1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hash.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/mm_types.h> 44 #include <linux/perf_event.h> 45 #include <linux/pm_qos.h> 46 #include <linux/reservation.h> 47 #include <linux/shmem_fs.h> 48 #include <linux/stackdepot.h> 49 50 #include <drm/intel-gtt.h> 51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 52 #include <drm/drm_gem.h> 53 #include <drm/drm_auth.h> 54 #include <drm/drm_cache.h> 55 #include <drm/drm_util.h> 56 #include <drm/drm_dsc.h> 57 #include <drm/drm_connector.h> 58 #include <drm/i915_mei_hdcp_interface.h> 59 60 #include "i915_fixed.h" 61 #include "i915_params.h" 62 #include "i915_reg.h" 63 #include "i915_utils.h" 64 65 #include "gt/intel_lrc.h" 66 #include "gt/intel_engine.h" 67 #include "gt/intel_workarounds.h" 68 69 #include "intel_bios.h" 70 #include "intel_device_info.h" 71 #include "intel_display.h" 72 #include "intel_dpll_mgr.h" 73 #include "intel_frontbuffer.h" 74 #include "intel_opregion.h" 75 #include "intel_runtime_pm.h" 76 #include "intel_uc.h" 77 #include "intel_uncore.h" 78 #include "intel_wakeref.h" 79 #include "intel_wopcm.h" 80 81 #include "i915_gem.h" 82 #include "i915_gem_context.h" 83 #include "i915_gem_fence_reg.h" 84 #include "i915_gem_object.h" 85 #include "i915_gem_gtt.h" 86 #include "i915_gpu_error.h" 87 #include "i915_request.h" 88 #include "i915_scheduler.h" 89 #include "i915_timeline.h" 90 #include "i915_vma.h" 91 92 #include "intel_gvt.h" 93 94 /* General customization: 95 */ 96 97 #define DRIVER_NAME "i915" 98 #define DRIVER_DESC "Intel Graphics" 99 #define DRIVER_DATE "20190524" 100 #define DRIVER_TIMESTAMP 1558719322 101 102 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 103 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 104 * which may not necessarily be a user visible problem. This will either 105 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 106 * enable distros and users to tailor their preferred amount of i915 abrt 107 * spam. 108 */ 109 #define I915_STATE_WARN(condition, format...) ({ \ 110 int __ret_warn_on = !!(condition); \ 111 if (unlikely(__ret_warn_on)) \ 112 if (!WARN(i915_modparams.verbose_state_checks, format)) \ 113 DRM_ERROR(format); \ 114 unlikely(__ret_warn_on); \ 115 }) 116 117 #define I915_STATE_WARN_ON(x) \ 118 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 119 120 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG) 121 122 bool __i915_inject_load_failure(const char *func, int line); 123 #define i915_inject_load_failure() \ 124 __i915_inject_load_failure(__func__, __LINE__) 125 126 bool i915_error_injected(void); 127 128 #else 129 130 #define i915_inject_load_failure() false 131 #define i915_error_injected() false 132 133 #endif 134 135 #define i915_load_error(i915, fmt, ...) \ 136 __i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \ 137 fmt, ##__VA_ARGS__) 138 139 enum hpd_pin { 140 HPD_NONE = 0, 141 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 142 HPD_CRT, 143 HPD_SDVO_B, 144 HPD_SDVO_C, 145 HPD_PORT_A, 146 HPD_PORT_B, 147 HPD_PORT_C, 148 HPD_PORT_D, 149 HPD_PORT_E, 150 HPD_PORT_F, 151 HPD_NUM_PINS 152 }; 153 154 #define for_each_hpd_pin(__pin) \ 155 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 156 157 /* Threshold == 5 for long IRQs, 50 for short */ 158 #define HPD_STORM_DEFAULT_THRESHOLD 50 159 160 struct i915_hotplug { 161 struct work_struct hotplug_work; 162 163 struct { 164 unsigned long last_jiffies; 165 int count; 166 enum { 167 HPD_ENABLED = 0, 168 HPD_DISABLED = 1, 169 HPD_MARK_DISABLED = 2 170 } state; 171 } stats[HPD_NUM_PINS]; 172 u32 event_bits; 173 struct delayed_work reenable_work; 174 175 u32 long_port_mask; 176 u32 short_port_mask; 177 struct work_struct dig_port_work; 178 179 struct work_struct poll_init_work; 180 bool poll_enabled; 181 182 unsigned int hpd_storm_threshold; 183 /* Whether or not to count short HPD IRQs in HPD storms */ 184 u8 hpd_short_storm_enabled; 185 186 /* 187 * if we get a HPD irq from DP and a HPD irq from non-DP 188 * the non-DP HPD could block the workqueue on a mode config 189 * mutex getting, that userspace may have taken. However 190 * userspace is waiting on the DP workqueue to run which is 191 * blocked behind the non-DP one. 192 */ 193 struct workqueue_struct *dp_wq; 194 }; 195 196 #define I915_GEM_GPU_DOMAINS \ 197 (I915_GEM_DOMAIN_RENDER | \ 198 I915_GEM_DOMAIN_SAMPLER | \ 199 I915_GEM_DOMAIN_COMMAND | \ 200 I915_GEM_DOMAIN_INSTRUCTION | \ 201 I915_GEM_DOMAIN_VERTEX) 202 203 struct drm_i915_private; 204 struct i915_mm_struct; 205 struct i915_mmu_object; 206 207 struct drm_i915_file_private { 208 struct drm_i915_private *dev_priv; 209 struct drm_file *file; 210 211 struct { 212 spinlock_t lock; 213 struct list_head request_list; 214 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 215 * chosen to prevent the CPU getting more than a frame ahead of the GPU 216 * (when using lax throttling for the frontbuffer). We also use it to 217 * offer free GPU waitboosts for severely congested workloads. 218 */ 219 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 220 } mm; 221 222 struct idr context_idr; 223 struct mutex context_idr_lock; /* guards context_idr */ 224 225 struct idr vm_idr; 226 struct mutex vm_idr_lock; /* guards vm_idr */ 227 228 unsigned int bsd_engine; 229 230 /* 231 * Every context ban increments per client ban score. Also 232 * hangs in short succession increments ban score. If ban threshold 233 * is reached, client is considered banned and submitting more work 234 * will fail. This is a stop gap measure to limit the badly behaving 235 * clients access to gpu. Note that unbannable contexts never increment 236 * the client ban score. 237 */ 238 #define I915_CLIENT_SCORE_HANG_FAST 1 239 #define I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ) 240 #define I915_CLIENT_SCORE_CONTEXT_BAN 3 241 #define I915_CLIENT_SCORE_BANNED 9 242 /** ban_score: Accumulated score of all ctx bans and fast hangs. */ 243 atomic_t ban_score; 244 unsigned long hang_timestamp; 245 }; 246 247 /* Interface history: 248 * 249 * 1.1: Original. 250 * 1.2: Add Power Management 251 * 1.3: Add vblank support 252 * 1.4: Fix cmdbuffer path, add heap destroy 253 * 1.5: Add vblank pipe configuration 254 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 255 * - Support vertical blank on secondary display pipe 256 */ 257 #define DRIVER_MAJOR 1 258 #define DRIVER_MINOR 6 259 #define DRIVER_PATCHLEVEL 0 260 261 struct intel_overlay; 262 struct intel_overlay_error_state; 263 264 struct sdvo_device_mapping { 265 u8 initialized; 266 u8 dvo_port; 267 u8 slave_addr; 268 u8 dvo_wiring; 269 u8 i2c_pin; 270 u8 ddc_pin; 271 }; 272 273 struct intel_connector; 274 struct intel_encoder; 275 struct intel_atomic_state; 276 struct intel_crtc_state; 277 struct intel_initial_plane_config; 278 struct intel_crtc; 279 struct intel_limit; 280 struct dpll; 281 struct intel_cdclk_state; 282 283 struct drm_i915_display_funcs { 284 void (*get_cdclk)(struct drm_i915_private *dev_priv, 285 struct intel_cdclk_state *cdclk_state); 286 void (*set_cdclk)(struct drm_i915_private *dev_priv, 287 const struct intel_cdclk_state *cdclk_state, 288 enum pipe pipe); 289 int (*get_fifo_size)(struct drm_i915_private *dev_priv, 290 enum i9xx_plane_id i9xx_plane); 291 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 292 int (*compute_intermediate_wm)(struct intel_crtc_state *newstate); 293 void (*initial_watermarks)(struct intel_atomic_state *state, 294 struct intel_crtc_state *cstate); 295 void (*atomic_update_watermarks)(struct intel_atomic_state *state, 296 struct intel_crtc_state *cstate); 297 void (*optimize_watermarks)(struct intel_atomic_state *state, 298 struct intel_crtc_state *cstate); 299 int (*compute_global_watermarks)(struct intel_atomic_state *state); 300 void (*update_wm)(struct intel_crtc *crtc); 301 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 302 /* Returns the active state of the crtc, and if the crtc is active, 303 * fills out the pipe-config with the hw state. */ 304 bool (*get_pipe_config)(struct intel_crtc *, 305 struct intel_crtc_state *); 306 void (*get_initial_plane_config)(struct intel_crtc *, 307 struct intel_initial_plane_config *); 308 int (*crtc_compute_clock)(struct intel_crtc *crtc, 309 struct intel_crtc_state *crtc_state); 310 void (*crtc_enable)(struct intel_crtc_state *pipe_config, 311 struct drm_atomic_state *old_state); 312 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state, 313 struct drm_atomic_state *old_state); 314 void (*update_crtcs)(struct drm_atomic_state *state); 315 void (*audio_codec_enable)(struct intel_encoder *encoder, 316 const struct intel_crtc_state *crtc_state, 317 const struct drm_connector_state *conn_state); 318 void (*audio_codec_disable)(struct intel_encoder *encoder, 319 const struct intel_crtc_state *old_crtc_state, 320 const struct drm_connector_state *old_conn_state); 321 void (*fdi_link_train)(struct intel_crtc *crtc, 322 const struct intel_crtc_state *crtc_state); 323 void (*init_clock_gating)(struct drm_i915_private *dev_priv); 324 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 325 /* clock updates for mode set */ 326 /* cursor updates */ 327 /* render clock increase/decrease */ 328 /* display clock increase/decrease */ 329 /* pll clock increase/decrease */ 330 331 int (*color_check)(struct intel_crtc_state *crtc_state); 332 /* 333 * Program double buffered color management registers during 334 * vblank evasion. The registers should then latch during the 335 * next vblank start, alongside any other double buffered registers 336 * involved with the same commit. 337 */ 338 void (*color_commit)(const struct intel_crtc_state *crtc_state); 339 /* 340 * Load LUTs (and other single buffered color management 341 * registers). Will (hopefully) be called during the vblank 342 * following the latching of any double buffered registers 343 * involved with the same commit. 344 */ 345 void (*load_luts)(const struct intel_crtc_state *crtc_state); 346 }; 347 348 struct intel_csr { 349 struct work_struct work; 350 const char *fw_path; 351 u32 required_version; 352 u32 max_fw_size; /* bytes */ 353 u32 *dmc_payload; 354 u32 dmc_fw_size; /* dwords */ 355 u32 version; 356 u32 mmio_count; 357 i915_reg_t mmioaddr[8]; 358 u32 mmiodata[8]; 359 u32 dc_state; 360 u32 allowed_dc_mask; 361 intel_wakeref_t wakeref; 362 }; 363 364 enum i915_cache_level { 365 I915_CACHE_NONE = 0, 366 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 367 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 368 caches, eg sampler/render caches, and the 369 large Last-Level-Cache. LLC is coherent with 370 the CPU, but L3 is only visible to the GPU. */ 371 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 372 }; 373 374 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ 375 376 struct intel_fbc { 377 /* This is always the inner lock when overlapping with struct_mutex and 378 * it's the outer lock when overlapping with stolen_lock. */ 379 struct mutex lock; 380 unsigned threshold; 381 unsigned int possible_framebuffer_bits; 382 unsigned int busy_bits; 383 unsigned int visible_pipes_mask; 384 struct intel_crtc *crtc; 385 386 struct drm_mm_node compressed_fb; 387 struct drm_mm_node *compressed_llb; 388 389 bool false_color; 390 391 bool enabled; 392 bool active; 393 bool flip_pending; 394 395 bool underrun_detected; 396 struct work_struct underrun_work; 397 398 /* 399 * Due to the atomic rules we can't access some structures without the 400 * appropriate locking, so we cache information here in order to avoid 401 * these problems. 402 */ 403 struct intel_fbc_state_cache { 404 struct i915_vma *vma; 405 unsigned long flags; 406 407 struct { 408 unsigned int mode_flags; 409 u32 hsw_bdw_pixel_rate; 410 } crtc; 411 412 struct { 413 unsigned int rotation; 414 int src_w; 415 int src_h; 416 bool visible; 417 /* 418 * Display surface base address adjustement for 419 * pageflips. Note that on gen4+ this only adjusts up 420 * to a tile, offsets within a tile are handled in 421 * the hw itself (with the TILEOFF register). 422 */ 423 int adjusted_x; 424 int adjusted_y; 425 426 int y; 427 428 u16 pixel_blend_mode; 429 } plane; 430 431 struct { 432 const struct drm_format_info *format; 433 unsigned int stride; 434 } fb; 435 } state_cache; 436 437 /* 438 * This structure contains everything that's relevant to program the 439 * hardware registers. When we want to figure out if we need to disable 440 * and re-enable FBC for a new configuration we just check if there's 441 * something different in the struct. The genx_fbc_activate functions 442 * are supposed to read from it in order to program the registers. 443 */ 444 struct intel_fbc_reg_params { 445 struct i915_vma *vma; 446 unsigned long flags; 447 448 struct { 449 enum pipe pipe; 450 enum i9xx_plane_id i9xx_plane; 451 unsigned int fence_y_offset; 452 } crtc; 453 454 struct { 455 const struct drm_format_info *format; 456 unsigned int stride; 457 } fb; 458 459 int cfb_size; 460 unsigned int gen9_wa_cfb_stride; 461 } params; 462 463 const char *no_fbc_reason; 464 }; 465 466 /* 467 * HIGH_RR is the highest eDP panel refresh rate read from EDID 468 * LOW_RR is the lowest eDP panel refresh rate found from EDID 469 * parsing for same resolution. 