1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hashtable.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/pm_qos.h> 44 #include <linux/reservation.h> 45 #include <linux/shmem_fs.h> 46 47 #include <drm/drmP.h> 48 #include <drm/intel-gtt.h> 49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 50 #include <drm/drm_gem.h> 51 #include <drm/drm_auth.h> 52 #include <drm/drm_cache.h> 53 54 #include "i915_params.h" 55 #include "i915_reg.h" 56 #include "i915_utils.h" 57 58 #include "intel_bios.h" 59 #include "intel_dpll_mgr.h" 60 #include "intel_uc.h" 61 #include "intel_lrc.h" 62 #include "intel_ringbuffer.h" 63 64 #include "i915_gem.h" 65 #include "i915_gem_context.h" 66 #include "i915_gem_fence_reg.h" 67 #include "i915_gem_object.h" 68 #include "i915_gem_gtt.h" 69 #include "i915_gem_render_state.h" 70 #include "i915_gem_request.h" 71 #include "i915_gem_timeline.h" 72 73 #include "i915_vma.h" 74 75 #include "intel_gvt.h" 76 77 /* General customization: 78 */ 79 80 #define DRIVER_NAME "i915" 81 #define DRIVER_DESC "Intel Graphics" 82 #define DRIVER_DATE "20170123" 83 #define DRIVER_TIMESTAMP 1485156432 84 85 #undef WARN_ON 86 /* Many gcc seem to no see through this and fall over :( */ 87 #if 0 88 #define WARN_ON(x) ({ \ 89 bool __i915_warn_cond = (x); \ 90 if (__builtin_constant_p(__i915_warn_cond)) \ 91 BUILD_BUG_ON(__i915_warn_cond); \ 92 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); }) 93 #else 94 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 95 #endif 96 97 #undef WARN_ON_ONCE 98 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")") 99 100 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \ 101 (long) (x), __func__); 102 103 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 104 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 105 * which may not necessarily be a user visible problem. This will either 106 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 107 * enable distros and users to tailor their preferred amount of i915 abrt 108 * spam. 109 */ 110 #define I915_STATE_WARN(condition, format...) ({ \ 111 int __ret_warn_on = !!(condition); \ 112 if (unlikely(__ret_warn_on)) \ 113 if (!WARN(i915.verbose_state_checks, format)) \ 114 DRM_ERROR(format); \ 115 unlikely(__ret_warn_on); \ 116 }) 117 118 #define I915_STATE_WARN_ON(x) \ 119 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 120 121 bool __i915_inject_load_failure(const char *func, int line); 122 #define i915_inject_load_failure() \ 123 __i915_inject_load_failure(__func__, __LINE__) 124 125 typedef struct { 126 uint32_t val; 127 } uint_fixed_16_16_t; 128 129 #define FP_16_16_MAX ({ \ 130 uint_fixed_16_16_t fp; \ 131 fp.val = UINT_MAX; \ 132 fp; \ 133 }) 134 135 static inline uint_fixed_16_16_t u32_to_fixed_16_16(uint32_t val) 136 { 137 uint_fixed_16_16_t fp; 138 139 WARN_ON(val >> 16); 140 141 fp.val = val << 16; 142 return fp; 143 } 144 145 static inline uint32_t fixed_16_16_to_u32_round_up(uint_fixed_16_16_t fp) 146 { 147 return DIV_ROUND_UP(fp.val, 1 << 16); 148 } 149 150 static inline uint32_t fixed_16_16_to_u32(uint_fixed_16_16_t fp) 151 { 152 return fp.val >> 16; 153 } 154 155 static inline uint_fixed_16_16_t min_fixed_16_16(uint_fixed_16_16_t min1, 156 uint_fixed_16_16_t min2) 157 { 158 uint_fixed_16_16_t min; 159 160 min.val = min(min1.val, min2.val); 161 return min; 162 } 163 164 static inline uint_fixed_16_16_t max_fixed_16_16(uint_fixed_16_16_t max1, 165 uint_fixed_16_16_t max2) 166 { 167 uint_fixed_16_16_t max; 168 169 max.val = max(max1.val, max2.val); 170 return max; 171 } 172 173 static inline uint_fixed_16_16_t fixed_16_16_div_round_up(uint32_t val, 174 uint32_t d) 175 { 176 uint_fixed_16_16_t fp, res; 177 178 fp = u32_to_fixed_16_16(val); 179 res.val = DIV_ROUND_UP(fp.val, d); 180 return res; 181 } 182 183 static inline uint_fixed_16_16_t fixed_16_16_div_round_up_u64(uint32_t val, 184 uint32_t d) 185 { 186 uint_fixed_16_16_t res; 187 uint64_t interm_val; 188 189 interm_val = (uint64_t)val << 16; 190 interm_val = DIV_ROUND_UP_ULL(interm_val, d); 191 WARN_ON(interm_val >> 32); 192 res.val = (uint32_t) interm_val; 193 194 return res; 195 } 196 197 static inline uint_fixed_16_16_t mul_u32_fixed_16_16(uint32_t val, 198 uint_fixed_16_16_t mul) 199 { 200 uint64_t intermediate_val; 201 uint_fixed_16_16_t fp; 202 203 intermediate_val = (uint64_t) val * mul.val; 204 WARN_ON(intermediate_val >> 32); 205 fp.val = (uint32_t) intermediate_val; 206 return fp; 207 } 208 209 static inline const char *yesno(bool v) 210 { 211 return v ? "yes" : "no"; 212 } 213 214 static inline const char *onoff(bool v) 215 { 216 return v ? "on" : "off"; 217 } 218 219 static inline const char *enableddisabled(bool v) 220 { 221 return v ? "enabled" : "disabled"; 222 } 223 224 enum pipe { 225 INVALID_PIPE = -1, 226 PIPE_A = 0, 227 PIPE_B, 228 PIPE_C, 229 _PIPE_EDP, 230 I915_MAX_PIPES = _PIPE_EDP 231 }; 232 #define pipe_name(p) ((p) + 'A') 233 234 enum transcoder { 235 TRANSCODER_A = 0, 236 TRANSCODER_B, 237 TRANSCODER_C, 238 TRANSCODER_EDP, 239 TRANSCODER_DSI_A, 240 TRANSCODER_DSI_C, 241 I915_MAX_TRANSCODERS 242 }; 243 244 static inline const char *transcoder_name(enum transcoder transcoder) 245 { 246 switch (transcoder) { 247 case TRANSCODER_A: 248 return "A"; 249 case TRANSCODER_B: 250 return "B"; 251 case TRANSCODER_C: 252 return "C"; 253 case TRANSCODER_EDP: 254 return "EDP"; 255 case TRANSCODER_DSI_A: 256 return "DSI A"; 257 case TRANSCODER_DSI_C: 258 return "DSI C"; 259 default: 260 return "<invalid>"; 261 } 262 } 263 264 static inline bool transcoder_is_dsi(enum transcoder transcoder) 265 { 266 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C; 267 } 268 269 /* 270 * Global legacy plane identifier. Valid only for primary/sprite 271 * planes on pre-g4x, and only for primary planes on g4x+. 272 */ 273 enum plane { 274 PLANE_A, 275 PLANE_B, 276 PLANE_C, 277 }; 278 #define plane_name(p) ((p) + 'A') 279 280 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A') 281 282 /* 283 * Per-pipe plane identifier. 284 * I915_MAX_PLANES in the enum below is the maximum (across all platforms) 285 * number of planes per CRTC. Not all platforms really have this many planes, 286 * which means some arrays of size I915_MAX_PLANES may have unused entries 287 * between the topmost sprite plane and the cursor plane. 288 * 289 * This is expected to be passed to various register macros 290 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care. 291 */ 292 enum plane_id { 293 PLANE_PRIMARY, 294 PLANE_SPRITE0, 295 PLANE_SPRITE1, 296 PLANE_SPRITE2, 297 PLANE_CURSOR, 298 I915_MAX_PLANES, 299 }; 300 301 #define for_each_plane_id_on_crtc(__crtc, __p) \ 302 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \ 303 for_each_if ((__crtc)->plane_ids_mask & BIT(__p)) 304 305 enum port { 306 PORT_NONE = -1, 307 PORT_A = 0, 308 PORT_B, 309 PORT_C, 310 PORT_D, 311 PORT_E, 312 I915_MAX_PORTS 313 }; 314 #define port_name(p) ((p) + 'A') 315 316 #define I915_NUM_PHYS_VLV 2 317 318 enum dpio_channel { 319 DPIO_CH0, 320 DPIO_CH1 321 }; 322 323 enum dpio_phy { 324 DPIO_PHY0, 325 DPIO_PHY1, 326 DPIO_PHY2, 327 }; 328 329 enum intel_display_power_domain { 330 POWER_DOMAIN_PIPE_A, 331 POWER_DOMAIN_PIPE_B, 332 POWER_DOMAIN_PIPE_C, 333 POWER_DOMAIN_PIPE_A_PANEL_FITTER, 334 POWER_DOMAIN_PIPE_B_PANEL_FITTER, 335 POWER_DOMAIN_PIPE_C_PANEL_FITTER, 336 POWER_DOMAIN_TRANSCODER_A, 337 POWER_DOMAIN_TRANSCODER_B, 338 POWER_DOMAIN_TRANSCODER_C, 339 POWER_DOMAIN_TRANSCODER_EDP, 340 POWER_DOMAIN_TRANSCODER_DSI_A, 341 POWER_DOMAIN_TRANSCODER_DSI_C, 342 POWER_DOMAIN_PORT_DDI_A_LANES, 343 POWER_DOMAIN_PORT_DDI_B_LANES, 344 POWER_DOMAIN_PORT_DDI_C_LANES, 345 POWER_DOMAIN_PORT_DDI_D_LANES, 346 POWER_DOMAIN_PORT_DDI_E_LANES, 347 POWER_DOMAIN_PORT_DSI, 348 POWER_DOMAIN_PORT_CRT, 349 POWER_DOMAIN_PORT_OTHER, 350 POWER_DOMAIN_VGA, 351 POWER_DOMAIN_AUDIO, 352 POWER_DOMAIN_PLLS, 353 POWER_DOMAIN_AUX_A, 354 POWER_DOMAIN_AUX_B, 355 POWER_DOMAIN_AUX_C, 356 POWER_DOMAIN_AUX_D, 357 POWER_DOMAIN_GMBUS, 358 POWER_DOMAIN_MODESET, 359 POWER_DOMAIN_INIT, 360 361 POWER_DOMAIN_NUM, 362 }; 363 364 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A) 365 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \ 366 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER) 367 #define POWER_DOMAIN_TRANSCODER(tran) \ 368 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \ 369 (tran) + POWER_DOMAIN_TRANSCODER_A) 370 371 enum hpd_pin { 372 HPD_NONE = 0, 373 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 374 HPD_CRT, 375 HPD_SDVO_B, 376 HPD_SDVO_C, 377 HPD_PORT_A, 378 HPD_PORT_B, 379 HPD_PORT_C, 380 HPD_PORT_D, 381 HPD_PORT_E, 382 HPD_NUM_PINS 383 }; 384 385 #define for_each_hpd_pin(__pin) \ 386 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 387 388 struct i915_hotplug { 389 struct work_struct hotplug_work; 390 391 struct { 392 unsigned long last_jiffies; 393 int count; 394 enum { 395 HPD_ENABLED = 0, 396 HPD_DISABLED = 1, 397 HPD_MARK_DISABLED = 2 398 } state; 399 } stats[HPD_NUM_PINS]; 400 u32 event_bits; 401 struct delayed_work reenable_work; 402 403 struct intel_digital_port *irq_port[I915_MAX_PORTS]; 404 u32 long_port_mask; 405 u32 short_port_mask; 406 struct work_struct dig_port_work; 407 408 struct work_struct poll_init_work; 409 bool poll_enabled; 410 411 /* 412 * if we get a HPD irq from DP and a HPD irq from non-DP 413 * the non-DP HPD could block the workqueue on a mode config 414 * mutex getting, that userspace may have taken. However 415 * userspace is waiting on the DP workqueue to run which is 416 * blocked behind the non-DP one. 417 */ 418 struct workqueue_struct *dp_wq; 419 }; 420 421 #define I915_GEM_GPU_DOMAINS \ 422 (I915_GEM_DOMAIN_RENDER | \ 423 I915_GEM_DOMAIN_SAMPLER | \ 424 I915_GEM_DOMAIN_COMMAND | \ 425 I915_GEM_DOMAIN_INSTRUCTION | \ 426 I915_GEM_DOMAIN_VERTEX) 427 428 #define for_each_pipe(__dev_priv, __p) \ 429 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) 430 #define for_each_pipe_masked(__dev_priv, __p, __mask) \ 431 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \ 432 for_each_if ((__mask) & (1 << (__p))) 433 #define for_each_universal_plane(__dev_priv, __pipe, __p) \ 434 for ((__p) = 0; \ 435 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \ 436 (__p)++) 437 #define for_each_sprite(__dev_priv, __p, __s) \ 438 for ((__s) = 0; \ 439 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \ 440 (__s)++) 441 442 #define for_each_port_masked(__port, __ports_mask) \ 443 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \ 444 for_each_if ((__ports_mask) & (1 << (__port))) 445 446 #define for_each_crtc(dev, crtc) \ 447 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head) 448 449 #define for_each_intel_plane(dev, intel_plane) \ 450 list_for_each_entry(intel_plane, \ 451 &(dev)->mode_config.plane_list, \ 452 base.head) 453 454 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \ 455 list_for_each_entry(intel_plane, \ 456 &(dev)->mode_config.plane_list, \ 457 base.head) \ 458 for_each_if ((plane_mask) & \ 459 (1 << drm_plane_index(&intel_plane->base))) 460 461 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \ 462 list_for_each_entry(intel_plane, \ 463 &(dev)->mode_config.plane_list, \ 464 base.head) \ 465 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe) 466 467 #define for_each_intel_crtc(dev, intel_crtc) \ 468 list_for_each_entry(intel_crtc, \ 469 &(dev)->mode_config.crtc_list, \ 470 base.head) 471 472 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \ 473 list_for_each_entry(intel_crtc, \ 474 &(dev)->mode_config.crtc_list, \ 475 base.head) \ 476 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base))) 477 478 #define for_each_intel_encoder(dev, intel_encoder) \ 479 list_for_each_entry(intel_encoder, \ 480 &(dev)->mode_config.encoder_list, \ 481 base.head) 482 483 #define for_each_intel_connector(dev, intel_connector) \ 484 list_for_each_entry(intel_connector, \ 485 &(dev)->mode_config.connector_list, \ 486 base.head) 487 488 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \ 489 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \ 490 for_each_if ((intel_encoder)->base.crtc == (__crtc)) 491 492 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \ 493 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \ 494 for_each_if ((intel_connector)->base.encoder == (__encoder)) 495 496 #define for_each_power_domain(domain, mask) \ 497 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \ 498 for_each_if ((1 << (domain)) & (mask)) 499 500 struct drm_i915_private; 501 struct i915_mm_struct; 502 struct i915_mmu_object; 503 504 struct drm_i915_file_private { 505 struct drm_i915_private *dev_priv; 506 struct drm_file *file; 507 508 struct { 509 spinlock_t lock; 510 struct list_head request_list; 511 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 512 * chosen to prevent the CPU getting more than a frame ahead of the GPU 513 * (when using lax throttling for the frontbuffer). We also use it to 514 * offer free GPU waitboosts for severely congested workloads. 515 */ 516 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 517 } mm; 518 struct idr context_idr; 519 520 struct intel_rps_client { 521 struct list_head link; 522 unsigned boosts; 523 } rps; 524 525 unsigned int bsd_engine; 526 527 /* Client can have a maximum of 3 contexts banned before 528 * it is denied of creating new contexts. As one context 529 * ban needs 4 consecutive hangs, and more if there is 530 * progress in between, this is a last resort stop gap measure 531 * to limit the badly behaving clients access to gpu. 532 */ 533 #define I915_MAX_CLIENT_CONTEXT_BANS 3 534 int context_bans; 535 }; 536 537 /* Used by dp and fdi links */ 538 struct intel_link_m_n { 539 uint32_t tu; 540 uint32_t gmch_m; 541 uint32_t gmch_n; 542 uint32_t link_m; 543 uint32_t link_n; 544 }; 545 546 void intel_link_compute_m_n(int bpp, int nlanes, 547 int pixel_clock, int link_clock, 548 struct intel_link_m_n *m_n); 549 550 /* Interface history: 551 * 552 * 1.1: Original. 