1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hash.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/mm_types.h> 44 #include <linux/perf_event.h> 45 #include <linux/pm_qos.h> 46 #include <linux/reservation.h> 47 #include <linux/shmem_fs.h> 48 #include <linux/stackdepot.h> 49 50 #include <drm/intel-gtt.h> 51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 52 #include <drm/drm_gem.h> 53 #include <drm/drm_auth.h> 54 #include <drm/drm_cache.h> 55 #include <drm/drm_util.h> 56 #include <drm/drm_dsc.h> 57 #include <drm/drm_connector.h> 58 59 #include "i915_fixed.h" 60 #include "i915_params.h" 61 #include "i915_reg.h" 62 #include "i915_utils.h" 63 64 #include "intel_bios.h" 65 #include "intel_device_info.h" 66 #include "intel_display.h" 67 #include "intel_dpll_mgr.h" 68 #include "intel_lrc.h" 69 #include "intel_opregion.h" 70 #include "intel_ringbuffer.h" 71 #include "intel_uncore.h" 72 #include "intel_wopcm.h" 73 #include "intel_workarounds.h" 74 #include "intel_uc.h" 75 76 #include "i915_gem.h" 77 #include "i915_gem_context.h" 78 #include "i915_gem_fence_reg.h" 79 #include "i915_gem_object.h" 80 #include "i915_gem_gtt.h" 81 #include "i915_gpu_error.h" 82 #include "i915_request.h" 83 #include "i915_scheduler.h" 84 #include "i915_timeline.h" 85 #include "i915_vma.h" 86 87 #include "intel_gvt.h" 88 89 /* General customization: 90 */ 91 92 #define DRIVER_NAME "i915" 93 #define DRIVER_DESC "Intel Graphics" 94 #define DRIVER_DATE "20190207" 95 #define DRIVER_TIMESTAMP 1549572331 96 97 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 98 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 99 * which may not necessarily be a user visible problem. This will either 100 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 101 * enable distros and users to tailor their preferred amount of i915 abrt 102 * spam. 103 */ 104 #define I915_STATE_WARN(condition, format...) ({ \ 105 int __ret_warn_on = !!(condition); \ 106 if (unlikely(__ret_warn_on)) \ 107 if (!WARN(i915_modparams.verbose_state_checks, format)) \ 108 DRM_ERROR(format); \ 109 unlikely(__ret_warn_on); \ 110 }) 111 112 #define I915_STATE_WARN_ON(x) \ 113 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 114 115 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG) 116 117 bool __i915_inject_load_failure(const char *func, int line); 118 #define i915_inject_load_failure() \ 119 __i915_inject_load_failure(__func__, __LINE__) 120 121 bool i915_error_injected(void); 122 123 #else 124 125 #define i915_inject_load_failure() false 126 #define i915_error_injected() false 127 128 #endif 129 130 #define i915_load_error(i915, fmt, ...) \ 131 __i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \ 132 fmt, ##__VA_ARGS__) 133 134 typedef depot_stack_handle_t intel_wakeref_t; 135 136 enum hpd_pin { 137 HPD_NONE = 0, 138 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 139 HPD_CRT, 140 HPD_SDVO_B, 141 HPD_SDVO_C, 142 HPD_PORT_A, 143 HPD_PORT_B, 144 HPD_PORT_C, 145 HPD_PORT_D, 146 HPD_PORT_E, 147 HPD_PORT_F, 148 HPD_NUM_PINS 149 }; 150 151 #define for_each_hpd_pin(__pin) \ 152 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 153 154 /* Threshold == 5 for long IRQs, 50 for short */ 155 #define HPD_STORM_DEFAULT_THRESHOLD 50 156 157 struct i915_hotplug { 158 struct work_struct hotplug_work; 159 160 struct { 161 unsigned long last_jiffies; 162 int count; 163 enum { 164 HPD_ENABLED = 0, 165 HPD_DISABLED = 1, 166 HPD_MARK_DISABLED = 2 167 } state; 168 } stats[HPD_NUM_PINS]; 169 u32 event_bits; 170 struct delayed_work reenable_work; 171 172 u32 long_port_mask; 173 u32 short_port_mask; 174 struct work_struct dig_port_work; 175 176 struct work_struct poll_init_work; 177 bool poll_enabled; 178 179 unsigned int hpd_storm_threshold; 180 /* Whether or not to count short HPD IRQs in HPD storms */ 181 u8 hpd_short_storm_enabled; 182 183 /* 184 * if we get a HPD irq from DP and a HPD irq from non-DP 185 * the non-DP HPD could block the workqueue on a mode config 186 * mutex getting, that userspace may have taken. However 187 * userspace is waiting on the DP workqueue to run which is 188 * blocked behind the non-DP one. 189 */ 190 struct workqueue_struct *dp_wq; 191 }; 192 193 #define I915_GEM_GPU_DOMAINS \ 194 (I915_GEM_DOMAIN_RENDER | \ 195 I915_GEM_DOMAIN_SAMPLER | \ 196 I915_GEM_DOMAIN_COMMAND | \ 197 I915_GEM_DOMAIN_INSTRUCTION | \ 198 I915_GEM_DOMAIN_VERTEX) 199 200 struct drm_i915_private; 201 struct i915_mm_struct; 202 struct i915_mmu_object; 203 204 struct drm_i915_file_private { 205 struct drm_i915_private *dev_priv; 206 struct drm_file *file; 207 208 struct { 209 spinlock_t lock; 210 struct list_head request_list; 211 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 212 * chosen to prevent the CPU getting more than a frame ahead of the GPU 213 * (when using lax throttling for the frontbuffer). We also use it to 214 * offer free GPU waitboosts for severely congested workloads. 215 */ 216 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 217 } mm; 218 struct idr context_idr; 219 220 struct intel_rps_client { 221 atomic_t boosts; 222 } rps_client; 223 224 unsigned int bsd_engine; 225 226 /* 227 * Every context ban increments per client ban score. Also 228 * hangs in short succession increments ban score. If ban threshold 229 * is reached, client is considered banned and submitting more work 230 * will fail. This is a stop gap measure to limit the badly behaving 231 * clients access to gpu. Note that unbannable contexts never increment 232 * the client ban score. 233 */ 234 #define I915_CLIENT_SCORE_HANG_FAST 1 235 #define I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ) 236 #define I915_CLIENT_SCORE_CONTEXT_BAN 3 237 #define I915_CLIENT_SCORE_BANNED 9 238 /** ban_score: Accumulated score of all ctx bans and fast hangs. */ 239 atomic_t ban_score; 240 unsigned long hang_timestamp; 241 }; 242 243 /* Interface history: 244 * 245 * 1.1: Original. 246 * 1.2: Add Power Management 247 * 1.3: Add vblank support 248 * 1.4: Fix cmdbuffer path, add heap destroy 249 * 1.5: Add vblank pipe configuration 250 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 251 * - Support vertical blank on secondary display pipe 252 */ 253 #define DRIVER_MAJOR 1 254 #define DRIVER_MINOR 6 255 #define DRIVER_PATCHLEVEL 0 256 257 struct intel_overlay; 258 struct intel_overlay_error_state; 259 260 struct sdvo_device_mapping { 261 u8 initialized; 262 u8 dvo_port; 263 u8 slave_addr; 264 u8 dvo_wiring; 265 u8 i2c_pin; 266 u8 ddc_pin; 267 }; 268 269 struct intel_connector; 270 struct intel_encoder; 271 struct intel_atomic_state; 272 struct intel_crtc_state; 273 struct intel_initial_plane_config; 274 struct intel_crtc; 275 struct intel_limit; 276 struct dpll; 277 struct intel_cdclk_state; 278 279 struct drm_i915_display_funcs { 280 void (*get_cdclk)(struct drm_i915_private *dev_priv, 281 struct intel_cdclk_state *cdclk_state); 282 void (*set_cdclk)(struct drm_i915_private *dev_priv, 283 const struct intel_cdclk_state *cdclk_state); 284 int (*get_fifo_size)(struct drm_i915_private *dev_priv, 285 enum i9xx_plane_id i9xx_plane); 286 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 287 int (*compute_intermediate_wm)(struct intel_crtc_state *newstate); 288 void (*initial_watermarks)(struct intel_atomic_state *state, 289 struct intel_crtc_state *cstate); 290 void (*atomic_update_watermarks)(struct intel_atomic_state *state, 291 struct intel_crtc_state *cstate); 292 void (*optimize_watermarks)(struct intel_atomic_state *state, 293 struct intel_crtc_state *cstate); 294 int (*compute_global_watermarks)(struct intel_atomic_state *state); 295 void (*update_wm)(struct intel_crtc *crtc); 296 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 297 /* Returns the active state of the crtc, and if the crtc is active, 298 * fills out the pipe-config with the hw state. */ 299 bool (*get_pipe_config)(struct intel_crtc *, 300 struct intel_crtc_state *); 301 void (*get_initial_plane_config)(struct intel_crtc *, 302 struct intel_initial_plane_config *); 303 int (*crtc_compute_clock)(struct intel_crtc *crtc, 304 struct intel_crtc_state *crtc_state); 305 void (*crtc_enable)(struct intel_crtc_state *pipe_config, 306 struct drm_atomic_state *old_state); 307 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state, 308 struct drm_atomic_state *old_state); 309 void (*update_crtcs)(struct drm_atomic_state *state); 310 void (*audio_codec_enable)(struct intel_encoder *encoder, 311 const struct intel_crtc_state *crtc_state, 312 const struct drm_connector_state *conn_state); 313 void (*audio_codec_disable)(struct intel_encoder *encoder, 314 const struct intel_crtc_state *old_crtc_state, 315 const struct drm_connector_state *old_conn_state); 316 void (*fdi_link_train)(struct intel_crtc *crtc, 317 const struct intel_crtc_state *crtc_state); 318 void (*init_clock_gating)(struct drm_i915_private *dev_priv); 319 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 320 /* clock updates for mode set */ 321 /* cursor updates */ 322 /* render clock increase/decrease */ 323 /* display clock increase/decrease */ 324 /* pll clock increase/decrease */ 325 326 /* 327 * Program double buffered color management registers during 328 * vblank evasion. The registers should then latch during the 329 * next vblank start, alongside any other double buffered registers 330 * involved with the same commit. 331 */ 332 void (*color_commit)(const struct intel_crtc_state *crtc_state); 333 /* 334 * Load LUTs (and other single buffered color management 335 * registers). Will (hopefully) be called during the vblank 336 * following the latching of any double buffered registers 337 * involved with the same commit. 338 */ 339 void (*load_luts)(const struct intel_crtc_state *crtc_state); 340 }; 341 342 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 343 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 344 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 345 346 struct intel_csr { 347 struct work_struct work; 348 const char *fw_path; 349 u32 required_version; 350 u32 max_fw_size; /* bytes */ 351 u32 *dmc_payload; 352 u32 dmc_fw_size; /* dwords */ 353 u32 version; 354 u32 mmio_count; 355 i915_reg_t mmioaddr[8]; 356 u32 mmiodata[8]; 357 u32 dc_state; 358 u32 allowed_dc_mask; 359 intel_wakeref_t wakeref; 360 }; 361 362 enum i915_cache_level { 363 I915_CACHE_NONE = 0, 364 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 365 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 366 caches, eg sampler/render caches, and the 367 large Last-Level-Cache. LLC is coherent with 368 the CPU, but L3 is only visible to the GPU. */ 369 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 370 }; 371 372 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ 373 374 enum fb_op_origin { 375 ORIGIN_GTT, 376 ORIGIN_CPU, 377 ORIGIN_CS, 378 ORIGIN_FLIP, 379 ORIGIN_DIRTYFB, 380 }; 381 382 struct intel_fbc { 383 /* This is always the inner lock when overlapping with struct_mutex and 384 * it's the outer lock when overlapping with stolen_lock. */ 385 struct mutex lock; 386 unsigned threshold; 387 unsigned int possible_framebuffer_bits; 388 unsigned int busy_bits; 389 unsigned int visible_pipes_mask; 390 struct intel_crtc *crtc; 391 392 struct drm_mm_node compressed_fb; 393 struct drm_mm_node *compressed_llb; 394 395 bool false_color; 396 397 bool enabled; 398 bool active; 399 bool flip_pending; 400 401 bool underrun_detected; 402 struct work_struct underrun_work; 403 404 /* 405 * Due to the atomic rules we can't access some structures without the 406 * appropriate locking, so we cache information here in order to avoid 407 * these problems. 408 */ 409 struct intel_fbc_state_cache { 410 struct i915_vma *vma; 411 unsigned long flags; 412 413 struct { 414 unsigned int mode_flags; 415 u32 hsw_bdw_pixel_rate; 416 } crtc; 417 418 struct { 419 unsigned int rotation; 420 int src_w; 421 int src_h; 422 bool visible; 423 /* 424 * Display surface base address adjustement for 425 * pageflips. Note that on gen4+ this only adjusts up 426 * to a tile, offsets within a tile are handled in 427 * the hw itself (with the TILEOFF register). 428 */ 429 int adjusted_x; 430 int adjusted_y; 431 432 int y; 433 434 u16 pixel_blend_mode; 435 } plane; 436 437 struct { 438 const struct drm_format_info *format; 439 unsigned int stride; 440 } fb; 441 } state_cache; 442 443 /* 444 * This structure contains everything that's relevant to program the 445 * hardware registers. When we want to figure out if we need to disable 446 * and re-enable FBC for a new configuration we just check if there's 447 * something different in the struct. The genx_fbc_activate functions 448 * are supposed to read from it in order to program the registers. 449 */ 450 struct intel_fbc_reg_params { 451 struct i915_vma *vma; 452 unsigned long flags; 453 454 struct { 455 enum pipe pipe; 456 enum i9xx_plane_id i9xx_plane; 457 unsigned int fence_y_offset; 458 } crtc; 459 460 struct { 461 const struct drm_format_info *format; 462 unsigned int stride; 463 } fb; 464 465 int cfb_size; 466 unsigned int gen9_wa_cfb_stride; 467 } params; 468 469 const char *no_fbc_reason; 470 }; 471 472 /* 473 * HIGH_RR is the highest eDP panel refresh rate read from EDID 474 * LOW_RR is the lowest eDP panel refresh rate found from EDID 475 * parsing for same resolution. 