470 */ 471 enum drrs_refresh_rate_type { 472 DRRS_HIGH_RR, 473 DRRS_LOW_RR, 474 DRRS_MAX_RR, /* RR count */ 475 }; 476 477 enum drrs_support_type { 478 DRRS_NOT_SUPPORTED = 0, 479 STATIC_DRRS_SUPPORT = 1, 480 SEAMLESS_DRRS_SUPPORT = 2 481 }; 482 483 struct intel_dp; 484 struct i915_drrs { 485 struct mutex mutex; 486 struct delayed_work work; 487 struct intel_dp *dp; 488 unsigned busy_frontbuffer_bits; 489 enum drrs_refresh_rate_type refresh_rate_type; 490 enum drrs_support_type type; 491 }; 492 493 struct i915_psr { 494 struct mutex lock; 495 496 #define I915_PSR_DEBUG_MODE_MASK 0x0f 497 #define I915_PSR_DEBUG_DEFAULT 0x00 498 #define I915_PSR_DEBUG_DISABLE 0x01 499 #define I915_PSR_DEBUG_ENABLE 0x02 500 #define I915_PSR_DEBUG_FORCE_PSR1 0x03 501 #define I915_PSR_DEBUG_IRQ 0x10 502 503 u32 debug; 504 bool sink_support; 505 bool enabled; 506 struct intel_dp *dp; 507 enum pipe pipe; 508 bool active; 509 struct work_struct work; 510 unsigned busy_frontbuffer_bits; 511 bool sink_psr2_support; 512 bool link_standby; 513 bool colorimetry_support; 514 bool psr2_enabled; 515 u8 sink_sync_latency; 516 ktime_t last_entry_attempt; 517 ktime_t last_exit; 518 bool sink_not_reliable; 519 bool irq_aux_error; 520 u16 su_x_granularity; 521 }; 522 523 /* 524 * Sorted by south display engine compatibility. 525 * If the new PCH comes with a south display engine that is not 526 * inherited from the latest item, please do not add it to the 527 * end. Instead, add it right after its "parent" PCH. 528 */ 529 enum intel_pch { 530 PCH_NOP = -1, /* PCH without south display */ 531 PCH_NONE = 0, /* No PCH present */ 532 PCH_IBX, /* Ibexpeak PCH */ 533 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */ 534 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */ 535 PCH_SPT, /* Sunrisepoint/Kaby Lake PCH */ 536 PCH_CNP, /* Cannon/Comet Lake PCH */ 537 PCH_ICP, /* Ice Lake PCH */ 538 }; 539 540 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 541 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 542 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 543 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 544 #define QUIRK_INCREASE_T12_DELAY (1<<6) 545 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7) 546 547 struct intel_fbdev; 548 struct intel_fbc_work; 549 550 struct intel_gmbus { 551 struct i2c_adapter adapter; 552 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 553 u32 force_bit; 554 u32 reg0; 555 i915_reg_t gpio_reg; 556 struct i2c_algo_bit_data bit_algo; 557 struct drm_i915_private *dev_priv; 558 }; 559 560 struct i915_suspend_saved_registers { 561 u32 saveDSPARB; 562 u32 saveFBC_CONTROL; 563 u32 saveCACHE_MODE_0; 564 u32 saveMI_ARB_STATE; 565 u32 saveSWF0[16]; 566 u32 saveSWF1[16]; 567 u32 saveSWF3[3]; 568 u64 saveFENCE[I915_MAX_NUM_FENCES]; 569 u32 savePCH_PORT_HOTPLUG; 570 u16 saveGCDGMBUS; 571 }; 572 573 struct vlv_s0ix_state { 574 /* GAM */ 575 u32 wr_watermark; 576 u32 gfx_prio_ctrl; 577 u32 arb_mode; 578 u32 gfx_pend_tlb0; 579 u32 gfx_pend_tlb1; 580 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 581 u32 media_max_req_count; 582 u32 gfx_max_req_count; 583 u32 render_hwsp; 584 u32 ecochk; 585 u32 bsd_hwsp; 586 u32 blt_hwsp; 587 u32 tlb_rd_addr; 588 589 /* MBC */ 590 u32 g3dctl; 591 u32 gsckgctl; 592 u32 mbctl; 593 594 /* GCP */ 595 u32 ucgctl1; 596 u32 ucgctl3; 597 u32 rcgctl1; 598 u32 rcgctl2; 599 u32 rstctl; 600 u32 misccpctl; 601 602 /* GPM */ 603 u32 gfxpause; 604 u32 rpdeuhwtc; 605 u32 rpdeuc; 606 u32 ecobus; 607 u32 pwrdwnupctl; 608 u32 rp_down_timeout; 609 u32 rp_deucsw; 610 u32 rcubmabdtmr; 611 u32 rcedata; 612 u32 spare2gh; 613 614 /* Display 1 CZ domain */ 615 u32 gt_imr; 616 u32 gt_ier; 617 u32 pm_imr; 618 u32 pm_ier; 619 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 620 621 /* GT SA CZ domain */ 622 u32 tilectl; 623 u32 gt_fifoctl; 624 u32 gtlc_wake_ctrl; 625 u32 gtlc_survive; 626 u32 pmwgicz; 627 628 /* Display 2 CZ domain */ 629 u32 gu_ctl0; 630 u32 gu_ctl1; 631 u32 pcbr; 632 u32 clock_gate_dis2; 633 }; 634 635 struct intel_rps_ei { 636 ktime_t ktime; 637 u32 render_c0; 638 u32 media_c0; 639 }; 640 641 struct intel_rps { 642 struct mutex lock; /* protects enabling and the worker */ 643 644 /* 645 * work, interrupts_enabled and pm_iir are protected by 646 * dev_priv->irq_lock 647 */ 648 struct work_struct work; 649 bool interrupts_enabled; 650 u32 pm_iir; 651 652 /* PM interrupt bits that should never be masked */ 653 u32 pm_intrmsk_mbz; 654 655 /* Frequencies are stored in potentially platform dependent multiples. 656 * In other words, *_freq needs to be multiplied by X to be interesting. 657 * Soft limits are those which are used for the dynamic reclocking done 658 * by the driver (raise frequencies under heavy loads, and lower for 659 * lighter loads). Hard limits are those imposed by the hardware. 660 * 661 * A distinction is made for overclocking, which is never enabled by 662 * default, and is considered to be above the hard limit if it's 663 * possible at all. 664 */ 665 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 666 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 667 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 668 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 669 u8 min_freq; /* AKA RPn. Minimum frequency */ 670 u8 boost_freq; /* Frequency to request when wait boosting */ 671 u8 idle_freq; /* Frequency to request when we are idle */ 672 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 673 u8 rp1_freq; /* "less than" RP0 power/freqency */ 674 u8 rp0_freq; /* Non-overclocked max frequency. */ 675 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 676 677 int last_adj; 678 679 struct { 680 struct mutex mutex; 681 682 enum { LOW_POWER, BETWEEN, HIGH_POWER } mode; 683 unsigned int interactive; 684 685 u8 up_threshold; /* Current %busy required to uplock */ 686 u8 down_threshold; /* Current %busy required to downclock */ 687 } power; 688 689 bool enabled; 690 atomic_t num_waiters; 691 atomic_t boosts; 692 693 /* manual wa residency calculations */ 694 struct intel_rps_ei ei; 695 }; 696 697 struct intel_rc6 { 698 bool enabled; 699 u64 prev_hw_residency[4]; 700 u64 cur_residency[4]; 701 }; 702 703 struct intel_llc_pstate { 704 bool enabled; 705 }; 706 707 struct intel_gen6_power_mgmt { 708 struct intel_rps rps; 709 struct intel_rc6 rc6; 710 struct intel_llc_pstate llc_pstate; 711 }; 712 713 /* defined intel_pm.c */ 714 extern spinlock_t mchdev_lock; 715 716 struct intel_ilk_power_mgmt { 717 u8 cur_delay; 718 u8 min_delay; 719 u8 max_delay; 720 u8 fmax; 721 u8 fstart; 722 723 u64 last_count1; 724 unsigned long last_time1; 725 unsigned long chipset_power; 726 u64 last_count2; 727 u64 last_time2; 728 unsigned long gfx_power; 729 u8 corr; 730 731 int c_m; 732 int r_t; 733 }; 734 735 struct drm_i915_private; 736 struct i915_power_well; 737 738 struct i915_power_well_ops { 739 /* 740 * Synchronize the well's hw state to match the current sw state, for 741 * example enable/disable it based on the current refcount. Called 742 * during driver init and resume time, possibly after first calling 743 * the enable/disable handlers. 744 */ 745 void (*sync_hw)(struct drm_i915_private *dev_priv, 746 struct i915_power_well *power_well); 747 /* 748 * Enable the well and resources that depend on it (for example 749 * interrupts located on the well). Called after the 0->1 refcount 750 * transition. 751 */ 752 void (*enable)(struct drm_i915_private *dev_priv, 753 struct i915_power_well *power_well); 754 /* 755 * Disable the well and resources that depend on it. Called after 756 * the 1->0 refcount transition. 757 */ 758 void (*disable)(struct drm_i915_private *dev_priv, 759 struct i915_power_well *power_well); 760 /* Returns the hw enabled state. */ 761 bool (*is_enabled)(struct drm_i915_private *dev_priv, 762 struct i915_power_well *power_well); 763 }; 764 765 struct i915_power_well_regs { 766 i915_reg_t bios; 767 i915_reg_t driver; 768 i915_reg_t kvmr; 769 i915_reg_t debug; 770 }; 771 772 /* Power well structure for haswell */ 773 struct i915_power_well_desc { 774 const char *name; 775 bool always_on; 776 u64 domains; 777 /* unique identifier for this power well */ 778 enum i915_power_well_id id; 779 /* 780 * Arbitraty data associated with this power well. Platform and power 781 * well specific. 782 */ 783 union { 784 struct { 785 /* 786 * request/status flag index in the PUNIT power well 787 * control/status registers. 788 */ 789 u8 idx; 790 } vlv; 791 struct { 792 enum dpio_phy phy; 793 } bxt; 794 struct { 795 const struct i915_power_well_regs *regs; 796 /* 797 * request/status flag index in the power well 798 * constrol/status registers. 799 */ 800 u8 idx; 801 /* Mask of pipes whose IRQ logic is backed by the pw */ 802 u8 irq_pipe_mask; 803 /* The pw is backing the VGA functionality */ 804 bool has_vga:1; 805 bool has_fuses:1; 806 /* 807 * The pw is for an ICL+ TypeC PHY port in 808 * Thunderbolt mode. 809 */ 810 bool is_tc_tbt:1; 811 } hsw; 812 }; 813 const struct i915_power_well_ops *ops; 814 }; 815 816 struct i915_power_well { 817 const struct i915_power_well_desc *desc; 818 /* power well enable/disable usage count */ 819 int count; 820 /* cached hw enabled state */ 821 bool hw_enabled; 822 }; 823 824 struct i915_power_domains { 825 /* 826 * Power wells needed for initialization at driver init and suspend 827 * time are on. They are kept on until after the first modeset. 828 */ 829 bool initializing; 830 bool display_core_suspended; 831 int power_well_count; 832 833 intel_wakeref_t wakeref; 834 835 struct mutex lock; 836 int domain_use_count[POWER_DOMAIN_NUM]; 837 838 struct delayed_work async_put_work; 839 intel_wakeref_t async_put_wakeref; 840 u64 async_put_domains[2]; 841 842 struct i915_power_well *power_wells; 843 }; 844 845 #define MAX_L3_SLICES 2 846 struct intel_l3_parity { 847 u32 *remap_info[MAX_L3_SLICES]; 848 struct work_struct error_work; 849 int which_slice; 850 }; 851 852 struct i915_gem_mm { 853 /** Memory allocator for GTT stolen memory */ 854 struct drm_mm stolen; 855 /** Protects the usage of the GTT stolen memory allocator. This is 856 * always the inner lock when overlapping with struct_mutex. */ 857 struct mutex stolen_lock; 858 859 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */ 860 spinlock_t obj_lock; 861 862 /** List of all objects in gtt_space. Used to restore gtt 863 * mappings on resume */ 864 struct list_head bound_list; 865 /** 866 * List of objects which are not bound to the GTT (thus 867 * are idle and not used by the GPU). These objects may or may 868 * not actually have any pages attached. 869 */ 870 struct list_head unbound_list; 871 872 /** List of all objects in gtt_space, currently mmaped by userspace. 873 * All objects within this list must also be on bound_list. 874 */ 875 struct list_head userfault_list; 876 877 /** 878 * List of objects which are pending destruction. 879 */ 880 struct llist_head free_list; 881 struct work_struct free_work; 882 spinlock_t free_lock; 883 /** 884 * Count of objects pending destructions. Used to skip needlessly 885 * waiting on an RCU barrier if no objects are waiting to be freed. 886 */ 887 atomic_t free_count; 888 889 /** 890 * Small stash of WC pages 891 */ 892 struct pagestash wc_stash; 893 894 /** 895 * tmpfs instance used for shmem backed objects 896 */ 897 struct vfsmount *gemfs; 898 899 /** PPGTT used for aliasing the PPGTT with the GTT */ 900 struct i915_hw_ppgtt *aliasing_ppgtt; 901 902 struct notifier_block oom_notifier; 903 struct notifier_block vmap_notifier; 904 struct shrinker shrinker; 905 906 /** LRU list of objects with fence regs on them. */ 907 struct list_head fence_list; 908 909 /** 910 * Workqueue to fault in userptr pages, flushed by the execbuf 911 * when required but otherwise left to userspace to try again 912 * on EAGAIN. 913 */ 914 struct workqueue_struct *userptr_wq; 915 916 u64 unordered_timeline; 917 918 /* the indicator for dispatch video commands on two BSD rings */ 919 atomic_t bsd_engine_dispatch_index; 920 921 /** Bit 6 swizzling required for X tiling */ 922 u32 bit_6_swizzle_x; 923 /** Bit 6 swizzling required for Y tiling */ 924 u32 bit_6_swizzle_y; 925 926 /* accounting, useful for userland debugging */ 927 spinlock_t object_stat_lock; 928 u64 object_memory; 929 u32 object_count; 930 }; 931 932 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */ 933 934 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */ 935 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */ 936 937 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */ 938 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */ 939 940 #define I915_ENGINE_WEDGED_TIMEOUT (60 * HZ) /* Reset but no recovery? */ 941 942 struct ddi_vbt_port_info { 943 int max_tmds_clock; 944 945 /* 946 * This is an index in the HDMI/DVI DDI buffer translation table. 947 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 948 * populate this field. 