2316 
2317 	return p % pbits + INTEL_SUBPLATFORM_BITS;
2318 }
2319 
2320 static inline u32
2321 intel_subplatform(const struct intel_runtime_info *info, enum intel_platform p)
2322 {
2323 	const unsigned int pi = __platform_mask_index(info, p);
2324 
2325 	return info->platform_mask[pi] & INTEL_SUBPLATFORM_BITS;
2326 }
2327 
2328 static __always_inline bool
2329 IS_PLATFORM(const struct drm_i915_private *i915, enum intel_platform p)
2330 {
2331 	const struct intel_runtime_info *info = RUNTIME_INFO(i915);
2332 	const unsigned int pi = __platform_mask_index(info, p);
2333 	const unsigned int pb = __platform_mask_bit(info, p);
2334 
2335 	BUILD_BUG_ON(!__builtin_constant_p(p));
2336 
2337 	return info->platform_mask[pi] & BIT(pb);
2338 }
2339 
2340 static __always_inline bool
2341 IS_SUBPLATFORM(const struct drm_i915_private *i915,
2342 	       enum intel_platform p, unsigned int s)
2343 {
2344 	const struct intel_runtime_info *info = RUNTIME_INFO(i915);
2345 	const unsigned int pi = __platform_mask_index(info, p);
2346 	const unsigned int pb = __platform_mask_bit(info, p);
2347 	const unsigned int msb = BITS_PER_TYPE(info->platform_mask[0]) - 1;
2348 	const u32 mask = info->platform_mask[pi];
2349 
2350 	BUILD_BUG_ON(!__builtin_constant_p(p));
2351 	BUILD_BUG_ON(!__builtin_constant_p(s));
2352 	BUILD_BUG_ON((s) >= INTEL_SUBPLATFORM_BITS);
2353 
2354 	/* Shift and test on the MSB position so sign flag can be used. */
2355 	return ((mask << (msb - pb)) & (mask << (msb - s))) & BIT(msb);
2356 }
2357 
2358 #define IS_MOBILE(dev_priv)	(INTEL_INFO(dev_priv)->is_mobile)
2359 
2360 #define IS_I830(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I830)
2361 #define IS_I845G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I845G)
2362 #define IS_I85X(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I85X)
2363 #define IS_I865G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I865G)
2364 #define IS_I915G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915G)
2365 #define IS_I915GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915GM)
2366 #define IS_I945G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945G)
2367 #define IS_I945GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945GM)
2368 #define IS_I965G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965G)
2369 #define IS_I965GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965GM)
2370 #define IS_G45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G45)
2371 #define IS_GM45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GM45)
2372 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2373 #define IS_PINEVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2374 #define IS_G33(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G33)
2375 #define IS_IRONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IRONLAKE)
2376 #define IS_IRONLAKE_M(dev_priv) \
2377 	(IS_PLATFORM(dev_priv, INTEL_IRONLAKE) && IS_MOBILE(dev_priv))
2378 #define IS_IVYBRIDGE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2379 #define IS_IVB_GT1(dev_priv)	(IS_IVYBRIDGE(dev_priv) && \
2380 				 INTEL_INFO(dev_priv)->gt == 1)
2381 #define IS_VALLEYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2382 #define IS_CHERRYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2383 #define IS_HASWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_HASWELL)
2384 #define IS_BROADWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2385 #define IS_SKYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2386 #define IS_BROXTON(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROXTON)
2387 #define IS_KABYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2388 #define IS_GEMINILAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2389 #define IS_COFFEELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2390 #define IS_CANNONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2391 #define IS_ICELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2392 #define IS_ELKHARTLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ELKHARTLAKE)
2393 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2394 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2395 #define IS_BDW_ULT(dev_priv) \
2396 	IS_SUBPLATFORM(dev_priv, INTEL_BROADWELL, INTEL_SUBPLATFORM_ULT)
2397 #define IS_BDW_ULX(dev_priv) \
