1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/sort.h>
31 #include <linux/sched/mm.h>
32 #include "intel_drv.h"
33 #include "intel_guc_submission.h"
34 
35 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
36 {
37 	return to_i915(node->minor->dev);
38 }
39 
40 static __always_inline void seq_print_param(struct seq_file *m,
41 					    const char *name,
42 					    const char *type,
43 					    const void *x)
44 {
45 	if (!__builtin_strcmp(type, "bool"))
46 		seq_printf(m, "i915.%s=%s\n", name, yesno(*(const bool *)x));
47 	else if (!__builtin_strcmp(type, "int"))
48 		seq_printf(m, "i915.%s=%d\n", name, *(const int *)x);
49 	else if (!__builtin_strcmp(type, "unsigned int"))
50 		seq_printf(m, "i915.%s=%u\n", name, *(const unsigned int *)x);
51 	else if (!__builtin_strcmp(type, "char *"))
52 		seq_printf(m, "i915.%s=%s\n", name, *(const char **)x);
53 	else
54 		BUILD_BUG();
55 }
56 
57 static int i915_capabilities(struct seq_file *m, void *data)
58 {
59 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
60 	const struct intel_device_info *info = INTEL_INFO(dev_priv);
61 
62 	seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
63 	seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
64 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
65 
66 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
67 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
68 #undef PRINT_FLAG
69 
70 	kernel_param_lock(THIS_MODULE);
71 #define PRINT_PARAM(T, x, ...) seq_print_param(m, #x, #T, &i915_modparams.x);
72 	I915_PARAMS_FOR_EACH(PRINT_PARAM);
73 #undef PRINT_PARAM
74 	kernel_param_unlock(THIS_MODULE);
75 
76 	return 0;
77 }
78 
79 static char get_active_flag(struct drm_i915_gem_object *obj)
80 {
81 	return i915_gem_object_is_active(obj) ? '*' : ' ';
82 }
83 
84 static char get_pin_flag(struct drm_i915_gem_object *obj)
85 {
86 	return obj->pin_global ? 'p' : ' ';
87 }
88 
89 static char get_tiling_flag(struct drm_i915_gem_object *obj)
90 {
91 	switch (i915_gem_object_get_tiling(obj)) {
92 	default:
93 	case I915_TILING_NONE: return ' ';
94 	case I915_TILING_X: return 'X';
95 	case I915_TILING_Y: return 'Y';
96 	}
97 }
98 
99 static char get_global_flag(struct drm_i915_gem_object *obj)
100 {
101 	return obj->userfault_count ? 'g' : ' ';
102 }
103 
104 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
105 {
106 	return obj->mm.mapping ? 'M' : ' ';
107 }
108 
109 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
110 {
111 	u64 size = 0;
112 	struct i915_vma *vma;
113 
114 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
115 		if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
116 			size += vma->node.size;
117 	}
118 
119 	return size;
120 }
121 
122 static const char *
123 stringify_page_sizes(unsigned int page_sizes, char *buf, size_t len)
124 {
125 	size_t x = 0;
126 
127 	switch (page_sizes) {
128 	case 0:
129 		return "";
130 	case I915_GTT_PAGE_SIZE_4K:
131 		return "4K";
132 	case I915_GTT_PAGE_SIZE_64K:
133 		return "64K";
134 	case I915_GTT_PAGE_SIZE_2M:
135 		return "2M";
136 	default:
137 		if (!buf)
138 			return "M";
139 
140 		if (page_sizes & I915_GTT_PAGE_SIZE_2M)
141 			x += snprintf(buf + x, len - x, "2M, ");
142 		if (page_sizes & I915_GTT_PAGE_SIZE_64K)
143 			x += snprintf(buf + x, len - x, "64K, ");
144 		if (page_sizes & I915_GTT_PAGE_SIZE_4K)
145 			x += snprintf(buf + x, len - x, "4K, ");
146 		buf[x-2] = '\0';
147 
148 		return buf;
149 	}
150 }
151 
152 static void
153 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
154 {
155 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
156 	struct intel_engine_cs *engine;
157 	struct i915_vma *vma;
158 	unsigned int frontbuffer_bits;
159 	int pin_count = 0;
160 
161 	lockdep_assert_held(&obj->base.dev->struct_mutex);
162 
163 	seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
164 		   &obj->base,
165 		   get_active_flag(obj),
166 		   get_pin_flag(obj),
167 		   get_tiling_flag(obj),
168 		   get_global_flag(obj),
169 		   get_pin_mapped_flag(obj),
170 		   obj->base.size / 1024,
171 		   obj->base.read_domains,
172 		   obj->base.write_domain,
173 		   i915_cache_level_str(dev_priv, obj->cache_level),
174 		   obj->mm.dirty ? " dirty" : "",
175 		   obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
176 	if (obj->base.name)
177 		seq_printf(m, " (name: %d)", obj->base.name);
178 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
179 		if (i915_vma_is_pinned(vma))
180 			pin_count++;
181 	}
182 	seq_printf(m, " (pinned x %d)", pin_count);
183 	if (obj->pin_global)
184 		seq_printf(m, " (global)");
185 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
186 		if (!drm_mm_node_allocated(&vma->node))
187 			continue;
188 
189 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx, pages: %s",
190 			   i915_vma_is_ggtt(vma) ? "g" : "pp",
191 			   vma->node.start, vma->node.size,
192 			   stringify_page_sizes(vma->page_sizes.gtt, NULL, 0));
193 		if (i915_vma_is_ggtt(vma)) {
194 			switch (vma->ggtt_view.type) {
195 			case I915_GGTT_VIEW_NORMAL:
196 				seq_puts(m, ", normal");
197 				break;
198 
199 			case I915_GGTT_VIEW_PARTIAL:
200 				seq_printf(m, ", partial [%08llx+%x]",
201 					   vma->ggtt_view.partial.offset << PAGE_SHIFT,
202 					   vma->ggtt_view.partial.size << PAGE_SHIFT);
203 				break;
204 
205 			case I915_GGTT_VIEW_ROTATED:
206 				seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
207 					   vma->ggtt_view.rotated.plane[0].width,
208 					   vma->ggtt_view.rotated.plane[0].height,
209 					   vma->ggtt_view.rotated.plane[0].stride,
210 					   vma->ggtt_view.rotated.plane[0].offset,
211 					   vma->ggtt_view.rotated.plane[1].width,
212 					   vma->ggtt_view.rotated.plane[1].height,
213 					   vma->ggtt_view.rotated.plane[1].stride,
214 					   vma->ggtt_view.rotated.plane[1].offset);
215 				break;
216 
217 			default:
218 				MISSING_CASE(vma->ggtt_view.type);
219 				break;
220 			}
221 		}
222 		if (vma->fence)
223 			seq_printf(m, " , fence: %d%s",
224 				   vma->fence->id,
225 				   i915_gem_active_isset(&vma->last_fence) ? "*" : "");
226 		seq_puts(m, ")");
227 	}
228 	if (obj->stolen)
229 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
230 
231 	engine = i915_gem_object_last_write_engine(obj);
232 	if (engine)
233 		seq_printf(m, " (%s)", engine->name);
234 
235 	frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
236 	if (frontbuffer_bits)
237 		seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
238 }
239 
240 static int obj_rank_by_stolen(const void *A, const void *B)
241 {
242 	const struct drm_i915_gem_object *a =
243 		*(const struct drm_i915_gem_object **)A;
244 	const struct drm_i915_gem_object *b =
245 		*(const struct drm_i915_gem_object **)B;
246 
247 	if (a->stolen->start < b->stolen->start)
248 		return -1;
249 	if (a->stolen->start > b->stolen->start)
250 		return 1;
251 	return 0;
252 }
253 
254 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
255 {
256 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
257 	struct drm_device *dev = &dev_priv->drm;
258 	struct drm_i915_gem_object **objects;
259 	struct drm_i915_gem_object *obj;
260 	u64 total_obj_size, total_gtt_size;
261 	unsigned long total, count, n;
262 	int ret;
263 
264 	total = READ_ONCE(dev_priv->mm.object_count);
265 	objects = kvmalloc_array(total, sizeof(*objects), GFP_KERNEL);
266 	if (!objects)
267 		return -ENOMEM;
268 
269 	ret = mutex_lock_interruptible(&dev->struct_mutex);
270 	if (ret)
271 		goto out;
272 
273 	total_obj_size = total_gtt_size = count = 0;
274 
275 	spin_lock(&dev_priv->mm.obj_lock);
276 	list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
277 		if (count == total)
278 			break;
279 
280 		if (obj->stolen == NULL)
281 			continue;
282 
283 		objects[count++] = obj;
284 		total_obj_size += obj->base.size;
285 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286 
287 	}
288 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
289 		if (count == total)
290 			break;
291 
292 		if (obj->stolen == NULL)
293 			continue;
294 
295 		objects[count++] = obj;
296 		total_obj_size += obj->base.size;
297 	}
298 	spin_unlock(&dev_priv->mm.obj_lock);
299 
300 	sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
301 
302 	seq_puts(m, "Stolen:\n");
303 	for (n = 0; n < count; n++) {
304 		seq_puts(m, "   ");
305 		describe_obj(m, objects[n]);
306 		seq_putc(m, '\n');
307 	}
308 	seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
309 		   count, total_obj_size, total_gtt_size);
310 
311 	mutex_unlock(&dev->struct_mutex);
312 out:
313 	kvfree(objects);
314 	return ret;
315 }
316 
317 struct file_stats {
318 	struct drm_i915_file_private *file_priv;
319 	unsigned long count;
320 	u64 total, unbound;
321 	u64 global, shared;
322 	u64 active, inactive;
323 };
324 
325 static int per_file_stats(int id, void *ptr, void *data)
326 {
327 	struct drm_i915_gem_object *obj = ptr;
328 	struct file_stats *stats = data;
329 	struct i915_vma *vma;
330 
331 	lockdep_assert_held(&obj->base.dev->struct_mutex);
332 
333 	stats->count++;
334 	stats->total += obj->base.size;
335 	if (!obj->bind_count)
336 		stats->unbound += obj->base.size;
337 	if (obj->base.name || obj->base.dma_buf)
338 		stats->shared += obj->base.size;
339 
340 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
341 		if (!drm_mm_node_allocated(&vma->node))
342 			continue;
343 
344 		if (i915_vma_is_ggtt(vma)) {
345 			stats->global += vma->node.size;
346 		} else {
347 			struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
348 
349 			if (ppgtt->base.file != stats->file_priv)
350 				continue;
351 		}
352 
353 		if (i915_vma_is_active(vma))
354 			stats->active += vma->node.size;
355 		else
356 			stats->inactive += vma->node.size;
357 	}
358 
359 	return 0;
360 }
361 
362 #define print_file_stats(m, name, stats) do { \
363 	if (stats.count) \
364 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
365 			   name, \
366 			   stats.count, \
367 			   stats.total, \
368 			   stats.active, \
369 			   stats.inactive, \
370 			   stats.global, \
371 			   stats.shared, \
372 			   stats.unbound); \
373 } while (0)
374 
375 static void print_batch_pool_stats(struct seq_file *m,
376 				   struct drm_i915_private *dev_priv)
377 {
378 	struct drm_i915_gem_object *obj;
379 	struct file_stats stats;
380 	struct intel_engine_cs *engine;
381 	enum intel_engine_id id;
382 	int j;
383 
384 	memset(&stats, 0, sizeof(stats));
385 
386 	for_each_engine(engine, dev_priv, id) {
387 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
388 			list_for_each_entry(obj,
389 					    &engine->batch_pool.cache_list[j],
390 					    batch_pool_link)
391 				per_file_stats(0, obj, &stats);
392 		}
393 	}
394 
395 	print_file_stats(m, "[k]batch pool", stats);
396 }
397 
398 static int per_file_ctx_stats(int id, void *ptr, void *data)
399 {
400 	struct i915_gem_context *ctx = ptr;
401 	int n;
402 
403 	for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
404 		if (ctx->engine[n].state)
405 			per_file_stats(0, ctx->engine[n].state->obj, data);
406 		if (ctx->engine[n].ring)
407 			per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
408 	}
409 
410 	return 0;
411 }
412 
413 static void print_context_stats(struct seq_file *m,
414 				struct drm_i915_private *dev_priv)
415 {
416 	struct drm_device *dev = &dev_priv->drm;
417 	struct file_stats stats;
418 	struct drm_file *file;
419 
420 	memset(&stats, 0, sizeof(stats));
421 
422 	mutex_lock(&dev->struct_mutex);
423 	if (dev_priv->kernel_context)
424 		per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
425 
426 	list_for_each_entry(file, &dev->filelist, lhead) {
427 		struct drm_i915_file_private *fpriv = file->driver_priv;
428 		idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
429 	}
430 	mutex_unlock(&dev->struct_mutex);
431 
432 	print_file_stats(m, "[k]contexts", stats);
433 }
434 
435 static int i915_gem_object_info(struct seq_file *m, void *data)
436 {
437 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
438 	struct drm_device *dev = &dev_priv->drm;
439 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
440 	u32 count, mapped_count, purgeable_count, dpy_count, huge_count;
441 	u64 size, mapped_size, purgeable_size, dpy_size, huge_size;
442 	struct drm_i915_gem_object *obj;
443 	unsigned int page_sizes = 0;
444 	struct drm_file *file;
445 	char buf[80];
446 	int ret;
447 
448 	ret = mutex_lock_interruptible(&dev->struct_mutex);
449 	if (ret)
450 		return ret;
451 
452 	seq_printf(m, "%u objects, %llu bytes\n",
453 		   dev_priv->mm.object_count,
454 		   dev_priv->mm.object_memory);
455 
456 	size = count = 0;
457 	mapped_size = mapped_count = 0;
458 	purgeable_size = purgeable_count = 0;
459 	huge_size = huge_count = 0;
460 
461 	spin_lock(&dev_priv->mm.obj_lock);
462 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
463 		size += obj->base.size;
464 		++count;
465 
466 		if (obj->mm.madv == I915_MADV_DONTNEED) {
467 			purgeable_size += obj->base.size;
468 			++purgeable_count;
469 		}
470 
471 		if (obj->mm.mapping) {
472 			mapped_count++;
473 			mapped_size += obj->base.size;
474 		}
475 
476 		if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
477 			huge_count++;
478 			huge_size += obj->base.size;
479 			page_sizes |= obj->mm.page_sizes.sg;
480 		}
481 	}
482 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
483 
484 	size = count = dpy_size = dpy_count = 0;
485 	list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
486 		size += obj->base.size;
487 		++count;
488 
489 		if (obj->pin_global) {
490 			dpy_size += obj->base.size;
491 			++dpy_count;
492 		}
493 
494 		if (obj->mm.madv == I915_MADV_DONTNEED) {
495 			purgeable_size += obj->base.size;
496 			++purgeable_count;
497 		}
498 
499 		if (obj->mm.mapping) {
500 			mapped_count++;
501 			mapped_size += obj->base.size;
502 		}
503 
504 		if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
505 			huge_count++;
506 			huge_size += obj->base.size;
507 			page_sizes |= obj->mm.page_sizes.sg;
508 		}
509 	}
510 	spin_unlock(&dev_priv->mm.obj_lock);
511 
512 	seq_printf(m, "%u bound objects, %llu bytes\n",
513 		   count, size);
514 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
515 		   purgeable_count, purgeable_size);
516 	seq_printf(m, "%u mapped objects, %llu bytes\n",
517 		   mapped_count, mapped_size);
518 	seq_printf(m, "%u huge-paged objects (%s) %llu bytes\n",
519 		   huge_count,
520 		   stringify_page_sizes(page_sizes, buf, sizeof(buf)),
521 		   huge_size);
522 	seq_printf(m, "%u display objects (globally pinned), %llu bytes\n",
523 		   dpy_count, dpy_size);
524 
525 	seq_printf(m, "%llu [%llu] gtt total\n",
526 		   ggtt->base.total, ggtt->mappable_end);
527 	seq_printf(m, "Supported page sizes: %s\n",
528 		   stringify_page_sizes(INTEL_INFO(dev_priv)->page_sizes,
529 					buf, sizeof(buf)));
530 
531 	seq_putc(m, '\n');
532 	print_batch_pool_stats(m, dev_priv);
533 	mutex_unlock(&dev->struct_mutex);
534 
535 	mutex_lock(&dev->filelist_mutex);
536 	print_context_stats(m, dev_priv);
537 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
538 		struct file_stats stats;
539 		struct drm_i915_file_private *file_priv = file->driver_priv;
540 		struct drm_i915_gem_request *request;
541 		struct task_struct *task;
542 
543 		mutex_lock(&dev->struct_mutex);
544 
545 		memset(&stats, 0, sizeof(stats));
546 		stats.file_priv = file->driver_priv;
547 		spin_lock(&file->table_lock);
548 		idr_for_each(&file->object_idr, per_file_stats, &stats);
549 		spin_unlock(&file->table_lock);
550 		/*
551 		 * Although we have a valid reference on file->pid, that does
552 		 * not guarantee that the task_struct who called get_pid() is
553 		 * still alive (e.g. get_pid(current) => fork() => exit()).
554 		 * Therefore, we need to protect this ->comm access using RCU.
555 		 */
556 		request = list_first_entry_or_null(&file_priv->mm.request_list,
557 						   struct drm_i915_gem_request,
558 						   client_link);
559 		rcu_read_lock();
560 		task = pid_task(request && request->ctx->pid ?