553 * 1.2: Add Power Management 554 * 1.3: Add vblank support 555 * 1.4: Fix cmdbuffer path, add heap destroy 556 * 1.5: Add vblank pipe configuration 557 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 558 * - Support vertical blank on secondary display pipe 559 */ 560 #define DRIVER_MAJOR 1 561 #define DRIVER_MINOR 6 562 #define DRIVER_PATCHLEVEL 0 563 564 struct opregion_header; 565 struct opregion_acpi; 566 struct opregion_swsci; 567 struct opregion_asle; 568 569 struct intel_opregion { 570 struct opregion_header *header; 571 struct opregion_acpi *acpi; 572 struct opregion_swsci *swsci; 573 u32 swsci_gbda_sub_functions; 574 u32 swsci_sbcb_sub_functions; 575 struct opregion_asle *asle; 576 void *rvda; 577 const void *vbt; 578 u32 vbt_size; 579 u32 *lid_state; 580 struct work_struct asle_work; 581 }; 582 #define OPREGION_SIZE (8*1024) 583 584 struct intel_overlay; 585 struct intel_overlay_error_state; 586 587 struct sdvo_device_mapping { 588 u8 initialized; 589 u8 dvo_port; 590 u8 slave_addr; 591 u8 dvo_wiring; 592 u8 i2c_pin; 593 u8 ddc_pin; 594 }; 595 596 struct intel_connector; 597 struct intel_encoder; 598 struct intel_atomic_state; 599 struct intel_crtc_state; 600 struct intel_initial_plane_config; 601 struct intel_crtc; 602 struct intel_limit; 603 struct dpll; 604 605 struct drm_i915_display_funcs { 606 int (*get_display_clock_speed)(struct drm_i915_private *dev_priv); 607 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane); 608 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 609 int (*compute_intermediate_wm)(struct drm_device *dev, 610 struct intel_crtc *intel_crtc, 611 struct intel_crtc_state *newstate); 612 void (*initial_watermarks)(struct intel_atomic_state *state, 613 struct intel_crtc_state *cstate); 614 void (*atomic_update_watermarks)(struct intel_atomic_state *state, 615 struct intel_crtc_state *cstate); 616 void (*optimize_watermarks)(struct intel_atomic_state *state, 617 struct intel_crtc_state *cstate); 618 int (*compute_global_watermarks)(struct drm_atomic_state *state); 619 void (*update_wm)(struct intel_crtc *crtc); 620 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 621 void (*modeset_commit_cdclk)(struct drm_atomic_state *state); 622 /* Returns the active state of the crtc, and if the crtc is active, 623 * fills out the pipe-config with the hw state. */ 624 bool (*get_pipe_config)(struct intel_crtc *, 625 struct intel_crtc_state *); 626 void (*get_initial_plane_config)(struct intel_crtc *, 627 struct intel_initial_plane_config *); 628 int (*crtc_compute_clock)(struct intel_crtc *crtc, 629 struct intel_crtc_state *crtc_state); 630 void (*crtc_enable)(struct intel_crtc_state *pipe_config, 631 struct drm_atomic_state *old_state); 632 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state, 633 struct drm_atomic_state *old_state); 634 void (*update_crtcs)(struct drm_atomic_state *state, 635 unsigned int *crtc_vblank_mask); 636 void (*audio_codec_enable)(struct drm_connector *connector, 637 struct intel_encoder *encoder, 638 const struct drm_display_mode *adjusted_mode); 639 void (*audio_codec_disable)(struct intel_encoder *encoder); 640 void (*fdi_link_train)(struct drm_crtc *crtc); 641 void (*init_clock_gating)(struct drm_i915_private *dev_priv); 642 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc, 643 struct drm_framebuffer *fb, 644 struct drm_i915_gem_object *obj, 645 struct drm_i915_gem_request *req, 646 uint32_t flags); 647 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 648 /* clock updates for mode set */ 649 /* cursor updates */ 650 /* render clock increase/decrease */ 651 /* display clock increase/decrease */ 652 /* pll clock increase/decrease */ 653 654 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); 655 void (*load_luts)(struct drm_crtc_state *crtc_state); 656 }; 657 658 enum forcewake_domain_id { 659 FW_DOMAIN_ID_RENDER = 0, 660 FW_DOMAIN_ID_BLITTER, 661 FW_DOMAIN_ID_MEDIA, 662 663 FW_DOMAIN_ID_COUNT 664 }; 665 666 enum forcewake_domains { 667 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER), 668 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER), 669 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA), 670 FORCEWAKE_ALL = (FORCEWAKE_RENDER | 671 FORCEWAKE_BLITTER | 672 FORCEWAKE_MEDIA) 673 }; 674 675 #define FW_REG_READ (1) 676 #define FW_REG_WRITE (2) 677 678 enum decoupled_power_domain { 679 GEN9_DECOUPLED_PD_BLITTER = 0, 680 GEN9_DECOUPLED_PD_RENDER, 681 GEN9_DECOUPLED_PD_MEDIA, 682 GEN9_DECOUPLED_PD_ALL 683 }; 684 685 enum decoupled_ops { 686 GEN9_DECOUPLED_OP_WRITE = 0, 687 GEN9_DECOUPLED_OP_READ 688 }; 689 690 enum forcewake_domains 691 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv, 692 i915_reg_t reg, unsigned int op); 693 694 struct intel_uncore_funcs { 695 void (*force_wake_get)(struct drm_i915_private *dev_priv, 696 enum forcewake_domains domains); 697 void (*force_wake_put)(struct drm_i915_private *dev_priv, 698 enum forcewake_domains domains); 699 700 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 701 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 702 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 703 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 704 705 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r, 706 uint8_t val, bool trace); 707 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r, 708 uint16_t val, bool trace); 709 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r, 710 uint32_t val, bool trace); 711 }; 712 713 struct intel_forcewake_range { 714 u32 start; 715 u32 end; 716 717 enum forcewake_domains domains; 718 }; 719 720 struct intel_uncore { 721 spinlock_t lock; /** lock is also taken in irq contexts. */ 722 723 const struct intel_forcewake_range *fw_domains_table; 724 unsigned int fw_domains_table_entries; 725 726 struct intel_uncore_funcs funcs; 727 728 unsigned fifo_count; 729 730 enum forcewake_domains fw_domains; 731 enum forcewake_domains fw_domains_active; 732 733 struct intel_uncore_forcewake_domain { 734 struct drm_i915_private *i915; 735 enum forcewake_domain_id id; 736 enum forcewake_domains mask; 737 unsigned wake_count; 738 struct hrtimer timer; 739 i915_reg_t reg_set; 740 u32 val_set; 741 u32 val_clear; 742 i915_reg_t reg_ack; 743 i915_reg_t reg_post; 744 u32 val_reset; 745 } fw_domain[FW_DOMAIN_ID_COUNT]; 746 747 int unclaimed_mmio_check; 748 }; 749 750 /* Iterate over initialised fw domains */ 751 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \ 752 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \ 753 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \ 754 (domain__)++) \ 755 for_each_if ((mask__) & (domain__)->mask) 756 757 #define for_each_fw_domain(domain__, dev_priv__) \ 758 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__) 759 760 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 761 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 762 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 763 764 struct intel_csr { 765 struct work_struct work; 766 const char *fw_path; 767 uint32_t *dmc_payload; 768 uint32_t dmc_fw_size; 769 uint32_t version; 770 uint32_t mmio_count; 771 i915_reg_t mmioaddr[8]; 772 uint32_t mmiodata[8]; 773 uint32_t dc_state; 774 uint32_t allowed_dc_mask; 775 }; 776 777 #define DEV_INFO_FOR_EACH_FLAG(func) \ 778 func(is_mobile); \ 779 func(is_lp); \ 780 func(is_alpha_support); \ 781 /* Keep has_* in alphabetical order */ \ 782 func(has_64bit_reloc); \ 783 func(has_aliasing_ppgtt); \ 784 func(has_csr); \ 785 func(has_ddi); \ 786 func(has_decoupled_mmio); \ 787 func(has_dp_mst); \ 788 func(has_fbc); \ 789 func(has_fpga_dbg); \ 790 func(has_full_ppgtt); \ 791 func(has_full_48bit_ppgtt); \ 792 func(has_gmbus_irq); \ 793 func(has_gmch_display); \ 794 func(has_guc); \ 795 func(has_hotplug); \ 796 func(has_hw_contexts); \ 797 func(has_l3_dpf); \ 798 func(has_llc); \ 799 func(has_logical_ring_contexts); \ 800 func(has_overlay); \ 801 func(has_pipe_cxsr); \ 802 func(has_pooled_eu); \ 803 func(has_psr); \ 804 func(has_rc6); \ 805 func(has_rc6p); \ 806 func(has_resource_streamer); \ 807 func(has_runtime_pm); \ 808 func(has_snoop); \ 809 func(cursor_needs_physical); \ 810 func(hws_needs_physical); \ 811 func(overlay_needs_physical); \ 812 func(supports_tv); 813 814 struct sseu_dev_info { 815 u8 slice_mask; 816 u8 subslice_mask; 817 u8 eu_total; 818 u8 eu_per_subslice; 819 u8 min_eu_in_pool; 820 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */ 821 u8 subslice_7eu[3]; 822 u8 has_slice_pg:1; 823 u8 has_subslice_pg:1; 824 u8 has_eu_pg:1; 825 }; 826 827 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu) 828 { 829 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask); 830 } 831 832 /* Keep in gen based order, and chronological order within a gen */ 833 enum intel_platform { 834 INTEL_PLATFORM_UNINITIALIZED = 0, 835 INTEL_I830, 836 INTEL_I845G, 837 INTEL_I85X, 838 INTEL_I865G, 839 INTEL_I915G, 840 INTEL_I915GM, 841 INTEL_I945G, 842 INTEL_I945GM, 843 INTEL_G33, 844 INTEL_PINEVIEW, 845 INTEL_I965G, 846 INTEL_I965GM, 847 INTEL_G45, 848 INTEL_GM45, 849 INTEL_IRONLAKE, 850 INTEL_SANDYBRIDGE, 851 INTEL_IVYBRIDGE, 852 INTEL_VALLEYVIEW, 853 INTEL_HASWELL, 854 INTEL_BROADWELL, 855 INTEL_CHERRYVIEW, 856 INTEL_SKYLAKE, 857 INTEL_BROXTON, 858 INTEL_KABYLAKE, 859 INTEL_GEMINILAKE, 860 }; 861 862 struct intel_device_info { 863 u32 display_mmio_offset; 864 u16 device_id; 865 u8 num_pipes; 866 u8 num_sprites[I915_MAX_PIPES]; 867 u8 num_scalers[I915_MAX_PIPES]; 868 u8 gen; 869 u16 gen_mask; 870 enum intel_platform platform; 871 u8 ring_mask; /* Rings supported by the HW */ 872 u8 num_rings; 873 #define DEFINE_FLAG(name) u8 name:1 874 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG); 875 #undef DEFINE_FLAG 876 u16 ddb_size; /* in blocks */ 877 /* Register offsets for the various display pipes and transcoders */ 878 int pipe_offsets[I915_MAX_TRANSCODERS]; 879 int trans_offsets[I915_MAX_TRANSCODERS]; 880 int palette_offsets[I915_MAX_PIPES]; 881 int cursor_offsets[I915_MAX_PIPES]; 882 883 /* Slice/subslice/EU info */ 884 struct sseu_dev_info sseu; 885 886 struct color_luts { 887 u16 degamma_lut_size; 888 u16 gamma_lut_size; 889 } color; 890 }; 891 892 struct intel_display_error_state; 893 894 struct drm_i915_error_state { 895 struct kref ref; 896 struct timeval time; 897 struct timeval boottime; 898 struct timeval uptime; 899 900 struct drm_i915_private *i915; 901 902 char error_msg[128]; 903 bool simulated; 904 int iommu; 905 u32 reset_count; 906 u32 suspend_count; 907 struct intel_device_info device_info; 908 909 /* Generic register state */ 910 u32 eir; 911 u32 pgtbl_er; 912 u32 ier; 913 u32 gtier[4]; 914 u32 ccid; 915 u32 derrmr; 916 u32 forcewake; 917 u32 error; /* gen6+ */ 918 u32 err_int; /* gen7 */ 919 u32 fault_data0; /* gen8, gen9 */ 920 u32 fault_data1; /* gen8, gen9 */ 921 u32 done_reg; 922 u32 gac_eco; 923 u32 gam_ecochk; 924 u32 gab_ctl; 925 u32 gfx_mode; 926 927 u64 fence[I915_MAX_NUM_FENCES]; 928 struct intel_overlay_error_state *overlay; 929 struct intel_display_error_state *display; 930 struct drm_i915_error_object *semaphore; 931 struct drm_i915_error_object *guc_log; 932 933 struct drm_i915_error_engine { 934 int engine_id; 935 /* Software tracked state */ 936 bool waiting; 937 int num_waiters; 938 unsigned long hangcheck_timestamp; 939 bool hangcheck_stalled; 940 enum intel_engine_hangcheck_action hangcheck_action; 941 struct i915_address_space *vm; 942 int num_requests; 943 944 /* position of active request inside the ring */ 945 u32 rq_head, rq_post, rq_tail; 946 947 /* our own tracking of ring head and tail */ 948 u32 cpu_ring_head; 949 u32 cpu_ring_tail; 950 951 u32 last_seqno; 952 953 /* Register state */ 954 u32 start; 955 u32 tail; 956 u32 head; 957 u32 ctl; 958 u32 mode; 959 u32 hws; 960 u32 ipeir; 961 u32 ipehr; 962 u32 bbstate; 963 u32 instpm; 964 u32 instps; 965 u32 seqno; 966 u64 bbaddr; 967 u64 acthd; 968 u32 fault_reg; 969 u64 faddr; 970 u32 rc_psmi; /* sleep state */ 971 u32 semaphore_mboxes[I915_NUM_ENGINES - 1]; 972 struct intel_instdone instdone; 973 974 struct drm_i915_error_object { 975 u64 gtt_offset; 976 u64 gtt_size; 977 int page_count; 978 int unused; 979 u32 *pages[0]; 980 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page; 981 982 struct drm_i915_error_object *wa_ctx; 983 984 struct drm_i915_error_request { 985 long jiffies; 986 pid_t pid; 987 u32 context; 988 int ban_score; 989 u32 seqno; 990 u32 head; 991 u32 tail; 992 } *requests, execlist[2]; 993 994 struct drm_i915_error_waiter { 995 char comm[TASK_COMM_LEN]; 996 pid_t pid; 997 u32 seqno; 998 } *waiters; 999 1000 struct { 1001 u32 gfx_mode; 1002 union { 1003 u64 pdp[4]; 1004 u32 pp_dir_base; 1005 }; 1006 } vm_info; 1007 1008 pid_t pid; 1009 char comm[TASK_COMM_LEN]; 1010 int context_bans; 1011 } engine[I915_NUM_ENGINES]; 1012 1013 struct drm_i915_error_buffer { 1014 u32 size; 1015 u32 name; 1016 u32 rseqno[I915_NUM_ENGINES], wseqno; 1017 u64 gtt_offset; 1018 u32 read_domains; 1019 u32 write_domain; 1020 s32 fence_reg:I915_MAX_NUM_FENCE_BITS; 1021 u32 tiling:2; 1022 u32 dirty:1; 1023 u32 purgeable:1; 1024 u32 userptr:1; 1025 s32 engine:4; 1026 u32 cache_level:3; 1027 } *active_bo[I915_NUM_ENGINES], *pinned_bo; 1028 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count; 1029 struct i915_address_space *active_vm[I915_NUM_ENGINES]; 1030 }; 1031 1032 enum i915_cache_level { 1033 I915_CACHE_NONE = 0, 1034 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 1035 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 1036 caches, eg sampler/render caches, and the 1037 large Last-Level-Cache. LLC is coherent with 1038 the CPU, but L3 is only visible to the GPU. */ 1039 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 1040 }; 1041 1042 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ 1043 1044 enum fb_op_origin { 1045 ORIGIN_GTT, 1046 ORIGIN_CPU, 1047 ORIGIN_CS, 1048 ORIGIN_FLIP, 1049 ORIGIN_DIRTYFB, 1050 }; 1051 1052 struct intel_fbc { 1053 /* This is always the inner lock when overlapping with struct_mutex and 1054 * it's the outer lock when overlapping with stolen_lock. */ 1055 struct mutex lock; 1056 unsigned threshold; 1057 unsigned int possible_framebuffer_bits; 1058 unsigned int busy_bits; 1059 unsigned int visible_pipes_mask; 1060 struct intel_crtc *crtc; 1061 1062 struct drm_mm_node compressed_fb; 1063 struct drm_mm_node *compressed_llb; 1064 1065 bool false_color; 1066 1067 bool enabled; 1068 bool active; 1069 1070 bool underrun_detected; 1071 struct work_struct underrun_work; 1072 1073 struct intel_fbc_state_cache { 1074 struct i915_vma *vma; 1075 1076 struct { 1077 unsigned int mode_flags; 1078 uint32_t hsw_bdw_pixel_rate; 1079 } crtc; 1080 1081 struct { 1082 unsigned int rotation; 1083 int src_w; 1084 int src_h; 1085 bool visible; 1086 } plane; 1087 1088 struct { 1089 const struct drm_format_info *format; 1090 unsigned int stride; 1091 } fb; 1092 } state_cache; 1093 1094 struct intel_fbc_reg_params { 1095 struct i915_vma *vma; 1096 1097 struct { 1098 enum pipe pipe; 1099 enum plane plane; 1100 unsigned int fence_y_offset; 1101 } crtc; 1102 1103 struct { 1104 const struct drm_format_info *format; 1105 unsigned int stride; 1106 } fb; 1107 1108 int cfb_size; 1109 } params; 1110 1111 struct intel_fbc_work { 1112 bool scheduled; 1113 u32 scheduled_vblank; 1114 struct work_struct work; 1115 } work; 1116 1117 const char *no_fbc_reason; 1118 }; 1119 1120 /* 1121 * HIGH_RR is the highest eDP panel refresh rate read from EDID 1122 * LOW_RR is the lowest eDP panel refresh rate found from EDID 1123 * parsing for same resolution. 1124 */ 1125 enum drrs_refresh_rate_type { 1126 DRRS_HIGH_RR, 1127 DRRS_LOW_RR, 1128 DRRS_MAX_RR, /* RR count */ 1129 }; 1130 1131 enum drrs_support_type { 1132 DRRS_NOT_SUPPORTED = 0, 1133 STATIC_DRRS_SUPPORT = 1, 1134 SEAMLESS_DRRS_SUPPORT = 2 1135 }; 1136 1137 struct intel_dp; 1138 struct i915_drrs { 1139 struct mutex mutex; 1140 struct delayed_work work; 1141 struct intel_dp *dp; 1142 unsigned busy_frontbuffer_bits; 1143 enum drrs_refresh_rate_type refresh_rate_type; 1144 enum drrs_support_type type; 1145 }; 1146 1147 struct i915_psr { 1148 struct mutex lock; 1149 bool sink_support; 1150 bool source_ok; 1151 struct intel_dp *enabled; 1152 bool active; 1153 struct delayed_work work; 1154 unsigned busy_frontbuffer_bits; 1155 bool psr2_support; 1156 bool aux_frame_sync; 1157 bool link_standby; 1158 bool y_cord_support; 1159 bool colorimetry_support; 1160 bool alpm; 1161 }; 1162 1163 enum intel_pch { 1164 PCH_NONE = 0, /* No PCH present */ 1165 PCH_IBX, /* Ibexpeak PCH */ 1166 PCH_CPT, /* Cougarpoint PCH */ 1167 PCH_LPT, /* Lynxpoint PCH */ 1168 PCH_SPT, /* Sunrisepoint PCH */ 1169 PCH_KBP, /* Kabypoint PCH */ 1170 PCH_NOP, 1171 }; 1172 1173 enum intel_sbi_destination { 1174 SBI_ICLK, 1175 SBI_MPHY, 1176 }; 1177 1178 #define QUIRK_PIPEA_FORCE (1<<0) 1179 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 1180 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 1181 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 1182 #define QUIRK_PIPEB_FORCE (1<<4) 1183 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 1184 1185 struct intel_fbdev; 1186 struct intel_fbc_work; 1187 1188 struct intel_gmbus { 1189 struct i2c_adapter adapter; 1190 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 1191 u32 force_bit; 1192 u32 reg0; 1193 i915_reg_t gpio_reg; 1194 struct i2c_algo_bit_data bit_algo; 1195 struct drm_i915_private *dev_priv; 1196 }; 1197 1198 struct i915_suspend_saved_registers { 1199 u32 saveDSPARB; 1200 u32 saveFBC_CONTROL; 1201 u32 saveCACHE_MODE_0; 1202 u32 saveMI_ARB_STATE; 1203 u32 saveSWF0[16]; 1204 u32 saveSWF1[16]; 1205 u32 saveSWF3[3]; 1206 uint64_t saveFENCE[I915_MAX_NUM_FENCES]; 1207 u32 savePCH_PORT_HOTPLUG; 1208 u16 saveGCDGMBUS; 1209 }; 1210 1211 struct vlv_s0ix_state { 1212 /* GAM */ 1213 u32 wr_watermark; 1214 u32 gfx_prio_ctrl; 1215 u32 arb_mode; 1216 u32 gfx_pend_tlb0; 1217 u32 gfx_pend_tlb1; 1218 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 1219 u32 media_max_req_count; 1220 u32 gfx_max_req_count; 1221 u32 render_hwsp; 1222 u32 ecochk; 1223 u32 bsd_hwsp; 1224 u32 blt_hwsp; 1225 u32 tlb_rd_addr; 1226 1227 /* MBC */ 1228 u32 g3dctl; 1229 u32 gsckgctl; 1230 u32 mbctl; 1231 1232 /* GCP */ 1233 u32 ucgctl1; 1234 u32 ucgctl3; 1235 u32 rcgctl1; 1236 u32 rcgctl2; 1237 u32 rstctl; 1238 u32 misccpctl; 1239 1240 /* GPM */ 1241 u32 gfxpause; 1242 u32 rpdeuhwtc; 1243 u32 rpdeuc; 1244 u32 ecobus; 1245 u32 pwrdwnupctl; 1246 u32 rp_down_timeout; 1247 u32 rp_deucsw; 1248 u32 rcubmabdtmr; 1249 u32 rcedata; 1250 u32 spare2gh; 1251 1252 /* Display 1 CZ domain */ 1253 u32 gt_imr; 1254 u32 gt_ier; 1255 u32 pm_imr; 1256 u32 pm_ier; 1257 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 1258 1259 /* GT SA CZ domain */ 1260 u32 tilectl; 1261 u32 gt_fifoctl; 1262 u32 gtlc_wake_ctrl; 1263 u32 gtlc_survive; 1264 u32 pmwgicz; 1265 1266 /* Display 2 CZ domain */ 1267 u32 gu_ctl0; 1268 u32 gu_ctl1; 1269 u32 pcbr; 1270 u32 clock_gate_dis2; 1271 }; 1272 1273 struct intel_rps_ei { 1274 u32 cz_clock; 1275 u32 render_c0; 1276 u32 media_c0; 1277 }; 1278 1279 struct intel_gen6_power_mgmt { 1280 /* 1281 * work, interrupts_enabled and pm_iir are protected by 1282 * dev_priv->irq_lock 1283 */ 1284 struct work_struct work; 1285 bool interrupts_enabled; 1286 u32 pm_iir; 1287 1288 /* PM interrupt bits that should never be masked */ 1289 u32 pm_intr_keep; 1290 1291 /* Frequencies are stored in potentially platform dependent multiples. 