2398 	IS_SUBPLATFORM(dev_priv, INTEL_BROADWELL, INTEL_SUBPLATFORM_ULX)
2399 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2400 				 INTEL_INFO(dev_priv)->gt == 3)
2401 #define IS_HSW_ULT(dev_priv) \
2402 	IS_SUBPLATFORM(dev_priv, INTEL_HASWELL, INTEL_SUBPLATFORM_ULT)
2403 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2404 				 INTEL_INFO(dev_priv)->gt == 3)
2405 #define IS_HSW_GT1(dev_priv)	(IS_HASWELL(dev_priv) && \
2406 				 INTEL_INFO(dev_priv)->gt == 1)
2407 /* ULX machines are also considered ULT. */
2408 #define IS_HSW_ULX(dev_priv) \
2409 	IS_SUBPLATFORM(dev_priv, INTEL_HASWELL, INTEL_SUBPLATFORM_ULX)
2410 #define IS_SKL_ULT(dev_priv) \
2411 	IS_SUBPLATFORM(dev_priv, INTEL_SKYLAKE, INTEL_SUBPLATFORM_ULT)
2412 #define IS_SKL_ULX(dev_priv) \
2413 	IS_SUBPLATFORM(dev_priv, INTEL_SKYLAKE, INTEL_SUBPLATFORM_ULX)
2414 #define IS_KBL_ULT(dev_priv) \
2415 	IS_SUBPLATFORM(dev_priv, INTEL_KABYLAKE, INTEL_SUBPLATFORM_ULT)
2416 #define IS_KBL_ULX(dev_priv) \
2417 	IS_SUBPLATFORM(dev_priv, INTEL_KABYLAKE, INTEL_SUBPLATFORM_ULX)
2418 #define IS_AML_ULX(dev_priv) \
2419 	(IS_SUBPLATFORM(dev_priv, INTEL_KABYLAKE, INTEL_SUBPLATFORM_AML) || \
2420 	 IS_SUBPLATFORM(dev_priv, INTEL_COFFEELAKE, INTEL_SUBPLATFORM_AML))
2421 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2422 				 INTEL_INFO(dev_priv)->gt == 2)
2423 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2424 				 INTEL_INFO(dev_priv)->gt == 3)
2425 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2426 				 INTEL_INFO(dev_priv)->gt == 4)
2427 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2428 				 INTEL_INFO(dev_priv)->gt == 2)
2429 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2430 				 INTEL_INFO(dev_priv)->gt == 3)
2431 #define IS_CFL_ULT(dev_priv) \
2432 	IS_SUBPLATFORM(dev_priv, INTEL_COFFEELAKE, INTEL_SUBPLATFORM_ULT)
2433 #define IS_CFL_GT2(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2434 				 INTEL_INFO(dev_priv)->gt == 2)
2435 #define IS_CFL_GT3(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2436 				 INTEL_INFO(dev_priv)->gt == 3)
2437 #define IS_CNL_WITH_PORT_F(dev_priv) \
2438 	IS_SUBPLATFORM(dev_priv, INTEL_CANNONLAKE, INTEL_SUBPLATFORM_PORTF)
2439 #define IS_ICL_WITH_PORT_F(dev_priv) \
2440 	IS_SUBPLATFORM(dev_priv, INTEL_ICELAKE, INTEL_SUBPLATFORM_PORTF)
2441 
2442 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2443 
2444 #define SKL_REVID_A0		0x0
2445 #define SKL_REVID_B0		0x1
2446 #define SKL_REVID_C0		0x2
2447 #define SKL_REVID_D0		0x3
2448 #define SKL_REVID_E0		0x4
2449 #define SKL_REVID_F0		0x5
2450 #define SKL_REVID_G0		0x6
2451 #define SKL_REVID_H0		0x7
2452 
2453 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2454 
2455 #define BXT_REVID_A0		0x0
2456 #define BXT_REVID_A1		0x1
2457 #define BXT_REVID_B0		0x3
2458 #define BXT_REVID_B_LAST	0x8
2459 #define BXT_REVID_C0		0x9
2460 
2461 #define IS_BXT_REVID(dev_priv, since, until) \
2462 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2463 
2464 #define KBL_REVID_A0		0x0
2465 #define KBL_REVID_B0		0x1
2466 #define KBL_REVID_C0		0x2
2467 #define KBL_REVID_D0		0x3
2468 #define KBL_REVID_E0		0x4
2469 
2470 #define IS_KBL_REVID(dev_priv, since, until) \
2471 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2472 
2473 #define GLK_REVID_A0		0x0
2474 #define GLK_REVID_A1		0x1
2475 
2476 #define IS_GLK_REVID(dev_priv, since, until) \
2477 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2478 
2479 #define CNL_REVID_A0		0x0
2480 #define CNL_REVID_B0		0x1
2481 #define CNL_REVID_C0		0x2
2482 
2483 #define IS_CNL_REVID(p, since, until) \
2484 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2485 
2486 #define ICL_REVID_A0		0x0
2487 #define ICL_REVID_A2		0x1
2488 #define ICL_REVID_B0		0x3
2489 #define ICL_REVID_B2		0x4
2490 #define ICL_REVID_C0		0x5
2491 
2492 #define IS_ICL_REVID(p, since, until) \
2493 	(IS_ICELAKE(p) && IS_REVID(p, since, until))
2494 
2495 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2496 #define IS_GEN9_LP(dev_priv)	(IS_GEN(dev_priv, 9) && IS_LP(dev_priv))
2497 #define IS_GEN9_BC(dev_priv)	(IS_GEN(dev_priv, 9) && !IS_LP(dev_priv))
2498 
2499 #define HAS_ENGINE(dev_priv, id) (INTEL_INFO(dev_priv)->engine_mask & BIT(id))
2500 
2501 #define ENGINE_INSTANCES_MASK(dev_priv, first, count) ({		\
2502 	unsigned int first__ = (first);					\