476 */ 477 enum drrs_refresh_rate_type { 478 DRRS_HIGH_RR, 479 DRRS_LOW_RR, 480 DRRS_MAX_RR, /* RR count */ 481 }; 482 483 enum drrs_support_type { 484 DRRS_NOT_SUPPORTED = 0, 485 STATIC_DRRS_SUPPORT = 1, 486 SEAMLESS_DRRS_SUPPORT = 2 487 }; 488 489 struct intel_dp; 490 struct i915_drrs { 491 struct mutex mutex; 492 struct delayed_work work; 493 struct intel_dp *dp; 494 unsigned busy_frontbuffer_bits; 495 enum drrs_refresh_rate_type refresh_rate_type; 496 enum drrs_support_type type; 497 }; 498 499 struct i915_psr { 500 struct mutex lock; 501 502 #define I915_PSR_DEBUG_MODE_MASK 0x0f 503 #define I915_PSR_DEBUG_DEFAULT 0x00 504 #define I915_PSR_DEBUG_DISABLE 0x01 505 #define I915_PSR_DEBUG_ENABLE 0x02 506 #define I915_PSR_DEBUG_FORCE_PSR1 0x03 507 #define I915_PSR_DEBUG_IRQ 0x10 508 509 u32 debug; 510 bool sink_support; 511 bool prepared, enabled; 512 struct intel_dp *dp; 513 enum pipe pipe; 514 bool active; 515 struct work_struct work; 516 unsigned busy_frontbuffer_bits; 517 bool sink_psr2_support; 518 bool link_standby; 519 bool colorimetry_support; 520 bool psr2_enabled; 521 u8 sink_sync_latency; 522 ktime_t last_entry_attempt; 523 ktime_t last_exit; 524 bool sink_not_reliable; 525 bool irq_aux_error; 526 u16 su_x_granularity; 527 }; 528 529 enum intel_pch { 530 PCH_NONE = 0, /* No PCH present */ 531 PCH_IBX, /* Ibexpeak PCH */ 532 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */ 533 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */ 534 PCH_SPT, /* Sunrisepoint PCH */ 535 PCH_KBP, /* Kaby Lake PCH */ 536 PCH_CNP, /* Cannon Lake PCH */ 537 PCH_ICP, /* Ice Lake PCH */ 538 PCH_NOP, /* PCH without south display */ 539 }; 540 541 enum intel_sbi_destination { 542 SBI_ICLK, 543 SBI_MPHY, 544 }; 545 546 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 547 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 548 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 549 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 550 #define QUIRK_INCREASE_T12_DELAY (1<<6) 551 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7) 552 553 struct intel_fbdev; 554 struct intel_fbc_work; 555 556 struct intel_gmbus { 557 struct i2c_adapter adapter; 558 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 559 u32 force_bit; 560 u32 reg0; 561 i915_reg_t gpio_reg; 562 struct i2c_algo_bit_data bit_algo; 563 struct drm_i915_private *dev_priv; 564 }; 565 566 struct i915_suspend_saved_registers { 567 u32 saveDSPARB; 568 u32 saveFBC_CONTROL; 569 u32 saveCACHE_MODE_0; 570 u32 saveMI_ARB_STATE; 571 u32 saveSWF0[16]; 572 u32 saveSWF1[16]; 573 u32 saveSWF3[3]; 574 u64 saveFENCE[I915_MAX_NUM_FENCES]; 575 u32 savePCH_PORT_HOTPLUG; 576 u16 saveGCDGMBUS; 577 }; 578 579 struct vlv_s0ix_state { 580 /* GAM */ 581 u32 wr_watermark; 582 u32 gfx_prio_ctrl; 583 u32 arb_mode; 584 u32 gfx_pend_tlb0; 585 u32 gfx_pend_tlb1; 586 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 587 u32 media_max_req_count; 588 u32 gfx_max_req_count; 589 u32 render_hwsp; 590 u32 ecochk; 591 u32 bsd_hwsp; 592 u32 blt_hwsp; 593 u32 tlb_rd_addr; 594 595 /* MBC */ 596 u32 g3dctl; 597 u32 gsckgctl; 598 u32 mbctl; 599 600 /* GCP */ 601 u32 ucgctl1; 602 u32 ucgctl3; 603 u32 rcgctl1; 604 u32 rcgctl2; 605 u32 rstctl; 606 u32 misccpctl; 607 608 /* GPM */ 609 u32 gfxpause; 610 u32 rpdeuhwtc; 611 u32 rpdeuc; 612 u32 ecobus; 613 u32 pwrdwnupctl; 614 u32 rp_down_timeout; 615 u32 rp_deucsw; 616 u32 rcubmabdtmr; 617 u32 rcedata; 618 u32 spare2gh; 619 620 /* Display 1 CZ domain */ 621 u32 gt_imr; 622 u32 gt_ier; 623 u32 pm_imr; 624 u32 pm_ier; 625 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 626 627 /* GT SA CZ domain */ 628 u32 tilectl; 629 u32 gt_fifoctl; 630 u32 gtlc_wake_ctrl; 631 u32 gtlc_survive; 632 u32 pmwgicz; 633 634 /* Display 2 CZ domain */ 635 u32 gu_ctl0; 636 u32 gu_ctl1; 637 u32 pcbr; 638 u32 clock_gate_dis2; 639 }; 640 641 struct intel_rps_ei { 642 ktime_t ktime; 643 u32 render_c0; 644 u32 media_c0; 645 }; 646 647 struct intel_rps { 648 /* 649 * work, interrupts_enabled and pm_iir are protected by 650 * dev_priv->irq_lock 651 */ 652 struct work_struct work; 653 bool interrupts_enabled; 654 u32 pm_iir; 655 656 /* PM interrupt bits that should never be masked */ 657 u32 pm_intrmsk_mbz; 658 659 /* Frequencies are stored in potentially platform dependent multiples. 660 * In other words, *_freq needs to be multiplied by X to be interesting. 661 * Soft limits are those which are used for the dynamic reclocking done 662 * by the driver (raise frequencies under heavy loads, and lower for 663 * lighter loads). Hard limits are those imposed by the hardware. 664 * 665 * A distinction is made for overclocking, which is never enabled by 666 * default, and is considered to be above the hard limit if it's 667 * possible at all. 668 */ 669 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 670 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 671 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 672 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 673 u8 min_freq; /* AKA RPn. Minimum frequency */ 674 u8 boost_freq; /* Frequency to request when wait boosting */ 675 u8 idle_freq; /* Frequency to request when we are idle */ 676 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 677 u8 rp1_freq; /* "less than" RP0 power/freqency */ 678 u8 rp0_freq; /* Non-overclocked max frequency. */ 679 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 680 681 int last_adj; 682 683 struct { 684 struct mutex mutex; 685 686 enum { LOW_POWER, BETWEEN, HIGH_POWER } mode; 687 unsigned int interactive; 688 689 u8 up_threshold; /* Current %busy required to uplock */ 690 u8 down_threshold; /* Current %busy required to downclock */ 691 } power; 692 693 bool enabled; 694 atomic_t num_waiters; 695 atomic_t boosts; 696 697 /* manual wa residency calculations */ 698 struct intel_rps_ei ei; 699 }; 700 701 struct intel_rc6 { 702 bool enabled; 703 u64 prev_hw_residency[4]; 704 u64 cur_residency[4]; 705 }; 706 707 struct intel_llc_pstate { 708 bool enabled; 709 }; 710 711 struct intel_gen6_power_mgmt { 712 struct intel_rps rps; 713 struct intel_rc6 rc6; 714 struct intel_llc_pstate llc_pstate; 715 }; 716 717 /* defined intel_pm.c */ 718 extern spinlock_t mchdev_lock; 719 720 struct intel_ilk_power_mgmt { 721 u8 cur_delay; 722 u8 min_delay; 723 u8 max_delay; 724 u8 fmax; 725 u8 fstart; 726 727 u64 last_count1; 728 unsigned long last_time1; 729 unsigned long chipset_power; 730 u64 last_count2; 731 u64 last_time2; 732 unsigned long gfx_power; 733 u8 corr; 734 735 int c_m; 736 int r_t; 737 }; 738 739 struct drm_i915_private; 740 struct i915_power_well; 741 742 struct i915_power_well_ops { 743 /* 744 * Synchronize the well's hw state to match the current sw state, for 745 * example enable/disable it based on the current refcount. Called 746 * during driver init and resume time, possibly after first calling 747 * the enable/disable handlers. 748 */ 749 void (*sync_hw)(struct drm_i915_private *dev_priv, 750 struct i915_power_well *power_well); 751 /* 752 * Enable the well and resources that depend on it (for example 753 * interrupts located on the well). Called after the 0->1 refcount 754 * transition. 755 */ 756 void (*enable)(struct drm_i915_private *dev_priv, 757 struct i915_power_well *power_well); 758 /* 759 * Disable the well and resources that depend on it. Called after 760 * the 1->0 refcount transition. 761 */ 762 void (*disable)(struct drm_i915_private *dev_priv, 763 struct i915_power_well *power_well); 764 /* Returns the hw enabled state. */ 765 bool (*is_enabled)(struct drm_i915_private *dev_priv, 766 struct i915_power_well *power_well); 767 }; 768 769 struct i915_power_well_regs { 770 i915_reg_t bios; 771 i915_reg_t driver; 772 i915_reg_t kvmr; 773 i915_reg_t debug; 774 }; 775 776 /* Power well structure for haswell */ 777 struct i915_power_well_desc { 778 const char *name; 779 bool always_on; 780 u64 domains; 781 /* unique identifier for this power well */ 782 enum i915_power_well_id id; 783 /* 784 * Arbitraty data associated with this power well. Platform and power 785 * well specific. 786 */ 787 union { 788 struct { 789 /* 790 * request/status flag index in the PUNIT power well 791 * control/status registers. 792 */ 793 u8 idx; 794 } vlv; 795 struct { 796 enum dpio_phy phy; 797 } bxt; 798 struct { 799 const struct i915_power_well_regs *regs; 800 /* 801 * request/status flag index in the power well 802 * constrol/status registers. 803 */ 804 u8 idx; 805 /* Mask of pipes whose IRQ logic is backed by the pw */ 806 u8 irq_pipe_mask; 807 /* The pw is backing the VGA functionality */ 808 bool has_vga:1; 809 bool has_fuses:1; 810 /* 811 * The pw is for an ICL+ TypeC PHY port in 812 * Thunderbolt mode. 813 */ 814 bool is_tc_tbt:1; 815 } hsw; 816 }; 817 const struct i915_power_well_ops *ops; 818 }; 819 820 struct i915_power_well { 821 const struct i915_power_well_desc *desc; 822 /* power well enable/disable usage count */ 823 int count; 824 /* cached hw enabled state */ 825 bool hw_enabled; 826 }; 827 828 struct i915_power_domains { 829 /* 830 * Power wells needed for initialization at driver init and suspend 831 * time are on. They are kept on until after the first modeset. 832 */ 833 bool initializing; 834 bool display_core_suspended; 835 int power_well_count; 836 837 intel_wakeref_t wakeref; 838 839 struct mutex lock; 840 int domain_use_count[POWER_DOMAIN_NUM]; 841 struct i915_power_well *power_wells; 842 }; 843 844 #define MAX_L3_SLICES 2 845 struct intel_l3_parity { 846 u32 *remap_info[MAX_L3_SLICES]; 847 struct work_struct error_work; 848 int which_slice; 849 }; 850 851 struct i915_gem_mm { 852 /** Memory allocator for GTT stolen memory */ 853 struct drm_mm stolen; 854 /** Protects the usage of the GTT stolen memory allocator. This is 855 * always the inner lock when overlapping with struct_mutex. */ 856 struct mutex stolen_lock; 857 858 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */ 859 spinlock_t obj_lock; 860 861 /** List of all objects in gtt_space. Used to restore gtt 862 * mappings on resume */ 863 struct list_head bound_list; 864 /** 865 * List of objects which are not bound to the GTT (thus 866 * are idle and not used by the GPU). These objects may or may 867 * not actually have any pages attached. 868 */ 869 struct list_head unbound_list; 870 871 /** List of all objects in gtt_space, currently mmaped by userspace. 872 * All objects within this list must also be on bound_list. 873 */ 874 struct list_head userfault_list; 875 876 /** 877 * List of objects which are pending destruction. 878 */ 879 struct llist_head free_list; 880 struct work_struct free_work; 881 spinlock_t free_lock; 882 /** 883 * Count of objects pending destructions. Used to skip needlessly 884 * waiting on an RCU barrier if no objects are waiting to be freed. 885 */ 886 atomic_t free_count; 887 888 /** 889 * Small stash of WC pages 890 */ 891 struct pagestash wc_stash; 892 893 /** 894 * tmpfs instance used for shmem backed objects 895 */ 896 struct vfsmount *gemfs; 897 898 /** PPGTT used for aliasing the PPGTT with the GTT */ 899 struct i915_hw_ppgtt *aliasing_ppgtt; 900 901 struct notifier_block oom_notifier; 902 struct notifier_block vmap_notifier; 903 struct shrinker shrinker; 904 905 /** LRU list of objects with fence regs on them. */ 906 struct list_head fence_list; 907 908 /** 909 * Workqueue to fault in userptr pages, flushed by the execbuf 910 * when required but otherwise left to userspace to try again 911 * on EAGAIN. 912 */ 913 struct workqueue_struct *userptr_wq; 914 915 u64 unordered_timeline; 916 917 /* the indicator for dispatch video commands on two BSD rings */ 918 atomic_t bsd_engine_dispatch_index; 919 920 /** Bit 6 swizzling required for X tiling */ 921 u32 bit_6_swizzle_x; 922 /** Bit 6 swizzling required for Y tiling */ 923 u32 bit_6_swizzle_y; 924 925 /* accounting, useful for userland debugging */ 926 spinlock_t object_stat_lock; 927 u64 object_memory; 928 u32 object_count; 929 }; 930 931 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */ 932 933 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */ 934 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */ 935 936 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */ 937 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */ 938 939 #define I915_ENGINE_WEDGED_TIMEOUT (60 * HZ) /* Reset but no recovery? */ 940 941 struct ddi_vbt_port_info { 942 int max_tmds_clock; 943 944 /* 945 * This is an index in the HDMI/DVI DDI buffer translation table. 946 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 947 * populate this field. 948 */ 949 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 950 u8 hdmi_level_shift; 951 952 u8 supports_dvi:1; 953 u8 supports_hdmi:1; 954 u8 supports_dp:1; 955 u8 supports_edp:1; 956 u8 supports_typec_usb:1; 957 u8 supports_tbt:1; 958 959 u8 alternate_aux_channel; 960 u8 alternate_ddc_pin; 961 962 u8 dp_boost_level; 963 u8 hdmi_boost_level; 964 int dp_max_link_rate; /* 0 for not limited by VBT */ 965 }; 966 967 enum psr_lines_to_wait { 968 PSR_0_LINES_TO_WAIT = 0, 969 PSR_1_LINE_TO_WAIT, 970 PSR_4_LINES_TO_WAIT, 971 PSR_8_LINES_TO_WAIT 972 }; 973 974 struct intel_vbt_data { 975 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 976 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 977 978 /* Feature bits */ 979 unsigned int int_tv_support:1; 980 unsigned int lvds_dither:1; 981 unsigned int int_crt_support:1; 982 unsigned int lvds_use_ssc:1; 983 unsigned int int_lvds_support:1; 984 unsigned int display_clock_mode:1; 985 unsigned int fdi_rx_polarity_inverted:1; 986 unsigned int panel_type:4; 987 int lvds_ssc_freq; 988 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 989 enum drm_panel_orientation orientation; 990 991 enum drrs_support_type drrs_type; 992 993 struct { 994 int rate; 995 int lanes; 996 int preemphasis; 997 int vswing; 998 bool low_vswing; 999 bool initialized; 1000 int bpp; 1001 struct edp_power_seq pps; 1002 } edp; 1003 1004 struct { 1005 bool enable; 1006 bool full_link; 1007 bool require_aux_wakeup; 1008 int idle_frames; 1009 enum psr_lines_to_wait lines_to_wait; 1010 int tp1_wakeup_time_us; 1011 int tp2_tp3_wakeup_time_us; 1012 } psr; 1013 1014 struct { 1015 u16 pwm_freq_hz; 1016 bool present; 1017 bool active_low_pwm; 1018 u8 min_brightness; /* min_brightness/255 of max */ 1019 u8 controller; /* brightness controller number */ 1020 enum intel_backlight_type type; 1021 } backlight; 1022 1023 /* MIPI DSI */ 1024 struct { 1025 u16 panel_id; 1026 struct mipi_config *config; 1027 struct mipi_pps_data *pps; 1028 u16 bl_ports; 1029 u16 cabc_ports; 1030 u8 seq_version; 1031 u32 size; 1032 u8 *data; 1033 const u8 *sequence[MIPI_SEQ_MAX]; 1034 u8 *deassert_seq; /* Used by fixup_mipi_sequences() */ 1035 enum drm_panel_orientation orientation; 1036 } dsi; 1037 1038 int crt_ddc_pin; 1039 1040 int child_dev_num; 1041 struct child_device_config *child_dev; 1042 1043 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1044 struct sdvo_device_mapping sdvo_mappings[2]; 1045 }; 1046 1047 enum intel_ddb_partitioning { 1048 INTEL_DDB_PART_1_2, 1049 INTEL_DDB_PART_5_6, /* IVB+ */ 1050 }; 1051 1052 struct intel_wm_level { 1053 bool enable; 1054 u32 pri_val; 1055 u32 spr_val; 1056 u32 cur_val; 1057 u32 fbc_val; 1058 }; 1059 1060 struct ilk_wm_values { 1061 u32 wm_pipe[3]; 1062 u32 wm_lp[3]; 1063 u32 wm_lp_spr[3]; 1064 u32 wm_linetime[3]; 1065 bool enable_fbc_wm; 1066 enum intel_ddb_partitioning partitioning; 1067 }; 1068 1069 struct g4x_pipe_wm { 1070 u16 plane[I915_MAX_PLANES]; 1071 u16 fbc; 1072 }; 1073 1074 struct g4x_sr_wm { 1075 u16 plane; 1076 u16 cursor; 1077 u16 fbc; 1078 }; 1079 1080 struct vlv_wm_ddl_values { 1081 u8 plane[I915_MAX_PLANES]; 1082 }; 1083 1084 struct vlv_wm_values { 1085 struct g4x_pipe_wm pipe[3]; 1086 struct g4x_sr_wm sr; 1087 struct vlv_wm_ddl_values ddl[3]; 1088 u8 level; 1089 bool cxsr; 1090 }; 1091 1092 struct g4x_wm_values { 1093 struct g4x_pipe_wm pipe[2]; 1094 struct g4x_sr_wm sr; 1095 struct g4x_sr_wm hpll; 1096 bool cxsr; 1097 bool hpll_en; 1098 bool fbc_en; 1099 }; 1100 1101 struct skl_ddb_entry { 1102 u16 start, end; /* in number of blocks, 'end' is exclusive */ 1103 }; 1104 1105 static inline u16 skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1106 { 1107 return entry->end - entry->start; 1108 } 1109 1110 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1111 const struct skl_ddb_entry *e2) 1112 { 1113 if (e1->start == e2->start && e1->end == e2->end) 1114 return true; 1115 1116 return false; 1117 } 1118 1119 struct skl_ddb_allocation { 1120 u8 enabled_slices; /* GEN11 has configurable 2 slices */ 1121 }; 1122 1123 struct skl_ddb_values { 1124 unsigned dirty_pipes; 1125 struct skl_ddb_allocation ddb; 1126 }; 1127 1128 struct skl_wm_level { 1129 u16 min_ddb_alloc; 1130 u16 plane_res_b; 1131 u8 plane_res_l; 1132 bool plane_en; 1133 }; 1134 1135 /* Stores plane specific WM parameters */ 1136 struct skl_wm_params { 1137 bool x_tiled, y_tiled; 1138 bool rc_surface; 1139 bool is_planar; 1140 u32 width; 1141 u8 cpp; 1142 u32 plane_pixel_rate; 1143 u32 y_min_scanlines; 1144 u32 plane_bytes_per_line; 1145 uint_fixed_16_16_t plane_blocks_per_line; 1146 uint_fixed_16_16_t y_tile_minimum; 1147 u32 linetime_us; 1148 u32 dbuf_block_size; 1149 }; 1150 1151 /* 1152 * This struct helps tracking the state needed for runtime PM, which puts the 1153 * device in PCI D3 state. Notice that when this happens, nothing on the 1154 * graphics device works, even register access, so we don't get interrupts nor 1155 * anything else. 1156 * 1157 * Every piece of our code that needs to actually touch the hardware needs to 1158 * either call intel_runtime_pm_get or call intel_display_power_get with the 1159 * appropriate power domain. 