1292 * In other words, *_freq needs to be multiplied by X to be interesting. 1293 * Soft limits are those which are used for the dynamic reclocking done 1294 * by the driver (raise frequencies under heavy loads, and lower for 1295 * lighter loads). Hard limits are those imposed by the hardware. 1296 * 1297 * A distinction is made for overclocking, which is never enabled by 1298 * default, and is considered to be above the hard limit if it's 1299 * possible at all. 1300 */ 1301 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 1302 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 1303 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 1304 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 1305 u8 min_freq; /* AKA RPn. Minimum frequency */ 1306 u8 boost_freq; /* Frequency to request when wait boosting */ 1307 u8 idle_freq; /* Frequency to request when we are idle */ 1308 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 1309 u8 rp1_freq; /* "less than" RP0 power/freqency */ 1310 u8 rp0_freq; /* Non-overclocked max frequency. */ 1311 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 1312 1313 u8 up_threshold; /* Current %busy required to uplock */ 1314 u8 down_threshold; /* Current %busy required to downclock */ 1315 1316 int last_adj; 1317 enum { LOW_POWER, BETWEEN, HIGH_POWER } power; 1318 1319 spinlock_t client_lock; 1320 struct list_head clients; 1321 bool client_boost; 1322 1323 bool enabled; 1324 struct delayed_work autoenable_work; 1325 unsigned boosts; 1326 1327 /* manual wa residency calculations */ 1328 struct intel_rps_ei ei; 1329 1330 /* 1331 * Protects RPS/RC6 register access and PCU communication. 1332 * Must be taken after struct_mutex if nested. Note that 1333 * this lock may be held for long periods of time when 1334 * talking to hw - so only take it when talking to hw! 1335 */ 1336 struct mutex hw_lock; 1337 }; 1338 1339 /* defined intel_pm.c */ 1340 extern spinlock_t mchdev_lock; 1341 1342 struct intel_ilk_power_mgmt { 1343 u8 cur_delay; 1344 u8 min_delay; 1345 u8 max_delay; 1346 u8 fmax; 1347 u8 fstart; 1348 1349 u64 last_count1; 1350 unsigned long last_time1; 1351 unsigned long chipset_power; 1352 u64 last_count2; 1353 u64 last_time2; 1354 unsigned long gfx_power; 1355 u8 corr; 1356 1357 int c_m; 1358 int r_t; 1359 }; 1360 1361 struct drm_i915_private; 1362 struct i915_power_well; 1363 1364 struct i915_power_well_ops { 1365 /* 1366 * Synchronize the well's hw state to match the current sw state, for 1367 * example enable/disable it based on the current refcount. Called 1368 * during driver init and resume time, possibly after first calling 1369 * the enable/disable handlers. 1370 */ 1371 void (*sync_hw)(struct drm_i915_private *dev_priv, 1372 struct i915_power_well *power_well); 1373 /* 1374 * Enable the well and resources that depend on it (for example 1375 * interrupts located on the well). Called after the 0->1 refcount 1376 * transition. 1377 */ 1378 void (*enable)(struct drm_i915_private *dev_priv, 1379 struct i915_power_well *power_well); 1380 /* 1381 * Disable the well and resources that depend on it. Called after 1382 * the 1->0 refcount transition. 1383 */ 1384 void (*disable)(struct drm_i915_private *dev_priv, 1385 struct i915_power_well *power_well); 1386 /* Returns the hw enabled state. */ 1387 bool (*is_enabled)(struct drm_i915_private *dev_priv, 1388 struct i915_power_well *power_well); 1389 }; 1390 1391 /* Power well structure for haswell */ 1392 struct i915_power_well { 1393 const char *name; 1394 bool always_on; 1395 /* power well enable/disable usage count */ 1396 int count; 1397 /* cached hw enabled state */ 1398 bool hw_enabled; 1399 unsigned long domains; 1400 /* unique identifier for this power well */ 1401 unsigned long id; 1402 /* 1403 * Arbitraty data associated with this power well. Platform and power 1404 * well specific. 1405 */ 1406 unsigned long data; 1407 const struct i915_power_well_ops *ops; 1408 }; 1409 1410 struct i915_power_domains { 1411 /* 1412 * Power wells needed for initialization at driver init and suspend 1413 * time are on. They are kept on until after the first modeset. 1414 */ 1415 bool init_power_on; 1416 bool initializing; 1417 int power_well_count; 1418 1419 struct mutex lock; 1420 int domain_use_count[POWER_DOMAIN_NUM]; 1421 struct i915_power_well *power_wells; 1422 }; 1423 1424 #define MAX_L3_SLICES 2 1425 struct intel_l3_parity { 1426 u32 *remap_info[MAX_L3_SLICES]; 1427 struct work_struct error_work; 1428 int which_slice; 1429 }; 1430 1431 struct i915_gem_mm { 1432 /** Memory allocator for GTT stolen memory */ 1433 struct drm_mm stolen; 1434 /** Protects the usage of the GTT stolen memory allocator. This is 1435 * always the inner lock when overlapping with struct_mutex. */ 1436 struct mutex stolen_lock; 1437 1438 /** List of all objects in gtt_space. Used to restore gtt 1439 * mappings on resume */ 1440 struct list_head bound_list; 1441 /** 1442 * List of objects which are not bound to the GTT (thus 1443 * are idle and not used by the GPU). These objects may or may 1444 * not actually have any pages attached. 1445 */ 1446 struct list_head unbound_list; 1447 1448 /** List of all objects in gtt_space, currently mmaped by userspace. 1449 * All objects within this list must also be on bound_list. 1450 */ 1451 struct list_head userfault_list; 1452 1453 /** 1454 * List of objects which are pending destruction. 1455 */ 1456 struct llist_head free_list; 1457 struct work_struct free_work; 1458 1459 /** Usable portion of the GTT for GEM */ 1460 phys_addr_t stolen_base; /* limited to low memory (32-bit) */ 1461 1462 /** PPGTT used for aliasing the PPGTT with the GTT */ 1463 struct i915_hw_ppgtt *aliasing_ppgtt; 1464 1465 struct notifier_block oom_notifier; 1466 struct notifier_block vmap_notifier; 1467 struct shrinker shrinker; 1468 1469 /** LRU list of objects with fence regs on them. */ 1470 struct list_head fence_list; 1471 1472 /** 1473 * Are we in a non-interruptible section of code like 1474 * modesetting? 1475 */ 1476 bool interruptible; 1477 1478 /* the indicator for dispatch video commands on two BSD rings */ 1479 atomic_t bsd_engine_dispatch_index; 1480 1481 /** Bit 6 swizzling required for X tiling */ 1482 uint32_t bit_6_swizzle_x; 1483 /** Bit 6 swizzling required for Y tiling */ 1484 uint32_t bit_6_swizzle_y; 1485 1486 /* accounting, useful for userland debugging */ 1487 spinlock_t object_stat_lock; 1488 u64 object_memory; 1489 u32 object_count; 1490 }; 1491 1492 struct drm_i915_error_state_buf { 1493 struct drm_i915_private *i915; 1494 unsigned bytes; 1495 unsigned size; 1496 int err; 1497 u8 *buf; 1498 loff_t start; 1499 loff_t pos; 1500 }; 1501 1502 struct i915_error_state_file_priv { 1503 struct drm_i915_private *i915; 1504 struct drm_i915_error_state *error; 1505 }; 1506 1507 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */ 1508 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */ 1509 1510 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */ 1511 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */ 1512 1513 struct i915_gpu_error { 1514 /* For hangcheck timer */ 1515 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */ 1516 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD) 1517 1518 struct delayed_work hangcheck_work; 1519 1520 /* For reset and error_state handling. */ 1521 spinlock_t lock; 1522 /* Protected by the above dev->gpu_error.lock. */ 1523 struct drm_i915_error_state *first_error; 1524 1525 unsigned long missed_irq_rings; 1526 1527 /** 1528 * State variable controlling the reset flow and count 1529 * 1530 * This is a counter which gets incremented when reset is triggered, 1531 * 1532 * Before the reset commences, the I915_RESET_IN_PROGRESS bit is set 1533 * meaning that any waiters holding onto the struct_mutex should 1534 * relinquish the lock immediately in order for the reset to start. 1535 * 1536 * If reset is not completed succesfully, the I915_WEDGE bit is 1537 * set meaning that hardware is terminally sour and there is no 1538 * recovery. All waiters on the reset_queue will be woken when 1539 * that happens. 1540 * 1541 * This counter is used by the wait_seqno code to notice that reset 1542 * event happened and it needs to restart the entire ioctl (since most 1543 * likely the seqno it waited for won't ever signal anytime soon). 1544 * 1545 * This is important for lock-free wait paths, where no contended lock 1546 * naturally enforces the correct ordering between the bail-out of the 1547 * waiter and the gpu reset work code. 1548 */ 1549 unsigned long reset_count; 1550 1551 unsigned long flags; 1552 #define I915_RESET_IN_PROGRESS 0 1553 #define I915_WEDGED (BITS_PER_LONG - 1) 1554 1555 /** 1556 * Waitqueue to signal when a hang is detected. Used to for waiters 1557 * to release the struct_mutex for the reset to procede. 1558 */ 1559 wait_queue_head_t wait_queue; 1560 1561 /** 1562 * Waitqueue to signal when the reset has completed. Used by clients 1563 * that wait for dev_priv->mm.wedged to settle. 1564 */ 1565 wait_queue_head_t reset_queue; 1566 1567 /* For missed irq/seqno simulation. */ 1568 unsigned long test_irq_rings; 1569 }; 1570 1571 enum modeset_restore { 1572 MODESET_ON_LID_OPEN, 1573 MODESET_DONE, 1574 MODESET_SUSPENDED, 1575 }; 1576 1577 #define DP_AUX_A 0x40 1578 #define DP_AUX_B 0x10 1579 #define DP_AUX_C 0x20 1580 #define DP_AUX_D 0x30 1581 1582 #define DDC_PIN_B 0x05 1583 #define DDC_PIN_C 0x04 1584 #define DDC_PIN_D 0x06 1585 1586 struct ddi_vbt_port_info { 1587 /* 1588 * This is an index in the HDMI/DVI DDI buffer translation table. 1589 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 1590 * populate this field. 1591 */ 1592 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 1593 uint8_t hdmi_level_shift; 1594 1595 uint8_t supports_dvi:1; 1596 uint8_t supports_hdmi:1; 1597 uint8_t supports_dp:1; 1598 uint8_t supports_edp:1; 1599 1600 uint8_t alternate_aux_channel; 1601 uint8_t alternate_ddc_pin; 1602 1603 uint8_t dp_boost_level; 1604 uint8_t hdmi_boost_level; 1605 }; 1606 1607 enum psr_lines_to_wait { 1608 PSR_0_LINES_TO_WAIT = 0, 1609 PSR_1_LINE_TO_WAIT, 1610 PSR_4_LINES_TO_WAIT, 1611 PSR_8_LINES_TO_WAIT 1612 }; 1613 1614 struct intel_vbt_data { 1615 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 1616 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 1617 1618 /* Feature bits */ 1619 unsigned int int_tv_support:1; 1620 unsigned int lvds_dither:1; 1621 unsigned int lvds_vbt:1; 1622 unsigned int int_crt_support:1; 1623 unsigned int lvds_use_ssc:1; 1624 unsigned int display_clock_mode:1; 1625 unsigned int fdi_rx_polarity_inverted:1; 1626 unsigned int panel_type:4; 1627 int lvds_ssc_freq; 1628 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 1629 1630 enum drrs_support_type drrs_type; 1631 1632 struct { 1633 int rate; 1634 int lanes; 1635 int preemphasis; 1636 int vswing; 1637 bool low_vswing; 1638 bool initialized; 1639 bool support; 1640 int bpp; 1641 struct edp_power_seq pps; 1642 } edp; 1643 1644 struct { 1645 bool full_link; 1646 bool require_aux_wakeup; 1647 int idle_frames; 1648 enum psr_lines_to_wait lines_to_wait; 1649 int tp1_wakeup_time; 1650 int tp2_tp3_wakeup_time; 1651 } psr; 1652 1653 struct { 1654 u16 pwm_freq_hz; 1655 bool present; 1656 bool active_low_pwm; 1657 u8 min_brightness; /* min_brightness/255 of max */ 1658 u8 controller; /* brightness controller number */ 1659 enum intel_backlight_type type; 1660 } backlight; 1661 1662 /* MIPI DSI */ 1663 struct { 1664 u16 panel_id; 1665 struct mipi_config *config; 1666 struct mipi_pps_data *pps; 1667 u8 seq_version; 1668 u32 size; 1669 u8 *data; 1670 const u8 *sequence[MIPI_SEQ_MAX]; 1671 } dsi; 1672 1673 int crt_ddc_pin; 1674 1675 int child_dev_num; 1676 union child_device_config *child_dev; 1677 1678 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1679 struct sdvo_device_mapping sdvo_mappings[2]; 1680 }; 1681 1682 enum intel_ddb_partitioning { 1683 INTEL_DDB_PART_1_2, 1684 INTEL_DDB_PART_5_6, /* IVB+ */ 1685 }; 1686 1687 struct intel_wm_level { 1688 bool enable; 1689 uint32_t pri_val; 1690 uint32_t spr_val; 1691 uint32_t cur_val; 1692 uint32_t fbc_val; 1693 }; 1694 1695 struct ilk_wm_values { 1696 uint32_t wm_pipe[3]; 1697 uint32_t wm_lp[3]; 1698 uint32_t wm_lp_spr[3]; 1699 uint32_t wm_linetime[3]; 1700 bool enable_fbc_wm; 1701 enum intel_ddb_partitioning partitioning; 1702 }; 1703 1704 struct vlv_pipe_wm { 1705 uint16_t plane[I915_MAX_PLANES]; 1706 }; 1707 1708 struct vlv_sr_wm { 1709 uint16_t plane; 1710 uint16_t cursor; 1711 }; 1712 1713 struct vlv_wm_ddl_values { 1714 uint8_t plane[I915_MAX_PLANES]; 1715 }; 1716 1717 struct vlv_wm_values { 1718 struct vlv_pipe_wm pipe[3]; 1719 struct vlv_sr_wm sr; 1720 struct vlv_wm_ddl_values ddl[3]; 1721 uint8_t level; 1722 bool cxsr; 1723 }; 1724 1725 struct skl_ddb_entry { 1726 uint16_t start, end; /* in number of blocks, 'end' is exclusive */ 1727 }; 1728 1729 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1730 { 1731 return entry->end - entry->start; 1732 } 1733 1734 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1735 const struct skl_ddb_entry *e2) 1736 { 1737 if (e1->start == e2->start && e1->end == e2->end) 1738 return true; 1739 1740 return false; 1741 } 1742 1743 struct skl_ddb_allocation { 1744 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */ 1745 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1746 }; 1747 1748 struct skl_wm_values { 1749 unsigned dirty_pipes; 1750 struct skl_ddb_allocation ddb; 1751 }; 1752 1753 struct skl_wm_level { 1754 bool plane_en; 1755 uint16_t plane_res_b; 1756 uint8_t plane_res_l; 1757 }; 1758 1759 /* 1760 * This struct helps tracking the state needed for runtime PM, which puts the 1761 * device in PCI D3 state. Notice that when this happens, nothing on the 1762 * graphics device works, even register access, so we don't get interrupts nor 1763 * anything else. 1764 * 1765 * Every piece of our code that needs to actually touch the hardware needs to 1766 * either call intel_runtime_pm_get or call intel_display_power_get with the 1767 * appropriate power domain. 1768 * 1769 * Our driver uses the autosuspend delay feature, which means we'll only really 1770 * suspend if we stay with zero refcount for a certain amount of time. The 1771 * default value is currently very conservative (see intel_runtime_pm_enable), but 1772 * it can be changed with the standard runtime PM files from sysfs. 1773 * 1774 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1775 * goes back to false exactly before we reenable the IRQs. We use this variable 1776 * to check if someone is trying to enable/disable IRQs while they're supposed 1777 * to be disabled. This shouldn't happen and we'll print some error messages in 1778 * case it happens. 