2503 	unsigned int count__ = (count);					\
2504 	(INTEL_INFO(dev_priv)->engine_mask &				\
2505 	 GENMASK(first__ + count__ - 1, first__)) >> first__;		\
2506 })
2507 #define VDBOX_MASK(dev_priv) \
2508 	ENGINE_INSTANCES_MASK(dev_priv, VCS0, I915_MAX_VCS)
2509 #define VEBOX_MASK(dev_priv) \
2510 	ENGINE_INSTANCES_MASK(dev_priv, VECS0, I915_MAX_VECS)
2511 
2512 #define HAS_LLC(dev_priv)	(INTEL_INFO(dev_priv)->has_llc)
2513 #define HAS_SNOOP(dev_priv)	(INTEL_INFO(dev_priv)->has_snoop)
2514 #define HAS_EDRAM(dev_priv)	((dev_priv)->edram_size_mb)
2515 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2516 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2517 
2518 #define HWS_NEEDS_PHYSICAL(dev_priv)	(INTEL_INFO(dev_priv)->hws_needs_physical)
2519 
2520 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2521 		(INTEL_INFO(dev_priv)->has_logical_ring_contexts)
2522 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2523 		(INTEL_INFO(dev_priv)->has_logical_ring_elsq)
2524 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2525 		(INTEL_INFO(dev_priv)->has_logical_ring_preemption)
2526 
2527 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2528 
2529 #define INTEL_PPGTT(dev_priv) (INTEL_INFO(dev_priv)->ppgtt_type)
2530 #define HAS_PPGTT(dev_priv) \
2531 	(INTEL_PPGTT(dev_priv) != INTEL_PPGTT_NONE)
2532 #define HAS_FULL_PPGTT(dev_priv) \
2533 	(INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL)
2534 
2535 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2536 	GEM_BUG_ON((sizes) == 0); \
2537 	((sizes) & ~INTEL_INFO(dev_priv)->page_sizes) == 0; \
2538 })
2539 
2540 #define HAS_OVERLAY(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_overlay)
2541 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2542 		(INTEL_INFO(dev_priv)->display.overlay_needs_physical)
2543 
2544 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2545 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
2546 
2547 /* WaRsDisableCoarsePowerGating:skl,cnl */
2548 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2549 	(IS_CANNONLAKE(dev_priv) || \
2550 	 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2551 
2552 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2553 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \
2554 					IS_GEMINILAKE(dev_priv) || \
2555 					IS_KABYLAKE(dev_priv))
2556 
2557 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2558  * rows, which changed the alignment requirements and fence programming.
2559  */
2560 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN(dev_priv, 2) && \
2561 					 !(IS_I915G(dev_priv) || \
2562 					 IS_I915GM(dev_priv)))
2563 #define SUPPORTS_TV(dev_priv)		(INTEL_INFO(dev_priv)->display.supports_tv)
2564 #define I915_HAS_HOTPLUG(dev_priv)	(INTEL_INFO(dev_priv)->display.has_hotplug)
2565 
2566 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
2567 #define HAS_FBC(dev_priv)	(INTEL_INFO(dev_priv)->display.has_fbc)
2568 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2569 
2570 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2571 
2572 #define HAS_DP_MST(dev_priv)	(INTEL_INFO(dev_priv)->display.has_dp_mst)
2573 
2574 #define HAS_DDI(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_ddi)
2575 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) (INTEL_INFO(dev_priv)->has_fpga_dbg)
2576 #define HAS_PSR(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_psr)
2577 #define HAS_TRANSCODER_EDP(dev_priv)	 (INTEL_INFO(dev_priv)->trans_offsets[TRANSCODER_EDP] != 0)
2578 
2579 #define HAS_RC6(dev_priv)		 (INTEL_INFO(dev_priv)->has_rc6)
2580 #define HAS_RC6p(dev_priv)		 (INTEL_INFO(dev_priv)->has_rc6p)
2581 #define HAS_RC6pp(dev_priv)		 (false) /* HW was never validated */
2582 
2583 #define HAS_RPS(dev_priv)	(INTEL_INFO(dev_priv)->has_rps)
2584 
2585 #define HAS_CSR(dev_priv)	(INTEL_INFO(dev_priv)->display.has_csr)
2586 
2587 #define HAS_RUNTIME_PM(dev_priv) (INTEL_INFO(dev_priv)->has_runtime_pm)
2588 #define HAS_64BIT_RELOC(dev_priv) (INTEL_INFO(dev_priv)->has_64bit_reloc)
2589 
2590 #define HAS_IPC(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_ipc)
2591 
2592 /*
2593  * For now, anything with a GuC requires uCode loading, and then supports
2594  * command submission once loaded. But these are logically independent
2595  * properties, so we have separate macros to test them.