1160 * 1161 * Our driver uses the autosuspend delay feature, which means we'll only really 1162 * suspend if we stay with zero refcount for a certain amount of time. The 1163 * default value is currently very conservative (see intel_runtime_pm_enable), but 1164 * it can be changed with the standard runtime PM files from sysfs. 1165 * 1166 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1167 * goes back to false exactly before we reenable the IRQs. We use this variable 1168 * to check if someone is trying to enable/disable IRQs while they're supposed 1169 * to be disabled. This shouldn't happen and we'll print some error messages in 1170 * case it happens. 1171 * 1172 * For more, read the Documentation/power/runtime_pm.txt. 1173 */ 1174 struct i915_runtime_pm { 1175 atomic_t wakeref_count; 1176 bool suspended; 1177 bool irqs_enabled; 1178 1179 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 1180 /* 1181 * To aide detection of wakeref leaks and general misuse, we 1182 * track all wakeref holders. With manual markup (i.e. returning 1183 * a cookie to each rpm_get caller which they then supply to their 1184 * paired rpm_put) we can remove corresponding pairs of and keep 1185 * the array trimmed to active wakerefs. 1186 */ 1187 struct intel_runtime_pm_debug { 1188 spinlock_t lock; 1189 1190 depot_stack_handle_t last_acquire; 1191 depot_stack_handle_t last_release; 1192 1193 depot_stack_handle_t *owners; 1194 unsigned long count; 1195 } debug; 1196 #endif 1197 }; 1198 1199 enum intel_pipe_crc_source { 1200 INTEL_PIPE_CRC_SOURCE_NONE, 1201 INTEL_PIPE_CRC_SOURCE_PLANE1, 1202 INTEL_PIPE_CRC_SOURCE_PLANE2, 1203 INTEL_PIPE_CRC_SOURCE_PF, 1204 INTEL_PIPE_CRC_SOURCE_PIPE, 1205 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1206 INTEL_PIPE_CRC_SOURCE_TV, 1207 INTEL_PIPE_CRC_SOURCE_DP_B, 1208 INTEL_PIPE_CRC_SOURCE_DP_C, 1209 INTEL_PIPE_CRC_SOURCE_DP_D, 1210 INTEL_PIPE_CRC_SOURCE_AUTO, 1211 INTEL_PIPE_CRC_SOURCE_MAX, 1212 }; 1213 1214 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1215 struct intel_pipe_crc { 1216 spinlock_t lock; 1217 int skipped; 1218 enum intel_pipe_crc_source source; 1219 }; 1220 1221 struct i915_frontbuffer_tracking { 1222 spinlock_t lock; 1223 1224 /* 1225 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1226 * scheduled flips. 1227 */ 1228 unsigned busy_bits; 1229 unsigned flip_bits; 1230 }; 1231 1232 struct i915_virtual_gpu { 1233 bool active; 1234 u32 caps; 1235 }; 1236 1237 /* used in computing the new watermarks state */ 1238 struct intel_wm_config { 1239 unsigned int num_pipes_active; 1240 bool sprites_enabled; 1241 bool sprites_scaled; 1242 }; 1243 1244 struct i915_oa_format { 1245 u32 format; 1246 int size; 1247 }; 1248 1249 struct i915_oa_reg { 1250 i915_reg_t addr; 1251 u32 value; 1252 }; 1253 1254 struct i915_oa_config { 1255 char uuid[UUID_STRING_LEN + 1]; 1256 int id; 1257 1258 const struct i915_oa_reg *mux_regs; 1259 u32 mux_regs_len; 1260 const struct i915_oa_reg *b_counter_regs; 1261 u32 b_counter_regs_len; 1262 const struct i915_oa_reg *flex_regs; 1263 u32 flex_regs_len; 1264 1265 struct attribute_group sysfs_metric; 1266 struct attribute *attrs[2]; 1267 struct device_attribute sysfs_metric_id; 1268 1269 atomic_t ref_count; 1270 }; 1271 1272 struct i915_perf_stream; 1273 1274 /** 1275 * struct i915_perf_stream_ops - the OPs to support a specific stream type 1276 */ 1277 struct i915_perf_stream_ops { 1278 /** 1279 * @enable: Enables the collection of HW samples, either in response to 1280 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened 1281 * without `I915_PERF_FLAG_DISABLED`. 1282 */ 1283 void (*enable)(struct i915_perf_stream *stream); 1284 1285 /** 1286 * @disable: Disables the collection of HW samples, either in response 1287 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying 1288 * the stream. 1289 */ 1290 void (*disable)(struct i915_perf_stream *stream); 1291 1292 /** 1293 * @poll_wait: Call poll_wait, passing a wait queue that will be woken 1294 * once there is something ready to read() for the stream 1295 */ 1296 void (*poll_wait)(struct i915_perf_stream *stream, 1297 struct file *file, 1298 poll_table *wait); 1299 1300 /** 1301 * @wait_unlocked: For handling a blocking read, wait until there is 1302 * something to ready to read() for the stream. E.g. wait on the same 1303 * wait queue that would be passed to poll_wait(). 1304 */ 1305 int (*wait_unlocked)(struct i915_perf_stream *stream); 1306 1307 /** 1308 * @read: Copy buffered metrics as records to userspace 1309 * **buf**: the userspace, destination buffer 1310 * **count**: the number of bytes to copy, requested by userspace 1311 * **offset**: zero at the start of the read, updated as the read 1312 * proceeds, it represents how many bytes have been copied so far and 1313 * the buffer offset for copying the next record. 1314 * 1315 * Copy as many buffered i915 perf samples and records for this stream 1316 * to userspace as will fit in the given buffer. 1317 * 1318 * Only write complete records; returning -%ENOSPC if there isn't room 1319 * for a complete record. 1320 * 1321 * Return any error condition that results in a short read such as 1322 * -%ENOSPC or -%EFAULT, even though these may be squashed before 1323 * returning to userspace. 1324 */ 1325 int (*read)(struct i915_perf_stream *stream, 1326 char __user *buf, 1327 size_t count, 1328 size_t *offset); 1329 1330 /** 1331 * @destroy: Cleanup any stream specific resources. 1332 * 1333 * The stream will always be disabled before this is called. 1334 */ 1335 void (*destroy)(struct i915_perf_stream *stream); 1336 }; 1337 1338 /** 1339 * struct i915_perf_stream - state for a single open stream FD 1340 */ 1341 struct i915_perf_stream { 1342 /** 1343 * @dev_priv: i915 drm device 1344 */ 1345 struct drm_i915_private *dev_priv; 1346 1347 /** 1348 * @link: Links the stream into ``&drm_i915_private->streams`` 1349 */ 1350 struct list_head link; 1351 1352 /** 1353 * @wakeref: As we keep the device awake while the perf stream is 1354 * active, we track our runtime pm reference for later release. 1355 */ 1356 intel_wakeref_t wakeref; 1357 1358 /** 1359 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*` 1360 * properties given when opening a stream, representing the contents 1361 * of a single sample as read() by userspace. 1362 */ 1363 u32 sample_flags; 1364 1365 /** 1366 * @sample_size: Considering the configured contents of a sample 1367 * combined with the required header size, this is the total size 1368 * of a single sample record. 1369 */ 1370 int sample_size; 1371 1372 /** 1373 * @ctx: %NULL if measuring system-wide across all contexts or a 1374 * specific context that is being monitored. 1375 */ 1376 struct i915_gem_context *ctx; 1377 1378 /** 1379 * @enabled: Whether the stream is currently enabled, considering 1380 * whether the stream was opened in a disabled state and based 1381 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls. 1382 */ 1383 bool enabled; 1384 1385 /** 1386 * @ops: The callbacks providing the implementation of this specific 1387 * type of configured stream. 1388 */ 1389 const struct i915_perf_stream_ops *ops; 1390 1391 /** 1392 * @oa_config: The OA configuration used by the stream. 1393 */ 1394 struct i915_oa_config *oa_config; 1395 }; 1396 1397 /** 1398 * struct i915_oa_ops - Gen specific implementation of an OA unit stream 1399 */ 1400 struct i915_oa_ops { 1401 /** 1402 * @is_valid_b_counter_reg: Validates register's address for 1403 * programming boolean counters for a particular platform. 1404 */ 1405 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv, 1406 u32 addr); 1407 1408 /** 1409 * @is_valid_mux_reg: Validates register's address for programming mux 1410 * for a particular platform. 1411 */ 1412 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr); 1413 1414 /** 1415 * @is_valid_flex_reg: Validates register's address for programming 1416 * flex EU filtering for a particular platform. 1417 */ 1418 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr); 1419 1420 /** 1421 * @enable_metric_set: Selects and applies any MUX configuration to set 1422 * up the Boolean and Custom (B/C) counters that are part of the 1423 * counter reports being sampled. May apply system constraints such as 1424 * disabling EU clock gating as required. 1425 */ 1426 int (*enable_metric_set)(struct i915_perf_stream *stream); 1427 1428 /** 1429 * @disable_metric_set: Remove system constraints associated with using 1430 * the OA unit. 1431 */ 1432 void (*disable_metric_set)(struct drm_i915_private *dev_priv); 1433 1434 /** 1435 * @oa_enable: Enable periodic sampling 1436 */ 1437 void (*oa_enable)(struct i915_perf_stream *stream); 1438 1439 /** 1440 * @oa_disable: Disable periodic sampling 1441 */ 1442 void (*oa_disable)(struct i915_perf_stream *stream); 1443 1444 /** 1445 * @read: Copy data from the circular OA buffer into a given userspace 1446 * buffer. 1447 */ 1448 int (*read)(struct i915_perf_stream *stream, 1449 char __user *buf, 1450 size_t count, 1451 size_t *offset); 1452 1453 /** 1454 * @oa_hw_tail_read: read the OA tail pointer register 1455 * 1456 * In particular this enables us to share all the fiddly code for 1457 * handling the OA unit tail pointer race that affects multiple 1458 * generations. 1459 */ 1460 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv); 1461 }; 1462 1463 struct intel_cdclk_state { 1464 unsigned int cdclk, vco, ref, bypass; 1465 u8 voltage_level; 1466 }; 1467 1468 struct drm_i915_private { 1469 struct drm_device drm; 1470 1471 struct kmem_cache *objects; 1472 struct kmem_cache *vmas; 1473 struct kmem_cache *luts; 1474 struct kmem_cache *requests; 1475 struct kmem_cache *dependencies; 1476 struct kmem_cache *priorities; 1477 1478 const struct intel_device_info __info; /* Use INTEL_INFO() to access. */ 1479 struct intel_runtime_info __runtime; /* Use RUNTIME_INFO() to access. */ 1480 struct intel_driver_caps caps; 1481 1482 /** 1483 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and 1484 * end of stolen which we can optionally use to create GEM objects 1485 * backed by stolen memory. Note that stolen_usable_size tells us 1486 * exactly how much of this we are actually allowed to use, given that 1487 * some portion of it is in fact reserved for use by hardware functions. 1488 */ 1489 struct resource dsm; 1490 /** 1491 * Reseved portion of Data Stolen Memory 1492 */ 1493 struct resource dsm_reserved; 1494 1495 /* 1496 * Stolen memory is segmented in hardware with different portions 1497 * offlimits to certain functions. 1498 * 1499 * The drm_mm is initialised to the total accessible range, as found 1500 * from the PCI config. On Broadwell+, this is further restricted to 1501 * avoid the first page! The upper end of stolen memory is reserved for 1502 * hardware functions and similarly removed from the accessible range. 1503 */ 1504 resource_size_t stolen_usable_size; /* Total size minus reserved ranges */ 1505 1506 void __iomem *regs; 1507 1508 struct intel_uncore uncore; 1509 1510 struct i915_virtual_gpu vgpu; 1511 1512 struct intel_gvt *gvt; 1513 1514 struct intel_wopcm wopcm; 1515 1516 struct intel_huc huc; 1517 struct intel_guc guc; 1518 1519 struct intel_csr csr; 1520 1521 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 1522 1523 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 1524 * controller on different i2c buses. */ 1525 struct mutex gmbus_mutex; 1526 1527 /** 1528 * Base address of where the gmbus and gpio blocks are located (either 1529 * on PCH or on SoC for platforms without PCH). 1530 */ 1531 u32 gpio_mmio_base; 1532 1533 /* MMIO base address for MIPI regs */ 1534 u32 mipi_mmio_base; 1535 1536 u32 psr_mmio_base; 1537 1538 u32 pps_mmio_base; 1539 1540 wait_queue_head_t gmbus_wait_queue; 1541 1542 struct pci_dev *bridge_dev; 1543 struct intel_engine_cs *engine[I915_NUM_ENGINES]; 1544 /* Context used internally to idle the GPU and setup initial state */ 1545 struct i915_gem_context *kernel_context; 1546 /* Context only to be used for injecting preemption commands */ 1547 struct i915_gem_context *preempt_context; 1548 struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1] 1549 [MAX_ENGINE_INSTANCE + 1]; 1550 1551 struct resource mch_res; 1552 1553 /* protects the irq masks */ 1554 spinlock_t irq_lock; 1555 1556 bool display_irqs_enabled; 1557 1558 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 1559 struct pm_qos_request pm_qos; 1560 1561 /* Sideband mailbox protection */ 1562 struct mutex sb_lock; 1563 1564 /** Cached value of IMR to avoid reads in updating the bitfield */ 1565 union { 1566 u32 irq_mask; 1567 u32 de_irq_mask[I915_MAX_PIPES]; 1568 }; 1569 u32 gt_irq_mask; 1570 u32 pm_imr; 1571 u32 pm_ier; 1572 u32 pm_rps_events; 1573 u32 pm_guc_events; 1574 u32 pipestat_irq_mask[I915_MAX_PIPES]; 1575 1576 struct i915_hotplug hotplug; 1577 struct intel_fbc fbc; 1578 struct i915_drrs drrs; 1579 struct intel_opregion opregion; 1580 struct intel_vbt_data vbt; 1581 1582 bool preserve_bios_swizzle; 1583 1584 /* overlay */ 1585 struct intel_overlay *overlay; 1586 1587 /* backlight registers and fields in struct intel_panel */ 1588 struct mutex backlight_lock; 1589 1590 /* LVDS info */ 1591 bool no_aux_handshake; 1592 1593 /* protects panel power sequencer state */ 1594 struct mutex pps_mutex; 1595 1596 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 1597 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 1598 1599 unsigned int fsb_freq, mem_freq, is_ddr3; 1600 unsigned int skl_preferred_vco_freq; 1601 unsigned int max_cdclk_freq; 1602 1603 unsigned int max_dotclk_freq; 1604 unsigned int rawclk_freq; 1605 unsigned int hpll_freq; 1606 unsigned int fdi_pll_freq; 1607 unsigned int czclk_freq; 1608 1609 struct { 1610 /* 1611 * The current logical cdclk state. 