1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hash.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/mm_types.h> 44 #include <linux/perf_event.h> 45 #include <linux/pm_qos.h> 46 #include <linux/reservation.h> 47 #include <linux/shmem_fs.h> 48 #include <linux/stackdepot.h> 49 50 #include <drm/intel-gtt.h> 51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 52 #include <drm/drm_gem.h> 53 #include <drm/drm_auth.h> 54 #include <drm/drm_cache.h> 55 #include <drm/drm_util.h> 56 #include <drm/drm_dsc.h> 57 #include <drm/drm_connector.h> 58 #include <drm/i915_mei_hdcp_interface.h> 59 60 #include "i915_fixed.h" 61 #include "i915_params.h" 62 #include "i915_reg.h" 63 #include "i915_utils.h" 64 65 #include "intel_bios.h" 66 #include "intel_device_info.h" 67 #include "intel_display.h" 68 #include "intel_dpll_mgr.h" 69 #include "intel_frontbuffer.h" 70 #include "intel_lrc.h" 71 #include "intel_opregion.h" 72 #include "intel_ringbuffer.h" 73 #include "intel_uc.h" 74 #include "intel_uncore.h" 75 #include "intel_wopcm.h" 76 #include "intel_workarounds.h" 77 78 #include "i915_gem.h" 79 #include "i915_gem_context.h" 80 #include "i915_gem_fence_reg.h" 81 #include "i915_gem_object.h" 82 #include "i915_gem_gtt.h" 83 #include "i915_gpu_error.h" 84 #include "i915_request.h" 85 #include "i915_scheduler.h" 86 #include "i915_timeline.h" 87 #include "i915_vma.h" 88 89 #include "intel_gvt.h" 90 91 /* General customization: 92 */ 93 94 #define DRIVER_NAME "i915" 95 #define DRIVER_DESC "Intel Graphics" 96 #define DRIVER_DATE "20190417" 97 #define DRIVER_TIMESTAMP 1555492067 98 99 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 100 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 101 * which may not necessarily be a user visible problem. This will either 102 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 103 * enable distros and users to tailor their preferred amount of i915 abrt 104 * spam. 105 */ 106 #define I915_STATE_WARN(condition, format...) ({ \ 107 int __ret_warn_on = !!(condition); \ 108 if (unlikely(__ret_warn_on)) \ 109 if (!WARN(i915_modparams.verbose_state_checks, format)) \ 110 DRM_ERROR(format); \ 111 unlikely(__ret_warn_on); \ 112 }) 113 114 #define I915_STATE_WARN_ON(x) \ 115 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 116 117 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG) 118 119 bool __i915_inject_load_failure(const char *func, int line); 120 #define i915_inject_load_failure() \ 121 __i915_inject_load_failure(__func__, __LINE__) 122 123 bool i915_error_injected(void); 124 125 #else 126 127 #define i915_inject_load_failure() false 128 #define i915_error_injected() false 129 130 #endif 131 132 #define i915_load_error(i915, fmt, ...) \ 133 __i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \ 134 fmt, ##__VA_ARGS__) 135 136 typedef depot_stack_handle_t intel_wakeref_t; 137 138 enum hpd_pin { 139 HPD_NONE = 0, 140 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 141 HPD_CRT, 142 HPD_SDVO_B, 143 HPD_SDVO_C, 144 HPD_PORT_A, 145 HPD_PORT_B, 146 HPD_PORT_C, 147 HPD_PORT_D, 148 HPD_PORT_E, 149 HPD_PORT_F, 150 HPD_NUM_PINS 151 }; 152 153 #define for_each_hpd_pin(__pin) \ 154 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 155 156 /* Threshold == 5 for long IRQs, 50 for short */ 157 #define HPD_STORM_DEFAULT_THRESHOLD 50 158 159 struct i915_hotplug { 160 struct work_struct hotplug_work; 161 162 struct { 163 unsigned long last_jiffies; 164 int count; 165 enum { 166 HPD_ENABLED = 0, 167 HPD_DISABLED = 1, 168 HPD_MARK_DISABLED = 2 169 } state; 170 } stats[HPD_NUM_PINS]; 171 u32 event_bits; 172 struct delayed_work reenable_work; 173 174 u32 long_port_mask; 175 u32 short_port_mask; 176 struct work_struct dig_port_work; 177 178 struct work_struct poll_init_work; 179 bool poll_enabled; 180 181 unsigned int hpd_storm_threshold; 182 /* Whether or not to count short HPD IRQs in HPD storms */ 183 u8 hpd_short_storm_enabled; 184 185 /* 186 * if we get a HPD irq from DP and a HPD irq from non-DP 187 * the non-DP HPD could block the workqueue on a mode config 188 * mutex getting, that userspace may have taken. However 189 * userspace is waiting on the DP workqueue to run which is 190 * blocked behind the non-DP one. 191 */ 192 struct workqueue_struct *dp_wq; 193 }; 194 195 #define I915_GEM_GPU_DOMAINS \ 196 (I915_GEM_DOMAIN_RENDER | \ 197 I915_GEM_DOMAIN_SAMPLER | \ 198 I915_GEM_DOMAIN_COMMAND | \ 199 I915_GEM_DOMAIN_INSTRUCTION | \ 200 I915_GEM_DOMAIN_VERTEX) 201 202 struct drm_i915_private; 203 struct i915_mm_struct; 204 struct i915_mmu_object; 205 206 struct drm_i915_file_private { 207 struct drm_i915_private *dev_priv; 208 struct drm_file *file; 209 210 struct { 211 spinlock_t lock; 212 struct list_head request_list; 213 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 214 * chosen to prevent the CPU getting more than a frame ahead of the GPU 215 * (when using lax throttling for the frontbuffer). We also use it to 216 * offer free GPU waitboosts for severely congested workloads. 217 */ 218 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 219 } mm; 220 221 struct idr context_idr; 222 struct mutex context_idr_lock; /* guards context_idr */ 223 224 struct idr vm_idr; 225 struct mutex vm_idr_lock; /* guards vm_idr */ 226 227 unsigned int bsd_engine; 228 229 /* 230 * Every context ban increments per client ban score. Also 231 * hangs in short succession increments ban score. If ban threshold 232 * is reached, client is considered banned and submitting more work 233 * will fail. This is a stop gap measure to limit the badly behaving 234 * clients access to gpu. Note that unbannable contexts never increment 235 * the client ban score. 236 */ 237 #define I915_CLIENT_SCORE_HANG_FAST 1 238 #define I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ) 239 #define I915_CLIENT_SCORE_CONTEXT_BAN 3 240 #define I915_CLIENT_SCORE_BANNED 9 241 /** ban_score: Accumulated score of all ctx bans and fast hangs. */ 242 atomic_t ban_score; 243 unsigned long hang_timestamp; 244 }; 245 246 /* Interface history: 247 * 248 * 1.1: Original. 249 * 1.2: Add Power Management 250 * 1.3: Add vblank support 251 * 1.4: Fix cmdbuffer path, add heap destroy 252 * 1.5: Add vblank pipe configuration 253 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 254 * - Support vertical blank on secondary display pipe 255 */ 256 #define DRIVER_MAJOR 1 257 #define DRIVER_MINOR 6 258 #define DRIVER_PATCHLEVEL 0 259 260 struct intel_overlay; 261 struct intel_overlay_error_state; 262 263 struct sdvo_device_mapping { 264 u8 initialized; 265 u8 dvo_port; 266 u8 slave_addr; 267 u8 dvo_wiring; 268 u8 i2c_pin; 269 u8 ddc_pin; 270 }; 271 272 struct intel_connector; 273 struct intel_encoder; 274 struct intel_atomic_state; 275 struct intel_crtc_state; 276 struct intel_initial_plane_config; 277 struct intel_crtc; 278 struct intel_limit; 279 struct dpll; 280 struct intel_cdclk_state; 281 282 struct drm_i915_display_funcs { 283 void (*get_cdclk)(struct drm_i915_private *dev_priv, 284 struct intel_cdclk_state *cdclk_state); 285 void (*set_cdclk)(struct drm_i915_private *dev_priv, 286 const struct intel_cdclk_state *cdclk_state, 287 enum pipe pipe); 288 int (*get_fifo_size)(struct drm_i915_private *dev_priv, 289 enum i9xx_plane_id i9xx_plane); 290 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 291 int (*compute_intermediate_wm)(struct intel_crtc_state *newstate); 292 void (*initial_watermarks)(struct intel_atomic_state *state, 293 struct intel_crtc_state *cstate); 294 void (*atomic_update_watermarks)(struct intel_atomic_state *state, 295 struct intel_crtc_state *cstate); 296 void (*optimize_watermarks)(struct intel_atomic_state *state, 297 struct intel_crtc_state *cstate); 298 int (*compute_global_watermarks)(struct intel_atomic_state *state); 299 void (*update_wm)(struct intel_crtc *crtc); 300 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 301 /* Returns the active state of the crtc, and if the crtc is active, 302 * fills out the pipe-config with the hw state. */ 303 bool (*get_pipe_config)(struct intel_crtc *, 304 struct intel_crtc_state *); 305 void (*get_initial_plane_config)(struct intel_crtc *, 306 struct intel_initial_plane_config *); 307 int (*crtc_compute_clock)(struct intel_crtc *crtc, 308 struct intel_crtc_state *crtc_state); 309 void (*crtc_enable)(struct intel_crtc_state *pipe_config, 310 struct drm_atomic_state *old_state); 311 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state, 312 struct drm_atomic_state *old_state); 313 void (*update_crtcs)(struct drm_atomic_state *state); 314 void (*audio_codec_enable)(struct intel_encoder *encoder, 315 const struct intel_crtc_state *crtc_state, 316 const struct drm_connector_state *conn_state); 317 void (*audio_codec_disable)(struct intel_encoder *encoder, 318 const struct intel_crtc_state *old_crtc_state, 319 const struct drm_connector_state *old_conn_state); 320 void (*fdi_link_train)(struct intel_crtc *crtc, 321 const struct intel_crtc_state *crtc_state); 322 void (*init_clock_gating)(struct drm_i915_private *dev_priv); 323 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 324 /* clock updates for mode set */ 325 /* cursor updates */ 326 /* render clock increase/decrease */ 327 /* display clock increase/decrease */ 328 /* pll clock increase/decrease */ 329 330 int (*color_check)(struct intel_crtc_state *crtc_state); 331 /* 332 * Program double buffered color management registers during 333 * vblank evasion. The registers should then latch during the 334 * next vblank start, alongside any other double buffered registers 335 * involved with the same commit. 336 */ 337 void (*color_commit)(const struct intel_crtc_state *crtc_state); 338 /* 339 * Load LUTs (and other single buffered color management 340 * registers). Will (hopefully) be called during the vblank 341 * following the latching of any double buffered registers 342 * involved with the same commit. 343 */ 344 void (*load_luts)(const struct intel_crtc_state *crtc_state); 345 }; 346 347 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 348 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 349 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 350 351 struct intel_csr { 352 struct work_struct work; 353 const char *fw_path; 354 u32 required_version; 355 u32 max_fw_size; /* bytes */ 356 u32 *dmc_payload; 357 u32 dmc_fw_size; /* dwords */ 358 u32 version; 359 u32 mmio_count; 360 i915_reg_t mmioaddr[8]; 361 u32 mmiodata[8]; 362 u32 dc_state; 363 u32 allowed_dc_mask; 364 intel_wakeref_t wakeref; 365 }; 366 367 enum i915_cache_level { 368 I915_CACHE_NONE = 0, 369 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 370 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 371 caches, eg sampler/render caches, and the 372 large Last-Level-Cache. LLC is coherent with 373 the CPU, but L3 is only visible to the GPU. */ 374 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 375 }; 376 377 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ 378 379 struct intel_fbc { 380 /* This is always the inner lock when overlapping with struct_mutex and 381 * it's the outer lock when overlapping with stolen_lock. */ 382 struct mutex lock; 383 unsigned threshold; 384 unsigned int possible_framebuffer_bits; 385 unsigned int busy_bits; 386 unsigned int visible_pipes_mask; 387 struct intel_crtc *crtc; 388 389 struct drm_mm_node compressed_fb; 390 struct drm_mm_node *compressed_llb; 391 392 bool false_color; 393 394 bool enabled; 395 bool active; 396 bool flip_pending; 397 398 bool underrun_detected; 399 struct work_struct underrun_work; 400 401 /* 402 * Due to the atomic rules we can't access some structures without the 403 * appropriate locking, so we cache information here in order to avoid 404 * these problems. 405 */ 406 struct intel_fbc_state_cache { 407 struct i915_vma *vma; 408 unsigned long flags; 409 410 struct { 411 unsigned int mode_flags; 412 u32 hsw_bdw_pixel_rate; 413 } crtc; 414 415 struct { 416 unsigned int rotation; 417 int src_w; 418 int src_h; 419 bool visible; 420 /* 421 * Display surface base address adjustement for 422 * pageflips. Note that on gen4+ this only adjusts up 423 * to a tile, offsets within a tile are handled in 424 * the hw itself (with the TILEOFF register). 425 */ 426 int adjusted_x; 427 int adjusted_y; 428 429 int y; 430 431 u16 pixel_blend_mode; 432 } plane; 433 434 struct { 435 const struct drm_format_info *format; 436 unsigned int stride; 437 } fb; 438 } state_cache; 439 440 /* 441 * This structure contains everything that's relevant to program the 442 * hardware registers. When we want to figure out if we need to disable 443 * and re-enable FBC for a new configuration we just check if there's 444 * something different in the struct. The genx_fbc_activate functions 445 * are supposed to read from it in order to program the registers. 446 */ 447 struct intel_fbc_reg_params { 448 struct i915_vma *vma; 449 unsigned long flags; 450 451 struct { 452 enum pipe pipe; 453 enum i9xx_plane_id i9xx_plane; 454 unsigned int fence_y_offset; 455 } crtc; 456 457 struct { 458 const struct drm_format_info *format; 459 unsigned int stride; 460 } fb; 461 462 int cfb_size; 463 unsigned int gen9_wa_cfb_stride; 464 } params; 465 466 const char *no_fbc_reason; 467 }; 468 469 /* 470 * HIGH_RR is the highest eDP panel refresh rate read from EDID 471 * LOW_RR is the lowest eDP panel refresh rate found from EDID 472 * parsing for same resolution. 473 */ 474 enum drrs_refresh_rate_type { 475 DRRS_HIGH_RR, 476 DRRS_LOW_RR, 477 DRRS_MAX_RR, /* RR count */ 478 }; 479 480 enum drrs_support_type { 481 DRRS_NOT_SUPPORTED = 0, 482 STATIC_DRRS_SUPPORT = 1, 483 SEAMLESS_DRRS_SUPPORT = 2 484 }; 485 486 struct intel_dp; 487 struct i915_drrs { 488 struct mutex mutex; 489 struct delayed_work work; 490 struct intel_dp *dp; 491 unsigned busy_frontbuffer_bits; 492 enum drrs_refresh_rate_type refresh_rate_type; 493 enum drrs_support_type type; 494 }; 495 496 struct i915_psr { 497 struct mutex lock; 498 499 #define I915_PSR_DEBUG_MODE_MASK 0x0f 500 #define I915_PSR_DEBUG_DEFAULT 0x00 501 #define I915_PSR_DEBUG_DISABLE 0x01 502 #define I915_PSR_DEBUG_ENABLE 0x02 503 #define I915_PSR_DEBUG_FORCE_PSR1 0x03 504 #define I915_PSR_DEBUG_IRQ 0x10 505 506 u32 debug; 507 bool sink_support; 508 bool enabled; 509 struct intel_dp *dp; 510 enum pipe pipe; 511 bool active; 512 struct work_struct work; 513 unsigned busy_frontbuffer_bits; 514 bool sink_psr2_support; 515 bool link_standby; 516 bool colorimetry_support; 517 bool psr2_enabled; 518 u8 sink_sync_latency; 519 ktime_t last_entry_attempt; 520 ktime_t last_exit; 521 bool sink_not_reliable; 522 bool irq_aux_error; 523 u16 su_x_granularity; 524 }; 525 526 /* 527 * Sorted by south display engine compatibility. 