2596  */
2597 #define HAS_GUC(dev_priv)	(INTEL_INFO(dev_priv)->has_guc)
2598 #define HAS_GUC_CT(dev_priv)	(INTEL_INFO(dev_priv)->has_guc_ct)
2599 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2600 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
2601 
2602 /* For now, anything with a GuC has also HuC */
2603 #define HAS_HUC(dev_priv)	(HAS_GUC(dev_priv))
2604 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2605 
2606 /* Having a GuC is not the same as using a GuC */
2607 #define USES_GUC(dev_priv)		intel_uc_is_using_guc(dev_priv)
2608 #define USES_GUC_SUBMISSION(dev_priv)	intel_uc_is_using_guc_submission(dev_priv)
2609 #define USES_HUC(dev_priv)		intel_uc_is_using_huc(dev_priv)
2610 
2611 #define HAS_POOLED_EU(dev_priv)	(INTEL_INFO(dev_priv)->has_pooled_eu)
2612 
2613 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
2614 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2615 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2616 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2617 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2618 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2619 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
2620 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
2621 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2622 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2623 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
2624 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
2625 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
2626 #define INTEL_PCH_CMP_DEVICE_ID_TYPE		0x0280
2627 #define INTEL_PCH_ICP_DEVICE_ID_TYPE		0x3480
2628 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2629 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2630 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2631 
2632 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2633 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2634 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2635 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2636 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2637 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2638 #define HAS_PCH_LPT_LP(dev_priv) \
2639 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2640 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2641 #define HAS_PCH_LPT_H(dev_priv) \
2642 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2643 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2644 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2645 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2646 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2647 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2648 
2649 #define HAS_GMCH(dev_priv) (INTEL_INFO(dev_priv)->display.has_gmch)
2650 
2651 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2652 
2653 /* DPF == dynamic parity feature */
2654 #define HAS_L3_DPF(dev_priv) (INTEL_INFO(dev_priv)->has_l3_dpf)
2655 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2656 				 2 : HAS_L3_DPF(dev_priv))
2657 
2658 #define GT_FREQUENCY_MULTIPLIER 50
2659 #define GEN9_FREQ_SCALER 3
2660 
2661 #define HAS_DISPLAY(dev_priv) (INTEL_INFO(dev_priv)->num_pipes > 0)
2662 
2663 #include "i915_trace.h"
2664 
2665 static inline bool intel_vtd_active(void)
2666 {
2667 #ifdef CONFIG_INTEL_IOMMU
2668 	if (intel_iommu_gfx_mapped)
2669 		return true;
2670 #endif
2671 	return false;
2672 }
2673 
2674 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2675 {
2676 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2677 }
2678 
2679 static inline bool
2680 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2681 {
2682 	return IS_BROXTON(dev_priv) && intel_vtd_active();
2683 }
2684 
2685 /* i915_drv.c */
2686 void __printf(3, 4)
2687 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2688 	      const char *fmt, ...);
2689 
2690 #define i915_report_error(dev_priv, fmt, ...)				   \
2691 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2692 
2693 #ifdef CONFIG_COMPAT
2694 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2695 			      unsigned long arg);
2696 #else
2697 #define i915_compat_ioctl NULL
2698 #endif
2699 extern const struct dev_pm_ops i915_pm_ops;
2700 
2701 extern int i915_driver_load(struct pci_dev *pdev,
2702 			    const struct pci_device_id *ent);
2703 extern void i915_driver_unload(struct drm_device *dev);
2704 
2705 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2706 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2707 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2708 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2709 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2710 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2711 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2712 
2713 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv);
2714 
2715 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2716 {
2717 	unsigned long delay;
2718 
2719 	if (unlikely(!i915_modparams.enable_hangcheck))
2720 		return;
2721 
2722 	/* Don't continually defer the hangcheck so that it is always run at
2723 	 * least once after work has been scheduled on any ring. Otherwise,
2724 	 * we will ignore a hung ring if a second ring is kept busy.
2725 	 */
2726 
2727 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2728 	queue_delayed_work(system_long_wq,
2729 			   &dev_priv->gpu_error.hangcheck_work, delay);
2730 }
2731 
2732 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2733 {
2734 	return dev_priv->gvt;
2735 }
2736 
2737 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2738 {
2739 	return dev_priv->vgpu.active;
2740 }
2741 
2742 /* i915_gem.c */
2743 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2744 			  struct drm_file *file_priv);
2745 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2746 			 struct drm_file *file_priv);
2747 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2748 			  struct drm_file *file_priv);
2749 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2750 			struct drm_file *file_priv);
2751 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2752 			struct drm_file *file_priv);
2753 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2754 			      struct drm_file *file_priv);
2755 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2756 			     struct drm_file *file_priv);
2757 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2758 			      struct drm_file *file_priv);
2759 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2760 			       struct drm_file *file_priv);
2761 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2762 			struct drm_file *file_priv);
2763 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2764 			       struct drm_file *file);
2765 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2766 			       struct drm_file *file);
2767 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2768 			    struct drm_file *file_priv);
2769 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2770 			   struct drm_file *file_priv);
2771 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2772 			      struct drm_file *file_priv);
2773 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2774 			      struct drm_file *file_priv);
2775 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2776 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2777 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2778 			   struct drm_file *file);
2779 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2780 				struct drm_file *file_priv);
2781 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2782 			struct drm_file *file_priv);
2783 void i915_gem_sanitize(struct drm_i915_private *i915);
2784 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2785 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2786 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2787 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2788 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2789 
2790 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2791 			 const struct drm_i915_gem_object_ops *ops);
2792 struct drm_i915_gem_object *
2793 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2794 struct drm_i915_gem_object *
2795 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2796 				 const void *data, size_t size);
2797 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2798 void i915_gem_free_object(struct drm_gem_object *obj);
2799 
2800 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2801 {
2802 	if (!atomic_read(&i915->mm.free_count))
2803 		return;
2804 
2805 	/* A single pass should suffice to release all the freed objects (along
2806 	 * most call paths) , but be a little more paranoid in that freeing
2807 	 * the objects does take a little amount of time, during which the rcu
2808 	 * callbacks could have added new objects into the freed list, and
2809 	 * armed the work again.