949 */ 950 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 951 u8 hdmi_level_shift; 952 953 u8 present:1; 954 u8 supports_dvi:1; 955 u8 supports_hdmi:1; 956 u8 supports_dp:1; 957 u8 supports_edp:1; 958 u8 supports_typec_usb:1; 959 u8 supports_tbt:1; 960 961 u8 alternate_aux_channel; 962 u8 alternate_ddc_pin; 963 964 u8 dp_boost_level; 965 u8 hdmi_boost_level; 966 int dp_max_link_rate; /* 0 for not limited by VBT */ 967 }; 968 969 enum psr_lines_to_wait { 970 PSR_0_LINES_TO_WAIT = 0, 971 PSR_1_LINE_TO_WAIT, 972 PSR_4_LINES_TO_WAIT, 973 PSR_8_LINES_TO_WAIT 974 }; 975 976 struct intel_vbt_data { 977 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 978 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 979 980 /* Feature bits */ 981 unsigned int int_tv_support:1; 982 unsigned int lvds_dither:1; 983 unsigned int int_crt_support:1; 984 unsigned int lvds_use_ssc:1; 985 unsigned int int_lvds_support:1; 986 unsigned int display_clock_mode:1; 987 unsigned int fdi_rx_polarity_inverted:1; 988 unsigned int panel_type:4; 989 int lvds_ssc_freq; 990 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 991 enum drm_panel_orientation orientation; 992 993 enum drrs_support_type drrs_type; 994 995 struct { 996 int rate; 997 int lanes; 998 int preemphasis; 999 int vswing; 1000 bool low_vswing; 1001 bool initialized; 1002 int bpp; 1003 struct edp_power_seq pps; 1004 } edp; 1005 1006 struct { 1007 bool enable; 1008 bool full_link; 1009 bool require_aux_wakeup; 1010 int idle_frames; 1011 enum psr_lines_to_wait lines_to_wait; 1012 int tp1_wakeup_time_us; 1013 int tp2_tp3_wakeup_time_us; 1014 int psr2_tp2_tp3_wakeup_time_us; 1015 } psr; 1016 1017 struct { 1018 u16 pwm_freq_hz; 1019 bool present; 1020 bool active_low_pwm; 1021 u8 min_brightness; /* min_brightness/255 of max */ 1022 u8 controller; /* brightness controller number */ 1023 enum intel_backlight_type type; 1024 } backlight; 1025 1026 /* MIPI DSI */ 1027 struct { 1028 u16 panel_id; 1029 struct mipi_config *config; 1030 struct mipi_pps_data *pps; 1031 u16 bl_ports; 1032 u16 cabc_ports; 1033 u8 seq_version; 1034 u32 size; 1035 u8 *data; 1036 const u8 *sequence[MIPI_SEQ_MAX]; 1037 u8 *deassert_seq; /* Used by fixup_mipi_sequences() */ 1038 enum drm_panel_orientation orientation; 1039 } dsi; 1040 1041 int crt_ddc_pin; 1042 1043 int child_dev_num; 1044 struct child_device_config *child_dev; 1045 1046 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1047 struct sdvo_device_mapping sdvo_mappings[2]; 1048 }; 1049 1050 enum intel_ddb_partitioning { 1051 INTEL_DDB_PART_1_2, 1052 INTEL_DDB_PART_5_6, /* IVB+ */ 1053 }; 1054 1055 struct intel_wm_level { 1056 bool enable; 1057 u32 pri_val; 1058 u32 spr_val; 1059 u32 cur_val; 1060 u32 fbc_val; 1061 }; 1062 1063 struct ilk_wm_values { 1064 u32 wm_pipe[3]; 1065 u32 wm_lp[3]; 1066 u32 wm_lp_spr[3]; 1067 u32 wm_linetime[3]; 1068 bool enable_fbc_wm; 1069 enum intel_ddb_partitioning partitioning; 1070 }; 1071 1072 struct g4x_pipe_wm { 1073 u16 plane[I915_MAX_PLANES]; 1074 u16 fbc; 1075 }; 1076 1077 struct g4x_sr_wm { 1078 u16 plane; 1079 u16 cursor; 1080 u16 fbc; 1081 }; 1082 1083 struct vlv_wm_ddl_values { 1084 u8 plane[I915_MAX_PLANES]; 1085 }; 1086 1087 struct vlv_wm_values { 1088 struct g4x_pipe_wm pipe[3]; 1089 struct g4x_sr_wm sr; 1090 struct vlv_wm_ddl_values ddl[3]; 1091 u8 level; 1092 bool cxsr; 1093 }; 1094 1095 struct g4x_wm_values { 1096 struct g4x_pipe_wm pipe[2]; 1097 struct g4x_sr_wm sr; 1098 struct g4x_sr_wm hpll; 1099 bool cxsr; 1100 bool hpll_en; 1101 bool fbc_en; 1102 }; 1103 1104 struct skl_ddb_entry { 1105 u16 start, end; /* in number of blocks, 'end' is exclusive */ 1106 }; 1107 1108 static inline u16 skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1109 { 1110 return entry->end - entry->start; 1111 } 1112 1113 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1114 const struct skl_ddb_entry *e2) 1115 { 1116 if (e1->start == e2->start && e1->end == e2->end) 1117 return true; 1118 1119 return false; 1120 } 1121 1122 struct skl_ddb_allocation { 1123 u8 enabled_slices; /* GEN11 has configurable 2 slices */ 1124 }; 1125 1126 struct skl_ddb_values { 1127 unsigned dirty_pipes; 1128 struct skl_ddb_allocation ddb; 1129 }; 1130 1131 struct skl_wm_level { 1132 u16 min_ddb_alloc; 1133 u16 plane_res_b; 1134 u8 plane_res_l; 1135 bool plane_en; 1136 bool ignore_lines; 1137 }; 1138 1139 /* Stores plane specific WM parameters */ 1140 struct skl_wm_params { 1141 bool x_tiled, y_tiled; 1142 bool rc_surface; 1143 bool is_planar; 1144 u32 width; 1145 u8 cpp; 1146 u32 plane_pixel_rate; 1147 u32 y_min_scanlines; 1148 u32 plane_bytes_per_line; 1149 uint_fixed_16_16_t plane_blocks_per_line; 1150 uint_fixed_16_16_t y_tile_minimum; 1151 u32 linetime_us; 1152 u32 dbuf_block_size; 1153 }; 1154 1155 /* 1156 * This struct helps tracking the state needed for runtime PM, which puts the 1157 * device in PCI D3 state. Notice that when this happens, nothing on the 1158 * graphics device works, even register access, so we don't get interrupts nor 1159 * anything else. 1160 * 1161 * Every piece of our code that needs to actually touch the hardware needs to 1162 * either call intel_runtime_pm_get or call intel_display_power_get with the 1163 * appropriate power domain. 1164 * 1165 * Our driver uses the autosuspend delay feature, which means we'll only really 1166 * suspend if we stay with zero refcount for a certain amount of time. The 1167 * default value is currently very conservative (see intel_runtime_pm_enable), but 1168 * it can be changed with the standard runtime PM files from sysfs. 1169 * 1170 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1171 * goes back to false exactly before we reenable the IRQs. We use this variable 1172 * to check if someone is trying to enable/disable IRQs while they're supposed 1173 * to be disabled. This shouldn't happen and we'll print some error messages in 1174 * case it happens. 1175 * 1176 * For more, read the Documentation/power/runtime_pm.txt. 1177 */ 1178 struct i915_runtime_pm { 1179 atomic_t wakeref_count; 1180 bool suspended; 1181 bool irqs_enabled; 1182 1183 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 1184 /* 1185 * To aide detection of wakeref leaks and general misuse, we 1186 * track all wakeref holders. With manual markup (i.e. returning 1187 * a cookie to each rpm_get caller which they then supply to their 1188 * paired rpm_put) we can remove corresponding pairs of and keep 1189 * the array trimmed to active wakerefs. 1190 */ 1191 struct intel_runtime_pm_debug { 1192 spinlock_t lock; 1193 1194 depot_stack_handle_t last_acquire; 1195 depot_stack_handle_t last_release; 1196 1197 depot_stack_handle_t *owners; 1198 unsigned long count; 1199 } debug; 1200 #endif 1201 }; 1202 1203 enum intel_pipe_crc_source { 1204 INTEL_PIPE_CRC_SOURCE_NONE, 1205 INTEL_PIPE_CRC_SOURCE_PLANE1, 1206 INTEL_PIPE_CRC_SOURCE_PLANE2, 1207 INTEL_PIPE_CRC_SOURCE_PLANE3, 1208 INTEL_PIPE_CRC_SOURCE_PLANE4, 1209 INTEL_PIPE_CRC_SOURCE_PLANE5, 1210 INTEL_PIPE_CRC_SOURCE_PLANE6, 1211 INTEL_PIPE_CRC_SOURCE_PLANE7, 1212 INTEL_PIPE_CRC_SOURCE_PIPE, 1213 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1214 INTEL_PIPE_CRC_SOURCE_TV, 1215 INTEL_PIPE_CRC_SOURCE_DP_B, 1216 INTEL_PIPE_CRC_SOURCE_DP_C, 1217 INTEL_PIPE_CRC_SOURCE_DP_D, 1218 INTEL_PIPE_CRC_SOURCE_AUTO, 1219 INTEL_PIPE_CRC_SOURCE_MAX, 1220 }; 1221 1222 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1223 struct intel_pipe_crc { 1224 spinlock_t lock; 1225 int skipped; 1226 enum intel_pipe_crc_source source; 1227 }; 1228 1229 struct i915_frontbuffer_tracking { 1230 spinlock_t lock; 1231 1232 /* 1233 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1234 * scheduled flips. 1235 */ 1236 unsigned busy_bits; 1237 unsigned flip_bits; 1238 }; 1239 1240 struct i915_virtual_gpu { 1241 bool active; 1242 u32 caps; 1243 }; 1244 1245 /* used in computing the new watermarks state */ 1246 struct intel_wm_config { 1247 unsigned int num_pipes_active; 1248 bool sprites_enabled; 1249 bool sprites_scaled; 1250 }; 1251 1252 struct i915_oa_format { 1253 u32 format; 1254 int size; 1255 }; 1256 1257 struct i915_oa_reg { 1258 i915_reg_t addr; 1259 u32 value; 1260 }; 1261 1262 struct i915_oa_config { 1263 char uuid[UUID_STRING_LEN + 1]; 1264 int id; 1265 1266 const struct i915_oa_reg *mux_regs; 1267 u32 mux_regs_len; 1268 const struct i915_oa_reg *b_counter_regs; 1269 u32 b_counter_regs_len; 1270 const struct i915_oa_reg *flex_regs; 1271 u32 flex_regs_len; 1272 1273 struct attribute_group sysfs_metric; 1274 struct attribute *attrs[2]; 1275 struct device_attribute sysfs_metric_id; 1276 1277 atomic_t ref_count; 1278 }; 1279 1280 struct i915_perf_stream; 1281 1282 /** 1283 * struct i915_perf_stream_ops - the OPs to support a specific stream type 1284 */ 1285 struct i915_perf_stream_ops { 1286 /** 1287 * @enable: Enables the collection of HW samples, either in response to 1288 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened 1289 * without `I915_PERF_FLAG_DISABLED`. 1290 */ 1291 void (*enable)(struct i915_perf_stream *stream); 1292 1293 /** 1294 * @disable: Disables the collection of HW samples, either in response 1295 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying 1296 * the stream. 1297 */ 1298 void (*disable)(struct i915_perf_stream *stream); 1299 1300 /** 1301 * @poll_wait: Call poll_wait, passing a wait queue that will be woken 1302 * once there is something ready to read() for the stream 1303 */ 1304 void (*poll_wait)(struct i915_perf_stream *stream, 1305 struct file *file, 1306 poll_table *wait); 1307 1308 /** 1309 * @wait_unlocked: For handling a blocking read, wait until there is 1310 * something to ready to read() for the stream. E.g. wait on the same 1311 * wait queue that would be passed to poll_wait(). 1312 */ 1313 int (*wait_unlocked)(struct i915_perf_stream *stream); 1314 1315 /** 1316 * @read: Copy buffered metrics as records to userspace 1317 * **buf**: the userspace, destination buffer 1318 * **count**: the number of bytes to copy, requested by userspace 1319 * **offset**: zero at the start of the read, updated as the read 1320 * proceeds, it represents how many bytes have been copied so far and 1321 * the buffer offset for copying the next record. 1322 * 1323 * Copy as many buffered i915 perf samples and records for this stream 1324 * to userspace as will fit in the given buffer. 1325 * 1326 * Only write complete records; returning -%ENOSPC if there isn't room 1327 * for a complete record. 1328 * 1329 * Return any error condition that results in a short read such as 1330 * -%ENOSPC or -%EFAULT, even though these may be squashed before 1331 * returning to userspace. 1332 */ 1333 int (*read)(struct i915_perf_stream *stream, 1334 char __user *buf, 1335 size_t count, 1336 size_t *offset); 1337 1338 /** 1339 * @destroy: Cleanup any stream specific resources. 1340 * 1341 * The stream will always be disabled before this is called. 1342 */ 1343 void (*destroy)(struct i915_perf_stream *stream); 1344 }; 1345 1346 /** 1347 * struct i915_perf_stream - state for a single open stream FD 1348 */ 1349 struct i915_perf_stream { 1350 /** 1351 * @dev_priv: i915 drm device 1352 */ 1353 struct drm_i915_private *dev_priv; 1354 1355 /** 1356 * @link: Links the stream into ``&drm_i915_private->streams`` 1357 */ 1358 struct list_head link; 1359 1360 /** 1361 * @wakeref: As we keep the device awake while the perf stream is 1362 * active, we track our runtime pm reference for later release. 1363 */ 1364 intel_wakeref_t wakeref; 1365 1366 /** 1367 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*` 1368 * properties given when opening a stream, representing the contents 1369 * of a single sample as read() by userspace. 1370 */ 1371 u32 sample_flags; 1372 1373 /** 1374 * @sample_size: Considering the configured contents of a sample 1375 * combined with the required header size, this is the total size 1376 * of a single sample record. 1377 */ 1378 int sample_size; 1379 1380 /** 1381 * @ctx: %NULL if measuring system-wide across all contexts or a 1382 * specific context that is being monitored. 1383 */ 1384 struct i915_gem_context *ctx; 1385 1386 /** 1387 * @enabled: Whether the stream is currently enabled, considering 1388 * whether the stream was opened in a disabled state and based 1389 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls. 1390 */ 1391 bool enabled; 1392 1393 /** 1394 * @ops: The callbacks providing the implementation of this specific 1395 * type of configured stream. 1396 */ 1397 const struct i915_perf_stream_ops *ops; 1398 1399 /** 1400 * @oa_config: The OA configuration used by the stream. 1401 */ 1402 struct i915_oa_config *oa_config; 1403 }; 1404 1405 /** 1406 * struct i915_oa_ops - Gen specific implementation of an OA unit stream 1407 */ 1408 struct i915_oa_ops { 1409 /** 1410 * @is_valid_b_counter_reg: Validates register's address for 1411 * programming boolean counters for a particular platform. 1412 */ 1413 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv, 1414 u32 addr); 1415 1416 /** 1417 * @is_valid_mux_reg: Validates register's address for programming mux 1418 * for a particular platform. 1419 */ 1420 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr); 1421 1422 /** 1423 * @is_valid_flex_reg: Validates register's address for programming 1424 * flex EU filtering for a particular platform. 1425 */ 1426 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr); 1427 1428 /** 1429 * @enable_metric_set: Selects and applies any MUX configuration to set 1430 * up the Boolean and Custom (B/C) counters that are part of the 1431 * counter reports being sampled. May apply system constraints such as 1432 * disabling EU clock gating as required. 1433 */ 1434 int (*enable_metric_set)(struct i915_perf_stream *stream); 1435 1436 /** 1437 * @disable_metric_set: Remove system constraints associated with using 1438 * the OA unit. 1439 */ 1440 void (*disable_metric_set)(struct drm_i915_private *dev_priv); 1441 1442 /** 1443 * @oa_enable: Enable periodic sampling 1444 */ 1445 void (*oa_enable)(struct i915_perf_stream *stream); 1446 1447 /** 1448 * @oa_disable: Disable periodic sampling 1449 */ 1450 void (*oa_disable)(struct i915_perf_stream *stream); 1451 1452 /** 1453 * @read: Copy data from the circular OA buffer into a given userspace 1454 * buffer. 1455 */ 1456 int (*read)(struct i915_perf_stream *stream, 1457 char __user *buf, 1458 size_t count, 1459 size_t *offset); 1460 1461 /** 1462 * @oa_hw_tail_read: read the OA tail pointer register 1463 * 1464 * In particular this enables us to share all the fiddly code for 1465 * handling the OA unit tail pointer race that affects multiple 1466 * generations. 