xref: /openbmc/linux/drivers/gpu/drm/i915/i915_drv.h (revision 151f4e2b)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/mm_types.h>
44 #include <linux/perf_event.h>
45 #include <linux/pm_qos.h>
46 #include <linux/reservation.h>
47 #include <linux/shmem_fs.h>
48 #include <linux/stackdepot.h>
49 
50 #include <drm/intel-gtt.h>
51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
52 #include <drm/drm_gem.h>
53 #include <drm/drm_auth.h>
54 #include <drm/drm_cache.h>
55 #include <drm/drm_util.h>
56 #include <drm/drm_dsc.h>
57 #include <drm/drm_connector.h>
58 #include <drm/i915_mei_hdcp_interface.h>
59 
60 #include "i915_fixed.h"
61 #include "i915_params.h"
62 #include "i915_reg.h"
63 #include "i915_utils.h"
64 
65 #include "intel_bios.h"
66 #include "intel_device_info.h"
67 #include "intel_display.h"
68 #include "intel_dpll_mgr.h"
69 #include "intel_frontbuffer.h"
70 #include "intel_lrc.h"
71 #include "intel_opregion.h"
72 #include "intel_ringbuffer.h"
73 #include "intel_uc.h"
74 #include "intel_uncore.h"
75 #include "intel_wopcm.h"
76 #include "intel_workarounds.h"
77 
78 #include "i915_gem.h"
79 #include "i915_gem_context.h"
80 #include "i915_gem_fence_reg.h"
81 #include "i915_gem_object.h"
82 #include "i915_gem_gtt.h"
83 #include "i915_gpu_error.h"
84 #include "i915_request.h"
85 #include "i915_scheduler.h"
86 #include "i915_timeline.h"
87 #include "i915_vma.h"
88 
89 #include "intel_gvt.h"
90 
91 /* General customization:
92  */
93 
94 #define DRIVER_NAME		"i915"
95 #define DRIVER_DESC		"Intel Graphics"
96 #define DRIVER_DATE		"20190417"
97 #define DRIVER_TIMESTAMP	1555492067
98 
99 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
100  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
101  * which may not necessarily be a user visible problem.  This will either
102  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
103  * enable distros and users to tailor their preferred amount of i915 abrt
104  * spam.
105  */
106 #define I915_STATE_WARN(condition, format...) ({			\
107 	int __ret_warn_on = !!(condition);				\
108 	if (unlikely(__ret_warn_on))					\
109 		if (!WARN(i915_modparams.verbose_state_checks, format))	\
110 			DRM_ERROR(format);				\
111 	unlikely(__ret_warn_on);					\
112 })
113 
114 #define I915_STATE_WARN_ON(x)						\
115 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
116 
117 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
118 
119 bool __i915_inject_load_failure(const char *func, int line);
120 #define i915_inject_load_failure() \
121 	__i915_inject_load_failure(__func__, __LINE__)
122 
123 bool i915_error_injected(void);
124 
125 #else
126 
127 #define i915_inject_load_failure() false
128 #define i915_error_injected() false
129 
130 #endif
131 
132 #define i915_load_error(i915, fmt, ...)					 \
133 	__i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
134 		      fmt, ##__VA_ARGS__)
135 
136 typedef depot_stack_handle_t intel_wakeref_t;
137 
138 enum hpd_pin {
139 	HPD_NONE = 0,
140 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
141 	HPD_CRT,
142 	HPD_SDVO_B,
143 	HPD_SDVO_C,
144 	HPD_PORT_A,
145 	HPD_PORT_B,
146 	HPD_PORT_C,
147 	HPD_PORT_D,
148 	HPD_PORT_E,
149 	HPD_PORT_F,
150 	HPD_NUM_PINS
151 };
152 
153 #define for_each_hpd_pin(__pin) \
154 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
155 
156 /* Threshold == 5 for long IRQs, 50 for short */
157 #define HPD_STORM_DEFAULT_THRESHOLD 50
158 
159 struct i915_hotplug {
160 	struct work_struct hotplug_work;
161 
162 	struct {
163 		unsigned long last_jiffies;
164 		int count;
165 		enum {
166 			HPD_ENABLED = 0,
167 			HPD_DISABLED = 1,
168 			HPD_MARK_DISABLED = 2
169 		} state;
170 	} stats[HPD_NUM_PINS];
171 	u32 event_bits;
172 	struct delayed_work reenable_work;
173 
174 	u32 long_port_mask;
175 	u32 short_port_mask;
176 	struct work_struct dig_port_work;
177 
178 	struct work_struct poll_init_work;
179 	bool poll_enabled;
180 
181 	unsigned int hpd_storm_threshold;
182 	/* Whether or not to count short HPD IRQs in HPD storms */
183 	u8 hpd_short_storm_enabled;
184 
185 	/*
186 	 * if we get a HPD irq from DP and a HPD irq from non-DP
187 	 * the non-DP HPD could block the workqueue on a mode config
188 	 * mutex getting, that userspace may have taken. However
189 	 * userspace is waiting on the DP workqueue to run which is
190 	 * blocked behind the non-DP one.
191 	 */
192 	struct workqueue_struct *dp_wq;
193 };
194 
195 #define I915_GEM_GPU_DOMAINS \
196 	(I915_GEM_DOMAIN_RENDER | \
197 	 I915_GEM_DOMAIN_SAMPLER | \
198 	 I915_GEM_DOMAIN_COMMAND | \
199 	 I915_GEM_DOMAIN_INSTRUCTION | \
200 	 I915_GEM_DOMAIN_VERTEX)
201 
202 struct drm_i915_private;
203 struct i915_mm_struct;
204 struct i915_mmu_object;
205 
206 struct drm_i915_file_private {
207 	struct drm_i915_private *dev_priv;
208 	struct drm_file *file;
209 
210 	struct {
211 		spinlock_t lock;
212 		struct list_head request_list;
213 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
214  * chosen to prevent the CPU getting more than a frame ahead of the GPU
215  * (when using lax throttling for the frontbuffer). We also use it to
216  * offer free GPU waitboosts for severely congested workloads.
217  */
218 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
219 	} mm;
220 
221 	struct idr context_idr;
222 	struct mutex context_idr_lock; /* guards context_idr */
223 
224 	struct idr vm_idr;
225 	struct mutex vm_idr_lock; /* guards vm_idr */
226 
227 	unsigned int bsd_engine;
228 
229 /*
230  * Every context ban increments per client ban score. Also
231  * hangs in short succession increments ban score. If ban threshold
232  * is reached, client is considered banned and submitting more work
233  * will fail. This is a stop gap measure to limit the badly behaving
234  * clients access to gpu. Note that unbannable contexts never increment
235  * the client ban score.
236  */
237 #define I915_CLIENT_SCORE_HANG_FAST	1
238 #define   I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ)
239 #define I915_CLIENT_SCORE_CONTEXT_BAN   3
240 #define I915_CLIENT_SCORE_BANNED	9
241 	/** ban_score: Accumulated score of all ctx bans and fast hangs. */
242 	atomic_t ban_score;
243 	unsigned long hang_timestamp;
244 };
245 
246 /* Interface history:
247  *
248  * 1.1: Original.
249  * 1.2: Add Power Management
250  * 1.3: Add vblank support
251  * 1.4: Fix cmdbuffer path, add heap destroy
252  * 1.5: Add vblank pipe configuration
253  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
254  *      - Support vertical blank on secondary display pipe
255  */
256 #define DRIVER_MAJOR		1
257 #define DRIVER_MINOR		6
258 #define DRIVER_PATCHLEVEL	0
259 
260 struct intel_overlay;
261 struct intel_overlay_error_state;
262 
263 struct sdvo_device_mapping {
264 	u8 initialized;
265 	u8 dvo_port;
266 	u8 slave_addr;
267 	u8 dvo_wiring;
268 	u8 i2c_pin;
269 	u8 ddc_pin;
270 };
271 
272 struct intel_connector;
273 struct intel_encoder;
274 struct intel_atomic_state;
275 struct intel_crtc_state;
276 struct intel_initial_plane_config;
277 struct intel_crtc;
278 struct intel_limit;
279 struct dpll;
280 struct intel_cdclk_state;
281 
282 struct drm_i915_display_funcs {
283 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
284 			  struct intel_cdclk_state *cdclk_state);
285 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
286 			  const struct intel_cdclk_state *cdclk_state,
287 			  enum pipe pipe);
288 	int (*get_fifo_size)(struct drm_i915_private *dev_priv,
289 			     enum i9xx_plane_id i9xx_plane);
290 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
291 	int (*compute_intermediate_wm)(struct intel_crtc_state *newstate);
292 	void (*initial_watermarks)(struct intel_atomic_state *state,
293 				   struct intel_crtc_state *cstate);
294 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
295 					 struct intel_crtc_state *cstate);
296 	void (*optimize_watermarks)(struct intel_atomic_state *state,
297 				    struct intel_crtc_state *cstate);
298 	int (*compute_global_watermarks)(struct intel_atomic_state *state);
299 	void (*update_wm)(struct intel_crtc *crtc);
300 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
301 	/* Returns the active state of the crtc, and if the crtc is active,
302 	 * fills out the pipe-config with the hw state. */
303 	bool (*get_pipe_config)(struct intel_crtc *,
304 				struct intel_crtc_state *);
305 	void (*get_initial_plane_config)(struct intel_crtc *,
306 					 struct intel_initial_plane_config *);
307 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
308 				  struct intel_crtc_state *crtc_state);
309 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
310 			    struct drm_atomic_state *old_state);
311 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
312 			     struct drm_atomic_state *old_state);
313 	void (*update_crtcs)(struct drm_atomic_state *state);
314 	void (*audio_codec_enable)(struct intel_encoder *encoder,
315 				   const struct intel_crtc_state *crtc_state,
316 				   const struct drm_connector_state *conn_state);
317 	void (*audio_codec_disable)(struct intel_encoder *encoder,
318 				    const struct intel_crtc_state *old_crtc_state,
319 				    const struct drm_connector_state *old_conn_state);
320 	void (*fdi_link_train)(struct intel_crtc *crtc,
321 			       const struct intel_crtc_state *crtc_state);
322 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
323 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
324 	/* clock updates for mode set */
325 	/* cursor updates */
326 	/* render clock increase/decrease */
327 	/* display clock increase/decrease */
328 	/* pll clock increase/decrease */
329 
330 	int (*color_check)(struct intel_crtc_state *crtc_state);
331 	/*
332 	 * Program double buffered color management registers during
333 	 * vblank evasion. The registers should then latch during the
334 	 * next vblank start, alongside any other double buffered registers
335 	 * involved with the same commit.
336 	 */
337 	void (*color_commit)(const struct intel_crtc_state *crtc_state);
338 	/*
339 	 * Load LUTs (and other single buffered color management
340 	 * registers). Will (hopefully) be called during the vblank
341 	 * following the latching of any double buffered registers
342 	 * involved with the same commit.
343 	 */
344 	void (*load_luts)(const struct intel_crtc_state *crtc_state);
345 };
346 
347 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
348 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
349 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
350 
351 struct intel_csr {
352 	struct work_struct work;
353 	const char *fw_path;
354 	u32 required_version;
355 	u32 max_fw_size; /* bytes */
356 	u32 *dmc_payload;
357 	u32 dmc_fw_size; /* dwords */
358 	u32 version;
359 	u32 mmio_count;
360 	i915_reg_t mmioaddr[8];
361 	u32 mmiodata[8];
362 	u32 dc_state;
363 	u32 allowed_dc_mask;
364 	intel_wakeref_t wakeref;
365 };
366 
367 enum i915_cache_level {
368 	I915_CACHE_NONE = 0,
369 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
370 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
371 			      caches, eg sampler/render caches, and the
372 			      large Last-Level-Cache. LLC is coherent with
373 			      the CPU, but L3 is only visible to the GPU. */
374 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
375 };
376 
377 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
378 
379 struct intel_fbc {
380 	/* This is always the inner lock when overlapping with struct_mutex and
381 	 * it's the outer lock when overlapping with stolen_lock. */
382 	struct mutex lock;
383 	unsigned threshold;
384 	unsigned int possible_framebuffer_bits;
385 	unsigned int busy_bits;
386 	unsigned int visible_pipes_mask;
387 	struct intel_crtc *crtc;
388 
389 	struct drm_mm_node compressed_fb;
390 	struct drm_mm_node *compressed_llb;
391 
392 	bool false_color;
393 
394 	bool enabled;
395 	bool active;
396 	bool flip_pending;
397 
398 	bool underrun_detected;
399 	struct work_struct underrun_work;
400 
401 	/*
402 	 * Due to the atomic rules we can't access some structures without the
403 	 * appropriate locking, so we cache information here in order to avoid
404 	 * these problems.
405 	 */
406 	struct intel_fbc_state_cache {
407 		struct i915_vma *vma;
408 		unsigned long flags;
409 
410 		struct {
411 			unsigned int mode_flags;
412 			u32 hsw_bdw_pixel_rate;
413 		} crtc;
414 
415 		struct {
416 			unsigned int rotation;
417 			int src_w;
418 			int src_h;
419 			bool visible;
420 			/*
421 			 * Display surface base address adjustement for
422 			 * pageflips. Note that on gen4+ this only adjusts up
423 			 * to a tile, offsets within a tile are handled in
424 			 * the hw itself (with the TILEOFF register).
425 			 */
426 			int adjusted_x;
427 			int adjusted_y;
428 
429 			int y;
430 
431 			u16 pixel_blend_mode;
432 		} plane;
433 
434 		struct {
435 			const struct drm_format_info *format;
436 			unsigned int stride;
437 		} fb;
438 	} state_cache;
439 
440 	/*
441 	 * This structure contains everything that's relevant to program the
442 	 * hardware registers. When we want to figure out if we need to disable
443 	 * and re-enable FBC for a new configuration we just check if there's
444 	 * something different in the struct. The genx_fbc_activate functions
445 	 * are supposed to read from it in order to program the registers.
446 	 */
447 	struct intel_fbc_reg_params {
448 		struct i915_vma *vma;
449 		unsigned long flags;
450 
451 		struct {
452 			enum pipe pipe;
453 			enum i9xx_plane_id i9xx_plane;
454 			unsigned int fence_y_offset;
455 		} crtc;
456 
457 		struct {
458 			const struct drm_format_info *format;
459 			unsigned int stride;
460 		} fb;
461 
462 		int cfb_size;
463 		unsigned int gen9_wa_cfb_stride;
464 	} params;
465 
466 	const char *no_fbc_reason;
467 };
468 
469 /*
470  * HIGH_RR is the highest eDP panel refresh rate read from EDID
471  * LOW_RR is the lowest eDP panel refresh rate found from EDID
472  * parsing for same resolution.