528 * If the new PCH comes with a south display engine that is not 529 * inherited from the latest item, please do not add it to the 530 * end. Instead, add it right after its "parent" PCH. 531 */ 532 enum intel_pch { 533 PCH_NOP = -1, /* PCH without south display */ 534 PCH_NONE = 0, /* No PCH present */ 535 PCH_IBX, /* Ibexpeak PCH */ 536 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */ 537 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */ 538 PCH_SPT, /* Sunrisepoint PCH */ 539 PCH_KBP, /* Kaby Lake PCH */ 540 PCH_CNP, /* Cannon/Comet Lake PCH */ 541 PCH_ICP, /* Ice Lake PCH */ 542 }; 543 544 enum intel_sbi_destination { 545 SBI_ICLK, 546 SBI_MPHY, 547 }; 548 549 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 550 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 551 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 552 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 553 #define QUIRK_INCREASE_T12_DELAY (1<<6) 554 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7) 555 556 struct intel_fbdev; 557 struct intel_fbc_work; 558 559 struct intel_gmbus { 560 struct i2c_adapter adapter; 561 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 562 u32 force_bit; 563 u32 reg0; 564 i915_reg_t gpio_reg; 565 struct i2c_algo_bit_data bit_algo; 566 struct drm_i915_private *dev_priv; 567 }; 568 569 struct i915_suspend_saved_registers { 570 u32 saveDSPARB; 571 u32 saveFBC_CONTROL; 572 u32 saveCACHE_MODE_0; 573 u32 saveMI_ARB_STATE; 574 u32 saveSWF0[16]; 575 u32 saveSWF1[16]; 576 u32 saveSWF3[3]; 577 u64 saveFENCE[I915_MAX_NUM_FENCES]; 578 u32 savePCH_PORT_HOTPLUG; 579 u16 saveGCDGMBUS; 580 }; 581 582 struct vlv_s0ix_state { 583 /* GAM */ 584 u32 wr_watermark; 585 u32 gfx_prio_ctrl; 586 u32 arb_mode; 587 u32 gfx_pend_tlb0; 588 u32 gfx_pend_tlb1; 589 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 590 u32 media_max_req_count; 591 u32 gfx_max_req_count; 592 u32 render_hwsp; 593 u32 ecochk; 594 u32 bsd_hwsp; 595 u32 blt_hwsp; 596 u32 tlb_rd_addr; 597 598 /* MBC */ 599 u32 g3dctl; 600 u32 gsckgctl; 601 u32 mbctl; 602 603 /* GCP */ 604 u32 ucgctl1; 605 u32 ucgctl3; 606 u32 rcgctl1; 607 u32 rcgctl2; 608 u32 rstctl; 609 u32 misccpctl; 610 611 /* GPM */ 612 u32 gfxpause; 613 u32 rpdeuhwtc; 614 u32 rpdeuc; 615 u32 ecobus; 616 u32 pwrdwnupctl; 617 u32 rp_down_timeout; 618 u32 rp_deucsw; 619 u32 rcubmabdtmr; 620 u32 rcedata; 621 u32 spare2gh; 622 623 /* Display 1 CZ domain */ 624 u32 gt_imr; 625 u32 gt_ier; 626 u32 pm_imr; 627 u32 pm_ier; 628 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 629 630 /* GT SA CZ domain */ 631 u32 tilectl; 632 u32 gt_fifoctl; 633 u32 gtlc_wake_ctrl; 634 u32 gtlc_survive; 635 u32 pmwgicz; 636 637 /* Display 2 CZ domain */ 638 u32 gu_ctl0; 639 u32 gu_ctl1; 640 u32 pcbr; 641 u32 clock_gate_dis2; 642 }; 643 644 struct intel_rps_ei { 645 ktime_t ktime; 646 u32 render_c0; 647 u32 media_c0; 648 }; 649 650 struct intel_rps { 651 /* 652 * work, interrupts_enabled and pm_iir are protected by 653 * dev_priv->irq_lock 654 */ 655 struct work_struct work; 656 bool interrupts_enabled; 657 u32 pm_iir; 658 659 /* PM interrupt bits that should never be masked */ 660 u32 pm_intrmsk_mbz; 661 662 /* Frequencies are stored in potentially platform dependent multiples. 663 * In other words, *_freq needs to be multiplied by X to be interesting. 664 * Soft limits are those which are used for the dynamic reclocking done 665 * by the driver (raise frequencies under heavy loads, and lower for 666 * lighter loads). Hard limits are those imposed by the hardware. 667 * 668 * A distinction is made for overclocking, which is never enabled by 669 * default, and is considered to be above the hard limit if it's 670 * possible at all. 671 */ 672 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 673 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 674 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 675 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 676 u8 min_freq; /* AKA RPn. Minimum frequency */ 677 u8 boost_freq; /* Frequency to request when wait boosting */ 678 u8 idle_freq; /* Frequency to request when we are idle */ 679 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 680 u8 rp1_freq; /* "less than" RP0 power/freqency */ 681 u8 rp0_freq; /* Non-overclocked max frequency. */ 682 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 683 684 int last_adj; 685 686 struct { 687 struct mutex mutex; 688 689 enum { LOW_POWER, BETWEEN, HIGH_POWER } mode; 690 unsigned int interactive; 691 692 u8 up_threshold; /* Current %busy required to uplock */ 693 u8 down_threshold; /* Current %busy required to downclock */ 694 } power; 695 696 bool enabled; 697 atomic_t num_waiters; 698 atomic_t boosts; 699 700 /* manual wa residency calculations */ 701 struct intel_rps_ei ei; 702 }; 703 704 struct intel_rc6 { 705 bool enabled; 706 u64 prev_hw_residency[4]; 707 u64 cur_residency[4]; 708 }; 709 710 struct intel_llc_pstate { 711 bool enabled; 712 }; 713 714 struct intel_gen6_power_mgmt { 715 struct intel_rps rps; 716 struct intel_rc6 rc6; 717 struct intel_llc_pstate llc_pstate; 718 }; 719 720 /* defined intel_pm.c */ 721 extern spinlock_t mchdev_lock; 722 723 struct intel_ilk_power_mgmt { 724 u8 cur_delay; 725 u8 min_delay; 726 u8 max_delay; 727 u8 fmax; 728 u8 fstart; 729 730 u64 last_count1; 731 unsigned long last_time1; 732 unsigned long chipset_power; 733 u64 last_count2; 734 u64 last_time2; 735 unsigned long gfx_power; 736 u8 corr; 737 738 int c_m; 739 int r_t; 740 }; 741 742 struct drm_i915_private; 743 struct i915_power_well; 744 745 struct i915_power_well_ops { 746 /* 747 * Synchronize the well's hw state to match the current sw state, for 748 * example enable/disable it based on the current refcount. Called 749 * during driver init and resume time, possibly after first calling 750 * the enable/disable handlers. 751 */ 752 void (*sync_hw)(struct drm_i915_private *dev_priv, 753 struct i915_power_well *power_well); 754 /* 755 * Enable the well and resources that depend on it (for example 756 * interrupts located on the well). Called after the 0->1 refcount 757 * transition. 758 */ 759 void (*enable)(struct drm_i915_private *dev_priv, 760 struct i915_power_well *power_well); 761 /* 762 * Disable the well and resources that depend on it. Called after 763 * the 1->0 refcount transition. 764 */ 765 void (*disable)(struct drm_i915_private *dev_priv, 766 struct i915_power_well *power_well); 767 /* Returns the hw enabled state. */ 768 bool (*is_enabled)(struct drm_i915_private *dev_priv, 769 struct i915_power_well *power_well); 770 }; 771 772 struct i915_power_well_regs { 773 i915_reg_t bios; 774 i915_reg_t driver; 775 i915_reg_t kvmr; 776 i915_reg_t debug; 777 }; 778 779 /* Power well structure for haswell */ 780 struct i915_power_well_desc { 781 const char *name; 782 bool always_on; 783 u64 domains; 784 /* unique identifier for this power well */ 785 enum i915_power_well_id id; 786 /* 787 * Arbitraty data associated with this power well. Platform and power 788 * well specific. 789 */ 790 union { 791 struct { 792 /* 793 * request/status flag index in the PUNIT power well 794 * control/status registers. 795 */ 796 u8 idx; 797 } vlv; 798 struct { 799 enum dpio_phy phy; 800 } bxt; 801 struct { 802 const struct i915_power_well_regs *regs; 803 /* 804 * request/status flag index in the power well 805 * constrol/status registers. 806 */ 807 u8 idx; 808 /* Mask of pipes whose IRQ logic is backed by the pw */ 809 u8 irq_pipe_mask; 810 /* The pw is backing the VGA functionality */ 811 bool has_vga:1; 812 bool has_fuses:1; 813 /* 814 * The pw is for an ICL+ TypeC PHY port in 815 * Thunderbolt mode. 816 */ 817 bool is_tc_tbt:1; 818 } hsw; 819 }; 820 const struct i915_power_well_ops *ops; 821 }; 822 823 struct i915_power_well { 824 const struct i915_power_well_desc *desc; 825 /* power well enable/disable usage count */ 826 int count; 827 /* cached hw enabled state */ 828 bool hw_enabled; 829 }; 830 831 struct i915_power_domains { 832 /* 833 * Power wells needed for initialization at driver init and suspend 834 * time are on. They are kept on until after the first modeset. 835 */ 836 bool initializing; 837 bool display_core_suspended; 838 int power_well_count; 839 840 intel_wakeref_t wakeref; 841 842 struct mutex lock; 843 int domain_use_count[POWER_DOMAIN_NUM]; 844 struct i915_power_well *power_wells; 845 }; 846 847 #define MAX_L3_SLICES 2 848 struct intel_l3_parity { 849 u32 *remap_info[MAX_L3_SLICES]; 850 struct work_struct error_work; 851 int which_slice; 852 }; 853 854 struct i915_gem_mm { 855 /** Memory allocator for GTT stolen memory */ 856 struct drm_mm stolen; 857 /** Protects the usage of the GTT stolen memory allocator. This is 858 * always the inner lock when overlapping with struct_mutex. */ 859 struct mutex stolen_lock; 860 861 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */ 862 spinlock_t obj_lock; 863 864 /** List of all objects in gtt_space. Used to restore gtt 865 * mappings on resume */ 866 struct list_head bound_list; 867 /** 868 * List of objects which are not bound to the GTT (thus 869 * are idle and not used by the GPU). These objects may or may 870 * not actually have any pages attached. 871 */ 872 struct list_head unbound_list; 873 874 /** List of all objects in gtt_space, currently mmaped by userspace. 875 * All objects within this list must also be on bound_list. 876 */ 877 struct list_head userfault_list; 878 879 /** 880 * List of objects which are pending destruction. 881 */ 882 struct llist_head free_list; 883 struct work_struct free_work; 884 spinlock_t free_lock; 885 /** 886 * Count of objects pending destructions. Used to skip needlessly 887 * waiting on an RCU barrier if no objects are waiting to be freed. 888 */ 889 atomic_t free_count; 890 891 /** 892 * Small stash of WC pages 893 */ 894 struct pagestash wc_stash; 895 896 /** 897 * tmpfs instance used for shmem backed objects 898 */ 899 struct vfsmount *gemfs; 900 901 /** PPGTT used for aliasing the PPGTT with the GTT */ 902 struct i915_hw_ppgtt *aliasing_ppgtt; 903 904 struct notifier_block oom_notifier; 905 struct notifier_block vmap_notifier; 906 struct shrinker shrinker; 907 908 /** LRU list of objects with fence regs on them. */ 909 struct list_head fence_list; 910 911 /** 912 * Workqueue to fault in userptr pages, flushed by the execbuf 913 * when required but otherwise left to userspace to try again 914 * on EAGAIN. 915 */ 916 struct workqueue_struct *userptr_wq; 917 918 u64 unordered_timeline; 919 920 /* the indicator for dispatch video commands on two BSD rings */ 921 atomic_t bsd_engine_dispatch_index; 922 923 /** Bit 6 swizzling required for X tiling */ 924 u32 bit_6_swizzle_x; 925 /** Bit 6 swizzling required for Y tiling */ 926 u32 bit_6_swizzle_y; 927 928 /* accounting, useful for userland debugging */ 929 spinlock_t object_stat_lock; 930 u64 object_memory; 931 u32 object_count; 932 }; 933 934 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */ 935 936 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */ 937 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */ 938 939 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */ 940 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */ 941 942 #define I915_ENGINE_WEDGED_TIMEOUT (60 * HZ) /* Reset but no recovery? */ 943 944 struct ddi_vbt_port_info { 945 int max_tmds_clock; 946 947 /* 948 * This is an index in the HDMI/DVI DDI buffer translation table. 949 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 950 * populate this field. 951 */ 952 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 953 u8 hdmi_level_shift; 954 955 u8 present:1; 956 u8 supports_dvi:1; 957 u8 supports_hdmi:1; 958 u8 supports_dp:1; 959 u8 supports_edp:1; 960 u8 supports_typec_usb:1; 961 u8 supports_tbt:1; 962 963 u8 alternate_aux_channel; 964 u8 alternate_ddc_pin; 965 966 u8 dp_boost_level; 967 u8 hdmi_boost_level; 968 int dp_max_link_rate; /* 0 for not limited by VBT */ 969 }; 970 971 enum psr_lines_to_wait { 972 PSR_0_LINES_TO_WAIT = 0, 973 PSR_1_LINE_TO_WAIT, 974 PSR_4_LINES_TO_WAIT, 975 PSR_8_LINES_TO_WAIT 976 }; 977 978 struct intel_vbt_data { 979 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 980 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 981 982 /* Feature bits */ 983 unsigned int int_tv_support:1; 984 unsigned int lvds_dither:1; 985 unsigned int int_crt_support:1; 986 unsigned int lvds_use_ssc:1; 987 unsigned int int_lvds_support:1; 988 unsigned int display_clock_mode:1; 989 unsigned int fdi_rx_polarity_inverted:1; 990 unsigned int panel_type:4; 991 int lvds_ssc_freq; 992 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 993 enum drm_panel_orientation orientation; 994 995 enum drrs_support_type drrs_type; 996 997 struct { 998 int rate; 999 int lanes; 1000 int preemphasis; 1001 int vswing; 1002 bool low_vswing; 1003 bool initialized; 1004 int bpp; 1005 struct edp_power_seq pps; 1006 } edp; 1007 1008 struct { 1009 bool enable; 1010 bool full_link; 1011 bool require_aux_wakeup; 1012 int idle_frames; 1013 enum psr_lines_to_wait lines_to_wait; 1014 int tp1_wakeup_time_us; 1015 int tp2_tp3_wakeup_time_us; 1016 int psr2_tp2_tp3_wakeup_time_us; 1017 } psr; 1018 1019 struct { 1020 u16 pwm_freq_hz; 1021 bool present; 1022 bool active_low_pwm; 1023 u8 min_brightness; /* min_brightness/255 of max */ 1024 u8 controller; /* brightness controller number */ 1025 enum intel_backlight_type type; 1026 } backlight; 1027 1028 /* MIPI DSI */ 1029 struct { 1030 u16 panel_id; 1031 struct mipi_config *config; 1032 struct mipi_pps_data *pps; 1033 u16 bl_ports; 1034 u16 cabc_ports; 1035 u8 seq_version; 1036 u32 size; 1037 u8 *data; 1038 const u8 *sequence[MIPI_SEQ_MAX]; 1039 u8 *deassert_seq; /* Used by fixup_mipi_sequences() */ 1040 enum drm_panel_orientation orientation; 1041 } dsi; 1042 1043 int crt_ddc_pin; 1044 1045 int child_dev_num; 1046 struct child_device_config *child_dev; 1047 1048 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1049 struct sdvo_device_mapping sdvo_mappings[2]; 1050 }; 1051 1052 enum intel_ddb_partitioning { 1053 INTEL_DDB_PART_1_2, 1054 INTEL_DDB_PART_5_6, /* IVB+ */ 1055 }; 1056 1057 struct intel_wm_level { 1058 bool enable; 1059 u32 pri_val; 1060 u32 spr_val; 1061 u32 cur_val; 1062 u32 fbc_val; 1063 }; 1064 1065 struct ilk_wm_values { 1066 u32 wm_pipe[3]; 1067 u32 wm_lp[3]; 1068 u32 wm_lp_spr[3]; 1069 u32 wm_linetime[3]; 1070 bool enable_fbc_wm; 1071 enum intel_ddb_partitioning partitioning; 1072 }; 1073 1074 struct g4x_pipe_wm { 1075 u16 plane[I915_MAX_PLANES]; 1076 u16 fbc; 1077 }; 1078 1079 struct g4x_sr_wm { 1080 u16 plane; 1081 u16 cursor; 1082 u16 fbc; 1083 }; 1084 1085 struct vlv_wm_ddl_values { 1086 u8 plane[I915_MAX_PLANES]; 1087 }; 1088 1089 struct vlv_wm_values { 1090 struct g4x_pipe_wm pipe[3]; 1091 struct g4x_sr_wm sr; 1092 struct vlv_wm_ddl_values ddl[3]; 1093 u8 level; 1094 bool cxsr; 1095 }; 1096 1097 struct g4x_wm_values { 1098 struct g4x_pipe_wm pipe[2]; 1099 struct g4x_sr_wm sr; 1100 struct g4x_sr_wm hpll; 1101 bool cxsr; 1102 bool hpll_en; 1103 bool fbc_en; 1104 }; 1105 1106 struct skl_ddb_entry { 1107 u16 start, end; /* in number of blocks, 'end' is exclusive */ 1108 }; 1109 1110 static inline u16 skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1111 { 1112 return entry->end - entry->start; 1113 } 1114 1115 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1116 const struct skl_ddb_entry *e2) 1117 { 1118 if (e1->start == e2->start && e1->end == e2->end) 1119 return true; 1120 1121 return false; 1122 } 1123 1124 struct skl_ddb_allocation { 1125 u8 enabled_slices; /* GEN11 has configurable 2 slices */ 1126 }; 1127 1128 struct skl_ddb_values { 1129 unsigned dirty_pipes; 1130 struct skl_ddb_allocation ddb; 1131 }; 1132 1133 struct skl_wm_level { 1134 u16 min_ddb_alloc; 1135 u16 plane_res_b; 1136 u8 plane_res_l; 1137 bool plane_en; 1138 bool ignore_lines; 1139 }; 1140 1141 /* Stores plane specific WM parameters */ 1142 struct skl_wm_params { 1143 bool x_tiled, y_tiled; 1144 bool rc_surface; 1145 bool is_planar; 1146 u32 width; 1147 u8 cpp; 1148 u32 plane_pixel_rate; 1149 u32 y_min_scanlines; 1150 u32 plane_bytes_per_line; 1151 uint_fixed_16_16_t plane_blocks_per_line; 1152 uint_fixed_16_16_t y_tile_minimum; 1153 u32 linetime_us; 1154 u32 dbuf_block_size; 1155 }; 1156 1157 /* 1158 * This struct helps tracking the state needed for runtime PM, which puts the 1159 * device in PCI D3 state. Notice that when this happens, nothing on the 1160 * graphics device works, even register access, so we don't get interrupts nor 1161 * anything else. 1162 * 1163 * Every piece of our code that needs to actually touch the hardware needs to 1164 * either call intel_runtime_pm_get or call intel_display_power_get with the 1165 * appropriate power domain. 