1467 */ 1468 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv); 1469 }; 1470 1471 struct intel_cdclk_state { 1472 unsigned int cdclk, vco, ref, bypass; 1473 u8 voltage_level; 1474 }; 1475 1476 struct drm_i915_private { 1477 struct drm_device drm; 1478 1479 const struct intel_device_info __info; /* Use INTEL_INFO() to access. */ 1480 struct intel_runtime_info __runtime; /* Use RUNTIME_INFO() to access. */ 1481 struct intel_driver_caps caps; 1482 1483 /** 1484 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and 1485 * end of stolen which we can optionally use to create GEM objects 1486 * backed by stolen memory. Note that stolen_usable_size tells us 1487 * exactly how much of this we are actually allowed to use, given that 1488 * some portion of it is in fact reserved for use by hardware functions. 1489 */ 1490 struct resource dsm; 1491 /** 1492 * Reseved portion of Data Stolen Memory 1493 */ 1494 struct resource dsm_reserved; 1495 1496 /* 1497 * Stolen memory is segmented in hardware with different portions 1498 * offlimits to certain functions. 1499 * 1500 * The drm_mm is initialised to the total accessible range, as found 1501 * from the PCI config. On Broadwell+, this is further restricted to 1502 * avoid the first page! The upper end of stolen memory is reserved for 1503 * hardware functions and similarly removed from the accessible range. 1504 */ 1505 resource_size_t stolen_usable_size; /* Total size minus reserved ranges */ 1506 1507 struct intel_uncore uncore; 1508 1509 struct i915_virtual_gpu vgpu; 1510 1511 struct intel_gvt *gvt; 1512 1513 struct intel_wopcm wopcm; 1514 1515 struct intel_huc huc; 1516 struct intel_guc guc; 1517 1518 struct intel_csr csr; 1519 1520 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 1521 1522 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 1523 * controller on different i2c buses. */ 1524 struct mutex gmbus_mutex; 1525 1526 /** 1527 * Base address of where the gmbus and gpio blocks are located (either 1528 * on PCH or on SoC for platforms without PCH). 1529 */ 1530 u32 gpio_mmio_base; 1531 1532 /* MMIO base address for MIPI regs */ 1533 u32 mipi_mmio_base; 1534 1535 u32 psr_mmio_base; 1536 1537 u32 pps_mmio_base; 1538 1539 wait_queue_head_t gmbus_wait_queue; 1540 1541 struct pci_dev *bridge_dev; 1542 struct intel_engine_cs *engine[I915_NUM_ENGINES]; 1543 /* Context used internally to idle the GPU and setup initial state */ 1544 struct i915_gem_context *kernel_context; 1545 /* Context only to be used for injecting preemption commands */ 1546 struct i915_gem_context *preempt_context; 1547 struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1] 1548 [MAX_ENGINE_INSTANCE + 1]; 1549 1550 struct resource mch_res; 1551 1552 /* protects the irq masks */ 1553 spinlock_t irq_lock; 1554 1555 bool display_irqs_enabled; 1556 1557 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 1558 struct pm_qos_request pm_qos; 1559 1560 /* Sideband mailbox protection */ 1561 struct mutex sb_lock; 1562 struct pm_qos_request sb_qos; 1563 1564 /** Cached value of IMR to avoid reads in updating the bitfield */ 1565 union { 1566 u32 irq_mask; 1567 u32 de_irq_mask[I915_MAX_PIPES]; 1568 }; 1569 u32 gt_irq_mask; 1570 u32 pm_imr; 1571 u32 pm_ier; 1572 u32 pm_rps_events; 1573 u32 pm_guc_events; 1574 u32 pipestat_irq_mask[I915_MAX_PIPES]; 1575 1576 struct i915_hotplug hotplug; 1577 struct intel_fbc fbc; 1578 struct i915_drrs drrs; 1579 struct intel_opregion opregion; 1580 struct intel_vbt_data vbt; 1581 1582 bool preserve_bios_swizzle; 1583 1584 /* overlay */ 1585 struct intel_overlay *overlay; 1586 1587 /* backlight registers and fields in struct intel_panel */ 1588 struct mutex backlight_lock; 1589 1590 /* LVDS info */ 1591 bool no_aux_handshake; 1592 1593 /* protects panel power sequencer state */ 1594 struct mutex pps_mutex; 1595 1596 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 1597 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 1598 1599 unsigned int fsb_freq, mem_freq, is_ddr3; 1600 unsigned int skl_preferred_vco_freq; 1601 unsigned int max_cdclk_freq; 1602 1603 unsigned int max_dotclk_freq; 1604 unsigned int rawclk_freq; 1605 unsigned int hpll_freq; 1606 unsigned int fdi_pll_freq; 1607 unsigned int czclk_freq; 1608 1609 struct { 1610 /* 1611 * The current logical cdclk state. 1612 * See intel_atomic_state.cdclk.logical 1613 * 1614 * For reading holding any crtc lock is sufficient, 1615 * for writing must hold all of them. 1616 */ 1617 struct intel_cdclk_state logical; 1618 /* 1619 * The current actual cdclk state. 1620 * See intel_atomic_state.cdclk.actual 1621 */ 1622 struct intel_cdclk_state actual; 1623 /* The current hardware cdclk state */ 1624 struct intel_cdclk_state hw; 1625 1626 int force_min_cdclk; 1627 } cdclk; 1628 1629 /** 1630 * wq - Driver workqueue for GEM. 1631 * 1632 * NOTE: Work items scheduled here are not allowed to grab any modeset 1633 * locks, for otherwise the flushing done in the pageflip code will 1634 * result in deadlocks. 1635 */ 1636 struct workqueue_struct *wq; 1637 1638 /* ordered wq for modesets */ 1639 struct workqueue_struct *modeset_wq; 1640 1641 /* Display functions */ 1642 struct drm_i915_display_funcs display; 1643 1644 /* PCH chipset type */ 1645 enum intel_pch pch_type; 1646 unsigned short pch_id; 1647 1648 unsigned long quirks; 1649 1650 struct drm_atomic_state *modeset_restore_state; 1651 struct drm_modeset_acquire_ctx reset_ctx; 1652 1653 struct i915_ggtt ggtt; /* VM representing the global address space */ 1654 1655 struct i915_gem_mm mm; 1656 DECLARE_HASHTABLE(mm_structs, 7); 1657 struct mutex mm_lock; 1658 1659 struct intel_ppat ppat; 1660 1661 /* Kernel Modesetting */ 1662 1663 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 1664 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 1665 1666 #ifdef CONFIG_DEBUG_FS 1667 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 1668 #endif 1669 1670 /* dpll and cdclk state is protected by connection_mutex */ 1671 int num_shared_dpll; 1672 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 1673 const struct intel_dpll_mgr *dpll_mgr; 1674 1675 /* 1676 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 1677 * Must be global rather than per dpll, because on some platforms 1678 * plls share registers. 1679 */ 1680 struct mutex dpll_lock; 1681 1682 unsigned int active_crtcs; 1683 /* minimum acceptable cdclk for each pipe */ 1684 int min_cdclk[I915_MAX_PIPES]; 1685 /* minimum acceptable voltage level for each pipe */ 1686 u8 min_voltage_level[I915_MAX_PIPES]; 1687 1688 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 1689 1690 struct i915_wa_list gt_wa_list; 1691 1692 struct i915_frontbuffer_tracking fb_tracking; 1693 1694 struct intel_atomic_helper { 1695 struct llist_head free_list; 1696 struct work_struct free_work; 1697 } atomic_helper; 1698 1699 u16 orig_clock; 1700 1701 bool mchbar_need_disable; 1702 1703 struct intel_l3_parity l3_parity; 1704 1705 /* 1706 * edram size in MB. 1707 * Cannot be determined by PCIID. You must always read a register. 1708 */ 1709 u32 edram_size_mb; 1710 1711 /* gen6+ GT PM state */ 1712 struct intel_gen6_power_mgmt gt_pm; 1713 1714 /* ilk-only ips/rps state. Everything in here is protected by the global 1715 * mchdev_lock in intel_pm.c */ 1716 struct intel_ilk_power_mgmt ips; 1717 1718 struct i915_power_domains power_domains; 1719 1720 struct i915_psr psr; 1721 1722 struct i915_gpu_error gpu_error; 1723 1724 struct drm_i915_gem_object *vlv_pctx; 1725 1726 /* list of fbdev register on this device */ 1727 struct intel_fbdev *fbdev; 1728 struct work_struct fbdev_suspend_work; 1729 1730 struct drm_property *broadcast_rgb_property; 1731 struct drm_property *force_audio_property; 1732 1733 /* hda/i915 audio component */ 1734 struct i915_audio_component *audio_component; 1735 bool audio_component_registered; 1736 /** 1737 * av_mutex - mutex for audio/video sync 1738 * 1739 */ 1740 struct mutex av_mutex; 1741 int audio_power_refcount; 1742 1743 struct { 1744 struct mutex mutex; 1745 struct list_head list; 1746 struct llist_head free_list; 1747 struct work_struct free_work; 1748 1749 /* The hw wants to have a stable context identifier for the 1750 * lifetime of the context (for OA, PASID, faults, etc). 1751 * This is limited in execlists to 21 bits. 1752 */ 1753 struct ida hw_ida; 1754 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 1755 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */ 1756 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */ 1757 struct list_head hw_id_list; 1758 } contexts; 1759 1760 u32 fdi_rx_config; 1761 1762 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 1763 u32 chv_phy_control; 1764 /* 1765 * Shadows for CHV DPLL_MD regs to keep the state 1766 * checker somewhat working in the presence hardware 1767 * crappiness (can't read out DPLL_MD for pipes B & C). 1768 */ 1769 u32 chv_dpll_md[I915_MAX_PIPES]; 1770 u32 bxt_phy_grc; 1771 1772 u32 suspend_count; 1773 bool power_domains_suspended; 1774 struct i915_suspend_saved_registers regfile; 1775 struct vlv_s0ix_state vlv_s0ix_state; 1776 1777 enum { 1778 I915_SAGV_UNKNOWN = 0, 1779 I915_SAGV_DISABLED, 1780 I915_SAGV_ENABLED, 1781 I915_SAGV_NOT_CONTROLLED 1782 } sagv_status; 1783 1784 struct { 1785 /* 1786 * Raw watermark latency values: 1787 * in 0.1us units for WM0, 1788 * in 0.5us units for WM1+. 1789 */ 1790 /* primary */ 1791 u16 pri_latency[5]; 1792 /* sprite */ 1793 u16 spr_latency[5]; 1794 /* cursor */ 1795 u16 cur_latency[5]; 1796 /* 1797 * Raw watermark memory latency values 1798 * for SKL for all 8 levels 1799 * in 1us units. 1800 */ 1801 u16 skl_latency[8]; 1802 1803 /* current hardware state */ 1804 union { 1805 struct ilk_wm_values hw; 1806 struct skl_ddb_values skl_hw; 1807 struct vlv_wm_values vlv; 1808 struct g4x_wm_values g4x; 1809 }; 1810 1811 u8 max_level; 1812 1813 /* 1814 * Should be held around atomic WM register writing; also 1815 * protects * intel_crtc->wm.active and 1816 * cstate->wm.need_postvbl_update. 1817 */ 1818 struct mutex wm_mutex; 1819 1820 /* 1821 * Set during HW readout of watermarks/DDB. Some platforms 1822 * need to know when we're still using BIOS-provided values 1823 * (which we don't fully trust). 1824 */ 1825 bool distrust_bios_wm; 1826 } wm; 1827 1828 struct dram_info { 1829 bool valid; 1830 bool is_16gb_dimm; 1831 u8 num_channels; 1832 u8 ranks; 1833 u32 bandwidth_kbps; 1834 bool symmetric_memory; 1835 enum intel_dram_type { 1836 INTEL_DRAM_UNKNOWN, 1837 INTEL_DRAM_DDR3, 1838 INTEL_DRAM_DDR4, 1839 INTEL_DRAM_LPDDR3, 1840 INTEL_DRAM_LPDDR4 1841 } type; 1842 } dram_info; 1843 1844 struct i915_runtime_pm runtime_pm; 1845 1846 struct { 1847 bool initialized; 1848 1849 struct kobject *metrics_kobj; 1850 struct ctl_table_header *sysctl_header; 1851 1852 /* 1853 * Lock associated with adding/modifying/removing OA configs 1854 * in dev_priv->perf.metrics_idr. 1855 */ 1856 struct mutex metrics_lock; 1857 1858 /* 1859 * List of dynamic configurations, you need to hold 1860 * dev_priv->perf.metrics_lock to access it. 1861 */ 1862 struct idr metrics_idr; 1863 1864 /* 1865 * Lock associated with anything below within this structure 1866 * except exclusive_stream. 1867 */ 1868 struct mutex lock; 1869 struct list_head streams; 1870 1871 struct { 1872 /* 1873 * The stream currently using the OA unit. If accessed 1874 * outside a syscall associated to its file 1875 * descriptor, you need to hold 1876 * dev_priv->drm.struct_mutex. 1877 */ 1878 struct i915_perf_stream *exclusive_stream; 1879 1880 struct intel_context *pinned_ctx; 1881 u32 specific_ctx_id; 1882 u32 specific_ctx_id_mask; 1883 1884 struct hrtimer poll_check_timer; 1885 wait_queue_head_t poll_wq; 1886 bool pollin; 1887 1888 /** 1889 * For rate limiting any notifications of spurious 1890 * invalid OA reports 1891 */ 1892 struct ratelimit_state spurious_report_rs; 1893 1894 bool periodic; 1895 int period_exponent; 1896 1897 struct i915_oa_config test_config; 1898 1899 struct { 1900 struct i915_vma *vma; 1901 u8 *vaddr; 1902 u32 last_ctx_id; 1903 int format; 1904 int format_size; 1905 1906 /** 1907 * Locks reads and writes to all head/tail state 1908 * 1909 * Consider: the head and tail pointer state 1910 * needs to be read consistently from a hrtimer 1911 * callback (atomic context) and read() fop 1912 * (user context) with tail pointer updates 1913 * happening in atomic context and head updates 1914 * in user context and the (unlikely) 1915 * possibility of read() errors needing to 1916 * reset all head/tail state. 1917 * 1918 * Note: Contention or performance aren't 1919 * currently a significant concern here 1920 * considering the relatively low frequency of 1921 * hrtimer callbacks (5ms period) and that 1922 * reads typically only happen in response to a 1923 * hrtimer event and likely complete before the 1924 * next callback. 1925 * 1926 * Note: This lock is not held *while* reading 1927 * and copying data to userspace so the value 1928 * of head observed in htrimer callbacks won't 1929 * represent any partial consumption of data. 1930 */ 1931 spinlock_t ptr_lock; 1932 1933 /** 1934 * One 'aging' tail pointer and one 'aged' 1935 * tail pointer ready to used for reading. 1936 * 1937 * Initial values of 0xffffffff are invalid 1938 * and imply that an update is required 1939 * (and should be ignored by an attempted 1940 * read) 1941 */ 1942 struct { 1943 u32 offset; 1944 } tails[2]; 1945 1946 /** 1947 * Index for the aged tail ready to read() 1948 * data up to. 1949 */ 1950 unsigned int aged_tail_idx; 1951 1952 /** 1953 * A monotonic timestamp for when the current 1954 * aging tail pointer was read; used to 1955 * determine when it is old enough to trust. 