1612 * See intel_atomic_state.cdclk.logical 1613 * 1614 * For reading holding any crtc lock is sufficient, 1615 * for writing must hold all of them. 1616 */ 1617 struct intel_cdclk_state logical; 1618 /* 1619 * The current actual cdclk state. 1620 * See intel_atomic_state.cdclk.actual 1621 */ 1622 struct intel_cdclk_state actual; 1623 /* The current hardware cdclk state */ 1624 struct intel_cdclk_state hw; 1625 } cdclk; 1626 1627 /** 1628 * wq - Driver workqueue for GEM. 1629 * 1630 * NOTE: Work items scheduled here are not allowed to grab any modeset 1631 * locks, for otherwise the flushing done in the pageflip code will 1632 * result in deadlocks. 1633 */ 1634 struct workqueue_struct *wq; 1635 1636 /* ordered wq for modesets */ 1637 struct workqueue_struct *modeset_wq; 1638 1639 /* Display functions */ 1640 struct drm_i915_display_funcs display; 1641 1642 /* PCH chipset type */ 1643 enum intel_pch pch_type; 1644 unsigned short pch_id; 1645 1646 unsigned long quirks; 1647 1648 struct drm_atomic_state *modeset_restore_state; 1649 struct drm_modeset_acquire_ctx reset_ctx; 1650 1651 struct i915_ggtt ggtt; /* VM representing the global address space */ 1652 1653 struct i915_gem_mm mm; 1654 DECLARE_HASHTABLE(mm_structs, 7); 1655 struct mutex mm_lock; 1656 1657 struct intel_ppat ppat; 1658 1659 /* Kernel Modesetting */ 1660 1661 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 1662 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 1663 1664 #ifdef CONFIG_DEBUG_FS 1665 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 1666 #endif 1667 1668 /* dpll and cdclk state is protected by connection_mutex */ 1669 int num_shared_dpll; 1670 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 1671 const struct intel_dpll_mgr *dpll_mgr; 1672 1673 /* 1674 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 1675 * Must be global rather than per dpll, because on some platforms 1676 * plls share registers. 1677 */ 1678 struct mutex dpll_lock; 1679 1680 unsigned int active_crtcs; 1681 /* minimum acceptable cdclk for each pipe */ 1682 int min_cdclk[I915_MAX_PIPES]; 1683 /* minimum acceptable voltage level for each pipe */ 1684 u8 min_voltage_level[I915_MAX_PIPES]; 1685 1686 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 1687 1688 struct i915_wa_list gt_wa_list; 1689 1690 struct i915_frontbuffer_tracking fb_tracking; 1691 1692 struct intel_atomic_helper { 1693 struct llist_head free_list; 1694 struct work_struct free_work; 1695 } atomic_helper; 1696 1697 u16 orig_clock; 1698 1699 bool mchbar_need_disable; 1700 1701 struct intel_l3_parity l3_parity; 1702 1703 /* Cannot be determined by PCIID. You must always read a register. */ 1704 u32 edram_cap; 1705 1706 /* 1707 * Protects RPS/RC6 register access and PCU communication. 1708 * Must be taken after struct_mutex if nested. Note that 1709 * this lock may be held for long periods of time when 1710 * talking to hw - so only take it when talking to hw! 1711 */ 1712 struct mutex pcu_lock; 1713 1714 /* gen6+ GT PM state */ 1715 struct intel_gen6_power_mgmt gt_pm; 1716 1717 /* ilk-only ips/rps state. Everything in here is protected by the global 1718 * mchdev_lock in intel_pm.c */ 1719 struct intel_ilk_power_mgmt ips; 1720 1721 struct i915_power_domains power_domains; 1722 1723 struct i915_psr psr; 1724 1725 struct i915_gpu_error gpu_error; 1726 1727 struct drm_i915_gem_object *vlv_pctx; 1728 1729 /* list of fbdev register on this device */ 1730 struct intel_fbdev *fbdev; 1731 struct work_struct fbdev_suspend_work; 1732 1733 struct drm_property *broadcast_rgb_property; 1734 struct drm_property *force_audio_property; 1735 1736 /* hda/i915 audio component */ 1737 struct i915_audio_component *audio_component; 1738 bool audio_component_registered; 1739 /** 1740 * av_mutex - mutex for audio/video sync 1741 * 1742 */ 1743 struct mutex av_mutex; 1744 1745 struct { 1746 struct mutex mutex; 1747 struct list_head list; 1748 struct llist_head free_list; 1749 struct work_struct free_work; 1750 1751 /* The hw wants to have a stable context identifier for the 1752 * lifetime of the context (for OA, PASID, faults, etc). 1753 * This is limited in execlists to 21 bits. 1754 */ 1755 struct ida hw_ida; 1756 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 1757 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */ 1758 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */ 1759 struct list_head hw_id_list; 1760 } contexts; 1761 1762 u32 fdi_rx_config; 1763 1764 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 1765 u32 chv_phy_control; 1766 /* 1767 * Shadows for CHV DPLL_MD regs to keep the state 1768 * checker somewhat working in the presence hardware 1769 * crappiness (can't read out DPLL_MD for pipes B & C). 1770 */ 1771 u32 chv_dpll_md[I915_MAX_PIPES]; 1772 u32 bxt_phy_grc; 1773 1774 u32 suspend_count; 1775 bool power_domains_suspended; 1776 struct i915_suspend_saved_registers regfile; 1777 struct vlv_s0ix_state vlv_s0ix_state; 1778 1779 enum { 1780 I915_SAGV_UNKNOWN = 0, 1781 I915_SAGV_DISABLED, 1782 I915_SAGV_ENABLED, 1783 I915_SAGV_NOT_CONTROLLED 1784 } sagv_status; 1785 1786 struct { 1787 /* 1788 * Raw watermark latency values: 1789 * in 0.1us units for WM0, 1790 * in 0.5us units for WM1+. 1791 */ 1792 /* primary */ 1793 u16 pri_latency[5]; 1794 /* sprite */ 1795 u16 spr_latency[5]; 1796 /* cursor */ 1797 u16 cur_latency[5]; 1798 /* 1799 * Raw watermark memory latency values 1800 * for SKL for all 8 levels 1801 * in 1us units. 1802 */ 1803 u16 skl_latency[8]; 1804 1805 /* current hardware state */ 1806 union { 1807 struct ilk_wm_values hw; 1808 struct skl_ddb_values skl_hw; 1809 struct vlv_wm_values vlv; 1810 struct g4x_wm_values g4x; 1811 }; 1812 1813 u8 max_level; 1814 1815 /* 1816 * Should be held around atomic WM register writing; also 1817 * protects * intel_crtc->wm.active and 1818 * cstate->wm.need_postvbl_update. 1819 */ 1820 struct mutex wm_mutex; 1821 1822 /* 1823 * Set during HW readout of watermarks/DDB. Some platforms 1824 * need to know when we're still using BIOS-provided values 1825 * (which we don't fully trust). 1826 */ 1827 bool distrust_bios_wm; 1828 } wm; 1829 1830 struct dram_info { 1831 bool valid; 1832 bool is_16gb_dimm; 1833 u8 num_channels; 1834 enum dram_rank { 1835 I915_DRAM_RANK_INVALID = 0, 1836 I915_DRAM_RANK_SINGLE, 1837 I915_DRAM_RANK_DUAL 1838 } rank; 1839 u32 bandwidth_kbps; 1840 bool symmetric_memory; 1841 } dram_info; 1842 1843 struct i915_runtime_pm runtime_pm; 1844 1845 struct { 1846 bool initialized; 1847 1848 struct kobject *metrics_kobj; 1849 struct ctl_table_header *sysctl_header; 1850 1851 /* 1852 * Lock associated with adding/modifying/removing OA configs 1853 * in dev_priv->perf.metrics_idr. 1854 */ 1855 struct mutex metrics_lock; 1856 1857 /* 1858 * List of dynamic configurations, you need to hold 1859 * dev_priv->perf.metrics_lock to access it. 1860 */ 1861 struct idr metrics_idr; 1862 1863 /* 1864 * Lock associated with anything below within this structure 1865 * except exclusive_stream. 1866 */ 1867 struct mutex lock; 1868 struct list_head streams; 1869 1870 struct { 1871 /* 1872 * The stream currently using the OA unit. If accessed 1873 * outside a syscall associated to its file 1874 * descriptor, you need to hold 1875 * dev_priv->drm.struct_mutex. 1876 */ 1877 struct i915_perf_stream *exclusive_stream; 1878 1879 struct intel_context *pinned_ctx; 1880 u32 specific_ctx_id; 1881 u32 specific_ctx_id_mask; 1882 1883 struct hrtimer poll_check_timer; 1884 wait_queue_head_t poll_wq; 1885 bool pollin; 1886 1887 /** 1888 * For rate limiting any notifications of spurious 1889 * invalid OA reports 1890 */ 1891 struct ratelimit_state spurious_report_rs; 1892 1893 bool periodic; 1894 int period_exponent; 1895 1896 struct i915_oa_config test_config; 1897 1898 struct { 1899 struct i915_vma *vma; 1900 u8 *vaddr; 1901 u32 last_ctx_id; 1902 int format; 1903 int format_size; 1904 1905 /** 1906 * Locks reads and writes to all head/tail state 1907 * 1908 * Consider: the head and tail pointer state 1909 * needs to be read consistently from a hrtimer 1910 * callback (atomic context) and read() fop 1911 * (user context) with tail pointer updates 1912 * happening in atomic context and head updates 1913 * in user context and the (unlikely) 1914 * possibility of read() errors needing to 1915 * reset all head/tail state. 1916 * 1917 * Note: Contention or performance aren't 1918 * currently a significant concern here 1919 * considering the relatively low frequency of 1920 * hrtimer callbacks (5ms period) and that 1921 * reads typically only happen in response to a 1922 * hrtimer event and likely complete before the 1923 * next callback. 1924 * 1925 * Note: This lock is not held *while* reading 1926 * and copying data to userspace so the value 1927 * of head observed in htrimer callbacks won't 1928 * represent any partial consumption of data. 1929 */ 1930 spinlock_t ptr_lock; 1931 1932 /** 1933 * One 'aging' tail pointer and one 'aged' 1934 * tail pointer ready to used for reading. 1935 * 1936 * Initial values of 0xffffffff are invalid 1937 * and imply that an update is required 1938 * (and should be ignored by an attempted 1939 * read) 1940 */ 1941 struct { 1942 u32 offset; 1943 } tails[2]; 1944 1945 /** 1946 * Index for the aged tail ready to read() 1947 * data up to. 1948 */ 1949 unsigned int aged_tail_idx; 1950 1951 /** 1952 * A monotonic timestamp for when the current 1953 * aging tail pointer was read; used to 1954 * determine when it is old enough to trust. 1955 */ 1956 u64 aging_timestamp; 1957 1958 /** 1959 * Although we can always read back the head 1960 * pointer register, we prefer to avoid 1961 * trusting the HW state, just to avoid any 1962 * risk that some hardware condition could 1963 * somehow bump the head pointer unpredictably 1964 * and cause us to forward the wrong OA buffer 1965 * data to userspace. 1966 */ 1967 u32 head; 1968 } oa_buffer; 1969 1970 u32 gen7_latched_oastatus1; 1971 u32 ctx_oactxctrl_offset; 1972 u32 ctx_flexeu0_offset; 1973 1974 /** 1975 * The RPT_ID/reason field for Gen8+ includes a bit 1976 * to determine if the CTX ID in the report is valid 1977 * but the specific bit differs between Gen 8 and 9 1978 */ 1979 u32 gen8_valid_ctx_bit; 1980 1981 struct i915_oa_ops ops; 1982 const struct i915_oa_format *oa_formats; 1983 } oa; 1984 } perf; 1985 1986 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 1987 struct { 1988 void (*resume)(struct drm_i915_private *); 1989 void (*cleanup_engine)(struct intel_engine_cs *engine); 1990 1991 struct i915_gt_timelines { 1992 struct mutex mutex; /* protects list, tainted by GPU */ 1993 struct list_head active_list; 1994 1995 /* Pack multiple timelines' seqnos into the same page */ 1996 spinlock_t hwsp_lock; 1997 struct list_head hwsp_free_list; 1998 } timelines; 1999 2000 struct list_head active_rings; 2001 struct list_head closed_vma; 2002 u32 active_requests; 2003 2004 /** 2005 * Is the GPU currently considered idle, or busy executing 2006 * userspace requests? Whilst idle, we allow runtime power 2007 * management to power down the hardware and display clocks. 2008 * In order to reduce the effect on performance, there 2009 * is a slight delay before we do so. 2010 */ 2011 intel_wakeref_t awake; 2012 2013 /** 2014 * The number of times we have woken up. 2015 */ 2016 unsigned int epoch; 2017 #define I915_EPOCH_INVALID 0 2018 2019 /** 2020 * We leave the user IRQ off as much as possible, 2021 * but this means that requests will finish and never 2022 * be retired once the system goes idle. Set a timer to 2023 * fire periodically while the ring is running. When it 2024 * fires, go retire requests. 2025 */ 2026 struct delayed_work retire_work; 2027 2028 /** 2029 * When we detect an idle GPU, we want to turn on 2030 * powersaving features. So once we see that there 2031 * are no more requests outstanding and no more 2032 * arrive within a small period of time, we fire 2033 * off the idle_work. 2034 */ 2035 struct delayed_work idle_work; 2036 2037 ktime_t last_init_time; 2038 2039 struct i915_vma *scratch; 2040 } gt; 2041 2042 /* perform PHY state sanity checks? */ 2043 bool chv_phy_assert[2]; 2044 2045 bool ipc_enabled; 2046 2047 /* Used to save the pipe-to-encoder mapping for audio */ 2048 struct intel_encoder *av_enc_map[I915_MAX_PIPES]; 2049 2050 /* necessary resource sharing with HDMI LPE audio driver. */ 2051 struct { 2052 struct platform_device *platdev; 2053 int irq; 2054 } lpe_audio; 2055 2056 struct i915_pmu pmu; 2057 2058 /* 2059 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2060 * will be rejected. Instead look for a better place. 2061 */ 2062 }; 2063 2064 struct dram_channel_info { 2065 struct info { 2066 u8 size, width; 2067 enum dram_rank rank; 2068 } l_info, s_info; 2069 enum dram_rank rank; 2070 bool is_16gb_dimm; 2071 }; 2072 2073 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2074 { 2075 return container_of(dev, struct drm_i915_private, drm); 2076 } 2077 2078 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) 2079 { 2080 return to_i915(dev_get_drvdata(kdev)); 2081 } 2082 2083 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm) 2084 { 2085 return container_of(wopcm, struct drm_i915_private, wopcm); 2086 } 2087 2088 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2089 { 2090 return container_of(guc, struct drm_i915_private, guc); 2091 } 2092 2093 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc) 2094 { 2095 return container_of(huc, struct drm_i915_private, huc); 2096 } 2097 2098 /* Simple iterator over all initialised engines */ 2099 #define for_each_engine(engine__, dev_priv__, id__) \ 2100 for ((id__) = 0; \ 2101 (id__) < I915_NUM_ENGINES; \ 2102 (id__)++) \ 2103 for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) 2104 2105 /* Iterator over subset of engines selected by mask */ 2106 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \ 2107 for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \ 2108 (tmp__) ? \ 2109 ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \ 2110 0;) 2111 2112 enum hdmi_force_audio { 2113 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2114 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2115 HDMI_AUDIO_AUTO, /* trust EDID */ 2116 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2117 }; 2118 2119 #define I915_GTT_OFFSET_NONE ((u32)-1) 2120 2121 /* 2122 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2123 * considered to be the frontbuffer for the given plane interface-wise. This 2124 * doesn't mean that the hw necessarily already scans it out, but that any 2125 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2126 * 2127 * We have one bit per pipe and per scanout plane type. 2128 */ 2129 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2130 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \ 2131 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \ 2132 BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \ 2133 BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \ 2134 }) 2135 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2136 BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2137 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2138 GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \ 2139 INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2140 2141 /* 2142 * Optimised SGL iterator for GEM objects 2143 */ 2144 static __always_inline struct sgt_iter { 2145 struct scatterlist *sgp; 2146 union { 2147 unsigned long pfn; 2148 dma_addr_t dma; 2149 }; 2150 unsigned int curr; 2151 unsigned int max; 2152 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2153 struct sgt_iter s = { .sgp = sgl }; 2154 2155 if (s.sgp) { 2156 s.max = s.curr = s.sgp->offset; 2157 s.max += s.sgp->length; 2158 if (dma) 2159 s.dma = sg_dma_address(s.sgp); 2160 else 2161 s.pfn = page_to_pfn(sg_page(s.sgp)); 2162 } 2163 2164 return s; 2165 } 2166 2167 static inline struct scatterlist *____sg_next(struct scatterlist *sg) 2168 { 2169 ++sg; 2170 if (unlikely(sg_is_chain(sg))) 2171 sg = sg_chain_ptr(sg); 2172 return sg; 2173 } 2174 2175 /** 2176 * __sg_next - return the next scatterlist entry in a list 2177 * @sg: The current sg entry 2178 * 2179 * Description: 2180 * If the entry is the last, return NULL; otherwise, step to the next 2181 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2182 * otherwise just return the pointer to the current element. 