1779 * 1780 * For more, read the Documentation/power/runtime_pm.txt. 1781 */ 1782 struct i915_runtime_pm { 1783 atomic_t wakeref_count; 1784 bool suspended; 1785 bool irqs_enabled; 1786 }; 1787 1788 enum intel_pipe_crc_source { 1789 INTEL_PIPE_CRC_SOURCE_NONE, 1790 INTEL_PIPE_CRC_SOURCE_PLANE1, 1791 INTEL_PIPE_CRC_SOURCE_PLANE2, 1792 INTEL_PIPE_CRC_SOURCE_PF, 1793 INTEL_PIPE_CRC_SOURCE_PIPE, 1794 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1795 INTEL_PIPE_CRC_SOURCE_TV, 1796 INTEL_PIPE_CRC_SOURCE_DP_B, 1797 INTEL_PIPE_CRC_SOURCE_DP_C, 1798 INTEL_PIPE_CRC_SOURCE_DP_D, 1799 INTEL_PIPE_CRC_SOURCE_AUTO, 1800 INTEL_PIPE_CRC_SOURCE_MAX, 1801 }; 1802 1803 struct intel_pipe_crc_entry { 1804 uint32_t frame; 1805 uint32_t crc[5]; 1806 }; 1807 1808 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1809 struct intel_pipe_crc { 1810 spinlock_t lock; 1811 bool opened; /* exclusive access to the result file */ 1812 struct intel_pipe_crc_entry *entries; 1813 enum intel_pipe_crc_source source; 1814 int head, tail; 1815 wait_queue_head_t wq; 1816 int skipped; 1817 }; 1818 1819 struct i915_frontbuffer_tracking { 1820 spinlock_t lock; 1821 1822 /* 1823 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1824 * scheduled flips. 1825 */ 1826 unsigned busy_bits; 1827 unsigned flip_bits; 1828 }; 1829 1830 struct i915_wa_reg { 1831 i915_reg_t addr; 1832 u32 value; 1833 /* bitmask representing WA bits */ 1834 u32 mask; 1835 }; 1836 1837 /* 1838 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only 1839 * allowing it for RCS as we don't foresee any requirement of having 1840 * a whitelist for other engines. When it is really required for 1841 * other engines then the limit need to be increased. 1842 */ 1843 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS) 1844 1845 struct i915_workarounds { 1846 struct i915_wa_reg reg[I915_MAX_WA_REGS]; 1847 u32 count; 1848 u32 hw_whitelist_count[I915_NUM_ENGINES]; 1849 }; 1850 1851 struct i915_virtual_gpu { 1852 bool active; 1853 }; 1854 1855 /* used in computing the new watermarks state */ 1856 struct intel_wm_config { 1857 unsigned int num_pipes_active; 1858 bool sprites_enabled; 1859 bool sprites_scaled; 1860 }; 1861 1862 struct i915_oa_format { 1863 u32 format; 1864 int size; 1865 }; 1866 1867 struct i915_oa_reg { 1868 i915_reg_t addr; 1869 u32 value; 1870 }; 1871 1872 struct i915_perf_stream; 1873 1874 /** 1875 * struct i915_perf_stream_ops - the OPs to support a specific stream type 1876 */ 1877 struct i915_perf_stream_ops { 1878 /** 1879 * @enable: Enables the collection of HW samples, either in response to 1880 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened 1881 * without `I915_PERF_FLAG_DISABLED`. 1882 */ 1883 void (*enable)(struct i915_perf_stream *stream); 1884 1885 /** 1886 * @disable: Disables the collection of HW samples, either in response 1887 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying 1888 * the stream. 1889 */ 1890 void (*disable)(struct i915_perf_stream *stream); 1891 1892 /** 1893 * @poll_wait: Call poll_wait, passing a wait queue that will be woken 1894 * once there is something ready to read() for the stream 1895 */ 1896 void (*poll_wait)(struct i915_perf_stream *stream, 1897 struct file *file, 1898 poll_table *wait); 1899 1900 /** 1901 * @wait_unlocked: For handling a blocking read, wait until there is 1902 * something to ready to read() for the stream. E.g. wait on the same 1903 * wait queue that would be passed to poll_wait(). 1904 */ 1905 int (*wait_unlocked)(struct i915_perf_stream *stream); 1906 1907 /** 1908 * @read: Copy buffered metrics as records to userspace 1909 * **buf**: the userspace, destination buffer 1910 * **count**: the number of bytes to copy, requested by userspace 1911 * **offset**: zero at the start of the read, updated as the read 1912 * proceeds, it represents how many bytes have been copied so far and 1913 * the buffer offset for copying the next record. 1914 * 1915 * Copy as many buffered i915 perf samples and records for this stream 1916 * to userspace as will fit in the given buffer. 1917 * 1918 * Only write complete records; returning -%ENOSPC if there isn't room 1919 * for a complete record. 1920 * 1921 * Return any error condition that results in a short read such as 1922 * -%ENOSPC or -%EFAULT, even though these may be squashed before 1923 * returning to userspace. 1924 */ 1925 int (*read)(struct i915_perf_stream *stream, 1926 char __user *buf, 1927 size_t count, 1928 size_t *offset); 1929 1930 /** 1931 * @destroy: Cleanup any stream specific resources. 1932 * 1933 * The stream will always be disabled before this is called. 1934 */ 1935 void (*destroy)(struct i915_perf_stream *stream); 1936 }; 1937 1938 /** 1939 * struct i915_perf_stream - state for a single open stream FD 1940 */ 1941 struct i915_perf_stream { 1942 /** 1943 * @dev_priv: i915 drm device 1944 */ 1945 struct drm_i915_private *dev_priv; 1946 1947 /** 1948 * @link: Links the stream into ``&drm_i915_private->streams`` 1949 */ 1950 struct list_head link; 1951 1952 /** 1953 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*` 1954 * properties given when opening a stream, representing the contents 1955 * of a single sample as read() by userspace. 1956 */ 1957 u32 sample_flags; 1958 1959 /** 1960 * @sample_size: Considering the configured contents of a sample 1961 * combined with the required header size, this is the total size 1962 * of a single sample record. 1963 */ 1964 int sample_size; 1965 1966 /** 1967 * @ctx: %NULL if measuring system-wide across all contexts or a 1968 * specific context that is being monitored. 1969 */ 1970 struct i915_gem_context *ctx; 1971 1972 /** 1973 * @enabled: Whether the stream is currently enabled, considering 1974 * whether the stream was opened in a disabled state and based 1975 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls. 1976 */ 1977 bool enabled; 1978 1979 /** 1980 * @ops: The callbacks providing the implementation of this specific 1981 * type of configured stream. 1982 */ 1983 const struct i915_perf_stream_ops *ops; 1984 }; 1985 1986 /** 1987 * struct i915_oa_ops - Gen specific implementation of an OA unit stream 1988 */ 1989 struct i915_oa_ops { 1990 /** 1991 * @init_oa_buffer: Resets the head and tail pointers of the 1992 * circular buffer for periodic OA reports. 1993 * 1994 * Called when first opening a stream for OA metrics, but also may be 1995 * called in response to an OA buffer overflow or other error 1996 * condition. 1997 * 1998 * Note it may be necessary to clear the full OA buffer here as part of 1999 * maintaining the invariable that new reports must be written to 2000 * zeroed memory for us to be able to reliable detect if an expected 2001 * report has not yet landed in memory. (At least on Haswell the OA 2002 * buffer tail pointer is not synchronized with reports being visible 2003 * to the CPU) 2004 */ 2005 void (*init_oa_buffer)(struct drm_i915_private *dev_priv); 2006 2007 /** 2008 * @enable_metric_set: Applies any MUX configuration to set up the 2009 * Boolean and Custom (B/C) counters that are part of the counter 2010 * reports being sampled. May apply system constraints such as 2011 * disabling EU clock gating as required. 2012 */ 2013 int (*enable_metric_set)(struct drm_i915_private *dev_priv); 2014 2015 /** 2016 * @disable_metric_set: Remove system constraints associated with using 2017 * the OA unit. 2018 */ 2019 void (*disable_metric_set)(struct drm_i915_private *dev_priv); 2020 2021 /** 2022 * @oa_enable: Enable periodic sampling 2023 */ 2024 void (*oa_enable)(struct drm_i915_private *dev_priv); 2025 2026 /** 2027 * @oa_disable: Disable periodic sampling 2028 */ 2029 void (*oa_disable)(struct drm_i915_private *dev_priv); 2030 2031 /** 2032 * @read: Copy data from the circular OA buffer into a given userspace 2033 * buffer. 2034 */ 2035 int (*read)(struct i915_perf_stream *stream, 2036 char __user *buf, 2037 size_t count, 2038 size_t *offset); 2039 2040 /** 2041 * @oa_buffer_is_empty: Check if OA buffer empty (false positives OK) 2042 * 2043 * This is either called via fops or the poll check hrtimer (atomic 2044 * ctx) without any locks taken. 2045 * 2046 * It's safe to read OA config state here unlocked, assuming that this 2047 * is only called while the stream is enabled, while the global OA 2048 * configuration can't be modified. 2049 * 2050 * Efficiency is more important than avoiding some false positives 2051 * here, which will be handled gracefully - likely resulting in an 2052 * %EAGAIN error for userspace. 2053 */ 2054 bool (*oa_buffer_is_empty)(struct drm_i915_private *dev_priv); 2055 }; 2056 2057 struct drm_i915_private { 2058 struct drm_device drm; 2059 2060 struct kmem_cache *objects; 2061 struct kmem_cache *vmas; 2062 struct kmem_cache *requests; 2063 struct kmem_cache *dependencies; 2064 2065 const struct intel_device_info info; 2066 2067 void __iomem *regs; 2068 2069 struct intel_uncore uncore; 2070 2071 struct i915_virtual_gpu vgpu; 2072 2073 struct intel_gvt *gvt; 2074 2075 struct intel_huc huc; 2076 struct intel_guc guc; 2077 2078 struct intel_csr csr; 2079 2080 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 2081 2082 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 2083 * controller on different i2c buses. */ 2084 struct mutex gmbus_mutex; 2085 2086 /** 2087 * Base address of the gmbus and gpio block. 2088 */ 2089 uint32_t gpio_mmio_base; 2090 2091 /* MMIO base address for MIPI regs */ 2092 uint32_t mipi_mmio_base; 2093 2094 uint32_t psr_mmio_base; 2095 2096 uint32_t pps_mmio_base; 2097 2098 wait_queue_head_t gmbus_wait_queue; 2099 2100 struct pci_dev *bridge_dev; 2101 struct i915_gem_context *kernel_context; 2102 struct intel_engine_cs *engine[I915_NUM_ENGINES]; 2103 struct i915_vma *semaphore; 2104 2105 struct drm_dma_handle *status_page_dmah; 2106 struct resource mch_res; 2107 2108 /* protects the irq masks */ 2109 spinlock_t irq_lock; 2110 2111 /* protects the mmio flip data */ 2112 spinlock_t mmio_flip_lock; 2113 2114 bool display_irqs_enabled; 2115 2116 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 2117 struct pm_qos_request pm_qos; 2118 2119 /* Sideband mailbox protection */ 2120 struct mutex sb_lock; 2121 2122 /** Cached value of IMR to avoid reads in updating the bitfield */ 2123 union { 2124 u32 irq_mask; 2125 u32 de_irq_mask[I915_MAX_PIPES]; 2126 }; 2127 u32 gt_irq_mask; 2128 u32 pm_imr; 2129 u32 pm_ier; 2130 u32 pm_rps_events; 2131 u32 pm_guc_events; 2132 u32 pipestat_irq_mask[I915_MAX_PIPES]; 2133 2134 struct i915_hotplug hotplug; 2135 struct intel_fbc fbc; 2136 struct i915_drrs drrs; 2137 struct intel_opregion opregion; 2138 struct intel_vbt_data vbt; 2139 2140 bool preserve_bios_swizzle; 2141 2142 /* overlay */ 2143 struct intel_overlay *overlay; 2144 2145 /* backlight registers and fields in struct intel_panel */ 2146 struct mutex backlight_lock; 2147 2148 /* LVDS info */ 2149 bool no_aux_handshake; 2150 2151 /* protects panel power sequencer state */ 2152 struct mutex pps_mutex; 2153 2154 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 2155 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 2156 2157 unsigned int fsb_freq, mem_freq, is_ddr3; 2158 unsigned int skl_preferred_vco_freq; 2159 unsigned int cdclk_freq, max_cdclk_freq; 2160 2161 /* 2162 * For reading holding any crtc lock is sufficient, 2163 * for writing must hold all of them. 2164 */ 2165 unsigned int atomic_cdclk_freq; 2166 2167 unsigned int max_dotclk_freq; 2168 unsigned int rawclk_freq; 2169 unsigned int hpll_freq; 2170 unsigned int czclk_freq; 2171 2172 struct { 2173 unsigned int vco, ref; 2174 } cdclk_pll; 2175 2176 /** 2177 * wq - Driver workqueue for GEM. 2178 * 2179 * NOTE: Work items scheduled here are not allowed to grab any modeset 2180 * locks, for otherwise the flushing done in the pageflip code will 2181 * result in deadlocks. 2182 */ 2183 struct workqueue_struct *wq; 2184 2185 /* Display functions */ 2186 struct drm_i915_display_funcs display; 2187 2188 /* PCH chipset type */ 2189 enum intel_pch pch_type; 2190 unsigned short pch_id; 2191 2192 unsigned long quirks; 2193 2194 enum modeset_restore modeset_restore; 2195 struct mutex modeset_restore_lock; 2196 struct drm_atomic_state *modeset_restore_state; 2197 struct drm_modeset_acquire_ctx reset_ctx; 2198 2199 struct list_head vm_list; /* Global list of all address spaces */ 2200 struct i915_ggtt ggtt; /* VM representing the global address space */ 2201 2202 struct i915_gem_mm mm; 2203 DECLARE_HASHTABLE(mm_structs, 7); 2204 struct mutex mm_lock; 2205 2206 /* The hw wants to have a stable context identifier for the lifetime 2207 * of the context (for OA, PASID, faults, etc). This is limited 2208 * in execlists to 21 bits. 2209 */ 2210 struct ida context_hw_ida; 2211 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 2212 2213 /* Kernel Modesetting */ 2214 2215 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 2216 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 2217 wait_queue_head_t pending_flip_queue; 2218 2219 #ifdef CONFIG_DEBUG_FS 2220 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 2221 #endif 2222 2223 /* dpll and cdclk state is protected by connection_mutex */ 2224 int num_shared_dpll; 2225 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 2226 const struct intel_dpll_mgr *dpll_mgr; 2227 2228 /* 2229 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 2230 * Must be global rather than per dpll, because on some platforms 2231 * plls share registers. 2232 */ 2233 struct mutex dpll_lock; 2234 2235 unsigned int active_crtcs; 2236 unsigned int min_pixclk[I915_MAX_PIPES]; 2237 2238 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 2239 2240 struct i915_workarounds workarounds; 2241 2242 struct i915_frontbuffer_tracking fb_tracking; 2243 2244 struct intel_atomic_helper { 2245 struct llist_head free_list; 2246 struct work_struct free_work; 2247 } atomic_helper; 2248 2249 u16 orig_clock; 2250 2251 bool mchbar_need_disable; 2252 2253 struct intel_l3_parity l3_parity; 2254 2255 /* Cannot be determined by PCIID. You must always read a register. */ 2256 u32 edram_cap; 2257 2258 /* gen6+ rps state */ 2259 struct intel_gen6_power_mgmt rps; 2260 2261 /* ilk-only ips/rps state. Everything in here is protected by the global 2262 * mchdev_lock in intel_pm.c */ 2263 struct intel_ilk_power_mgmt ips; 2264 2265 struct i915_power_domains power_domains; 2266 2267 struct i915_psr psr; 2268 2269 struct i915_gpu_error gpu_error; 2270 2271 struct drm_i915_gem_object *vlv_pctx; 2272 2273 #ifdef CONFIG_DRM_FBDEV_EMULATION 2274 /* list of fbdev register on this device */ 2275 struct intel_fbdev *fbdev; 2276 struct work_struct fbdev_suspend_work; 2277 #endif 2278 2279 struct drm_property *broadcast_rgb_property; 2280 struct drm_property *force_audio_property; 2281 2282 /* hda/i915 audio component */ 2283 struct i915_audio_component *audio_component; 2284 bool audio_component_registered; 2285 /** 2286 * av_mutex - mutex for audio/video sync 2287 * 2288 */ 2289 struct mutex av_mutex; 2290 2291 uint32_t hw_context_size; 2292 struct list_head context_list; 2293 2294 u32 fdi_rx_config; 2295 2296 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 2297 u32 chv_phy_control; 2298 /* 2299 * Shadows for CHV DPLL_MD regs to keep the state 2300 * checker somewhat working in the presence hardware 2301 * crappiness (can't read out DPLL_MD for pipes B & C). 2302 */ 2303 u32 chv_dpll_md[I915_MAX_PIPES]; 2304 u32 bxt_phy_grc; 2305 2306 u32 suspend_count; 2307 bool suspended_to_idle; 2308 struct i915_suspend_saved_registers regfile; 2309 struct vlv_s0ix_state vlv_s0ix_state; 2310 2311 enum { 2312 I915_SAGV_UNKNOWN = 0, 2313 I915_SAGV_DISABLED, 2314 I915_SAGV_ENABLED, 2315 I915_SAGV_NOT_CONTROLLED 2316 } sagv_status; 2317 2318 struct { 2319 /* protects DSPARB registers on pre-g4x/vlv/chv */ 2320 spinlock_t dsparb_lock; 2321 2322 /* 2323 * Raw watermark latency values: 2324 * in 0.1us units for WM0, 2325 * in 0.5us units for WM1+. 2326 */ 2327 /* primary */ 2328 uint16_t pri_latency[5]; 2329 /* sprite */ 2330 uint16_t spr_latency[5]; 2331 /* cursor */ 2332 uint16_t cur_latency[5]; 2333 /* 2334 * Raw watermark memory latency values 2335 * for SKL for all 8 levels 2336 * in 1us units. 