1956 */ 1957 u64 aging_timestamp; 1958 1959 /** 1960 * Although we can always read back the head 1961 * pointer register, we prefer to avoid 1962 * trusting the HW state, just to avoid any 1963 * risk that some hardware condition could 1964 * somehow bump the head pointer unpredictably 1965 * and cause us to forward the wrong OA buffer 1966 * data to userspace. 1967 */ 1968 u32 head; 1969 } oa_buffer; 1970 1971 u32 gen7_latched_oastatus1; 1972 u32 ctx_oactxctrl_offset; 1973 u32 ctx_flexeu0_offset; 1974 1975 /** 1976 * The RPT_ID/reason field for Gen8+ includes a bit 1977 * to determine if the CTX ID in the report is valid 1978 * but the specific bit differs between Gen 8 and 9 1979 */ 1980 u32 gen8_valid_ctx_bit; 1981 1982 struct i915_oa_ops ops; 1983 const struct i915_oa_format *oa_formats; 1984 } oa; 1985 } perf; 1986 1987 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 1988 struct { 1989 struct i915_gt_timelines { 1990 struct mutex mutex; /* protects list, tainted by GPU */ 1991 struct list_head active_list; 1992 1993 /* Pack multiple timelines' seqnos into the same page */ 1994 spinlock_t hwsp_lock; 1995 struct list_head hwsp_free_list; 1996 } timelines; 1997 1998 struct list_head active_rings; 1999 struct list_head closed_vma; 2000 2001 struct intel_wakeref wakeref; 2002 2003 /** 2004 * Is the GPU currently considered idle, or busy executing 2005 * userspace requests? Whilst idle, we allow runtime power 2006 * management to power down the hardware and display clocks. 2007 * In order to reduce the effect on performance, there 2008 * is a slight delay before we do so. 2009 */ 2010 intel_wakeref_t awake; 2011 2012 struct blocking_notifier_head pm_notifications; 2013 2014 ktime_t last_init_time; 2015 2016 struct i915_vma *scratch; 2017 } gt; 2018 2019 struct { 2020 struct notifier_block pm_notifier; 2021 2022 /** 2023 * We leave the user IRQ off as much as possible, 2024 * but this means that requests will finish and never 2025 * be retired once the system goes idle. Set a timer to 2026 * fire periodically while the ring is running. When it 2027 * fires, go retire requests. 2028 */ 2029 struct delayed_work retire_work; 2030 2031 /** 2032 * When we detect an idle GPU, we want to turn on 2033 * powersaving features. So once we see that there 2034 * are no more requests outstanding and no more 2035 * arrive within a small period of time, we fire 2036 * off the idle_work. 2037 */ 2038 struct work_struct idle_work; 2039 } gem; 2040 2041 /* For i945gm vblank irq vs. C3 workaround */ 2042 struct { 2043 struct work_struct work; 2044 struct pm_qos_request pm_qos; 2045 u8 c3_disable_latency; 2046 u8 enabled; 2047 } i945gm_vblank; 2048 2049 /* perform PHY state sanity checks? */ 2050 bool chv_phy_assert[2]; 2051 2052 bool ipc_enabled; 2053 2054 /* Used to save the pipe-to-encoder mapping for audio */ 2055 struct intel_encoder *av_enc_map[I915_MAX_PIPES]; 2056 2057 /* necessary resource sharing with HDMI LPE audio driver. */ 2058 struct { 2059 struct platform_device *platdev; 2060 int irq; 2061 } lpe_audio; 2062 2063 struct i915_pmu pmu; 2064 2065 struct i915_hdcp_comp_master *hdcp_master; 2066 bool hdcp_comp_added; 2067 2068 /* Mutex to protect the above hdcp component related values. */ 2069 struct mutex hdcp_comp_mutex; 2070 2071 /* 2072 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2073 * will be rejected. Instead look for a better place. 2074 */ 2075 }; 2076 2077 struct dram_dimm_info { 2078 u8 size, width, ranks; 2079 }; 2080 2081 struct dram_channel_info { 2082 struct dram_dimm_info dimm_l, dimm_s; 2083 u8 ranks; 2084 bool is_16gb_dimm; 2085 }; 2086 2087 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2088 { 2089 return container_of(dev, struct drm_i915_private, drm); 2090 } 2091 2092 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) 2093 { 2094 return to_i915(dev_get_drvdata(kdev)); 2095 } 2096 2097 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm) 2098 { 2099 return container_of(wopcm, struct drm_i915_private, wopcm); 2100 } 2101 2102 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2103 { 2104 return container_of(guc, struct drm_i915_private, guc); 2105 } 2106 2107 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc) 2108 { 2109 return container_of(huc, struct drm_i915_private, huc); 2110 } 2111 2112 static inline struct drm_i915_private *uncore_to_i915(struct intel_uncore *uncore) 2113 { 2114 return container_of(uncore, struct drm_i915_private, uncore); 2115 } 2116 2117 /* Simple iterator over all initialised engines */ 2118 #define for_each_engine(engine__, dev_priv__, id__) \ 2119 for ((id__) = 0; \ 2120 (id__) < I915_NUM_ENGINES; \ 2121 (id__)++) \ 2122 for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) 2123 2124 /* Iterator over subset of engines selected by mask */ 2125 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \ 2126 for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->engine_mask; \ 2127 (tmp__) ? \ 2128 ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \ 2129 0;) 2130 2131 enum hdmi_force_audio { 2132 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2133 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2134 HDMI_AUDIO_AUTO, /* trust EDID */ 2135 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2136 }; 2137 2138 #define I915_GTT_OFFSET_NONE ((u32)-1) 2139 2140 /* 2141 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2142 * considered to be the frontbuffer for the given plane interface-wise. This 2143 * doesn't mean that the hw necessarily already scans it out, but that any 2144 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2145 * 2146 * We have one bit per pipe and per scanout plane type. 2147 */ 2148 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2149 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \ 2150 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \ 2151 BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \ 2152 BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \ 2153 }) 2154 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2155 BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2156 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2157 GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \ 2158 INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2159 2160 /* 2161 * Optimised SGL iterator for GEM objects 2162 */ 2163 static __always_inline struct sgt_iter { 2164 struct scatterlist *sgp; 2165 union { 2166 unsigned long pfn; 2167 dma_addr_t dma; 2168 }; 2169 unsigned int curr; 2170 unsigned int max; 2171 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2172 struct sgt_iter s = { .sgp = sgl }; 2173 2174 if (s.sgp) { 2175 s.max = s.curr = s.sgp->offset; 2176 s.max += s.sgp->length; 2177 if (dma) 2178 s.dma = sg_dma_address(s.sgp); 2179 else 2180 s.pfn = page_to_pfn(sg_page(s.sgp)); 2181 } 2182 2183 return s; 2184 } 2185 2186 static inline struct scatterlist *____sg_next(struct scatterlist *sg) 2187 { 2188 ++sg; 2189 if (unlikely(sg_is_chain(sg))) 2190 sg = sg_chain_ptr(sg); 2191 return sg; 2192 } 2193 2194 /** 2195 * __sg_next - return the next scatterlist entry in a list 2196 * @sg: The current sg entry 2197 * 2198 * Description: 2199 * If the entry is the last, return NULL; otherwise, step to the next 2200 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2201 * otherwise just return the pointer to the current element. 2202 **/ 2203 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2204 { 2205 return sg_is_last(sg) ? NULL : ____sg_next(sg); 2206 } 2207 2208 /** 2209 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2210 * @__dmap: DMA address (output) 2211 * @__iter: 'struct sgt_iter' (iterator state, internal) 2212 * @__sgt: sg_table to iterate over (input) 2213 */ 2214 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2215 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2216 ((__dmap) = (__iter).dma + (__iter).curr); \ 2217 (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ? \ 2218 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0) 2219 2220 /** 2221 * for_each_sgt_page - iterate over the pages of the given sg_table 2222 * @__pp: page pointer (output) 2223 * @__iter: 'struct sgt_iter' (iterator state, internal) 2224 * @__sgt: sg_table to iterate over (input) 2225 */ 2226 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2227 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2228 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2229 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2230 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2231 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0) 2232 2233 bool i915_sg_trim(struct sg_table *orig_st); 2234 2235 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg) 2236 { 2237 unsigned int page_sizes; 2238 2239 page_sizes = 0; 2240 while (sg) { 2241 GEM_BUG_ON(sg->offset); 2242 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE)); 2243 page_sizes |= sg->length; 2244 sg = __sg_next(sg); 2245 } 2246 2247 return page_sizes; 2248 } 2249 2250 static inline unsigned int i915_sg_segment_size(void) 2251 { 2252 unsigned int size = swiotlb_max_segment(); 2253 2254 if (size == 0) 2255 return SCATTERLIST_MAX_SEGMENT; 2256 2257 size = rounddown(size, PAGE_SIZE); 2258 /* swiotlb_max_segment_size can return 1 byte when it means one page. */ 2259 if (size < PAGE_SIZE) 2260 size = PAGE_SIZE; 2261 2262 return size; 2263 } 2264 2265 #define INTEL_INFO(dev_priv) (&(dev_priv)->__info) 2266 #define RUNTIME_INFO(dev_priv) (&(dev_priv)->__runtime) 2267 #define DRIVER_CAPS(dev_priv) (&(dev_priv)->caps) 2268 2269 #define INTEL_GEN(dev_priv) (INTEL_INFO(dev_priv)->gen) 2270 #define INTEL_DEVID(dev_priv) (RUNTIME_INFO(dev_priv)->device_id) 2271 2272 #define REVID_FOREVER 0xff 2273 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision) 2274 2275 #define INTEL_GEN_MASK(s, e) ( \ 2276 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \ 2277 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \ 2278 GENMASK((e) - 1, (s) - 1)) 2279 2280 /* Returns true if Gen is in inclusive range [Start, End] */ 2281 #define IS_GEN_RANGE(dev_priv, s, e) \ 2282 (!!(INTEL_INFO(dev_priv)->gen_mask & INTEL_GEN_MASK((s), (e)))) 2283 2284 #define IS_GEN(dev_priv, n) \ 2285 (BUILD_BUG_ON_ZERO(!__builtin_constant_p(n)) + \ 2286 INTEL_INFO(dev_priv)->gen == (n)) 2287 2288 /* 2289 * Return true if revision is in range [since,until] inclusive. 2290 * 2291 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2292 */ 2293 #define IS_REVID(p, since, until) \ 2294 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2295 2296 static __always_inline unsigned int 2297 __platform_mask_index(const struct intel_runtime_info *info, 2298 enum intel_platform p) 2299 { 2300 const unsigned int pbits = 2301 BITS_PER_TYPE(info->platform_mask[0]) - INTEL_SUBPLATFORM_BITS; 2302 2303 /* Expand the platform_mask array if this fails. */ 2304 BUILD_BUG_ON(INTEL_MAX_PLATFORMS > 2305 pbits * ARRAY_SIZE(info->platform_mask)); 2306 2307 return p / pbits; 2308 } 2309 2310 static __always_inline unsigned int 2311 __platform_mask_bit(const struct intel_runtime_info *info, 2312 enum intel_platform p) 2313 { 2314 const unsigned int pbits = 2315 BITS_PER_TYPE(info->platform_mask[0]) - INTEL_SUBPLATFORM_BITS; 2316 2317 return p % pbits + INTEL_SUBPLATFORM_BITS; 2318 } 2319 2320 static inline u32 2321 intel_subplatform(const struct intel_runtime_info *info, enum intel_platform p) 2322 { 2323 const unsigned int pi = __platform_mask_index(info, p); 2324 2325 return info->platform_mask[pi] & INTEL_SUBPLATFORM_BITS; 2326 } 2327 2328 static __always_inline bool 2329 IS_PLATFORM(const struct drm_i915_private *i915, enum intel_platform p) 2330 { 2331 const struct intel_runtime_info *info = RUNTIME_INFO(i915); 2332 const unsigned int pi = __platform_mask_index(info, p); 2333 const unsigned int pb = __platform_mask_bit(info, p); 2334 2335 BUILD_BUG_ON(!__builtin_constant_p(p)); 2336 2337 return info->platform_mask[pi] & BIT(pb); 2338 } 2339 2340 static __always_inline bool 2341 IS_SUBPLATFORM(const struct drm_i915_private *i915, 2342 enum intel_platform p, unsigned int s) 2343 { 2344 const struct intel_runtime_info *info = RUNTIME_INFO(i915); 2345 const unsigned int pi = __platform_mask_index(info, p); 2346 const unsigned int pb = __platform_mask_bit(info, p); 2347 const unsigned int msb = BITS_PER_TYPE(info->platform_mask[0]) - 1; 2348 const u32 mask = info->platform_mask[pi]; 2349 2350 BUILD_BUG_ON(!__builtin_constant_p(p)); 2351 BUILD_BUG_ON(!