561 				request->ctx->pid : file->pid,
562 				PIDTYPE_PID);
563 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
564 		rcu_read_unlock();
565 
566 		mutex_unlock(&dev->struct_mutex);
567 	}
568 	mutex_unlock(&dev->filelist_mutex);
569 
570 	return 0;
571 }
572 
573 static int i915_gem_gtt_info(struct seq_file *m, void *data)
574 {
575 	struct drm_info_node *node = m->private;
576 	struct drm_i915_private *dev_priv = node_to_i915(node);
577 	struct drm_device *dev = &dev_priv->drm;
578 	struct drm_i915_gem_object **objects;
579 	struct drm_i915_gem_object *obj;
580 	u64 total_obj_size, total_gtt_size;
581 	unsigned long nobject, n;
582 	int count, ret;
583 
584 	nobject = READ_ONCE(dev_priv->mm.object_count);
585 	objects = kvmalloc_array(nobject, sizeof(*objects), GFP_KERNEL);
586 	if (!objects)
587 		return -ENOMEM;
588 
589 	ret = mutex_lock_interruptible(&dev->struct_mutex);
590 	if (ret)
591 		return ret;
592 
593 	count = 0;
594 	spin_lock(&dev_priv->mm.obj_lock);
595 	list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
596 		objects[count++] = obj;
597 		if (count == nobject)
598 			break;
599 	}
600 	spin_unlock(&dev_priv->mm.obj_lock);
601 
602 	total_obj_size = total_gtt_size = 0;
603 	for (n = 0;  n < count; n++) {
604 		obj = objects[n];
605 
606 		seq_puts(m, "   ");
607 		describe_obj(m, obj);
608 		seq_putc(m, '\n');
609 		total_obj_size += obj->base.size;
610 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
611 	}
612 
613 	mutex_unlock(&dev->struct_mutex);
614 
615 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
616 		   count, total_obj_size, total_gtt_size);
617 	kvfree(objects);
618 
619 	return 0;
620 }
621 
622 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
623 {
624 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
625 	struct drm_device *dev = &dev_priv->drm;
626 	struct drm_i915_gem_object *obj;
627 	struct intel_engine_cs *engine;
628 	enum intel_engine_id id;
629 	int total = 0;
630 	int ret, j;
631 
632 	ret = mutex_lock_interruptible(&dev->struct_mutex);
633 	if (ret)
634 		return ret;
635 
636 	for_each_engine(engine, dev_priv, id) {
637 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
638 			int count;
639 
640 			count = 0;
641 			list_for_each_entry(obj,
642 					    &engine->batch_pool.cache_list[j],
643 					    batch_pool_link)
644 				count++;
645 			seq_printf(m, "%s cache[%d]: %d objects\n",
646 				   engine->name, j, count);
647 
648 			list_for_each_entry(obj,
649 					    &engine->batch_pool.cache_list[j],
650 					    batch_pool_link) {
651 				seq_puts(m, "   ");
652 				describe_obj(m, obj);
653 				seq_putc(m, '\n');
654 			}
655 
656 			total += count;
657 		}
658 	}
659 
660 	seq_printf(m, "total: %d\n", total);
661 
662 	mutex_unlock(&dev->struct_mutex);
663 
664 	return 0;
665 }
666 
667 static void i915_ring_seqno_info(struct seq_file *m,
668 				 struct intel_engine_cs *engine)
669 {
670 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
671 	struct rb_node *rb;
672 
673 	seq_printf(m, "Current sequence (%s): %x\n",
674 		   engine->name, intel_engine_get_seqno(engine));
675 
676 	spin_lock_irq(&b->rb_lock);
677 	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
678 		struct intel_wait *w = rb_entry(rb, typeof(*w), node);
679 
680 		seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
681 			   engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
682 	}
683 	spin_unlock_irq(&b->rb_lock);
684 }
685 
686 static int i915_gem_seqno_info(struct seq_file *m, void *data)
687 {
688 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
689 	struct intel_engine_cs *engine;
690 	enum intel_engine_id id;
691 
692 	for_each_engine(engine, dev_priv, id)
693 		i915_ring_seqno_info(m, engine);
694 
695 	return 0;
696 }
697 
698 
699 static int i915_interrupt_info(struct seq_file *m, void *data)
700 {
701 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
702 	struct intel_engine_cs *engine;
703 	enum intel_engine_id id;
704 	int i, pipe;
705 
706 	intel_runtime_pm_get(dev_priv);
707 
708 	if (IS_CHERRYVIEW(dev_priv)) {
709 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
710 			   I915_READ(GEN8_MASTER_IRQ));
711 
712 		seq_printf(m, "Display IER:\t%08x\n",
713 			   I915_READ(VLV_IER));
714 		seq_printf(m, "Display IIR:\t%08x\n",
715 			   I915_READ(VLV_IIR));
716 		seq_printf(m, "Display IIR_RW:\t%08x\n",
717 			   I915_READ(VLV_IIR_RW));
718 		seq_printf(m, "Display IMR:\t%08x\n",
719 			   I915_READ(VLV_IMR));
720 		for_each_pipe(dev_priv, pipe) {
721 			enum intel_display_power_domain power_domain;
722 
723 			power_domain = POWER_DOMAIN_PIPE(pipe);
724 			if (!intel_display_power_get_if_enabled(dev_priv,
725 								power_domain)) {
726 				seq_printf(m, "Pipe %c power disabled\n",
727 					   pipe_name(pipe));
728 				continue;
729 			}
730 
731 			seq_printf(m, "Pipe %c stat:\t%08x\n",
732 				   pipe_name(pipe),
733 				   I915_READ(PIPESTAT(pipe)));
734 
735 			intel_display_power_put(dev_priv, power_domain);
736 		}
737 
738 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
739 		seq_printf(m, "Port hotplug:\t%08x\n",
740 			   I915_READ(PORT_HOTPLUG_EN));
741 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
742 			   I915_READ(VLV_DPFLIPSTAT));
743 		seq_printf(m, "DPINVGTT:\t%08x\n",
744 			   I915_READ(DPINVGTT));
745 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
746 
747 		for (i = 0; i < 4; i++) {
748 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
749 				   i, I915_READ(GEN8_GT_IMR(i)));
750 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
751 				   i, I915_READ(GEN8_GT_IIR(i)));
752 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
753 				   i, I915_READ(GEN8_GT_IER(i)));
754 		}
755 
756 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
757 			   I915_READ(GEN8_PCU_IMR));
758 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
759 			   I915_READ(GEN8_PCU_IIR));
760 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
761 			   I915_READ(GEN8_PCU_IER));
762 	} else if (INTEL_GEN(dev_priv) >= 8) {
763 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
764 			   I915_READ(GEN8_MASTER_IRQ));
765 
766 		for (i = 0; i < 4; i++) {
767 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
768 				   i, I915_READ(GEN8_GT_IMR(i)));
769 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
770 				   i, I915_READ(GEN8_GT_IIR(i)));
771 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
772 				   i, I915_READ(GEN8_GT_IER(i)));
773 		}
774 
775 		for_each_pipe(dev_priv, pipe) {
776 			enum intel_display_power_domain power_domain;
777 
778 			power_domain = POWER_DOMAIN_PIPE(pipe);
779 			if (!intel_display_power_get_if_enabled(dev_priv,
780 								power_domain)) {
781 				seq_printf(m, "Pipe %c power disabled\n",
782 					   pipe_name(pipe));
783 				continue;
784 			}
785 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
786 				   pipe_name(pipe),
787 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
788 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
789 				   pipe_name(pipe),
790 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
791 			seq_printf(m, "Pipe %c IER:\t%08x\n",
792 				   pipe_name(pipe),
793 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
794 
795 			intel_display_power_put(dev_priv, power_domain);
796 		}
797 
798 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
799 			   I915_READ(GEN8_DE_PORT_IMR));
800 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
801 			   I915_READ(GEN8_DE_PORT_IIR));
802 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
803 			   I915_READ(GEN8_DE_PORT_IER));
804 
805 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
806 			   I915_READ(GEN8_DE_MISC_IMR));
807 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
808 			   I915_READ(GEN8_DE_MISC_IIR));
809 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
810 			   I915_READ(GEN8_DE_MISC_IER));
811 
812 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
813 			   I915_READ(GEN8_PCU_IMR));
814 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
815 			   I915_READ(GEN8_PCU_IIR));
816 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
817 			   I915_READ(GEN8_PCU_IER));
818 	} else if (IS_VALLEYVIEW(dev_priv)) {
819 		seq_printf(m, "Display IER:\t%08x\n",
820 			   I915_READ(VLV_IER));
821 		seq_printf(m, "Display IIR:\t%08x\n",
822 			   I915_READ(VLV_IIR));
823 		seq_printf(m, "Display IIR_RW:\t%08x\n",
824 			   I915_READ(VLV_IIR_RW));
825 		seq_printf(m, "Display IMR:\t%08x\n",
826 			   I915_READ(VLV_IMR));
827 		for_each_pipe(dev_priv, pipe) {
828 			enum intel_display_power_domain power_domain;
829 
830 			power_domain = POWER_DOMAIN_PIPE(pipe);
831 			if (!intel_display_power_get_if_enabled(dev_priv,
832 								power_domain)) {
833 				seq_printf(m, "Pipe %c power disabled\n",
834 					   pipe_name(pipe));
835 				continue;
836 			}
837 
838 			seq_printf(m, "Pipe %c stat:\t%08x\n",
839 				   pipe_name(pipe),
840 				   I915_READ(PIPESTAT(pipe)));
841 			intel_display_power_put(dev_priv, power_domain);
842 		}
843 
844 		seq_printf(m, "Master IER:\t%08x\n",
845 			   I915_READ(VLV_MASTER_IER));
846 
847 		seq_printf(m, "Render IER:\t%08x\n",
848 			   I915_READ(GTIER));
849 		seq_printf(m, "Render IIR:\t%08x\n",
850 			   I915_READ(GTIIR));
851 		seq_printf(m, "Render IMR:\t%08x\n",
852 			   I915_READ(GTIMR));
853 
854 		seq_printf(m, "PM IER:\t\t%08x\n",
855 			   I915_READ(GEN6_PMIER));
856 		seq_printf(m, "PM IIR:\t\t%08x\n",
857 			   I915_READ(GEN6_PMIIR));
858 		seq_printf(m, "PM IMR:\t\t%08x\n",
859 			   I915_READ(GEN6_PMIMR));
860 
861 		seq_printf(m, "Port hotplug:\t%08x\n",
862 			   I915_READ(PORT_HOTPLUG_EN));
863 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
864 			   I915_READ(VLV_DPFLIPSTAT));
865 		seq_printf(m, "DPINVGTT:\t%08x\n",
866 			   I915_READ(DPINVGTT));
867 
868 	} else if (!HAS_PCH_SPLIT(dev_priv)) {
869 		seq_printf(m, "Interrupt enable:    %08x\n",
870 			   I915_READ(IER));
871 		seq_printf(m, "Interrupt identity:  %08x\n",
872 			   I915_READ(IIR));
873 		seq_printf(m, "Interrupt mask:      %08x\n",
874 			   I915_READ(IMR));
875 		for_each_pipe(dev_priv, pipe)
876 			seq_printf(m, "Pipe %c stat:         %08x\n",
877 				   pipe_name(pipe),
878 				   I915_READ(PIPESTAT(pipe)));
879 	} else {
880 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
881 			   I915_READ(DEIER));
882 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
883 			   I915_READ(DEIIR));
884 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
885 			   I915_READ(DEIMR));
886 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
887 			   I915_READ(SDEIER));
888 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
889 			   I915_READ(SDEIIR));
890 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
891 			   I915_READ(SDEIMR));
892 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
893 			   I915_READ(GTIER));
894 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
895 			   I915_READ(GTIIR));
896 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
897 			   I915_READ(GTIMR));
898 	}
899 	for_each_engine(engine, dev_priv, id) {
900 		if (INTEL_GEN(dev_priv) >= 6) {
901 			seq_printf(m,
902 				   "Graphics Interrupt mask (%s):	%08x\n",
903 				   engine->name, I915_READ_IMR(engine));
904 		}
905 		i915_ring_seqno_info(m, engine);
906 	}
907 	intel_runtime_pm_put(dev_priv);
908 
909 	return 0;
910 }
911 
912 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
913 {
914 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
915 	struct drm_device *dev = &dev_priv->drm;
916 	int i, ret;
917 
918 	ret = mutex_lock_interruptible(&dev->struct_mutex);
919 	if (ret)
920 		return ret;
921 
922 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
923 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
924 		struct i915_vma *vma = dev_priv->fence_regs[i].vma;
925 
926 		seq_printf(m, "Fence %d, pin count = %d, object = ",
927 			   i, dev_priv->fence_regs[i].pin_count);
928 		if (!vma)
929 			seq_puts(m, "unused");
930 		else
931 			describe_obj(m, vma->obj);
932 		seq_putc(m, '\n');
933 	}
934 
935 	mutex_unlock(&dev->struct_mutex);
936 	return 0;
937 }
938 
939 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
940 static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
941 			      size_t count, loff_t *pos)
942 {
943 	struct i915_gpu_state *error = file->private_data;
944 	struct drm_i915_error_state_buf str;
945 	ssize_t ret;
946 	loff_t tmp;
947 
948 	if (!error)
949 		return 0;
950 
951 	ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
952 	if (ret)
953 		return ret;
954 
955 	ret = i915_error_state_to_str(&str, error);
956 	if (ret)
957 		goto out;
958 
959 	tmp = 0;
960 	ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
961 	if (ret < 0)
962 		goto out;
963 
964 	*pos = str.start + ret;
965 out:
966 	i915_error_state_buf_release(&str);
967 	return ret;
968 }
969 
970 static int gpu_state_release(struct inode *inode, struct file *file)
971 {
972 	i915_gpu_state_put(file->private_data);
973 	return 0;
974 }
975 
976 static int i915_gpu_info_open(struct inode *inode, struct file *file)
977 {
978 	struct drm_i915_private *i915 = inode->i_private;
979 	struct i915_gpu_state *gpu;
980 
981 	intel_runtime_pm_get(i915);
982 	gpu = i915_capture_gpu_state(i915);
983 	intel_runtime_pm_put(i915);
984 	if (!gpu)
985 		return -ENOMEM;
986 
987 	file->private_data = gpu;
988 	return 0;
989 }
990 
991 static const struct file_operations i915_gpu_info_fops = {
992 	.owner = THIS_MODULE,
993 	.open = i915_gpu_info_open,
994 	.read = gpu_state_read,
995 	.llseek = default_llseek,
996 	.release = gpu_state_release,
997 };
998 
999 static ssize_t
1000 i915_error_state_write(struct file *filp,
1001 		       const char __user *ubuf,
1002 		       size_t cnt,
1003 		       loff_t *ppos)
1004 {
1005 	struct i915_gpu_state *error = filp->private_data;
1006 
1007 	if (!error)
1008 		return 0;
1009 
1010 	DRM_DEBUG_DRIVER("Resetting error state\n");
1011 	i915_reset_error_state(error->i915);
1012 
1013 	return cnt;
1014 }
1015 
1016 static int i915_error_state_open(struct inode *inode, struct file *file)
1017 {
1018 	file->private_data = i915_first_error_state(inode->i_private);
1019 	return 0;
1020 }
1021 
1022 static const struct file_operations i915_error_state_fops = {
1023 	.owner = THIS_MODULE,
1024 	.open = i915_error_state_open,
1025 	.read = gpu_state_read,
1026 	.write = i915_error_state_write,
1027 	.llseek = default_llseek,
1028 	.release = gpu_state_release,
1029 };
1030 #endif
1031 
1032 static int
1033 i915_next_seqno_set(void *data, u64 val)
1034 {
1035 	struct drm_i915_private *dev_priv = data;
1036 	struct drm_device *dev = &dev_priv->drm;
1037 	int ret;
1038 
1039 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1040 	if (ret)
1041 		return ret;
1042 
1043 	ret = i915_gem_set_global_seqno(dev, val);
1044 	mutex_unlock(&dev->struct_mutex);
1045 
1046 	return ret;
1047 }
1048 
1049 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1050 			NULL, i915_next_seqno_set,
1051 			"0x%llx\n");
1052 
1053 static int i915_frequency_info(struct seq_file *m, void *unused)
1054 {
1055 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1056 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1057 	int ret = 0;
1058 
1059 	intel_runtime_pm_get(dev_priv);
1060 
1061 	if (IS_GEN5(dev_priv)) {
1062 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1063 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1064 
1065 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1066 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1067 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1068 			   MEMSTAT_VID_SHIFT);
1069 		seq_printf(m, "Current P-state: %d\n",
1070 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1071 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1072 		u32 rpmodectl, freq_sts;
1073 
1074 		mutex_lock(&dev_priv->pcu_lock);
1075 
1076 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1077 		seq_printf(m, "Video Turbo Mode: %s\n",
1078 			   yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
1079 		seq_printf(m, "HW control enabled: %s\n",
1080 			   yesno(rpmodectl & GEN6_RP_ENABLE));
1081 		seq_printf(m, "SW control enabled: %s\n",
1082 			   yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
1083 				  GEN6_RP_MEDIA_SW_MODE));
1084 
1085 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1086 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1087 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1088 
1089 		seq_printf(m, "actual GPU freq: %d MHz\n",
1090 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1091 
1092 		seq_printf(m, "current GPU freq: %d MHz\n",
1093 			   intel_gpu_freq(dev_priv, rps->cur_freq));
1094 
1095 		seq_printf(m, "max GPU freq: %d MHz\n",
1096 			   intel_gpu_freq(dev_priv, rps->max_freq));
1097 
1098 		seq_printf(m, "min GPU freq: %d MHz\n",
1099 			   intel_gpu_freq(dev_priv, rps->min_freq));
1100 
1101 		seq_printf(m, "idle GPU freq: %d MHz\n",
1102 			   intel_gpu_freq(dev_priv, rps->idle_freq));
1103 
1104 		seq_printf(m,
1105 			   "efficient (RPe) frequency: %d MHz\n",
1106 			   intel_gpu_freq(dev_priv, rps->efficient_freq));
1107 		mutex_unlock(&dev_priv->pcu_lock);
1108 	} else if (INTEL_GEN(dev_priv) >= 6) {
1109 		u32 rp_state_limits;
1110 		u32 gt_perf_status;
1111 		u32 rp_state_cap;
1112 		u32 rpmodectl, rpinclimit, rpdeclimit;
1113 		u32 rpstat, cagf, reqf;
1114 		u32 rpupei, rpcurup, rpprevup;
1115 		u32 rpdownei, rpcurdown, rpprevdown;
1116 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1117 		int max_freq;
1118 
1119 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1120 		if (IS_GEN9_LP(dev_priv)) {
1121 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1122 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1123 		} else {
1124 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1125 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1126 		}
1127 
1128 		/* RPSTAT1 is in the GT power well */
1129 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1130 
1131 		reqf = I915_READ(GEN6_RPNSWREQ);
1132 		if (INTEL_GEN(dev_priv) >= 9)
1133 			reqf >>= 23;
1134 		else {
1135 			reqf &= ~GEN6_TURBO_DISABLE;
1136 			if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1137 				reqf >>= 24;
1138 			else
1139 				reqf >>= 25;
1140 		}
1141 		reqf = intel_gpu_freq(dev_priv, reqf);
1142 
1143 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1144 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1145 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1146 
1147 		rpstat = I915_READ(GEN6_RPSTAT1);
1148 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1149 		rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1150 		rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1151 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1152 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1153 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1154 		if (INTEL_GEN(dev_priv) >= 9)
1155 			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1156 		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1157 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1158 		else
1159 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1160 		cagf = intel_gpu_freq(dev_priv, cagf);
1161 
1162 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1163 
1164 		if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1165 			pm_ier = I915_READ(GEN6_PMIER);
1166 			pm_imr = I915_READ(GEN6_PMIMR);
1167 			pm_isr = I915_READ(GEN6_PMISR);
1168 			pm_iir = I915_READ(GEN6_PMIIR);
1169 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1170 		} else {
1171 			pm_ier = I915_READ(GEN8_GT_IER(2));
1172 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1173 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1174 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1175 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1176 		}
1177 		seq_printf(m, "Video Turbo Mode: %s\n",
1178 			   yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
1179 		seq_printf(m, "HW control enabled: %s\n",
1180 			   yesno(rpmodectl & GEN6_RP_ENABLE));
1181 		seq_printf(m, "SW control enabled: %s\n",
1182 			   yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
1183 				  GEN6_RP_MEDIA_SW_MODE));
1184 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1185 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1186 		seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
1187 			   rps->pm_intrmsk_mbz);
1188 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1189 		seq_printf(m, "Render p-state ratio: %d\n",
1190 			   (gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
1191 		seq_printf(m, "Render p-state VID: %d\n",
1192 			   gt_perf_status & 0xff);
1193 		seq_printf(m, "Render p-state limit: %d\n",
1194 			   rp_state_limits & 0xff);
1195 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1196 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1197 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1198 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1199 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1200 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1201 		seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1202 			   rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1203 		seq_printf(m, "RP CUR UP: %d (%dus)\n",
1204 			   rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1205 		seq_printf(m, "RP PREV UP: %d (%dus)\n",
1206 			   rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1207 		seq_printf(m, "Up threshold: %d%%\n", rps->up_threshold);
1208 