473  */
474 enum drrs_refresh_rate_type {
475 	DRRS_HIGH_RR,
476 	DRRS_LOW_RR,
477 	DRRS_MAX_RR, /* RR count */
478 };
479 
480 enum drrs_support_type {
481 	DRRS_NOT_SUPPORTED = 0,
482 	STATIC_DRRS_SUPPORT = 1,
483 	SEAMLESS_DRRS_SUPPORT = 2
484 };
485 
486 struct intel_dp;
487 struct i915_drrs {
488 	struct mutex mutex;
489 	struct delayed_work work;
490 	struct intel_dp *dp;
491 	unsigned busy_frontbuffer_bits;
492 	enum drrs_refresh_rate_type refresh_rate_type;
493 	enum drrs_support_type type;
494 };
495 
496 struct i915_psr {
497 	struct mutex lock;
498 
499 #define I915_PSR_DEBUG_MODE_MASK	0x0f
500 #define I915_PSR_DEBUG_DEFAULT		0x00
501 #define I915_PSR_DEBUG_DISABLE		0x01
502 #define I915_PSR_DEBUG_ENABLE		0x02
503 #define I915_PSR_DEBUG_FORCE_PSR1	0x03
504 #define I915_PSR_DEBUG_IRQ		0x10
505 
506 	u32 debug;
507 	bool sink_support;
508 	bool enabled;
509 	struct intel_dp *dp;
510 	enum pipe pipe;
511 	bool active;
512 	struct work_struct work;
513 	unsigned busy_frontbuffer_bits;
514 	bool sink_psr2_support;
515 	bool link_standby;
516 	bool colorimetry_support;
517 	bool psr2_enabled;
518 	u8 sink_sync_latency;
519 	ktime_t last_entry_attempt;
520 	ktime_t last_exit;
521 	bool sink_not_reliable;
522 	bool irq_aux_error;
523 	u16 su_x_granularity;
524 };
525 
526 /*
527  * Sorted by south display engine compatibility.
528  * If the new PCH comes with a south display engine that is not
529  * inherited from the latest item, please do not add it to the
530  * end. Instead, add it right after its "parent" PCH.
531  */
532 enum intel_pch {
533 	PCH_NOP = -1,	/* PCH without south display */
534 	PCH_NONE = 0,	/* No PCH present */
535 	PCH_IBX,	/* Ibexpeak PCH */
536 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
537 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
538 	PCH_SPT,        /* Sunrisepoint PCH */
539 	PCH_KBP,        /* Kaby Lake PCH */
540 	PCH_CNP,        /* Cannon/Comet Lake PCH */
541 	PCH_ICP,	/* Ice Lake PCH */
542 };
543 
544 enum intel_sbi_destination {
545 	SBI_ICLK,
546 	SBI_MPHY,
547 };
548 
549 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
550 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
551 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
552 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
553 #define QUIRK_INCREASE_T12_DELAY (1<<6)
554 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7)
555 
556 struct intel_fbdev;
557 struct intel_fbc_work;
558 
559 struct intel_gmbus {
560 	struct i2c_adapter adapter;
561 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
562 	u32 force_bit;
563 	u32 reg0;
564 	i915_reg_t gpio_reg;
565 	struct i2c_algo_bit_data bit_algo;
566 	struct drm_i915_private *dev_priv;
567 };
568 
569 struct i915_suspend_saved_registers {
570 	u32 saveDSPARB;
571 	u32 saveFBC_CONTROL;
572 	u32 saveCACHE_MODE_0;
573 	u32 saveMI_ARB_STATE;
574 	u32 saveSWF0[16];
575 	u32 saveSWF1[16];
576 	u32 saveSWF3[3];
577 	u64 saveFENCE[I915_MAX_NUM_FENCES];
578 	u32 savePCH_PORT_HOTPLUG;
579 	u16 saveGCDGMBUS;
580 };
581 
582 struct vlv_s0ix_state {
583 	/* GAM */
584 	u32 wr_watermark;
585 	u32 gfx_prio_ctrl;
586 	u32 arb_mode;
587 	u32 gfx_pend_tlb0;
588 	u32 gfx_pend_tlb1;
589 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
590 	u32 media_max_req_count;
591 	u32 gfx_max_req_count;
592 	u32 render_hwsp;
593 	u32 ecochk;
594 	u32 bsd_hwsp;
595 	u32 blt_hwsp;
596 	u32 tlb_rd_addr;
597 
598 	/* MBC */
599 	u32 g3dctl;
600 	u32 gsckgctl;
601 	u32 mbctl;
602 
603 	/* GCP */
604 	u32 ucgctl1;
605 	u32 ucgctl3;
606 	u32 rcgctl1;
607 	u32 rcgctl2;
608 	u32 rstctl;
609 	u32 misccpctl;
610 
611 	/* GPM */
612 	u32 gfxpause;
613 	u32 rpdeuhwtc;
614 	u32 rpdeuc;
615 	u32 ecobus;
616 	u32 pwrdwnupctl;
617 	u32 rp_down_timeout;
618 	u32 rp_deucsw;
619 	u32 rcubmabdtmr;
620 	u32 rcedata;
621 	u32 spare2gh;
622 
623 	/* Display 1 CZ domain */
624 	u32 gt_imr;
625 	u32 gt_ier;
626 	u32 pm_imr;
627 	u32 pm_ier;
628 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
629 
630 	/* GT SA CZ domain */
631 	u32 tilectl;
632 	u32 gt_fifoctl;
633 	u32 gtlc_wake_ctrl;
634 	u32 gtlc_survive;
635 	u32 pmwgicz;
636 
637 	/* Display 2 CZ domain */
638 	u32 gu_ctl0;
639 	u32 gu_ctl1;
640 	u32 pcbr;
641 	u32 clock_gate_dis2;
642 };
643 
644 struct intel_rps_ei {
645 	ktime_t ktime;
646 	u32 render_c0;
647 	u32 media_c0;
648 };
649 
650 struct intel_rps {
651 	/*
652 	 * work, interrupts_enabled and pm_iir are protected by
653 	 * dev_priv->irq_lock
654 	 */
655 	struct work_struct work;
656 	bool interrupts_enabled;
657 	u32 pm_iir;
658 
659 	/* PM interrupt bits that should never be masked */
660 	u32 pm_intrmsk_mbz;
661 
662 	/* Frequencies are stored in potentially platform dependent multiples.
663 	 * In other words, *_freq needs to be multiplied by X to be interesting.
664 	 * Soft limits are those which are used for the dynamic reclocking done
665 	 * by the driver (raise frequencies under heavy loads, and lower for
666 	 * lighter loads). Hard limits are those imposed by the hardware.
667 	 *
668 	 * A distinction is made for overclocking, which is never enabled by
669 	 * default, and is considered to be above the hard limit if it's
670 	 * possible at all.
671 	 */
672 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
673 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
674 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
675 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
676 	u8 min_freq;		/* AKA RPn. Minimum frequency */
677 	u8 boost_freq;		/* Frequency to request when wait boosting */
678 	u8 idle_freq;		/* Frequency to request when we are idle */
679 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
680 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
681 	u8 rp0_freq;		/* Non-overclocked max frequency. */
682 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
683 
684 	int last_adj;
685 
686 	struct {
687 		struct mutex mutex;
688 
689 		enum { LOW_POWER, BETWEEN, HIGH_POWER } mode;
690 		unsigned int interactive;
691 
692 		u8 up_threshold; /* Current %busy required to uplock */
693 		u8 down_threshold; /* Current %busy required to downclock */
694 	} power;
695 
696 	bool enabled;
697 	atomic_t num_waiters;
698 	atomic_t boosts;
699 
700 	/* manual wa residency calculations */
701 	struct intel_rps_ei ei;
702 };
703 
704 struct intel_rc6 {
705 	bool enabled;
706 	u64 prev_hw_residency[4];
707 	u64 cur_residency[4];
708 };
709 
710 struct intel_llc_pstate {
711 	bool enabled;
712 };
713 
714 struct intel_gen6_power_mgmt {
715 	struct intel_rps rps;
716 	struct intel_rc6 rc6;
717 	struct intel_llc_pstate llc_pstate;
718 };
719 
720 /* defined intel_pm.c */
721 extern spinlock_t mchdev_lock;
722 
723 struct intel_ilk_power_mgmt {
724 	u8 cur_delay;
725 	u8 min_delay;
726 	u8 max_delay;
727 	u8 fmax;
728 	u8 fstart;
729 
730 	u64 last_count1;
731 	unsigned long last_time1;
732 	unsigned long chipset_power;
733 	u64 last_count2;
734 	u64 last_time2;
735 	unsigned long gfx_power;
736 	u8 corr;
737 
738 	int c_m;
739 	int r_t;
740 };
741 
742 struct drm_i915_private;
743 struct i915_power_well;
744 
745 struct i915_power_well_ops {
746 	/*
747 	 * Synchronize the well's hw state to match the current sw state, for
748 	 * example enable/disable it based on the current refcount. Called
749 	 * during driver init and resume time, possibly after first calling
750 	 * the enable/disable handlers.
751 	 */
752 	void (*sync_hw)(struct drm_i915_private *dev_priv,
753 			struct i915_power_well *power_well);
754 	/*
755 	 * Enable the well and resources that depend on it (for example
756 	 * interrupts located on the well). Called after the 0->1 refcount
757 	 * transition.
758 	 */
759 	void (*enable)(struct drm_i915_private *dev_priv,
760 		       struct i915_power_well *power_well);
761 	/*
762 	 * Disable the well and resources that depend on it. Called after
763 	 * the 1->0 refcount transition.
764 	 */
765 	void (*disable)(struct drm_i915_private *dev_priv,
766 			struct i915_power_well *power_well);
767 	/* Returns the hw enabled state. */
768 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
769 			   struct i915_power_well *power_well);
770 };
771 
772 struct i915_power_well_regs {
773 	i915_reg_t bios;
774 	i915_reg_t driver;
775 	i915_reg_t kvmr;
776 	i915_reg_t debug;
777 };
778 
779 /* Power well structure for haswell */
780 struct i915_power_well_desc {
781 	const char *name;
782 	bool always_on;
783 	u64 domains;
784 	/* unique identifier for this power well */
785 	enum i915_power_well_id id;
786 	/*
787 	 * Arbitraty data associated with this power well. Platform and power
788 	 * well specific.
789 	 */
790 	union {
791 		struct {
792 			/*
793 			 * request/status flag index in the PUNIT power well
794 			 * control/status registers.
795 			 */
796 			u8 idx;
797 		} vlv;
798 		struct {
799 			enum dpio_phy phy;
800 		} bxt;
801 		struct {
802 			const struct i915_power_well_regs *regs;
803 			/*
804 			 * request/status flag index in the power well
805 			 * constrol/status registers.
806 			 */
807 			u8 idx;
808 			/* Mask of pipes whose IRQ logic is backed by the pw */
809 			u8 irq_pipe_mask;
810 			/* The pw is backing the VGA functionality */
811 			bool has_vga:1;
812 			bool has_fuses:1;
813 			/*
814 			 * The pw is for an ICL+ TypeC PHY port in
815 			 * Thunderbolt mode.
816 			 */
817 			bool is_tc_tbt:1;
818 		} hsw;
819 	};
820 	const struct i915_power_well_ops *ops;
821 };
822 
823 struct i915_power_well {
824 	const struct i915_power_well_desc *desc;
825 	/* power well enable/disable usage count */
826 	int count;
827 	/* cached hw enabled state */
828 	bool hw_enabled;
829 };
830 
831 struct i915_power_domains {
832 	/*
833 	 * Power wells needed for initialization at driver init and suspend
834 	 * time are on. They are kept on until after the first modeset.
835 	 */
836 	bool initializing;
837 	bool display_core_suspended;
838 	int power_well_count;
839 
840 	intel_wakeref_t wakeref;
841 
842 	struct mutex lock;
843 	int domain_use_count[POWER_DOMAIN_NUM];
844 	struct i915_power_well *power_wells;
845 };
846 
847 #define MAX_L3_SLICES 2
848 struct intel_l3_parity {
849 	u32 *remap_info[MAX_L3_SLICES];
850 	struct work_struct error_work;
851 	int which_slice;
852 };
853 
854 struct i915_gem_mm {
855 	/** Memory allocator for GTT stolen memory */
856 	struct drm_mm stolen;
857 	/** Protects the usage of the GTT stolen memory allocator. This is
858 	 * always the inner lock when overlapping with struct_mutex. */
859 	struct mutex stolen_lock;
860 
861 	/* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
862 	spinlock_t obj_lock;
863 
864 	/** List of all objects in gtt_space. Used to restore gtt
865 	 * mappings on resume */
866 	struct list_head bound_list;
867 	/**
868 	 * List of objects which are not bound to the GTT (thus
869 	 * are idle and not used by the GPU). These objects may or may
870 	 * not actually have any pages attached.
871 	 */
872 	struct list_head unbound_list;
873 
874 	/** List of all objects in gtt_space, currently mmaped by userspace.
875 	 * All objects within this list must also be on bound_list.
876 	 */
877 	struct list_head userfault_list;
878 
879 	/**
880 	 * List of objects which are pending destruction.
881 	 */
882 	struct llist_head free_list;
883 	struct work_struct free_work;
884 	spinlock_t free_lock;
885 	/**
886 	 * Count of objects pending destructions. Used to skip needlessly
887 	 * waiting on an RCU barrier if no objects are waiting to be freed.
888 	 */
889 	atomic_t free_count;
890 
891 	/**
892 	 * Small stash of WC pages
893 	 */
894 	struct pagestash wc_stash;
895 
896 	/**
897 	 * tmpfs instance used for shmem backed objects
898 	 */
899 	struct vfsmount *gemfs;
900 
901 	/** PPGTT used for aliasing the PPGTT with the GTT */
902 	struct i915_hw_ppgtt *aliasing_ppgtt;
903 
904 	struct notifier_block oom_notifier;
905 	struct notifier_block vmap_notifier;
906 	struct shrinker shrinker;
907 
908 	/** LRU list of objects with fence regs on them. */
909 	struct list_head fence_list;
910 
911 	/**
912 	 * Workqueue to fault in userptr pages, flushed by the execbuf
913 	 * when required but otherwise left to userspace to try again
914 	 * on EAGAIN.
915 	 */
916 	struct workqueue_struct *userptr_wq;
917 
918 	u64 unordered_timeline;
919 
920 	/* the indicator for dispatch video commands on two BSD rings */
921 	atomic_t bsd_engine_dispatch_index;
922 
923 	/** Bit 6 swizzling required for X tiling */
924 	u32 bit_6_swizzle_x;
925 	/** Bit 6 swizzling required for Y tiling */
926 	u32 bit_6_swizzle_y;
927 
928 	/* accounting, useful for userland debugging */
929 	spinlock_t object_stat_lock;
930 	u64 object_memory;
931 	u32 object_count;
932 };
933 
934 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
935 
936 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
937 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
938 
939 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
940 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
941 
942 #define I915_ENGINE_WEDGED_TIMEOUT  (60 * HZ)  /* Reset but no recovery? */
943 
944 struct ddi_vbt_port_info {
945 	int max_tmds_clock;
946 
947 	/*
948 	 * This is an index in the HDMI/DVI DDI buffer translation table.
949 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
950 	 * populate this field.