2337 */ 2338 uint16_t skl_latency[8]; 2339 2340 /* current hardware state */ 2341 union { 2342 struct ilk_wm_values hw; 2343 struct skl_wm_values skl_hw; 2344 struct vlv_wm_values vlv; 2345 }; 2346 2347 uint8_t max_level; 2348 2349 /* 2350 * Should be held around atomic WM register writing; also 2351 * protects * intel_crtc->wm.active and 2352 * cstate->wm.need_postvbl_update. 2353 */ 2354 struct mutex wm_mutex; 2355 2356 /* 2357 * Set during HW readout of watermarks/DDB. Some platforms 2358 * need to know when we're still using BIOS-provided values 2359 * (which we don't fully trust). 2360 */ 2361 bool distrust_bios_wm; 2362 } wm; 2363 2364 struct i915_runtime_pm pm; 2365 2366 struct { 2367 bool initialized; 2368 2369 struct kobject *metrics_kobj; 2370 struct ctl_table_header *sysctl_header; 2371 2372 struct mutex lock; 2373 struct list_head streams; 2374 2375 spinlock_t hook_lock; 2376 2377 struct { 2378 struct i915_perf_stream *exclusive_stream; 2379 2380 u32 specific_ctx_id; 2381 2382 struct hrtimer poll_check_timer; 2383 wait_queue_head_t poll_wq; 2384 bool pollin; 2385 2386 bool periodic; 2387 int period_exponent; 2388 int timestamp_frequency; 2389 2390 int tail_margin; 2391 2392 int metrics_set; 2393 2394 const struct i915_oa_reg *mux_regs; 2395 int mux_regs_len; 2396 const struct i915_oa_reg *b_counter_regs; 2397 int b_counter_regs_len; 2398 2399 struct { 2400 struct i915_vma *vma; 2401 u8 *vaddr; 2402 int format; 2403 int format_size; 2404 } oa_buffer; 2405 2406 u32 gen7_latched_oastatus1; 2407 2408 struct i915_oa_ops ops; 2409 const struct i915_oa_format *oa_formats; 2410 int n_builtin_sets; 2411 } oa; 2412 } perf; 2413 2414 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 2415 struct { 2416 void (*resume)(struct drm_i915_private *); 2417 void (*cleanup_engine)(struct intel_engine_cs *engine); 2418 2419 struct list_head timelines; 2420 struct i915_gem_timeline global_timeline; 2421 u32 active_requests; 2422 2423 /** 2424 * Is the GPU currently considered idle, or busy executing 2425 * userspace requests? Whilst idle, we allow runtime power 2426 * management to power down the hardware and display clocks. 2427 * In order to reduce the effect on performance, there 2428 * is a slight delay before we do so. 2429 */ 2430 bool awake; 2431 2432 /** 2433 * We leave the user IRQ off as much as possible, 2434 * but this means that requests will finish and never 2435 * be retired once the system goes idle. Set a timer to 2436 * fire periodically while the ring is running. When it 2437 * fires, go retire requests. 2438 */ 2439 struct delayed_work retire_work; 2440 2441 /** 2442 * When we detect an idle GPU, we want to turn on 2443 * powersaving features. So once we see that there 2444 * are no more requests outstanding and no more 2445 * arrive within a small period of time, we fire 2446 * off the idle_work. 2447 */ 2448 struct delayed_work idle_work; 2449 2450 ktime_t last_init_time; 2451 } gt; 2452 2453 /* perform PHY state sanity checks? */ 2454 bool chv_phy_assert[2]; 2455 2456 bool ipc_enabled; 2457 2458 /* Used to save the pipe-to-encoder mapping for audio */ 2459 struct intel_encoder *av_enc_map[I915_MAX_PIPES]; 2460 2461 /* necessary resource sharing with HDMI LPE audio driver. */ 2462 struct { 2463 struct platform_device *platdev; 2464 int irq; 2465 } lpe_audio; 2466 2467 /* 2468 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2469 * will be rejected. Instead look for a better place. 2470 */ 2471 }; 2472 2473 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2474 { 2475 return container_of(dev, struct drm_i915_private, drm); 2476 } 2477 2478 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) 2479 { 2480 return to_i915(dev_get_drvdata(kdev)); 2481 } 2482 2483 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2484 { 2485 return container_of(guc, struct drm_i915_private, guc); 2486 } 2487 2488 /* Simple iterator over all initialised engines */ 2489 #define for_each_engine(engine__, dev_priv__, id__) \ 2490 for ((id__) = 0; \ 2491 (id__) < I915_NUM_ENGINES; \ 2492 (id__)++) \ 2493 for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) 2494 2495 #define __mask_next_bit(mask) ({ \ 2496 int __idx = ffs(mask) - 1; \ 2497 mask &= ~BIT(__idx); \ 2498 __idx; \ 2499 }) 2500 2501 /* Iterator over subset of engines selected by mask */ 2502 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \ 2503 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \ 2504 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; ) 2505 2506 enum hdmi_force_audio { 2507 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2508 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2509 HDMI_AUDIO_AUTO, /* trust EDID */ 2510 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2511 }; 2512 2513 #define I915_GTT_OFFSET_NONE ((u32)-1) 2514 2515 /* 2516 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2517 * considered to be the frontbuffer for the given plane interface-wise. This 2518 * doesn't mean that the hw necessarily already scans it out, but that any 2519 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2520 * 2521 * We have one bit per pipe and per scanout plane type. 2522 */ 2523 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5 2524 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2525 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \ 2526 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2527 #define INTEL_FRONTBUFFER_CURSOR(pipe) \ 2528 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2529 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \ 2530 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2531 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2532 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2533 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2534 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2535 2536 /* 2537 * Optimised SGL iterator for GEM objects 2538 */ 2539 static __always_inline struct sgt_iter { 2540 struct scatterlist *sgp; 2541 union { 2542 unsigned long pfn; 2543 dma_addr_t dma; 2544 }; 2545 unsigned int curr; 2546 unsigned int max; 2547 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2548 struct sgt_iter s = { .sgp = sgl }; 2549 2550 if (s.sgp) { 2551 s.max = s.curr = s.sgp->offset; 2552 s.max += s.sgp->length; 2553 if (dma) 2554 s.dma = sg_dma_address(s.sgp); 2555 else 2556 s.pfn = page_to_pfn(sg_page(s.sgp)); 2557 } 2558 2559 return s; 2560 } 2561 2562 static inline struct scatterlist *____sg_next(struct scatterlist *sg) 2563 { 2564 ++sg; 2565 if (unlikely(sg_is_chain(sg))) 2566 sg = sg_chain_ptr(sg); 2567 return sg; 2568 } 2569 2570 /** 2571 * __sg_next - return the next scatterlist entry in a list 2572 * @sg: The current sg entry 2573 * 2574 * Description: 2575 * If the entry is the last, return NULL; otherwise, step to the next 2576 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2577 * otherwise just return the pointer to the current element. 2578 **/ 2579 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2580 { 2581 #ifdef CONFIG_DEBUG_SG 2582 BUG_ON(sg->sg_magic != SG_MAGIC); 2583 #endif 2584 return sg_is_last(sg) ? NULL : ____sg_next(sg); 2585 } 2586 2587 /** 2588 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2589 * @__dmap: DMA address (output) 2590 * @__iter: 'struct sgt_iter' (iterator state, internal) 2591 * @__sgt: sg_table to iterate over (input) 2592 */ 2593 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2594 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2595 ((__dmap) = (__iter).dma + (__iter).curr); \ 2596 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \ 2597 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0)) 2598 2599 /** 2600 * for_each_sgt_page - iterate over the pages of the given sg_table 2601 * @__pp: page pointer (output) 2602 * @__iter: 'struct sgt_iter' (iterator state, internal) 2603 * @__sgt: sg_table to iterate over (input) 2604 */ 2605 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2606 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2607 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2608 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2609 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \ 2610 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0)) 2611 2612 static inline const struct intel_device_info * 2613 intel_info(const struct drm_i915_private *dev_priv) 2614 { 2615 return &dev_priv->info; 2616 } 2617 2618 #define INTEL_INFO(dev_priv) intel_info((dev_priv)) 2619 2620 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen) 2621 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id) 2622 2623 #define REVID_FOREVER 0xff 2624 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision) 2625 2626 #define GEN_FOREVER (0) 2627 /* 2628 * Returns true if Gen is in inclusive range [Start, End]. 2629 * 2630 * Use GEN_FOREVER for unbound start and or end. 2631 */ 2632 #define IS_GEN(dev_priv, s, e) ({ \ 2633 unsigned int __s = (s), __e = (e); \ 2634 BUILD_BUG_ON(!__builtin_constant_p(s)); \ 2635 BUILD_BUG_ON(!__builtin_constant_p(e)); \ 2636 if ((__s) != GEN_FOREVER) \ 2637 __s = (s) - 1; \ 2638 if ((__e) == GEN_FOREVER) \ 2639 __e = BITS_PER_LONG - 1; \ 2640 else \ 2641 __e = (e) - 1; \ 2642 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \ 2643 }) 2644 2645 /* 2646 * Return true if revision is in range [since,until] inclusive. 2647 * 2648 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2649 */ 2650 #define IS_REVID(p, since, until) \ 2651 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2652 2653 #define IS_I830(dev_priv) ((dev_priv)->info.platform == INTEL_I830) 2654 #define IS_I845G(dev_priv) ((dev_priv)->info.platform == INTEL_I845G) 2655 #define IS_I85X(dev_priv) ((dev_priv)->info.platform == INTEL_I85X) 2656 #define IS_I865G(dev_priv) ((dev_priv)->info.platform == INTEL_I865G) 2657 #define IS_I915G(dev_priv) ((dev_priv)->info.platform == INTEL_I915G) 2658 #define IS_I915GM(dev_priv) ((dev_priv)->info.platform == INTEL_I915GM) 2659 #define IS_I945G(dev_priv) ((dev_priv)->info.platform == INTEL_I945G) 2660 #define IS_I945GM(dev_priv) ((dev_priv)->info.platform == INTEL_I945GM) 2661 #define IS_I965G(dev_priv) ((dev_priv)->info.platform == INTEL_I965G) 2662 #define IS_I965GM(dev_priv) ((dev_priv)->info.platform == INTEL_I965GM) 2663 #define IS_G45(dev_priv) ((dev_priv)->info.platform == INTEL_G45) 2664 #define IS_GM45(dev_priv) ((dev_priv)->info.platform == INTEL_GM45) 2665 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) 2666 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001) 2667 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011) 2668 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_PINEVIEW) 2669 #define IS_G33(dev_priv) ((dev_priv)->info.platform == INTEL_G33) 2670 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046) 2671 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.platform == INTEL_IVYBRIDGE) 2672 #define IS_IVB_GT1(dev_priv) (INTEL_DEVID(dev_priv) == 0x0156 || \ 2673 INTEL_DEVID(dev_priv) == 0x0152 || \ 2674 INTEL_DEVID(dev_priv) == 0x015a) 2675 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW) 2676 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW) 2677 #define IS_HASWELL(dev_priv) ((dev_priv)->info.platform == INTEL_HASWELL) 2678 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.platform == INTEL_BROADWELL) 2679 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_SKYLAKE) 2680 #define IS_BROXTON(dev_priv) ((dev_priv)->info.platform == INTEL_BROXTON) 2681 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_KABYLAKE) 2682 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE) 2683 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile) 2684 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ 2685 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) 2686 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \ 2687 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \ 2688 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \ 2689 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)) 2690 /* ULX machines are also considered ULT. */ 2691 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \ 2692 (INTEL_DEVID(dev_priv) & 0xf) == 0xe) 2693 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ 2694 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020) 2695 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \ 2696 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00) 2697 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ 2698 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020) 2699 /* ULX machines are also considered ULT. */ 2700 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \ 2701 INTEL_DEVID(dev_priv) == 0x0A1E) 2702 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \ 2703 INTEL_DEVID(dev_priv) == 0x1913 || \ 2704 INTEL_DEVID(dev_priv) == 0x1916 || \ 2705 INTEL_DEVID(dev_priv) == 0x1921 || \ 2706 INTEL_DEVID(dev_priv) == 0x1926) 2707 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \ 2708 INTEL_DEVID(dev_priv) == 0x1915 || \ 2709 INTEL_DEVID(dev_priv) == 0x191E) 2710 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \ 2711 INTEL_DEVID(dev_priv) == 0x5913 || \ 2712 INTEL_DEVID(dev_priv) == 0x5916 || \ 2713 INTEL_DEVID(dev_priv) == 0x5921 || \ 2714 INTEL_DEVID(dev_priv) == 0x5926) 2715 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \ 2716 INTEL_DEVID(dev_priv) == 0x5915 || \ 2717 INTEL_DEVID(dev_priv) == 0x591E) 2718 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2719 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020) 2720 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2721 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030) 2722 2723 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support) 2724 2725 #define SKL_REVID_A0 0x0 2726 #define SKL_REVID_B0 0x1 2727 #define SKL_REVID_C0 0x2 2728 #define SKL_REVID_D0 0x3 2729 #define SKL_REVID_E0 0x4 2730 #define SKL_REVID_F0 0x5 2731 #define SKL_REVID_G0 0x6 2732 #define SKL_REVID_H0 0x7 2733 2734 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2735 2736 #define BXT_REVID_A0 0x0 2737 #define BXT_REVID_A1 0x1 2738 #define BXT_REVID_B0 0x3 2739 #define BXT_REVID_B_LAST 0x8 2740 #define BXT_REVID_C0 0x9 2741 2742 #define IS_BXT_REVID(dev_priv, since, until) \ 2743 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until)) 2744 2745 #define KBL_REVID_A0 0x0 2746 #define KBL_REVID_B0 0x1 2747 #define KBL_REVID_C0 0x2 2748 #define KBL_REVID_D0 0x3 2749 #define KBL_REVID_E0 0x4 2750 2751 #define IS_KBL_REVID(dev_priv, since, until) \ 2752 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2753 2754 /* 2755 * The genX designation typically refers to the render engine, so render 2756 * capability related checks should use IS_GEN, while display and other checks 2757 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular 2758 * chips, etc.). 