2183 **/ 2184 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2185 { 2186 return sg_is_last(sg) ? NULL : ____sg_next(sg); 2187 } 2188 2189 /** 2190 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2191 * @__dmap: DMA address (output) 2192 * @__iter: 'struct sgt_iter' (iterator state, internal) 2193 * @__sgt: sg_table to iterate over (input) 2194 */ 2195 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2196 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2197 ((__dmap) = (__iter).dma + (__iter).curr); \ 2198 (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ? \ 2199 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0) 2200 2201 /** 2202 * for_each_sgt_page - iterate over the pages of the given sg_table 2203 * @__pp: page pointer (output) 2204 * @__iter: 'struct sgt_iter' (iterator state, internal) 2205 * @__sgt: sg_table to iterate over (input) 2206 */ 2207 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2208 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2209 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2210 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2211 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2212 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0) 2213 2214 bool i915_sg_trim(struct sg_table *orig_st); 2215 2216 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg) 2217 { 2218 unsigned int page_sizes; 2219 2220 page_sizes = 0; 2221 while (sg) { 2222 GEM_BUG_ON(sg->offset); 2223 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE)); 2224 page_sizes |= sg->length; 2225 sg = __sg_next(sg); 2226 } 2227 2228 return page_sizes; 2229 } 2230 2231 static inline unsigned int i915_sg_segment_size(void) 2232 { 2233 unsigned int size = swiotlb_max_segment(); 2234 2235 if (size == 0) 2236 return SCATTERLIST_MAX_SEGMENT; 2237 2238 size = rounddown(size, PAGE_SIZE); 2239 /* swiotlb_max_segment_size can return 1 byte when it means one page. */ 2240 if (size < PAGE_SIZE) 2241 size = PAGE_SIZE; 2242 2243 return size; 2244 } 2245 2246 #define INTEL_INFO(dev_priv) (&(dev_priv)->__info) 2247 #define RUNTIME_INFO(dev_priv) (&(dev_priv)->__runtime) 2248 #define DRIVER_CAPS(dev_priv) (&(dev_priv)->caps) 2249 2250 #define INTEL_GEN(dev_priv) (INTEL_INFO(dev_priv)->gen) 2251 #define INTEL_DEVID(dev_priv) (RUNTIME_INFO(dev_priv)->device_id) 2252 2253 #define REVID_FOREVER 0xff 2254 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision) 2255 2256 #define INTEL_GEN_MASK(s, e) ( \ 2257 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \ 2258 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \ 2259 GENMASK((e) - 1, (s) - 1)) 2260 2261 /* Returns true if Gen is in inclusive range [Start, End] */ 2262 #define IS_GEN_RANGE(dev_priv, s, e) \ 2263 (!!(INTEL_INFO(dev_priv)->gen_mask & INTEL_GEN_MASK((s), (e)))) 2264 2265 #define IS_GEN(dev_priv, n) \ 2266 (BUILD_BUG_ON_ZERO(!__builtin_constant_p(n)) + \ 2267 INTEL_INFO(dev_priv)->gen == (n)) 2268 2269 /* 2270 * Return true if revision is in range [since,until] inclusive. 2271 * 2272 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2273 */ 2274 #define IS_REVID(p, since, until) \ 2275 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2276 2277 #define IS_PLATFORM(dev_priv, p) (INTEL_INFO(dev_priv)->platform_mask & BIT(p)) 2278 2279 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830) 2280 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G) 2281 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X) 2282 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G) 2283 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G) 2284 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM) 2285 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G) 2286 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM) 2287 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G) 2288 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM) 2289 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45) 2290 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45) 2291 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) 2292 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001) 2293 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011) 2294 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW) 2295 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33) 2296 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046) 2297 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE) 2298 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \ 2299 INTEL_INFO(dev_priv)->gt == 1) 2300 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW) 2301 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW) 2302 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL) 2303 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL) 2304 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE) 2305 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON) 2306 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE) 2307 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE) 2308 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE) 2309 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE) 2310 #define IS_ICELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ICELAKE) 2311 #define IS_MOBILE(dev_priv) (INTEL_INFO(dev_priv)->is_mobile) 2312 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ 2313 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) 2314 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \ 2315 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \ 2316 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \ 2317 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)) 2318 /* ULX machines are also considered ULT. */ 2319 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \ 2320 (INTEL_DEVID(dev_priv) & 0xf) == 0xe) 2321 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ 2322 INTEL_INFO(dev_priv)->gt == 3) 2323 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \ 2324 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00) 2325 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ 2326 INTEL_INFO(dev_priv)->gt == 3) 2327 #define IS_HSW_GT1(dev_priv) (IS_HASWELL(dev_priv) && \ 2328 INTEL_INFO(dev_priv)->gt == 1) 2329 /* ULX machines are also considered ULT. */ 2330 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \ 2331 INTEL_DEVID(dev_priv) == 0x0A1E) 2332 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \ 2333 INTEL_DEVID(dev_priv) == 0x1913 || \ 2334 INTEL_DEVID(dev_priv) == 0x1916 || \ 2335 INTEL_DEVID(dev_priv) == 0x1921 || \ 2336 INTEL_DEVID(dev_priv) == 0x1926) 2337 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \ 2338 INTEL_DEVID(dev_priv) == 0x1915 || \ 2339 INTEL_DEVID(dev_priv) == 0x191E) 2340 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \ 2341 INTEL_DEVID(dev_priv) == 0x5913 || \ 2342 INTEL_DEVID(dev_priv) == 0x5916 || \ 2343 INTEL_DEVID(dev_priv) == 0x5921 || \ 2344 INTEL_DEVID(dev_priv) == 0x5926) 2345 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \ 2346 INTEL_DEVID(dev_priv) == 0x5915 || \ 2347 INTEL_DEVID(dev_priv) == 0x591E) 2348 #define IS_AML_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x591C || \ 2349 INTEL_DEVID(dev_priv) == 0x87C0 || \ 2350 INTEL_DEVID(dev_priv) == 0x87CA) 2351 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2352 INTEL_INFO(dev_priv)->gt == 2) 2353 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2354 INTEL_INFO(dev_priv)->gt == 3) 2355 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2356 INTEL_INFO(dev_priv)->gt == 4) 2357 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2358 INTEL_INFO(dev_priv)->gt == 2) 2359 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2360 INTEL_INFO(dev_priv)->gt == 3) 2361 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2362 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0) 2363 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2364 INTEL_INFO(dev_priv)->gt == 2) 2365 #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2366 INTEL_INFO(dev_priv)->gt == 3) 2367 #define IS_CNL_WITH_PORT_F(dev_priv) (IS_CANNONLAKE(dev_priv) && \ 2368 (INTEL_DEVID(dev_priv) & 0x0004) == 0x0004) 2369 #define IS_ICL_WITH_PORT_F(dev_priv) (IS_ICELAKE(dev_priv) && \ 2370 INTEL_DEVID(dev_priv) != 0x8A51) 2371 2372 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support) 2373 2374 #define SKL_REVID_A0 0x0 2375 #define SKL_REVID_B0 0x1 2376 #define SKL_REVID_C0 0x2 2377 #define SKL_REVID_D0 0x3 2378 #define SKL_REVID_E0 0x4 2379 #define SKL_REVID_F0 0x5 2380 #define SKL_REVID_G0 0x6 2381 #define SKL_REVID_H0 0x7 2382 2383 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2384 2385 #define BXT_REVID_A0 0x0 2386 #define BXT_REVID_A1 0x1 2387 #define BXT_REVID_B0 0x3 2388 #define BXT_REVID_B_LAST 0x8 2389 #define BXT_REVID_C0 0x9 2390 2391 #define IS_BXT_REVID(dev_priv, since, until) \ 2392 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until)) 2393 2394 #define KBL_REVID_A0 0x0 2395 #define KBL_REVID_B0 0x1 2396 #define KBL_REVID_C0 0x2 2397 #define KBL_REVID_D0 0x3 2398 #define KBL_REVID_E0 0x4 2399 2400 #define IS_KBL_REVID(dev_priv, since, until) \ 2401 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2402 2403 #define GLK_REVID_A0 0x0 2404 #define GLK_REVID_A1 0x1 2405 2406 #define IS_GLK_REVID(dev_priv, since, until) \ 2407 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2408 2409 #define CNL_REVID_A0 0x0 2410 #define CNL_REVID_B0 0x1 2411 #define CNL_REVID_C0 0x2 2412 2413 #define IS_CNL_REVID(p, since, until) \ 2414 (IS_CANNONLAKE(p) && IS_REVID(p, since, until)) 2415 2416 #define ICL_REVID_A0 0x0 2417 #define ICL_REVID_A2 0x1 2418 #define ICL_REVID_B0 0x3 2419 #define ICL_REVID_B2 0x4 2420 #define ICL_REVID_C0 0x5 2421 2422 #define IS_ICL_REVID(p, since, until) \ 2423 (IS_ICELAKE(p) && IS_REVID(p, since, until)) 2424 2425 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) 2426 #define IS_GEN9_LP(dev_priv) (IS_GEN(dev_priv, 9) && IS_LP(dev_priv)) 2427 #define IS_GEN9_BC(dev_priv) (IS_GEN(dev_priv, 9) && !IS_LP(dev_priv)) 2428 2429 #define ENGINE_MASK(id) BIT(id) 2430 #define RENDER_RING ENGINE_MASK(RCS) 2431 #define BSD_RING ENGINE_MASK(VCS) 2432 #define BLT_RING ENGINE_MASK(BCS) 2433 #define VEBOX_RING ENGINE_MASK(VECS) 2434 #define BSD2_RING ENGINE_MASK(VCS2) 2435 #define BSD3_RING ENGINE_MASK(VCS3) 2436 #define BSD4_RING ENGINE_MASK(VCS4) 2437 #define VEBOX2_RING ENGINE_MASK(VECS2) 2438 #define ALL_ENGINES (~0) 2439 2440 #define HAS_ENGINE(dev_priv, id) \ 2441 (!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id))) 2442 2443 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) 2444 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) 2445 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) 2446 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) 2447 2448 #define HAS_LLC(dev_priv) (INTEL_INFO(dev_priv)->has_llc) 2449 #define HAS_SNOOP(dev_priv) (INTEL_INFO(dev_priv)->has_snoop) 2450 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED)) 2451 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \ 2452 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv)) 2453 2454 #define HWS_NEEDS_PHYSICAL(dev_priv) (INTEL_INFO(dev_priv)->hws_needs_physical) 2455 2456 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ 2457 (INTEL_INFO(dev_priv)->has_logical_ring_contexts) 2458 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \ 2459 (INTEL_INFO(dev_priv)->has_logical_ring_elsq) 2460 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \ 2461 (INTEL_INFO(dev_priv)->has_logical_ring_preemption) 2462 2463 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv) 2464 2465 #define INTEL_PPGTT(dev_priv) (INTEL_INFO(dev_priv)->ppgtt) 2466 #define HAS_PPGTT(dev_priv) \ 2467 (INTEL_PPGTT(dev_priv) != INTEL_PPGTT_NONE) 2468 #define HAS_FULL_PPGTT(dev_priv) \ 2469 (INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL) 2470 #define HAS_FULL_48BIT_PPGTT(dev_priv) \ 2471 (INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL_4LVL) 2472 2473 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \ 2474 GEM_BUG_ON((sizes) == 0); \ 2475 ((sizes) & ~INTEL_INFO(dev_priv)->page_sizes) == 0; \ 2476 }) 2477 2478 #define HAS_OVERLAY(dev_priv) (INTEL_INFO(dev_priv)->display.has_overlay) 2479 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ 2480 (INTEL_INFO(dev_priv)->display.overlay_needs_physical) 2481 2482 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2483 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) 2484 2485 /* WaRsDisableCoarsePowerGating:skl,cnl */ 2486 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 2487 (IS_CANNONLAKE(dev_priv) || \ 2488 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv)) 2489 2490 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4) 2491 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \ 2492 IS_GEMINILAKE(dev_priv) || \ 2493 IS_KABYLAKE(dev_priv)) 2494 2495 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2496 * rows, which changed the alignment requirements and fence programming. 2497 */ 2498 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN(dev_priv, 2) && \ 2499 !