2810 	 */
2811 	do {
2812 		rcu_barrier();
2813 	} while (flush_work(&i915->mm.free_work));
2814 }
2815 
2816 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2817 {
2818 	/*
2819 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
2820 	 * general we have workers that are armed by RCU and then rearm
2821 	 * themselves in their callbacks. To be paranoid, we need to
2822 	 * drain the workqueue a second time after waiting for the RCU
2823 	 * grace period so that we catch work queued via RCU from the first
2824 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
2825 	 * a result, we make an assumption that we only don't require more
2826 	 * than 3 passes to catch all _recursive_ RCU delayed work.
2827 	 *
2828 	 */
2829 	int pass = 3;
2830 	do {
2831 		rcu_barrier();
2832 		i915_gem_drain_freed_objects(i915);
2833 	} while (--pass);
2834 	drain_workqueue(i915->wq);
2835 }
2836 
2837 struct i915_vma * __must_check
2838 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2839 			 const struct i915_ggtt_view *view,
2840 			 u64 size,
2841 			 u64 alignment,
2842 			 u64 flags);
2843 
2844 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
2845 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2846 
2847 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
2848 
2849 static inline int __sg_page_count(const struct scatterlist *sg)
2850 {
2851 	return sg->length >> PAGE_SHIFT;
2852 }
2853 
2854 struct scatterlist *
2855 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
2856 		       unsigned int n, unsigned int *offset);
2857 
2858 struct page *
2859 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
2860 			 unsigned int n);
2861 
2862 struct page *
2863 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
2864 			       unsigned int n);
2865 
2866 dma_addr_t
2867 i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj,
2868 				    unsigned long n,
2869 				    unsigned int *len);
2870 dma_addr_t
2871 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
2872 				unsigned long n);
2873 
2874 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2875 				 struct sg_table *pages,
2876 				 unsigned int sg_page_sizes);
2877 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2878 
2879 static inline int __must_check
2880 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2881 {
2882 	might_lock(&obj->mm.lock);
2883 
2884 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
2885 		return 0;
2886 
2887 	return __i915_gem_object_get_pages(obj);
2888 }
2889 
2890 static inline bool
2891 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
2892 {
2893 	return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
2894 }
2895 
2896 static inline void
2897 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2898 {
2899 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2900 
2901 	atomic_inc(&obj->mm.pages_pin_count);
2902 }
2903 
2904 static inline bool
2905 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
2906 {
2907 	return atomic_read(&obj->mm.pages_pin_count);
2908 }
2909 
2910 static inline void
2911 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2912 {
2913 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2914 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
2915 
2916 	atomic_dec(&obj->mm.pages_pin_count);
2917 }
2918 
2919 static inline void
2920 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2921 {
2922 	__i915_gem_object_unpin_pages(obj);
2923 }
2924 
2925 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock/struct_mutex */
2926 	I915_MM_NORMAL = 0,
2927 	I915_MM_SHRINKER /* called "recursively" from direct-reclaim-esque */
2928 };
2929 
2930 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2931 				enum i915_mm_subclass subclass);
2932 void __i915_gem_object_truncate(struct drm_i915_gem_object *obj);
2933 
2934 enum i915_map_type {
2935 	I915_MAP_WB = 0,
2936 	I915_MAP_WC,
2937 #define I915_MAP_OVERRIDE BIT(31)
2938 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
2939 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
2940 };
2941 
2942 static inline enum i915_map_type
2943 i915_coherent_map_type(struct drm_i915_private *i915)
2944 {
2945 	return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
2946 }
2947 
2948 /**
2949  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
2950  * @obj: the object to map into kernel address space
2951  * @type: the type of mapping, used to select pgprot_t
2952  *
2953  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
2954  * pages and then returns a contiguous mapping of the backing storage into
2955  * the kernel address space. Based on the @type of mapping, the PTE will be
2956  * set to either WriteBack or WriteCombine (via pgprot_t).
2957  *
2958  * The caller is responsible for calling i915_gem_object_unpin_map() when the
2959  * mapping is no longer required.
2960  *
2961  * Returns the pointer through which to access the mapped object, or an
2962  * ERR_PTR() on error.