1166 * 1167 * Our driver uses the autosuspend delay feature, which means we'll only really 1168 * suspend if we stay with zero refcount for a certain amount of time. The 1169 * default value is currently very conservative (see intel_runtime_pm_enable), but 1170 * it can be changed with the standard runtime PM files from sysfs. 1171 * 1172 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1173 * goes back to false exactly before we reenable the IRQs. We use this variable 1174 * to check if someone is trying to enable/disable IRQs while they're supposed 1175 * to be disabled. This shouldn't happen and we'll print some error messages in 1176 * case it happens. 1177 * 1178 * For more, read the Documentation/power/runtime_pm.rst. 1179 */ 1180 struct i915_runtime_pm { 1181 atomic_t wakeref_count; 1182 bool suspended; 1183 bool irqs_enabled; 1184 1185 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 1186 /* 1187 * To aide detection of wakeref leaks and general misuse, we 1188 * track all wakeref holders. With manual markup (i.e. returning 1189 * a cookie to each rpm_get caller which they then supply to their 1190 * paired rpm_put) we can remove corresponding pairs of and keep 1191 * the array trimmed to active wakerefs. 1192 */ 1193 struct intel_runtime_pm_debug { 1194 spinlock_t lock; 1195 1196 depot_stack_handle_t last_acquire; 1197 depot_stack_handle_t last_release; 1198 1199 depot_stack_handle_t *owners; 1200 unsigned long count; 1201 } debug; 1202 #endif 1203 }; 1204 1205 enum intel_pipe_crc_source { 1206 INTEL_PIPE_CRC_SOURCE_NONE, 1207 INTEL_PIPE_CRC_SOURCE_PLANE1, 1208 INTEL_PIPE_CRC_SOURCE_PLANE2, 1209 INTEL_PIPE_CRC_SOURCE_PLANE3, 1210 INTEL_PIPE_CRC_SOURCE_PLANE4, 1211 INTEL_PIPE_CRC_SOURCE_PLANE5, 1212 INTEL_PIPE_CRC_SOURCE_PLANE6, 1213 INTEL_PIPE_CRC_SOURCE_PLANE7, 1214 INTEL_PIPE_CRC_SOURCE_PIPE, 1215 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1216 INTEL_PIPE_CRC_SOURCE_TV, 1217 INTEL_PIPE_CRC_SOURCE_DP_B, 1218 INTEL_PIPE_CRC_SOURCE_DP_C, 1219 INTEL_PIPE_CRC_SOURCE_DP_D, 1220 INTEL_PIPE_CRC_SOURCE_AUTO, 1221 INTEL_PIPE_CRC_SOURCE_MAX, 1222 }; 1223 1224 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1225 struct intel_pipe_crc { 1226 spinlock_t lock; 1227 int skipped; 1228 enum intel_pipe_crc_source source; 1229 }; 1230 1231 struct i915_frontbuffer_tracking { 1232 spinlock_t lock; 1233 1234 /* 1235 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1236 * scheduled flips. 1237 */ 1238 unsigned busy_bits; 1239 unsigned flip_bits; 1240 }; 1241 1242 struct i915_virtual_gpu { 1243 bool active; 1244 u32 caps; 1245 }; 1246 1247 /* used in computing the new watermarks state */ 1248 struct intel_wm_config { 1249 unsigned int num_pipes_active; 1250 bool sprites_enabled; 1251 bool sprites_scaled; 1252 }; 1253 1254 struct i915_oa_format { 1255 u32 format; 1256 int size; 1257 }; 1258 1259 struct i915_oa_reg { 1260 i915_reg_t addr; 1261 u32 value; 1262 }; 1263 1264 struct i915_oa_config { 1265 char uuid[UUID_STRING_LEN + 1]; 1266 int id; 1267 1268 const struct i915_oa_reg *mux_regs; 1269 u32 mux_regs_len; 1270 const struct i915_oa_reg *b_counter_regs; 1271 u32 b_counter_regs_len; 1272 const struct i915_oa_reg *flex_regs; 1273 u32 flex_regs_len; 1274 1275 struct attribute_group sysfs_metric; 1276 struct attribute *attrs[2]; 1277 struct device_attribute sysfs_metric_id; 1278 1279 atomic_t ref_count; 1280 }; 1281 1282 struct i915_perf_stream; 1283 1284 /** 1285 * struct i915_perf_stream_ops - the OPs to support a specific stream type 1286 */ 1287 struct i915_perf_stream_ops { 1288 /** 1289 * @enable: Enables the collection of HW samples, either in response to 1290 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened 1291 * without `I915_PERF_FLAG_DISABLED`. 1292 */ 1293 void (*enable)(struct i915_perf_stream *stream); 1294 1295 /** 1296 * @disable: Disables the collection of HW samples, either in response 1297 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying 1298 * the stream. 1299 */ 1300 void (*disable)(struct i915_perf_stream *stream); 1301 1302 /** 1303 * @poll_wait: Call poll_wait, passing a wait queue that will be woken 1304 * once there is something ready to read() for the stream 1305 */ 1306 void (*poll_wait)(struct i915_perf_stream *stream, 1307 struct file *file, 1308 poll_table *wait); 1309 1310 /** 1311 * @wait_unlocked: For handling a blocking read, wait until there is 1312 * something to ready to read() for the stream. E.g. wait on the same 1313 * wait queue that would be passed to poll_wait(). 1314 */ 1315 int (*wait_unlocked)(struct i915_perf_stream *stream); 1316 1317 /** 1318 * @read: Copy buffered metrics as records to userspace 1319 * **buf**: the userspace, destination buffer 1320 * **count**: the number of bytes to copy, requested by userspace 1321 * **offset**: zero at the start of the read, updated as the read 1322 * proceeds, it represents how many bytes have been copied so far and 1323 * the buffer offset for copying the next record. 1324 * 1325 * Copy as many buffered i915 perf samples and records for this stream 1326 * to userspace as will fit in the given buffer. 1327 * 1328 * Only write complete records; returning -%ENOSPC if there isn't room 1329 * for a complete record. 1330 * 1331 * Return any error condition that results in a short read such as 1332 * -%ENOSPC or -%EFAULT, even though these may be squashed before 1333 * returning to userspace. 1334 */ 1335 int (*read)(struct i915_perf_stream *stream, 1336 char __user *buf, 1337 size_t count, 1338 size_t *offset); 1339 1340 /** 1341 * @destroy: Cleanup any stream specific resources. 1342 * 1343 * The stream will always be disabled before this is called. 1344 */ 1345 void (*destroy)(struct i915_perf_stream *stream); 1346 }; 1347 1348 /** 1349 * struct i915_perf_stream - state for a single open stream FD 1350 */ 1351 struct i915_perf_stream { 1352 /** 1353 * @dev_priv: i915 drm device 1354 */ 1355 struct drm_i915_private *dev_priv; 1356 1357 /** 1358 * @link: Links the stream into ``&drm_i915_private->streams`` 1359 */ 1360 struct list_head link; 1361 1362 /** 1363 * @wakeref: As we keep the device awake while the perf stream is 1364 * active, we track our runtime pm reference for later release. 1365 */ 1366 intel_wakeref_t wakeref; 1367 1368 /** 1369 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*` 1370 * properties given when opening a stream, representing the contents 1371 * of a single sample as read() by userspace. 1372 */ 1373 u32 sample_flags; 1374 1375 /** 1376 * @sample_size: Considering the configured contents of a sample 1377 * combined with the required header size, this is the total size 1378 * of a single sample record. 1379 */ 1380 int sample_size; 1381 1382 /** 1383 * @ctx: %NULL if measuring system-wide across all contexts or a 1384 * specific context that is being monitored. 1385 */ 1386 struct i915_gem_context *ctx; 1387 1388 /** 1389 * @enabled: Whether the stream is currently enabled, considering 1390 * whether the stream was opened in a disabled state and based 1391 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls. 1392 */ 1393 bool enabled; 1394 1395 /** 1396 * @ops: The callbacks providing the implementation of this specific 1397 * type of configured stream. 1398 */ 1399 const struct i915_perf_stream_ops *ops; 1400 1401 /** 1402 * @oa_config: The OA configuration used by the stream. 1403 */ 1404 struct i915_oa_config *oa_config; 1405 }; 1406 1407 /** 1408 * struct i915_oa_ops - Gen specific implementation of an OA unit stream 1409 */ 1410 struct i915_oa_ops { 1411 /** 1412 * @is_valid_b_counter_reg: Validates register's address for 1413 * programming boolean counters for a particular platform. 1414 */ 1415 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv, 1416 u32 addr); 1417 1418 /** 1419 * @is_valid_mux_reg: Validates register's address for programming mux 1420 * for a particular platform. 1421 */ 1422 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr); 1423 1424 /** 1425 * @is_valid_flex_reg: Validates register's address for programming 1426 * flex EU filtering for a particular platform. 1427 */ 1428 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr); 1429 1430 /** 1431 * @enable_metric_set: Selects and applies any MUX configuration to set 1432 * up the Boolean and Custom (B/C) counters that are part of the 1433 * counter reports being sampled. May apply system constraints such as 1434 * disabling EU clock gating as required. 1435 */ 1436 int (*enable_metric_set)(struct i915_perf_stream *stream); 1437 1438 /** 1439 * @disable_metric_set: Remove system constraints associated with using 1440 * the OA unit. 1441 */ 1442 void (*disable_metric_set)(struct drm_i915_private *dev_priv); 1443 1444 /** 1445 * @oa_enable: Enable periodic sampling 1446 */ 1447 void (*oa_enable)(struct i915_perf_stream *stream); 1448 1449 /** 1450 * @oa_disable: Disable periodic sampling 1451 */ 1452 void (*oa_disable)(struct i915_perf_stream *stream); 1453 1454 /** 1455 * @read: Copy data from the circular OA buffer into a given userspace 1456 * buffer. 1457 */ 1458 int (*read)(struct i915_perf_stream *stream, 1459 char __user *buf, 1460 size_t count, 1461 size_t *offset); 1462 1463 /** 1464 * @oa_hw_tail_read: read the OA tail pointer register 1465 * 1466 * In particular this enables us to share all the fiddly code for 1467 * handling the OA unit tail pointer race that affects multiple 1468 * generations. 1469 */ 1470 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv); 1471 }; 1472 1473 struct intel_cdclk_state { 1474 unsigned int cdclk, vco, ref, bypass; 1475 u8 voltage_level; 1476 }; 1477 1478 struct drm_i915_private { 1479 struct drm_device drm; 1480 1481 const struct intel_device_info __info; /* Use INTEL_INFO() to access. */ 1482 struct intel_runtime_info __runtime; /* Use RUNTIME_INFO() to access. */ 1483 struct intel_driver_caps caps; 1484 1485 /** 1486 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and 1487 * end of stolen which we can optionally use to create GEM objects 1488 * backed by stolen memory. Note that stolen_usable_size tells us 1489 * exactly how much of this we are actually allowed to use, given that 1490 * some portion of it is in fact reserved for use by hardware functions. 1491 */ 1492 struct resource dsm; 1493 /** 1494 * Reseved portion of Data Stolen Memory 1495 */ 1496 struct resource dsm_reserved; 1497 1498 /* 1499 * Stolen memory is segmented in hardware with different portions 1500 * offlimits to certain functions. 1501 * 1502 * The drm_mm is initialised to the total accessible range, as found 1503 * from the PCI config. On Broadwell+, this is further restricted to 1504 * avoid the first page! The upper end of stolen memory is reserved for 1505 * hardware functions and similarly removed from the accessible range. 1506 */ 1507 resource_size_t stolen_usable_size; /* Total size minus reserved ranges */ 1508 1509 struct intel_uncore uncore; 1510 1511 struct i915_virtual_gpu vgpu; 1512 1513 struct intel_gvt *gvt; 1514 1515 struct intel_wopcm wopcm; 1516 1517 struct intel_huc huc; 1518 struct intel_guc guc; 1519 1520 struct intel_csr csr; 1521 1522 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 1523 1524 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 1525 * controller on different i2c buses. */ 1526 struct mutex gmbus_mutex; 1527 1528 /** 1529 * Base address of where the gmbus and gpio blocks are located (either 1530 * on PCH or on SoC for platforms without PCH). 1531 */ 1532 u32 gpio_mmio_base; 1533 1534 /* MMIO base address for MIPI regs */ 1535 u32 mipi_mmio_base; 1536 1537 u32 psr_mmio_base; 1538 1539 u32 pps_mmio_base; 1540 1541 wait_queue_head_t gmbus_wait_queue; 1542 1543 struct pci_dev *bridge_dev; 1544 struct intel_engine_cs *engine[I915_NUM_ENGINES]; 1545 /* Context used internally to idle the GPU and setup initial state */ 1546 struct i915_gem_context *kernel_context; 1547 /* Context only to be used for injecting preemption commands */ 1548 struct i915_gem_context *preempt_context; 1549 struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1] 1550 [MAX_ENGINE_INSTANCE + 1]; 1551 1552 struct resource mch_res; 1553 1554 /* protects the irq masks */ 1555 spinlock_t irq_lock; 1556 1557 bool display_irqs_enabled; 1558 1559 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 1560 struct pm_qos_request pm_qos; 1561 1562 /* Sideband mailbox protection */ 1563 struct mutex sb_lock; 1564 1565 /** Cached value of IMR to avoid reads in updating the bitfield */ 1566 union { 1567 u32 irq_mask; 1568 u32 de_irq_mask[I915_MAX_PIPES]; 1569 }; 1570 u32 gt_irq_mask; 1571 u32 pm_imr; 1572 u32 pm_ier; 1573 u32 pm_rps_events; 1574 u32 pm_guc_events; 1575 u32 pipestat_irq_mask[I915_MAX_PIPES]; 1576 1577 struct i915_hotplug hotplug; 1578 struct intel_fbc fbc; 1579 struct i915_drrs drrs; 1580 struct intel_opregion opregion; 1581 struct intel_vbt_data vbt; 1582 1583 bool preserve_bios_swizzle; 1584 1585 /* overlay */ 1586 struct intel_overlay *overlay; 1587 1588 /* backlight registers and fields in struct intel_panel */ 1589 struct mutex backlight_lock; 1590 1591 /* LVDS info */ 1592 bool no_aux_handshake; 1593 1594 /* protects panel power sequencer state */ 1595 struct mutex pps_mutex; 1596 1597 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 1598 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 1599 1600 unsigned int fsb_freq, mem_freq, is_ddr3; 1601 unsigned int skl_preferred_vco_freq; 1602 unsigned int max_cdclk_freq; 1603 1604 unsigned int max_dotclk_freq; 1605 unsigned int rawclk_freq; 1606 unsigned int hpll_freq; 1607 unsigned int fdi_pll_freq; 1608 unsigned int czclk_freq; 1609 1610 struct { 1611 /* 1612 * The current logical cdclk state. 1613 * See intel_atomic_state.cdclk.logical 1614 * 1615 * For reading holding any crtc lock is sufficient, 1616 * for writing must hold all of them. 1617 */ 1618 struct intel_cdclk_state logical; 1619 /* 1620 * The current actual cdclk state. 