__builtin_constant_p(s)); 2352 BUILD_BUG_ON((s) >= INTEL_SUBPLATFORM_BITS); 2353 2354 /* Shift and test on the MSB position so sign flag can be used. */ 2355 return ((mask << (msb - pb)) & (mask << (msb - s))) & BIT(msb); 2356 } 2357 2358 #define IS_MOBILE(dev_priv) (INTEL_INFO(dev_priv)->is_mobile) 2359 2360 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830) 2361 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G) 2362 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X) 2363 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G) 2364 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G) 2365 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM) 2366 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G) 2367 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM) 2368 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G) 2369 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM) 2370 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45) 2371 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45) 2372 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) 2373 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW) 2374 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33) 2375 #define IS_IRONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IRONLAKE) 2376 #define IS_IRONLAKE_M(dev_priv) \ 2377 (IS_PLATFORM(dev_priv, INTEL_IRONLAKE) && IS_MOBILE(dev_priv)) 2378 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE) 2379 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \ 2380 INTEL_INFO(dev_priv)->gt == 1) 2381 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW) 2382 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW) 2383 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL) 2384 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL) 2385 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE) 2386 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON) 2387 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE) 2388 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE) 2389 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE) 2390 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE) 2391 #define IS_ICELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ICELAKE) 2392 #define IS_ELKHARTLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ELKHARTLAKE) 2393 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ 2394 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) 2395 #define IS_BDW_ULT(dev_priv) \ 2396 IS_SUBPLATFORM(dev_priv, INTEL_BROADWELL, INTEL_SUBPLATFORM_ULT) 2397 #define IS_BDW_ULX(dev_priv) \ 2398 IS_SUBPLATFORM(dev_priv, INTEL_BROADWELL, INTEL_SUBPLATFORM_ULX) 2399 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ 2400 INTEL_INFO(dev_priv)->gt == 3) 2401 #define IS_HSW_ULT(dev_priv) \ 2402 IS_SUBPLATFORM(dev_priv, INTEL_HASWELL, INTEL_SUBPLATFORM_ULT) 2403 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ 2404 INTEL_INFO(dev_priv)->gt == 3) 2405 #define IS_HSW_GT1(dev_priv) (IS_HASWELL(dev_priv) && \ 2406 INTEL_INFO(dev_priv)->gt == 1) 2407 /* ULX machines are also considered ULT. */ 2408 #define IS_HSW_ULX(dev_priv) \ 2409 IS_SUBPLATFORM(dev_priv, INTEL_HASWELL, INTEL_SUBPLATFORM_ULX) 2410 #define IS_SKL_ULT(dev_priv) \ 2411 IS_SUBPLATFORM(dev_priv, INTEL_SKYLAKE, INTEL_SUBPLATFORM_ULT) 2412 #define IS_SKL_ULX(dev_priv) \ 2413 IS_SUBPLATFORM(dev_priv, INTEL_SKYLAKE, INTEL_SUBPLATFORM_ULX) 2414 #define IS_KBL_ULT(dev_priv) \ 2415 IS_SUBPLATFORM(dev_priv, INTEL_KABYLAKE, INTEL_SUBPLATFORM_ULT) 2416 #define IS_KBL_ULX(dev_priv) \ 2417 IS_SUBPLATFORM(dev_priv, INTEL_KABYLAKE, INTEL_SUBPLATFORM_ULX) 2418 #define IS_AML_ULX(dev_priv) \ 2419 (IS_SUBPLATFORM(dev_priv, INTEL_KABYLAKE, INTEL_SUBPLATFORM_AML) || \ 2420 IS_SUBPLATFORM(dev_priv, INTEL_COFFEELAKE, INTEL_SUBPLATFORM_AML)) 2421 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2422 INTEL_INFO(dev_priv)->gt == 2) 2423 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2424 INTEL_INFO(dev_priv)->gt == 3) 2425 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2426 INTEL_INFO(dev_priv)->gt == 4) 2427 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2428 INTEL_INFO(dev_priv)->gt == 2) 2429 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2430 INTEL_INFO(dev_priv)->gt == 3) 2431 #define IS_CFL_ULT(dev_priv) \ 2432 IS_SUBPLATFORM(dev_priv, INTEL_COFFEELAKE, INTEL_SUBPLATFORM_ULT) 2433 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2434 INTEL_INFO(dev_priv)->gt == 2) 2435 #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2436 INTEL_INFO(dev_priv)->gt == 3) 2437 #define IS_CNL_WITH_PORT_F(dev_priv) \ 2438 IS_SUBPLATFORM(dev_priv, INTEL_CANNONLAKE, INTEL_SUBPLATFORM_PORTF) 2439 #define IS_ICL_WITH_PORT_F(dev_priv) \ 2440 IS_SUBPLATFORM(dev_priv, INTEL_ICELAKE, INTEL_SUBPLATFORM_PORTF) 2441 2442 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support) 2443 2444 #define SKL_REVID_A0 0x0 2445 #define SKL_REVID_B0 0x1 2446 #define SKL_REVID_C0 0x2 2447 #define SKL_REVID_D0 0x3 2448 #define SKL_REVID_E0 0x4 2449 #define SKL_REVID_F0 0x5 2450 #define SKL_REVID_G0 0x6 2451 #define SKL_REVID_H0 0x7 2452 2453 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2454 2455 #define BXT_REVID_A0 0x0 2456 #define BXT_REVID_A1 0x1 2457 #define BXT_REVID_B0 0x3 2458 #define BXT_REVID_B_LAST 0x8 2459 #define BXT_REVID_C0 0x9 2460 2461 #define IS_BXT_REVID(dev_priv, since, until) \ 2462 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until)) 2463 2464 #define KBL_REVID_A0 0x0 2465 #define KBL_REVID_B0 0x1 2466 #define KBL_REVID_C0 0x2 2467 #define KBL_REVID_D0 0x3 2468 #define KBL_REVID_E0 0x4 2469 2470 #define IS_KBL_REVID(dev_priv, since, until) \ 2471 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2472 2473 #define GLK_REVID_A0 0x0 2474 #define GLK_REVID_A1 0x1 2475 2476 #define IS_GLK_REVID(dev_priv, since, until) \ 2477 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2478 2479 #define CNL_REVID_A0 0x0 2480 #define CNL_REVID_B0 0x1 2481 #define CNL_REVID_C0 0x2 2482 2483 #define IS_CNL_REVID(p, since, until) \ 2484 (IS_CANNONLAKE(p) && IS_REVID(p, since, until)) 2485 2486 #define ICL_REVID_A0 0x0 2487 #define ICL_REVID_A2 0x1 2488 #define ICL_REVID_B0 0x3 2489 #define ICL_REVID_B2 0x4 2490 #define ICL_REVID_C0 0x5 2491 2492 #define IS_ICL_REVID(p, since, until) \ 2493 (IS_ICELAKE(p) && IS_REVID(p, since, until)) 2494 2495 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) 2496 #define IS_GEN9_LP(dev_priv) (IS_GEN(dev_priv, 9) && IS_LP(dev_priv)) 2497 #define IS_GEN9_BC(dev_priv) (IS_GEN(dev_priv, 9) && !IS_LP(dev_priv)) 2498 2499 #define HAS_ENGINE(dev_priv, id) (INTEL_INFO(dev_priv)->engine_mask & BIT(id)) 2500 2501 #define ENGINE_INSTANCES_MASK(dev_priv, first, count) ({ \ 2502 unsigned int first__ = (first); \ 2503 unsigned int count__ = (count); \ 2504 (INTEL_INFO(dev_priv)->engine_mask & \ 2505 GENMASK(first__ + count__ - 1, first__)) >> first__; \ 2506 }) 2507 #define VDBOX_MASK(dev_priv) \ 2508 ENGINE_INSTANCES_MASK(dev_priv, VCS0, I915_MAX_VCS) 2509 #define VEBOX_MASK(dev_priv) \ 2510 ENGINE_INSTANCES_MASK(dev_priv, VECS0, I915_MAX_VECS) 2511 2512 #define HAS_LLC(dev_priv) (INTEL_INFO(dev_priv)->has_llc) 2513 #define HAS_SNOOP(dev_priv) (INTEL_INFO(dev_priv)->has_snoop) 2514 #define HAS_EDRAM(dev_priv) ((dev_priv)->edram_size_mb) 2515 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \ 2516 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv)) 2517 2518 #define HWS_NEEDS_PHYSICAL(dev_priv) (INTEL_INFO(dev_priv)->hws_needs_physical) 2519 2520 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ 2521 (INTEL_INFO(dev_priv)->has_logical_ring_contexts) 2522 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \ 2523 (INTEL_INFO(dev_priv)->has_logical_ring_elsq) 2524 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \ 2525 (INTEL_INFO(dev_priv)->has_logical_ring_preemption) 2526 2527 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv) 2528 2529 #define INTEL_PPGTT(dev_priv) (INTEL_INFO(dev_priv)->ppgtt_type) 2530 #define HAS_PPGTT(dev_priv) \ 2531 (INTEL_PPGTT(dev_priv) != INTEL_PPGTT_NONE) 2532 #define HAS_FULL_PPGTT(dev_priv) \ 2533 (INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL) 2534 2535 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \ 2536 GEM_BUG_ON((sizes) == 0); \ 2537 ((sizes) & ~INTEL_INFO(dev_priv)->page_sizes) == 0; \ 2538 }) 2539 2540 #define HAS_OVERLAY(dev_priv) (INTEL_INFO(dev_priv)->display.has_overlay) 2541 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ 2542 (INTEL_INFO(dev_priv)->display.overlay_needs_physical) 2543 2544 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2545 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) 2546 2547 /* WaRsDisableCoarsePowerGating:skl,cnl */ 2548 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 2549 (IS_CANNONLAKE(dev_priv) || \ 2550 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv)) 2551 2552 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4) 2553 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \ 2554 IS_GEMINILAKE(dev_priv) || \ 2555 IS_KABYLAKE(dev_priv)) 2556 2557 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2558 * rows, which changed the alignment requirements and fence programming. 2559 */ 2560 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN(dev_priv, 2) && \ 2561 !(IS_I915G(dev_priv) || \ 2562 IS_I915GM(dev_priv))) 2563 #define SUPPORTS_TV(dev_priv) (INTEL_INFO(dev_priv)->display.supports_tv) 2564 #define I915_HAS_HOTPLUG(dev_priv) (INTEL_INFO(dev_priv)->display.has_hotplug) 2565 2566 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2) 2567 #define HAS_FBC(dev_priv) (INTEL_INFO(dev_priv)->display.has_fbc) 2568 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH(dev_priv) && INTEL_GEN(dev_priv) >= 7) 2569 2570 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) 2571 2572 #define HAS_DP_MST(dev_priv) (INTEL_INFO(dev_priv)->display.has_dp_mst) 2573 2574 #define HAS_DDI(dev_priv) (INTEL_INFO(dev_priv)->display.has_ddi) 2575 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) (INTEL_INFO(dev_priv)->has_fpga_dbg) 2576 #define HAS_PSR(dev_priv) (INTEL_INFO(dev_priv)->display.has_psr) 2577 #define HAS_TRANSCODER_EDP(dev_priv) (INTEL_INFO(dev_priv)->trans_offsets[TRANSCODER_EDP] != 0) 2578 2579 #define HAS_RC6(dev_priv) (INTEL_INFO(dev_priv)->has_rc6) 2580 #define HAS_RC6p(dev_priv) (INTEL_INFO(dev_priv)->has_rc6p) 2581 #define HAS_RC6pp(dev_priv) (false) /* HW was never validated */ 2582 2583 #define HAS_RPS(dev_priv) (INTEL_INFO(dev_priv)->has_rps) 2584 2585 #define HAS_CSR(dev_priv) (INTEL_INFO(dev_priv)->display.has_csr) 2586 2587 #define HAS_RUNTIME_PM(dev_priv) (INTEL_INFO(dev_priv)->has_runtime_pm) 2588 #define HAS_64BIT_RELOC(dev_priv) (INTEL_INFO(dev_priv)->has_64bit_reloc) 2589 2590 #define HAS_IPC(dev_priv) (INTEL_INFO(dev_priv)->display.has_ipc) 2591 2592 /* 2593 * For now, anything with a GuC requires uCode loading, and then supports 2594 * command submission once loaded. But these are logically independent 2595 * properties, so we have separate macros to test them. 2596 */ 2597 #define HAS_GUC(dev_priv) (INTEL_INFO(dev_priv)->has_guc) 2598 #define HAS_GUC_CT(dev_priv) (INTEL_INFO(dev_priv)->has_guc_ct) 2599 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2600 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv)) 2601 2602 /* For now, anything with a GuC has also HuC */ 2603 #define HAS_HUC(dev_priv) (HAS_GUC(dev_priv)) 2604 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2605 2606 /* Having a GuC is not the same as using a GuC */ 2607 #define USES_GUC(dev_priv) intel_uc_is_using_guc(dev_priv) 2608 #define USES_GUC_SUBMISSION(dev_priv) intel_uc_is_using_guc_submission(dev_priv) 2609 #define USES_HUC(dev_priv) intel_uc_is_using_huc(dev_priv) 2610 2611 #define HAS_POOLED_EU(dev_priv) (INTEL_INFO(dev_priv)->has_pooled_eu) 2612 2613 #define INTEL_PCH_DEVICE_ID_MASK 0xff80 2614 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2615 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2616 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2617 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2618 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2619 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80 2620 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80 2621 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2622 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2623 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280 2624 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300 2625 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80 2626 #define INTEL_PCH_CMP_DEVICE_ID_TYPE 0x0280 2627 #define INTEL_PCH_ICP_DEVICE_ID_TYPE 0x3480 2628 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2629 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2630 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2631 2632 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type) 2633 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id) 2634 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP) 2635 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP) 2636 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT) 2637 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT) 2638 #define HAS_PCH_LPT_LP(dev_priv) \ 2639 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \ 2640 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) 2641 #define HAS_PCH_LPT_H(dev_priv) \ 2642 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \ 2643 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE) 2644 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT) 2645 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX) 2646 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP) 2647 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE) 2648 2649 #define HAS_GMCH(dev_priv) (INTEL_INFO(dev_priv)->display.has_gmch) 2650 2651 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9) 2652 2653 /* DPF == dynamic parity feature */ 2654 #define HAS_L3_DPF(dev_priv) (INTEL_INFO(dev_priv)->has_l3_dpf) 2655 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 2656 2 : HAS_L3_DPF(dev_priv)) 2657 2658 #define GT_FREQUENCY_MULTIPLIER 50 2659 #define GEN9_FREQ_SCALER 3 2660 2661 #define HAS_DISPLAY(dev_priv) (INTEL_INFO(dev_priv)->num_pipes > 0) 2662 2663 #include "i915_trace.h" 2664 2665 static inline bool intel_vtd_active(void) 2666 { 2667 #ifdef CONFIG_INTEL_IOMMU 2668 if (intel_iommu_gfx_mapped) 2669 return true; 2670 #endif 2671 return false; 2672 } 2673 2674 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 2675 { 2676 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active(); 