2963  */
2964 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2965 					   enum i915_map_type type);
2966 
2967 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
2968 				 unsigned long offset,
2969 				 unsigned long size);
2970 static inline void i915_gem_object_flush_map(struct drm_i915_gem_object *obj)
2971 {
2972 	__i915_gem_object_flush_map(obj, 0, obj->base.size);
2973 }
2974 
2975 /**
2976  * i915_gem_object_unpin_map - releases an earlier mapping
2977  * @obj: the object to unmap
2978  *
2979  * After pinning the object and mapping its pages, once you are finished
2980  * with your access, call i915_gem_object_unpin_map() to release the pin
2981  * upon the mapping. Once the pin count reaches zero, that mapping may be
2982  * removed.
2983  */
2984 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
2985 {
2986 	i915_gem_object_unpin_pages(obj);
2987 }
2988 
2989 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
2990 				    unsigned int *needs_clflush);
2991 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
2992 				     unsigned int *needs_clflush);
2993 #define CLFLUSH_BEFORE	BIT(0)
2994 #define CLFLUSH_AFTER	BIT(1)
2995 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
2996 
2997 static inline void
2998 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
2999 {
3000 	i915_gem_object_unpin_pages(obj);
3001 }
3002 
3003 static inline int __must_check
3004 i915_mutex_lock_interruptible(struct drm_device *dev)
3005 {
3006 	return mutex_lock_interruptible(&dev->struct_mutex);
3007 }
3008 
3009 int i915_gem_dumb_create(struct drm_file *file_priv,
3010 			 struct drm_device *dev,
3011 			 struct drm_mode_create_dumb *args);
3012 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3013 		      u32 handle, u64 *offset);
3014 int i915_gem_mmap_gtt_version(void);
3015 
3016 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3017 		       struct drm_i915_gem_object *new,
3018 		       unsigned frontbuffer_bits);
3019 
3020 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3021 
3022 static inline bool __i915_wedged(struct i915_gpu_error *error)
3023 {
3024 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3025 }
3026 
3027 static inline bool i915_reset_failed(struct drm_i915_private *i915)
3028 {
3029 	return __i915_wedged(&i915->gpu_error);
3030 }
3031 
3032 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3033 {
3034 	return READ_ONCE(error->reset_count);
3035 }
3036 
3037 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3038 					  struct intel_engine_cs *engine)
3039 {
3040 	return READ_ONCE(error->reset_engine_count[engine->id]);
3041 }
3042 
3043 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3044 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3045 
3046 void i915_gem_init_mmio(struct drm_i915_private *i915);
3047 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3048 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3049 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3050 void i915_gem_fini(struct drm_i915_private *dev_priv);
3051 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3052 			   unsigned int flags, long timeout);
3053 void i915_gem_suspend(struct drm_i915_private *dev_priv);
3054 void i915_gem_suspend_late(struct drm_i915_private *dev_priv);
3055 void i915_gem_resume(struct drm_i915_private *dev_priv);
3056 vm_fault_t i915_gem_fault(struct vm_fault *vmf);
3057 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3058 			 unsigned int flags,
3059 			 long timeout);
3060 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3061 				  unsigned int flags,
3062 				  const struct i915_sched_attr *attr);
3063 #define I915_PRIORITY_DISPLAY I915_USER_PRIORITY(I915_PRIORITY_MAX)
3064 
3065 int __must_check
3066 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3067 int __must_check
3068 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3069 int __must_check
3070 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3071 struct i915_vma * __must_check
3072 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3073 				     u32 alignment,
3074 				     const struct i915_ggtt_view *view,
3075 				     unsigned int flags);
3076 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3077 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3078 				int align);
3079 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3080 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3081 
3082 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3083 				    enum i915_cache_level cache_level);
3084 
3085 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3086 				struct dma_buf *dma_buf);
3087 
3088 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3089 				struct drm_gem_object *gem_obj, int flags);
3090 
3091 static inline struct i915_hw_ppgtt *
3092 i915_vm_to_ppgtt(struct i915_address_space *vm)
3093 {
3094 	return container_of(vm, struct i915_hw_ppgtt, vm);
3095 }
3096 
3097 /* i915_gem_fence_reg.c */
3098 struct drm_i915_fence_reg *
3099 i915_reserve_fence(struct drm_i915_private *dev_priv);
3100 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3101 
3102 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3103 
3104 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3105 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3106 				       struct sg_table *pages);
3107 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3108 					 struct sg_table *pages);
3109 
3110 static inline struct i915_gem_context *
3111 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3112 {
3113 	return idr_find(&file_priv->context_idr, id);
3114 }
3115 
3116 static inline struct i915_gem_context *
3117 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3118 {
3119 	struct i915_gem_context *ctx;
3120 
3121 	rcu_read_lock();
3122 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3123 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3124 		ctx = NULL;
3125 	rcu_read_unlock();
3126 
3127 	return ctx;
3128 }
3129 
3130 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3131 			 struct drm_file *file);
3132 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3133 			       struct drm_file *file);
3134 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3135 				  struct drm_file *file);
3136 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3137 			    struct intel_context *ce,
3138 			    u32 *reg_state);
3139 
3140 /* i915_gem_evict.c */
3141 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3142 					  u64 min_size, u64 alignment,
3143 					  unsigned cache_level,
3144 					  u64 start, u64 end,
3145 					  unsigned flags);