1621 * See intel_atomic_state.cdclk.actual 1622 */ 1623 struct intel_cdclk_state actual; 1624 /* The current hardware cdclk state */ 1625 struct intel_cdclk_state hw; 1626 1627 int force_min_cdclk; 1628 } cdclk; 1629 1630 /** 1631 * wq - Driver workqueue for GEM. 1632 * 1633 * NOTE: Work items scheduled here are not allowed to grab any modeset 1634 * locks, for otherwise the flushing done in the pageflip code will 1635 * result in deadlocks. 1636 */ 1637 struct workqueue_struct *wq; 1638 1639 /* ordered wq for modesets */ 1640 struct workqueue_struct *modeset_wq; 1641 1642 /* Display functions */ 1643 struct drm_i915_display_funcs display; 1644 1645 /* PCH chipset type */ 1646 enum intel_pch pch_type; 1647 unsigned short pch_id; 1648 1649 unsigned long quirks; 1650 1651 struct drm_atomic_state *modeset_restore_state; 1652 struct drm_modeset_acquire_ctx reset_ctx; 1653 1654 struct i915_ggtt ggtt; /* VM representing the global address space */ 1655 1656 struct i915_gem_mm mm; 1657 DECLARE_HASHTABLE(mm_structs, 7); 1658 struct mutex mm_lock; 1659 1660 struct intel_ppat ppat; 1661 1662 /* Kernel Modesetting */ 1663 1664 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 1665 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 1666 1667 #ifdef CONFIG_DEBUG_FS 1668 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 1669 #endif 1670 1671 /* dpll and cdclk state is protected by connection_mutex */ 1672 int num_shared_dpll; 1673 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 1674 const struct intel_dpll_mgr *dpll_mgr; 1675 1676 /* 1677 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 1678 * Must be global rather than per dpll, because on some platforms 1679 * plls share registers. 1680 */ 1681 struct mutex dpll_lock; 1682 1683 unsigned int active_crtcs; 1684 /* minimum acceptable cdclk for each pipe */ 1685 int min_cdclk[I915_MAX_PIPES]; 1686 /* minimum acceptable voltage level for each pipe */ 1687 u8 min_voltage_level[I915_MAX_PIPES]; 1688 1689 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 1690 1691 struct i915_wa_list gt_wa_list; 1692 1693 struct i915_frontbuffer_tracking fb_tracking; 1694 1695 struct intel_atomic_helper { 1696 struct llist_head free_list; 1697 struct work_struct free_work; 1698 } atomic_helper; 1699 1700 u16 orig_clock; 1701 1702 bool mchbar_need_disable; 1703 1704 struct intel_l3_parity l3_parity; 1705 1706 /* 1707 * edram size in MB. 1708 * Cannot be determined by PCIID. You must always read a register. 1709 */ 1710 u32 edram_size_mb; 1711 1712 /* 1713 * Protects RPS/RC6 register access and PCU communication. 1714 * Must be taken after struct_mutex if nested. Note that 1715 * this lock may be held for long periods of time when 1716 * talking to hw - so only take it when talking to hw! 1717 */ 1718 struct mutex pcu_lock; 1719 1720 /* gen6+ GT PM state */ 1721 struct intel_gen6_power_mgmt gt_pm; 1722 1723 /* ilk-only ips/rps state. Everything in here is protected by the global 1724 * mchdev_lock in intel_pm.c */ 1725 struct intel_ilk_power_mgmt ips; 1726 1727 struct i915_power_domains power_domains; 1728 1729 struct i915_psr psr; 1730 1731 struct i915_gpu_error gpu_error; 1732 1733 struct drm_i915_gem_object *vlv_pctx; 1734 1735 /* list of fbdev register on this device */ 1736 struct intel_fbdev *fbdev; 1737 struct work_struct fbdev_suspend_work; 1738 1739 struct drm_property *broadcast_rgb_property; 1740 struct drm_property *force_audio_property; 1741 1742 /* hda/i915 audio component */ 1743 struct i915_audio_component *audio_component; 1744 bool audio_component_registered; 1745 /** 1746 * av_mutex - mutex for audio/video sync 1747 * 1748 */ 1749 struct mutex av_mutex; 1750 int audio_power_refcount; 1751 1752 struct { 1753 struct mutex mutex; 1754 struct list_head list; 1755 struct llist_head free_list; 1756 struct work_struct free_work; 1757 1758 /* The hw wants to have a stable context identifier for the 1759 * lifetime of the context (for OA, PASID, faults, etc). 1760 * This is limited in execlists to 21 bits. 1761 */ 1762 struct ida hw_ida; 1763 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 1764 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */ 1765 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */ 1766 struct list_head hw_id_list; 1767 } contexts; 1768 1769 u32 fdi_rx_config; 1770 1771 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 1772 u32 chv_phy_control; 1773 /* 1774 * Shadows for CHV DPLL_MD regs to keep the state 1775 * checker somewhat working in the presence hardware 1776 * crappiness (can't read out DPLL_MD for pipes B & C). 1777 */ 1778 u32 chv_dpll_md[I915_MAX_PIPES]; 1779 u32 bxt_phy_grc; 1780 1781 u32 suspend_count; 1782 bool power_domains_suspended; 1783 struct i915_suspend_saved_registers regfile; 1784 struct vlv_s0ix_state vlv_s0ix_state; 1785 1786 enum { 1787 I915_SAGV_UNKNOWN = 0, 1788 I915_SAGV_DISABLED, 1789 I915_SAGV_ENABLED, 1790 I915_SAGV_NOT_CONTROLLED 1791 } sagv_status; 1792 1793 struct { 1794 /* 1795 * Raw watermark latency values: 1796 * in 0.1us units for WM0, 1797 * in 0.5us units for WM1+. 1798 */ 1799 /* primary */ 1800 u16 pri_latency[5]; 1801 /* sprite */ 1802 u16 spr_latency[5]; 1803 /* cursor */ 1804 u16 cur_latency[5]; 1805 /* 1806 * Raw watermark memory latency values 1807 * for SKL for all 8 levels 1808 * in 1us units. 1809 */ 1810 u16 skl_latency[8]; 1811 1812 /* current hardware state */ 1813 union { 1814 struct ilk_wm_values hw; 1815 struct skl_ddb_values skl_hw; 1816 struct vlv_wm_values vlv; 1817 struct g4x_wm_values g4x; 1818 }; 1819 1820 u8 max_level; 1821 1822 /* 1823 * Should be held around atomic WM register writing; also 1824 * protects * intel_crtc->wm.active and 1825 * cstate->wm.need_postvbl_update. 1826 */ 1827 struct mutex wm_mutex; 1828 1829 /* 1830 * Set during HW readout of watermarks/DDB. Some platforms 1831 * need to know when we're still using BIOS-provided values 1832 * (which we don't fully trust). 1833 */ 1834 bool distrust_bios_wm; 1835 } wm; 1836 1837 struct dram_info { 1838 bool valid; 1839 bool is_16gb_dimm; 1840 u8 num_channels; 1841 u8 ranks; 1842 u32 bandwidth_kbps; 1843 bool symmetric_memory; 1844 enum intel_dram_type { 1845 INTEL_DRAM_UNKNOWN, 1846 INTEL_DRAM_DDR3, 1847 INTEL_DRAM_DDR4, 1848 INTEL_DRAM_LPDDR3, 1849 INTEL_DRAM_LPDDR4 1850 } type; 1851 } dram_info; 1852 1853 struct i915_runtime_pm runtime_pm; 1854 1855 struct { 1856 bool initialized; 1857 1858 struct kobject *metrics_kobj; 1859 struct ctl_table_header *sysctl_header; 1860 1861 /* 1862 * Lock associated with adding/modifying/removing OA configs 1863 * in dev_priv->perf.metrics_idr. 1864 */ 1865 struct mutex metrics_lock; 1866 1867 /* 1868 * List of dynamic configurations, you need to hold 1869 * dev_priv->perf.metrics_lock to access it. 1870 */ 1871 struct idr metrics_idr; 1872 1873 /* 1874 * Lock associated with anything below within this structure 1875 * except exclusive_stream. 1876 */ 1877 struct mutex lock; 1878 struct list_head streams; 1879 1880 struct { 1881 /* 1882 * The stream currently using the OA unit. If accessed 1883 * outside a syscall associated to its file 1884 * descriptor, you need to hold 1885 * dev_priv->drm.struct_mutex. 1886 */ 1887 struct i915_perf_stream *exclusive_stream; 1888 1889 struct intel_context *pinned_ctx; 1890 u32 specific_ctx_id; 1891 u32 specific_ctx_id_mask; 1892 1893 struct hrtimer poll_check_timer; 1894 wait_queue_head_t poll_wq; 1895 bool pollin; 1896 1897 /** 1898 * For rate limiting any notifications of spurious 1899 * invalid OA reports 1900 */ 1901 struct ratelimit_state spurious_report_rs; 1902 1903 bool periodic; 1904 int period_exponent; 1905 1906 struct i915_oa_config test_config; 1907 1908 struct { 1909 struct i915_vma *vma; 1910 u8 *vaddr; 1911 u32 last_ctx_id; 1912 int format; 1913 int format_size; 1914 1915 /** 1916 * Locks reads and writes to all head/tail state 1917 * 1918 * Consider: the head and tail pointer state 1919 * needs to be read consistently from a hrtimer 1920 * callback (atomic context) and read() fop 1921 * (user context) with tail pointer updates 1922 * happening in atomic context and head updates 1923 * in user context and the (unlikely) 1924 * possibility of read() errors needing to 1925 * reset all head/tail state. 1926 * 1927 * Note: Contention or performance aren't 1928 * currently a significant concern here 1929 * considering the relatively low frequency of 1930 * hrtimer callbacks (5ms period) and that 1931 * reads typically only happen in response to a 1932 * hrtimer event and likely complete before the 1933 * next callback. 1934 * 1935 * Note: This lock is not held *while* reading 1936 * and copying data to userspace so the value 1937 * of head observed in htrimer callbacks won't 1938 * represent any partial consumption of data. 1939 */ 1940 spinlock_t ptr_lock; 1941 1942 /** 1943 * One 'aging' tail pointer and one 'aged' 1944 * tail pointer ready to used for reading. 1945 * 1946 * Initial values of 0xffffffff are invalid 1947 * and imply that an update is required 1948 * (and should be ignored by an attempted 1949 * read) 1950 */ 1951 struct { 1952 u32 offset; 1953 } tails[2]; 1954 1955 /** 1956 * Index for the aged tail ready to read() 1957 * data up to. 1958 */ 1959 unsigned int aged_tail_idx; 1960 1961 /** 1962 * A monotonic timestamp for when the current 1963 * aging tail pointer was read; used to 1964 * determine when it is old enough to trust. 1965 */ 1966 u64 aging_timestamp; 1967 1968 /** 1969 * Although we can always read back the head 1970 * pointer register, we prefer to avoid 1971 * trusting the HW state, just to avoid any 1972 * risk that some hardware condition could 1973 * somehow bump the head pointer unpredictably 1974 * and cause us to forward the wrong OA buffer 1975 * data to userspace. 1976 */ 1977 u32 head; 1978 } oa_buffer; 1979 1980 u32 gen7_latched_oastatus1; 1981 u32 ctx_oactxctrl_offset; 1982 u32 ctx_flexeu0_offset; 1983 1984 /** 1985 * The RPT_ID/reason field for Gen8+ includes a bit 1986 * to determine if the CTX ID in the report is valid 1987 * but the specific bit differs between Gen 8 and 9 1988 */ 1989 u32 gen8_valid_ctx_bit; 1990 1991 struct i915_oa_ops ops; 1992 const struct i915_oa_format *oa_formats; 1993 } oa; 1994 } perf; 1995 1996 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 1997 struct { 1998 void (*cleanup_engine)(struct intel_engine_cs *engine); 1999 2000 struct i915_gt_timelines { 2001 struct mutex mutex; /* protects list, tainted by GPU */ 2002 struct list_head active_list; 2003 2004 /* Pack multiple timelines' seqnos into the same page */ 2005 spinlock_t hwsp_lock; 2006 struct list_head hwsp_free_list; 2007 } timelines; 2008 2009 intel_engine_mask_t active_engines; 2010 struct list_head active_rings; 2011 struct list_head closed_vma; 2012 u32 active_requests; 2013 2014 /** 2015 * Is the GPU currently considered idle, or busy executing 2016 * userspace requests? Whilst idle, we allow runtime power 2017 * management to power down the hardware and display clocks. 2018 * In order to reduce the effect on performance, there 2019 * is a slight delay before we do so. 2020 */ 2021 intel_wakeref_t awake; 2022 2023 /** 2024 * We leave the user IRQ off as much as possible, 2025 * but this means that requests will finish and never 2026 * be retired once the system goes idle. Set a timer to 2027 * fire periodically while the ring is running. When it 2028 * fires, go retire requests. 2029 */ 2030 struct delayed_work retire_work; 2031 2032 /** 2033 * When we detect an idle GPU, we want to turn on 2034 * powersaving features. So once we see that there 2035 * are no more requests outstanding and no more 2036 * arrive within a small period of time, we fire 2037 * off the idle_work. 2038 */ 2039 struct delayed_work idle_work; 2040 2041 ktime_t last_init_time; 2042 2043 struct i915_vma *scratch; 2044 } gt; 2045 2046 /* For i945gm vblank irq vs. C3 workaround */ 2047 struct { 2048 struct work_struct work; 2049 struct pm_qos_request pm_qos; 2050 u8 c3_disable_latency; 2051 u8 enabled; 2052 } i945gm_vblank; 2053 2054 /* perform PHY state sanity checks? */ 2055 bool chv_phy_assert[2]; 2056 2057 bool ipc_enabled; 2058 2059 /* Used to save the pipe-to-encoder mapping for audio */ 2060 struct intel_encoder *av_enc_map[I915_MAX_PIPES]; 2061 2062 /* necessary resource sharing with HDMI LPE audio driver. */ 2063 struct { 2064 struct platform_device *platdev; 2065 int irq; 2066 } lpe_audio; 2067 2068 struct i915_pmu pmu; 2069 2070 struct i915_hdcp_comp_master *hdcp_master; 2071 bool hdcp_comp_added; 2072 2073 /* Mutex to protect the above hdcp component related values. */ 2074 struct mutex hdcp_comp_mutex; 2075 2076 /* 2077 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2078 * will be rejected. Instead look for a better place. 2079 */ 2080 }; 2081 2082 struct dram_dimm_info { 2083 u8 size, width, ranks; 2084 }; 2085 2086 struct dram_channel_info { 2087 struct dram_dimm_info dimm_l, dimm_s; 2088 u8 ranks; 2089 bool is_16gb_dimm; 2090 }; 2091 2092 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2093 { 2094 return container_of(dev, struct drm_i915_private, drm); 2095 } 2096 2097 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) 2098 { 2099 return to_i915(dev_get_drvdata(kdev)); 2100 } 2101 2102 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm) 2103 { 2104 return container_of(wopcm, struct drm_i915_private, wopcm); 2105 } 2106 2107 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2108 { 2109 return container_of(guc, struct drm_i915_private, guc); 2110 } 2111 2112 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc) 2113 { 2114 return container_of(huc, struct drm_i915_private, huc); 2115 } 2116 2117 static inline struct drm_i915_private *uncore_to_i915(struct intel_uncore *uncore) 2118 { 2119 return container_of(uncore, struct drm_i915_private, uncore); 2120 } 2121 2122 /* Simple iterator over all initialised engines */ 2123 #define for_each_engine(engine__, dev_priv__, id__) \ 2124 for ((id__) = 0; \ 2125 (id__) < I915_NUM_ENGINES; \ 2126 (id__)++) \ 2127 for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) 2128 2129 /* Iterator over subset of engines selected by mask */ 2130 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \ 2131 for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->engine_mask; \ 2132 (tmp__) ? \ 2133 ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \ 2134 0;) 2135 2136 enum hdmi_force_audio { 2137 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2138 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2139 HDMI_AUDIO_AUTO, /* trust EDID */ 2140 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2141 }; 2142 2143 #define I915_GTT_OFFSET_NONE ((u32)-1) 2144 2145 /* 2146 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2147 * considered to be the frontbuffer for the given plane interface-wise. This 2148 * doesn't mean that the hw necessarily already scans it out, but that any 2149 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2150 * 2151 * We have one bit per pipe and per scanout plane type. 2152 */ 2153 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2154 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \ 2155 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \ 2156 BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \ 2157 BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \ 2158 }) 2159 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2160 BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2161 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2162 GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \ 2163 INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2164 2165 /* 2166 * Optimised SGL iterator for GEM objects 2167 */ 2168 static __always_inline struct sgt_iter { 2169 struct scatterlist *sgp; 2170 union { 2171 unsigned long pfn; 2172 dma_addr_t dma; 2173 }; 2174 unsigned int curr; 2175 unsigned int max; 2176 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2177 struct sgt_iter s = { .sgp = sgl }; 2178 2179 if (s.sgp) { 2180 s.max = s.curr = s.sgp->offset; 2181 s.max += s.sgp->length; 2182 if (dma) 2183 s.dma = sg_dma_address(s.sgp); 2184 else 2185 s.pfn = page_to_pfn(sg_page(s.sgp)); 2186 } 2187 2188 return s; 2189 } 2190 2191 static inline struct scatterlist *____sg_next(struct scatterlist *sg) 2192 { 2193 ++sg; 2194 if (unlikely(sg_is_chain(sg))) 2195 sg = sg_chain_ptr(sg); 2196 return sg; 2197 } 2198 2199 /** 2200 * __sg_next - return the next scatterlist entry in a list 2201 * @sg: The current sg entry 2202 * 2203 * Description: 2204 * If the entry is the last, return NULL; otherwise, step to the next 2205 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2206 * otherwise just return the pointer to the current element. 