1209 		seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1210 			   rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1211 		seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1212 			   rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1213 		seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1214 			   rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1215 		seq_printf(m, "Down threshold: %d%%\n", rps->down_threshold);
1216 
1217 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
1218 			    rp_state_cap >> 16) & 0xff;
1219 		max_freq *= (IS_GEN9_BC(dev_priv) ||
1220 			     IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1221 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1222 			   intel_gpu_freq(dev_priv, max_freq));
1223 
1224 		max_freq = (rp_state_cap & 0xff00) >> 8;
1225 		max_freq *= (IS_GEN9_BC(dev_priv) ||
1226 			     IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1227 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1228 			   intel_gpu_freq(dev_priv, max_freq));
1229 
1230 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
1231 			    rp_state_cap >> 0) & 0xff;
1232 		max_freq *= (IS_GEN9_BC(dev_priv) ||
1233 			     IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1234 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1235 			   intel_gpu_freq(dev_priv, max_freq));
1236 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1237 			   intel_gpu_freq(dev_priv, rps->max_freq));
1238 
1239 		seq_printf(m, "Current freq: %d MHz\n",
1240 			   intel_gpu_freq(dev_priv, rps->cur_freq));
1241 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1242 		seq_printf(m, "Idle freq: %d MHz\n",
1243 			   intel_gpu_freq(dev_priv, rps->idle_freq));
1244 		seq_printf(m, "Min freq: %d MHz\n",
1245 			   intel_gpu_freq(dev_priv, rps->min_freq));
1246 		seq_printf(m, "Boost freq: %d MHz\n",
1247 			   intel_gpu_freq(dev_priv, rps->boost_freq));
1248 		seq_printf(m, "Max freq: %d MHz\n",
1249 			   intel_gpu_freq(dev_priv, rps->max_freq));
1250 		seq_printf(m,
1251 			   "efficient (RPe) frequency: %d MHz\n",
1252 			   intel_gpu_freq(dev_priv, rps->efficient_freq));
1253 	} else {
1254 		seq_puts(m, "no P-state info available\n");
1255 	}
1256 
1257 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
1258 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1259 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1260 
1261 	intel_runtime_pm_put(dev_priv);
1262 	return ret;
1263 }
1264 
1265 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1266 			       struct seq_file *m,
1267 			       struct intel_instdone *instdone)
1268 {
1269 	int slice;
1270 	int subslice;
1271 
1272 	seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1273 		   instdone->instdone);
1274 
1275 	if (INTEL_GEN(dev_priv) <= 3)
1276 		return;
1277 
1278 	seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1279 		   instdone->slice_common);
1280 
1281 	if (INTEL_GEN(dev_priv) <= 6)
1282 		return;
1283 
1284 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1285 		seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1286 			   slice, subslice, instdone->sampler[slice][subslice]);
1287 
1288 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1289 		seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1290 			   slice, subslice, instdone->row[slice][subslice]);
1291 }
1292 
1293 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1294 {
1295 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1296 	struct intel_engine_cs *engine;
1297 	u64 acthd[I915_NUM_ENGINES];
1298 	u32 seqno[I915_NUM_ENGINES];
1299 	struct intel_instdone instdone;
1300 	enum intel_engine_id id;
1301 
1302 	if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1303 		seq_puts(m, "Wedged\n");
1304 	if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
1305 		seq_puts(m, "Reset in progress: struct_mutex backoff\n");
1306 	if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
1307 		seq_puts(m, "Reset in progress: reset handoff to waiter\n");
1308 	if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1309 		seq_puts(m, "Waiter holding struct mutex\n");
1310 	if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1311 		seq_puts(m, "struct_mutex blocked for reset\n");
1312 
1313 	if (!i915_modparams.enable_hangcheck) {
1314 		seq_puts(m, "Hangcheck disabled\n");
1315 		return 0;
1316 	}
1317 
1318 	intel_runtime_pm_get(dev_priv);
1319 
1320 	for_each_engine(engine, dev_priv, id) {
1321 		acthd[id] = intel_engine_get_active_head(engine);
1322 		seqno[id] = intel_engine_get_seqno(engine);
1323 	}
1324 
1325 	intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1326 
1327 	intel_runtime_pm_put(dev_priv);
1328 
1329 	if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
1330 		seq_printf(m, "Hangcheck active, timer fires in %dms\n",
1331 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1332 					    jiffies));
1333 	else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
1334 		seq_puts(m, "Hangcheck active, work pending\n");
1335 	else
1336 		seq_puts(m, "Hangcheck inactive\n");
1337 
1338 	seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
1339 
1340 	for_each_engine(engine, dev_priv, id) {
1341 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
1342 		struct rb_node *rb;
1343 
1344 		seq_printf(m, "%s:\n", engine->name);
1345 		seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
1346 			   engine->hangcheck.seqno, seqno[id],
1347 			   intel_engine_last_submit(engine),
1348 			   engine->timeline->inflight_seqnos);
1349 		seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
1350 			   yesno(intel_engine_has_waiter(engine)),
1351 			   yesno(test_bit(engine->id,
1352 					  &dev_priv->gpu_error.missed_irq_rings)),
1353 			   yesno(engine->hangcheck.stalled));
1354 
1355 		spin_lock_irq(&b->rb_lock);
1356 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1357 			struct intel_wait *w = rb_entry(rb, typeof(*w), node);
1358 
1359 			seq_printf(m, "\t%s [%d] waiting for %x\n",
1360 				   w->tsk->comm, w->tsk->pid, w->seqno);
1361 		}
1362 		spin_unlock_irq(&b->rb_lock);
1363 
1364 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1365 			   (long long)engine->hangcheck.acthd,
1366 			   (long long)acthd[id]);
1367 		seq_printf(m, "\taction = %s(%d) %d ms ago\n",
1368 			   hangcheck_action_to_str(engine->hangcheck.action),
1369 			   engine->hangcheck.action,
1370 			   jiffies_to_msecs(jiffies -
1371 					    engine->hangcheck.action_timestamp));
1372 
1373 		if (engine->id == RCS) {
1374 			seq_puts(m, "\tinstdone read =\n");
1375 
1376 			i915_instdone_info(dev_priv, m, &instdone);
1377 
1378 			seq_puts(m, "\tinstdone accu =\n");
1379 
1380 			i915_instdone_info(dev_priv, m,
1381 					   &engine->hangcheck.instdone);
1382 		}
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 static int i915_reset_info(struct seq_file *m, void *unused)
1389 {
1390 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1391 	struct i915_gpu_error *error = &dev_priv->gpu_error;
1392 	struct intel_engine_cs *engine;
1393 	enum intel_engine_id id;
1394 
1395 	seq_printf(m, "full gpu reset = %u\n", i915_reset_count(error));
1396 
1397 	for_each_engine(engine, dev_priv, id) {
1398 		seq_printf(m, "%s = %u\n", engine->name,
1399 			   i915_reset_engine_count(error, engine));
1400 	}
1401 
1402 	return 0;
1403 }
1404 
1405 static int ironlake_drpc_info(struct seq_file *m)
1406 {
1407 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1408 	u32 rgvmodectl, rstdbyctl;
1409 	u16 crstandvid;
1410 
1411 	rgvmodectl = I915_READ(MEMMODECTL);
1412 	rstdbyctl = I915_READ(RSTDBYCTL);
1413 	crstandvid = I915_READ16(CRSTANDVID);
1414 
1415 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1416 	seq_printf(m, "Boost freq: %d\n",
1417 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1418 		   MEMMODE_BOOST_FREQ_SHIFT);
1419 	seq_printf(m, "HW control enabled: %s\n",
1420 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1421 	seq_printf(m, "SW control enabled: %s\n",
1422 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1423 	seq_printf(m, "Gated voltage change: %s\n",
1424 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1425 	seq_printf(m, "Starting frequency: P%d\n",
1426 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1427 	seq_printf(m, "Max P-state: P%d\n",
1428 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1429 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1430 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1431 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1432 	seq_printf(m, "Render standby enabled: %s\n",
1433 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1434 	seq_puts(m, "Current RS state: ");
1435 	switch (rstdbyctl & RSX_STATUS_MASK) {
1436 	case RSX_STATUS_ON:
1437 		seq_puts(m, "on\n");
1438 		break;
1439 	case RSX_STATUS_RC1:
1440 		seq_puts(m, "RC1\n");
1441 		break;
1442 	case RSX_STATUS_RC1E:
1443 		seq_puts(m, "RC1E\n");
1444 		break;
1445 	case RSX_STATUS_RS1:
1446 		seq_puts(m, "RS1\n");
1447 		break;
1448 	case RSX_STATUS_RS2:
1449 		seq_puts(m, "RS2 (RC6)\n");
1450 		break;
1451 	case RSX_STATUS_RS3:
1452 		seq_puts(m, "RC3 (RC6+)\n");
1453 		break;
1454 	default:
1455 		seq_puts(m, "unknown\n");
1456 		break;
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 static int i915_forcewake_domains(struct seq_file *m, void *data)
1463 {
1464 	struct drm_i915_private *i915 = node_to_i915(m->private);
1465 	struct intel_uncore_forcewake_domain *fw_domain;
1466 	unsigned int tmp;
1467 
1468 	seq_printf(m, "user.bypass_count = %u\n",
1469 		   i915->uncore.user_forcewake.count);
1470 
1471 	for_each_fw_domain(fw_domain, i915, tmp)
1472 		seq_printf(m, "%s.wake_count = %u\n",
1473 			   intel_uncore_forcewake_domain_to_str(fw_domain->id),
1474 			   READ_ONCE(fw_domain->wake_count));
1475 
1476 	return 0;
1477 }
1478 
1479 static void print_rc6_res(struct seq_file *m,
1480 			  const char *title,
1481 			  const i915_reg_t reg)
1482 {
1483 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1484 
1485 	seq_printf(m, "%s %u (%llu us)\n",
1486 		   title, I915_READ(reg),
1487 		   intel_rc6_residency_us(dev_priv, reg));
1488 }
1489 
1490 static int vlv_drpc_info(struct seq_file *m)
1491 {
1492 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1493 	u32 rcctl1, pw_status;
1494 
1495 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1496 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1497 
1498 	seq_printf(m, "RC6 Enabled: %s\n",
1499 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1500 					GEN6_RC_CTL_EI_MODE(1))));
1501 	seq_printf(m, "Render Power Well: %s\n",
1502 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1503 	seq_printf(m, "Media Power Well: %s\n",
1504 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1505 
1506 	print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
1507 	print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
1508 
1509 	return i915_forcewake_domains(m, NULL);
1510 }
1511 
1512 static int gen6_drpc_info(struct seq_file *m)
1513 {
1514 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1515 	u32 gt_core_status, rcctl1, rc6vids = 0;
1516 	u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1517 	unsigned forcewake_count;
1518 	int count = 0;
1519 
1520 	forcewake_count = READ_ONCE(dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count);
1521 	if (forcewake_count) {
1522 		seq_puts(m, "RC information inaccurate because somebody "
1523 			    "holds a forcewake reference \n");
1524 	} else {
1525 		/* NB: we cannot use forcewake, else we read the wrong values */
1526 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1527 			udelay(10);
1528 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1529 	}
1530 
1531 	gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1532 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1533 
1534 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1535 	if (INTEL_GEN(dev_priv) >= 9) {
1536 		gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1537 		gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1538 	}
1539 
1540 	mutex_lock(&dev_priv->pcu_lock);
1541 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1542 	mutex_unlock(&dev_priv->pcu_lock);
1543 
1544 	seq_printf(m, "RC1e Enabled: %s\n",
1545 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1546 	seq_printf(m, "RC6 Enabled: %s\n",
1547 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1548 	if (INTEL_GEN(dev_priv) >= 9) {
1549 		seq_printf(m, "Render Well Gating Enabled: %s\n",
1550 			yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1551 		seq_printf(m, "Media Well Gating Enabled: %s\n",
1552 			yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1553 	}
1554 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1555 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1556 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1557 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1558 	seq_puts(m, "Current RC state: ");
1559 	switch (gt_core_status & GEN6_RCn_MASK) {
1560 	case GEN6_RC0:
1561 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1562 			seq_puts(m, "Core Power Down\n");
1563 		else
1564 			seq_puts(m, "on\n");
1565 		break;
1566 	case GEN6_RC3:
1567 		seq_puts(m, "RC3\n");
1568 		break;
1569 	case GEN6_RC6:
1570 		seq_puts(m, "RC6\n");
1571 		break;
1572 	case GEN6_RC7:
1573 		seq_puts(m, "RC7\n");
1574 		break;
1575 	default:
1576 		seq_puts(m, "Unknown\n");
1577 		break;
1578 	}
1579 
1580 	seq_printf(m, "Core Power Down: %s\n",
1581 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1582 	if (INTEL_GEN(dev_priv) >= 9) {
1583 		seq_printf(m, "Render Power Well: %s\n",
1584 			(gen9_powergate_status &
1585 			 GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1586 		seq_printf(m, "Media Power Well: %s\n",
1587 			(gen9_powergate_status &
1588 			 GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1589 	}
1590 
1591 	/* Not exactly sure what this is */
1592 	print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
1593 		      GEN6_GT_GFX_RC6_LOCKED);
1594 	print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
1595 	print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
1596 	print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
1597 
1598 	seq_printf(m, "RC6   voltage: %dmV\n",
1599 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1600 	seq_printf(m, "RC6+  voltage: %dmV\n",
1601 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1602 	seq_printf(m, "RC6++ voltage: %dmV\n",
1603 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1604 	return i915_forcewake_domains(m, NULL);
1605 }
1606 
1607 static int i915_drpc_info(struct seq_file *m, void *unused)
1608 {
1609 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1610 	int err;
1611 
1612 	intel_runtime_pm_get(dev_priv);
1613 
1614 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1615 		err = vlv_drpc_info(m);
1616 	else if (INTEL_GEN(dev_priv) >= 6)
1617 		err = gen6_drpc_info(m);
1618 	else
1619 		err = ironlake_drpc_info(m);
1620 
1621 	intel_runtime_pm_put(dev_priv);
1622 
1623 	return err;
1624 }
1625 
1626 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1627 {
1628 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1629 
1630 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1631 		   dev_priv->fb_tracking.busy_bits);
1632 
1633 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1634 		   dev_priv->fb_tracking.flip_bits);
1635 
1636 	return 0;
1637 }
1638 
1639 static int i915_fbc_status(struct seq_file *m, void *unused)
1640 {
1641 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1642 
1643 	if (!HAS_FBC(dev_priv)) {
1644 		seq_puts(m, "FBC unsupported on this chipset\n");
1645 		return 0;
1646 	}
1647 
1648 	intel_runtime_pm_get(dev_priv);
1649 	mutex_lock(&dev_priv->fbc.lock);
1650 
1651 	if (intel_fbc_is_active(dev_priv))
1652 		seq_puts(m, "FBC enabled\n");
1653 	else
1654 		seq_printf(m, "FBC disabled: %s\n",
1655 			   dev_priv->fbc.no_fbc_reason);
1656 
1657 	if (intel_fbc_is_active(dev_priv)) {
1658 		u32 mask;
1659 
1660 		if (INTEL_GEN(dev_priv) >= 8)
1661 			mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK;
1662 		else if (INTEL_GEN(dev_priv) >= 7)
1663 			mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK;
1664 		else if (INTEL_GEN(dev_priv) >= 5)
1665 			mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK;
1666 		else if (IS_G4X(dev_priv))
1667 			mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK;
1668 		else
1669 			mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING |
1670 							FBC_STAT_COMPRESSED);
1671 
1672 		seq_printf(m, "Compressing: %s\n", yesno(mask));
1673 	}
1674 
1675 	mutex_unlock(&dev_priv->fbc.lock);
1676 	intel_runtime_pm_put(dev_priv);
1677 
1678 	return 0;
1679 }
1680 
1681 static int i915_fbc_false_color_get(void *data, u64 *val)
1682 {
1683 	struct drm_i915_private *dev_priv = data;
1684 
1685 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1686 		return -ENODEV;
1687 
1688 	*val = dev_priv->fbc.false_color;
1689 
1690 	return 0;
1691 }
1692 
1693 static int i915_fbc_false_color_set(void *data, u64 val)
1694 {
1695 	struct drm_i915_private *dev_priv = data;
1696 	u32 reg;
1697 
1698 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1699 		return -ENODEV;
1700 
1701 	mutex_lock(&dev_priv->fbc.lock);
1702 
1703 	reg = I915_READ(ILK_DPFC_CONTROL);
1704 	dev_priv->fbc.false_color = val;
1705 
1706 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1707 		   (reg | FBC_CTL_FALSE_COLOR) :
1708 		   (reg & ~FBC_CTL_FALSE_COLOR));
1709 
1710 	mutex_unlock(&dev_priv->fbc.lock);
1711 	return 0;
1712 }
1713 
1714 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops,
1715 			i915_fbc_false_color_get, i915_fbc_false_color_set,
1716 			"%llu\n");
1717 
1718 static int i915_ips_status(struct seq_file *m, void *unused)
1719 {
1720 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1721 
1722 	if (!HAS_IPS(dev_priv)) {
1723 		seq_puts(m, "not supported\n");
1724 		return 0;
1725 	}
1726 
1727 	intel_runtime_pm_get(dev_priv);
1728 
1729 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1730 		   yesno(i915_modparams.enable_ips));
1731 
1732 	if (INTEL_GEN(dev_priv) >= 8) {
1733 		seq_puts(m, "Currently: unknown\n");
1734 	} else {
1735 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1736 			seq_puts(m, "Currently: enabled\n");
1737 		else
1738 			seq_puts(m, "Currently: disabled\n");
1739 	}
1740 
1741 	intel_runtime_pm_put(dev_priv);
1742 
1743 	return 0;
1744 }
1745 
1746 static int i915_sr_status(struct seq_file *m, void *unused)
1747 {
1748 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1749 	bool sr_enabled = false;
1750 
1751 	intel_runtime_pm_get(dev_priv);
1752 	intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1753 
1754 	if (INTEL_GEN(dev_priv) >= 9)
1755 		/* no global SR status; inspect per-plane WM */;
1756 	else if (HAS_PCH_SPLIT(dev_priv))
1757 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1758 	else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
1759 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1760 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1761 	else if (IS_I915GM(dev_priv))
1762 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1763 	else if (IS_PINEVIEW(dev_priv))
1764 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1765 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1766 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1767 
1768 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1769 	intel_runtime_pm_put(dev_priv);
1770 
1771 	seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
1772 
1773 	return 0;
1774 }
1775 
1776 static int i915_emon_status(struct seq_file *m, void *unused)
1777 {
1778 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1779 	struct drm_device *dev = &dev_priv->drm;
1780 	unsigned long temp, chipset, gfx;
1781 	int ret;
1782 
1783 	if (!IS_GEN5(dev_priv))
1784 		return -ENODEV;
1785 
1786 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1787 	if (ret)
1788 		return ret;
1789 
1790 	temp = i915_mch_val(dev_priv);
1791 	chipset = i915_chipset_val(dev_priv);
1792 	gfx = i915_gfx_val(dev_priv);
1793 	mutex_unlock(&dev->struct_mutex);
1794 
1795 	seq_printf(m, "GMCH temp: %ld\n", temp);
1796 	seq_printf(m, "Chipset power: %ld\n", chipset);
1797 	seq_printf(m, "GFX power: %ld\n", gfx);
1798 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1799 
1800 	return 0;
1801 }
1802 
1803 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1804 {
1805 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1806 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1807 	int ret = 0;
1808 	int gpu_freq, ia_freq;
1809 	unsigned int max_gpu_freq, min_gpu_freq;
1810 
1811 	if (!HAS_LLC(dev_priv)) {
1812 		seq_puts(m, "unsupported on this chipset\n");
1813 		return 0;
1814 	}
1815 
1816 	intel_runtime_pm_get(dev_priv);
1817 
1818 	ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
1819 	if (ret)
1820 		goto out;
1821 
1822 	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
1823 		/* Convert GT frequency to 50 HZ units */
1824 		min_gpu_freq = rps->min_freq_softlimit / GEN9_FREQ_SCALER;
1825 		max_gpu_freq = rps->max_freq_softlimit / GEN9_FREQ_SCALER;
1826 	} else {
1827 		min_gpu_freq = rps->min_freq_softlimit;
1828 		max_gpu_freq = rps->max_freq_softlimit;
1829 	}
1830 
1831 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1832 
1833 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1834 		ia_freq = gpu_freq;
1835 		sandybridge_pcode_read(dev_priv,
1836 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1837 				       &ia_freq);
1838 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1839 			   intel_gpu_freq(dev_priv, (gpu_freq *