(IS_I915G(dev_priv) || \ 2500 IS_I915GM(dev_priv))) 2501 #define SUPPORTS_TV(dev_priv) (INTEL_INFO(dev_priv)->display.supports_tv) 2502 #define I915_HAS_HOTPLUG(dev_priv) (INTEL_INFO(dev_priv)->display.has_hotplug) 2503 2504 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2) 2505 #define HAS_FBC(dev_priv) (INTEL_INFO(dev_priv)->display.has_fbc) 2506 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH(dev_priv) && INTEL_GEN(dev_priv) >= 7) 2507 2508 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) 2509 2510 #define HAS_DP_MST(dev_priv) (INTEL_INFO(dev_priv)->display.has_dp_mst) 2511 2512 #define HAS_DDI(dev_priv) (INTEL_INFO(dev_priv)->display.has_ddi) 2513 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) (INTEL_INFO(dev_priv)->has_fpga_dbg) 2514 #define HAS_PSR(dev_priv) (INTEL_INFO(dev_priv)->display.has_psr) 2515 2516 #define HAS_RC6(dev_priv) (INTEL_INFO(dev_priv)->has_rc6) 2517 #define HAS_RC6p(dev_priv) (INTEL_INFO(dev_priv)->has_rc6p) 2518 #define HAS_RC6pp(dev_priv) (false) /* HW was never validated */ 2519 2520 #define HAS_CSR(dev_priv) (INTEL_INFO(dev_priv)->display.has_csr) 2521 2522 #define HAS_RUNTIME_PM(dev_priv) (INTEL_INFO(dev_priv)->has_runtime_pm) 2523 #define HAS_64BIT_RELOC(dev_priv) (INTEL_INFO(dev_priv)->has_64bit_reloc) 2524 2525 #define HAS_IPC(dev_priv) (INTEL_INFO(dev_priv)->display.has_ipc) 2526 2527 /* 2528 * For now, anything with a GuC requires uCode loading, and then supports 2529 * command submission once loaded. But these are logically independent 2530 * properties, so we have separate macros to test them. 2531 */ 2532 #define HAS_GUC(dev_priv) (INTEL_INFO(dev_priv)->has_guc) 2533 #define HAS_GUC_CT(dev_priv) (INTEL_INFO(dev_priv)->has_guc_ct) 2534 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2535 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv)) 2536 2537 /* For now, anything with a GuC has also HuC */ 2538 #define HAS_HUC(dev_priv) (HAS_GUC(dev_priv)) 2539 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2540 2541 /* Having a GuC is not the same as using a GuC */ 2542 #define USES_GUC(dev_priv) intel_uc_is_using_guc(dev_priv) 2543 #define USES_GUC_SUBMISSION(dev_priv) intel_uc_is_using_guc_submission(dev_priv) 2544 #define USES_HUC(dev_priv) intel_uc_is_using_huc(dev_priv) 2545 2546 #define HAS_POOLED_EU(dev_priv) (INTEL_INFO(dev_priv)->has_pooled_eu) 2547 2548 #define INTEL_PCH_DEVICE_ID_MASK 0xff80 2549 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2550 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2551 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2552 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2553 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2554 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80 2555 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80 2556 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2557 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2558 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280 2559 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300 2560 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80 2561 #define INTEL_PCH_ICP_DEVICE_ID_TYPE 0x3480 2562 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2563 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2564 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2565 2566 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type) 2567 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id) 2568 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP) 2569 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP) 2570 #define HAS_PCH_CNP_LP(dev_priv) \ 2571 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) 2572 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP) 2573 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT) 2574 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT) 2575 #define HAS_PCH_LPT_LP(dev_priv) \ 2576 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \ 2577 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) 2578 #define HAS_PCH_LPT_H(dev_priv) \ 2579 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \ 2580 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE) 2581 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT) 2582 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX) 2583 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP) 2584 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE) 2585 2586 #define HAS_GMCH(dev_priv) (INTEL_INFO(dev_priv)->display.has_gmch) 2587 2588 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9) 2589 2590 /* DPF == dynamic parity feature */ 2591 #define HAS_L3_DPF(dev_priv) (INTEL_INFO(dev_priv)->has_l3_dpf) 2592 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 2593 2 : HAS_L3_DPF(dev_priv)) 2594 2595 #define GT_FREQUENCY_MULTIPLIER 50 2596 #define GEN9_FREQ_SCALER 3 2597 2598 #define HAS_DISPLAY(dev_priv) (INTEL_INFO(dev_priv)->num_pipes > 0) 2599 2600 #include "i915_trace.h" 2601 2602 static inline bool intel_vtd_active(void) 2603 { 2604 #ifdef CONFIG_INTEL_IOMMU 2605 if (intel_iommu_gfx_mapped) 2606 return true; 2607 #endif 2608 return false; 2609 } 2610 2611 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 2612 { 2613 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active(); 2614 } 2615 2616 static inline bool 2617 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv) 2618 { 2619 return IS_BROXTON(dev_priv) && intel_vtd_active(); 2620 } 2621 2622 /* i915_drv.c */ 2623 void __printf(3, 4) 2624 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 2625 const char *fmt, ...); 2626 2627 #define i915_report_error(dev_priv, fmt, ...) \ 2628 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 2629 2630 #ifdef CONFIG_COMPAT 2631 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2632 unsigned long arg); 2633 #else 2634 #define i915_compat_ioctl NULL 2635 #endif 2636 extern const struct dev_pm_ops i915_pm_ops; 2637 2638 extern int i915_driver_load(struct pci_dev *pdev, 2639 const struct pci_device_id *ent); 2640 extern void i915_driver_unload(struct drm_device *dev); 2641 2642 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 2643 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv); 2644 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2645 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2646 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2647 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2648 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2649 2650 int intel_engines_init_mmio(struct drm_i915_private *dev_priv); 2651 int intel_engines_init(struct drm_i915_private *dev_priv); 2652 2653 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv); 2654 2655 /* intel_hotplug.c */ 2656 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, 2657 u32 pin_mask, u32 long_mask); 2658 void intel_hpd_init(struct drm_i915_private *dev_priv); 2659 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 2660 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 2661 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv, 2662 enum port port); 2663 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2664 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2665 2666 /* i915_irq.c */ 2667 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 2668 { 2669 unsigned long delay; 2670 2671 if (unlikely(!i915_modparams.enable_hangcheck)) 2672 return; 2673 2674 /* Don't continually defer the hangcheck so that it is always run at 2675 * least once after work has been scheduled on any ring. Otherwise, 2676 * we will ignore a hung ring if a second ring is kept busy. 2677 */ 2678 2679 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 2680 queue_delayed_work(system_long_wq, 2681 &dev_priv->gpu_error.hangcheck_work, delay); 2682 } 2683 2684 extern void intel_irq_init(struct drm_i915_private *dev_priv); 2685 extern void intel_irq_fini(struct drm_i915_private *dev_priv); 2686 int intel_irq_install(struct drm_i915_private *dev_priv); 2687 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 2688 2689 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 2690 { 2691 return dev_priv->gvt; 2692 } 2693 2694 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 2695 { 2696 return dev_priv->vgpu.active; 2697 } 2698 2699 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 2700 enum pipe pipe); 2701 void 2702 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2703 u32 status_mask); 2704 2705 void 2706 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2707 u32 status_mask); 2708 2709 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 2710 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 2711 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 2712 u32 mask, 2713 u32 bits); 2714 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 2715 u32 interrupt_mask, 2716 u32 enabled_irq_mask); 2717 static inline void 2718 ilk_enable_display_irq(struct drm_i915_private *dev_priv, u32 bits) 2719 { 2720 ilk_update_display_irq(dev_priv, bits, bits); 2721 } 2722 static inline void 2723 ilk_disable_display_irq(struct drm_i915_private *dev_priv, u32 bits) 2724 { 2725 ilk_update_display_irq(dev_priv, bits, 0); 2726 } 2727 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 2728 enum pipe pipe, 2729 u32 interrupt_mask, 2730 u32 enabled_irq_mask); 2731 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 2732 enum pipe pipe, u32 bits) 2733 { 2734 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 2735 } 2736 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 2737 enum pipe pipe, u32 bits) 2738 { 2739 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 2740 } 2741 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 2742 u32 interrupt_mask, 2743 u32 enabled_irq_mask); 2744 static inline void 2745 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, u32 bits) 2746 { 2747 ibx_display_interrupt_update(dev_priv, bits, bits); 2748 } 2749 static inline void 2750 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, u32 bits) 2751 { 2752 ibx_display_interrupt_update(dev_priv, bits, 0); 2753 } 2754 2755 /* i915_gem.c */ 2756 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 2757 struct drm_file *file_priv); 2758 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 2759 struct drm_file *file_priv); 2760 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 2761 struct drm_file *file_priv); 2762 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 2763 struct drm_file *file_priv); 2764 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2765 struct drm_file *file_priv); 2766 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 2767 struct drm_file *file_priv); 2768 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 2769 struct drm_file *file_priv); 2770 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2771 struct drm_file *file_priv); 2772 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 2773 struct drm_file *file_priv); 2774 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 2775 struct drm_file *file_priv); 2776 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 2777 struct drm_file *file); 2778 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 2779 struct drm_file *file); 2780 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 2781 struct drm_file *file_priv); 2782 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 2783 struct drm_file *file_priv); 2784 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, 2785 struct drm_file *file_priv); 2786 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, 2787 struct drm_file *file_priv); 2788 int i915_gem_init_userptr(struct drm_i915_private *dev_priv); 2789 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv); 2790 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 2791 struct drm_file *file); 2792 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 2793 struct drm_file *file_priv); 2794 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 2795 struct drm_file *file_priv); 2796 void i915_gem_sanitize(struct drm_i915_private *i915); 2797 int i915_gem_init_early(struct drm_i915_private *dev_priv); 2798 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv); 2799 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 2800 int i915_gem_freeze(struct drm_i915_private *dev_priv); 2801 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 2802 2803 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv); 2804 void i915_gem_object_free(struct drm_i915_gem_object *obj); 2805 void i915_gem_object_init(struct drm_i915_gem_object *obj, 2806 const struct drm_i915_gem_object_ops *ops); 2807 struct drm_i915_gem_object * 2808 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size); 2809 struct drm_i915_gem_object * 2810 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 2811 const void *data, size_t size); 2812 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); 2813 void i915_gem_free_object(struct drm_gem_object *obj); 2814 2815 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 2816 { 2817 if (!atomic_read(&i915->mm.free_count)) 2818 return; 2819 2820 /* A single pass should suffice to release all the freed objects (along 2821 * most call paths) , but be a little more paranoid in that freeing 2822 * the objects does take a little amount of time, during which the rcu 2823 * callbacks could have added new objects into the freed list, and 2824 * armed the work again. 