2207 **/ 2208 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2209 { 2210 return sg_is_last(sg) ? NULL : ____sg_next(sg); 2211 } 2212 2213 /** 2214 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2215 * @__dmap: DMA address (output) 2216 * @__iter: 'struct sgt_iter' (iterator state, internal) 2217 * @__sgt: sg_table to iterate over (input) 2218 */ 2219 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2220 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2221 ((__dmap) = (__iter).dma + (__iter).curr); \ 2222 (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ? \ 2223 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0) 2224 2225 /** 2226 * for_each_sgt_page - iterate over the pages of the given sg_table 2227 * @__pp: page pointer (output) 2228 * @__iter: 'struct sgt_iter' (iterator state, internal) 2229 * @__sgt: sg_table to iterate over (input) 2230 */ 2231 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2232 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2233 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2234 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2235 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2236 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0) 2237 2238 bool i915_sg_trim(struct sg_table *orig_st); 2239 2240 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg) 2241 { 2242 unsigned int page_sizes; 2243 2244 page_sizes = 0; 2245 while (sg) { 2246 GEM_BUG_ON(sg->offset); 2247 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE)); 2248 page_sizes |= sg->length; 2249 sg = __sg_next(sg); 2250 } 2251 2252 return page_sizes; 2253 } 2254 2255 static inline unsigned int i915_sg_segment_size(void) 2256 { 2257 unsigned int size = swiotlb_max_segment(); 2258 2259 if (size == 0) 2260 return SCATTERLIST_MAX_SEGMENT; 2261 2262 size = rounddown(size, PAGE_SIZE); 2263 /* swiotlb_max_segment_size can return 1 byte when it means one page. */ 2264 if (size < PAGE_SIZE) 2265 size = PAGE_SIZE; 2266 2267 return size; 2268 } 2269 2270 #define INTEL_INFO(dev_priv) (&(dev_priv)->__info) 2271 #define RUNTIME_INFO(dev_priv) (&(dev_priv)->__runtime) 2272 #define DRIVER_CAPS(dev_priv) (&(dev_priv)->caps) 2273 2274 #define INTEL_GEN(dev_priv) (INTEL_INFO(dev_priv)->gen) 2275 #define INTEL_DEVID(dev_priv) (RUNTIME_INFO(dev_priv)->device_id) 2276 2277 #define REVID_FOREVER 0xff 2278 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision) 2279 2280 #define INTEL_GEN_MASK(s, e) ( \ 2281 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \ 2282 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \ 2283 GENMASK((e) - 1, (s) - 1)) 2284 2285 /* Returns true if Gen is in inclusive range [Start, End] */ 2286 #define IS_GEN_RANGE(dev_priv, s, e) \ 2287 (!!(INTEL_INFO(dev_priv)->gen_mask & INTEL_GEN_MASK((s), (e)))) 2288 2289 #define IS_GEN(dev_priv, n) \ 2290 (BUILD_BUG_ON_ZERO(!__builtin_constant_p(n)) + \ 2291 INTEL_INFO(dev_priv)->gen == (n)) 2292 2293 /* 2294 * Return true if revision is in range [since,until] inclusive. 2295 * 2296 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2297 */ 2298 #define IS_REVID(p, since, until) \ 2299 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2300 2301 static __always_inline unsigned int 2302 __platform_mask_index(const struct intel_runtime_info *info, 2303 enum intel_platform p) 2304 { 2305 const unsigned int pbits = 2306 BITS_PER_TYPE(info->platform_mask[0]) - INTEL_SUBPLATFORM_BITS; 2307 2308 /* Expand the platform_mask array if this fails. */ 2309 BUILD_BUG_ON(INTEL_MAX_PLATFORMS > 2310 pbits * ARRAY_SIZE(info->platform_mask)); 2311 2312 return p / pbits; 2313 } 2314 2315 static __always_inline unsigned int 2316 __platform_mask_bit(const struct intel_runtime_info *info, 2317 enum intel_platform p) 2318 { 2319 const unsigned int pbits = 2320 BITS_PER_TYPE(info->platform_mask[0]) - INTEL_SUBPLATFORM_BITS; 2321 2322 return p % pbits + INTEL_SUBPLATFORM_BITS; 2323 } 2324 2325 static inline u32 2326 intel_subplatform(const struct intel_runtime_info *info, enum intel_platform p) 2327 { 2328 const unsigned int pi = __platform_mask_index(info, p); 2329 2330 return info->platform_mask[pi] & INTEL_SUBPLATFORM_BITS; 2331 } 2332 2333 static __always_inline bool 2334 IS_PLATFORM(const struct drm_i915_private *i915, enum intel_platform p) 2335 { 2336 const struct intel_runtime_info *info = RUNTIME_INFO(i915); 2337 const unsigned int pi = __platform_mask_index(info, p); 2338 const unsigned int pb = __platform_mask_bit(info, p); 2339 2340 BUILD_BUG_ON(!__builtin_constant_p(p)); 2341 2342 return info->platform_mask[pi] & BIT(pb); 2343 } 2344 2345 static __always_inline bool 2346 IS_SUBPLATFORM(const struct drm_i915_private *i915, 2347 enum intel_platform p, unsigned int s) 2348 { 2349 const struct intel_runtime_info *info = RUNTIME_INFO(i915); 2350 const unsigned int pi = __platform_mask_index(info, p); 2351 const unsigned int pb = __platform_mask_bit(info, p); 2352 const unsigned int msb = BITS_PER_TYPE(info->platform_mask[0]) - 1; 2353 const u32 mask = info->platform_mask[pi]; 2354 2355 BUILD_BUG_ON(!__builtin_constant_p(p)); 2356 BUILD_BUG_ON(!__builtin_constant_p(s)); 2357 BUILD_BUG_ON((s) >= INTEL_SUBPLATFORM_BITS); 2358 2359 /* Shift and test on the MSB position so sign flag can be used. */ 2360 return ((mask << (msb - pb)) & (mask << (msb - s))) & BIT(msb); 2361 } 2362 2363 #define IS_MOBILE(dev_priv) (INTEL_INFO(dev_priv)->is_mobile) 2364 2365 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830) 2366 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G) 2367 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X) 2368 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G) 2369 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G) 2370 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM) 2371 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G) 2372 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM) 2373 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G) 2374 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM) 2375 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45) 2376 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45) 2377 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) 2378 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW) 2379 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33) 2380 #define IS_IRONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IRONLAKE) 2381 #define IS_IRONLAKE_M(dev_priv) \ 2382 (IS_PLATFORM(dev_priv, INTEL_IRONLAKE) && IS_MOBILE(dev_priv)) 2383 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE) 2384 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \ 2385 INTEL_INFO(dev_priv)->gt == 1) 2386 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW) 2387 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW) 2388 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL) 2389 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL) 2390 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE) 2391 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON) 2392 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE) 2393 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE) 2394 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE) 2395 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE) 2396 #define IS_ICELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ICELAKE) 2397 #define IS_ELKHARTLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ELKHARTLAKE) 2398 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ 2399 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) 2400 #define IS_BDW_ULT(dev_priv) \ 2401 IS_SUBPLATFORM(dev_priv, INTEL_BROADWELL, INTEL_SUBPLATFORM_ULT) 2402 #define IS_BDW_ULX(dev_priv) \ 2403 IS_SUBPLATFORM(dev_priv, INTEL_BROADWELL, INTEL_SUBPLATFORM_ULX) 2404 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ 2405 INTEL_INFO(dev_priv)->gt == 3) 2406 #define IS_HSW_ULT(dev_priv) \ 2407 IS_SUBPLATFORM(dev_priv, INTEL_HASWELL, INTEL_SUBPLATFORM_ULT) 2408 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ 2409 INTEL_INFO(dev_priv)->gt == 3) 2410 #define IS_HSW_GT1(dev_priv) (IS_HASWELL(dev_priv) && \ 2411 INTEL_INFO(dev_priv)->gt == 1) 2412 /* ULX machines are also considered ULT. */ 2413 #define IS_HSW_ULX(dev_priv) \ 2414 IS_SUBPLATFORM(dev_priv, INTEL_HASWELL, INTEL_SUBPLATFORM_ULX) 2415 #define IS_SKL_ULT(dev_priv) \ 2416 IS_SUBPLATFORM(dev_priv, INTEL_SKYLAKE, INTEL_SUBPLATFORM_ULT) 2417 #define IS_SKL_ULX(dev_priv) \ 2418 IS_SUBPLATFORM(dev_priv, INTEL_SKYLAKE, INTEL_SUBPLATFORM_ULX) 2419 #define IS_KBL_ULT(dev_priv) \ 2420 IS_SUBPLATFORM(dev_priv, INTEL_KABYLAKE, INTEL_SUBPLATFORM_ULT) 2421 #define IS_KBL_ULX(dev_priv) \ 2422 IS_SUBPLATFORM(dev_priv, INTEL_KABYLAKE, INTEL_SUBPLATFORM_ULX) 2423 #define IS_AML_ULX(dev_priv) \ 2424 (IS_SUBPLATFORM(dev_priv, INTEL_KABYLAKE, INTEL_SUBPLATFORM_AML) || \ 2425 IS_SUBPLATFORM(dev_priv, INTEL_COFFEELAKE, INTEL_SUBPLATFORM_AML)) 2426 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2427 INTEL_INFO(dev_priv)->gt == 2) 2428 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2429 INTEL_INFO(dev_priv)->gt == 3) 2430 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2431 INTEL_INFO(dev_priv)->gt == 4) 2432 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2433 INTEL_INFO(dev_priv)->gt == 2) 2434 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2435 INTEL_INFO(dev_priv)->gt == 3) 2436 #define IS_CFL_ULT(dev_priv) \ 2437 IS_SUBPLATFORM(dev_priv, INTEL_COFFEELAKE, INTEL_SUBPLATFORM_ULT) 2438 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2439 INTEL_INFO(dev_priv)->gt == 2) 2440 #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2441 INTEL_INFO(dev_priv)->gt == 3) 2442 #define IS_CNL_WITH_PORT_F(dev_priv) \ 2443 IS_SUBPLATFORM(dev_priv, INTEL_CANNONLAKE, INTEL_SUBPLATFORM_PORTF) 2444 #define IS_ICL_WITH_PORT_F(dev_priv) \ 2445 IS_SUBPLATFORM(dev_priv, INTEL_ICELAKE, INTEL_SUBPLATFORM_PORTF) 2446 2447 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support) 2448 2449 #define SKL_REVID_A0 0x0 2450 #define SKL_REVID_B0 0x1 2451 #define SKL_REVID_C0 0x2 2452 #define SKL_REVID_D0 0x3 2453 #define SKL_REVID_E0 0x4 2454 #define SKL_REVID_F0 0x5 2455 #define SKL_REVID_G0 0x6 2456 #define SKL_REVID_H0 0x7 2457 2458 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2459 2460 #define BXT_REVID_A0 0x0 2461 #define BXT_REVID_A1 0x1 2462 #define BXT_REVID_B0 0x3 2463 #define BXT_REVID_B_LAST 0x8 2464 #define BXT_REVID_C0 0x9 2465 2466 #define IS_BXT_REVID(dev_priv, since, until) \ 2467 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until)) 2468 2469 #define KBL_REVID_A0 0x0 2470 #define KBL_REVID_B0 0x1 2471 #define KBL_REVID_C0 0x2 2472 #define KBL_REVID_D0 0x3 2473 #define KBL_REVID_E0 0x4 2474 2475 #define IS_KBL_REVID(dev_priv, since, until) \ 2476 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2477 2478 #define GLK_REVID_A0 0x0 2479 #define GLK_REVID_A1 0x1 2480 2481 #define IS_GLK_REVID(dev_priv, since, until) \ 2482 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2483 2484 #define CNL_REVID_A0 0x0 2485 #define CNL_REVID_B0 0x1 2486 #define CNL_REVID_C0 0x2 2487 2488 #define IS_CNL_REVID(p, since, until) \ 2489 (IS_CANNONLAKE(p) && IS_REVID(p, since, until)) 2490 2491 #define ICL_REVID_A0 0x0 2492 #define ICL_REVID_A2 0x1 2493 #define ICL_REVID_B0 0x3 2494 #define ICL_REVID_B2 0x4 2495 #define ICL_REVID_C0 0x5 2496 2497 #define IS_ICL_REVID(p, since, until) \ 2498 (IS_ICELAKE(p) && IS_REVID(p, since, until)) 2499 2500 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) 2501 #define IS_GEN9_LP(dev_priv) (IS_GEN(dev_priv, 9) && IS_LP(dev_priv)) 2502 #define IS_GEN9_BC(dev_priv) (IS_GEN(dev_priv, 9) && !IS_LP(dev_priv)) 2503 2504 #define HAS_ENGINE(dev_priv, id) (INTEL_INFO(dev_priv)->engine_mask & BIT(id)) 2505 2506 #define ENGINE_INSTANCES_MASK(dev_priv, first, count) ({ \ 2507 unsigned int first__ = (first); \ 2508 unsigned int count__ = (count); \ 2509 (INTEL_INFO(dev_priv)->engine_mask & \ 2510 GENMASK(first__ + count__ - 1, first__)) >> first__; \ 2511 }) 2512 #define VDBOX_MASK(dev_priv) \ 2513 ENGINE_INSTANCES_MASK(dev_priv, VCS0, I915_MAX_VCS) 2514 #define VEBOX_MASK(dev_priv) \ 2515 ENGINE_INSTANCES_MASK(dev_priv, VECS0, I915_MAX_VECS) 2516 2517 #define HAS_LLC(dev_priv) (INTEL_INFO(dev_priv)->has_llc) 2518 #define HAS_SNOOP(dev_priv) (INTEL_INFO(dev_priv)->has_snoop) 2519 #define HAS_EDRAM(dev_priv) ((dev_priv)->edram_size_mb) 2520 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \ 2521 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv)) 2522 2523 #define HWS_NEEDS_PHYSICAL(dev_priv) (INTEL_INFO(dev_priv)->hws_needs_physical) 2524 2525 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ 2526 (INTEL_INFO(dev_priv)->has_logical_ring_contexts) 2527 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \ 2528 (INTEL_INFO(dev_priv)->has_logical_ring_elsq) 2529 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \ 2530 (INTEL_INFO(dev_priv)->has_logical_ring_preemption) 2531 2532 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv) 2533 2534 #define INTEL_PPGTT(dev_priv) (INTEL_INFO(dev_priv)->ppgtt_type) 2535 #define HAS_PPGTT(dev_priv) \ 2536 (INTEL_PPGTT(dev_priv) != INTEL_PPGTT_NONE) 2537 #define HAS_FULL_PPGTT(dev_priv) \ 2538 (INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL) 2539 2540 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \ 2541 GEM_BUG_ON((sizes) == 0); \ 2542 ((sizes) & ~INTEL_INFO(dev_priv)->page_sizes) == 0; \ 2543 }) 2544 2545 #define HAS_OVERLAY(dev_priv) (INTEL_INFO(dev_priv)->display.has_overlay) 2546 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ 2547 (INTEL_INFO(dev_priv)->display.overlay_needs_physical) 2548 2549 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2550 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) 2551 2552 /* WaRsDisableCoarsePowerGating:skl,cnl */ 2553 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 2554 (IS_CANNONLAKE(dev_priv) || \ 2555 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv)) 2556 2557 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4) 2558 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \ 2559 IS_GEMINILAKE(dev_priv) || \ 2560 IS_KABYLAKE(dev_priv)) 2561 2562 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2563 * rows, which changed the alignment requirements and fence programming. 