1840 						     (IS_GEN9_BC(dev_priv) ||
1841 						      IS_CANNONLAKE(dev_priv) ?
1842 						      GEN9_FREQ_SCALER : 1))),
1843 			   ((ia_freq >> 0) & 0xff) * 100,
1844 			   ((ia_freq >> 8) & 0xff) * 100);
1845 	}
1846 
1847 	mutex_unlock(&dev_priv->pcu_lock);
1848 
1849 out:
1850 	intel_runtime_pm_put(dev_priv);
1851 	return ret;
1852 }
1853 
1854 static int i915_opregion(struct seq_file *m, void *unused)
1855 {
1856 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1857 	struct drm_device *dev = &dev_priv->drm;
1858 	struct intel_opregion *opregion = &dev_priv->opregion;
1859 	int ret;
1860 
1861 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1862 	if (ret)
1863 		goto out;
1864 
1865 	if (opregion->header)
1866 		seq_write(m, opregion->header, OPREGION_SIZE);
1867 
1868 	mutex_unlock(&dev->struct_mutex);
1869 
1870 out:
1871 	return 0;
1872 }
1873 
1874 static int i915_vbt(struct seq_file *m, void *unused)
1875 {
1876 	struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1877 
1878 	if (opregion->vbt)
1879 		seq_write(m, opregion->vbt, opregion->vbt_size);
1880 
1881 	return 0;
1882 }
1883 
1884 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1885 {
1886 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1887 	struct drm_device *dev = &dev_priv->drm;
1888 	struct intel_framebuffer *fbdev_fb = NULL;
1889 	struct drm_framebuffer *drm_fb;
1890 	int ret;
1891 
1892 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1893 	if (ret)
1894 		return ret;
1895 
1896 #ifdef CONFIG_DRM_FBDEV_EMULATION
1897 	if (dev_priv->fbdev && dev_priv->fbdev->helper.fb) {
1898 		fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1899 
1900 		seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1901 			   fbdev_fb->base.width,
1902 			   fbdev_fb->base.height,
1903 			   fbdev_fb->base.format->depth,
1904 			   fbdev_fb->base.format->cpp[0] * 8,
1905 			   fbdev_fb->base.modifier,
1906 			   drm_framebuffer_read_refcount(&fbdev_fb->base));
1907 		describe_obj(m, fbdev_fb->obj);
1908 		seq_putc(m, '\n');
1909 	}
1910 #endif
1911 
1912 	mutex_lock(&dev->mode_config.fb_lock);
1913 	drm_for_each_fb(drm_fb, dev) {
1914 		struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1915 		if (fb == fbdev_fb)
1916 			continue;
1917 
1918 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1919 			   fb->base.width,
1920 			   fb->base.height,
1921 			   fb->base.format->depth,
1922 			   fb->base.format->cpp[0] * 8,
1923 			   fb->base.modifier,
1924 			   drm_framebuffer_read_refcount(&fb->base));
1925 		describe_obj(m, fb->obj);
1926 		seq_putc(m, '\n');
1927 	}
1928 	mutex_unlock(&dev->mode_config.fb_lock);
1929 	mutex_unlock(&dev->struct_mutex);
1930 
1931 	return 0;
1932 }
1933 
1934 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1935 {
1936 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u)",
1937 		   ring->space, ring->head, ring->tail);
1938 }
1939 
1940 static int i915_context_status(struct seq_file *m, void *unused)
1941 {
1942 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1943 	struct drm_device *dev = &dev_priv->drm;
1944 	struct intel_engine_cs *engine;
1945 	struct i915_gem_context *ctx;
1946 	enum intel_engine_id id;
1947 	int ret;
1948 
1949 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1950 	if (ret)
1951 		return ret;
1952 
1953 	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1954 		seq_printf(m, "HW context %u ", ctx->hw_id);
1955 		if (ctx->pid) {
1956 			struct task_struct *task;
1957 
1958 			task = get_pid_task(ctx->pid, PIDTYPE_PID);
1959 			if (task) {
1960 				seq_printf(m, "(%s [%d]) ",
1961 					   task->comm, task->pid);
1962 				put_task_struct(task);
1963 			}
1964 		} else if (IS_ERR(ctx->file_priv)) {
1965 			seq_puts(m, "(deleted) ");
1966 		} else {
1967 			seq_puts(m, "(kernel) ");
1968 		}
1969 
1970 		seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1971 		seq_putc(m, '\n');
1972 
1973 		for_each_engine(engine, dev_priv, id) {
1974 			struct intel_context *ce = &ctx->engine[engine->id];
1975 
1976 			seq_printf(m, "%s: ", engine->name);
1977 			if (ce->state)
1978 				describe_obj(m, ce->state->obj);
1979 			if (ce->ring)
1980 				describe_ctx_ring(m, ce->ring);
1981 			seq_putc(m, '\n');
1982 		}
1983 
1984 		seq_putc(m, '\n');
1985 	}
1986 
1987 	mutex_unlock(&dev->struct_mutex);
1988 
1989 	return 0;
1990 }
1991 
1992 static void i915_dump_lrc_obj(struct seq_file *m,
1993 			      struct i915_gem_context *ctx,
1994 			      struct intel_engine_cs *engine)
1995 {
1996 	struct i915_vma *vma = ctx->engine[engine->id].state;
1997 	struct page *page;
1998 	int j;
1999 
2000 	seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2001 
2002 	if (!vma) {
2003 		seq_puts(m, "\tFake context\n");
2004 		return;
2005 	}
2006 
2007 	if (vma->flags & I915_VMA_GLOBAL_BIND)
2008 		seq_printf(m, "\tBound in GGTT at 0x%08x\n",
2009 			   i915_ggtt_offset(vma));
2010 
2011 	if (i915_gem_object_pin_pages(vma->obj)) {
2012 		seq_puts(m, "\tFailed to get pages for context object\n\n");
2013 		return;
2014 	}
2015 
2016 	page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
2017 	if (page) {
2018 		u32 *reg_state = kmap_atomic(page);
2019 
2020 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2021 			seq_printf(m,
2022 				   "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2023 				   j * 4,
2024 				   reg_state[j], reg_state[j + 1],
2025 				   reg_state[j + 2], reg_state[j + 3]);
2026 		}
2027 		kunmap_atomic(reg_state);
2028 	}
2029 
2030 	i915_gem_object_unpin_pages(vma->obj);
2031 	seq_putc(m, '\n');
2032 }
2033 
2034 static int i915_dump_lrc(struct seq_file *m, void *unused)
2035 {
2036 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2037 	struct drm_device *dev = &dev_priv->drm;
2038 	struct intel_engine_cs *engine;
2039 	struct i915_gem_context *ctx;
2040 	enum intel_engine_id id;
2041 	int ret;
2042 
2043 	if (!i915_modparams.enable_execlists) {
2044 		seq_printf(m, "Logical Ring Contexts are disabled\n");
2045 		return 0;
2046 	}
2047 
2048 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2049 	if (ret)
2050 		return ret;
2051 
2052 	list_for_each_entry(ctx, &dev_priv->contexts.list, link)
2053 		for_each_engine(engine, dev_priv, id)
2054 			i915_dump_lrc_obj(m, ctx, engine);
2055 
2056 	mutex_unlock(&dev->struct_mutex);
2057 
2058 	return 0;
2059 }
2060 
2061 static const char *swizzle_string(unsigned swizzle)
2062 {
2063 	switch (swizzle) {
2064 	case I915_BIT_6_SWIZZLE_NONE:
2065 		return "none";
2066 	case I915_BIT_6_SWIZZLE_9:
2067 		return "bit9";
2068 	case I915_BIT_6_SWIZZLE_9_10:
2069 		return "bit9/bit10";
2070 	case I915_BIT_6_SWIZZLE_9_11:
2071 		return "bit9/bit11";
2072 	case I915_BIT_6_SWIZZLE_9_10_11:
2073 		return "bit9/bit10/bit11";
2074 	case I915_BIT_6_SWIZZLE_9_17:
2075 		return "bit9/bit17";
2076 	case I915_BIT_6_SWIZZLE_9_10_17:
2077 		return "bit9/bit10/bit17";
2078 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2079 		return "unknown";
2080 	}
2081 
2082 	return "bug";
2083 }
2084 
2085 static int i915_swizzle_info(struct seq_file *m, void *data)
2086 {
2087 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2088 
2089 	intel_runtime_pm_get(dev_priv);
2090 
2091 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2092 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2093 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2094 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2095 
2096 	if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2097 		seq_printf(m, "DDC = 0x%08x\n",
2098 			   I915_READ(DCC));
2099 		seq_printf(m, "DDC2 = 0x%08x\n",
2100 			   I915_READ(DCC2));
2101 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2102 			   I915_READ16(C0DRB3));
2103 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2104 			   I915_READ16(C1DRB3));
2105 	} else if (INTEL_GEN(dev_priv) >= 6) {
2106 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2107 			   I915_READ(MAD_DIMM_C0));
2108 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2109 			   I915_READ(MAD_DIMM_C1));
2110 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2111 			   I915_READ(MAD_DIMM_C2));
2112 		seq_printf(m, "TILECTL = 0x%08x\n",
2113 			   I915_READ(TILECTL));
2114 		if (INTEL_GEN(dev_priv) >= 8)
2115 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2116 				   I915_READ(GAMTARBMODE));
2117 		else
2118 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2119 				   I915_READ(ARB_MODE));
2120 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2121 			   I915_READ(DISP_ARB_CTL));
2122 	}
2123 
2124 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2125 		seq_puts(m, "L-shaped memory detected\n");
2126 
2127 	intel_runtime_pm_put(dev_priv);
2128 
2129 	return 0;
2130 }
2131 
2132 static int per_file_ctx(int id, void *ptr, void *data)
2133 {
2134 	struct i915_gem_context *ctx = ptr;
2135 	struct seq_file *m = data;
2136 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2137 
2138 	if (!ppgtt) {
2139 		seq_printf(m, "  no ppgtt for context %d\n",
2140 			   ctx->user_handle);
2141 		return 0;
2142 	}
2143 
2144 	if (i915_gem_context_is_default(ctx))
2145 		seq_puts(m, "  default context:\n");
2146 	else
2147 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2148 	ppgtt->debug_dump(ppgtt, m);
2149 
2150 	return 0;
2151 }
2152 
2153 static void gen8_ppgtt_info(struct seq_file *m,
2154 			    struct drm_i915_private *dev_priv)
2155 {
2156 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2157 	struct intel_engine_cs *engine;
2158 	enum intel_engine_id id;
2159 	int i;
2160 
2161 	if (!ppgtt)
2162 		return;
2163 
2164 	for_each_engine(engine, dev_priv, id) {
2165 		seq_printf(m, "%s\n", engine->name);
2166 		for (i = 0; i < 4; i++) {
2167 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2168 			pdp <<= 32;
2169 			pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2170 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2171 		}
2172 	}
2173 }
2174 
2175 static void gen6_ppgtt_info(struct seq_file *m,
2176 			    struct drm_i915_private *dev_priv)
2177 {
2178 	struct intel_engine_cs *engine;
2179 	enum intel_engine_id id;
2180 
2181 	if (IS_GEN6(dev_priv))
2182 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2183 
2184 	for_each_engine(engine, dev_priv, id) {
2185 		seq_printf(m, "%s\n", engine->name);
2186 		if (IS_GEN7(dev_priv))
2187 			seq_printf(m, "GFX_MODE: 0x%08x\n",
2188 				   I915_READ(RING_MODE_GEN7(engine)));
2189 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2190 			   I915_READ(RING_PP_DIR_BASE(engine)));
2191 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2192 			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
2193 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2194 			   I915_READ(RING_PP_DIR_DCLV(engine)));
2195 	}
2196 	if (dev_priv->mm.aliasing_ppgtt) {
2197 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2198 
2199 		seq_puts(m, "aliasing PPGTT:\n");
2200 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2201 
2202 		ppgtt->debug_dump(ppgtt, m);
2203 	}
2204 
2205 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2206 }
2207 
2208 static int i915_ppgtt_info(struct seq_file *m, void *data)
2209 {
2210 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2211 	struct drm_device *dev = &dev_priv->drm;
2212 	struct drm_file *file;
2213 	int ret;
2214 
2215 	mutex_lock(&dev->filelist_mutex);
2216 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2217 	if (ret)
2218 		goto out_unlock;
2219 
2220 	intel_runtime_pm_get(dev_priv);
2221 
2222 	if (INTEL_GEN(dev_priv) >= 8)
2223 		gen8_ppgtt_info(m, dev_priv);
2224 	else if (INTEL_GEN(dev_priv) >= 6)
2225 		gen6_ppgtt_info(m, dev_priv);
2226 
2227 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2228 		struct drm_i915_file_private *file_priv = file->driver_priv;
2229 		struct task_struct *task;
2230 
2231 		task = get_pid_task(file->pid, PIDTYPE_PID);
2232 		if (!task) {
2233 			ret = -ESRCH;
2234 			goto out_rpm;
2235 		}
2236 		seq_printf(m, "\nproc: %s\n", task->comm);
2237 		put_task_struct(task);
2238 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2239 			     (void *)(unsigned long)m);
2240 	}
2241 
2242 out_rpm:
2243 	intel_runtime_pm_put(dev_priv);
2244 	mutex_unlock(&dev->struct_mutex);
2245 out_unlock:
2246 	mutex_unlock(&dev->filelist_mutex);
2247 	return ret;
2248 }
2249 
2250 static int count_irq_waiters(struct drm_i915_private *i915)
2251 {
2252 	struct intel_engine_cs *engine;
2253 	enum intel_engine_id id;
2254 	int count = 0;
2255 
2256 	for_each_engine(engine, i915, id)
2257 		count += intel_engine_has_waiter(engine);
2258 
2259 	return count;
2260 }
2261 
2262 static const char *rps_power_to_str(unsigned int power)
2263 {
2264 	static const char * const strings[] = {
2265 		[LOW_POWER] = "low power",
2266 		[BETWEEN] = "mixed",
2267 		[HIGH_POWER] = "high power",
2268 	};
2269 
2270 	if (power >= ARRAY_SIZE(strings) || !strings[power])
2271 		return "unknown";
2272 
2273 	return strings[power];
2274 }
2275 
2276 static int i915_rps_boost_info(struct seq_file *m, void *data)
2277 {
2278 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2279 	struct drm_device *dev = &dev_priv->drm;
2280 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
2281 	struct drm_file *file;
2282 
2283 	seq_printf(m, "RPS enabled? %d\n", rps->enabled);
2284 	seq_printf(m, "GPU busy? %s [%d requests]\n",
2285 		   yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
2286 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2287 	seq_printf(m, "Boosts outstanding? %d\n",
2288 		   atomic_read(&rps->num_waiters));
2289 	seq_printf(m, "Frequency requested %d\n",
2290 		   intel_gpu_freq(dev_priv, rps->cur_freq));
2291 	seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2292 		   intel_gpu_freq(dev_priv, rps->min_freq),
2293 		   intel_gpu_freq(dev_priv, rps->min_freq_softlimit),
2294 		   intel_gpu_freq(dev_priv, rps->max_freq_softlimit),
2295 		   intel_gpu_freq(dev_priv, rps->max_freq));
2296 	seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2297 		   intel_gpu_freq(dev_priv, rps->idle_freq),
2298 		   intel_gpu_freq(dev_priv, rps->efficient_freq),
2299 		   intel_gpu_freq(dev_priv, rps->boost_freq));
2300 
2301 	mutex_lock(&dev->filelist_mutex);
2302 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2303 		struct drm_i915_file_private *file_priv = file->driver_priv;
2304 		struct task_struct *task;
2305 
2306 		rcu_read_lock();
2307 		task = pid_task(file->pid, PIDTYPE_PID);
2308 		seq_printf(m, "%s [%d]: %d boosts\n",
2309 			   task ? task->comm : "<unknown>",
2310 			   task ? task->pid : -1,
2311 			   atomic_read(&file_priv->rps_client.boosts));
2312 		rcu_read_unlock();
2313 	}
2314 	seq_printf(m, "Kernel (anonymous) boosts: %d\n",
2315 		   atomic_read(&rps->boosts));