2759 */ 2760 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1))) 2761 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2))) 2762 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3))) 2763 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4))) 2764 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5))) 2765 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6))) 2766 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7))) 2767 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8))) 2768 2769 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && INTEL_INFO(dev_priv)->is_lp) 2770 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) 2771 2772 #define ENGINE_MASK(id) BIT(id) 2773 #define RENDER_RING ENGINE_MASK(RCS) 2774 #define BSD_RING ENGINE_MASK(VCS) 2775 #define BLT_RING ENGINE_MASK(BCS) 2776 #define VEBOX_RING ENGINE_MASK(VECS) 2777 #define BSD2_RING ENGINE_MASK(VCS2) 2778 #define ALL_ENGINES (~0) 2779 2780 #define HAS_ENGINE(dev_priv, id) \ 2781 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id))) 2782 2783 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) 2784 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) 2785 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) 2786 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) 2787 2788 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc) 2789 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop) 2790 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED)) 2791 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \ 2792 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv)) 2793 2794 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical) 2795 2796 #define HAS_HW_CONTEXTS(dev_priv) ((dev_priv)->info.has_hw_contexts) 2797 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ 2798 ((dev_priv)->info.has_logical_ring_contexts) 2799 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt) 2800 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2) 2801 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3) 2802 2803 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay) 2804 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ 2805 ((dev_priv)->info.overlay_needs_physical) 2806 2807 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2808 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) 2809 2810 /* WaRsDisableCoarsePowerGating:skl,bxt */ 2811 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 2812 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \ 2813 IS_SKL_GT3(dev_priv) || \ 2814 IS_SKL_GT4(dev_priv)) 2815 2816 /* 2817 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts 2818 * even when in MSI mode. This results in spurious interrupt warnings if the 2819 * legacy irq no. is shared with another device. The kernel then disables that 2820 * interrupt source and so prevents the other device from working properly. 2821 */ 2822 #define HAS_AUX_IRQ(dev_priv) ((dev_priv)->info.gen >= 5) 2823 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq) 2824 2825 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2826 * rows, which changed the alignment requirements and fence programming. 2827 */ 2828 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \ 2829 !(IS_I915G(dev_priv) || \ 2830 IS_I915GM(dev_priv))) 2831 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv) 2832 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug) 2833 2834 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2) 2835 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr) 2836 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc) 2837 2838 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) 2839 2840 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst) 2841 2842 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi) 2843 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg) 2844 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr) 2845 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6) 2846 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p) 2847 2848 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr) 2849 2850 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm) 2851 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc) 2852 2853 /* 2854 * For now, anything with a GuC requires uCode loading, and then supports 2855 * command submission once loaded. But these are logically independent 2856 * properties, so we have separate macros to test them. 2857 */ 2858 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc) 2859 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2860 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv)) 2861 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2862 2863 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer) 2864 2865 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu) 2866 2867 #define INTEL_PCH_DEVICE_ID_MASK 0xff00 2868 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2869 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2870 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2871 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2872 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2873 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2874 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2875 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200 2876 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2877 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2878 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2879 2880 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type) 2881 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP) 2882 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT) 2883 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT) 2884 #define HAS_PCH_LPT_LP(dev_priv) \ 2885 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) 2886 #define HAS_PCH_LPT_H(dev_priv) \ 2887 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) 2888 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT) 2889 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX) 2890 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP) 2891 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE) 2892 2893 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display) 2894 2895 #define HAS_LSPCON(dev_priv) (IS_GEN9(dev_priv)) 2896 2897 /* DPF == dynamic parity feature */ 2898 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf) 2899 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 2900 2 : HAS_L3_DPF(dev_priv)) 2901 2902 #define GT_FREQUENCY_MULTIPLIER 50 2903 #define GEN9_FREQ_SCALER 3 2904 2905 #define HAS_DECOUPLED_MMIO(dev_priv) (INTEL_INFO(dev_priv)->has_decoupled_mmio) 2906 2907 #include "i915_trace.h" 2908 2909 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 2910 { 2911 #ifdef CONFIG_INTEL_IOMMU 2912 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped) 2913 return true; 2914 #endif 2915 return false; 2916 } 2917 2918 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, 2919 int enable_ppgtt); 2920 2921 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value); 2922 2923 /* i915_drv.c */ 2924 void __printf(3, 4) 2925 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 2926 const char *fmt, ...); 2927 2928 #define i915_report_error(dev_priv, fmt, ...) \ 2929 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 2930 2931 #ifdef CONFIG_COMPAT 2932 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2933 unsigned long arg); 2934 #else 2935 #define i915_compat_ioctl NULL 2936 #endif 2937 extern const struct dev_pm_ops i915_pm_ops; 2938 2939 extern int i915_driver_load(struct pci_dev *pdev, 2940 const struct pci_device_id *ent); 2941 extern void i915_driver_unload(struct drm_device *dev); 2942 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask); 2943 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv); 2944 extern void i915_reset(struct drm_i915_private *dev_priv); 2945 extern int intel_guc_reset(struct drm_i915_private *dev_priv); 2946 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 2947 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv); 2948 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2949 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2950 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2951 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2952 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2953 2954 /* intel_hotplug.c */ 2955 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, 2956 u32 pin_mask, u32 long_mask); 2957 void intel_hpd_init(struct drm_i915_private *dev_priv); 2958 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 2959 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 2960 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port); 2961 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2962 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2963 2964 /* i915_irq.c */ 2965 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 2966 { 2967 unsigned long delay; 2968 2969 if (unlikely(!i915.enable_hangcheck)) 2970 return; 2971 2972 /* Don't continually defer the hangcheck so that it is always run at 2973 * least once after work has been scheduled on any ring. Otherwise, 2974 * we will ignore a hung ring if a second ring is kept busy. 2975 */ 2976 2977 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 2978 queue_delayed_work(system_long_wq, 2979 &dev_priv->gpu_error.hangcheck_work, delay); 2980 } 2981 2982 __printf(3, 4) 2983 void i915_handle_error(struct drm_i915_private *dev_priv, 2984 u32 engine_mask, 2985 const char *fmt, ...); 2986 2987 extern void intel_irq_init(struct drm_i915_private *dev_priv); 2988 int intel_irq_install(struct drm_i915_private *dev_priv); 2989 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 2990 2991 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv); 2992 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv, 2993 bool restore_forcewake); 2994 extern void intel_uncore_init(struct drm_i915_private *dev_priv); 2995 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv); 2996 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv); 2997 extern void intel_uncore_fini(struct drm_i915_private *dev_priv); 2998 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv, 2999 bool restore); 3000 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id); 3001 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv, 3002 enum forcewake_domains domains); 3003 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv, 3004 enum forcewake_domains domains); 3005 /* Like above but the caller must manage the uncore.lock itself. 3006 * Must be used with I915_READ_FW and friends. 3007 */ 3008 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv, 3009 enum forcewake_domains domains); 3010 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv, 3011 enum forcewake_domains domains); 3012 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv); 3013 3014 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv); 3015 3016 int intel_wait_for_register(struct drm_i915_private *dev_priv, 3017 i915_reg_t reg, 3018 const u32 mask, 3019 const u32 value, 3020 const unsigned long timeout_ms); 3021 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv, 3022 i915_reg_t reg, 3023 const u32 mask, 3024 const u32 value, 3025 const unsigned long timeout_ms); 3026 3027 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 3028 { 3029 return dev_priv->gvt; 3030 } 3031 3032 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 3033 { 3034 return dev_priv->vgpu.active; 3035 } 3036 3037 void 3038 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 3039 u32 status_mask); 3040 3041 void 3042 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 3043 u32 status_mask); 3044 3045 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 3046 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 3047 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 3048 uint32_t mask, 3049 uint32_t bits); 3050 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 3051 uint32_t interrupt_mask, 3052 uint32_t enabled_irq_mask); 3053 static inline void 3054 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 3055 { 3056 ilk_update_display_irq(dev_priv, bits, bits); 3057 } 3058 static inline void 3059 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 3060 { 3061 ilk_update_display_irq(dev_priv, bits, 0); 3062 } 3063 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 3064 enum pipe pipe, 3065 uint32_t interrupt_mask, 3066 uint32_t enabled_irq_mask); 3067 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 3068 enum pipe pipe, uint32_t bits) 3069 { 3070 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 3071 } 3072 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 3073 enum pipe pipe, uint32_t bits) 3074 { 3075 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 3076 } 3077 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 3078 uint32_t interrupt_mask, 3079 uint32_t enabled_irq_mask); 3080 static inline void 3081 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 3082 { 3083 ibx_display_interrupt_update(dev_priv, bits, bits); 3084 } 3085 static inline void 3086 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 3087 { 3088 ibx_display_interrupt_update(dev_priv, bits, 0); 3089 } 3090 3091 /* i915_gem.c */ 3092 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 3093 struct drm_file *file_priv); 3094 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 3095 struct drm_file *file_priv); 3096 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 3097 struct drm_file *file_priv); 3098 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 3099 struct drm_file *file_priv); 3100 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 3101 struct drm_file *file_priv); 3102 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 3103 struct drm_file *file_priv); 3104 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 3105 struct drm_file *file_priv); 3106 int i915_gem_execbuffer(struct drm_device *dev, void *data, 3107 struct drm_file *file_priv); 3108 int i915_gem_execbuffer2(struct drm_device *dev, void *data, 3109 struct drm_file *file_priv); 3110 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3111 struct drm_file *file_priv); 3112 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3113 struct drm_file *file); 3114 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3115 struct drm_file *file); 3116 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3117 struct drm_file *file_priv); 3118 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3119 struct drm_file *file_priv); 3120 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, 3121 struct drm_file *file_priv); 3122 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, 3123 struct drm_file *file_priv); 3124 void i915_gem_init_userptr(struct drm_i915_private *dev_priv); 3125 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 3126 struct drm_file *file); 3127 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 3128 struct drm_file *file_priv); 3129 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 3130 struct drm_file *file_priv); 3131 int i915_gem_load_init(struct drm_i915_private *dev_priv); 3132 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv); 3133 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 3134 int i915_gem_freeze(struct drm_i915_private *dev_priv); 3135 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 3136 3137 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv); 3138 void i915_gem_object_free(struct drm_i915_gem_object *obj); 3139 void i915_gem_object_init(struct drm_i915_gem_object *obj, 3140 const struct drm_i915_gem_object_ops *ops); 3141 struct drm_i915_gem_object * 3142 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size); 3143 struct drm_i915_gem_object * 3144 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 3145 const void *data, size_t size); 3146 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); 3147 void i915_gem_free_object(struct drm_gem_object *obj); 3148 3149 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 3150 { 3151 /* A single pass should suffice to release all the freed objects (along 3152 * most call paths) , but be a little more paranoid in that freeing 3153 * the objects does take a little amount of time, during which the rcu 3154 * callbacks could have added new objects into the freed list, and 3155 * armed the work again. 