951 	 */
952 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
953 	u8 hdmi_level_shift;
954 
955 	u8 present:1;
956 	u8 supports_dvi:1;
957 	u8 supports_hdmi:1;
958 	u8 supports_dp:1;
959 	u8 supports_edp:1;
960 	u8 supports_typec_usb:1;
961 	u8 supports_tbt:1;
962 
963 	u8 alternate_aux_channel;
964 	u8 alternate_ddc_pin;
965 
966 	u8 dp_boost_level;
967 	u8 hdmi_boost_level;
968 	int dp_max_link_rate;		/* 0 for not limited by VBT */
969 };
970 
971 enum psr_lines_to_wait {
972 	PSR_0_LINES_TO_WAIT = 0,
973 	PSR_1_LINE_TO_WAIT,
974 	PSR_4_LINES_TO_WAIT,
975 	PSR_8_LINES_TO_WAIT
976 };
977 
978 struct intel_vbt_data {
979 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
980 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
981 
982 	/* Feature bits */
983 	unsigned int int_tv_support:1;
984 	unsigned int lvds_dither:1;
985 	unsigned int int_crt_support:1;
986 	unsigned int lvds_use_ssc:1;
987 	unsigned int int_lvds_support:1;
988 	unsigned int display_clock_mode:1;
989 	unsigned int fdi_rx_polarity_inverted:1;
990 	unsigned int panel_type:4;
991 	int lvds_ssc_freq;
992 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
993 	enum drm_panel_orientation orientation;
994 
995 	enum drrs_support_type drrs_type;
996 
997 	struct {
998 		int rate;
999 		int lanes;
1000 		int preemphasis;
1001 		int vswing;
1002 		bool low_vswing;
1003 		bool initialized;
1004 		int bpp;
1005 		struct edp_power_seq pps;
1006 	} edp;
1007 
1008 	struct {
1009 		bool enable;
1010 		bool full_link;
1011 		bool require_aux_wakeup;
1012 		int idle_frames;
1013 		enum psr_lines_to_wait lines_to_wait;
1014 		int tp1_wakeup_time_us;
1015 		int tp2_tp3_wakeup_time_us;
1016 		int psr2_tp2_tp3_wakeup_time_us;
1017 	} psr;
1018 
1019 	struct {
1020 		u16 pwm_freq_hz;
1021 		bool present;
1022 		bool active_low_pwm;
1023 		u8 min_brightness;	/* min_brightness/255 of max */
1024 		u8 controller;		/* brightness controller number */
1025 		enum intel_backlight_type type;
1026 	} backlight;
1027 
1028 	/* MIPI DSI */
1029 	struct {
1030 		u16 panel_id;
1031 		struct mipi_config *config;
1032 		struct mipi_pps_data *pps;
1033 		u16 bl_ports;
1034 		u16 cabc_ports;
1035 		u8 seq_version;
1036 		u32 size;
1037 		u8 *data;
1038 		const u8 *sequence[MIPI_SEQ_MAX];
1039 		u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1040 		enum drm_panel_orientation orientation;
1041 	} dsi;
1042 
1043 	int crt_ddc_pin;
1044 
1045 	int child_dev_num;
1046 	struct child_device_config *child_dev;
1047 
1048 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1049 	struct sdvo_device_mapping sdvo_mappings[2];
1050 };
1051 
1052 enum intel_ddb_partitioning {
1053 	INTEL_DDB_PART_1_2,
1054 	INTEL_DDB_PART_5_6, /* IVB+ */
1055 };
1056 
1057 struct intel_wm_level {
1058 	bool enable;
1059 	u32 pri_val;
1060 	u32 spr_val;
1061 	u32 cur_val;
1062 	u32 fbc_val;
1063 };
1064 
1065 struct ilk_wm_values {
1066 	u32 wm_pipe[3];
1067 	u32 wm_lp[3];
1068 	u32 wm_lp_spr[3];
1069 	u32 wm_linetime[3];
1070 	bool enable_fbc_wm;
1071 	enum intel_ddb_partitioning partitioning;
1072 };
1073 
1074 struct g4x_pipe_wm {
1075 	u16 plane[I915_MAX_PLANES];
1076 	u16 fbc;
1077 };
1078 
1079 struct g4x_sr_wm {
1080 	u16 plane;
1081 	u16 cursor;
1082 	u16 fbc;
1083 };
1084 
1085 struct vlv_wm_ddl_values {
1086 	u8 plane[I915_MAX_PLANES];
1087 };
1088 
1089 struct vlv_wm_values {
1090 	struct g4x_pipe_wm pipe[3];
1091 	struct g4x_sr_wm sr;
1092 	struct vlv_wm_ddl_values ddl[3];
1093 	u8 level;
1094 	bool cxsr;
1095 };
1096 
1097 struct g4x_wm_values {
1098 	struct g4x_pipe_wm pipe[2];
1099 	struct g4x_sr_wm sr;
1100 	struct g4x_sr_wm hpll;
1101 	bool cxsr;
1102 	bool hpll_en;
1103 	bool fbc_en;
1104 };
1105 
1106 struct skl_ddb_entry {
1107 	u16 start, end;	/* in number of blocks, 'end' is exclusive */
1108 };
1109 
1110 static inline u16 skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1111 {
1112 	return entry->end - entry->start;
1113 }
1114 
1115 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1116 				       const struct skl_ddb_entry *e2)
1117 {
1118 	if (e1->start == e2->start && e1->end == e2->end)
1119 		return true;
1120 
1121 	return false;
1122 }
1123 
1124 struct skl_ddb_allocation {
1125 	u8 enabled_slices; /* GEN11 has configurable 2 slices */
1126 };
1127 
1128 struct skl_ddb_values {
1129 	unsigned dirty_pipes;
1130 	struct skl_ddb_allocation ddb;
1131 };
1132 
1133 struct skl_wm_level {
1134 	u16 min_ddb_alloc;
1135 	u16 plane_res_b;
1136 	u8 plane_res_l;
1137 	bool plane_en;
1138 	bool ignore_lines;
1139 };
1140 
1141 /* Stores plane specific WM parameters */
1142 struct skl_wm_params {
1143 	bool x_tiled, y_tiled;
1144 	bool rc_surface;
1145 	bool is_planar;
1146 	u32 width;
1147 	u8 cpp;
1148 	u32 plane_pixel_rate;
1149 	u32 y_min_scanlines;
1150 	u32 plane_bytes_per_line;
1151 	uint_fixed_16_16_t plane_blocks_per_line;
1152 	uint_fixed_16_16_t y_tile_minimum;
1153 	u32 linetime_us;
1154 	u32 dbuf_block_size;
1155 };
1156 
1157 /*
1158  * This struct helps tracking the state needed for runtime PM, which puts the
1159  * device in PCI D3 state. Notice that when this happens, nothing on the
1160  * graphics device works, even register access, so we don't get interrupts nor
1161  * anything else.
1162  *
1163  * Every piece of our code that needs to actually touch the hardware needs to
1164  * either call intel_runtime_pm_get or call intel_display_power_get with the
1165  * appropriate power domain.
1166  *
1167  * Our driver uses the autosuspend delay feature, which means we'll only really
1168  * suspend if we stay with zero refcount for a certain amount of time. The
1169  * default value is currently very conservative (see intel_runtime_pm_enable), but
1170  * it can be changed with the standard runtime PM files from sysfs.
1171  *
1172  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1173  * goes back to false exactly before we reenable the IRQs. We use this variable
1174  * to check if someone is trying to enable/disable IRQs while they're supposed
1175  * to be disabled. This shouldn't happen and we'll print some error messages in
1176  * case it happens.
1177  *
1178  * For more, read the Documentation/power/runtime_pm.rst.
1179  */
1180 struct i915_runtime_pm {
1181 	atomic_t wakeref_count;
1182 	bool suspended;
1183 	bool irqs_enabled;
1184 
1185 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
1186 	/*
1187 	 * To aide detection of wakeref leaks and general misuse, we
1188 	 * track all wakeref holders. With manual markup (i.e. returning
1189 	 * a cookie to each rpm_get caller which they then supply to their
1190 	 * paired rpm_put) we can remove corresponding pairs of and keep
1191 	 * the array trimmed to active wakerefs.
1192 	 */
1193 	struct intel_runtime_pm_debug {
1194 		spinlock_t lock;
1195 
1196 		depot_stack_handle_t last_acquire;
1197 		depot_stack_handle_t last_release;
1198 
1199 		depot_stack_handle_t *owners;
1200 		unsigned long count;
1201 	} debug;
1202 #endif
1203 };
1204 
1205 enum intel_pipe_crc_source {
1206 	INTEL_PIPE_CRC_SOURCE_NONE,
1207 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1208 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1209 	INTEL_PIPE_CRC_SOURCE_PLANE3,
1210 	INTEL_PIPE_CRC_SOURCE_PLANE4,
1211 	INTEL_PIPE_CRC_SOURCE_PLANE5,
1212 	INTEL_PIPE_CRC_SOURCE_PLANE6,
1213 	INTEL_PIPE_CRC_SOURCE_PLANE7,
1214 	INTEL_PIPE_CRC_SOURCE_PIPE,
1215 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1216 	INTEL_PIPE_CRC_SOURCE_TV,
1217 	INTEL_PIPE_CRC_SOURCE_DP_B,
1218 	INTEL_PIPE_CRC_SOURCE_DP_C,
1219 	INTEL_PIPE_CRC_SOURCE_DP_D,
1220 	INTEL_PIPE_CRC_SOURCE_AUTO,
1221 	INTEL_PIPE_CRC_SOURCE_MAX,
1222 };
1223 
1224 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1225 struct intel_pipe_crc {
1226 	spinlock_t lock;
1227 	int skipped;
1228 	enum intel_pipe_crc_source source;
1229 };
1230 
1231 struct i915_frontbuffer_tracking {
1232 	spinlock_t lock;
1233 
1234 	/*
1235 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1236 	 * scheduled flips.
1237 	 */
1238 	unsigned busy_bits;
1239 	unsigned flip_bits;
1240 };
1241 
1242 struct i915_virtual_gpu {
1243 	bool active;
1244 	u32 caps;
1245 };
1246 
1247 /* used in computing the new watermarks state */
1248 struct intel_wm_config {
1249 	unsigned int num_pipes_active;
1250 	bool sprites_enabled;
1251 	bool sprites_scaled;
1252 };
1253 
1254 struct i915_oa_format {
1255 	u32 format;
1256 	int size;
1257 };
1258 
1259 struct i915_oa_reg {
1260 	i915_reg_t addr;
1261 	u32 value;
1262 };
1263 
1264 struct i915_oa_config {
1265 	char uuid[UUID_STRING_LEN + 1];
1266 	int id;
1267 
1268 	const struct i915_oa_reg *mux_regs;
1269 	u32 mux_regs_len;
1270 	const struct i915_oa_reg *b_counter_regs;
1271 	u32 b_counter_regs_len;
1272 	const struct i915_oa_reg *flex_regs;
1273 	u32 flex_regs_len;
1274 
1275 	struct attribute_group sysfs_metric;
1276 	struct attribute *attrs[2];
1277 	struct device_attribute sysfs_metric_id;
1278 
1279 	atomic_t ref_count;
1280 };
1281 
1282 struct i915_perf_stream;
1283 
1284 /**
1285  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1286  */
1287 struct i915_perf_stream_ops {
1288 	/**
1289 	 * @enable: Enables the collection of HW samples, either in response to
1290 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1291 	 * without `I915_PERF_FLAG_DISABLED`.
1292 	 */
1293 	void (*enable)(struct i915_perf_stream *stream);
1294 
1295 	/**
1296 	 * @disable: Disables the collection of HW samples, either in response
1297 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1298 	 * the stream.
1299 	 */
1300 	void (*disable)(struct i915_perf_stream *stream);
1301 
1302 	/**
1303 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1304 	 * once there is something ready to read() for the stream
1305 	 */
1306 	void (*poll_wait)(struct i915_perf_stream *stream,
1307 			  struct file *file,
1308 			  poll_table *wait);
1309 
1310 	/**
1311 	 * @wait_unlocked: For handling a blocking read, wait until there is
1312 	 * something to ready to read() for the stream. E.g. wait on the same
1313 	 * wait queue that would be passed to poll_wait().
1314 	 */
1315 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1316 
1317 	/**
1318 	 * @read: Copy buffered metrics as records to userspace
1319 	 * **buf**: the userspace, destination buffer
1320 	 * **count**: the number of bytes to copy, requested by userspace
1321 	 * **offset**: zero at the start of the read, updated as the read
1322 	 * proceeds, it represents how many bytes have been copied so far and
1323 	 * the buffer offset for copying the next record.
1324 	 *
1325 	 * Copy as many buffered i915 perf samples and records for this stream
1326 	 * to userspace as will fit in the given buffer.
1327 	 *
1328 	 * Only write complete records; returning -%ENOSPC if there isn't room
1329 	 * for a complete record.
1330 	 *
1331 	 * Return any error condition that results in a short read such as
1332 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1333 	 * returning to userspace.
1334 	 */
1335 	int (*read)(struct i915_perf_stream *stream,
1336 		    char __user *buf,
1337 		    size_t count,
1338 		    size_t *offset);
1339 
1340 	/**
1341 	 * @destroy: Cleanup any stream specific resources.
1342 	 *
1343 	 * The stream will always be disabled before this is called.
1344 	 */
1345 	void (*destroy)(struct i915_perf_stream *stream);
1346 };
1347 
1348 /**
1349  * struct i915_perf_stream - state for a single open stream FD
1350  */
1351 struct i915_perf_stream {
1352 	/**
1353 	 * @dev_priv: i915 drm device
1354 	 */
1355 	struct drm_i915_private *dev_priv;
1356 
1357 	/**
1358 	 * @link: Links the stream into ``&drm_i915_private->streams``
1359 	 */
1360 	struct list_head link;
1361 
1362 	/**
1363 	 * @wakeref: As we keep the device awake while the perf stream is
1364 	 * active, we track our runtime pm reference for later release.
1365 	 */
1366 	intel_wakeref_t wakeref;
1367 
1368 	/**
1369 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1370 	 * properties given when opening a stream, representing the contents
1371 	 * of a single sample as read() by userspace.
1372 	 */
1373 	u32 sample_flags;
1374 
1375 	/**
1376 	 * @sample_size: Considering the configured contents of a sample
1377 	 * combined with the required header size, this is the total size
1378 	 * of a single sample record.
1379 	 */
1380 	int sample_size;
1381 
1382 	/**
1383 	 * @ctx: %NULL if measuring system-wide across all contexts or a
1384 	 * specific context that is being monitored.
1385 	 */
1386 	struct i915_gem_context *ctx;
1387 
1388 	/**
1389 	 * @enabled: Whether the stream is currently enabled, considering
1390 	 * whether the stream was opened in a disabled state and based
1391 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1392 	 */
1393 	bool enabled;
1394 
1395 	/**
1396 	 * @ops: The callbacks providing the implementation of this specific
1397 	 * type of configured stream.
1398 	 */
1399 	const struct i915_perf_stream_ops *ops;
1400 
1401 	/**
1402 	 * @oa_config: The OA configuration used by the stream.
1403 	 */
1404 	struct i915_oa_config *oa_config;
1405 };
1406 
1407 /**
1408  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1409  */
1410 struct i915_oa_ops {
1411 	/**
1412 	 * @is_valid_b_counter_reg: Validates register's address for
1413 	 * programming boolean counters for a particular platform.
1414 	 */
1415 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1416 				       u32 addr);
1417 
1418 	/**
1419 	 * @is_valid_mux_reg: Validates register's address for programming mux
1420 	 * for a particular platform.
1421 	 */
1422 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1423 
1424 	/**
1425 	 * @is_valid_flex_reg: Validates register's address for programming
1426 	 * flex EU filtering for a particular platform.