2677 } 2678 2679 static inline bool 2680 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv) 2681 { 2682 return IS_BROXTON(dev_priv) && intel_vtd_active(); 2683 } 2684 2685 /* i915_drv.c */ 2686 void __printf(3, 4) 2687 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 2688 const char *fmt, ...); 2689 2690 #define i915_report_error(dev_priv, fmt, ...) \ 2691 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 2692 2693 #ifdef CONFIG_COMPAT 2694 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2695 unsigned long arg); 2696 #else 2697 #define i915_compat_ioctl NULL 2698 #endif 2699 extern const struct dev_pm_ops i915_pm_ops; 2700 2701 extern int i915_driver_load(struct pci_dev *pdev, 2702 const struct pci_device_id *ent); 2703 extern void i915_driver_unload(struct drm_device *dev); 2704 2705 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 2706 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv); 2707 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2708 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2709 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2710 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2711 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2712 2713 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv); 2714 2715 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 2716 { 2717 unsigned long delay; 2718 2719 if (unlikely(!i915_modparams.enable_hangcheck)) 2720 return; 2721 2722 /* Don't continually defer the hangcheck so that it is always run at 2723 * least once after work has been scheduled on any ring. Otherwise, 2724 * we will ignore a hung ring if a second ring is kept busy. 2725 */ 2726 2727 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 2728 queue_delayed_work(system_long_wq, 2729 &dev_priv->gpu_error.hangcheck_work, delay); 2730 } 2731 2732 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 2733 { 2734 return dev_priv->gvt; 2735 } 2736 2737 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 2738 { 2739 return dev_priv->vgpu.active; 2740 } 2741 2742 /* i915_gem.c */ 2743 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 2744 struct drm_file *file_priv); 2745 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 2746 struct drm_file *file_priv); 2747 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 2748 struct drm_file *file_priv); 2749 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 2750 struct drm_file *file_priv); 2751 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2752 struct drm_file *file_priv); 2753 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 2754 struct drm_file *file_priv); 2755 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 2756 struct drm_file *file_priv); 2757 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2758 struct drm_file *file_priv); 2759 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 2760 struct drm_file *file_priv); 2761 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 2762 struct drm_file *file_priv); 2763 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 2764 struct drm_file *file); 2765 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 2766 struct drm_file *file); 2767 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 2768 struct drm_file *file_priv); 2769 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 2770 struct drm_file *file_priv); 2771 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, 2772 struct drm_file *file_priv); 2773 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, 2774 struct drm_file *file_priv); 2775 int i915_gem_init_userptr(struct drm_i915_private *dev_priv); 2776 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv); 2777 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 2778 struct drm_file *file); 2779 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 2780 struct drm_file *file_priv); 2781 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 2782 struct drm_file *file_priv); 2783 void i915_gem_sanitize(struct drm_i915_private *i915); 2784 int i915_gem_init_early(struct drm_i915_private *dev_priv); 2785 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv); 2786 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 2787 int i915_gem_freeze(struct drm_i915_private *dev_priv); 2788 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 2789 2790 void i915_gem_object_init(struct drm_i915_gem_object *obj, 2791 const struct drm_i915_gem_object_ops *ops); 2792 struct drm_i915_gem_object * 2793 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size); 2794 struct drm_i915_gem_object * 2795 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 2796 const void *data, size_t size); 2797 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); 2798 void i915_gem_free_object(struct drm_gem_object *obj); 2799 2800 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 2801 { 2802 if (!atomic_read(&i915->mm.free_count)) 2803 return; 2804 2805 /* A single pass should suffice to release all the freed objects (along 2806 * most call paths) , but be a little more paranoid in that freeing 2807 * the objects does take a little amount of time, during which the rcu 2808 * callbacks could have added new objects into the freed list, and 2809 * armed the work again. 2810 */ 2811 do { 2812 rcu_barrier(); 2813 } while (flush_work(&i915->mm.free_work)); 2814 } 2815 2816 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915) 2817 { 2818 /* 2819 * Similar to objects above (see i915_gem_drain_freed-objects), in 2820 * general we have workers that are armed by RCU and then rearm 2821 * themselves in their callbacks. To be paranoid, we need to 2822 * drain the workqueue a second time after waiting for the RCU 2823 * grace period so that we catch work queued via RCU from the first 2824 * pass. As neither drain_workqueue() nor flush_workqueue() report 2825 * a result, we make an assumption that we only don't require more 2826 * than 3 passes to catch all _recursive_ RCU delayed work. 2827 * 2828 */ 2829 int pass = 3; 2830 do { 2831 rcu_barrier(); 2832 i915_gem_drain_freed_objects(i915); 2833 } while (--pass); 2834 drain_workqueue(i915->wq); 2835 } 2836 2837 struct i915_vma * __must_check 2838 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 2839 const struct i915_ggtt_view *view, 2840 u64 size, 2841 u64 alignment, 2842 u64 flags); 2843 2844 int i915_gem_object_unbind(struct drm_i915_gem_object *obj); 2845 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 2846 2847 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); 2848 2849 static inline int __sg_page_count(const struct scatterlist *sg) 2850 { 2851 return sg->length >> PAGE_SHIFT; 2852 } 2853 2854 struct scatterlist * 2855 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 2856 unsigned int n, unsigned int *offset); 2857 2858 struct page * 2859 i915_gem_object_get_page(struct drm_i915_gem_object *obj, 2860 unsigned int n); 2861 2862 struct page * 2863 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 2864 unsigned int n); 2865 2866 dma_addr_t 2867 i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj, 2868 unsigned long n, 2869 unsigned int *len); 2870 dma_addr_t 2871 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 2872 unsigned long n); 2873 2874 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 2875 struct sg_table *pages, 2876 unsigned int sg_page_sizes); 2877 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 2878 2879 static inline int __must_check 2880 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 2881 { 2882 might_lock(&obj->mm.lock); 2883 2884 if (atomic_inc_not_zero(&obj->mm.pages_pin_count)) 2885 return 0; 2886 2887 return __i915_gem_object_get_pages(obj); 2888 } 2889 2890 static inline bool 2891 i915_gem_object_has_pages(struct drm_i915_gem_object *obj) 2892 { 2893 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages)); 2894 } 2895 2896 static inline void 2897 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 2898 { 2899 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 2900 2901 atomic_inc(&obj->mm.pages_pin_count); 2902 } 2903 2904 static inline bool 2905 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj) 2906 { 2907 return atomic_read(&obj->mm.pages_pin_count); 2908 } 2909 2910 static inline void 2911 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 2912 { 2913 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 2914 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 2915 2916 atomic_dec(&obj->mm.pages_pin_count); 2917 } 2918 2919 static inline void 2920 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 2921 { 2922 __i915_gem_object_unpin_pages(obj); 2923 } 2924 2925 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock/struct_mutex */ 2926 I915_MM_NORMAL = 0, 2927 I915_MM_SHRINKER /* called "recursively" from direct-reclaim-esque */ 2928 }; 2929 2930 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 2931 enum i915_mm_subclass subclass); 2932 void __i915_gem_object_truncate(struct drm_i915_gem_object *obj); 2933 2934 enum i915_map_type { 2935 I915_MAP_WB = 0, 2936 I915_MAP_WC, 2937 #define I915_MAP_OVERRIDE BIT(31) 2938 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE, 2939 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE, 2940 }; 2941 2942 static inline enum i915_map_type 2943 i915_coherent_map_type(struct drm_i915_private *i915) 2944 { 2945 return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC; 2946 } 2947 2948 /** 2949 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 2950 * @obj: the object to map into kernel address space 2951 * @type: the type of mapping, used to select pgprot_t 2952 * 2953 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 2954 * pages and then returns a contiguous mapping of the backing storage into 2955 * the kernel address space. Based on the @type of mapping, the PTE will be 2956 * set to either WriteBack or WriteCombine (via pgprot_t). 2957 * 2958 * The caller is responsible for calling i915_gem_object_unpin_map() when the 2959 * mapping is no longer required. 2960 * 2961 * Returns the pointer through which to access the mapped object, or an 2962 * ERR_PTR() on error. 2963 */ 2964 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 2965 enum i915_map_type type); 2966 2967 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj, 2968 unsigned long offset, 2969 unsigned long size); 2970 static inline void i915_gem_object_flush_map(struct drm_i915_gem_object *obj) 2971 { 2972 __i915_gem_object_flush_map(obj, 0, obj->base.size); 2973 } 2974 2975 /** 2976 * i915_gem_object_unpin_map - releases an earlier mapping 2977 * @obj: the object to unmap 2978 * 2979 * After pinning the object and mapping its pages, once you are finished 2980 * with your access, call i915_gem_object_unpin_map() to release the pin 2981 * upon the mapping. Once the pin count reaches zero, that mapping may be 2982 * removed. 2983 */ 2984 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 2985 { 2986 i915_gem_object_unpin_pages(obj); 2987 } 2988 2989 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 2990 unsigned int *needs_clflush); 2991 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 2992 unsigned int *needs_clflush); 2993 #define CLFLUSH_BEFORE BIT(0) 2994 #define CLFLUSH_AFTER BIT(1) 2995 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER) 2996 2997 static inline void 2998 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj) 2999 { 3000 i915_gem_object_unpin_pages(obj); 3001 } 3002 3003 static inline int __must_check 3004 i915_mutex_lock_interruptible(struct drm_device *dev) 3005 { 3006 return mutex_lock_interruptible(&dev->struct_mutex); 3007 } 3008 3009 int i915_gem_dumb_create(struct drm_file *file_priv, 3010 struct drm_device *dev, 3011 struct drm_mode_create_dumb *args); 3012 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3013 u32 handle, u64 *offset); 3014 int i915_gem_mmap_gtt_version(void); 3015 3016 void i915_gem_track_fb(struct drm_i915_gem_object *old, 3017 struct drm_i915_gem_object *new, 3018 unsigned frontbuffer_bits); 3019 3020 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); 3021 3022 static inline bool __i915_wedged(struct i915_gpu_error *error) 3023 { 3024 return unlikely(test_bit(I915_WEDGED, &error->flags)); 3025 } 3026 3027 static inline bool i915_reset_failed(struct drm_i915_private *i915) 3028 { 3029 return __i915_wedged(&i915->gpu_error); 3030 } 3031 3032 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3033 { 3034 return READ_ONCE(error->reset_count); 3035 } 3036 3037 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error, 3038 struct intel_engine_cs *engine) 3039 { 3040 return READ_ONCE(error->reset_engine_count[engine->id]); 3041 } 3042 3043 void i915_gem_set_wedged(struct drm_i915_private *dev_priv); 3044 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv); 3045 3046 void i915_gem_init_mmio(struct drm_i915_private *i915); 3047 int __must_check i915_gem_init(struct drm_i915_private *dev_priv); 3048 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv); 3049 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv); 3050 void i915_gem_fini(struct drm_i915_private *dev_priv); 3051 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, 3052 unsigned int flags, long timeout); 3053 void i915_gem_suspend(struct drm_i915_private *dev_priv); 3054 void i915_gem_suspend_late(struct drm_i915_private *dev_priv); 3055 void i915_gem_resume(struct drm_i915_private *dev_priv); 3056 vm_fault_t i915_gem_fault(struct vm_fault *vmf); 3057 int i915_gem_object_wait(struct drm_i915_gem_object *obj, 3058 unsigned int flags, 3059 long timeout); 