2316 	mutex_unlock(&dev->filelist_mutex);
2317 
2318 	if (INTEL_GEN(dev_priv) >= 6 &&
2319 	    rps->enabled &&
2320 	    dev_priv->gt.active_requests) {
2321 		u32 rpup, rpupei;
2322 		u32 rpdown, rpdownei;
2323 
2324 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2325 		rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2326 		rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2327 		rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2328 		rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2329 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2330 
2331 		seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2332 			   rps_power_to_str(rps->power));
2333 		seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2334 			   rpup && rpupei ? 100 * rpup / rpupei : 0,
2335 			   rps->up_threshold);
2336 		seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2337 			   rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
2338 			   rps->down_threshold);
2339 	} else {
2340 		seq_puts(m, "\nRPS Autotuning inactive\n");
2341 	}
2342 
2343 	return 0;
2344 }
2345 
2346 static int i915_llc(struct seq_file *m, void *data)
2347 {
2348 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2349 	const bool edram = INTEL_GEN(dev_priv) > 8;
2350 
2351 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2352 	seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2353 		   intel_uncore_edram_size(dev_priv)/1024/1024);
2354 
2355 	return 0;
2356 }
2357 
2358 static int i915_huc_load_status_info(struct seq_file *m, void *data)
2359 {
2360 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2361 	struct drm_printer p;
2362 
2363 	if (!HAS_HUC_UCODE(dev_priv))
2364 		return 0;
2365 
2366 	p = drm_seq_file_printer(m);
2367 	intel_uc_fw_dump(&dev_priv->huc.fw, &p);
2368 
2369 	intel_runtime_pm_get(dev_priv);
2370 	seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
2371 	intel_runtime_pm_put(dev_priv);
2372 
2373 	return 0;
2374 }
2375 
2376 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2377 {
2378 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2379 	struct drm_printer p;
2380 	u32 tmp, i;
2381 
2382 	if (!HAS_GUC_UCODE(dev_priv))
2383 		return 0;
2384 
2385 	p = drm_seq_file_printer(m);
2386 	intel_uc_fw_dump(&dev_priv->guc.fw, &p);
2387 
2388 	intel_runtime_pm_get(dev_priv);
2389 
2390 	tmp = I915_READ(GUC_STATUS);
2391 
2392 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2393 	seq_printf(m, "\tBootrom status = 0x%x\n",
2394 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2395 	seq_printf(m, "\tuKernel status = 0x%x\n",
2396 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2397 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2398 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2399 	seq_puts(m, "\nScratch registers:\n");
2400 	for (i = 0; i < 16; i++)
2401 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2402 
2403 	intel_runtime_pm_put(dev_priv);
2404 
2405 	return 0;
2406 }
2407 
2408 static void i915_guc_log_info(struct seq_file *m,
2409 			      struct drm_i915_private *dev_priv)
2410 {
2411 	struct intel_guc *guc = &dev_priv->guc;
2412 
2413 	seq_puts(m, "\nGuC logging stats:\n");
2414 
2415 	seq_printf(m, "\tISR:   flush count %10u, overflow count %10u\n",
2416 		   guc->log.flush_count[GUC_ISR_LOG_BUFFER],
2417 		   guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
2418 
2419 	seq_printf(m, "\tDPC:   flush count %10u, overflow count %10u\n",
2420 		   guc->log.flush_count[GUC_DPC_LOG_BUFFER],
2421 		   guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
2422 
2423 	seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
2424 		   guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
2425 		   guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
2426 
2427 	seq_printf(m, "\tTotal flush interrupt count: %u\n",
2428 		   guc->log.flush_interrupt_count);
2429 
2430 	seq_printf(m, "\tCapture miss count: %u\n",
2431 		   guc->log.capture_miss_count);
2432 }
2433 
2434 static void i915_guc_client_info(struct seq_file *m,
2435 				 struct drm_i915_private *dev_priv,
2436 				 struct intel_guc_client *client)
2437 {
2438 	struct intel_engine_cs *engine;
2439 	enum intel_engine_id id;
2440 	uint64_t tot = 0;
2441 
2442 	seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
2443 		client->priority, client->stage_id, client->proc_desc_offset);
2444 	seq_printf(m, "\tDoorbell id %d, offset: 0x%lx\n",
2445 		client->doorbell_id, client->doorbell_offset);
2446 
2447 	for_each_engine(engine, dev_priv, id) {
2448 		u64 submissions = client->submissions[id];
2449 		tot += submissions;
2450 		seq_printf(m, "\tSubmissions: %llu %s\n",
2451 				submissions, engine->name);
2452 	}
2453 	seq_printf(m, "\tTotal: %llu\n", tot);
2454 }
2455 
2456 static bool check_guc_submission(struct seq_file *m)
2457 {
2458 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2459 	const struct intel_guc *guc = &dev_priv->guc;
2460 
2461 	if (!guc->execbuf_client) {
2462 		seq_printf(m, "GuC submission %s\n",
2463 			   HAS_GUC_SCHED(dev_priv) ?
2464 			   "disabled" :
2465 			   "not supported");
2466 		return false;
2467 	}
2468 
2469 	return true;
2470 }
2471 
2472 static int i915_guc_info(struct seq_file *m, void *data)
2473 {
2474 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2475 	const struct intel_guc *guc = &dev_priv->guc;
2476 
2477 	if (!check_guc_submission(m))
2478 		return 0;
2479 
2480 	seq_printf(m, "Doorbell map:\n");
2481 	seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
2482 	seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
2483 
2484 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
2485 	i915_guc_client_info(m, dev_priv, guc->execbuf_client);
2486 	seq_printf(m, "\nGuC preempt client @ %p:\n", guc->preempt_client);
2487 	i915_guc_client_info(m, dev_priv, guc->preempt_client);
2488 
2489 	i915_guc_log_info(m, dev_priv);
2490 
2491 	/* Add more as required ... */
2492 
2493 	return 0;
2494 }
2495 
2496 static int i915_guc_stage_pool(struct seq_file *m, void *data)
2497 {
2498 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2499 	const struct intel_guc *guc = &dev_priv->guc;
2500 	struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
2501 	struct intel_guc_client *client = guc->execbuf_client;
2502 	unsigned int tmp;
2503 	int index;
2504 
2505 	if (!check_guc_submission(m))
2506 		return 0;
2507 
2508 	for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
2509 		struct intel_engine_cs *engine;
2510 
2511 		if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
2512 			continue;
2513 
2514 		seq_printf(m, "GuC stage descriptor %u:\n", index);
2515 		seq_printf(m, "\tIndex: %u\n", desc->stage_id);
2516 		seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
2517 		seq_printf(m, "\tPriority: %d\n", desc->priority);
2518 		seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
2519 		seq_printf(m, "\tEngines used: 0x%x\n",
2520 			   desc->engines_used);
2521 		seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
2522 			   desc->db_trigger_phy,
2523 			   desc->db_trigger_cpu,
2524 			   desc->db_trigger_uk);
2525 		seq_printf(m, "\tProcess descriptor: 0x%x\n",
2526 			   desc->process_desc);
2527 		seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
2528 			   desc->wq_addr, desc->wq_size);
2529 		seq_putc(m, '\n');
2530 
2531 		for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
2532 			u32 guc_engine_id = engine->guc_id;
2533 			struct guc_execlist_context *lrc =
2534 						&desc->lrc[guc_engine_id];
2535 
2536 			seq_printf(m, "\t%s LRC:\n", engine->name);
2537 			seq_printf(m, "\t\tContext desc: 0x%x\n",
2538 				   lrc->context_desc);
2539 			seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
2540 			seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
2541 			seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
2542 			seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
2543 			seq_putc(m, '\n');
2544 		}
2545 	}
2546 
2547 	return 0;
2548 }
2549 
2550 static int i915_guc_log_dump(struct seq_file *m, void *data)
2551 {
2552 	struct drm_info_node *node = m->private;
2553 	struct drm_i915_private *dev_priv = node_to_i915(node);
2554 	bool dump_load_err = !!node->info_ent->data;
2555 	struct drm_i915_gem_object *obj = NULL;
2556 	u32 *log;
2557 	int i = 0;
2558 
2559 	if (dump_load_err)
2560 		obj = dev_priv->guc.load_err_log;
2561 	else if (dev_priv->guc.log.vma)
2562 		obj = dev_priv->guc.log.vma->obj;
2563 
2564 	if (!obj)
2565 		return 0;
2566 
2567 	log = i915_gem_object_pin_map(obj, I915_MAP_WC);
2568 	if (IS_ERR(log)) {
2569 		DRM_DEBUG("Failed to pin object\n");
2570 		seq_puts(m, "(log data unaccessible)\n");
2571 		return PTR_ERR(log);
2572 	}
2573 
2574 	for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
2575 		seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2576 			   *(log + i), *(log + i + 1),
2577 			   *(log + i + 2), *(log + i + 3));
2578 
2579 	seq_putc(m, '\n');
2580 
2581 	i915_gem_object_unpin_map(obj);
2582 
2583 	return 0;
2584 }
2585 
2586 static int i915_guc_log_control_get(void *data, u64 *val)
2587 {
2588 	struct drm_i915_private *dev_priv = data;
2589 
2590 	if (!dev_priv->guc.log.vma)
2591 		return -EINVAL;
2592 
2593 	*val = i915_modparams.guc_log_level;
2594 
2595 	return 0;
2596 }
2597 
2598 static int i915_guc_log_control_set(void *data, u64 val)
2599 {
2600 	struct drm_i915_private *dev_priv = data;
2601 	int ret;
2602 
2603 	if (!dev_priv->guc.log.vma)
2604 		return -EINVAL;
2605 
2606 	ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
2607 	if (ret)
2608 		return ret;
2609 
2610 	intel_runtime_pm_get(dev_priv);
2611 	ret = i915_guc_log_control(dev_priv, val);
2612 	intel_runtime_pm_put(dev_priv);
2613 
2614 	mutex_unlock(&dev_priv->drm.struct_mutex);
2615 	return ret;
2616 }
2617 
2618 DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
2619 			i915_guc_log_control_get, i915_guc_log_control_set,
2620 			"%lld\n");
2621 
2622 static const char *psr2_live_status(u32 val)
2623 {
2624 	static const char * const live_status[] = {
2625 		"IDLE",
2626 		"CAPTURE",
2627 		"CAPTURE_FS",
2628 		"SLEEP",
2629 		"BUFON_FW",
2630 		"ML_UP",
2631 		"SU_STANDBY",
2632 		"FAST_SLEEP",
2633 		"DEEP_SLEEP",
2634 		"BUF_ON",
2635 		"TG_ON"
2636 	};
2637 
2638 	val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
2639 	if (val < ARRAY_SIZE(live_status))
2640 		return live_status[val];
2641 
2642 	return "unknown";
2643 }
2644 
2645 static int i915_edp_psr_status(struct seq_file *m, void *data)
2646 {
2647 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2648 	u32 psrperf = 0;
2649 	u32 stat[3];
2650 	enum pipe pipe;
2651 	bool enabled = false;
2652 
2653 	if (!HAS_PSR(dev_priv)) {
2654 		seq_puts(m, "PSR not supported\n");
2655 		return 0;
2656 	}
2657 
2658 	intel_runtime_pm_get(dev_priv);
2659 
2660 	mutex_lock(&dev_priv->psr.lock);
2661 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2662 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2663 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2664 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2665 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2666 		   dev_priv->psr.busy_frontbuffer_bits);
2667 	seq_printf(m, "Re-enable work scheduled: %s\n",
2668 		   yesno(work_busy(&dev_priv->psr.work.work)));
2669 
2670 	if (HAS_DDI(dev_priv)) {
2671 		if (dev_priv->psr.psr2_support)
2672 			enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
2673 		else
2674 			enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2675 	} else {
2676 		for_each_pipe(dev_priv, pipe) {
2677 			enum transcoder cpu_transcoder =
2678 				intel_pipe_to_cpu_transcoder(dev_priv, pipe);
2679 			enum intel_display_power_domain power_domain;
2680 
2681 			power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
2682 			if (!intel_display_power_get_if_enabled(dev_priv,
2683 								power_domain))
2684 				continue;
2685 
2686 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2687 				VLV_EDP_PSR_CURR_STATE_MASK;
2688 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2689 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2690 				enabled = true;
2691 
2692 			intel_display_power_put(dev_priv, power_domain);
2693 		}
2694 	}
2695 
2696 	seq_printf(m, "Main link in standby mode: %s\n",
2697 		   yesno(dev_priv->psr.link_standby));
2698 
2699 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2700 
2701 	if (!HAS_DDI(dev_priv))
2702 		for_each_pipe(dev_priv, pipe) {
2703 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2704 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2705 				seq_printf(m, " pipe %c", pipe_name(pipe));
2706 		}
2707 	seq_puts(m, "\n");
2708 
2709 	/*
2710 	 * VLV/CHV PSR has no kind of performance counter
2711 	 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2712 	 */
2713 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2714 		psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2715 			EDP_PSR_PERF_CNT_MASK;
2716 
2717 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2718 	}
2719 	if (dev_priv->psr.psr2_support) {
2720 		u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
2721 
2722 		seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
2723 			   psr2, psr2_live_status(psr2));
2724 	}
2725 	mutex_unlock(&dev_priv->psr.lock);
2726 
2727 	intel_runtime_pm_put(dev_priv);
2728 	return 0;
2729 }
2730 
2731 static int i915_sink_crc(struct seq_file *m, void *data)
2732 {
2733 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2734 	struct drm_device *dev = &dev_priv->drm;
2735 	struct intel_connector *connector;
2736 	struct drm_connector_list_iter conn_iter;
2737 	struct intel_dp *intel_dp = NULL;
2738 	struct drm_modeset_acquire_ctx ctx;
2739 	int ret;
2740 	u8 crc[6];
2741 
2742 	drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
2743 
2744 	drm_connector_list_iter_begin(dev, &conn_iter);
2745 
2746 	for_each_intel_connector_iter(connector, &conn_iter) {
2747 		struct drm_crtc *crtc;
2748 		struct drm_connector_state *state;
2749 		struct intel_crtc_state *crtc_state;
2750 
2751 		if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2752 			continue;
2753 
2754 retry:
2755 		ret = drm_modeset_lock(&dev->mode_config.connection_mutex, &ctx);
2756 		if (ret)
2757 			goto err;
2758 
2759 		state = connector->base.state;
2760 		if (!state->best_encoder)
2761 			continue;
2762 
2763 		crtc = state->crtc;
2764 		ret = drm_modeset_lock(&crtc->mutex, &ctx);
2765 		if (ret)
2766 			goto err;
2767 
2768 		crtc_state = to_intel_crtc_state(crtc->state);
2769 		if (!crtc_state->base.active)
2770 			continue;
2771 
2772 		/*
2773 		 * We need to wait for all crtc updates to complete, to make
2774 		 * sure any pending modesets and plane updates are completed.