1427 	 */
1428 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1429 
1430 	/**
1431 	 * @enable_metric_set: Selects and applies any MUX configuration to set
1432 	 * up the Boolean and Custom (B/C) counters that are part of the
1433 	 * counter reports being sampled. May apply system constraints such as
1434 	 * disabling EU clock gating as required.
1435 	 */
1436 	int (*enable_metric_set)(struct i915_perf_stream *stream);
1437 
1438 	/**
1439 	 * @disable_metric_set: Remove system constraints associated with using
1440 	 * the OA unit.
1441 	 */
1442 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1443 
1444 	/**
1445 	 * @oa_enable: Enable periodic sampling
1446 	 */
1447 	void (*oa_enable)(struct i915_perf_stream *stream);
1448 
1449 	/**
1450 	 * @oa_disable: Disable periodic sampling
1451 	 */
1452 	void (*oa_disable)(struct i915_perf_stream *stream);
1453 
1454 	/**
1455 	 * @read: Copy data from the circular OA buffer into a given userspace
1456 	 * buffer.
1457 	 */
1458 	int (*read)(struct i915_perf_stream *stream,
1459 		    char __user *buf,
1460 		    size_t count,
1461 		    size_t *offset);
1462 
1463 	/**
1464 	 * @oa_hw_tail_read: read the OA tail pointer register
1465 	 *
1466 	 * In particular this enables us to share all the fiddly code for
1467 	 * handling the OA unit tail pointer race that affects multiple
1468 	 * generations.
1469 	 */
1470 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1471 };
1472 
1473 struct intel_cdclk_state {
1474 	unsigned int cdclk, vco, ref, bypass;
1475 	u8 voltage_level;
1476 };
1477 
1478 struct drm_i915_private {
1479 	struct drm_device drm;
1480 
1481 	const struct intel_device_info __info; /* Use INTEL_INFO() to access. */
1482 	struct intel_runtime_info __runtime; /* Use RUNTIME_INFO() to access. */
1483 	struct intel_driver_caps caps;
1484 
1485 	/**
1486 	 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1487 	 * end of stolen which we can optionally use to create GEM objects
1488 	 * backed by stolen memory. Note that stolen_usable_size tells us
1489 	 * exactly how much of this we are actually allowed to use, given that
1490 	 * some portion of it is in fact reserved for use by hardware functions.
1491 	 */
1492 	struct resource dsm;
1493 	/**
1494 	 * Reseved portion of Data Stolen Memory
1495 	 */
1496 	struct resource dsm_reserved;
1497 
1498 	/*
1499 	 * Stolen memory is segmented in hardware with different portions
1500 	 * offlimits to certain functions.
1501 	 *
1502 	 * The drm_mm is initialised to the total accessible range, as found
1503 	 * from the PCI config. On Broadwell+, this is further restricted to
1504 	 * avoid the first page! The upper end of stolen memory is reserved for
1505 	 * hardware functions and similarly removed from the accessible range.
1506 	 */
1507 	resource_size_t stolen_usable_size;	/* Total size minus reserved ranges */
1508 
1509 	struct intel_uncore uncore;
1510 
1511 	struct i915_virtual_gpu vgpu;
1512 
1513 	struct intel_gvt *gvt;
1514 
1515 	struct intel_wopcm wopcm;
1516 
1517 	struct intel_huc huc;
1518 	struct intel_guc guc;
1519 
1520 	struct intel_csr csr;
1521 
1522 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1523 
1524 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
1525 	 * controller on different i2c buses. */
1526 	struct mutex gmbus_mutex;
1527 
1528 	/**
1529 	 * Base address of where the gmbus and gpio blocks are located (either
1530 	 * on PCH or on SoC for platforms without PCH).
1531 	 */
1532 	u32 gpio_mmio_base;
1533 
1534 	/* MMIO base address for MIPI regs */
1535 	u32 mipi_mmio_base;
1536 
1537 	u32 psr_mmio_base;
1538 
1539 	u32 pps_mmio_base;
1540 
1541 	wait_queue_head_t gmbus_wait_queue;
1542 
1543 	struct pci_dev *bridge_dev;
1544 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
1545 	/* Context used internally to idle the GPU and setup initial state */
1546 	struct i915_gem_context *kernel_context;
1547 	/* Context only to be used for injecting preemption commands */
1548 	struct i915_gem_context *preempt_context;
1549 	struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1550 					    [MAX_ENGINE_INSTANCE + 1];
1551 
1552 	struct resource mch_res;
1553 
1554 	/* protects the irq masks */
1555 	spinlock_t irq_lock;
1556 
1557 	bool display_irqs_enabled;
1558 
1559 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1560 	struct pm_qos_request pm_qos;
1561 
1562 	/* Sideband mailbox protection */
1563 	struct mutex sb_lock;
1564 
1565 	/** Cached value of IMR to avoid reads in updating the bitfield */
1566 	union {
1567 		u32 irq_mask;
1568 		u32 de_irq_mask[I915_MAX_PIPES];
1569 	};
1570 	u32 gt_irq_mask;
1571 	u32 pm_imr;
1572 	u32 pm_ier;
1573 	u32 pm_rps_events;
1574 	u32 pm_guc_events;
1575 	u32 pipestat_irq_mask[I915_MAX_PIPES];
1576 
1577 	struct i915_hotplug hotplug;
1578 	struct intel_fbc fbc;
1579 	struct i915_drrs drrs;
1580 	struct intel_opregion opregion;
1581 	struct intel_vbt_data vbt;
1582 
1583 	bool preserve_bios_swizzle;
1584 
1585 	/* overlay */
1586 	struct intel_overlay *overlay;
1587 
1588 	/* backlight registers and fields in struct intel_panel */
1589 	struct mutex backlight_lock;
1590 
1591 	/* LVDS info */
1592 	bool no_aux_handshake;
1593 
1594 	/* protects panel power sequencer state */
1595 	struct mutex pps_mutex;
1596 
1597 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1598 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1599 
1600 	unsigned int fsb_freq, mem_freq, is_ddr3;
1601 	unsigned int skl_preferred_vco_freq;
1602 	unsigned int max_cdclk_freq;
1603 
1604 	unsigned int max_dotclk_freq;
1605 	unsigned int rawclk_freq;
1606 	unsigned int hpll_freq;
1607 	unsigned int fdi_pll_freq;
1608 	unsigned int czclk_freq;
1609 
1610 	struct {
1611 		/*
1612 		 * The current logical cdclk state.
1613 		 * See intel_atomic_state.cdclk.logical
1614 		 *
1615 		 * For reading holding any crtc lock is sufficient,
1616 		 * for writing must hold all of them.
1617 		 */
1618 		struct intel_cdclk_state logical;
1619 		/*
1620 		 * The current actual cdclk state.
1621 		 * See intel_atomic_state.cdclk.actual
1622 		 */
1623 		struct intel_cdclk_state actual;
1624 		/* The current hardware cdclk state */
1625 		struct intel_cdclk_state hw;
1626 
1627 		int force_min_cdclk;
1628 	} cdclk;
1629 
1630 	/**
1631 	 * wq - Driver workqueue for GEM.
1632 	 *
1633 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
1634 	 * locks, for otherwise the flushing done in the pageflip code will
1635 	 * result in deadlocks.
1636 	 */
1637 	struct workqueue_struct *wq;
1638 
1639 	/* ordered wq for modesets */
1640 	struct workqueue_struct *modeset_wq;
1641 
1642 	/* Display functions */
1643 	struct drm_i915_display_funcs display;
1644 
1645 	/* PCH chipset type */
1646 	enum intel_pch pch_type;
1647 	unsigned short pch_id;
1648 
1649 	unsigned long quirks;
1650 
1651 	struct drm_atomic_state *modeset_restore_state;
1652 	struct drm_modeset_acquire_ctx reset_ctx;
1653 
1654 	struct i915_ggtt ggtt; /* VM representing the global address space */
1655 
1656 	struct i915_gem_mm mm;
1657 	DECLARE_HASHTABLE(mm_structs, 7);
1658 	struct mutex mm_lock;
1659 
1660 	struct intel_ppat ppat;
1661 
1662 	/* Kernel Modesetting */
1663 
1664 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1665 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1666 
1667 #ifdef CONFIG_DEBUG_FS
1668 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1669 #endif
1670 
1671 	/* dpll and cdclk state is protected by connection_mutex */
1672 	int num_shared_dpll;
1673 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1674 	const struct intel_dpll_mgr *dpll_mgr;
1675 
1676 	/*
1677 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1678 	 * Must be global rather than per dpll, because on some platforms
1679 	 * plls share registers.
1680 	 */
1681 	struct mutex dpll_lock;
1682 
1683 	unsigned int active_crtcs;
1684 	/* minimum acceptable cdclk for each pipe */
1685 	int min_cdclk[I915_MAX_PIPES];
1686 	/* minimum acceptable voltage level for each pipe */
1687 	u8 min_voltage_level[I915_MAX_PIPES];
1688 
1689 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1690 
1691 	struct i915_wa_list gt_wa_list;
1692 
1693 	struct i915_frontbuffer_tracking fb_tracking;
1694 
1695 	struct intel_atomic_helper {
1696 		struct llist_head free_list;
1697 		struct work_struct free_work;
1698 	} atomic_helper;
1699 
1700 	u16 orig_clock;
1701 
1702 	bool mchbar_need_disable;
1703 
1704 	struct intel_l3_parity l3_parity;
1705 
1706 	/*
1707 	 * edram size in MB.
1708 	 * Cannot be determined by PCIID. You must always read a register.
1709 	 */
1710 	u32 edram_size_mb;
1711 
1712 	/*
1713 	 * Protects RPS/RC6 register access and PCU communication.
1714 	 * Must be taken after struct_mutex if nested. Note that
1715 	 * this lock may be held for long periods of time when
1716 	 * talking to hw - so only take it when talking to hw!
1717 	 */
1718 	struct mutex pcu_lock;
1719 
1720 	/* gen6+ GT PM state */
1721 	struct intel_gen6_power_mgmt gt_pm;
1722 
1723 	/* ilk-only ips/rps state. Everything in here is protected by the global
1724 	 * mchdev_lock in intel_pm.c */
1725 	struct intel_ilk_power_mgmt ips;
1726 
1727 	struct i915_power_domains power_domains;
1728 
1729 	struct i915_psr psr;
1730 
1731 	struct i915_gpu_error gpu_error;
1732 
1733 	struct drm_i915_gem_object *vlv_pctx;
1734 
1735 	/* list of fbdev register on this device */
1736 	struct intel_fbdev *fbdev;
1737 	struct work_struct fbdev_suspend_work;
1738 
1739 	struct drm_property *broadcast_rgb_property;
1740 	struct drm_property *force_audio_property;
1741 
1742 	/* hda/i915 audio component */
1743 	struct i915_audio_component *audio_component;
1744 	bool audio_component_registered;
1745 	/**
1746 	 * av_mutex - mutex for audio/video sync
1747 	 *
1748 	 */
1749 	struct mutex av_mutex;
1750 	int audio_power_refcount;
1751 
1752 	struct {
1753 		struct mutex mutex;
1754 		struct list_head list;
1755 		struct llist_head free_list;
1756 		struct work_struct free_work;
1757 
1758 		/* The hw wants to have a stable context identifier for the
1759 		 * lifetime of the context (for OA, PASID, faults, etc).
1760 		 * This is limited in execlists to 21 bits.
1761 		 */
1762 		struct ida hw_ida;
1763 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1764 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */
1765 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1766 		struct list_head hw_id_list;
1767 	} contexts;
1768 
1769 	u32 fdi_rx_config;
1770 
1771 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1772 	u32 chv_phy_control;
1773 	/*
1774 	 * Shadows for CHV DPLL_MD regs to keep the state
1775 	 * checker somewhat working in the presence hardware
1776 	 * crappiness (can't read out DPLL_MD for pipes B & C).
1777 	 */
1778 	u32 chv_dpll_md[I915_MAX_PIPES];
1779 	u32 bxt_phy_grc;
1780 
1781 	u32 suspend_count;
1782 	bool power_domains_suspended;
1783 	struct i915_suspend_saved_registers regfile;
1784 	struct vlv_s0ix_state vlv_s0ix_state;
1785 
1786 	enum {
1787 		I915_SAGV_UNKNOWN = 0,
1788 		I915_SAGV_DISABLED,
1789 		I915_SAGV_ENABLED,
1790 		I915_SAGV_NOT_CONTROLLED
1791 	} sagv_status;
1792 
1793 	struct {
1794 		/*
1795 		 * Raw watermark latency values:
1796 		 * in 0.1us units for WM0,
1797 		 * in 0.5us units for WM1+.
1798 		 */
1799 		/* primary */
1800 		u16 pri_latency[5];
1801 		/* sprite */
1802 		u16 spr_latency[5];
1803 		/* cursor */
1804 		u16 cur_latency[5];
1805 		/*
1806 		 * Raw watermark memory latency values
1807 		 * for SKL for all 8 levels
1808 		 * in 1us units.
1809 		 */
1810 		u16 skl_latency[8];
1811 
1812 		/* current hardware state */
1813 		union {
1814 			struct ilk_wm_values hw;
1815 			struct skl_ddb_values skl_hw;
1816 			struct vlv_wm_values vlv;
1817 			struct g4x_wm_values g4x;
1818 		};
1819 
1820 		u8 max_level;
1821 
1822 		/*
1823 		 * Should be held around atomic WM register writing; also
1824 		 * protects * intel_crtc->wm.active and
1825 		 * cstate->wm.need_postvbl_update.
1826 		 */
1827 		struct mutex wm_mutex;
1828 
1829 		/*
1830 		 * Set during HW readout of watermarks/DDB.  Some platforms
1831 		 * need to know when we're still using BIOS-provided values
1832 		 * (which we don't fully trust).
1833 		 */
1834 		bool distrust_bios_wm;
1835 	} wm;
1836 
1837 	struct dram_info {
1838 		bool valid;
1839 		bool is_16gb_dimm;
1840 		u8 num_channels;
1841 		u8 ranks;
1842 		u32 bandwidth_kbps;
1843 		bool symmetric_memory;
1844 		enum intel_dram_type {
1845 			INTEL_DRAM_UNKNOWN,
1846 			INTEL_DRAM_DDR3,
1847 			INTEL_DRAM_DDR4,
1848 			INTEL_DRAM_LPDDR3,
1849 			INTEL_DRAM_LPDDR4
1850 		} type;
1851 	} dram_info;
1852 
1853 	struct i915_runtime_pm runtime_pm;
1854 
1855 	struct {
1856 		bool initialized;
1857 
1858 		struct kobject *metrics_kobj;
1859 		struct ctl_table_header *sysctl_header;
1860 
1861 		/*
1862 		 * Lock associated with adding/modifying/removing OA configs
1863 		 * in dev_priv->perf.metrics_idr.
1864 		 */
1865 		struct mutex metrics_lock;
1866 
1867 		/*
1868 		 * List of dynamic configurations, you need to hold
1869 		 * dev_priv->perf.metrics_lock to access it.
1870 		 */
1871 		struct idr metrics_idr;
1872 
1873 		/*
1874 		 * Lock associated with anything below within this structure
1875 		 * except exclusive_stream.