3060 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 3061 unsigned int flags, 3062 const struct i915_sched_attr *attr); 3063 #define I915_PRIORITY_DISPLAY I915_USER_PRIORITY(I915_PRIORITY_MAX) 3064 3065 int __must_check 3066 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write); 3067 int __must_check 3068 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write); 3069 int __must_check 3070 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3071 struct i915_vma * __must_check 3072 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3073 u32 alignment, 3074 const struct i915_ggtt_view *view, 3075 unsigned int flags); 3076 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma); 3077 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3078 int align); 3079 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file); 3080 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3081 3082 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3083 enum i915_cache_level cache_level); 3084 3085 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3086 struct dma_buf *dma_buf); 3087 3088 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3089 struct drm_gem_object *gem_obj, int flags); 3090 3091 static inline struct i915_hw_ppgtt * 3092 i915_vm_to_ppgtt(struct i915_address_space *vm) 3093 { 3094 return container_of(vm, struct i915_hw_ppgtt, vm); 3095 } 3096 3097 /* i915_gem_fence_reg.c */ 3098 struct drm_i915_fence_reg * 3099 i915_reserve_fence(struct drm_i915_private *dev_priv); 3100 void i915_unreserve_fence(struct drm_i915_fence_reg *fence); 3101 3102 void i915_gem_restore_fences(struct drm_i915_private *dev_priv); 3103 3104 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv); 3105 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 3106 struct sg_table *pages); 3107 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 3108 struct sg_table *pages); 3109 3110 static inline struct i915_gem_context * 3111 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id) 3112 { 3113 return idr_find(&file_priv->context_idr, id); 3114 } 3115 3116 static inline struct i915_gem_context * 3117 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3118 { 3119 struct i915_gem_context *ctx; 3120 3121 rcu_read_lock(); 3122 ctx = __i915_gem_context_lookup_rcu(file_priv, id); 3123 if (ctx && !kref_get_unless_zero(&ctx->ref)) 3124 ctx = NULL; 3125 rcu_read_unlock(); 3126 3127 return ctx; 3128 } 3129 3130 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3131 struct drm_file *file); 3132 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3133 struct drm_file *file); 3134 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3135 struct drm_file *file); 3136 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 3137 struct intel_context *ce, 3138 u32 *reg_state); 3139 3140 /* i915_gem_evict.c */ 3141 int __must_check i915_gem_evict_something(struct i915_address_space *vm, 3142 u64 min_size, u64 alignment, 3143 unsigned cache_level, 3144 u64 start, u64 end, 3145 unsigned flags); 3146 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, 3147 struct drm_mm_node *node, 3148 unsigned int flags); 3149 int i915_gem_evict_vm(struct i915_address_space *vm); 3150 3151 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv); 3152 3153 /* belongs in i915_gem_gtt.h */ 3154 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3155 { 3156 wmb(); 3157 if (INTEL_GEN(dev_priv) < 6) 3158 intel_gtt_chipset_flush(); 3159 } 3160 3161 /* i915_gem_stolen.c */ 3162 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3163 struct drm_mm_node *node, u64 size, 3164 unsigned alignment); 3165 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3166 struct drm_mm_node *node, u64 size, 3167 unsigned alignment, u64 start, 3168 u64 end); 3169 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3170 struct drm_mm_node *node); 3171 int i915_gem_init_stolen(struct drm_i915_private *dev_priv); 3172 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv); 3173 struct drm_i915_gem_object * 3174 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, 3175 resource_size_t size); 3176 struct drm_i915_gem_object * 3177 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv, 3178 resource_size_t stolen_offset, 3179 resource_size_t gtt_offset, 3180 resource_size_t size); 3181 3182 /* i915_gem_internal.c */ 3183 struct drm_i915_gem_object * 3184 i915_gem_object_create_internal(struct drm_i915_private *dev_priv, 3185 phys_addr_t size); 3186 3187 /* i915_gem_shrinker.c */ 3188 unsigned long i915_gem_shrink(struct drm_i915_private *i915, 3189 unsigned long target, 3190 unsigned long *nr_scanned, 3191 unsigned flags); 3192 #define I915_SHRINK_PURGEABLE BIT(0) 3193 #define I915_SHRINK_UNBOUND BIT(1) 3194 #define I915_SHRINK_BOUND BIT(2) 3195 #define I915_SHRINK_ACTIVE BIT(3) 3196 #define I915_SHRINK_VMAPS BIT(4) 3197 #define I915_SHRINK_WRITEBACK BIT(5) 3198 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915); 3199 void i915_gem_shrinker_register(struct drm_i915_private *i915); 3200 void i915_gem_shrinker_unregister(struct drm_i915_private *i915); 3201 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 3202 struct mutex *mutex); 3203 3204 /* i915_gem_tiling.c */ 3205 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3206 { 3207 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3208 3209 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3210 i915_gem_object_is_tiled(obj); 3211 } 3212 3213 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, 3214 unsigned int tiling, unsigned int stride); 3215 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, 3216 unsigned int tiling, unsigned int stride); 3217 3218 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3219 3220 /* i915_cmd_parser.c */ 3221 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 3222 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine); 3223 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); 3224 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 3225 struct drm_i915_gem_object *batch_obj, 3226 struct drm_i915_gem_object *shadow_batch_obj, 3227 u32 batch_start_offset, 3228 u32 batch_len, 3229 bool is_master); 3230 3231 /* i915_perf.c */ 3232 extern void i915_perf_init(struct drm_i915_private *dev_priv); 3233 extern void i915_perf_fini(struct drm_i915_private *dev_priv); 3234 extern void i915_perf_register(struct drm_i915_private *dev_priv); 3235 extern void i915_perf_unregister(struct drm_i915_private *dev_priv); 3236 3237 /* i915_suspend.c */ 3238 extern int i915_save_state(struct drm_i915_private *dev_priv); 3239 extern int i915_restore_state(struct drm_i915_private *dev_priv); 3240 3241 /* i915_sysfs.c */ 3242 void i915_setup_sysfs(struct drm_i915_private *dev_priv); 3243 void i915_teardown_sysfs(struct drm_i915_private *dev_priv); 3244 3245 /* intel_device_info.c */ 3246 static inline struct intel_device_info * 3247 mkwrite_device_info(struct drm_i915_private *dev_priv) 3248 { 3249 return (struct intel_device_info *)INTEL_INFO(dev_priv); 3250 } 3251 3252 /* modesetting */ 3253 extern void intel_modeset_init_hw(struct drm_device *dev); 3254 extern int intel_modeset_init(struct drm_device *dev); 3255 extern void intel_modeset_cleanup(struct drm_device *dev); 3256 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, 3257 bool state); 3258 extern void intel_display_resume(struct drm_device *dev); 3259 extern void i915_redisable_vga(struct drm_i915_private *dev_priv); 3260 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv); 3261 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 3262 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv); 3263 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 3264 extern void intel_rps_mark_interactive(struct drm_i915_private *i915, 3265 bool interactive); 3266 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3267 bool enable); 3268 3269 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3270 struct drm_file *file); 3271 3272 extern struct intel_display_error_state * 3273 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 3274 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3275 struct intel_display_error_state *error); 3276 3277 #define __I915_REG_OP(op__, dev_priv__, ...) \ 3278 intel_uncore_##op__(&(dev_priv__)->uncore, __VA_ARGS__) 3279 3280 #define I915_READ8(reg__) __I915_REG_OP(read8, dev_priv, (reg__)) 3281 #define I915_WRITE8(reg__, val__) __I915_REG_OP(write8, dev_priv, (reg__), (val__)) 3282 3283 #define I915_READ16(reg__) __I915_REG_OP(read16, dev_priv, (reg__)) 3284 #define I915_WRITE16(reg__, val__) __I915_REG_OP(write16, dev_priv, (reg__), (val__)) 3285 #define I915_READ16_NOTRACE(reg__) __I915_REG_OP(read16_notrace, dev_priv, (reg__)) 3286 #define I915_WRITE16_NOTRACE(reg__, val__) __I915_REG_OP(write16_notrace, dev_priv, (reg__), (val__)) 3287 3288 #define I915_READ(reg__) __I915_REG_OP(read, dev_priv, (reg__)) 3289 #define I915_WRITE(reg__, val__) __I915_REG_OP(write, dev_priv, (reg__), (val__)) 3290 #define I915_READ_NOTRACE(reg__) __I915_REG_OP(read_notrace, dev_priv, (reg__)) 3291 #define I915_WRITE_NOTRACE(reg__, val__) __I915_REG_OP(write_notrace, dev_priv, (reg__), (val__)) 3292 3293 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3294 * will be implemented using 2 32-bit writes in an arbitrary order with 3295 * an arbitrary delay between them. This can cause the hardware to 3296 * act upon the intermediate value, possibly leading to corruption and 3297 * machine death. For this reason we do not support I915_WRITE64, or 3298 * dev_priv->uncore.funcs.mmio_writeq. 3299 * 3300 * When reading a 64-bit value as two 32-bit values, the delay may cause 3301 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that 3302 * occasionally a 64-bit register does not actualy support a full readq 3303 * and must be read using two 32-bit reads. 3304 * 3305 * You have been warned. 3306 */ 3307 #define I915_READ64(reg__) __I915_REG_OP(read64, dev_priv, (reg__)) 3308 #define I915_READ64_2x32(lower_reg__, upper_reg__) \ 3309 __I915_REG_OP(read64_2x32, dev_priv, (lower_reg__), (upper_reg__)) 3310 3311 #define POSTING_READ(reg__) __I915_REG_OP(posting_read, dev_priv, (reg__)) 3312 #define POSTING_READ16(reg__) __I915_REG_OP(posting_read16, dev_priv, (reg__)) 3313 3314 /* These are untraced mmio-accessors that are only valid to be used inside 3315 * critical sections, such as inside IRQ handlers, where forcewake is explicitly 3316 * controlled. 3317 * 3318 * Think twice, and think again, before using these. 3319 * 3320 * As an example, these accessors can possibly be used between: 3321 * 3322 * spin_lock_irq(&dev_priv->uncore.lock); 3323 * intel_uncore_forcewake_get__locked(); 3324 * 3325 * and 3326 * 3327 * intel_uncore_forcewake_put__locked(); 3328 * spin_unlock_irq(&dev_priv->uncore.lock); 3329 * 3330 * 3331 * Note: some registers may not need forcewake held, so 3332 * intel_uncore_forcewake_{get,put} can be omitted, see 3333 * intel_uncore_forcewake_for_reg(). 3334 * 3335 * Certain architectures will die if the same cacheline is concurrently accessed 3336 * by different clients (e.g. on Ivybridge). Access to registers should 3337 * therefore generally be serialised, by either the dev_priv->uncore.lock or 3338 * a more localised lock guarding all access to that bank of registers. 3339 */ 3340 #define I915_READ_FW(reg__) __I915_REG_OP(read_fw, dev_priv, (reg__)) 3341 #define I915_WRITE_FW(reg__, val__) __I915_REG_OP(write_fw, dev_priv, (reg__), (val__)) 3342 #define I915_WRITE64_FW(reg__, val__) __I915_REG_OP(write64_fw, dev_priv, (reg__), (val__)) 3343 #define POSTING_READ_FW(reg__) __I915_REG_OP(posting_read_fw, dev_priv, (reg__)) 3344 3345 /* "Broadcast RGB" property */ 3346 #define INTEL_BROADCAST_RGB_AUTO 0 3347 #define INTEL_BROADCAST_RGB_FULL 1 3348 #define INTEL_BROADCAST_RGB_LIMITED 2 3349 3350 void i915_memcpy_init_early(struct drm_i915_private *dev_priv); 3351 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len); 3352 3353 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment, 3354 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot 3355 * perform the operation. To check beforehand, pass in the parameters to 3356 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits, 3357 * you only need to pass in the minor offsets, page-aligned pointers are 3358 * always valid. 3359 * 3360 * For just checking for SSE4.1, in the foreknowledge that the future use 3361 * will be correctly aligned, just use i915_has_memcpy_from_wc(). 3362 */ 3363 #define i915_can_memcpy_from_wc(dst, src, len) \ 3364 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0) 3365 3366 #define i915_has_memcpy_from_wc() \ 3367 i915_memcpy_from_wc(NULL, NULL, 0) 3368 3369 /* i915_mm.c */ 3370 int remap_io_mapping(struct vm_area_struct *vma, 3371 unsigned long addr, unsigned long pfn, unsigned long size, 3372 struct io_mapping *iomap); 3373 3374 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915) 3375 { 3376 if (INTEL_GEN(i915) >= 10) 3377 return CNL_HWS_CSB_WRITE_INDEX; 3378 else 3379 return I915_HWS_CSB_WRITE_INDEX; 3380 } 3381 3382 static inline u32 i915_scratch_offset(const struct drm_i915_private *i915) 3383 { 3384 return i915_ggtt_offset(i915->gt.scratch); 3385 } 3386 3387 static inline void add_taint_for_CI(unsigned int taint) 3388 { 3389 /* 3390 * The system is "ok", just about surviving for the user, but 3391 * CI results are now unreliable as the HW is very suspect. 3392 * CI checks the taint state after every test and will reboot 3393 * the machine if the kernel is tainted. 3394 */ 3395 add_taint(taint, LOCKDEP_STILL_OK); 3396 } 3397 3398 #endif 3399