2775 		 */
2776 		if (crtc_state->base.commit) {
2777 			ret = wait_for_completion_interruptible(&crtc_state->base.commit->hw_done);
2778 
2779 			if (ret)
2780 				goto err;
2781 		}
2782 
2783 		intel_dp = enc_to_intel_dp(state->best_encoder);
2784 
2785 		ret = intel_dp_sink_crc(intel_dp, crtc_state, crc);
2786 		if (ret)
2787 			goto err;
2788 
2789 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2790 			   crc[0], crc[1], crc[2],
2791 			   crc[3], crc[4], crc[5]);
2792 		goto out;
2793 
2794 err:
2795 		if (ret == -EDEADLK) {
2796 			ret = drm_modeset_backoff(&ctx);
2797 			if (!ret)
2798 				goto retry;
2799 		}
2800 		goto out;
2801 	}
2802 	ret = -ENODEV;
2803 out:
2804 	drm_connector_list_iter_end(&conn_iter);
2805 	drm_modeset_drop_locks(&ctx);
2806 	drm_modeset_acquire_fini(&ctx);
2807 
2808 	return ret;
2809 }
2810 
2811 static int i915_energy_uJ(struct seq_file *m, void *data)
2812 {
2813 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2814 	unsigned long long power;
2815 	u32 units;
2816 
2817 	if (INTEL_GEN(dev_priv) < 6)
2818 		return -ENODEV;
2819 
2820 	intel_runtime_pm_get(dev_priv);
2821 
2822 	if (rdmsrl_safe(MSR_RAPL_POWER_UNIT, &power)) {
2823 		intel_runtime_pm_put(dev_priv);
2824 		return -ENODEV;
2825 	}
2826 
2827 	units = (power & 0x1f00) >> 8;
2828 	power = I915_READ(MCH_SECP_NRG_STTS);
2829 	power = (1000000 * power) >> units; /* convert to uJ */
2830 
2831 	intel_runtime_pm_put(dev_priv);
2832 
2833 	seq_printf(m, "%llu", power);
2834 
2835 	return 0;
2836 }
2837 
2838 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2839 {
2840 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2841 	struct pci_dev *pdev = dev_priv->drm.pdev;
2842 
2843 	if (!HAS_RUNTIME_PM(dev_priv))
2844 		seq_puts(m, "Runtime power management not supported\n");
2845 
2846 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2847 	seq_printf(m, "IRQs disabled: %s\n",
2848 		   yesno(!intel_irqs_enabled(dev_priv)));
2849 #ifdef CONFIG_PM
2850 	seq_printf(m, "Usage count: %d\n",
2851 		   atomic_read(&dev_priv->drm.dev->power.usage_count));
2852 #else
2853 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2854 #endif
2855 	seq_printf(m, "PCI device power state: %s [%d]\n",
2856 		   pci_power_name(pdev->current_state),
2857 		   pdev->current_state);
2858 
2859 	return 0;
2860 }
2861 
2862 static int i915_power_domain_info(struct seq_file *m, void *unused)
2863 {
2864 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2865 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2866 	int i;
2867 
2868 	mutex_lock(&power_domains->lock);
2869 
2870 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2871 	for (i = 0; i < power_domains->power_well_count; i++) {
2872 		struct i915_power_well *power_well;
2873 		enum intel_display_power_domain power_domain;
2874 
2875 		power_well = &power_domains->power_wells[i];
2876 		seq_printf(m, "%-25s %d\n", power_well->name,
2877 			   power_well->count);
2878 
2879 		for_each_power_domain(power_domain, power_well->domains)
2880 			seq_printf(m, "  %-23s %d\n",
2881 				 intel_display_power_domain_str(power_domain),
2882 				 power_domains->domain_use_count[power_domain]);
2883 	}
2884 
2885 	mutex_unlock(&power_domains->lock);
2886 
2887 	return 0;
2888 }
2889 
2890 static int i915_dmc_info(struct seq_file *m, void *unused)
2891 {
2892 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2893 	struct intel_csr *csr;
2894 
2895 	if (!HAS_CSR(dev_priv)) {
2896 		seq_puts(m, "not supported\n");
2897 		return 0;
2898 	}
2899 
2900 	csr = &dev_priv->csr;
2901 
2902 	intel_runtime_pm_get(dev_priv);
2903 
2904 	seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2905 	seq_printf(m, "path: %s\n", csr->fw_path);
2906 
2907 	if (!csr->dmc_payload)
2908 		goto out;
2909 
2910 	seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2911 		   CSR_VERSION_MINOR(csr->version));
2912 
2913 	if (IS_KABYLAKE(dev_priv) ||
2914 	    (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6))) {
2915 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2916 			   I915_READ(SKL_CSR_DC3_DC5_COUNT));
2917 		seq_printf(m, "DC5 -> DC6 count: %d\n",
2918 			   I915_READ(SKL_CSR_DC5_DC6_COUNT));
2919 	} else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2920 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2921 			   I915_READ(BXT_CSR_DC3_DC5_COUNT));
2922 	}
2923 
2924 out:
2925 	seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2926 	seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2927 	seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2928 
2929 	intel_runtime_pm_put(dev_priv);
2930 
2931 	return 0;
2932 }
2933 
2934 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2935 				 struct drm_display_mode *mode)
2936 {
2937 	int i;
2938 
2939 	for (i = 0; i < tabs; i++)
2940 		seq_putc(m, '\t');
2941 
2942 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2943 		   mode->base.id, mode->name,
2944 		   mode->vrefresh, mode->clock,
2945 		   mode->hdisplay, mode->hsync_start,
2946 		   mode->hsync_end, mode->htotal,
2947 		   mode->vdisplay, mode->vsync_start,
2948 		   mode->vsync_end, mode->vtotal,
2949 		   mode->type, mode->flags);
2950 }
2951 
2952 static void intel_encoder_info(struct seq_file *m,
2953 			       struct intel_crtc *intel_crtc,
2954 			       struct intel_encoder *intel_encoder)
2955 {
2956 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2957 	struct drm_device *dev = &dev_priv->drm;
2958 	struct drm_crtc *crtc = &intel_crtc->base;
2959 	struct intel_connector *intel_connector;
2960 	struct drm_encoder *encoder;
2961 
2962 	encoder = &intel_encoder->base;
2963 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2964 		   encoder->base.id, encoder->name);
2965 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2966 		struct drm_connector *connector = &intel_connector->base;
2967 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2968 			   connector->base.id,
2969 			   connector->name,
2970 			   drm_get_connector_status_name(connector->status));
2971 		if (connector->status == connector_status_connected) {
2972 			struct drm_display_mode *mode = &crtc->mode;
2973 			seq_printf(m, ", mode:\n");
2974 			intel_seq_print_mode(m, 2, mode);
2975 		} else {
2976 			seq_putc(m, '\n');
2977 		}
2978 	}
2979 }
2980 
2981 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2982 {
2983 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2984 	struct drm_device *dev = &dev_priv->drm;
2985 	struct drm_crtc *crtc = &intel_crtc->base;
2986 	struct intel_encoder *intel_encoder;
2987 	struct drm_plane_state *plane_state = crtc->primary->state;
2988 	struct drm_framebuffer *fb = plane_state->fb;
2989 
2990 	if (fb)
2991 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2992 			   fb->base.id, plane_state->src_x >> 16,
2993 			   plane_state->src_y >> 16, fb->width, fb->height);
2994 	else
2995 		seq_puts(m, "\tprimary plane disabled\n");
2996 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2997 		intel_encoder_info(m, intel_crtc, intel_encoder);
2998 }
2999 
3000 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
3001 {
3002 	struct drm_display_mode *mode = panel->fixed_mode;
3003 
3004 	seq_printf(m, "\tfixed mode:\n");
3005 	intel_seq_print_mode(m, 2, mode);
3006 }
3007 
3008 static void intel_dp_info(struct seq_file *m,
3009 			  struct intel_connector *intel_connector)
3010 {
3011 	struct intel_encoder *intel_encoder = intel_connector->encoder;
3012 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3013 
3014 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
3015 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
3016 	if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
3017 		intel_panel_info(m, &intel_connector->panel);
3018 
3019 	drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
3020 				&intel_dp->aux);
3021 }
3022 
3023 static void intel_dp_mst_info(struct seq_file *m,
3024 			  struct intel_connector *intel_connector)
3025 {
3026 	struct intel_encoder *intel_encoder = intel_connector->encoder;
3027 	struct intel_dp_mst_encoder *intel_mst =
3028 		enc_to_mst(&intel_encoder->base);
3029 	struct intel_digital_port *intel_dig_port = intel_mst->primary;
3030 	struct intel_dp *intel_dp = &intel_dig_port->dp;
3031 	bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
3032 					intel_connector->port);
3033 
3034 	seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
3035 }
3036 
3037 static void intel_hdmi_info(struct seq_file *m,
3038 			    struct intel_connector *intel_connector)
3039 {
3040 	struct intel_encoder *intel_encoder = intel_connector->encoder;
3041 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
3042 
3043 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
3044 }
3045 
3046 static void intel_lvds_info(struct seq_file *m,
3047 			    struct intel_connector *intel_connector)
3048 {
3049 	intel_panel_info(m, &intel_connector->panel);
3050 }
3051 
3052 static void intel_connector_info(struct seq_file *m,
3053 				 struct drm_connector *connector)
3054 {
3055 	struct intel_connector *intel_connector = to_intel_connector(connector);
3056 	struct intel_encoder *intel_encoder = intel_connector->encoder;
3057 	struct drm_display_mode *mode;
3058 
3059 	seq_printf(m, "connector %d: type %s, status: %s\n",
3060 		   connector->base.id, connector->name,
3061 		   drm_get_connector_status_name(connector->status));
3062 	if (connector->status == connector_status_connected) {
3063 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
3064 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
3065 			   connector->display_info.width_mm,
3066 			   connector->display_info.height_mm);
3067 		seq_printf(m, "\tsubpixel order: %s\n",
3068 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
3069 		seq_printf(m, "\tCEA rev: %d\n",
3070 			   connector->display_info.cea_rev);
3071 	}
3072 
3073 	if (!intel_encoder)
3074 		return;
3075 
3076 	switch (connector->connector_type) {
3077 	case DRM_MODE_CONNECTOR_DisplayPort:
3078 	case DRM_MODE_CONNECTOR_eDP:
3079 		if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
3080 			intel_dp_mst_info(m, intel_connector);
3081 		else
3082 			intel_dp_info(m, intel_connector);
3083 		break;
3084 	case DRM_MODE_CONNECTOR_LVDS:
3085 		if (intel_encoder->type == INTEL_OUTPUT_LVDS)
3086 			intel_lvds_info(m, intel_connector);
3087 		break;
3088 	case DRM_MODE_CONNECTOR_HDMIA:
3089 		if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
3090 		    intel_encoder->type == INTEL_OUTPUT_DDI)
3091 			intel_hdmi_info(m, intel_connector);
3092 		break;
3093 	default:
3094 		break;
3095 	}
3096 
3097 	seq_printf(m, "\tmodes:\n");
3098 	list_for_each_entry(mode, &connector->modes, head)
3099 		intel_seq_print_mode(m, 2, mode);
3100 }
3101 
3102 static const char *plane_type(enum drm_plane_type type)
3103 {
3104 	switch (type) {
3105 	case DRM_PLANE_TYPE_OVERLAY:
3106 		return "OVL";
3107 	case DRM_PLANE_TYPE_PRIMARY:
3108 		return "PRI";
3109 	case DRM_PLANE_TYPE_CURSOR:
3110 		return "CUR";
3111 	/*
3112 	 * Deliberately omitting default: to generate compiler warnings
3113 	 * when a new drm_plane_type gets added.
3114 	 */
3115 	}
3116 
3117 	return "unknown";
3118 }
3119 
3120 static const char *plane_rotation(unsigned int rotation)
3121 {
3122 	static char buf[48];
3123 	/*
3124 	 * According to doc only one DRM_MODE_ROTATE_ is allowed but this
3125 	 * will print them all to visualize if the values are misused
3126 	 */
3127 	snprintf(buf, sizeof(buf),
3128 		 "%s%s%s%s%s%s(0x%08x)",
3129 		 (rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
3130 		 (rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
3131 		 (rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
3132 		 (rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
3133 		 (rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
3134 		 (rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
3135 		 rotation);
3136 
3137 	return buf;
3138 }
3139 
3140 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3141 {
3142 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3143 	struct drm_device *dev = &dev_priv->drm;
3144 	struct intel_plane *intel_plane;
3145 
3146 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3147 		struct drm_plane_state *state;
3148 		struct drm_plane *plane = &intel_plane->base;
3149 		struct drm_format_name_buf format_name;
3150 
3151 		if (!plane->state) {
3152 			seq_puts(m, "plane->state is NULL!\n");
3153 			continue;
3154 		}
3155 
3156 		state = plane->state;
3157 
3158 		if (state->fb) {
3159 			drm_get_format_name(state->fb->format->format,
3160 					    &format_name);
3161 		} else {
3162 			sprintf(format_name.str, "N/A");
3163 		}
3164 
3165 		seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3166 			   plane->base.id,
3167 			   plane_type(intel_plane->base.type),
3168 			   state->crtc_x, state->crtc_y,
3169 			   state->crtc_w, state->crtc_h,
3170 			   (state->src_x >> 16),
3171 			   ((state->src_x & 0xffff) * 15625) >> 10,
3172 			   (state->src_y >> 16),
3173 			   ((state->src_y & 0xffff) * 15625) >> 10,
3174 			   (state->src_w >> 16),
3175 			   ((state->src_w & 0xffff) * 15625) >> 10,
3176 			   (state->src_h >> 16),
3177 			   ((state->src_h & 0xffff) * 15625) >> 10,
3178 			   format_name.str,
3179 			   plane_rotation(state->rotation));
3180 	}
3181 }
3182 
3183 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3184 {
3185 	struct intel_crtc_state *pipe_config;
3186 	int num_scalers = intel_crtc->num_scalers;
3187 	int i;
3188 
3189 	pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3190 
3191 	/* Not all platformas have a scaler */
3192 	if (num_scalers) {
3193 		seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3194 			   num_scalers,
3195 			   pipe_config->scaler_state.scaler_users,
3196 			   pipe_config->scaler_state.scaler_id);
3197 
3198 		for (i = 0; i < num_scalers; i++) {
3199 			struct intel_scaler *sc =
3200 					&pipe_config->scaler_state.scalers[i];
3201 
3202 			seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3203 				   i, yesno(sc->in_use), sc->mode);
3204 		}
3205 		seq_puts(m, "\n");
3206 	} else {
3207 		seq_puts(m, "\tNo scalers available on this platform\n");
3208 	}
3209 }
3210 
3211 static int i915_display_info(struct seq_file *m, void *unused)
3212 {
3213 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3214 	struct drm_device *dev = &dev_priv->drm;
3215 	struct intel_crtc *crtc;
3216 	struct drm_connector *connector;
3217 	struct drm_connector_list_iter conn_iter;
3218 
3219 	intel_runtime_pm_get(dev_priv);
3220 	seq_printf(m, "CRTC info\n");
3221 	seq_printf(m, "---------\n");
3222 	for_each_intel_crtc(dev, crtc) {
3223 		struct intel_crtc_state *pipe_config;
3224 
3225 		drm_modeset_lock(&crtc->base.mutex, NULL);
3226 		pipe_config = to_intel_crtc_state(crtc->base.state);
3227 
3228 		seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3229 			   crtc->base.base.id, pipe_name(crtc->pipe),
3230 			   yesno(pipe_config->base.active),
3231 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3232 			   yesno(pipe_config->dither), pipe_config->pipe_bpp);
3233 
3234 		if (pipe_config->base.active) {
3235 			struct intel_plane *cursor =
3236 				to_intel_plane(crtc->base.cursor);
3237 
3238 			intel_crtc_info(m, crtc);
3239 
3240 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
3241 				   yesno(cursor->base.state->visible),
3242 				   cursor->base.state->crtc_x,
3243 				   cursor->base.state->crtc_y,
3244 				   cursor->base.state->crtc_w,
3245 				   cursor->base.state->crtc_h,
3246 				   cursor->cursor.base);
3247 			intel_scaler_info(m, crtc);
3248 			intel_plane_info(m, crtc);
3249 		}
3250 
3251 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3252 			   yesno(!crtc->cpu_fifo_underrun_disabled),
3253 			   yesno(!crtc->pch_fifo_underrun_disabled));
3254 		drm_modeset_unlock(&crtc->base.mutex);
3255 	}
3256 
3257 	seq_printf(m, "\n");
3258 	seq_printf(m, "Connector info\n");
3259 	seq_printf(m, "--------------\n");
3260 	mutex_lock(&dev->mode_config.mutex);
3261 	drm_connector_list_iter_begin(dev, &conn_iter);
3262 	drm_for_each_connector_iter(connector, &conn_iter)
3263 		intel_connector_info(m, connector);
3264 	drm_connector_list_iter_end(&conn_iter);
3265 	mutex_unlock(&dev->mode_config.mutex);
3266 
3267 	intel_runtime_pm_put(dev_priv);
3268 
3269 	return 0;
3270 }
3271 
3272 static int i915_engine_info(struct seq_file *m, void *unused)
3273 {
3274 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3275 	struct intel_engine_cs *engine;
3276 	enum intel_engine_id id;
3277 	struct drm_printer p;
3278 
3279 	intel_runtime_pm_get(dev_priv);
3280 
3281 	seq_printf(m, "GT awake? %s\n",