1876 		 */
1877 		struct mutex lock;
1878 		struct list_head streams;
1879 
1880 		struct {
1881 			/*
1882 			 * The stream currently using the OA unit. If accessed
1883 			 * outside a syscall associated to its file
1884 			 * descriptor, you need to hold
1885 			 * dev_priv->drm.struct_mutex.
1886 			 */
1887 			struct i915_perf_stream *exclusive_stream;
1888 
1889 			struct intel_context *pinned_ctx;
1890 			u32 specific_ctx_id;
1891 			u32 specific_ctx_id_mask;
1892 
1893 			struct hrtimer poll_check_timer;
1894 			wait_queue_head_t poll_wq;
1895 			bool pollin;
1896 
1897 			/**
1898 			 * For rate limiting any notifications of spurious
1899 			 * invalid OA reports
1900 			 */
1901 			struct ratelimit_state spurious_report_rs;
1902 
1903 			bool periodic;
1904 			int period_exponent;
1905 
1906 			struct i915_oa_config test_config;
1907 
1908 			struct {
1909 				struct i915_vma *vma;
1910 				u8 *vaddr;
1911 				u32 last_ctx_id;
1912 				int format;
1913 				int format_size;
1914 
1915 				/**
1916 				 * Locks reads and writes to all head/tail state
1917 				 *
1918 				 * Consider: the head and tail pointer state
1919 				 * needs to be read consistently from a hrtimer
1920 				 * callback (atomic context) and read() fop
1921 				 * (user context) with tail pointer updates
1922 				 * happening in atomic context and head updates
1923 				 * in user context and the (unlikely)
1924 				 * possibility of read() errors needing to
1925 				 * reset all head/tail state.
1926 				 *
1927 				 * Note: Contention or performance aren't
1928 				 * currently a significant concern here
1929 				 * considering the relatively low frequency of
1930 				 * hrtimer callbacks (5ms period) and that
1931 				 * reads typically only happen in response to a
1932 				 * hrtimer event and likely complete before the
1933 				 * next callback.
1934 				 *
1935 				 * Note: This lock is not held *while* reading
1936 				 * and copying data to userspace so the value
1937 				 * of head observed in htrimer callbacks won't
1938 				 * represent any partial consumption of data.
1939 				 */
1940 				spinlock_t ptr_lock;
1941 
1942 				/**
1943 				 * One 'aging' tail pointer and one 'aged'
1944 				 * tail pointer ready to used for reading.
1945 				 *
1946 				 * Initial values of 0xffffffff are invalid
1947 				 * and imply that an update is required
1948 				 * (and should be ignored by an attempted
1949 				 * read)
1950 				 */
1951 				struct {
1952 					u32 offset;
1953 				} tails[2];
1954 
1955 				/**
1956 				 * Index for the aged tail ready to read()
1957 				 * data up to.
1958 				 */
1959 				unsigned int aged_tail_idx;
1960 
1961 				/**
1962 				 * A monotonic timestamp for when the current
1963 				 * aging tail pointer was read; used to
1964 				 * determine when it is old enough to trust.
1965 				 */
1966 				u64 aging_timestamp;
1967 
1968 				/**
1969 				 * Although we can always read back the head
1970 				 * pointer register, we prefer to avoid
1971 				 * trusting the HW state, just to avoid any
1972 				 * risk that some hardware condition could
1973 				 * somehow bump the head pointer unpredictably
1974 				 * and cause us to forward the wrong OA buffer
1975 				 * data to userspace.
1976 				 */
1977 				u32 head;
1978 			} oa_buffer;
1979 
1980 			u32 gen7_latched_oastatus1;
1981 			u32 ctx_oactxctrl_offset;
1982 			u32 ctx_flexeu0_offset;
1983 
1984 			/**
1985 			 * The RPT_ID/reason field for Gen8+ includes a bit
1986 			 * to determine if the CTX ID in the report is valid
1987 			 * but the specific bit differs between Gen 8 and 9
1988 			 */
1989 			u32 gen8_valid_ctx_bit;
1990 
1991 			struct i915_oa_ops ops;
1992 			const struct i915_oa_format *oa_formats;
1993 		} oa;
1994 	} perf;
1995 
1996 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
1997 	struct {
1998 		void (*cleanup_engine)(struct intel_engine_cs *engine);
1999 
2000 		struct i915_gt_timelines {
2001 			struct mutex mutex; /* protects list, tainted by GPU */
2002 			struct list_head active_list;
2003 
2004 			/* Pack multiple timelines' seqnos into the same page */
2005 			spinlock_t hwsp_lock;
2006 			struct list_head hwsp_free_list;
2007 		} timelines;
2008 
2009 		intel_engine_mask_t active_engines;
2010 		struct list_head active_rings;
2011 		struct list_head closed_vma;
2012 		u32 active_requests;
2013 
2014 		/**
2015 		 * Is the GPU currently considered idle, or busy executing
2016 		 * userspace requests? Whilst idle, we allow runtime power
2017 		 * management to power down the hardware and display clocks.
2018 		 * In order to reduce the effect on performance, there
2019 		 * is a slight delay before we do so.
2020 		 */
2021 		intel_wakeref_t awake;
2022 
2023 		/**
2024 		 * We leave the user IRQ off as much as possible,
2025 		 * but this means that requests will finish and never
2026 		 * be retired once the system goes idle. Set a timer to
2027 		 * fire periodically while the ring is running. When it
2028 		 * fires, go retire requests.
2029 		 */
2030 		struct delayed_work retire_work;
2031 
2032 		/**
2033 		 * When we detect an idle GPU, we want to turn on
2034 		 * powersaving features. So once we see that there
2035 		 * are no more requests outstanding and no more
2036 		 * arrive within a small period of time, we fire
2037 		 * off the idle_work.
2038 		 */
2039 		struct delayed_work idle_work;
2040 
2041 		ktime_t last_init_time;
2042 
2043 		struct i915_vma *scratch;
2044 	} gt;
2045 
2046 	/* For i945gm vblank irq vs. C3 workaround */
2047 	struct {
2048 		struct work_struct work;
2049 		struct pm_qos_request pm_qos;
2050 		u8 c3_disable_latency;
2051 		u8 enabled;
2052 	} i945gm_vblank;
2053 
2054 	/* perform PHY state sanity checks? */
2055 	bool chv_phy_assert[2];
2056 
2057 	bool ipc_enabled;
2058 
2059 	/* Used to save the pipe-to-encoder mapping for audio */
2060 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2061 
2062 	/* necessary resource sharing with HDMI LPE audio driver. */
2063 	struct {
2064 		struct platform_device *platdev;
2065 		int	irq;
2066 	} lpe_audio;
2067 
2068 	struct i915_pmu pmu;
2069 
2070 	struct i915_hdcp_comp_master *hdcp_master;
2071 	bool hdcp_comp_added;
2072 
2073 	/* Mutex to protect the above hdcp component related values. */
2074 	struct mutex hdcp_comp_mutex;
2075 
2076 	/*
2077 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2078 	 * will be rejected. Instead look for a better place.
2079 	 */
2080 };
2081 
2082 struct dram_dimm_info {
2083 	u8 size, width, ranks;
2084 };
2085 
2086 struct dram_channel_info {
2087 	struct dram_dimm_info dimm_l, dimm_s;
2088 	u8 ranks;
2089 	bool is_16gb_dimm;
2090 };
2091 
2092 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2093 {
2094 	return container_of(dev, struct drm_i915_private, drm);
2095 }
2096 
2097 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2098 {
2099 	return to_i915(dev_get_drvdata(kdev));
2100 }
2101 
2102 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2103 {
2104 	return container_of(wopcm, struct drm_i915_private, wopcm);
2105 }
2106 
2107 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2108 {
2109 	return container_of(guc, struct drm_i915_private, guc);
2110 }
2111 
2112 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2113 {
2114 	return container_of(huc, struct drm_i915_private, huc);
2115 }
2116 
2117 static inline struct drm_i915_private *uncore_to_i915(struct intel_uncore *uncore)
2118 {
2119 	return container_of(uncore, struct drm_i915_private, uncore);
2120 }
2121 
2122 /* Simple iterator over all initialised engines */
2123 #define for_each_engine(engine__, dev_priv__, id__) \
2124 	for ((id__) = 0; \
2125 	     (id__) < I915_NUM_ENGINES; \
2126 	     (id__)++) \
2127 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2128 
2129 /* Iterator over subset of engines selected by mask */
2130 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2131 	for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->engine_mask; \
2132 	     (tmp__) ? \
2133 	     ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2134 	     0;)
2135 
2136 enum hdmi_force_audio {
2137 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2138 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2139 	HDMI_AUDIO_AUTO,		/* trust EDID */
2140 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2141 };
2142 
2143 #define I915_GTT_OFFSET_NONE ((u32)-1)
2144 
2145 /*
2146  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2147  * considered to be the frontbuffer for the given plane interface-wise. This
2148  * doesn't mean that the hw necessarily already scans it out, but that any
2149  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2150  *
2151  * We have one bit per pipe and per scanout plane type.
2152  */
2153 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2154 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2155 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2156 	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2157 	BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2158 })
2159 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2160 	BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2161 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2162 	GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2163 		INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2164 
2165 /*
2166  * Optimised SGL iterator for GEM objects
2167  */
2168 static __always_inline struct sgt_iter {
2169 	struct scatterlist *sgp;
2170 	union {
2171 		unsigned long pfn;
2172 		dma_addr_t dma;
2173 	};
2174 	unsigned int curr;
2175 	unsigned int max;
2176 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2177 	struct sgt_iter s = { .sgp = sgl };
2178 
2179 	if (s.sgp) {
2180 		s.max = s.curr = s.sgp->offset;
2181 		s.max += s.sgp->length;
2182 		if (dma)
2183 			s.dma = sg_dma_address(s.sgp);
2184 		else
2185 			s.pfn = page_to_pfn(sg_page(s.sgp));
2186 	}
2187 
2188 	return s;
2189 }
2190 
2191 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2192 {
2193 	++sg;
2194 	if (unlikely(sg_is_chain(sg)))
2195 		sg = sg_chain_ptr(sg);
2196 	return sg;
2197 }
2198 
2199 /**
2200  * __sg_next - return the next scatterlist entry in a list
2201  * @sg:		The current sg entry
2202  *
2203  * Description:
2204  *   If the entry is the last, return NULL; otherwise, step to the next
2205  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2206  *   otherwise just return the pointer to the current element.
2207  **/
2208 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2209 {
2210 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2211 }
2212 
2213 /**
2214  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2215  * @__dmap:	DMA address (output)
2216  * @__iter:	'struct sgt_iter' (iterator state, internal)
2217  * @__sgt:	sg_table to iterate over (input)
2218  */
2219 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2220 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2221 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2222 	     (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ?	\
2223 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2224 
2225 /**
2226  * for_each_sgt_page - iterate over the pages of the given sg_table
2227  * @__pp:	page pointer (output)
2228  * @__iter:	'struct sgt_iter' (iterator state, internal)
2229  * @__sgt:	sg_table to iterate over (input)
2230  */
2231 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2232 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2233 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2234 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2235 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2236 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2237 
2238 bool i915_sg_trim(struct sg_table *orig_st);
2239 
2240 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2241 {
2242 	unsigned int page_sizes;
2243 
2244 	page_sizes = 0;
2245 	while (sg) {
2246 		GEM_BUG_ON(sg->offset);
2247 		GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2248 		page_sizes |= sg->length;
2249 		sg = __sg_next(sg);
2250 	}
2251 
2252 	return page_sizes;
2253 }
2254 
2255 static inline unsigned int i915_sg_segment_size(void)
2256 {
2257 	unsigned int size = swiotlb_max_segment();
2258 
2259 	if (size == 0)
2260 		return SCATTERLIST_MAX_SEGMENT;
2261 
2262 	size = rounddown(size, PAGE_SIZE);
2263 	/* swiotlb_max_segment_size can return 1 byte when it means one page. */
2264 	if (size < PAGE_SIZE)
2265 		size = PAGE_SIZE;
2266 
2267 	return size;
2268 }
2269 
2270 #define INTEL_INFO(dev_priv)	(&(dev_priv)->__info)
2271 #define RUNTIME_INFO(dev_priv)	(&(dev_priv)->__runtime)
2272 #define DRIVER_CAPS(dev_priv)	(&(dev_priv)->caps)
2273 
2274 #define INTEL_GEN(dev_priv)	(INTEL_INFO(dev_priv)->gen)
2275 #define INTEL_DEVID(dev_priv)	(RUNTIME_INFO(dev_priv)->device_id)
2276 
2277 #define REVID_FOREVER		0xff
2278 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2279 
2280 #define INTEL_GEN_MASK(s, e) ( \
2281 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2282 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2283 	GENMASK((e) - 1, (s) - 1))
2284 
2285 /* Returns true if Gen is in inclusive range [Start, End] */
2286 #define IS_GEN_RANGE(dev_priv, s, e) \
2287 	(!!(INTEL_INFO(dev_priv)->gen_mask & INTEL_GEN_MASK((s), (e))))
2288 
2289 #define IS_GEN(dev_priv, n) \
2290 	(BUILD_BUG_ON_ZERO(!__builtin_constant_p(n)) + \
2291 	 INTEL_INFO(dev_priv)->gen == (n))
2292 
2293 /*
2294  * Return true if revision is in range [since,until] inclusive.