2564 */ 2565 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN(dev_priv, 2) && \ 2566 !(IS_I915G(dev_priv) || \ 2567 IS_I915GM(dev_priv))) 2568 #define SUPPORTS_TV(dev_priv) (INTEL_INFO(dev_priv)->display.supports_tv) 2569 #define I915_HAS_HOTPLUG(dev_priv) (INTEL_INFO(dev_priv)->display.has_hotplug) 2570 2571 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2) 2572 #define HAS_FBC(dev_priv) (INTEL_INFO(dev_priv)->display.has_fbc) 2573 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH(dev_priv) && INTEL_GEN(dev_priv) >= 7) 2574 2575 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) 2576 2577 #define HAS_DP_MST(dev_priv) (INTEL_INFO(dev_priv)->display.has_dp_mst) 2578 2579 #define HAS_DDI(dev_priv) (INTEL_INFO(dev_priv)->display.has_ddi) 2580 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) (INTEL_INFO(dev_priv)->has_fpga_dbg) 2581 #define HAS_PSR(dev_priv) (INTEL_INFO(dev_priv)->display.has_psr) 2582 #define HAS_TRANSCODER_EDP(dev_priv) (INTEL_INFO(dev_priv)->trans_offsets[TRANSCODER_EDP] != 0) 2583 2584 #define HAS_RC6(dev_priv) (INTEL_INFO(dev_priv)->has_rc6) 2585 #define HAS_RC6p(dev_priv) (INTEL_INFO(dev_priv)->has_rc6p) 2586 #define HAS_RC6pp(dev_priv) (false) /* HW was never validated */ 2587 2588 #define HAS_CSR(dev_priv) (INTEL_INFO(dev_priv)->display.has_csr) 2589 2590 #define HAS_RUNTIME_PM(dev_priv) (INTEL_INFO(dev_priv)->has_runtime_pm) 2591 #define HAS_64BIT_RELOC(dev_priv) (INTEL_INFO(dev_priv)->has_64bit_reloc) 2592 2593 #define HAS_IPC(dev_priv) (INTEL_INFO(dev_priv)->display.has_ipc) 2594 2595 /* 2596 * For now, anything with a GuC requires uCode loading, and then supports 2597 * command submission once loaded. But these are logically independent 2598 * properties, so we have separate macros to test them. 2599 */ 2600 #define HAS_GUC(dev_priv) (INTEL_INFO(dev_priv)->has_guc) 2601 #define HAS_GUC_CT(dev_priv) (INTEL_INFO(dev_priv)->has_guc_ct) 2602 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2603 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv)) 2604 2605 /* For now, anything with a GuC has also HuC */ 2606 #define HAS_HUC(dev_priv) (HAS_GUC(dev_priv)) 2607 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2608 2609 /* Having a GuC is not the same as using a GuC */ 2610 #define USES_GUC(dev_priv) intel_uc_is_using_guc(dev_priv) 2611 #define USES_GUC_SUBMISSION(dev_priv) intel_uc_is_using_guc_submission(dev_priv) 2612 #define USES_HUC(dev_priv) intel_uc_is_using_huc(dev_priv) 2613 2614 #define HAS_POOLED_EU(dev_priv) (INTEL_INFO(dev_priv)->has_pooled_eu) 2615 2616 #define INTEL_PCH_DEVICE_ID_MASK 0xff80 2617 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2618 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2619 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2620 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2621 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2622 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80 2623 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80 2624 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2625 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2626 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280 2627 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300 2628 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80 2629 #define INTEL_PCH_CMP_DEVICE_ID_TYPE 0x0280 2630 #define INTEL_PCH_ICP_DEVICE_ID_TYPE 0x3480 2631 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2632 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2633 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2634 2635 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type) 2636 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id) 2637 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP) 2638 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP) 2639 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP) 2640 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT) 2641 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT) 2642 #define HAS_PCH_LPT_LP(dev_priv) \ 2643 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \ 2644 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) 2645 #define HAS_PCH_LPT_H(dev_priv) \ 2646 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \ 2647 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE) 2648 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT) 2649 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX) 2650 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP) 2651 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE) 2652 2653 #define HAS_GMCH(dev_priv) (INTEL_INFO(dev_priv)->display.has_gmch) 2654 2655 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9) 2656 2657 /* DPF == dynamic parity feature */ 2658 #define HAS_L3_DPF(dev_priv) (INTEL_INFO(dev_priv)->has_l3_dpf) 2659 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 2660 2 : HAS_L3_DPF(dev_priv)) 2661 2662 #define GT_FREQUENCY_MULTIPLIER 50 2663 #define GEN9_FREQ_SCALER 3 2664 2665 #define HAS_DISPLAY(dev_priv) (INTEL_INFO(dev_priv)->num_pipes > 0) 2666 2667 #include "i915_trace.h" 2668 2669 static inline bool intel_vtd_active(void) 2670 { 2671 #ifdef CONFIG_INTEL_IOMMU 2672 if (intel_iommu_gfx_mapped) 2673 return true; 2674 #endif 2675 return false; 2676 } 2677 2678 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 2679 { 2680 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active(); 2681 } 2682 2683 static inline bool 2684 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv) 2685 { 2686 return IS_BROXTON(dev_priv) && intel_vtd_active(); 2687 } 2688 2689 /* i915_drv.c */ 2690 void __printf(3, 4) 2691 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 2692 const char *fmt, ...); 2693 2694 #define i915_report_error(dev_priv, fmt, ...) \ 2695 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 2696 2697 #ifdef CONFIG_COMPAT 2698 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2699 unsigned long arg); 2700 #else 2701 #define i915_compat_ioctl NULL 2702 #endif 2703 extern const struct dev_pm_ops i915_pm_ops; 2704 2705 extern int i915_driver_load(struct pci_dev *pdev, 2706 const struct pci_device_id *ent); 2707 extern void i915_driver_unload(struct drm_device *dev); 2708 2709 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 2710 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv); 2711 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2712 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2713 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2714 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2715 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2716 2717 int intel_engines_init_mmio(struct drm_i915_private *dev_priv); 2718 int intel_engines_init(struct drm_i915_private *dev_priv); 2719 2720 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv); 2721 2722 /* intel_hotplug.c */ 2723 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, 2724 u32 pin_mask, u32 long_mask); 2725 void intel_hpd_init(struct drm_i915_private *dev_priv); 2726 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 2727 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 2728 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv, 2729 enum port port); 2730 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2731 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2732 2733 /* i915_irq.c */ 2734 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 2735 { 2736 unsigned long delay; 2737 2738 if (unlikely(!i915_modparams.enable_hangcheck)) 2739 return; 2740 2741 /* Don't continually defer the hangcheck so that it is always run at 2742 * least once after work has been scheduled on any ring. Otherwise, 2743 * we will ignore a hung ring if a second ring is kept busy. 2744 */ 2745 2746 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 2747 queue_delayed_work(system_long_wq, 2748 &dev_priv->gpu_error.hangcheck_work, delay); 2749 } 2750 2751 extern void intel_irq_init(struct drm_i915_private *dev_priv); 2752 extern void intel_irq_fini(struct drm_i915_private *dev_priv); 2753 int intel_irq_install(struct drm_i915_private *dev_priv); 2754 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 2755 2756 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 2757 { 2758 return dev_priv->gvt; 2759 } 2760 2761 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 2762 { 2763 return dev_priv->vgpu.active; 2764 } 2765 2766 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 2767 enum pipe pipe); 2768 void 2769 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2770 u32 status_mask); 2771 2772 void 2773 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2774 u32 status_mask); 2775 2776 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 2777 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 2778 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 2779 u32 mask, 2780 u32 bits); 2781 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 2782 u32 interrupt_mask, 2783 u32 enabled_irq_mask); 2784 static inline void 2785 ilk_enable_display_irq(struct drm_i915_private *dev_priv, u32 bits) 2786 { 2787 ilk_update_display_irq(dev_priv, bits, bits); 2788 } 2789 static inline void 2790 ilk_disable_display_irq(struct drm_i915_private *dev_priv, u32 bits) 2791 { 2792 ilk_update_display_irq(dev_priv, bits, 0); 2793 } 2794 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 2795 enum pipe pipe, 2796 u32 interrupt_mask, 2797 u32 enabled_irq_mask); 2798 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 2799 enum pipe pipe, u32 bits) 2800 { 2801 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 2802 } 2803 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 2804 enum pipe pipe, u32 bits) 2805 { 2806 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 2807 } 2808 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 2809 u32 interrupt_mask, 2810 u32 enabled_irq_mask); 2811 static inline void 2812 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, u32 bits) 2813 { 2814 ibx_display_interrupt_update(dev_priv, bits, bits); 2815 } 2816 static inline void 2817 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, u32 bits) 2818 { 2819 ibx_display_interrupt_update(dev_priv, bits, 0); 2820 } 2821 2822 /* i915_gem.c */ 2823 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 2824 struct drm_file *file_priv); 2825 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 2826 struct drm_file *file_priv); 2827 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 2828 struct drm_file *file_priv); 2829 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 2830 struct drm_file *file_priv); 2831 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2832 struct drm_file *file_priv); 2833 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 2834 struct drm_file *file_priv); 2835 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 2836 struct drm_file *file_priv); 2837 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2838 struct drm_file *file_priv); 2839 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 2840 struct drm_file *file_priv); 2841 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 2842 struct drm_file *file_priv); 2843 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 2844 struct drm_file *file); 2845 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 2846 struct drm_file *file); 2847 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 2848 struct drm_file *file_priv); 2849 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 2850 struct drm_file *file_priv); 2851 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, 2852 struct drm_file *file_priv); 2853 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, 2854 struct drm_file *file_priv); 2855 int i915_gem_init_userptr(struct drm_i915_private *dev_priv); 2856 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv); 2857 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 2858 struct drm_file *file); 2859 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 2860 struct drm_file *file_priv); 2861 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 2862 struct drm_file *file_priv); 2863 void i915_gem_sanitize(struct drm_i915_private *i915); 2864 int i915_gem_init_early(struct drm_i915_private *dev_priv); 2865 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv); 2866 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 2867 int i915_gem_freeze(struct drm_i915_private *dev_priv); 2868 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 2869 2870 void i915_gem_object_init(struct drm_i915_gem_object *obj, 2871 const struct drm_i915_gem_object_ops *ops); 2872 struct drm_i915_gem_object * 2873 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size); 2874 struct drm_i915_gem_object * 2875 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 2876 const void *data, size_t size); 2877 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); 2878 void i915_gem_free_object(struct drm_gem_object *obj); 2879 2880 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 2881 { 2882 if (!atomic_read(&i915->mm.free_count)) 2883 return; 2884 2885 /* A single pass should suffice to release all the freed objects (along 2886 * most call paths) , but be a little more paranoid in that freeing 2887 * the objects does take a little amount of time, during which the rcu 2888 * callbacks could have added new objects into the freed list, and 2889 * armed the work again. 