2825 */ 2826 do { 2827 rcu_barrier(); 2828 } while (flush_work(&i915->mm.free_work)); 2829 } 2830 2831 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915) 2832 { 2833 /* 2834 * Similar to objects above (see i915_gem_drain_freed-objects), in 2835 * general we have workers that are armed by RCU and then rearm 2836 * themselves in their callbacks. To be paranoid, we need to 2837 * drain the workqueue a second time after waiting for the RCU 2838 * grace period so that we catch work queued via RCU from the first 2839 * pass. As neither drain_workqueue() nor flush_workqueue() report 2840 * a result, we make an assumption that we only don't require more 2841 * than 2 passes to catch all recursive RCU delayed work. 2842 * 2843 */ 2844 int pass = 2; 2845 do { 2846 rcu_barrier(); 2847 drain_workqueue(i915->wq); 2848 } while (--pass); 2849 } 2850 2851 struct i915_vma * __must_check 2852 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 2853 const struct i915_ggtt_view *view, 2854 u64 size, 2855 u64 alignment, 2856 u64 flags); 2857 2858 int i915_gem_object_unbind(struct drm_i915_gem_object *obj); 2859 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 2860 2861 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); 2862 2863 static inline int __sg_page_count(const struct scatterlist *sg) 2864 { 2865 return sg->length >> PAGE_SHIFT; 2866 } 2867 2868 struct scatterlist * 2869 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 2870 unsigned int n, unsigned int *offset); 2871 2872 struct page * 2873 i915_gem_object_get_page(struct drm_i915_gem_object *obj, 2874 unsigned int n); 2875 2876 struct page * 2877 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 2878 unsigned int n); 2879 2880 dma_addr_t 2881 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 2882 unsigned long n); 2883 2884 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 2885 struct sg_table *pages, 2886 unsigned int sg_page_sizes); 2887 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 2888 2889 static inline int __must_check 2890 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 2891 { 2892 might_lock(&obj->mm.lock); 2893 2894 if (atomic_inc_not_zero(&obj->mm.pages_pin_count)) 2895 return 0; 2896 2897 return __i915_gem_object_get_pages(obj); 2898 } 2899 2900 static inline bool 2901 i915_gem_object_has_pages(struct drm_i915_gem_object *obj) 2902 { 2903 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages)); 2904 } 2905 2906 static inline void 2907 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 2908 { 2909 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 2910 2911 atomic_inc(&obj->mm.pages_pin_count); 2912 } 2913 2914 static inline bool 2915 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj) 2916 { 2917 return atomic_read(&obj->mm.pages_pin_count); 2918 } 2919 2920 static inline void 2921 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 2922 { 2923 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 2924 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 2925 2926 atomic_dec(&obj->mm.pages_pin_count); 2927 } 2928 2929 static inline void 2930 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 2931 { 2932 __i915_gem_object_unpin_pages(obj); 2933 } 2934 2935 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock/struct_mutex */ 2936 I915_MM_NORMAL = 0, 2937 I915_MM_SHRINKER /* called "recursively" from direct-reclaim-esque */ 2938 }; 2939 2940 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 2941 enum i915_mm_subclass subclass); 2942 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj); 2943 2944 enum i915_map_type { 2945 I915_MAP_WB = 0, 2946 I915_MAP_WC, 2947 #define I915_MAP_OVERRIDE BIT(31) 2948 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE, 2949 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE, 2950 }; 2951 2952 static inline enum i915_map_type 2953 i915_coherent_map_type(struct drm_i915_private *i915) 2954 { 2955 return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC; 2956 } 2957 2958 /** 2959 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 2960 * @obj: the object to map into kernel address space 2961 * @type: the type of mapping, used to select pgprot_t 2962 * 2963 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 2964 * pages and then returns a contiguous mapping of the backing storage into 2965 * the kernel address space. Based on the @type of mapping, the PTE will be 2966 * set to either WriteBack or WriteCombine (via pgprot_t). 2967 * 2968 * The caller is responsible for calling i915_gem_object_unpin_map() when the 2969 * mapping is no longer required. 2970 * 2971 * Returns the pointer through which to access the mapped object, or an 2972 * ERR_PTR() on error. 2973 */ 2974 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 2975 enum i915_map_type type); 2976 2977 /** 2978 * i915_gem_object_unpin_map - releases an earlier mapping 2979 * @obj: the object to unmap 2980 * 2981 * After pinning the object and mapping its pages, once you are finished 2982 * with your access, call i915_gem_object_unpin_map() to release the pin 2983 * upon the mapping. Once the pin count reaches zero, that mapping may be 2984 * removed. 2985 */ 2986 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 2987 { 2988 i915_gem_object_unpin_pages(obj); 2989 } 2990 2991 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 2992 unsigned int *needs_clflush); 2993 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 2994 unsigned int *needs_clflush); 2995 #define CLFLUSH_BEFORE BIT(0) 2996 #define CLFLUSH_AFTER BIT(1) 2997 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER) 2998 2999 static inline void 3000 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj) 3001 { 3002 i915_gem_object_unpin_pages(obj); 3003 } 3004 3005 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 3006 int i915_gem_dumb_create(struct drm_file *file_priv, 3007 struct drm_device *dev, 3008 struct drm_mode_create_dumb *args); 3009 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3010 u32 handle, u64 *offset); 3011 int i915_gem_mmap_gtt_version(void); 3012 3013 void i915_gem_track_fb(struct drm_i915_gem_object *old, 3014 struct drm_i915_gem_object *new, 3015 unsigned frontbuffer_bits); 3016 3017 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); 3018 3019 struct i915_request * 3020 i915_gem_find_active_request(struct intel_engine_cs *engine); 3021 3022 static inline bool i915_reset_backoff(struct i915_gpu_error *error) 3023 { 3024 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags)); 3025 } 3026 3027 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3028 { 3029 return unlikely(test_bit(I915_WEDGED, &error->flags)); 3030 } 3031 3032 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error) 3033 { 3034 return i915_reset_backoff(error) | i915_terminally_wedged(error); 3035 } 3036 3037 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3038 { 3039 return READ_ONCE(error->reset_count); 3040 } 3041 3042 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error, 3043 struct intel_engine_cs *engine) 3044 { 3045 return READ_ONCE(error->reset_engine_count[engine->id]); 3046 } 3047 3048 void i915_gem_set_wedged(struct drm_i915_private *dev_priv); 3049 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv); 3050 3051 void i915_gem_init_mmio(struct drm_i915_private *i915); 3052 int __must_check i915_gem_init(struct drm_i915_private *dev_priv); 3053 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv); 3054 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv); 3055 void i915_gem_fini(struct drm_i915_private *dev_priv); 3056 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv); 3057 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, 3058 unsigned int flags, long timeout); 3059 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv); 3060 void i915_gem_suspend_late(struct drm_i915_private *dev_priv); 3061 void i915_gem_resume(struct drm_i915_private *dev_priv); 3062 vm_fault_t i915_gem_fault(struct vm_fault *vmf); 3063 int i915_gem_object_wait(struct drm_i915_gem_object *obj, 3064 unsigned int flags, 3065 long timeout, 3066 struct intel_rps_client *rps); 3067 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 3068 unsigned int flags, 3069 const struct i915_sched_attr *attr); 3070 #define I915_PRIORITY_DISPLAY I915_USER_PRIORITY(I915_PRIORITY_MAX) 3071 3072 int __must_check 3073 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write); 3074 int __must_check 3075 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write); 3076 int __must_check 3077 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3078 struct i915_vma * __must_check 3079 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3080 u32 alignment, 3081 const struct i915_ggtt_view *view, 3082 unsigned int flags); 3083 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma); 3084 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3085 int align); 3086 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file); 3087 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3088 3089 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3090 enum i915_cache_level cache_level); 3091 3092 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3093 struct dma_buf *dma_buf); 3094 3095 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3096 struct drm_gem_object *gem_obj, int flags); 3097 3098 static inline struct i915_hw_ppgtt * 3099 i915_vm_to_ppgtt(struct i915_address_space *vm) 3100 { 3101 return container_of(vm, struct i915_hw_ppgtt, vm); 3102 } 3103 3104 /* i915_gem_fence_reg.c */ 3105 struct drm_i915_fence_reg * 3106 i915_reserve_fence(struct drm_i915_private *dev_priv); 3107 void i915_unreserve_fence(struct drm_i915_fence_reg *fence); 3108 3109 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv); 3110 void i915_gem_restore_fences(struct drm_i915_private *dev_priv); 3111 3112 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv); 3113 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 3114 struct sg_table *pages); 3115 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 3116 struct sg_table *pages); 3117 3118 static inline struct i915_gem_context * 3119 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id) 3120 { 3121 return idr_find(&file_priv->context_idr, id); 3122 } 3123 3124 static inline struct i915_gem_context * 3125 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3126 { 3127 struct i915_gem_context *ctx; 3128 3129 rcu_read_lock(); 3130 ctx = __i915_gem_context_lookup_rcu(file_priv, id); 3131 if (ctx && !kref_get_unless_zero(&ctx->ref)) 3132 ctx = NULL; 3133 rcu_read_unlock(); 3134 3135 return ctx; 3136 } 3137 3138 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3139 struct drm_file *file); 3140 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3141 struct drm_file *file); 3142 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3143 struct drm_file *file); 3144 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 3145 struct i915_gem_context *ctx, 3146 u32 *reg_state); 3147 3148 /* i915_gem_evict.c */ 3149 int __must_check i915_gem_evict_something(struct i915_address_space *vm, 3150 u64 min_size, u64 alignment, 3151 unsigned cache_level, 3152 u64 start, u64 end, 3153 unsigned flags); 3154 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, 3155 struct drm_mm_node *node, 3156 unsigned int flags); 3157 int i915_gem_evict_vm(struct i915_address_space *vm); 3158 3159 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv); 3160 3161 /* belongs in i915_gem_gtt.h */ 3162 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3163 { 3164 wmb(); 3165 if (INTEL_GEN(dev_priv) < 6) 3166 intel_gtt_chipset_flush(); 3167 } 3168 3169 /* i915_gem_stolen.c */ 3170 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3171 struct drm_mm_node *node, u64 size, 3172 unsigned alignment); 3173 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3174 struct drm_mm_node *node, u64 size, 3175 unsigned alignment, u64 start, 3176 u64 end); 3177 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3178 struct drm_mm_node *node); 3179 int i915_gem_init_stolen(struct drm_i915_private *dev_priv); 3180 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv); 3181 struct drm_i915_gem_object * 3182 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, 3183 resource_size_t size); 3184 struct drm_i915_gem_object * 3185 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv, 3186 resource_size_t stolen_offset, 3187 resource_size_t gtt_offset, 3188 resource_size_t size); 3189 3190 /* i915_gem_internal.c */ 3191 struct drm_i915_gem_object * 3192 i915_gem_object_create_internal(struct drm_i915_private *dev_priv, 3193 phys_addr_t size); 3194 3195 /* i915_gem_shrinker.c */ 3196 unsigned long i915_gem_shrink(struct drm_i915_private *i915, 3197 unsigned long target, 3198 unsigned long *nr_scanned, 3199 unsigned flags); 3200 #define I915_SHRINK_PURGEABLE 0x1 3201 #define I915_SHRINK_UNBOUND 0x2 3202 #define I915_SHRINK_BOUND 0x4 3203 #define I915_SHRINK_ACTIVE 0x8 3204 #define I915_SHRINK_VMAPS 0x10 3205 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915); 3206 void i915_gem_shrinker_register(struct drm_i915_private *i915); 3207 void i915_gem_shrinker_unregister(struct drm_i915_private *i915); 3208 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 3209 struct mutex *mutex); 3210 3211 /* i915_gem_tiling.c */ 3212 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3213 { 3214 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3215 3216 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3217 i915_gem_object_is_tiled(obj); 3218 } 3219 3220 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, 3221 unsigned int tiling, unsigned int stride); 3222 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, 3223 unsigned int tiling, unsigned int stride); 3224 3225 /* i915_debugfs.c */ 3226 #ifdef CONFIG_DEBUG_FS 3227 int i915_debugfs_register(struct drm_i915_private *dev_priv); 3228 int i915_debugfs_connector_add(struct drm_connector *connector); 3229 void intel_display_crc_init(struct drm_i915_private *dev_priv); 3230 #else 3231 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} 3232 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3233 { return 0; } 3234 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {} 3235 #endif 3236 3237 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3238 3239 /* i915_cmd_parser.c */ 3240 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 3241 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine); 3242 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); 3243 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 3244 struct drm_i915_gem_object *batch_obj, 3245 struct drm_i915_gem_object *shadow_batch_obj, 3246 u32 batch_start_offset, 3247 u32 batch_len, 3248 bool is_master); 3249 3250 /* i915_perf.c */ 3251 extern void i915_perf_init(struct drm_i915_private *dev_priv); 3252 extern void i915_perf_fini(struct drm_i915_private *dev_priv); 3253 extern void i915_perf_register(struct drm_i915_private *dev_priv); 3254 extern void i915_perf_unregister(struct drm_i915_private *dev_priv); 3255 3256 /* i915_suspend.c */ 3257 extern int i915_save_state(struct drm_i915_private *dev_priv); 3258 extern int i915_restore_state(struct drm_i915_private *dev_priv); 3259 3260 /* i915_sysfs.c */ 3261 void i915_setup_sysfs(struct drm_i915_private *dev_priv); 3262 void i915_teardown_sysfs(struct drm_i915_private *dev_priv); 3263 3264 /* intel_lpe_audio.c */ 3265 int intel_lpe_audio_init(struct drm_i915_private *dev_priv); 3266 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv); 3267 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv); 3268 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv, 3269 enum pipe pipe, enum port port, 3270 const void *eld, int ls_clock, bool dp_output); 3271 3272 /* intel_i2c.c */ 3273 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv); 3274 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv); 3275 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3276 unsigned int pin); 3277 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter); 3278 3279 extern struct i2c_adapter * 3280 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3281 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3282 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3283 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3284 { 3285 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3286 } 3287 extern void intel_i2c_reset(struct drm_i915_private *dev_priv); 3288 3289 /* intel_bios.c */ 3290 void intel_bios_init(struct drm_i915_private *dev_priv); 3291 void intel_bios_cleanup(struct drm_i915_private *dev_priv); 3292 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3293 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3294 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3295 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3296 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3297 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3298 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3299 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3300 enum port port); 3301 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv, 3302 enum port port); 3303 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv, enum port port); 3304 3305 /* intel_acpi.c */ 3306 #ifdef CONFIG_ACPI 3307 extern void intel_register_dsm_handler(void); 3308 extern void intel_unregister_dsm_handler(void); 3309 #else 3310 static inline void intel_register_dsm_handler(void) { return; } 3311 static inline void intel_unregister_dsm_handler(void) { return; } 3312 #endif /* CONFIG_ACPI */ 3313 3314 /* intel_device_info.c */ 3315 static inline struct intel_device_info * 3316 mkwrite_device_info(struct drm_i915_private *dev_priv) 3317 { 3318 return (struct intel_device_info *)INTEL_INFO(dev_priv); 3319 } 3320 3321 static inline struct intel_sseu 3322 intel_device_default_sseu(struct drm_i915_private *i915) 3323 { 3324 const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu; 3325 struct intel_sseu value = { 3326 .slice_mask = sseu->slice_mask, 3327 .subslice_mask = sseu->subslice_mask[0], 3328 .min_eus_per_subslice = sseu->max_eus_per_subslice, 3329 .max_eus_per_subslice = sseu->max_eus_per_subslice, 3330 }; 3331 3332 return value; 3333 } 3334 3335 /* modesetting */ 3336 extern void intel_modeset_init_hw(struct drm_device *dev); 3337 extern int intel_modeset_init(struct drm_device *dev); 3338 extern void intel_modeset_cleanup(struct drm_device *dev); 3339 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, 3340 bool state); 3341 extern void intel_display_resume(struct drm_device *dev); 3342 extern void i915_redisable_vga(struct drm_i915_private *dev_priv); 3343 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv); 3344 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 3345 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv); 3346 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 3347 extern void intel_rps_mark_interactive(struct drm_i915_private *i915, 3348 bool interactive); 3349 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3350 bool enable); 3351 void intel_dsc_enable(struct intel_encoder *encoder, 3352 const struct intel_crtc_state *crtc_state); 3353 void intel_dsc_disable(const struct intel_crtc_state *crtc_state); 3354 3355 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3356 struct drm_file *file); 3357 3358 /* overlay */ 3359 extern struct intel_overlay_error_state * 3360 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); 3361 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3362 struct intel_overlay_error_state *error); 3363 3364 extern struct intel_display_error_state * 3365 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 3366 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3367 struct intel_display_error_state *error); 3368 3369 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3370 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox, 3371 u32 val, int fast_timeout_us, 3372 int slow_timeout_ms); 3373 #define sandybridge_pcode_write(dev_priv, mbox, val) \ 3374 sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0) 3375 3376 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, 3377 u32 reply_mask, u32 reply, int timeout_base_ms); 3378 3379 /* intel_sideband.c */ 3380 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3381 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3382 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3383 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 3384 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 3385 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3386 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3387 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3388 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3389 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3390 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3391 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 3392 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 3393 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3394 enum intel_sbi_destination destination); 3395 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3396 enum intel_sbi_destination destination); 3397 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3398 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3399 3400 /* intel_dpio_phy.c */ 3401 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 3402 enum dpio_phy *phy, enum dpio_channel *ch); 3403 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv, 3404 enum port port, u32 margin, u32 scale, 3405 u32 enable, u32 deemphasis); 3406 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3407 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3408 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 3409 enum dpio_phy phy); 3410 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 3411 enum dpio_phy phy); 3412 u8 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count); 3413 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 3414 u8 lane_lat_optim_mask); 3415 u8 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder); 3416 3417 void chv_set_phy_signal_level(struct intel_encoder *encoder, 3418 u32 deemph_reg_value, u32 margin_reg_value, 3419 bool uniq_trans_scale); 3420 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 3421 const struct intel_crtc_state *crtc_state, 3422 bool reset); 3423 void chv_phy_pre_pll_enable(struct intel_encoder *encoder, 3424 const struct intel_crtc_state *crtc_state); 3425 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3426 const struct intel_crtc_state *crtc_state); 3427 void chv_phy_release_cl2_override(struct intel_encoder *encoder); 3428 void chv_phy_post_pll_disable(struct intel_encoder *encoder, 3429 const struct intel_crtc_state *old_crtc_state); 3430 3431 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 3432 u32 demph_reg_value, u32 preemph_reg_value, 3433 u32 uniqtranscale_reg_value, u32 tx3_demph); 3434 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, 3435 const struct intel_crtc_state *crtc_state); 3436 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3437 const struct intel_crtc_state *crtc_state); 3438 void vlv_phy_reset_lanes(struct intel_encoder *encoder, 3439 const struct intel_crtc_state *old_crtc_state); 3440 3441 /* intel_combo_phy.c */ 3442 void icl_combo_phys_init(struct drm_i915_private *dev_priv); 3443 void icl_combo_phys_uninit(struct drm_i915_private *dev_priv); 3444 void cnl_combo_phys_init(struct drm_i915_private *dev_priv); 3445 void cnl_combo_phys_uninit(struct drm_i915_private *dev_priv); 3446 3447 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3448 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3449 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv, 3450 const i915_reg_t reg); 3451 3452 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1); 3453 3454 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv, 3455 const i915_reg_t reg) 3456 { 3457 return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000); 3458 } 3459 3460 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 3461 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 3462 3463 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 3464 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 3465 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 3466 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 3467 3468 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 3469 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 3470 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 3471 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 3472 3473 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3474 * will be implemented using 2 32-bit writes in an arbitrary order with 3475 * an arbitrary delay between them. This can cause the hardware to 3476 * act upon the intermediate value, possibly leading to corruption and 3477 * machine death. For this reason we do not support I915_WRITE64, or 3478 * dev_priv->uncore.funcs.mmio_writeq. 3479 * 3480 * When reading a 64-bit value as two 32-bit values, the delay may cause 3481 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that 3482 * occasionally a 64-bit register does not actualy support a full readq 3483 * and must be read using two 32-bit reads. 3484 * 3485 * You have been warned. 3486 */ 3487 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 3488 3489 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 3490 u32 upper, lower, old_upper, loop = 0; \ 3491 upper = I915_READ(upper_reg); \ 3492 do { \ 3493 old_upper = upper; \ 3494 lower = I915_READ(lower_reg); \ 3495 upper = I915_READ(upper_reg); \ 3496 } while (upper != old_upper && loop++ < 2); \ 3497 (u64)upper << 32 | lower; }) 3498 3499 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 3500 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 3501 3502 #define __raw_read(x, s) \ 3503 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \ 3504 i915_reg_t reg) \ 3505 { \ 3506 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3507 } 3508 3509 #define __raw_write(x, s) \ 3510 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \ 3511 i915_reg_t reg, uint##x##_t val) \ 3512 { \ 3513 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3514 } 3515 __raw_read(8, b) 3516 __raw_read(16, w) 3517 __raw_read(32, l) 3518 __raw_read(64, q) 3519 3520 __raw_write(8, b) 3521 __raw_write(16, w) 3522 __raw_write(32, l) 3523 __raw_write(64, q) 3524 3525 #undef __raw_read 3526 #undef __raw_write 3527 3528 /* These are untraced mmio-accessors that are only valid to be used inside 3529 * critical sections, such as inside IRQ handlers, where forcewake is explicitly 3530 * controlled. 3531 * 3532 * Think twice, and think again, before using these. 3533 * 3534 * As an example, these accessors can possibly be used between: 3535 * 3536 * spin_lock_irq(&dev_priv->uncore.lock); 3537 * intel_uncore_forcewake_get__locked(); 3538 * 3539 * and 3540 * 3541 * intel_uncore_forcewake_put__locked(); 3542 * spin_unlock_irq(&dev_priv->uncore.lock); 3543 * 3544 * 3545 * Note: some registers may not need forcewake held, so 3546 * intel_uncore_forcewake_{get,put} can be omitted, see 3547 * intel_uncore_forcewake_for_reg(). 3548 * 3549 * Certain architectures will die if the same cacheline is concurrently accessed 3550 * by different clients (e.g. on Ivybridge). Access to registers should 3551 * therefore generally be serialised, by either the dev_priv->uncore.lock or 3552 * a more localised lock guarding all access to that bank of registers. 3553 */ 3554 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 3555 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 3556 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) 3557 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 3558 3559 /* "Broadcast RGB" property */ 3560 #define INTEL_BROADCAST_RGB_AUTO 0 3561 #define INTEL_BROADCAST_RGB_FULL 1 3562 #define INTEL_BROADCAST_RGB_LIMITED 2 3563 3564 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) 3565 { 3566 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3567 return VLV_VGACNTRL; 3568 else if (INTEL_GEN(dev_priv) >= 5) 3569 return CPU_VGACNTRL; 3570 else 3571 return VGACNTRL; 3572 } 3573 3574 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 3575 { 3576 unsigned long j = msecs_to_jiffies(m); 3577 3578 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3579 } 3580 3581 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 3582 { 3583 /* nsecs_to_jiffies64() does not guard against overflow */ 3584 if (NSEC_PER_SEC % HZ && 3585 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ) 3586 return MAX_JIFFY_OFFSET; 3587 3588 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 3589 } 3590 3591 /* 3592 * If you need to wait X milliseconds between events A and B, but event B 3593 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 3594 * when event A happened, then just before event B you call this function and 3595 * pass the timestamp as the first argument, and X as the second argument. 3596 */ 3597 static inline void 3598 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 3599 { 3600 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 3601 3602 /* 3603 * Don't re-read the value of "jiffies" every time since it may change 3604 * behind our back and break the math. 3605 */ 3606 tmp_jiffies = jiffies; 3607 target_jiffies = timestamp_jiffies + 3608 msecs_to_jiffies_timeout(to_wait_ms); 3609 3610 if (time_after(target_jiffies, tmp_jiffies)) { 3611 remaining_jiffies = target_jiffies - tmp_jiffies; 3612 while (remaining_jiffies) 3613 remaining_jiffies = 3614 schedule_timeout_uninterruptible(remaining_jiffies); 3615 } 3616 } 3617 3618 void i915_memcpy_init_early(struct drm_i915_private *dev_priv); 3619 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len); 3620 3621 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment, 3622 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot 3623 * perform the operation. To check beforehand, pass in the parameters to 3624 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits, 3625 * you only need to pass in the minor offsets, page-aligned pointers are 3626 * always valid. 3627 * 3628 * For just checking for SSE4.1, in the foreknowledge that the future use 3629 * will be correctly aligned, just use i915_has_memcpy_from_wc(). 3630 */ 3631 #define i915_can_memcpy_from_wc(dst, src, len) \ 3632 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0) 3633 3634 #define i915_has_memcpy_from_wc() \ 3635 i915_memcpy_from_wc(NULL, NULL, 0) 3636 3637 /* i915_mm.c */ 3638 int remap_io_mapping(struct vm_area_struct *vma, 3639 unsigned long addr, unsigned long pfn, unsigned long size, 3640 struct io_mapping *iomap); 3641 3642 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915) 3643 { 3644 if (INTEL_GEN(i915) >= 10) 3645 return CNL_HWS_CSB_WRITE_INDEX; 3646 else 3647 return I915_HWS_CSB_WRITE_INDEX; 3648 } 3649 3650 static inline u32 i915_scratch_offset(const struct drm_i915_private *i915) 3651 { 3652 return i915_ggtt_offset(i915->gt.scratch); 3653 } 3654 3655 #endif 3656