3156 */ 3157 do { 3158 rcu_barrier(); 3159 } while (flush_work(&i915->mm.free_work)); 3160 } 3161 3162 struct i915_vma * __must_check 3163 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 3164 const struct i915_ggtt_view *view, 3165 u64 size, 3166 u64 alignment, 3167 u64 flags); 3168 3169 int i915_gem_object_unbind(struct drm_i915_gem_object *obj); 3170 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 3171 3172 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); 3173 3174 static inline int __sg_page_count(const struct scatterlist *sg) 3175 { 3176 return sg->length >> PAGE_SHIFT; 3177 } 3178 3179 struct scatterlist * 3180 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 3181 unsigned int n, unsigned int *offset); 3182 3183 struct page * 3184 i915_gem_object_get_page(struct drm_i915_gem_object *obj, 3185 unsigned int n); 3186 3187 struct page * 3188 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 3189 unsigned int n); 3190 3191 dma_addr_t 3192 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 3193 unsigned long n); 3194 3195 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 3196 struct sg_table *pages); 3197 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 3198 3199 static inline int __must_check 3200 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3201 { 3202 might_lock(&obj->mm.lock); 3203 3204 if (atomic_inc_not_zero(&obj->mm.pages_pin_count)) 3205 return 0; 3206 3207 return __i915_gem_object_get_pages(obj); 3208 } 3209 3210 static inline void 3211 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3212 { 3213 GEM_BUG_ON(!obj->mm.pages); 3214 3215 atomic_inc(&obj->mm.pages_pin_count); 3216 } 3217 3218 static inline bool 3219 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj) 3220 { 3221 return atomic_read(&obj->mm.pages_pin_count); 3222 } 3223 3224 static inline void 3225 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3226 { 3227 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 3228 GEM_BUG_ON(!obj->mm.pages); 3229 3230 atomic_dec(&obj->mm.pages_pin_count); 3231 } 3232 3233 static inline void 3234 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3235 { 3236 __i915_gem_object_unpin_pages(obj); 3237 } 3238 3239 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */ 3240 I915_MM_NORMAL = 0, 3241 I915_MM_SHRINKER 3242 }; 3243 3244 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 3245 enum i915_mm_subclass subclass); 3246 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj); 3247 3248 enum i915_map_type { 3249 I915_MAP_WB = 0, 3250 I915_MAP_WC, 3251 }; 3252 3253 /** 3254 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 3255 * @obj: the object to map into kernel address space 3256 * @type: the type of mapping, used to select pgprot_t 3257 * 3258 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 3259 * pages and then returns a contiguous mapping of the backing storage into 3260 * the kernel address space. Based on the @type of mapping, the PTE will be 3261 * set to either WriteBack or WriteCombine (via pgprot_t). 3262 * 3263 * The caller is responsible for calling i915_gem_object_unpin_map() when the 3264 * mapping is no longer required. 3265 * 3266 * Returns the pointer through which to access the mapped object, or an 3267 * ERR_PTR() on error. 3268 */ 3269 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 3270 enum i915_map_type type); 3271 3272 /** 3273 * i915_gem_object_unpin_map - releases an earlier mapping 3274 * @obj: the object to unmap 3275 * 3276 * After pinning the object and mapping its pages, once you are finished 3277 * with your access, call i915_gem_object_unpin_map() to release the pin 3278 * upon the mapping. Once the pin count reaches zero, that mapping may be 3279 * removed. 3280 */ 3281 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 3282 { 3283 i915_gem_object_unpin_pages(obj); 3284 } 3285 3286 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 3287 unsigned int *needs_clflush); 3288 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 3289 unsigned int *needs_clflush); 3290 #define CLFLUSH_BEFORE 0x1 3291 #define CLFLUSH_AFTER 0x2 3292 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER) 3293 3294 static inline void 3295 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj) 3296 { 3297 i915_gem_object_unpin_pages(obj); 3298 } 3299 3300 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 3301 void i915_vma_move_to_active(struct i915_vma *vma, 3302 struct drm_i915_gem_request *req, 3303 unsigned int flags); 3304 int i915_gem_dumb_create(struct drm_file *file_priv, 3305 struct drm_device *dev, 3306 struct drm_mode_create_dumb *args); 3307 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3308 uint32_t handle, uint64_t *offset); 3309 int i915_gem_mmap_gtt_version(void); 3310 3311 void i915_gem_track_fb(struct drm_i915_gem_object *old, 3312 struct drm_i915_gem_object *new, 3313 unsigned frontbuffer_bits); 3314 3315 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); 3316 3317 struct drm_i915_gem_request * 3318 i915_gem_find_active_request(struct intel_engine_cs *engine); 3319 3320 void i915_gem_retire_requests(struct drm_i915_private *dev_priv); 3321 3322 static inline bool i915_reset_in_progress(struct i915_gpu_error *error) 3323 { 3324 return unlikely(test_bit(I915_RESET_IN_PROGRESS, &error->flags)); 3325 } 3326 3327 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3328 { 3329 return unlikely(test_bit(I915_WEDGED, &error->flags)); 3330 } 3331 3332 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error) 3333 { 3334 return i915_reset_in_progress(error) | i915_terminally_wedged(error); 3335 } 3336 3337 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3338 { 3339 return READ_ONCE(error->reset_count); 3340 } 3341 3342 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv); 3343 void i915_gem_reset(struct drm_i915_private *dev_priv); 3344 void i915_gem_reset_finish(struct drm_i915_private *dev_priv); 3345 void i915_gem_set_wedged(struct drm_i915_private *dev_priv); 3346 void i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force); 3347 int __must_check i915_gem_init(struct drm_i915_private *dev_priv); 3348 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv); 3349 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv); 3350 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv); 3351 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, 3352 unsigned int flags); 3353 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv); 3354 void i915_gem_resume(struct drm_i915_private *dev_priv); 3355 int i915_gem_fault(struct vm_fault *vmf); 3356 int i915_gem_object_wait(struct drm_i915_gem_object *obj, 3357 unsigned int flags, 3358 long timeout, 3359 struct intel_rps_client *rps); 3360 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 3361 unsigned int flags, 3362 int priority); 3363 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX 3364 3365 int __must_check 3366 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, 3367 bool write); 3368 int __must_check 3369 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3370 struct i915_vma * __must_check 3371 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3372 u32 alignment, 3373 const struct i915_ggtt_view *view); 3374 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma); 3375 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3376 int align); 3377 int i915_gem_open(struct drm_device *dev, struct drm_file *file); 3378 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3379 3380 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3381 enum i915_cache_level cache_level); 3382 3383 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3384 struct dma_buf *dma_buf); 3385 3386 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3387 struct drm_gem_object *gem_obj, int flags); 3388 3389 static inline struct i915_hw_ppgtt * 3390 i915_vm_to_ppgtt(struct i915_address_space *vm) 3391 { 3392 return container_of(vm, struct i915_hw_ppgtt, base); 3393 } 3394 3395 /* i915_gem_fence_reg.c */ 3396 int __must_check i915_vma_get_fence(struct i915_vma *vma); 3397 int __must_check i915_vma_put_fence(struct i915_vma *vma); 3398 3399 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv); 3400 void i915_gem_restore_fences(struct drm_i915_private *dev_priv); 3401 3402 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv); 3403 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 3404 struct sg_table *pages); 3405 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 3406 struct sg_table *pages); 3407 3408 static inline struct i915_gem_context * 3409 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3410 { 3411 struct i915_gem_context *ctx; 3412 3413 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex); 3414 3415 ctx = idr_find(&file_priv->context_idr, id); 3416 if (!ctx) 3417 return ERR_PTR(-ENOENT); 3418 3419 return ctx; 3420 } 3421 3422 static inline struct i915_gem_context * 3423 i915_gem_context_get(struct i915_gem_context *ctx) 3424 { 3425 kref_get(&ctx->ref); 3426 return ctx; 3427 } 3428 3429 static inline void i915_gem_context_put(struct i915_gem_context *ctx) 3430 { 3431 lockdep_assert_held(&ctx->i915->drm.struct_mutex); 3432 kref_put(&ctx->ref, i915_gem_context_free); 3433 } 3434 3435 static inline void i915_gem_context_put_unlocked(struct i915_gem_context *ctx) 3436 { 3437 struct mutex *lock = &ctx->i915->drm.struct_mutex; 3438 3439 if (kref_put_mutex(&ctx->ref, i915_gem_context_free, lock)) 3440 mutex_unlock(lock); 3441 } 3442 3443 static inline struct intel_timeline * 3444 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx, 3445 struct intel_engine_cs *engine) 3446 { 3447 struct i915_address_space *vm; 3448 3449 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base; 3450 return &vm->timeline.engine[engine->id]; 3451 } 3452 3453 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3454 struct drm_file *file); 3455 3456 /* i915_gem_evict.c */ 3457 int __must_check i915_gem_evict_something(struct i915_address_space *vm, 3458 u64 min_size, u64 alignment, 3459 unsigned cache_level, 3460 u64 start, u64 end, 3461 unsigned flags); 3462 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, 3463 struct drm_mm_node *node, 3464 unsigned int flags); 3465 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle); 3466 3467 /* belongs in i915_gem_gtt.h */ 3468 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3469 { 3470 wmb(); 3471 if (INTEL_GEN(dev_priv) < 6) 3472 intel_gtt_chipset_flush(); 3473 } 3474 3475 /* i915_gem_stolen.c */ 3476 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3477 struct drm_mm_node *node, u64 size, 3478 unsigned alignment); 3479 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3480 struct drm_mm_node *node, u64 size, 3481 unsigned alignment, u64 start, 3482 u64 end); 3483 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3484 struct drm_mm_node *node); 3485 int i915_gem_init_stolen(struct drm_i915_private *dev_priv); 3486 void i915_gem_cleanup_stolen(struct drm_device *dev); 3487 struct drm_i915_gem_object * 3488 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size); 3489 struct drm_i915_gem_object * 3490 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv, 3491 u32 stolen_offset, 3492 u32 gtt_offset, 3493 u32 size); 3494 3495 /* i915_gem_internal.c */ 3496 struct drm_i915_gem_object * 3497 i915_gem_object_create_internal(struct drm_i915_private *dev_priv, 3498 phys_addr_t size); 3499 3500 /* i915_gem_shrinker.c */ 3501 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv, 3502 unsigned long target, 3503 unsigned flags); 3504 #define I915_SHRINK_PURGEABLE 0x1 3505 #define I915_SHRINK_UNBOUND 0x2 3506 #define I915_SHRINK_BOUND 0x4 3507 #define I915_SHRINK_ACTIVE 0x8 3508 #define I915_SHRINK_VMAPS 0x10 3509 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); 3510 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv); 3511 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv); 3512 3513 3514 /* i915_gem_tiling.c */ 3515 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3516 { 3517 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3518 3519 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3520 i915_gem_object_is_tiled(obj); 3521 } 3522 3523 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, 3524 unsigned int tiling, unsigned int stride); 3525 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, 3526 unsigned int tiling, unsigned int stride); 3527 3528 /* i915_debugfs.c */ 3529 #ifdef CONFIG_DEBUG_FS 3530 int i915_debugfs_register(struct drm_i915_private *dev_priv); 3531 void i915_debugfs_unregister(struct drm_i915_private *dev_priv); 3532 int i915_debugfs_connector_add(struct drm_connector *connector); 3533 void intel_display_crc_init(struct drm_i915_private *dev_priv); 3534 #else 3535 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} 3536 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {} 3537 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3538 { return 0; } 3539 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {} 3540 #endif 3541 3542 /* i915_gpu_error.c */ 3543 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 3544 3545 __printf(2, 3) 3546 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...); 3547 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr, 3548 const struct i915_error_state_file_priv *error); 3549 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb, 3550 struct drm_i915_private *i915, 3551 size_t count, loff_t pos); 3552 static inline void i915_error_state_buf_release( 3553 struct drm_i915_error_state_buf *eb) 3554 { 3555 kfree(eb->buf); 3556 } 3557 void i915_capture_error_state(struct drm_i915_private *dev_priv, 3558 u32 engine_mask, 3559 const char *error_msg); 3560 void i915_error_state_get(struct drm_device *dev, 3561 struct i915_error_state_file_priv *error_priv); 3562 void i915_error_state_put(struct i915_error_state_file_priv *error_priv); 3563 void i915_destroy_error_state(struct drm_i915_private *dev_priv); 3564 3565 #else 3566 3567 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv, 3568 u32 engine_mask, 3569 const char *error_msg) 3570 { 3571 } 3572 3573 static inline void i915_destroy_error_state(struct drm_i915_private *dev_priv) 3574 { 3575 } 3576 3577 #endif 3578 3579 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3580 3581 /* i915_cmd_parser.c */ 3582 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 3583 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine); 3584 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); 3585 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 3586 struct drm_i915_gem_object *batch_obj, 3587 struct drm_i915_gem_object *shadow_batch_obj, 3588 u32 batch_start_offset, 3589 u32 batch_len, 3590 bool is_master); 3591 3592 /* i915_perf.c */ 3593 extern void i915_perf_init(struct drm_i915_private *dev_priv); 3594 extern void i915_perf_fini(struct drm_i915_private *dev_priv); 3595 extern void i915_perf_register(struct drm_i915_private *dev_priv); 3596 extern void i915_perf_unregister(struct drm_i915_private *dev_priv); 3597 3598 /* i915_suspend.c */ 3599 extern int i915_save_state(struct drm_i915_private *dev_priv); 3600 extern int i915_restore_state(struct drm_i915_private *dev_priv); 3601 3602 /* i915_sysfs.c */ 3603 void i915_setup_sysfs(struct drm_i915_private *dev_priv); 3604 void i915_teardown_sysfs(struct drm_i915_private *dev_priv); 3605 3606 /* intel_lpe_audio.c */ 3607 int intel_lpe_audio_init(struct drm_i915_private *dev_priv); 3608 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv); 3609 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv); 3610 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv, 3611 void *eld, int port, int pipe, int tmds_clk_speed, 3612 bool dp_output, int link_rate); 3613 3614 /* intel_i2c.c */ 3615 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv); 3616 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv); 3617 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3618 unsigned int pin); 3619 3620 extern struct i2c_adapter * 3621 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3622 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3623 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3624 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3625 { 3626 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3627 } 3628 extern void intel_i2c_reset(struct drm_i915_private *dev_priv); 3629 3630 /* intel_bios.c */ 3631 int intel_bios_init(struct drm_i915_private *dev_priv); 3632 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3633 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3634 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3635 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3636 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3637 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3638 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3639 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3640 