2295  *
2296  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2297  */
2298 #define IS_REVID(p, since, until) \
2299 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2300 
2301 static __always_inline unsigned int
2302 __platform_mask_index(const struct intel_runtime_info *info,
2303 		      enum intel_platform p)
2304 {
2305 	const unsigned int pbits =
2306 		BITS_PER_TYPE(info->platform_mask[0]) - INTEL_SUBPLATFORM_BITS;
2307 
2308 	/* Expand the platform_mask array if this fails. */
2309 	BUILD_BUG_ON(INTEL_MAX_PLATFORMS >
2310 		     pbits * ARRAY_SIZE(info->platform_mask));
2311 
2312 	return p / pbits;
2313 }
2314 
2315 static __always_inline unsigned int
2316 __platform_mask_bit(const struct intel_runtime_info *info,
2317 		    enum intel_platform p)
2318 {
2319 	const unsigned int pbits =
2320 		BITS_PER_TYPE(info->platform_mask[0]) - INTEL_SUBPLATFORM_BITS;
2321 
2322 	return p % pbits + INTEL_SUBPLATFORM_BITS;
2323 }
2324 
2325 static inline u32
2326 intel_subplatform(const struct intel_runtime_info *info, enum intel_platform p)
2327 {
2328 	const unsigned int pi = __platform_mask_index(info, p);
2329 
2330 	return info->platform_mask[pi] & INTEL_SUBPLATFORM_BITS;
2331 }
2332 
2333 static __always_inline bool
2334 IS_PLATFORM(const struct drm_i915_private *i915, enum intel_platform p)
2335 {
2336 	const struct intel_runtime_info *info = RUNTIME_INFO(i915);
2337 	const unsigned int pi = __platform_mask_index(info, p);
2338 	const unsigned int pb = __platform_mask_bit(info, p);
2339 
2340 	BUILD_BUG_ON(!__builtin_constant_p(p));
2341 
2342 	return info->platform_mask[pi] & BIT(pb);
2343 }
2344 
2345 static __always_inline bool
2346 IS_SUBPLATFORM(const struct drm_i915_private *i915,
2347 	       enum intel_platform p, unsigned int s)
2348 {
2349 	const struct intel_runtime_info *info = RUNTIME_INFO(i915);
2350 	const unsigned int pi = __platform_mask_index(info, p);
2351 	const unsigned int pb = __platform_mask_bit(info, p);
2352 	const unsigned int msb = BITS_PER_TYPE(info->platform_mask[0]) - 1;
2353 	const u32 mask = info->platform_mask[pi];
2354 
2355 	BUILD_BUG_ON(!__builtin_constant_p(p));
2356 	BUILD_BUG_ON(!__builtin_constant_p(s));
2357 	BUILD_BUG_ON((s) >= INTEL_SUBPLATFORM_BITS);
2358 
2359 	/* Shift and test on the MSB position so sign flag can be used. */
2360 	return ((mask << (msb - pb)) & (mask << (msb - s))) & BIT(msb);
2361 }
2362 
2363 #define IS_MOBILE(dev_priv)	(INTEL_INFO(dev_priv)->is_mobile)
2364 
2365 #define IS_I830(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I830)
2366 #define IS_I845G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I845G)
2367 #define IS_I85X(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I85X)
2368 #define IS_I865G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I865G)
2369 #define IS_I915G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915G)
2370 #define IS_I915GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915GM)
2371 #define IS_I945G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945G)
2372 #define IS_I945GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945GM)
2373 #define IS_I965G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965G)
2374 #define IS_I965GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965GM)
2375 #define IS_G45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G45)
2376 #define IS_GM45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GM45)
2377 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2378 #define IS_PINEVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2379 #define IS_G33(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G33)
2380 #define IS_IRONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IRONLAKE)
2381 #define IS_IRONLAKE_M(dev_priv) \
2382 	(IS_PLATFORM(dev_priv, INTEL_IRONLAKE) && IS_MOBILE(dev_priv))
2383 #define IS_IVYBRIDGE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2384 #define IS_IVB_GT1(dev_priv)	(IS_IVYBRIDGE(dev_priv) && \
2385 				 INTEL_INFO(dev_priv)->gt == 1)
2386 #define IS_VALLEYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2387 #define IS_CHERRYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2388 #define IS_HASWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_HASWELL)
2389 #define IS_BROADWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2390 #define IS_SKYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2391 #define IS_BROXTON(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROXTON)
2392 #define IS_KABYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2393 #define IS_GEMINILAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2394 #define IS_COFFEELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2395 #define IS_CANNONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2396 #define IS_ICELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2397 #define IS_ELKHARTLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ELKHARTLAKE)
2398 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2399 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2400 #define IS_BDW_ULT(dev_priv) \
2401 	IS_SUBPLATFORM(dev_priv, INTEL_BROADWELL, INTEL_SUBPLATFORM_ULT)
2402 #define IS_BDW_ULX(dev_priv) \
2403 	IS_SUBPLATFORM(dev_priv, INTEL_BROADWELL, INTEL_SUBPLATFORM_ULX)
2404 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2405 				 INTEL_INFO(dev_priv)->gt == 3)
2406 #define IS_HSW_ULT(dev_priv) \
2407 	IS_SUBPLATFORM(dev_priv, INTEL_HASWELL, INTEL_SUBPLATFORM_ULT)
2408 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2409 				 INTEL_INFO(dev_priv)->gt == 3)
2410 #define IS_HSW_GT1(dev_priv)	(IS_HASWELL(dev_priv) && \
2411 				 INTEL_INFO(dev_priv)->gt == 1)
2412 /* ULX machines are also considered ULT. */
2413 #define IS_HSW_ULX(dev_priv) \
2414 	IS_SUBPLATFORM(dev_priv, INTEL_HASWELL, INTEL_SUBPLATFORM_ULX)
2415 #define IS_SKL_ULT(dev_priv) \
2416 	IS_SUBPLATFORM(dev_priv, INTEL_SKYLAKE, INTEL_SUBPLATFORM_ULT)
2417 #define IS_SKL_ULX(dev_priv) \
2418 	IS_SUBPLATFORM(dev_priv, INTEL_SKYLAKE, INTEL_SUBPLATFORM_ULX)
2419 #define IS_KBL_ULT(dev_priv) \
2420 	IS_SUBPLATFORM(dev_priv, INTEL_KABYLAKE, INTEL_SUBPLATFORM_ULT)
2421 #define IS_KBL_ULX(dev_priv) \
2422 	IS_SUBPLATFORM(dev_priv, INTEL_KABYLAKE, INTEL_SUBPLATFORM_ULX)
2423 #define IS_AML_ULX(dev_priv) \
2424 	(IS_SUBPLATFORM(dev_priv, INTEL_KABYLAKE, INTEL_SUBPLATFORM_AML) || \
2425 	 IS_SUBPLATFORM(dev_priv, INTEL_COFFEELAKE, INTEL_SUBPLATFORM_AML))
2426 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2427 				 INTEL_INFO(dev_priv)->gt == 2)
2428 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2429 				 INTEL_INFO(dev_priv)->gt == 3)
2430 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2431 				 INTEL_INFO(dev_priv)->gt == 4)
2432 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2433 				 INTEL_INFO(dev_priv)->gt == 2)
2434 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2435 				 INTEL_INFO(dev_priv)->gt == 3)
2436 #define IS_CFL_ULT(dev_priv) \
2437 	IS_SUBPLATFORM(dev_priv, INTEL_COFFEELAKE, INTEL_SUBPLATFORM_ULT)
2438 #define IS_CFL_GT2(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2439 				 INTEL_INFO(dev_priv)->gt == 2)
2440 #define IS_CFL_GT3(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2441 				 INTEL_INFO(dev_priv)->gt == 3)
2442 #define IS_CNL_WITH_PORT_F(dev_priv) \
2443 	IS_SUBPLATFORM(dev_priv, INTEL_CANNONLAKE, INTEL_SUBPLATFORM_PORTF)
2444 #define IS_ICL_WITH_PORT_F(dev_priv) \
2445 	IS_SUBPLATFORM(dev_priv, INTEL_ICELAKE, INTEL_SUBPLATFORM_PORTF)
2446 
2447 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2448 
2449 #define SKL_REVID_A0		0x0
2450 #define SKL_REVID_B0		0x1
2451 #define SKL_REVID_C0		0x2
2452 #define SKL_REVID_D0		0x3
2453 #define SKL_REVID_E0		0x4
2454 #define SKL_REVID_F0		0x5
2455 #define SKL_REVID_G0		0x6
2456 #define SKL_REVID_H0		0x7
2457 
2458 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2459 
2460 #define BXT_REVID_A0		0x0
2461 #define BXT_REVID_A1		0x1
2462 #define BXT_REVID_B0		0x3
2463 #define BXT_REVID_B_LAST	0x8
2464 #define BXT_REVID_C0		0x9
2465 
2466 #define IS_BXT_REVID(dev_priv, since, until) \
2467 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2468 
2469 #define KBL_REVID_A0		0x0
2470 #define KBL_REVID_B0		0x1
2471 #define KBL_REVID_C0		0x2
2472 #define KBL_REVID_D0		0x3
2473 #define KBL_REVID_E0		0x4
2474 
2475 #define IS_KBL_REVID(dev_priv, since, until) \
2476 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2477 
2478 #define GLK_REVID_A0		0x0
2479 #define GLK_REVID_A1		0x1
2480 
2481 #define IS_GLK_REVID(dev_priv, since, until) \
2482 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2483 
2484 #define CNL_REVID_A0		0x0
2485 #define CNL_REVID_B0		0x1
2486 #define CNL_REVID_C0		0x2
2487 
2488 #define IS_CNL_REVID(p, since, until) \
2489 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2490 
2491 #define ICL_REVID_A0		0x0
2492 #define ICL_REVID_A2		0x1
2493 #define ICL_REVID_B0		0x3
2494 #define ICL_REVID_B2		0x4
2495 #define ICL_REVID_C0		0x5
2496 
2497 #define IS_ICL_REVID(p, since, until) \
2498 	(IS_ICELAKE(p) && IS_REVID(p, since, until))
2499 
2500 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2501 #define IS_GEN9_LP(dev_priv)	(IS_GEN(dev_priv, 9) && IS_LP(dev_priv))
2502 #define IS_GEN9_BC(dev_priv)	(IS_GEN(dev_priv, 9) && !IS_LP(dev_priv))
2503 
2504 #define HAS_ENGINE(dev_priv, id) (INTEL_INFO(dev_priv)->engine_mask & BIT(id))
2505 
2506 #define ENGINE_INSTANCES_MASK(dev_priv, first, count) ({		\
2507 	unsigned int first__ = (first);					\
2508 	unsigned int count__ = (count);					\
2509 	(INTEL_INFO(dev_priv)->engine_mask &				\
2510 	 GENMASK(first__ + count__ - 1, first__)) >> first__;		\
2511 })
2512 #define VDBOX_MASK(dev_priv) \
2513 	ENGINE_INSTANCES_MASK(dev_priv, VCS0, I915_MAX_VCS)
2514 #define VEBOX_MASK(dev_priv) \
2515 	ENGINE_INSTANCES_MASK(dev_priv, VECS0, I915_MAX_VECS)
2516 
2517 #define HAS_LLC(dev_priv)	(INTEL_INFO(dev_priv)->has_llc)
2518 #define HAS_SNOOP(dev_priv)	(INTEL_INFO(dev_priv)->has_snoop)
2519 #define HAS_EDRAM(dev_priv)	((dev_priv)->edram_size_mb)
2520 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2521 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2522 
2523 #define HWS_NEEDS_PHYSICAL(dev_priv)	(INTEL_INFO(dev_priv)->hws_needs_physical)
2524 
2525 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2526 		(INTEL_INFO(dev_priv)->has_logical_ring_contexts)
2527 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2528 		(INTEL_INFO(dev_priv)->has_logical_ring_elsq)
2529 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2530 		(INTEL_INFO(dev_priv)->has_logical_ring_preemption)
2531 
2532 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2533 
2534 #define INTEL_PPGTT(dev_priv) (INTEL_INFO(dev_priv)->ppgtt_type)
2535 #define HAS_PPGTT(dev_priv) \
2536 	(INTEL_PPGTT(dev_priv) != INTEL_PPGTT_NONE)
2537 #define HAS_FULL_PPGTT(dev_priv) \
2538 	(INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL)
2539 
2540 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2541 	GEM_BUG_ON((sizes) == 0); \
2542 	((sizes) & ~INTEL_INFO(dev_priv)->page_sizes) == 0; \
2543 })
2544 
2545 #define HAS_OVERLAY(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_overlay)
2546 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2547 		(INTEL_INFO(dev_priv)->display.overlay_needs_physical)
2548 
2549 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2550 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
2551 
2552 /* WaRsDisableCoarsePowerGating:skl,cnl */
2553 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2554 	(IS_CANNONLAKE(dev_priv) || \
2555 	 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2556 
2557 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2558 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \
2559 					IS_GEMINILAKE(dev_priv) || \
2560 					IS_KABYLAKE(dev_priv))
2561 
2562 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2563  * rows, which changed the alignment requirements and fence programming.
2564  */
2565 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN(dev_priv, 2) && \
2566 					 !(IS_I915G(dev_priv) || \
2567 					 IS_I915GM(dev_priv)))
2568 #define SUPPORTS_TV(dev_priv)		(INTEL_INFO(dev_priv)->display.supports_tv)
2569 #define I915_HAS_HOTPLUG(dev_priv)	(INTEL_INFO(dev_priv)->display.has_hotplug)
2570 
2571 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
2572 #define HAS_FBC(dev_priv)	(INTEL_INFO(dev_priv)->display.has_fbc)
2573 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2574 
2575 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2576 
2577 #define HAS_DP_MST(dev_priv)	(INTEL_INFO(dev_priv)->display.has_dp_mst)
2578 
2579 #define HAS_DDI(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_ddi)
2580 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) (INTEL_INFO(dev_priv)->has_fpga_dbg)
2581 #define HAS_PSR(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_psr)
2582 #define HAS_TRANSCODER_EDP(dev_priv)	 (INTEL_INFO(dev_priv)->trans_offsets[TRANSCODER_EDP] != 0)
2583 
2584 #define HAS_RC6(dev_priv)		 (INTEL_INFO(dev_priv)->has_rc6)
2585 #define HAS_RC6p(dev_priv)		 (INTEL_INFO(dev_priv)->has_rc6p)
2586 #define HAS_RC6pp(dev_priv)		 (false) /* HW was never validated */
2587 
2588 #define HAS_CSR(dev_priv)	(INTEL_INFO(dev_priv)->display.has_csr)
2589 
2590 #define HAS_RUNTIME_PM(dev_priv) (INTEL_INFO(dev_priv)->has_runtime_pm)
2591 #define HAS_64BIT_RELOC(dev_priv) (INTEL_INFO(dev_priv)->has_64bit_reloc)
2592 
2593 #define HAS_IPC(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_ipc)
2594 
2595 /*
2596  * For now, anything with a GuC requires uCode loading, and then supports
2597  * command submission once loaded. But these are logically independent
2598  * properties, so we have separate macros to test them.
2599  */
2600 #define HAS_GUC(dev_priv)	(INTEL_INFO(dev_priv)->has_guc)
2601 #define HAS_GUC_CT(dev_priv)	(INTEL_INFO(dev_priv)->has_guc_ct)
2602 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2603 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
2604 
2605 /* For now, anything with a GuC has also HuC */
2606 #define HAS_HUC(dev_priv)	(HAS_GUC(dev_priv))
2607 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2608 
2609 /* Having a GuC is not the same as using a GuC */
2610 #define USES_GUC(dev_priv)		intel_uc_is_using_guc(dev_priv)
2611 #define USES_GUC_SUBMISSION(dev_priv)	intel_uc_is_using_guc_submission(dev_priv)
2612 #define USES_HUC(dev_priv)		intel_uc_is_using_huc(dev_priv)
2613 
2614 #define HAS_POOLED_EU(dev_priv)	(INTEL_INFO(dev_priv)->has_pooled_eu)
2615 
2616 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
2617 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2618 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2619 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2620 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2621 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2622 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
2623 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
2624 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2625 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2626 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
2627 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
2628 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
2629 #define INTEL_PCH_CMP_DEVICE_ID_TYPE		0x0280
2630 #define INTEL_PCH_ICP_DEVICE_ID_TYPE		0x3480
2631 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2632 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2633 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2634 
2635 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2636 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2637 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2638 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2639 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2640 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2641 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2642 #define HAS_PCH_LPT_LP(dev_priv) \
2643 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2644 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2645 #define HAS_PCH_LPT_H(dev_priv) \
2646 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2647 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2648 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2649 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2650 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2651 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2652 
2653 #define HAS_GMCH(dev_priv) (INTEL_INFO(dev_priv)->display.has_gmch)
2654 
2655 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2656 
2657 /* DPF == dynamic parity feature */
2658 #define HAS_L3_DPF(dev_priv) (INTEL_INFO(dev_priv)->has_l3_dpf)
2659 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2660 				 2 : HAS_L3_DPF(dev_priv))
2661 
2662 #define GT_FREQUENCY_MULTIPLIER 50
2663 #define GEN9_FREQ_SCALER 3
2664 
2665 #define HAS_DISPLAY(dev_priv) (INTEL_INFO(dev_priv)->num_pipes > 0)
2666 
2667 #include "i915_trace.h"
2668 
2669 static inline bool intel_vtd_active(void)
2670 {
2671 #ifdef CONFIG_INTEL_IOMMU
2672 	if (intel_iommu_gfx_mapped)
2673 		return true;
2674 #endif
2675 	return false;
2676 }
2677 
2678 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2679 {
2680 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2681 }
2682 
2683 static inline bool
2684 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2685 {
2686 	return IS_BROXTON(dev_priv) && intel_vtd_active();
2687 }
2688 
2689 /* i915_drv.c */
2690 void __printf(3, 4)
2691 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2692 	      const char *fmt, ...);
2693 
2694 #define i915_report_error(dev_priv, fmt, ...)				   \
2695 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2696 
2697 #ifdef CONFIG_COMPAT
2698 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2699 			      unsigned long arg);
2700 #else
2701 #define i915_compat_ioctl NULL
2702 #endif
2703 extern const struct dev_pm_ops i915_pm_ops;
2704 
2705 extern int i915_driver_load(struct pci_dev *pdev,
2706 			    const struct pci_device_id *ent);
2707 extern void i915_driver_unload(struct drm_device *dev);
2708 
2709 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2710 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2711 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2712 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2713 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2714 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2715 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2716 
2717 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2718 int intel_engines_init(struct drm_i915_private *dev_priv);
2719 
2720 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv);
2721 
2722 /* intel_hotplug.c */
2723 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2724 			   u32 pin_mask, u32 long_mask);
2725 void intel_hpd_init(struct drm_i915_private *dev_priv);
2726 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2727 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2728 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2729 				   enum port port);
2730 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2731 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2732 
2733 /* i915_irq.c */
2734 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2735 {
2736 	unsigned long delay;
2737 
2738 	if (unlikely(!i915_modparams.enable_hangcheck))
2739 		return;
2740 
2741 	/* Don't continually defer the hangcheck so that it is always run at
2742 	 * least once after work has been scheduled on any ring. Otherwise,
2743 	 * we will ignore a hung ring if a second ring is kept busy.