3146 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3147 					 struct drm_mm_node *node,
3148 					 unsigned int flags);
3149 int i915_gem_evict_vm(struct i915_address_space *vm);
3150 
3151 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3152 
3153 /* belongs in i915_gem_gtt.h */
3154 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3155 {
3156 	wmb();
3157 	if (INTEL_GEN(dev_priv) < 6)
3158 		intel_gtt_chipset_flush();
3159 }
3160 
3161 /* i915_gem_stolen.c */
3162 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3163 				struct drm_mm_node *node, u64 size,
3164 				unsigned alignment);
3165 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3166 					 struct drm_mm_node *node, u64 size,
3167 					 unsigned alignment, u64 start,
3168 					 u64 end);
3169 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3170 				 struct drm_mm_node *node);
3171 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3172 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv);
3173 struct drm_i915_gem_object *
3174 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3175 			      resource_size_t size);
3176 struct drm_i915_gem_object *
3177 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3178 					       resource_size_t stolen_offset,
3179 					       resource_size_t gtt_offset,
3180 					       resource_size_t size);
3181 
3182 /* i915_gem_internal.c */
3183 struct drm_i915_gem_object *
3184 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3185 				phys_addr_t size);
3186 
3187 /* i915_gem_shrinker.c */
3188 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3189 			      unsigned long target,
3190 			      unsigned long *nr_scanned,
3191 			      unsigned flags);
3192 #define I915_SHRINK_PURGEABLE	BIT(0)
3193 #define I915_SHRINK_UNBOUND	BIT(1)
3194 #define I915_SHRINK_BOUND	BIT(2)
3195 #define I915_SHRINK_ACTIVE	BIT(3)
3196 #define I915_SHRINK_VMAPS	BIT(4)
3197 #define I915_SHRINK_WRITEBACK	BIT(5)
3198 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3199 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3200 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3201 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915,
3202 				    struct mutex *mutex);
3203 
3204 /* i915_gem_tiling.c */
3205 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3206 {
3207 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3208 
3209 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3210 		i915_gem_object_is_tiled(obj);
3211 }
3212 
3213 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3214 			unsigned int tiling, unsigned int stride);
3215 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3216 			     unsigned int tiling, unsigned int stride);
3217 
3218 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3219 
3220 /* i915_cmd_parser.c */
3221 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3222 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3223 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3224 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3225 			    struct drm_i915_gem_object *batch_obj,
3226 			    struct drm_i915_gem_object *shadow_batch_obj,
3227 			    u32 batch_start_offset,
3228 			    u32 batch_len,
3229 			    bool is_master);
3230 
3231 /* i915_perf.c */
3232 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3233 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3234 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3235 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3236 
3237 /* i915_suspend.c */
3238 extern int i915_save_state(struct drm_i915_private *dev_priv);
3239 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3240 
3241 /* i915_sysfs.c */
3242 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3243 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3244 
3245 /* intel_device_info.c */
3246 static inline struct intel_device_info *
3247 mkwrite_device_info(struct drm_i915_private *dev_priv)
3248 {
3249 	return (struct intel_device_info *)INTEL_INFO(dev_priv);
3250 }
3251 
3252 /* modesetting */
3253 extern void intel_modeset_init_hw(struct drm_device *dev);
3254 extern int intel_modeset_init(struct drm_device *dev);
3255 extern void intel_modeset_cleanup(struct drm_device *dev);
3256 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3257 				       bool state);
3258 extern void intel_display_resume(struct drm_device *dev);
3259 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3260 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3261 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3262 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3263 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3264 extern void intel_rps_mark_interactive(struct drm_i915_private *i915,
3265 				       bool interactive);
3266 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3267 				  bool enable);
3268 
3269 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3270 			struct drm_file *file);
3271 
3272 extern struct intel_display_error_state *
3273 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3274 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3275 					    struct intel_display_error_state *error);
3276 
3277 #define __I915_REG_OP(op__, dev_priv__, ...) \
3278 	intel_uncore_##op__(&(dev_priv__)->uncore, __VA_ARGS__)
3279 
3280 #define I915_READ8(reg__)	  __I915_REG_OP(read8, dev_priv, (reg__))
3281 #define I915_WRITE8(reg__, val__) __I915_REG_OP(write8, dev_priv, (reg__), (val__))
3282 
3283 #define I915_READ16(reg__)	   __I915_REG_OP(read16, dev_priv, (reg__))
3284 #define I915_WRITE16(reg__, val__) __I915_REG_OP(write16, dev_priv, (reg__), (val__))
3285 #define I915_READ16_NOTRACE(reg__)	   __I915_REG_OP(read16_notrace, dev_priv, (reg__))
3286 #define I915_WRITE16_NOTRACE(reg__, val__) __I915_REG_OP(write16_notrace, dev_priv, (reg__), (val__))
3287 
3288 #define I915_READ(reg__)	 __I915_REG_OP(read, dev_priv, (reg__))
3289 #define I915_WRITE(reg__, val__) __I915_REG_OP(write, dev_priv, (reg__), (val__))
3290 #define I915_READ_NOTRACE(reg__)	 __I915_REG_OP(read_notrace, dev_priv, (reg__))
3291 #define I915_WRITE_NOTRACE(reg__, val__) __I915_REG_OP(write_notrace, dev_priv, (reg__), (val__))
3292 
3293 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3294  * will be implemented using 2 32-bit writes in an arbitrary order with
3295  * an arbitrary delay between them. This can cause the hardware to
3296  * act upon the intermediate value, possibly leading to corruption and
3297  * machine death. For this reason we do not support I915_WRITE64, or
3298  * dev_priv->uncore.funcs.mmio_writeq.