2890 */ 2891 do { 2892 rcu_barrier(); 2893 } while (flush_work(&i915->mm.free_work)); 2894 } 2895 2896 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915) 2897 { 2898 /* 2899 * Similar to objects above (see i915_gem_drain_freed-objects), in 2900 * general we have workers that are armed by RCU and then rearm 2901 * themselves in their callbacks. To be paranoid, we need to 2902 * drain the workqueue a second time after waiting for the RCU 2903 * grace period so that we catch work queued via RCU from the first 2904 * pass. As neither drain_workqueue() nor flush_workqueue() report 2905 * a result, we make an assumption that we only don't require more 2906 * than 2 passes to catch all recursive RCU delayed work. 2907 * 2908 */ 2909 int pass = 2; 2910 do { 2911 rcu_barrier(); 2912 i915_gem_drain_freed_objects(i915); 2913 drain_workqueue(i915->wq); 2914 } while (--pass); 2915 } 2916 2917 struct i915_vma * __must_check 2918 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 2919 const struct i915_ggtt_view *view, 2920 u64 size, 2921 u64 alignment, 2922 u64 flags); 2923 2924 int i915_gem_object_unbind(struct drm_i915_gem_object *obj); 2925 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 2926 2927 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); 2928 2929 static inline int __sg_page_count(const struct scatterlist *sg) 2930 { 2931 return sg->length >> PAGE_SHIFT; 2932 } 2933 2934 struct scatterlist * 2935 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 2936 unsigned int n, unsigned int *offset); 2937 2938 struct page * 2939 i915_gem_object_get_page(struct drm_i915_gem_object *obj, 2940 unsigned int n); 2941 2942 struct page * 2943 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 2944 unsigned int n); 2945 2946 dma_addr_t 2947 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 2948 unsigned long n); 2949 2950 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 2951 struct sg_table *pages, 2952 unsigned int sg_page_sizes); 2953 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 2954 2955 static inline int __must_check 2956 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 2957 { 2958 might_lock(&obj->mm.lock); 2959 2960 if (atomic_inc_not_zero(&obj->mm.pages_pin_count)) 2961 return 0; 2962 2963 return __i915_gem_object_get_pages(obj); 2964 } 2965 2966 static inline bool 2967 i915_gem_object_has_pages(struct drm_i915_gem_object *obj) 2968 { 2969 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages)); 2970 } 2971 2972 static inline void 2973 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 2974 { 2975 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 2976 2977 atomic_inc(&obj->mm.pages_pin_count); 2978 } 2979 2980 static inline bool 2981 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj) 2982 { 2983 return atomic_read(&obj->mm.pages_pin_count); 2984 } 2985 2986 static inline void 2987 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 2988 { 2989 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 2990 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 2991 2992 atomic_dec(&obj->mm.pages_pin_count); 2993 } 2994 2995 static inline void 2996 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 2997 { 2998 __i915_gem_object_unpin_pages(obj); 2999 } 3000 3001 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock/struct_mutex */ 3002 I915_MM_NORMAL = 0, 3003 I915_MM_SHRINKER /* called "recursively" from direct-reclaim-esque */ 3004 }; 3005 3006 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 3007 enum i915_mm_subclass subclass); 3008 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj); 3009 3010 enum i915_map_type { 3011 I915_MAP_WB = 0, 3012 I915_MAP_WC, 3013 #define I915_MAP_OVERRIDE BIT(31) 3014 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE, 3015 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE, 3016 }; 3017 3018 static inline enum i915_map_type 3019 i915_coherent_map_type(struct drm_i915_private *i915) 3020 { 3021 return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC; 3022 } 3023 3024 /** 3025 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 3026 * @obj: the object to map into kernel address space 3027 * @type: the type of mapping, used to select pgprot_t 3028 * 3029 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 3030 * pages and then returns a contiguous mapping of the backing storage into 3031 * the kernel address space. Based on the @type of mapping, the PTE will be 3032 * set to either WriteBack or WriteCombine (via pgprot_t). 3033 * 3034 * The caller is responsible for calling i915_gem_object_unpin_map() when the 3035 * mapping is no longer required. 3036 * 3037 * Returns the pointer through which to access the mapped object, or an 3038 * ERR_PTR() on error. 3039 */ 3040 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 3041 enum i915_map_type type); 3042 3043 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj, 3044 unsigned long offset, 3045 unsigned long size); 3046 static inline void i915_gem_object_flush_map(struct drm_i915_gem_object *obj) 3047 { 3048 __i915_gem_object_flush_map(obj, 0, obj->base.size); 3049 } 3050 3051 /** 3052 * i915_gem_object_unpin_map - releases an earlier mapping 3053 * @obj: the object to unmap 3054 * 3055 * After pinning the object and mapping its pages, once you are finished 3056 * with your access, call i915_gem_object_unpin_map() to release the pin 3057 * upon the mapping. Once the pin count reaches zero, that mapping may be 3058 * removed. 3059 */ 3060 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 3061 { 3062 i915_gem_object_unpin_pages(obj); 3063 } 3064 3065 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 3066 unsigned int *needs_clflush); 3067 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 3068 unsigned int *needs_clflush); 3069 #define CLFLUSH_BEFORE BIT(0) 3070 #define CLFLUSH_AFTER BIT(1) 3071 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER) 3072 3073 static inline void 3074 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj) 3075 { 3076 i915_gem_object_unpin_pages(obj); 3077 } 3078 3079 static inline int __must_check 3080 i915_mutex_lock_interruptible(struct drm_device *dev) 3081 { 3082 return mutex_lock_interruptible(&dev->struct_mutex); 3083 } 3084 3085 int i915_gem_dumb_create(struct drm_file *file_priv, 3086 struct drm_device *dev, 3087 struct drm_mode_create_dumb *args); 3088 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3089 u32 handle, u64 *offset); 3090 int i915_gem_mmap_gtt_version(void); 3091 3092 void i915_gem_track_fb(struct drm_i915_gem_object *old, 3093 struct drm_i915_gem_object *new, 3094 unsigned frontbuffer_bits); 3095 3096 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); 3097 3098 static inline bool __i915_wedged(struct i915_gpu_error *error) 3099 { 3100 return unlikely(test_bit(I915_WEDGED, &error->flags)); 3101 } 3102 3103 static inline bool i915_reset_failed(struct drm_i915_private *i915) 3104 { 3105 return __i915_wedged(&i915->gpu_error); 3106 } 3107 3108 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3109 { 3110 return READ_ONCE(error->reset_count); 3111 } 3112 3113 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error, 3114 struct intel_engine_cs *engine) 3115 { 3116 return READ_ONCE(error->reset_engine_count[engine->id]); 3117 } 3118 3119 void i915_gem_set_wedged(struct drm_i915_private *dev_priv); 3120 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv); 3121 3122 void i915_gem_init_mmio(struct drm_i915_private *i915); 3123 int __must_check i915_gem_init(struct drm_i915_private *dev_priv); 3124 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv); 3125 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv); 3126 void i915_gem_fini(struct drm_i915_private *dev_priv); 3127 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv); 3128 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, 3129 unsigned int flags, long timeout); 3130 void i915_gem_suspend(struct drm_i915_private *dev_priv); 3131 void i915_gem_suspend_late(struct drm_i915_private *dev_priv); 3132 void i915_gem_resume(struct drm_i915_private *dev_priv); 3133 vm_fault_t i915_gem_fault(struct vm_fault *vmf); 3134 int i915_gem_object_wait(struct drm_i915_gem_object *obj, 3135 unsigned int flags, 3136 long timeout); 3137 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 3138 unsigned int flags, 3139 const struct i915_sched_attr *attr); 3140 #define I915_PRIORITY_DISPLAY I915_USER_PRIORITY(I915_PRIORITY_MAX) 3141 3142 int __must_check 3143 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write); 3144 int __must_check 3145 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write); 3146 int __must_check 3147 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3148 struct i915_vma * __must_check 3149 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3150 u32 alignment, 3151 const struct i915_ggtt_view *view, 3152 unsigned int flags); 3153 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma); 3154 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3155 int align); 3156 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file); 3157 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3158 3159 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3160 enum i915_cache_level cache_level); 3161 3162 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3163 struct dma_buf *dma_buf); 3164 3165 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3166 struct drm_gem_object *gem_obj, int flags); 3167 3168 static inline struct i915_hw_ppgtt * 3169 i915_vm_to_ppgtt(struct i915_address_space *vm) 3170 { 3171 return container_of(vm, struct i915_hw_ppgtt, vm); 3172 } 3173 3174 /* i915_gem_fence_reg.c */ 3175 struct drm_i915_fence_reg * 3176 i915_reserve_fence(struct drm_i915_private *dev_priv); 3177 void i915_unreserve_fence(struct drm_i915_fence_reg *fence); 3178 3179 void i915_gem_restore_fences(struct drm_i915_private *dev_priv); 3180 3181 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv); 3182 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 3183 struct sg_table *pages); 3184 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 3185 struct sg_table *pages); 3186 3187 static inline struct i915_gem_context * 3188 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id) 3189 { 3190 return idr_find(&file_priv->context_idr, id); 3191 } 3192 3193 static inline struct i915_gem_context * 3194 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3195 { 3196 struct i915_gem_context *ctx; 3197 3198 rcu_read_lock(); 3199 ctx = __i915_gem_context_lookup_rcu(file_priv, id); 3200 if (ctx && !kref_get_unless_zero(&ctx->ref)) 3201 ctx = NULL; 3202 rcu_read_unlock(); 3203 3204 return ctx; 3205 } 3206 3207 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3208 struct drm_file *file); 3209 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3210 struct drm_file *file); 3211 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3212 struct drm_file *file); 3213 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 3214 struct intel_context *ce, 3215 u32 *reg_state); 3216 3217 /* i915_gem_evict.c */ 3218 int __must_check i915_gem_evict_something(struct i915_address_space *vm, 3219 u64 min_size, u64 alignment, 3220 unsigned cache_level, 3221 u64 start, u64 end, 3222 unsigned flags); 3223 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, 3224 struct drm_mm_node *node, 3225 unsigned int flags); 3226 int i915_gem_evict_vm(struct i915_address_space *vm); 3227 3228 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv); 3229 3230 /* belongs in i915_gem_gtt.h */ 3231 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3232 { 3233 wmb(); 3234 if (INTEL_GEN(dev_priv) < 6) 3235 intel_gtt_chipset_flush(); 3236 } 3237 3238 /* i915_gem_stolen.c */ 3239 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3240 struct drm_mm_node *node, u64 size, 3241 unsigned alignment); 3242 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3243 struct drm_mm_node *node, u64 size, 3244 unsigned alignment, u64 start, 3245 u64 end); 3246 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3247 struct drm_mm_node *node); 3248 int i915_gem_init_stolen(struct drm_i915_private *dev_priv); 3249 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv); 3250 struct drm_i915_gem_object * 3251 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, 3252 resource_size_t size); 3253 struct drm_i915_gem_object * 3254 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv, 3255 resource_size_t stolen_offset, 3256 resource_size_t gtt_offset, 3257 resource_size_t size); 3258 3259 /* i915_gem_internal.c */ 3260 struct drm_i915_gem_object * 3261 i915_gem_object_create_internal(struct drm_i915_private *dev_priv, 3262 phys_addr_t size); 3263 3264 /* i915_gem_shrinker.c */ 3265 unsigned long i915_gem_shrink(struct drm_i915_private *i915, 3266 unsigned long target, 3267 unsigned long *nr_scanned, 3268 unsigned flags); 3269 #define I915_SHRINK_PURGEABLE 0x1 3270 #define I915_SHRINK_UNBOUND 0x2 3271 #define I915_SHRINK_BOUND 0x4 3272 #define I915_SHRINK_ACTIVE 0x8 3273 #define I915_SHRINK_VMAPS 0x10 3274 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915); 3275 void i915_gem_shrinker_register(struct drm_i915_private *i915); 3276 void i915_gem_shrinker_unregister(struct drm_i915_private *i915); 3277 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 3278 struct mutex *mutex); 3279 3280 /* i915_gem_tiling.c */ 3281 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3282 { 3283 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3284 3285 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3286 i915_gem_object_is_tiled(obj); 3287 } 3288 3289 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, 3290 unsigned int tiling, unsigned int stride); 3291 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, 3292 unsigned int tiling, unsigned int stride); 3293 3294 /* i915_debugfs.c */ 3295 #ifdef CONFIG_DEBUG_FS 3296 int i915_debugfs_register(struct drm_i915_private *dev_priv); 3297 int i915_debugfs_connector_add(struct drm_connector *connector); 3298 void intel_display_crc_init(struct drm_i915_private *dev_priv); 3299 #else 3300 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} 3301 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3302 { return 0; } 3303 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {} 3304 #endif 3305 3306 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3307 3308 /* i915_cmd_parser.c */ 3309 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 3310 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine); 3311 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); 3312 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 3313 struct drm_i915_gem_object *batch_obj, 3314 struct drm_i915_gem_object *shadow_batch_obj, 3315 u32 batch_start_offset, 3316 u32 batch_len, 3317 bool is_master); 3318 3319 /* i915_perf.c */ 3320 extern void i915_perf_init(struct drm_i915_private *dev_priv); 3321 extern void i915_perf_fini(struct drm_i915_private *dev_priv); 3322 extern void i915_perf_register(struct drm_i915_private *dev_priv); 3323 extern void i915_perf_unregister(struct drm_i915_private *dev_priv); 3324 3325 /* i915_suspend.c */ 3326 extern int i915_save_state(struct drm_i915_private *dev_priv); 3327 extern int i915_restore_state(struct drm_i915_private *dev_priv); 3328 3329 /* i915_sysfs.c */ 3330 void i915_setup_sysfs(struct drm_i915_private *dev_priv); 3331 void i915_teardown_sysfs(struct drm_i915_private *dev_priv); 3332 3333 /* intel_lpe_audio.c */ 3334 int intel_lpe_audio_init(struct drm_i915_private *dev_priv); 3335 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv); 3336 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv); 3337 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv, 3338 enum pipe pipe, enum port port, 3339 const void *eld, int ls_clock, bool dp_output); 3340 3341 /* intel_i2c.c */ 3342 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv); 3343 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv); 3344 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3345 unsigned int pin); 3346 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter); 3347 3348 extern struct i2c_adapter * 3349 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3350 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3351 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3352 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3353 { 3354 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3355 } 3356 extern void intel_i2c_reset(struct drm_i915_private *dev_priv); 3357 3358 /* intel_bios.c */ 3359 void intel_bios_init(struct drm_i915_private *dev_priv); 3360 void intel_bios_cleanup(struct drm_i915_private *dev_priv); 3361 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3362 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3363 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3364 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3365 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3366 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3367 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3368 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3369 enum port port); 3370 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv, 3371 enum port port); 3372 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv, enum port port); 3373 3374 /* intel_acpi.c */ 3375 #ifdef CONFIG_ACPI 3376 extern void intel_register_dsm_handler(void); 3377 extern void intel_unregister_dsm_handler(void); 3378 #else 3379 static inline void intel_register_dsm_handler(void) { return; } 3380 static inline void intel_unregister_dsm_handler(void) { return; } 3381 #endif /* CONFIG_ACPI */ 3382 3383 /* intel_device_info.c */ 3384 static inline struct intel_device_info * 3385 mkwrite_device_info(struct drm_i915_private *dev_priv) 3386 { 3387 return (struct intel_device_info *)INTEL_INFO(dev_priv); 3388 } 3389 3390 static inline struct intel_sseu 3391 intel_device_default_sseu(struct drm_i915_private *i915) 3392 { 3393 const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu; 3394 struct intel_sseu value = { 3395 .slice_mask = sseu->slice_mask, 3396 .subslice_mask = sseu->subslice_mask[0], 3397 .min_eus_per_subslice = sseu->max_eus_per_subslice, 3398 .max_eus_per_subslice = sseu->max_eus_per_subslice, 3399 }; 3400 3401 return value; 3402 } 3403 3404 /* modesetting */ 3405 extern void intel_modeset_init_hw(struct drm_device *dev); 3406 extern int intel_modeset_init(struct drm_device *dev); 3407 extern void intel_modeset_cleanup(struct drm_device *dev); 3408 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, 3409 bool state); 3410 extern void intel_display_resume(struct drm_device *dev); 3411 extern void i915_redisable_vga(struct drm_i915_private *dev_priv); 3412 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv); 3413 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 3414 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv); 3415 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 3416 extern void intel_rps_mark_interactive(struct drm_i915_private *i915, 3417 bool interactive); 3418 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3419 bool enable); 3420 void intel_dsc_enable(struct intel_encoder *encoder, 3421 const struct intel_crtc_state *crtc_state); 3422 void intel_dsc_disable(const struct intel_crtc_state *crtc_state); 3423 3424 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3425 struct drm_file *file); 3426 3427 /* overlay */ 3428 extern struct intel_overlay_error_state * 3429 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); 3430 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3431 struct intel_overlay_error_state *error); 3432 3433 extern struct intel_display_error_state * 3434 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 3435 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3436 struct intel_display_error_state *error); 3437 3438 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3439 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox, 3440 u32 val, int fast_timeout_us, 3441 int slow_timeout_ms); 3442 #define sandybridge_pcode_write(dev_priv, mbox, val) \ 3443 sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0) 3444 3445 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, 3446 u32 reply_mask, u32 reply, int timeout_base_ms); 3447 3448 /* intel_sideband.c */ 3449 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3450 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3451 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3452 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 3453 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 3454 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3455 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3456 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3457 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3458 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3459 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3460 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 3461 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 3462 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3463 enum intel_sbi_destination destination); 3464 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3465 enum intel_sbi_destination destination); 3466 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3467 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3468 3469 /* intel_dpio_phy.c */ 3470 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 3471 enum dpio_phy *phy, enum dpio_channel *ch); 3472 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv, 3473 enum port port, u32 margin, u32 scale, 3474 u32 enable, u32 deemphasis); 3475 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3476 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3477 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 3478 enum dpio_phy phy); 3479 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 3480 enum dpio_phy phy); 3481 u8 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count); 3482 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 3483 u8 lane_lat_optim_mask); 3484 u8 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder); 3485 3486 void chv_set_phy_signal_level(struct intel_encoder *encoder, 3487 u32 deemph_reg_value, u32 margin_reg_value, 3488 bool uniq_trans_scale); 3489 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 3490 const struct intel_crtc_state *crtc_state, 3491 bool reset); 3492 void chv_phy_pre_pll_enable(struct intel_encoder *encoder, 3493 const struct intel_crtc_state *crtc_state); 3494 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3495 const struct intel_crtc_state *crtc_state); 3496 void chv_phy_release_cl2_override(struct intel_encoder *encoder); 3497 void chv_phy_post_pll_disable(struct intel_encoder *encoder, 3498 const struct intel_crtc_state *old_crtc_state); 3499 3500 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 3501 u32 demph_reg_value, u32 preemph_reg_value, 3502 u32 uniqtranscale_reg_value, u32 tx3_demph); 3503 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, 3504 const struct intel_crtc_state *crtc_state); 3505 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3506 const struct intel_crtc_state *crtc_state); 3507 void vlv_phy_reset_lanes(struct intel_encoder *encoder, 3508 const struct intel_crtc_state *old_crtc_state); 3509 3510 /* intel_combo_phy.c */ 3511 void icl_combo_phys_init(struct drm_i915_private *dev_priv); 3512 void icl_combo_phys_uninit(struct drm_i915_private *dev_priv); 3513 void cnl_combo_phys_init(struct drm_i915_private *dev_priv); 3514 void cnl_combo_phys_uninit(struct drm_i915_private *dev_priv); 3515 3516 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3517 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3518 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv, 3519 const i915_reg_t reg); 3520 3521 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1); 3522 3523 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv, 3524 const i915_reg_t reg) 3525 { 3526 return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000); 3527 } 3528 3529 #define __I915_REG_OP(op__, dev_priv__, ...) \ 3530 intel_uncore_##op__(&(dev_priv__)->uncore, __VA_ARGS__) 3531 3532 #define I915_READ8(reg__) __I915_REG_OP(read8, dev_priv, (reg__)) 3533 #define I915_WRITE8(reg__, val__) __I915_REG_OP(write8, dev_priv, (reg__), (val__)) 3534 3535 #define I915_READ16(reg__) __I915_REG_OP(read16, dev_priv, (reg__)) 3536 #define I915_WRITE16(reg__, val__) __I915_REG_OP(write16, dev_priv, (reg__), (val__)) 3537 #define I915_READ16_NOTRACE(reg__) __I915_REG_OP(read16_notrace, dev_priv, (reg__)) 3538 #define I915_WRITE16_NOTRACE(reg__, val__) __I915_REG_OP(write16_notrace, dev_priv, (reg__), (val__)) 3539 3540 #define I915_READ(reg__) __I915_REG_OP(read, dev_priv, (reg__)) 3541 #define I915_WRITE(reg__, val__) __I915_REG_OP(write, dev_priv, (reg__), (val__)) 3542 #define I915_READ_NOTRACE(reg__) __I915_REG_OP(read_notrace, dev_priv, (reg__)) 3543 #define I915_WRITE_NOTRACE(reg__, val__) __I915_REG_OP(write_notrace, dev_priv, (reg__), (val__)) 3544 3545 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3546 * will be implemented using 2 32-bit writes in an arbitrary order with 3547 * an arbitrary delay between them. This can cause the hardware to 3548 * act upon the intermediate value, possibly leading to corruption and 3549 * machine death. For this reason we do not support I915_WRITE64, or 3550 * dev_priv->uncore.funcs.mmio_writeq. 3551 * 3552 * When reading a 64-bit value as two 32-bit values, the delay may cause 3553 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that 3554 * occasionally a 64-bit register does not actualy support a full readq 3555 * and must be read using two 32-bit reads. 3556 * 3557 * You have been warned. 3558 */ 3559 #define I915_READ64(reg__) __I915_REG_OP(read64, dev_priv, (reg__)) 3560 #define I915_READ64_2x32(lower_reg__, upper_reg__) \ 3561 __I915_REG_OP(read64_2x32, dev_priv, (lower_reg__), (upper_reg__)) 3562 3563 #define POSTING_READ(reg__) __I915_REG_OP(posting_read, dev_priv, (reg__)) 3564 #define POSTING_READ16(reg__) __I915_REG_OP(posting_read16, dev_priv, (reg__)) 3565 3566 /* These are untraced mmio-accessors that are only valid to be used inside 3567 * critical sections, such as inside IRQ handlers, where forcewake is explicitly 3568 * controlled. 3569 * 3570 * Think twice, and think again, before using these. 3571 * 3572 * As an example, these accessors can possibly be used between: 3573 * 3574 * spin_lock_irq(&dev_priv->uncore.lock); 3575 * intel_uncore_forcewake_get__locked(); 3576 * 3577 * and 3578 * 3579 * intel_uncore_forcewake_put__locked(); 3580 * spin_unlock_irq(&dev_priv->uncore.lock); 3581 * 3582 * 3583 * Note: some registers may not need forcewake held, so 3584 * intel_uncore_forcewake_{get,put} can be omitted, see 3585 * intel_uncore_forcewake_for_reg(). 3586 * 3587 * Certain architectures will die if the same cacheline is concurrently accessed 3588 * by different clients (e.g. on Ivybridge). Access to registers should 3589 * therefore generally be serialised, by either the dev_priv->uncore.lock or 3590 * a more localised lock guarding all access to that bank of registers. 3591 */ 3592 #define I915_READ_FW(reg__) __I915_REG_OP(read_fw, dev_priv, (reg__)) 3593 #define I915_WRITE_FW(reg__, val__) __I915_REG_OP(write_fw, dev_priv, (reg__), (val__)) 3594 #define I915_WRITE64_FW(reg__, val__) __I915_REG_OP(write64_fw, dev_priv, (reg__), (val__)) 3595 #define POSTING_READ_FW(reg__) __I915_REG_OP(posting_read_fw, dev_priv, (reg__)) 3596 3597 /* "Broadcast RGB" property */ 3598 #define INTEL_BROADCAST_RGB_AUTO 0 3599 #define INTEL_BROADCAST_RGB_FULL 1 3600 #define INTEL_BROADCAST_RGB_LIMITED 2 3601 3602 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) 3603 { 3604 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3605 return VLV_VGACNTRL; 3606 else if (INTEL_GEN(dev_priv) >= 5) 3607 return CPU_VGACNTRL; 3608 else 3609 return VGACNTRL; 3610 } 3611 3612 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 3613 { 3614 unsigned long j = msecs_to_jiffies(m); 3615 3616 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3617 } 3618 3619 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 3620 { 3621 /* nsecs_to_jiffies64() does not guard against overflow */ 3622 if (NSEC_PER_SEC % HZ && 3623 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ) 3624 return MAX_JIFFY_OFFSET; 3625 3626 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 3627 } 3628 3629 /* 3630 * If you need to wait X milliseconds between events A and B, but event B 3631 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 3632 * when event A happened, then just before event B you call this function and 3633 * pass the timestamp as the first argument, and X as the second argument. 3634 */ 3635 static inline void 3636 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 3637 { 3638 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 3639 3640 /* 3641 * Don't re-read the value of "jiffies" every time since it may change 3642 * behind our back and break the math. 3643 */ 3644 tmp_jiffies = jiffies; 3645 target_jiffies = timestamp_jiffies + 3646 msecs_to_jiffies_timeout(to_wait_ms); 3647 3648 if (time_after(target_jiffies, tmp_jiffies)) { 3649 remaining_jiffies = target_jiffies - tmp_jiffies; 3650 while (remaining_jiffies) 3651 remaining_jiffies = 3652 schedule_timeout_uninterruptible(remaining_jiffies); 3653 } 3654 } 3655 3656 void i915_memcpy_init_early(struct drm_i915_private *dev_priv); 3657 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len); 3658 3659 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment, 3660 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot 3661 * perform the operation. To check beforehand, pass in the parameters to 3662 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits, 3663 * you only need to pass in the minor offsets, page-aligned pointers are 3664 * always valid. 3665 * 3666 * For just checking for SSE4.1, in the foreknowledge that the future use 3667 * will be correctly aligned, just use i915_has_memcpy_from_wc(). 3668 */ 3669 #define i915_can_memcpy_from_wc(dst, src, len) \ 3670 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0) 3671 3672 #define i915_has_memcpy_from_wc() \ 3673 i915_memcpy_from_wc(NULL, NULL, 0) 3674 3675 /* i915_mm.c */ 3676 int remap_io_mapping(struct vm_area_struct *vma, 3677 unsigned long addr, unsigned long pfn, unsigned long size, 3678 struct io_mapping *iomap); 3679 3680 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915) 3681 { 3682 if (INTEL_GEN(i915) >= 10) 3683 return CNL_HWS_CSB_WRITE_INDEX; 3684 else 3685 return I915_HWS_CSB_WRITE_INDEX; 3686 } 3687 3688 static inline u32 i915_scratch_offset(const struct drm_i915_private *i915) 3689 { 3690 return i915_ggtt_offset(i915->gt.scratch); 3691 } 3692 3693 #endif 3694