2744 	 */
2745 
2746 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2747 	queue_delayed_work(system_long_wq,
2748 			   &dev_priv->gpu_error.hangcheck_work, delay);
2749 }
2750 
2751 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2752 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2753 int intel_irq_install(struct drm_i915_private *dev_priv);
2754 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2755 
2756 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2757 {
2758 	return dev_priv->gvt;
2759 }
2760 
2761 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2762 {
2763 	return dev_priv->vgpu.active;
2764 }
2765 
2766 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2767 			      enum pipe pipe);
2768 void
2769 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2770 		     u32 status_mask);
2771 
2772 void
2773 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2774 		      u32 status_mask);
2775 
2776 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2777 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2778 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2779 				   u32 mask,
2780 				   u32 bits);
2781 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2782 			    u32 interrupt_mask,
2783 			    u32 enabled_irq_mask);
2784 static inline void
2785 ilk_enable_display_irq(struct drm_i915_private *dev_priv, u32 bits)
2786 {
2787 	ilk_update_display_irq(dev_priv, bits, bits);
2788 }
2789 static inline void
2790 ilk_disable_display_irq(struct drm_i915_private *dev_priv, u32 bits)
2791 {
2792 	ilk_update_display_irq(dev_priv, bits, 0);
2793 }
2794 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2795 			 enum pipe pipe,
2796 			 u32 interrupt_mask,
2797 			 u32 enabled_irq_mask);
2798 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2799 				       enum pipe pipe, u32 bits)
2800 {
2801 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2802 }
2803 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2804 					enum pipe pipe, u32 bits)
2805 {
2806 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2807 }
2808 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2809 				  u32 interrupt_mask,
2810 				  u32 enabled_irq_mask);
2811 static inline void
2812 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, u32 bits)
2813 {
2814 	ibx_display_interrupt_update(dev_priv, bits, bits);
2815 }
2816 static inline void
2817 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, u32 bits)
2818 {
2819 	ibx_display_interrupt_update(dev_priv, bits, 0);
2820 }
2821 
2822 /* i915_gem.c */
2823 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2824 			  struct drm_file *file_priv);
2825 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2826 			 struct drm_file *file_priv);
2827 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2828 			  struct drm_file *file_priv);
2829 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2830 			struct drm_file *file_priv);
2831 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2832 			struct drm_file *file_priv);
2833 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2834 			      struct drm_file *file_priv);
2835 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2836 			     struct drm_file *file_priv);
2837 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2838 			      struct drm_file *file_priv);
2839 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2840 			       struct drm_file *file_priv);
2841 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2842 			struct drm_file *file_priv);
2843 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2844 			       struct drm_file *file);
2845 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2846 			       struct drm_file *file);
2847 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2848 			    struct drm_file *file_priv);
2849 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2850 			   struct drm_file *file_priv);
2851 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2852 			      struct drm_file *file_priv);
2853 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2854 			      struct drm_file *file_priv);
2855 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2856 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2857 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2858 			   struct drm_file *file);
2859 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2860 				struct drm_file *file_priv);
2861 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2862 			struct drm_file *file_priv);
2863 void i915_gem_sanitize(struct drm_i915_private *i915);
2864 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2865 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2866 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2867 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2868 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2869 
2870 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2871 			 const struct drm_i915_gem_object_ops *ops);
2872 struct drm_i915_gem_object *
2873 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2874 struct drm_i915_gem_object *
2875 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2876 				 const void *data, size_t size);
2877 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2878 void i915_gem_free_object(struct drm_gem_object *obj);
2879 
2880 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2881 {
2882 	if (!atomic_read(&i915->mm.free_count))
2883 		return;
2884 
2885 	/* A single pass should suffice to release all the freed objects (along
2886 	 * most call paths) , but be a little more paranoid in that freeing
2887 	 * the objects does take a little amount of time, during which the rcu
2888 	 * callbacks could have added new objects into the freed list, and
2889 	 * armed the work again.
2890 	 */
2891 	do {
2892 		rcu_barrier();
2893 	} while (flush_work(&i915->mm.free_work));
2894 }
2895 
2896 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2897 {
2898 	/*
2899 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
2900 	 * general we have workers that are armed by RCU and then rearm
2901 	 * themselves in their callbacks. To be paranoid, we need to
2902 	 * drain the workqueue a second time after waiting for the RCU
2903 	 * grace period so that we catch work queued via RCU from the first
2904 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
2905 	 * a result, we make an assumption that we only don't require more
2906 	 * than 2 passes to catch all recursive RCU delayed work.
2907 	 *
2908 	 */
2909 	int pass = 2;
2910 	do {
2911 		rcu_barrier();
2912 		i915_gem_drain_freed_objects(i915);
2913 		drain_workqueue(i915->wq);
2914 	} while (--pass);
2915 }
2916 
2917 struct i915_vma * __must_check
2918 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2919 			 const struct i915_ggtt_view *view,
2920 			 u64 size,
2921 			 u64 alignment,
2922 			 u64 flags);
2923 
2924 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
2925 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2926 
2927 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
2928 
2929 static inline int __sg_page_count(const struct scatterlist *sg)
2930 {
2931 	return sg->length >> PAGE_SHIFT;
2932 }
2933 
2934 struct scatterlist *
2935 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
2936 		       unsigned int n, unsigned int *offset);
2937 
2938 struct page *
2939 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
2940 			 unsigned int n);
2941 
2942 struct page *
2943 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
2944 			       unsigned int n);
2945 
2946 dma_addr_t
2947 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
2948 				unsigned long n);
2949 
2950 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2951 				 struct sg_table *pages,
2952 				 unsigned int sg_page_sizes);
2953 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2954 
2955 static inline int __must_check
2956 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2957 {
2958 	might_lock(&obj->mm.lock);
2959 
2960 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
2961 		return 0;
2962 
2963 	return __i915_gem_object_get_pages(obj);
2964 }
2965 
2966 static inline bool
2967 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
2968 {
2969 	return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
2970 }
2971 
2972 static inline void
2973 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2974 {
2975 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2976 
2977 	atomic_inc(&obj->mm.pages_pin_count);
2978 }
2979 
2980 static inline bool
2981 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
2982 {
2983 	return atomic_read(&obj->mm.pages_pin_count);
2984 }
2985 
2986 static inline void
2987 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2988 {
2989 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2990 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
2991 
2992 	atomic_dec(&obj->mm.pages_pin_count);
2993 }
2994 
2995 static inline void
2996 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2997 {
2998 	__i915_gem_object_unpin_pages(obj);
2999 }
3000 
3001 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock/struct_mutex */
3002 	I915_MM_NORMAL = 0,
3003 	I915_MM_SHRINKER /* called "recursively" from direct-reclaim-esque */
3004 };
3005 
3006 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3007 				enum i915_mm_subclass subclass);
3008 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3009 
3010 enum i915_map_type {
3011 	I915_MAP_WB = 0,
3012 	I915_MAP_WC,
3013 #define I915_MAP_OVERRIDE BIT(31)
3014 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3015 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3016 };
3017 
3018 static inline enum i915_map_type
3019 i915_coherent_map_type(struct drm_i915_private *i915)
3020 {
3021 	return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
3022 }
3023 
3024 /**
3025  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3026  * @obj: the object to map into kernel address space
3027  * @type: the type of mapping, used to select pgprot_t
3028  *
3029  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3030  * pages and then returns a contiguous mapping of the backing storage into
3031  * the kernel address space. Based on the @type of mapping, the PTE will be
3032  * set to either WriteBack or WriteCombine (via pgprot_t).
3033  *
3034  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3035  * mapping is no longer required.
3036  *
3037  * Returns the pointer through which to access the mapped object, or an
3038  * ERR_PTR() on error.
3039  */
3040 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3041 					   enum i915_map_type type);
3042 
3043 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
3044 				 unsigned long offset,
3045 				 unsigned long size);
3046 static inline void i915_gem_object_flush_map(struct drm_i915_gem_object *obj)
3047 {
3048 	__i915_gem_object_flush_map(obj, 0, obj->base.size);
3049 }
3050 
3051 /**
3052  * i915_gem_object_unpin_map - releases an earlier mapping
3053  * @obj: the object to unmap
3054  *
3055  * After pinning the object and mapping its pages, once you are finished
3056  * with your access, call i915_gem_object_unpin_map() to release the pin
3057  * upon the mapping. Once the pin count reaches zero, that mapping may be
3058  * removed.
3059  */
3060 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3061 {
3062 	i915_gem_object_unpin_pages(obj);
3063 }
3064 
3065 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3066 				    unsigned int *needs_clflush);
3067 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3068 				     unsigned int *needs_clflush);
3069 #define CLFLUSH_BEFORE	BIT(0)
3070 #define CLFLUSH_AFTER	BIT(1)
3071 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
3072 
3073 static inline void
3074 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3075 {
3076 	i915_gem_object_unpin_pages(obj);
3077 }
3078 
3079 static inline int __must_check
3080 i915_mutex_lock_interruptible(struct drm_device *dev)
3081 {
3082 	return mutex_lock_interruptible(&dev->struct_mutex);
3083 }
3084 
3085 int i915_gem_dumb_create(struct drm_file *file_priv,
3086 			 struct drm_device *dev,
3087 			 struct drm_mode_create_dumb *args);
3088 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3089 		      u32 handle, u64 *offset);
3090 int i915_gem_mmap_gtt_version(void);
3091 
3092 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3093 		       struct drm_i915_gem_object *new,
3094 		       unsigned frontbuffer_bits);
3095 
3096 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3097 
3098 static inline bool __i915_wedged(struct i915_gpu_error *error)
3099 {
3100 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3101 }
3102 
3103 static inline bool i915_reset_failed(struct drm_i915_private *i915)
3104 {
3105 	return __i915_wedged(&i915->gpu_error);
3106 }
3107 
3108 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3109 {
3110 	return READ_ONCE(error->reset_count);
3111 }
3112 
3113 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3114 					  struct intel_engine_cs *engine)
3115 {
3116 	return READ_ONCE(error->reset_engine_count[engine->id]);
3117 }
3118 
3119 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3120 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3121 
3122 void i915_gem_init_mmio(struct drm_i915_private *i915);
3123 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3124 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3125 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3126 void i915_gem_fini(struct drm_i915_private *dev_priv);
3127 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3128 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3129 			   unsigned int flags, long timeout);
3130 void i915_gem_suspend(struct drm_i915_private *dev_priv);
3131 void i915_gem_suspend_late(struct drm_i915_private *dev_priv);
3132 void i915_gem_resume(struct drm_i915_private *dev_priv);
3133 vm_fault_t i915_gem_fault(struct vm_fault *vmf);
3134 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3135 			 unsigned int flags,
3136 			 long timeout);
3137 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3138 				  unsigned int flags,
3139 				  const struct i915_sched_attr *attr);
3140 #define I915_PRIORITY_DISPLAY I915_USER_PRIORITY(I915_PRIORITY_MAX)
3141 
3142 int __must_check
3143 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3144 int __must_check
3145 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3146 int __must_check
3147 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3148 struct i915_vma * __must_check
3149 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3150 				     u32 alignment,
3151 				     const struct i915_ggtt_view *view,
3152 				     unsigned int flags);
3153 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3154 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3155 				int align);
3156 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3157 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3158 
3159 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3160 				    enum i915_cache_level cache_level);
3161 
3162 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3163 				struct dma_buf *dma_buf);
3164 
3165 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3166 				struct drm_gem_object *gem_obj, int flags);
3167 
3168 static inline struct i915_hw_ppgtt *
3169 i915_vm_to_ppgtt(struct i915_address_space *vm)
3170 {
3171 	return container_of(vm, struct i915_hw_ppgtt, vm);
3172 }
3173 
3174 /* i915_gem_fence_reg.c */
3175 struct drm_i915_fence_reg *
3176 i915_reserve_fence(struct drm_i915_private *dev_priv);
3177 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3178 
3179 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3180 
3181 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3182 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3183 				       struct sg_table *pages);
3184 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3185 					 struct sg_table *pages);
3186 
3187 static inline struct i915_gem_context *
3188 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3189 {
3190 	return idr_find(&file_priv->context_idr, id);
3191 }
3192 
3193 static inline struct i915_gem_context *
3194 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3195 {
3196 	struct i915_gem_context *ctx;
3197 
3198 	rcu_read_lock();
3199 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3200 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3201 		ctx = NULL;
3202 	rcu_read_unlock();
3203 
3204 	return ctx;
3205 }
3206 
3207 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3208 			 struct drm_file *file);
3209 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3210 			       struct drm_file *file);
3211 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3212 				  struct drm_file *file);
3213 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3214 			    struct intel_context *ce,
3215 			    u32 *reg_state);
3216 
3217 /* i915_gem_evict.c */
3218 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3219 					  u64 min_size, u64 alignment,
3220 					  unsigned cache_level,
3221 					  u64 start, u64 end,
3222 					  unsigned flags);
3223 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3224 					 struct drm_mm_node *node,
3225 					 unsigned int flags);
3226 int i915_gem_evict_vm(struct i915_address_space *vm);
3227 
3228 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3229 
3230 /* belongs in i915_gem_gtt.h */
3231 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3232 {
3233 	wmb();
3234 	if (INTEL_GEN(dev_priv) < 6)
3235 		intel_gtt_chipset_flush();
3236 }
3237 
3238 /* i915_gem_stolen.c */
3239 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3240 				struct drm_mm_node *node, u64 size,
3241 				unsigned alignment);
3242 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3243 					 struct drm_mm_node *node, u64 size,
3244 					 unsigned alignment, u64 start,
3245 					 u64 end);
3246 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3247 				 struct drm_mm_node *node);
3248 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3249 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv);
3250 struct drm_i915_gem_object *
3251 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3252 			      resource_size_t size);
3253 struct drm_i915_gem_object *
3254 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3255 					       resource_size_t stolen_offset,
3256 					       resource_size_t gtt_offset,