3282 		   yesno(dev_priv->gt.awake));
3283 	seq_printf(m, "Global active requests: %d\n",
3284 		   dev_priv->gt.active_requests);
3285 	seq_printf(m, "CS timestamp frequency: %u kHz\n",
3286 		   dev_priv->info.cs_timestamp_frequency_khz);
3287 
3288 	p = drm_seq_file_printer(m);
3289 	for_each_engine(engine, dev_priv, id)
3290 		intel_engine_dump(engine, &p);
3291 
3292 	intel_runtime_pm_put(dev_priv);
3293 
3294 	return 0;
3295 }
3296 
3297 static int i915_shrinker_info(struct seq_file *m, void *unused)
3298 {
3299 	struct drm_i915_private *i915 = node_to_i915(m->private);
3300 
3301 	seq_printf(m, "seeks = %d\n", i915->mm.shrinker.seeks);
3302 	seq_printf(m, "batch = %lu\n", i915->mm.shrinker.batch);
3303 
3304 	return 0;
3305 }
3306 
3307 static int i915_semaphore_status(struct seq_file *m, void *unused)
3308 {
3309 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3310 	struct drm_device *dev = &dev_priv->drm;
3311 	struct intel_engine_cs *engine;
3312 	int num_rings = INTEL_INFO(dev_priv)->num_rings;
3313 	enum intel_engine_id id;
3314 	int j, ret;
3315 
3316 	if (!i915_modparams.semaphores) {
3317 		seq_puts(m, "Semaphores are disabled\n");
3318 		return 0;
3319 	}
3320 
3321 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3322 	if (ret)
3323 		return ret;
3324 	intel_runtime_pm_get(dev_priv);
3325 
3326 	if (IS_BROADWELL(dev_priv)) {
3327 		struct page *page;
3328 		uint64_t *seqno;
3329 
3330 		page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3331 
3332 		seqno = (uint64_t *)kmap_atomic(page);
3333 		for_each_engine(engine, dev_priv, id) {
3334 			uint64_t offset;
3335 
3336 			seq_printf(m, "%s\n", engine->name);
3337 
3338 			seq_puts(m, "  Last signal:");
3339 			for (j = 0; j < num_rings; j++) {
3340 				offset = id * I915_NUM_ENGINES + j;
3341 				seq_printf(m, "0x%08llx (0x%02llx) ",
3342 					   seqno[offset], offset * 8);
3343 			}
3344 			seq_putc(m, '\n');
3345 
3346 			seq_puts(m, "  Last wait:  ");
3347 			for (j = 0; j < num_rings; j++) {
3348 				offset = id + (j * I915_NUM_ENGINES);
3349 				seq_printf(m, "0x%08llx (0x%02llx) ",
3350 					   seqno[offset], offset * 8);
3351 			}
3352 			seq_putc(m, '\n');
3353 
3354 		}
3355 		kunmap_atomic(seqno);
3356 	} else {
3357 		seq_puts(m, "  Last signal:");
3358 		for_each_engine(engine, dev_priv, id)
3359 			for (j = 0; j < num_rings; j++)
3360 				seq_printf(m, "0x%08x\n",
3361 					   I915_READ(engine->semaphore.mbox.signal[j]));
3362 		seq_putc(m, '\n');
3363 	}
3364 
3365 	intel_runtime_pm_put(dev_priv);
3366 	mutex_unlock(&dev->struct_mutex);
3367 	return 0;
3368 }
3369 
3370 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3371 {
3372 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3373 	struct drm_device *dev = &dev_priv->drm;
3374 	int i;
3375 
3376 	drm_modeset_lock_all(dev);
3377 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3378 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3379 
3380 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3381 		seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3382 			   pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
3383 		seq_printf(m, " tracked hardware state:\n");
3384 		seq_printf(m, " dpll:    0x%08x\n", pll->state.hw_state.dpll);
3385 		seq_printf(m, " dpll_md: 0x%08x\n",
3386 			   pll->state.hw_state.dpll_md);
3387 		seq_printf(m, " fp0:     0x%08x\n", pll->state.hw_state.fp0);
3388 		seq_printf(m, " fp1:     0x%08x\n", pll->state.hw_state.fp1);
3389 		seq_printf(m, " wrpll:   0x%08x\n", pll->state.hw_state.wrpll);
3390 	}
3391 	drm_modeset_unlock_all(dev);
3392 
3393 	return 0;
3394 }
3395 
3396 static int i915_wa_registers(struct seq_file *m, void *unused)
3397 {
3398 	int i;
3399 	int ret;
3400 	struct intel_engine_cs *engine;
3401 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3402 	struct drm_device *dev = &dev_priv->drm;
3403 	struct i915_workarounds *workarounds = &dev_priv->workarounds;
3404 	enum intel_engine_id id;
3405 
3406 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3407 	if (ret)
3408 		return ret;
3409 
3410 	intel_runtime_pm_get(dev_priv);
3411 
3412 	seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3413 	for_each_engine(engine, dev_priv, id)
3414 		seq_printf(m, "HW whitelist count for %s: %d\n",
3415 			   engine->name, workarounds->hw_whitelist_count[id]);
3416 	for (i = 0; i < workarounds->count; ++i) {
3417 		i915_reg_t addr;
3418 		u32 mask, value, read;
3419 		bool ok;
3420 
3421 		addr = workarounds->reg[i].addr;
3422 		mask = workarounds->reg[i].mask;
3423 		value = workarounds->reg[i].value;
3424 		read = I915_READ(addr);
3425 		ok = (value & mask) == (read & mask);
3426 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3427 			   i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3428 	}
3429 
3430 	intel_runtime_pm_put(dev_priv);
3431 	mutex_unlock(&dev->struct_mutex);
3432 
3433 	return 0;
3434 }
3435 
3436 static int i915_ipc_status_show(struct seq_file *m, void *data)
3437 {
3438 	struct drm_i915_private *dev_priv = m->private;
3439 
3440 	seq_printf(m, "Isochronous Priority Control: %s\n",
3441 			yesno(dev_priv->ipc_enabled));
3442 	return 0;
3443 }
3444 
3445 static int i915_ipc_status_open(struct inode *inode, struct file *file)
3446 {
3447 	struct drm_i915_private *dev_priv = inode->i_private;
3448 
3449 	if (!HAS_IPC(dev_priv))
3450 		return -ENODEV;
3451 
3452 	return single_open(file, i915_ipc_status_show, dev_priv);
3453 }
3454 
3455 static ssize_t i915_ipc_status_write(struct file *file, const char __user *ubuf,
3456 				     size_t len, loff_t *offp)
3457 {
3458 	struct seq_file *m = file->private_data;
3459 	struct drm_i915_private *dev_priv = m->private;
3460 	int ret;
3461 	bool enable;
3462 
3463 	ret = kstrtobool_from_user(ubuf, len, &enable);
3464 	if (ret < 0)
3465 		return ret;
3466 
3467 	intel_runtime_pm_get(dev_priv);
3468 	if (!dev_priv->ipc_enabled && enable)
3469 		DRM_INFO("Enabling IPC: WM will be proper only after next commit\n");
3470 	dev_priv->wm.distrust_bios_wm = true;
3471 	dev_priv->ipc_enabled = enable;
3472 	intel_enable_ipc(dev_priv);
3473 	intel_runtime_pm_put(dev_priv);
3474 
3475 	return len;
3476 }
3477 
3478 static const struct file_operations i915_ipc_status_fops = {
3479 	.owner = THIS_MODULE,
3480 	.open = i915_ipc_status_open,
3481 	.read = seq_read,
3482 	.llseek = seq_lseek,
3483 	.release = single_release,
3484 	.write = i915_ipc_status_write
3485 };
3486 
3487 static int i915_ddb_info(struct seq_file *m, void *unused)
3488 {
3489 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3490 	struct drm_device *dev = &dev_priv->drm;
3491 	struct skl_ddb_allocation *ddb;
3492 	struct skl_ddb_entry *entry;
3493 	enum pipe pipe;
3494 	int plane;
3495 
3496 	if (INTEL_GEN(dev_priv) < 9)
3497 		return 0;
3498 
3499 	drm_modeset_lock_all(dev);
3500 
3501 	ddb = &dev_priv->wm.skl_hw.ddb;
3502 
3503 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3504 
3505 	for_each_pipe(dev_priv, pipe) {
3506 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3507 
3508 		for_each_universal_plane(dev_priv, pipe, plane) {
3509 			entry = &ddb->plane[pipe][plane];
3510 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3511 				   entry->start, entry->end,
3512 				   skl_ddb_entry_size(entry));
3513 		}
3514 
3515 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3516 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3517 			   entry->end, skl_ddb_entry_size(entry));
3518 	}
3519 
3520 	drm_modeset_unlock_all(dev);
3521 
3522 	return 0;
3523 }
3524 
3525 static void drrs_status_per_crtc(struct seq_file *m,
3526 				 struct drm_device *dev,
3527 				 struct intel_crtc *intel_crtc)
3528 {
3529 	struct drm_i915_private *dev_priv = to_i915(dev);
3530 	struct i915_drrs *drrs = &dev_priv->drrs;
3531 	int vrefresh = 0;
3532 	struct drm_connector *connector;
3533 	struct drm_connector_list_iter conn_iter;
3534 
3535 	drm_connector_list_iter_begin(dev, &conn_iter);
3536 	drm_for_each_connector_iter(connector, &conn_iter) {
3537 		if (connector->state->crtc != &intel_crtc->base)
3538 			continue;
3539 
3540 		seq_printf(m, "%s:\n", connector->name);
3541 	}
3542 	drm_connector_list_iter_end(&conn_iter);
3543 
3544 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3545 		seq_puts(m, "\tVBT: DRRS_type: Static");
3546 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3547 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3548 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3549 		seq_puts(m, "\tVBT: DRRS_type: None");
3550 	else
3551 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3552 
3553 	seq_puts(m, "\n\n");
3554 
3555 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3556 		struct intel_panel *panel;
3557 
3558 		mutex_lock(&drrs->mutex);
3559 		/* DRRS Supported */
3560 		seq_puts(m, "\tDRRS Supported: Yes\n");
3561 
3562 		/* disable_drrs() will make drrs->dp NULL */
3563 		if (!drrs->dp) {
3564 			seq_puts(m, "Idleness DRRS: Disabled");
3565 			mutex_unlock(&drrs->mutex);
3566 			return;
3567 		}
3568 
3569 		panel = &drrs->dp->attached_connector->panel;
3570 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3571 					drrs->busy_frontbuffer_bits);
3572 
3573 		seq_puts(m, "\n\t\t");
3574 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3575 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3576 			vrefresh = panel->fixed_mode->vrefresh;
3577 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3578 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3579 			vrefresh = panel->downclock_mode->vrefresh;
3580 		} else {
3581 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3582 						drrs->refresh_rate_type);
3583 			mutex_unlock(&drrs->mutex);
3584 			return;
3585 		}
3586 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3587 
3588 		seq_puts(m, "\n\t\t");
3589 		mutex_unlock(&drrs->mutex);
3590 	} else {
3591 		/* DRRS not supported. Print the VBT parameter*/
3592 		seq_puts(m, "\tDRRS Supported : No");
3593 	}
3594 	seq_puts(m, "\n");
3595 }
3596 
3597 static int i915_drrs_status(struct seq_file *m, void *unused)
3598 {
3599 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3600 	struct drm_device *dev = &dev_priv->drm;
3601 	struct intel_crtc *intel_crtc;
3602 	int active_crtc_cnt = 0;
3603 
3604 	drm_modeset_lock_all(dev);
3605 	for_each_intel_crtc(dev, intel_crtc) {
3606 		if (intel_crtc->base.state->active) {
3607 			active_crtc_cnt++;
3608 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3609 
3610 			drrs_status_per_crtc(m, dev, intel_crtc);
3611 		}
3612 	}
3613 	drm_modeset_unlock_all(dev);
3614 
3615 	if (!active_crtc_cnt)
3616 		seq_puts(m, "No active crtc found\n");
3617 
3618 	return 0;
3619 }
3620 
3621 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3622 {
3623 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3624 	struct drm_device *dev = &dev_priv->drm;
3625 	struct intel_encoder *intel_encoder;
3626 	struct intel_digital_port *intel_dig_port;
3627 	struct drm_connector *connector;
3628 	struct drm_connector_list_iter conn_iter;
3629 
3630 	drm_connector_list_iter_begin(dev, &conn_iter);
3631 	drm_for_each_connector_iter(connector, &conn_iter) {
3632 		if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3633 			continue;
3634 
3635 		intel_encoder = intel_attached_encoder(connector);
3636 		if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3637 			continue;
3638 
3639 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3640 		if (!intel_dig_port->dp.can_mst)
3641 			continue;
3642 
3643 		seq_printf(m, "MST Source Port %c\n",
3644 			   port_name(intel_dig_port->base.port));
3645 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3646 	}
3647 	drm_connector_list_iter_end(&conn_iter);
3648 
3649 	return 0;
3650 }
3651 
3652 static ssize_t i915_displayport_test_active_write(struct file *file,
3653 						  const char __user *ubuf,
3654 						  size_t len, loff_t *offp)
3655 {
3656 	char *input_buffer;
3657 	int status = 0;
3658 	struct drm_device *dev;
3659 	struct drm_connector *connector;
3660 	struct drm_connector_list_iter conn_iter;
3661 	struct intel_dp *intel_dp;
3662 	int val = 0;
3663 
3664 	dev = ((struct seq_file *)file->private_data)->private;
3665 
3666 	if (len == 0)
3667 		return 0;
3668 
3669 	input_buffer = memdup_user_nul(ubuf, len);
3670 	if (IS_ERR(input_buffer))
3671 		return PTR_ERR(input_buffer);
3672 
3673 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
3674 
3675 	drm_connector_list_iter_begin(dev, &conn_iter);
3676 	drm_for_each_connector_iter(connector, &conn_iter) {
3677 		struct intel_encoder *encoder;
3678 
3679 		if (connector->connector_type !=
3680 		    DRM_MODE_CONNECTOR_DisplayPort)
3681 			continue;
3682 
3683 		encoder = to_intel_encoder(connector->encoder);
3684 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3685 			continue;
3686 
3687 		if (encoder && connector->status == connector_status_connected) {
3688 			intel_dp = enc_to_intel_dp(&encoder->base);
3689 			status = kstrtoint(input_buffer, 10, &val);
3690 			if (status < 0)
3691 				break;
3692 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
3693 			/* To prevent erroneous activation of the compliance
3694 			 * testing code, only accept an actual value of 1 here
3695 			 */
3696 			if (val == 1)
3697 				intel_dp->compliance.test_active = 1;
3698 			else
3699 				intel_dp->compliance.test_active = 0;
3700 		}
3701 	}
3702 	drm_connector_list_iter_end(&conn_iter);
3703 	kfree(input_buffer);
3704 	if (status < 0)
3705 		return status;
3706 
3707 	*offp += len;
3708 	return len;
3709 }
3710 
3711 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
3712 {
3713 	struct drm_device *dev = m->private;
3714 	struct drm_connector *connector;
3715 	struct drm_connector_list_iter conn_iter;
3716 	struct intel_dp *intel_dp;
3717 
3718 	drm_connector_list_iter_begin(dev, &conn_iter);
3719 	drm_for_each_connector_iter(connector, &conn_iter) {
3720 		struct intel_encoder *encoder;
3721 
3722 		if (connector->connector_type !=
3723 		    DRM_MODE_CONNECTOR_DisplayPort)
3724 			continue;
3725 
3726 		encoder = to_intel_encoder(connector->encoder);
3727 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3728 			continue;
3729 
3730 		if (encoder && connector->status == connector_status_connected) {
3731 			intel_dp = enc_to_intel_dp(&encoder->base);
3732 			if (intel_dp->compliance.test_active)
3733 				seq_puts(m, "1");
3734 			else
3735 				seq_puts(m, "0");
3736 		} else
3737 			seq_puts(m, "0");
3738 	}
3739 	drm_connector_list_iter_end(&conn_iter);
3740 
3741 	return 0;
3742 }
3743 
3744 static int i915_displayport_test_active_open(struct inode *inode,
3745 					     struct file *file)
3746 {
3747 	struct drm_i915_private *dev_priv = inode->i_private;
3748 
3749 	return single_open(file, i915_displayport_test_active_show,
3750 			   &dev_priv->drm);
3751 }
3752 
3753 static const struct file_operations i915_displayport_test_active_fops = {
3754 	.owner = THIS_MODULE,
3755 	.open = i915_displayport_test_active_open,
3756 	.read = seq_read,
3757 	.llseek = seq_lseek,
3758 	.release = single_release,
3759 	.write = i915_displayport_test_active_write
3760 };
3761 
3762 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
3763 {
3764 	struct drm_device *dev = m->private;
3765 	struct drm_connector *connector;
3766 	struct drm_connector_list_iter conn_iter;
3767 	struct intel_dp *intel_dp;
3768 
3769 	drm_connector_list_iter_begin(dev, &conn_iter);
3770 	drm_for_each_connector_iter(connector, &conn_iter) {
3771 		struct intel_encoder *encoder;
3772 
3773 		if (connector->connector_type !=
3774 		    DRM_MODE_CONNECTOR_DisplayPort)
3775 			continue;
3776 
3777 		encoder = to_intel_encoder(connector->encoder);
3778 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3779 			continue;
3780 
3781 		if (encoder && connector->status == connector_status_connected) {
3782 			intel_dp = enc_to_intel_dp(&encoder->base);
3783 			if (intel_dp->compliance.test_type ==
3784 			    DP_TEST_LINK_EDID_READ)
3785 				seq_printf(m, "%lx",
3786 					   intel_dp->compliance.test_data.edid);
3787 			else if (intel_dp->compliance.test_type ==
3788 				 DP_TEST_LINK_VIDEO_PATTERN) {
3789 				seq_printf(m, "hdisplay: %d\n",
3790 					   intel_dp->compliance.test_data.hdisplay);
3791 				seq_printf(m, "vdisplay: %d\n",
3792 					   intel_dp->compliance.test_data.vdisplay);
3793 				seq_printf(m, "bpc: %u\n",
3794 					   intel_dp->compliance.test_data.bpc);
3795 			}
3796 		} else
3797 			seq_puts(m, "0");
3798 	}
3799 	drm_connector_list_iter_end(&conn_iter);
3800 
3801 	return 0;
3802 }
3803 static int i915_displayport_test_data_open(struct inode *inode,
3804 					   struct file *file)
3805 {
3806 	struct drm_i915_private *dev_priv = inode->i_private;