3299  *
3300  * When reading a 64-bit value as two 32-bit values, the delay may cause
3301  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3302  * occasionally a 64-bit register does not actualy support a full readq
3303  * and must be read using two 32-bit reads.
3304  *
3305  * You have been warned.
3306  */
3307 #define I915_READ64(reg__)	__I915_REG_OP(read64, dev_priv, (reg__))
3308 #define I915_READ64_2x32(lower_reg__, upper_reg__) \
3309 	__I915_REG_OP(read64_2x32, dev_priv, (lower_reg__), (upper_reg__))
3310 
3311 #define POSTING_READ(reg__)	__I915_REG_OP(posting_read, dev_priv, (reg__))
3312 #define POSTING_READ16(reg__)	__I915_REG_OP(posting_read16, dev_priv, (reg__))
3313 
3314 /* These are untraced mmio-accessors that are only valid to be used inside
3315  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3316  * controlled.
3317  *
3318  * Think twice, and think again, before using these.
3319  *
3320  * As an example, these accessors can possibly be used between:
3321  *
3322  * spin_lock_irq(&dev_priv->uncore.lock);
3323  * intel_uncore_forcewake_get__locked();
3324  *
3325  * and
3326  *
3327  * intel_uncore_forcewake_put__locked();
3328  * spin_unlock_irq(&dev_priv->uncore.lock);
3329  *
3330  *
3331  * Note: some registers may not need forcewake held, so
3332  * intel_uncore_forcewake_{get,put} can be omitted, see
3333  * intel_uncore_forcewake_for_reg().
3334  *
3335  * Certain architectures will die if the same cacheline is concurrently accessed
3336  * by different clients (e.g. on Ivybridge). Access to registers should
3337  * therefore generally be serialised, by either the dev_priv->uncore.lock or
3338  * a more localised lock guarding all access to that bank of registers.
3339  */
3340 #define I915_READ_FW(reg__) __I915_REG_OP(read_fw, dev_priv, (reg__))
3341 #define I915_WRITE_FW(reg__, val__) __I915_REG_OP(write_fw, dev_priv, (reg__), (val__))
3342 #define I915_WRITE64_FW(reg__, val__) __I915_REG_OP(write64_fw, dev_priv, (reg__), (val__))
3343 #define POSTING_READ_FW(reg__) __I915_REG_OP(posting_read_fw, dev_priv, (reg__))
3344 
3345 /* "Broadcast RGB" property */
3346 #define INTEL_BROADCAST_RGB_AUTO 0
3347 #define INTEL_BROADCAST_RGB_FULL 1
3348 #define INTEL_BROADCAST_RGB_LIMITED 2
3349 
3350 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3351 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3352 
3353 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3354  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3355  * perform the operation. To check beforehand, pass in the parameters to
3356  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3357  * you only need to pass in the minor offsets, page-aligned pointers are
3358  * always valid.
3359  *
3360  * For just checking for SSE4.1, in the foreknowledge that the future use
3361  * will be correctly aligned, just use i915_has_memcpy_from_wc().
3362  */
3363 #define i915_can_memcpy_from_wc(dst, src, len) \
3364 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3365 
3366 #define i915_has_memcpy_from_wc() \
3367 	i915_memcpy_from_wc(NULL, NULL, 0)
3368 
3369 /* i915_mm.c */
3370 int remap_io_mapping(struct vm_area_struct *vma,
3371 		     unsigned long addr, unsigned long pfn, unsigned long size,
3372 		     struct io_mapping *iomap);
3373 
3374 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3375 {
3376 	if (INTEL_GEN(i915) >= 10)
3377 		return CNL_HWS_CSB_WRITE_INDEX;
3378 	else
3379 		return I915_HWS_CSB_WRITE_INDEX;
3380 }
3381 
3382 static inline u32 i915_scratch_offset(const struct drm_i915_private *i915)
3383 {
3384 	return i915_ggtt_offset(i915->gt.scratch);
3385 }
3386 
3387 static inline void add_taint_for_CI(unsigned int taint)
3388 {
3389 	/*
3390 	 * The system is "ok", just about surviving for the user, but
3391 	 * CI results are now unreliable as the HW is very suspect.
3392 	 * CI checks the taint state after every test and will reboot
3393 	 * the machine if the kernel is tainted.
3394 	 */
3395 	add_taint(taint, LOCKDEP_STILL_OK);
3396 }
3397 
3398 #endif
3399