enum port port); 3641 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv, 3642 enum port port); 3643 3644 3645 /* intel_opregion.c */ 3646 #ifdef CONFIG_ACPI 3647 extern int intel_opregion_setup(struct drm_i915_private *dev_priv); 3648 extern void intel_opregion_register(struct drm_i915_private *dev_priv); 3649 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv); 3650 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv); 3651 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, 3652 bool enable); 3653 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv, 3654 pci_power_t state); 3655 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv); 3656 #else 3657 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; } 3658 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { } 3659 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { } 3660 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv) 3661 { 3662 } 3663 static inline int 3664 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable) 3665 { 3666 return 0; 3667 } 3668 static inline int 3669 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state) 3670 { 3671 return 0; 3672 } 3673 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev) 3674 { 3675 return -ENODEV; 3676 } 3677 #endif 3678 3679 /* intel_acpi.c */ 3680 #ifdef CONFIG_ACPI 3681 extern void intel_register_dsm_handler(void); 3682 extern void intel_unregister_dsm_handler(void); 3683 #else 3684 static inline void intel_register_dsm_handler(void) { return; } 3685 static inline void intel_unregister_dsm_handler(void) { return; } 3686 #endif /* CONFIG_ACPI */ 3687 3688 /* intel_device_info.c */ 3689 static inline struct intel_device_info * 3690 mkwrite_device_info(struct drm_i915_private *dev_priv) 3691 { 3692 return (struct intel_device_info *)&dev_priv->info; 3693 } 3694 3695 const char *intel_platform_name(enum intel_platform platform); 3696 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv); 3697 void intel_device_info_dump(struct drm_i915_private *dev_priv); 3698 3699 /* modesetting */ 3700 extern void intel_modeset_init_hw(struct drm_device *dev); 3701 extern int intel_modeset_init(struct drm_device *dev); 3702 extern void intel_modeset_gem_init(struct drm_device *dev); 3703 extern void intel_modeset_cleanup(struct drm_device *dev); 3704 extern int intel_connector_register(struct drm_connector *); 3705 extern void intel_connector_unregister(struct drm_connector *); 3706 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, 3707 bool state); 3708 extern void intel_display_resume(struct drm_device *dev); 3709 extern void i915_redisable_vga(struct drm_i915_private *dev_priv); 3710 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv); 3711 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 3712 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv); 3713 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 3714 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3715 bool enable); 3716 3717 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3718 struct drm_file *file); 3719 3720 /* overlay */ 3721 extern struct intel_overlay_error_state * 3722 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); 3723 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3724 struct intel_overlay_error_state *error); 3725 3726 extern struct intel_display_error_state * 3727 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 3728 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3729 struct drm_i915_private *dev_priv, 3730 struct intel_display_error_state *error); 3731 3732 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3733 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val); 3734 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, 3735 u32 reply_mask, u32 reply, int timeout_base_ms); 3736 3737 /* intel_sideband.c */ 3738 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3739 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3740 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3741 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 3742 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 3743 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3744 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3745 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3746 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3747 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3748 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3749 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 3750 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 3751 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3752 enum intel_sbi_destination destination); 3753 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3754 enum intel_sbi_destination destination); 3755 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3756 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3757 3758 /* intel_dpio_phy.c */ 3759 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 3760 enum dpio_phy *phy, enum dpio_channel *ch); 3761 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv, 3762 enum port port, u32 margin, u32 scale, 3763 u32 enable, u32 deemphasis); 3764 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3765 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3766 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 3767 enum dpio_phy phy); 3768 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 3769 enum dpio_phy phy); 3770 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder, 3771 uint8_t lane_count); 3772 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 3773 uint8_t lane_lat_optim_mask); 3774 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder); 3775 3776 void chv_set_phy_signal_level(struct intel_encoder *encoder, 3777 u32 deemph_reg_value, u32 margin_reg_value, 3778 bool uniq_trans_scale); 3779 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 3780 bool reset); 3781 void chv_phy_pre_pll_enable(struct intel_encoder *encoder); 3782 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder); 3783 void chv_phy_release_cl2_override(struct intel_encoder *encoder); 3784 void chv_phy_post_pll_disable(struct intel_encoder *encoder); 3785 3786 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 3787 u32 demph_reg_value, u32 preemph_reg_value, 3788 u32 uniqtranscale_reg_value, u32 tx3_demph); 3789 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder); 3790 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder); 3791 void vlv_phy_reset_lanes(struct intel_encoder *encoder); 3792 3793 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3794 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3795 3796 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 3797 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 3798 3799 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 3800 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 3801 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 3802 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 3803 3804 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 3805 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 3806 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 3807 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 3808 3809 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3810 * will be implemented using 2 32-bit writes in an arbitrary order with 3811 * an arbitrary delay between them. This can cause the hardware to 3812 * act upon the intermediate value, possibly leading to corruption and 3813 * machine death. For this reason we do not support I915_WRITE64, or 3814 * dev_priv->uncore.funcs.mmio_writeq. 3815 * 3816 * When reading a 64-bit value as two 32-bit values, the delay may cause 3817 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that 3818 * occasionally a 64-bit register does not actualy support a full readq 3819 * and must be read using two 32-bit reads. 3820 * 3821 * You have been warned. 3822 */ 3823 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 3824 3825 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 3826 u32 upper, lower, old_upper, loop = 0; \ 3827 upper = I915_READ(upper_reg); \ 3828 do { \ 3829 old_upper = upper; \ 3830 lower = I915_READ(lower_reg); \ 3831 upper = I915_READ(upper_reg); \ 3832 } while (upper != old_upper && loop++ < 2); \ 3833 (u64)upper << 32 | lower; }) 3834 3835 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 3836 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 3837 3838 #define __raw_read(x, s) \ 3839 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \ 3840 i915_reg_t reg) \ 3841 { \ 3842 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3843 } 3844 3845 #define __raw_write(x, s) \ 3846 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \ 3847 i915_reg_t reg, uint##x##_t val) \ 3848 { \ 3849 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3850 } 3851 __raw_read(8, b) 3852 __raw_read(16, w) 3853 __raw_read(32, l) 3854 __raw_read(64, q) 3855 3856 __raw_write(8, b) 3857 __raw_write(16, w) 3858 __raw_write(32, l) 3859 __raw_write(64, q) 3860 3861 #undef __raw_read 3862 #undef __raw_write 3863 3864 /* These are untraced mmio-accessors that are only valid to be used inside 3865 * critical sections, such as inside IRQ handlers, where forcewake is explicitly 3866 * controlled. 3867 * 3868 * Think twice, and think again, before using these. 3869 * 3870 * As an example, these accessors can possibly be used between: 3871 * 3872 * spin_lock_irq(&dev_priv->uncore.lock); 3873 * intel_uncore_forcewake_get__locked(); 3874 * 3875 * and 3876 * 3877 * intel_uncore_forcewake_put__locked(); 3878 * spin_unlock_irq(&dev_priv->uncore.lock); 3879 * 3880 * 3881 * Note: some registers may not need forcewake held, so 3882 * intel_uncore_forcewake_{get,put} can be omitted, see 3883 * intel_uncore_forcewake_for_reg(). 3884 * 3885 * Certain architectures will die if the same cacheline is concurrently accessed 3886 * by different clients (e.g. on Ivybridge). Access to registers should 3887 * therefore generally be serialised, by either the dev_priv->uncore.lock or 3888 * a more localised lock guarding all access to that bank of registers. 3889 */ 3890 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 3891 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 3892 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) 3893 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 3894 3895 /* "Broadcast RGB" property */ 3896 #define INTEL_BROADCAST_RGB_AUTO 0 3897 #define INTEL_BROADCAST_RGB_FULL 1 3898 #define INTEL_BROADCAST_RGB_LIMITED 2 3899 3900 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) 3901 { 3902 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3903 return VLV_VGACNTRL; 3904 else if (INTEL_GEN(dev_priv) >= 5) 3905 return CPU_VGACNTRL; 3906 else 3907 return VGACNTRL; 3908 } 3909 3910 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 3911 { 3912 unsigned long j = msecs_to_jiffies(m); 3913 3914 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3915 } 3916 3917 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 3918 { 3919 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 3920 } 3921 3922 static inline unsigned long 3923 timespec_to_jiffies_timeout(const struct timespec *value) 3924 { 3925 unsigned long j = timespec_to_jiffies(value); 3926 3927 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3928 } 3929 3930 /* 3931 * If you need to wait X milliseconds between events A and B, but event B 3932 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 3933 * when event A happened, then just before event B you call this function and 3934 * pass the timestamp as the first argument, and X as the second argument. 3935 */ 3936 static inline void 3937 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 3938 { 3939 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 3940 3941 /* 3942 * Don't re-read the value of "jiffies" every time since it may change 3943 * behind our back and break the math. 3944 */ 3945 tmp_jiffies = jiffies; 3946 target_jiffies = timestamp_jiffies + 3947 msecs_to_jiffies_timeout(to_wait_ms); 3948 3949 if (time_after(target_jiffies, tmp_jiffies)) { 3950 remaining_jiffies = target_jiffies - tmp_jiffies; 3951 while (remaining_jiffies) 3952 remaining_jiffies = 3953 schedule_timeout_uninterruptible(remaining_jiffies); 3954 } 3955 } 3956 3957 static inline bool 3958 __i915_request_irq_complete(struct drm_i915_gem_request *req) 3959 { 3960 struct intel_engine_cs *engine = req->engine; 3961 3962 /* Before we do the heavier coherent read of the seqno, 3963 * check the value (hopefully) in the CPU cacheline. 3964 */ 3965 if (__i915_gem_request_completed(req)) 3966 return true; 3967 3968 /* Ensure our read of the seqno is coherent so that we 3969 * do not "miss an interrupt" (i.e. if this is the last 3970 * request and the seqno write from the GPU is not visible 3971 * by the time the interrupt fires, we will see that the 3972 * request is incomplete and go back to sleep awaiting 3973 * another interrupt that will never come.) 3974 * 3975 * Strictly, we only need to do this once after an interrupt, 3976 * but it is easier and safer to do it every time the waiter 3977 * is woken. 3978 */ 3979 if (engine->irq_seqno_barrier && 3980 rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh) == current && 3981 cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) { 3982 struct task_struct *tsk; 3983 3984 /* The ordering of irq_posted versus applying the barrier 3985 * is crucial. The clearing of the current irq_posted must 3986 * be visible before we perform the barrier operation, 3987 * such that if a subsequent interrupt arrives, irq_posted 3988 * is reasserted and our task rewoken (which causes us to 3989 * do another __i915_request_irq_complete() immediately 3990 * and reapply the barrier). Conversely, if the clear 3991 * occurs after the barrier, then an interrupt that arrived 3992 * whilst we waited on the barrier would not trigger a 3993 * barrier on the next pass, and the read may not see the 3994 * seqno update. 3995 */ 3996 engine->irq_seqno_barrier(engine); 3997 3998 /* If we consume the irq, but we are no longer the bottom-half, 3999 * the real bottom-half may not have serialised their own 4000 * seqno check with the irq-barrier (i.e. may have inspected 4001 * the seqno before we believe it coherent since they see 4002 * irq_posted == false but we are still running). 4003 */ 4004 rcu_read_lock(); 4005 tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh); 4006 if (tsk && tsk != current) 4007 /* Note that if the bottom-half is changed as we 4008 * are sending the wake-up, the new bottom-half will 4009 * be woken by whomever made the change. We only have 4010 * to worry about when we steal the irq-posted for 4011 * ourself. 4012 */ 4013 wake_up_process(tsk); 4014 rcu_read_unlock(); 4015 4016 if (__i915_gem_request_completed(req)) 4017 return true; 4018 } 4019 4020 return false; 4021 } 4022 4023 void i915_memcpy_init_early(struct drm_i915_private *dev_priv); 4024 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len); 4025 4026 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment, 4027 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot 4028 * perform the operation. To check beforehand, pass in the parameters to 4029 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits, 4030 * you only need to pass in the minor offsets, page-aligned pointers are 4031 * always valid. 4032 * 4033 * For just checking for SSE4.1, in the foreknowledge that the future use 4034 * will be correctly aligned, just use i915_has_memcpy_from_wc(). 4035 */ 4036 #define i915_can_memcpy_from_wc(dst, src, len) \ 4037 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0) 4038 4039 #define i915_has_memcpy_from_wc() \ 4040 i915_memcpy_from_wc(NULL, NULL, 0) 4041 4042 /* i915_mm.c */ 4043 int remap_io_mapping(struct vm_area_struct *vma, 4044 unsigned long addr, unsigned long pfn, unsigned long size, 4045 struct io_mapping *iomap); 4046 4047 #endif 4048