3257 					       resource_size_t size);
3258 
3259 /* i915_gem_internal.c */
3260 struct drm_i915_gem_object *
3261 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3262 				phys_addr_t size);
3263 
3264 /* i915_gem_shrinker.c */
3265 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3266 			      unsigned long target,
3267 			      unsigned long *nr_scanned,
3268 			      unsigned flags);
3269 #define I915_SHRINK_PURGEABLE 0x1
3270 #define I915_SHRINK_UNBOUND 0x2
3271 #define I915_SHRINK_BOUND 0x4
3272 #define I915_SHRINK_ACTIVE 0x8
3273 #define I915_SHRINK_VMAPS 0x10
3274 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3275 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3276 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3277 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915,
3278 				    struct mutex *mutex);
3279 
3280 /* i915_gem_tiling.c */
3281 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3282 {
3283 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3284 
3285 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3286 		i915_gem_object_is_tiled(obj);
3287 }
3288 
3289 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3290 			unsigned int tiling, unsigned int stride);
3291 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3292 			     unsigned int tiling, unsigned int stride);
3293 
3294 /* i915_debugfs.c */
3295 #ifdef CONFIG_DEBUG_FS
3296 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3297 int i915_debugfs_connector_add(struct drm_connector *connector);
3298 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3299 #else
3300 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3301 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3302 { return 0; }
3303 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3304 #endif
3305 
3306 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3307 
3308 /* i915_cmd_parser.c */
3309 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3310 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3311 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3312 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3313 			    struct drm_i915_gem_object *batch_obj,
3314 			    struct drm_i915_gem_object *shadow_batch_obj,
3315 			    u32 batch_start_offset,
3316 			    u32 batch_len,
3317 			    bool is_master);
3318 
3319 /* i915_perf.c */
3320 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3321 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3322 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3323 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3324 
3325 /* i915_suspend.c */
3326 extern int i915_save_state(struct drm_i915_private *dev_priv);
3327 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3328 
3329 /* i915_sysfs.c */
3330 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3331 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3332 
3333 /* intel_lpe_audio.c */
3334 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3335 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3336 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3337 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3338 			    enum pipe pipe, enum port port,
3339 			    const void *eld, int ls_clock, bool dp_output);
3340 
3341 /* intel_i2c.c */
3342 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3343 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3344 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3345 				     unsigned int pin);
3346 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3347 
3348 extern struct i2c_adapter *
3349 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3350 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3351 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3352 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3353 {
3354 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3355 }
3356 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3357 
3358 /* intel_bios.c */
3359 void intel_bios_init(struct drm_i915_private *dev_priv);
3360 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3361 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3362 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3363 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3364 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3365 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3366 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3367 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3368 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3369 				     enum port port);
3370 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3371 				enum port port);
3372 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv, enum port port);
3373 
3374 /* intel_acpi.c */
3375 #ifdef CONFIG_ACPI
3376 extern void intel_register_dsm_handler(void);
3377 extern void intel_unregister_dsm_handler(void);
3378 #else
3379 static inline void intel_register_dsm_handler(void) { return; }
3380 static inline void intel_unregister_dsm_handler(void) { return; }
3381 #endif /* CONFIG_ACPI */
3382 
3383 /* intel_device_info.c */
3384 static inline struct intel_device_info *
3385 mkwrite_device_info(struct drm_i915_private *dev_priv)
3386 {
3387 	return (struct intel_device_info *)INTEL_INFO(dev_priv);
3388 }
3389 
3390 static inline struct intel_sseu
3391 intel_device_default_sseu(struct drm_i915_private *i915)
3392 {
3393 	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
3394 	struct intel_sseu value = {
3395 		.slice_mask = sseu->slice_mask,
3396 		.subslice_mask = sseu->subslice_mask[0],
3397 		.min_eus_per_subslice = sseu->max_eus_per_subslice,
3398 		.max_eus_per_subslice = sseu->max_eus_per_subslice,
3399 	};
3400 
3401 	return value;
3402 }
3403 
3404 /* modesetting */
3405 extern void intel_modeset_init_hw(struct drm_device *dev);
3406 extern int intel_modeset_init(struct drm_device *dev);
3407 extern void intel_modeset_cleanup(struct drm_device *dev);
3408 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3409 				       bool state);
3410 extern void intel_display_resume(struct drm_device *dev);
3411 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3412 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3413 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3414 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3415 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3416 extern void intel_rps_mark_interactive(struct drm_i915_private *i915,
3417 				       bool interactive);
3418 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3419 				  bool enable);
3420 void intel_dsc_enable(struct intel_encoder *encoder,
3421 		      const struct intel_crtc_state *crtc_state);
3422 void intel_dsc_disable(const struct intel_crtc_state *crtc_state);
3423 
3424 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3425 			struct drm_file *file);
3426 
3427 /* overlay */
3428 extern struct intel_overlay_error_state *
3429 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3430 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3431 					    struct intel_overlay_error_state *error);
3432 
3433 extern struct intel_display_error_state *
3434 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3435 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3436 					    struct intel_display_error_state *error);
3437 
3438 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3439 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3440 				    u32 val, int fast_timeout_us,
3441 				    int slow_timeout_ms);
3442 #define sandybridge_pcode_write(dev_priv, mbox, val)	\
3443 	sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3444 
3445 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3446 		      u32 reply_mask, u32 reply, int timeout_base_ms);
3447 
3448 /* intel_sideband.c */
3449 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3450 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3451 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3452 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3453 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3454 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3455 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3456 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3457 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3458 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3459 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3460 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3461 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3462 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3463 		   enum intel_sbi_destination destination);
3464 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3465 		     enum intel_sbi_destination destination);
3466 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3467 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3468 
3469 /* intel_dpio_phy.c */
3470 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3471 			     enum dpio_phy *phy, enum dpio_channel *ch);
3472 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3473 				  enum port port, u32 margin, u32 scale,
3474 				  u32 enable, u32 deemphasis);
3475 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3476 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3477 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3478 			    enum dpio_phy phy);
3479 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3480 			      enum dpio_phy phy);
3481 u8 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count);
3482 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3483 				     u8 lane_lat_optim_mask);
3484 u8 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3485 
3486 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3487 			      u32 deemph_reg_value, u32 margin_reg_value,
3488 			      bool uniq_trans_scale);
3489 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3490 			      const struct intel_crtc_state *crtc_state,
3491 			      bool reset);
3492 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3493 			    const struct intel_crtc_state *crtc_state);
3494 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3495 				const struct intel_crtc_state *crtc_state);
3496 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3497 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3498 			      const struct intel_crtc_state *old_crtc_state);
3499 
3500 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3501 			      u32 demph_reg_value, u32 preemph_reg_value,
3502 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3503 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3504 			    const struct intel_crtc_state *crtc_state);
3505 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3506 				const struct intel_crtc_state *crtc_state);
3507 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3508 			 const struct intel_crtc_state *old_crtc_state);
3509 
3510 /* intel_combo_phy.c */
3511 void icl_combo_phys_init(struct drm_i915_private *dev_priv);
3512 void icl_combo_phys_uninit(struct drm_i915_private *dev_priv);
3513 void cnl_combo_phys_init(struct drm_i915_private *dev_priv);
3514 void cnl_combo_phys_uninit(struct drm_i915_private *dev_priv);
3515 
3516 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3517 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3518 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3519 			   const i915_reg_t reg);
3520 
3521 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3522 
3523 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3524 					 const i915_reg_t reg)
3525 {
3526 	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3527 }
3528 
3529 #define __I915_REG_OP(op__, dev_priv__, ...) \
3530 	intel_uncore_##op__(&(dev_priv__)->uncore, __VA_ARGS__)
3531 
3532 #define I915_READ8(reg__)	  __I915_REG_OP(read8, dev_priv, (reg__))
3533 #define I915_WRITE8(reg__, val__) __I915_REG_OP(write8, dev_priv, (reg__), (val__))
3534 
3535 #define I915_READ16(reg__)	   __I915_REG_OP(read16, dev_priv, (reg__))
3536 #define I915_WRITE16(reg__, val__) __I915_REG_OP(write16, dev_priv, (reg__), (val__))
3537 #define I915_READ16_NOTRACE(reg__)	   __I915_REG_OP(read16_notrace, dev_priv, (reg__))
3538 #define I915_WRITE16_NOTRACE(reg__, val__) __I915_REG_OP(write16_notrace, dev_priv, (reg__), (val__))
3539 
3540 #define I915_READ(reg__)	 __I915_REG_OP(read, dev_priv, (reg__))
3541 #define I915_WRITE(reg__, val__) __I915_REG_OP(write, dev_priv, (reg__), (val__))
3542 #define I915_READ_NOTRACE(reg__)	 __I915_REG_OP(read_notrace, dev_priv, (reg__))
3543 #define I915_WRITE_NOTRACE(reg__, val__) __I915_REG_OP(write_notrace, dev_priv, (reg__), (val__))
3544 
3545 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3546  * will be implemented using 2 32-bit writes in an arbitrary order with
3547  * an arbitrary delay between them. This can cause the hardware to
3548  * act upon the intermediate value, possibly leading to corruption and
3549  * machine death. For this reason we do not support I915_WRITE64, or
3550  * dev_priv->uncore.funcs.mmio_writeq.
3551  *
3552  * When reading a 64-bit value as two 32-bit values, the delay may cause
3553  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3554  * occasionally a 64-bit register does not actualy support a full readq
3555  * and must be read using two 32-bit reads.
3556  *
3557  * You have been warned.
3558  */
3559 #define I915_READ64(reg__)	__I915_REG_OP(read64, dev_priv, (reg__))
3560 #define I915_READ64_2x32(lower_reg__, upper_reg__) \
3561 	__I915_REG_OP(read64_2x32, dev_priv, (lower_reg__), (upper_reg__))
3562 
3563 #define POSTING_READ(reg__)	__I915_REG_OP(posting_read, dev_priv, (reg__))
3564 #define POSTING_READ16(reg__)	__I915_REG_OP(posting_read16, dev_priv, (reg__))
3565 
3566 /* These are untraced mmio-accessors that are only valid to be used inside
3567  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3568  * controlled.
3569  *
3570  * Think twice, and think again, before using these.
3571  *
3572  * As an example, these accessors can possibly be used between:
3573  *
3574  * spin_lock_irq(&dev_priv->uncore.lock);
3575  * intel_uncore_forcewake_get__locked();
3576  *
3577  * and
3578  *
3579  * intel_uncore_forcewake_put__locked();
3580  * spin_unlock_irq(&dev_priv->uncore.lock);
3581  *
3582  *
3583  * Note: some registers may not need forcewake held, so
3584  * intel_uncore_forcewake_{get,put} can be omitted, see
3585  * intel_uncore_forcewake_for_reg().
3586  *
3587  * Certain architectures will die if the same cacheline is concurrently accessed
3588  * by different clients (e.g. on Ivybridge). Access to registers should
3589  * therefore generally be serialised, by either the dev_priv->uncore.lock or
3590  * a more localised lock guarding all access to that bank of registers.
3591  */
3592 #define I915_READ_FW(reg__) __I915_REG_OP(read_fw, dev_priv, (reg__))
3593 #define I915_WRITE_FW(reg__, val__) __I915_REG_OP(write_fw, dev_priv, (reg__), (val__))
3594 #define I915_WRITE64_FW(reg__, val__) __I915_REG_OP(write64_fw, dev_priv, (reg__), (val__))
3595 #define POSTING_READ_FW(reg__) __I915_REG_OP(posting_read_fw, dev_priv, (reg__))
3596 
3597 /* "Broadcast RGB" property */
3598 #define INTEL_BROADCAST_RGB_AUTO 0
3599 #define INTEL_BROADCAST_RGB_FULL 1
3600 #define INTEL_BROADCAST_RGB_LIMITED 2
3601 
3602 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3603 {
3604 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3605 		return VLV_VGACNTRL;
3606 	else if (INTEL_GEN(dev_priv) >= 5)
3607 		return CPU_VGACNTRL;
3608 	else
3609 		return VGACNTRL;
3610 }
3611 
3612 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3613 {
3614 	unsigned long j = msecs_to_jiffies(m);
3615 
3616 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3617 }
3618 
3619 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3620 {
3621 	/* nsecs_to_jiffies64() does not guard against overflow */
3622 	if (NSEC_PER_SEC % HZ &&
3623 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3624 		return MAX_JIFFY_OFFSET;
3625 
3626         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3627 }
3628 
3629 /*
3630  * If you need to wait X milliseconds between events A and B, but event B
3631  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3632  * when event A happened, then just before event B you call this function and
3633  * pass the timestamp as the first argument, and X as the second argument.
3634  */
3635 static inline void
3636 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3637 {
3638 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3639 
3640 	/*
3641 	 * Don't re-read the value of "jiffies" every time since it may change
3642 	 * behind our back and break the math.
3643 	 */
3644 	tmp_jiffies = jiffies;
3645 	target_jiffies = timestamp_jiffies +
3646 			 msecs_to_jiffies_timeout(to_wait_ms);
3647 
3648 	if (time_after(target_jiffies, tmp_jiffies)) {
3649 		remaining_jiffies = target_jiffies - tmp_jiffies;
3650 		while (remaining_jiffies)
3651 			remaining_jiffies =
3652 			    schedule_timeout_uninterruptible(remaining_jiffies);
3653 	}
3654 }
3655 
3656 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3657 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3658 
3659 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3660  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3661  * perform the operation. To check beforehand, pass in the parameters to
3662  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3663  * you only need to pass in the minor offsets, page-aligned pointers are
3664  * always valid.
3665  *
3666  * For just checking for SSE4.1, in the foreknowledge that the future use
3667  * will be correctly aligned, just use i915_has_memcpy_from_wc().
3668  */
3669 #define i915_can_memcpy_from_wc(dst, src, len) \
3670 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3671 
3672 #define i915_has_memcpy_from_wc() \
3673 	i915_memcpy_from_wc(NULL, NULL, 0)
3674 
3675 /* i915_mm.c */
3676 int remap_io_mapping(struct vm_area_struct *vma,
3677 		     unsigned long addr, unsigned long pfn, unsigned long size,
3678 		     struct io_mapping *iomap);
3679 
3680 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3681 {
3682 	if (INTEL_GEN(i915) >= 10)
3683 		return CNL_HWS_CSB_WRITE_INDEX;
3684 	else
3685 		return I915_HWS_CSB_WRITE_INDEX;
3686 }
3687 
3688 static inline u32 i915_scratch_offset(const struct drm_i915_private *i915)
3689 {
3690 	return i915_ggtt_offset(i915->gt.scratch);
3691 }
3692 
3693 #endif
3694