3807 
3808 	return single_open(file, i915_displayport_test_data_show,
3809 			   &dev_priv->drm);
3810 }
3811 
3812 static const struct file_operations i915_displayport_test_data_fops = {
3813 	.owner = THIS_MODULE,
3814 	.open = i915_displayport_test_data_open,
3815 	.read = seq_read,
3816 	.llseek = seq_lseek,
3817 	.release = single_release
3818 };
3819 
3820 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
3821 {
3822 	struct drm_device *dev = m->private;
3823 	struct drm_connector *connector;
3824 	struct drm_connector_list_iter conn_iter;
3825 	struct intel_dp *intel_dp;
3826 
3827 	drm_connector_list_iter_begin(dev, &conn_iter);
3828 	drm_for_each_connector_iter(connector, &conn_iter) {
3829 		struct intel_encoder *encoder;
3830 
3831 		if (connector->connector_type !=
3832 		    DRM_MODE_CONNECTOR_DisplayPort)
3833 			continue;
3834 
3835 		encoder = to_intel_encoder(connector->encoder);
3836 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3837 			continue;
3838 
3839 		if (encoder && connector->status == connector_status_connected) {
3840 			intel_dp = enc_to_intel_dp(&encoder->base);
3841 			seq_printf(m, "%02lx", intel_dp->compliance.test_type);
3842 		} else
3843 			seq_puts(m, "0");
3844 	}
3845 	drm_connector_list_iter_end(&conn_iter);
3846 
3847 	return 0;
3848 }
3849 
3850 static int i915_displayport_test_type_open(struct inode *inode,
3851 				       struct file *file)
3852 {
3853 	struct drm_i915_private *dev_priv = inode->i_private;
3854 
3855 	return single_open(file, i915_displayport_test_type_show,
3856 			   &dev_priv->drm);
3857 }
3858 
3859 static const struct file_operations i915_displayport_test_type_fops = {
3860 	.owner = THIS_MODULE,
3861 	.open = i915_displayport_test_type_open,
3862 	.read = seq_read,
3863 	.llseek = seq_lseek,
3864 	.release = single_release
3865 };
3866 
3867 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3868 {
3869 	struct drm_i915_private *dev_priv = m->private;
3870 	struct drm_device *dev = &dev_priv->drm;
3871 	int level;
3872 	int num_levels;
3873 
3874 	if (IS_CHERRYVIEW(dev_priv))
3875 		num_levels = 3;
3876 	else if (IS_VALLEYVIEW(dev_priv))
3877 		num_levels = 1;
3878 	else if (IS_G4X(dev_priv))
3879 		num_levels = 3;
3880 	else
3881 		num_levels = ilk_wm_max_level(dev_priv) + 1;
3882 
3883 	drm_modeset_lock_all(dev);
3884 
3885 	for (level = 0; level < num_levels; level++) {
3886 		unsigned int latency = wm[level];
3887 
3888 		/*
3889 		 * - WM1+ latency values in 0.5us units
3890 		 * - latencies are in us on gen9/vlv/chv
3891 		 */
3892 		if (INTEL_GEN(dev_priv) >= 9 ||
3893 		    IS_VALLEYVIEW(dev_priv) ||
3894 		    IS_CHERRYVIEW(dev_priv) ||
3895 		    IS_G4X(dev_priv))
3896 			latency *= 10;
3897 		else if (level > 0)
3898 			latency *= 5;
3899 
3900 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
3901 			   level, wm[level], latency / 10, latency % 10);
3902 	}
3903 
3904 	drm_modeset_unlock_all(dev);
3905 }
3906 
3907 static int pri_wm_latency_show(struct seq_file *m, void *data)
3908 {
3909 	struct drm_i915_private *dev_priv = m->private;
3910 	const uint16_t *latencies;
3911 
3912 	if (INTEL_GEN(dev_priv) >= 9)
3913 		latencies = dev_priv->wm.skl_latency;
3914 	else
3915 		latencies = dev_priv->wm.pri_latency;
3916 
3917 	wm_latency_show(m, latencies);
3918 
3919 	return 0;
3920 }
3921 
3922 static int spr_wm_latency_show(struct seq_file *m, void *data)
3923 {
3924 	struct drm_i915_private *dev_priv = m->private;
3925 	const uint16_t *latencies;
3926 
3927 	if (INTEL_GEN(dev_priv) >= 9)
3928 		latencies = dev_priv->wm.skl_latency;
3929 	else
3930 		latencies = dev_priv->wm.spr_latency;
3931 
3932 	wm_latency_show(m, latencies);
3933 
3934 	return 0;
3935 }
3936 
3937 static int cur_wm_latency_show(struct seq_file *m, void *data)
3938 {
3939 	struct drm_i915_private *dev_priv = m->private;
3940 	const uint16_t *latencies;
3941 
3942 	if (INTEL_GEN(dev_priv) >= 9)
3943 		latencies = dev_priv->wm.skl_latency;
3944 	else
3945 		latencies = dev_priv->wm.cur_latency;
3946 
3947 	wm_latency_show(m, latencies);
3948 
3949 	return 0;
3950 }
3951 
3952 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3953 {
3954 	struct drm_i915_private *dev_priv = inode->i_private;
3955 
3956 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
3957 		return -ENODEV;
3958 
3959 	return single_open(file, pri_wm_latency_show, dev_priv);
3960 }
3961 
3962 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3963 {
3964 	struct drm_i915_private *dev_priv = inode->i_private;
3965 
3966 	if (HAS_GMCH_DISPLAY(dev_priv))
3967 		return -ENODEV;
3968 
3969 	return single_open(file, spr_wm_latency_show, dev_priv);
3970 }
3971 
3972 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3973 {
3974 	struct drm_i915_private *dev_priv = inode->i_private;
3975 
3976 	if (HAS_GMCH_DISPLAY(dev_priv))
3977 		return -ENODEV;
3978 
3979 	return single_open(file, cur_wm_latency_show, dev_priv);
3980 }
3981 
3982 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3983 				size_t len, loff_t *offp, uint16_t wm[8])
3984 {
3985 	struct seq_file *m = file->private_data;
3986 	struct drm_i915_private *dev_priv = m->private;
3987 	struct drm_device *dev = &dev_priv->drm;
3988 	uint16_t new[8] = { 0 };
3989 	int num_levels;
3990 	int level;
3991 	int ret;
3992 	char tmp[32];
3993 
3994 	if (IS_CHERRYVIEW(dev_priv))
3995 		num_levels = 3;
3996 	else if (IS_VALLEYVIEW(dev_priv))
3997 		num_levels = 1;
3998 	else if (IS_G4X(dev_priv))
3999 		num_levels = 3;
4000 	else
4001 		num_levels = ilk_wm_max_level(dev_priv) + 1;
4002 
4003 	if (len >= sizeof(tmp))
4004 		return -EINVAL;
4005 
4006 	if (copy_from_user(tmp, ubuf, len))
4007 		return -EFAULT;
4008 
4009 	tmp[len] = '\0';
4010 
4011 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4012 		     &new[0], &new[1], &new[2], &new[3],
4013 		     &new[4], &new[5], &new[6], &new[7]);
4014 	if (ret != num_levels)
4015 		return -EINVAL;
4016 
4017 	drm_modeset_lock_all(dev);
4018 
4019 	for (level = 0; level < num_levels; level++)
4020 		wm[level] = new[level];
4021 
4022 	drm_modeset_unlock_all(dev);
4023 
4024 	return len;
4025 }
4026 
4027 
4028 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4029 				    size_t len, loff_t *offp)
4030 {
4031 	struct seq_file *m = file->private_data;
4032 	struct drm_i915_private *dev_priv = m->private;
4033 	uint16_t *latencies;
4034 
4035 	if (INTEL_GEN(dev_priv) >= 9)
4036 		latencies = dev_priv->wm.skl_latency;
4037 	else
4038 		latencies = dev_priv->wm.pri_latency;
4039 
4040 	return wm_latency_write(file, ubuf, len, offp, latencies);
4041 }
4042 
4043 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4044 				    size_t len, loff_t *offp)
4045 {
4046 	struct seq_file *m = file->private_data;
4047 	struct drm_i915_private *dev_priv = m->private;
4048 	uint16_t *latencies;
4049 
4050 	if (INTEL_GEN(dev_priv) >= 9)
4051 		latencies = dev_priv->wm.skl_latency;
4052 	else
4053 		latencies = dev_priv->wm.spr_latency;
4054 
4055 	return wm_latency_write(file, ubuf, len, offp, latencies);
4056 }
4057 
4058 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4059 				    size_t len, loff_t *offp)
4060 {
4061 	struct seq_file *m = file->private_data;
4062 	struct drm_i915_private *dev_priv = m->private;
4063 	uint16_t *latencies;
4064 
4065 	if (INTEL_GEN(dev_priv) >= 9)
4066 		latencies = dev_priv->wm.skl_latency;
4067 	else
4068 		latencies = dev_priv->wm.cur_latency;
4069 
4070 	return wm_latency_write(file, ubuf, len, offp, latencies);
4071 }
4072 
4073 static const struct file_operations i915_pri_wm_latency_fops = {
4074 	.owner = THIS_MODULE,
4075 	.open = pri_wm_latency_open,
4076 	.read = seq_read,
4077 	.llseek = seq_lseek,
4078 	.release = single_release,
4079 	.write = pri_wm_latency_write
4080 };
4081 
4082 static const struct file_operations i915_spr_wm_latency_fops = {
4083 	.owner = THIS_MODULE,
4084 	.open = spr_wm_latency_open,
4085 	.read = seq_read,
4086 	.llseek = seq_lseek,
4087 	.release = single_release,
4088 	.write = spr_wm_latency_write
4089 };
4090 
4091 static const struct file_operations i915_cur_wm_latency_fops = {
4092 	.owner = THIS_MODULE,
4093 	.open = cur_wm_latency_open,
4094 	.read = seq_read,
4095 	.llseek = seq_lseek,
4096 	.release = single_release,
4097 	.write = cur_wm_latency_write
4098 };
4099 
4100 static int
4101 i915_wedged_get(void *data, u64 *val)
4102 {
4103 	struct drm_i915_private *dev_priv = data;
4104 
4105 	*val = i915_terminally_wedged(&dev_priv->gpu_error);
4106 
4107 	return 0;
4108 }
4109 
4110 static int
4111 i915_wedged_set(void *data, u64 val)
4112 {
4113 	struct drm_i915_private *i915 = data;
4114 	struct intel_engine_cs *engine;
4115 	unsigned int tmp;
4116 
4117 	/*
4118 	 * There is no safeguard against this debugfs entry colliding
4119 	 * with the hangcheck calling same i915_handle_error() in
4120 	 * parallel, causing an explosion. For now we assume that the
4121 	 * test harness is responsible enough not to inject gpu hangs
4122 	 * while it is writing to 'i915_wedged'
4123 	 */
4124 
4125 	if (i915_reset_backoff(&i915->gpu_error))
4126 		return -EAGAIN;
4127 
4128 	for_each_engine_masked(engine, i915, val, tmp) {
4129 		engine->hangcheck.seqno = intel_engine_get_seqno(engine);
4130 		engine->hangcheck.stalled = true;
4131 	}
4132 
4133 	i915_handle_error(i915, val, "Manually setting wedged to %llu", val);
4134 
4135 	wait_on_bit(&i915->gpu_error.flags,
4136 		    I915_RESET_HANDOFF,
4137 		    TASK_UNINTERRUPTIBLE);
4138 
4139 	return 0;
4140 }
4141 
4142 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4143 			i915_wedged_get, i915_wedged_set,
4144 			"%llu\n");
4145 
4146 static int
4147 fault_irq_set(struct drm_i915_private *i915,
4148 	      unsigned long *irq,
4149 	      unsigned long val)
4150 {
4151 	int err;
4152 
4153 	err = mutex_lock_interruptible(&i915->drm.struct_mutex);
4154 	if (err)
4155 		return err;
4156 
4157 	err = i915_gem_wait_for_idle(i915,
4158 				     I915_WAIT_LOCKED |
4159 				     I915_WAIT_INTERRUPTIBLE);
4160 	if (err)
4161 		goto err_unlock;
4162 
4163 	*irq = val;
4164 	mutex_unlock(&i915->drm.struct_mutex);
4165 
4166 	/* Flush idle worker to disarm irq */
4167 	drain_delayed_work(&i915->gt.idle_work);
4168 
4169 	return 0;
4170 
4171 err_unlock:
4172 	mutex_unlock(&i915->drm.struct_mutex);
4173 	return err;
4174 }
4175 
4176 static int
4177 i915_ring_missed_irq_get(void *data, u64 *val)
4178 {
4179 	struct drm_i915_private *dev_priv = data;
4180 
4181 	*val = dev_priv->gpu_error.missed_irq_rings;
4182 	return 0;
4183 }
4184 
4185 static int
4186 i915_ring_missed_irq_set(void *data, u64 val)
4187 {
4188 	struct drm_i915_private *i915 = data;
4189 
4190 	return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
4191 }
4192 
4193 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4194 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4195 			"0x%08llx\n");
4196 
4197 static int
4198 i915_ring_test_irq_get(void *data, u64 *val)
4199 {
4200 	struct drm_i915_private *dev_priv = data;
4201 
4202 	*val = dev_priv->gpu_error.test_irq_rings;
4203 
4204 	return 0;
4205 }
4206 
4207 static int
4208 i915_ring_test_irq_set(void *data, u64 val)
4209 {
4210 	struct drm_i915_private *i915 = data;
4211 
4212 	val &= INTEL_INFO(i915)->ring_mask;
4213 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4214 
4215 	return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
4216 }
4217 
4218 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4219 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4220 			"0x%08llx\n");
4221 
4222 #define DROP_UNBOUND	BIT(0)
4223 #define DROP_BOUND	BIT(1)
4224 #define DROP_RETIRE	BIT(2)
4225 #define DROP_ACTIVE	BIT(3)
4226 #define DROP_FREED	BIT(4)
4227 #define DROP_SHRINK_ALL	BIT(5)
4228 #define DROP_IDLE	BIT(6)
4229 #define DROP_ALL (DROP_UNBOUND	| \
4230 		  DROP_BOUND	| \
4231 		  DROP_RETIRE	| \
4232 		  DROP_ACTIVE	| \
4233 		  DROP_FREED	| \
4234 		  DROP_SHRINK_ALL |\
4235 		  DROP_IDLE)
4236 static int
4237 i915_drop_caches_get(void *data, u64 *val)
4238 {
4239 	*val = DROP_ALL;
4240 
4241 	return 0;
4242 }
4243 
4244 static int
4245 i915_drop_caches_set(void *data, u64 val)
4246 {
4247 	struct drm_i915_private *dev_priv = data;
4248 	struct drm_device *dev = &dev_priv->drm;
4249 	int ret = 0;
4250 
4251 	DRM_DEBUG("Dropping caches: 0x%08llx [0x%08llx]\n",
4252 		  val, val & DROP_ALL);
4253 
4254 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4255 	 * on ioctls on -EAGAIN. */
4256 	if (val & (DROP_ACTIVE | DROP_RETIRE)) {
4257 		ret = mutex_lock_interruptible(&dev->struct_mutex);
4258 		if (ret)
4259 			return ret;
4260 
4261 		if (val & DROP_ACTIVE)
4262 			ret = i915_gem_wait_for_idle(dev_priv,
4263 						     I915_WAIT_INTERRUPTIBLE |
4264 						     I915_WAIT_LOCKED);
4265 
4266 		if (val & DROP_RETIRE)
4267 			i915_gem_retire_requests(dev_priv);
4268 
4269 		mutex_unlock(&dev->struct_mutex);
4270 	}
4271 
4272 	fs_reclaim_acquire(GFP_KERNEL);
4273 	if (val & DROP_BOUND)
4274 		i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_BOUND);
4275 
4276 	if (val & DROP_UNBOUND)
4277 		i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_UNBOUND);
4278 
4279 	if (val & DROP_SHRINK_ALL)
4280 		i915_gem_shrink_all(dev_priv);
4281 	fs_reclaim_release(GFP_KERNEL);
4282 
4283 	if (val & DROP_IDLE)
4284 		drain_delayed_work(&dev_priv->gt.idle_work);
4285 
4286 	if (val & DROP_FREED) {
4287 		synchronize_rcu();
4288 		i915_gem_drain_freed_objects(dev_priv);
4289 	}
4290 
4291 	return ret;
4292 }
4293 
4294 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4295 			i915_drop_caches_get, i915_drop_caches_set,
4296 			"0x%08llx\n");
4297 
4298 static int
4299 i915_max_freq_get(void *data, u64 *val)
4300 {
4301 	struct drm_i915_private *dev_priv = data;
4302 
4303 	if (INTEL_GEN(dev_priv) < 6)
4304 		return -ENODEV;
4305 
4306 	*val = intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.max_freq_softlimit);
4307 	return 0;
4308 }
4309 
4310 static int
4311 i915_max_freq_set(void *data, u64 val)
4312 {
4313 	struct drm_i915_private *dev_priv = data;
4314 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4315 	u32 hw_max, hw_min;
4316 	int ret;
4317 
4318 	if (INTEL_GEN(dev_priv) < 6)
4319 		return -ENODEV;
4320 
4321 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4322 
4323 	ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
4324 	if (ret)
4325 		return ret;
4326 
4327 	/*
4328 	 * Turbo will still be enabled, but won't go above the set value.
4329 	 */
4330 	val = intel_freq_opcode(dev_priv, val);
4331 
4332 	hw_max = rps->max_freq;
4333 	hw_min = rps->min_freq;
4334 
4335 	if (val < hw_min || val > hw_max || val < rps->min_freq_softlimit) {
4336 		mutex_unlock(&dev_priv->pcu_lock);
4337 		return -EINVAL;
4338 	}
4339 
4340 	rps->max_freq_softlimit = val;
4341 
4342 	if (intel_set_rps(dev_priv, val))
4343 		DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4344 
4345 	mutex_unlock(&dev_priv->pcu_lock);
4346 
4347 	return 0;
4348 }
4349 
4350 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4351 			i915_max_freq_get, i915_max_freq_set,
4352 			"%llu\n");
4353 
4354 static int
4355 i915_min_freq_get(void *data, u64 *val)
4356 {
4357 	struct drm_i915_private *dev_priv = data;
4358 
4359 	if (INTEL_GEN(dev_priv) < 6)
4360 		return -ENODEV;
4361 
4362 	*val = intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.min_freq_softlimit);
4363 	return 0;
4364 }
4365 
4366 static int
4367 i915_min_freq_set(void *data, u64 val)
4368 {
4369 	struct drm_i915_private *dev_priv = data;
4370 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4371 	u32 hw_max, hw_min;
4372 	int ret;
4373 
4374 	if (INTEL_GEN(dev_priv) < 6)
4375 		return -ENODEV;
4376 
4377 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4378 
4379 	ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
4380 	if (ret)
4381 		return ret;
4382 
4383 	/*
4384 	 * Turbo will still be enabled, but won't go below the set value.
4385 	 */
4386 	val = intel_freq_opcode(dev_priv, val);
4387 
4388 	hw_max = rps->max_freq;
4389 	hw_min = rps->min_freq;
4390 
4391 	if (val < hw_min ||
4392 	    val > hw_max || val > rps->max_freq_softlimit) {
4393 		mutex_unlock(&dev_priv->pcu_lock);
4394 		return -EINVAL;
4395 	}
4396 
4397 	rps->min_freq_softlimit = val;
4398 
4399 	if (intel_set_rps(dev_priv, val))
4400 		DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4401 
4402 	mutex_unlock(&dev_priv->pcu_lock);
4403 
4404 	return 0;
4405 }
4406 
4407 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4408 			i915_min_freq_get, i915_min_freq_set,
4409 			"%llu\n");
4410 
4411 static int
4412 i915_cache_sharing_get(void *data, u64 *val)
4413 {
4414 	struct drm_i915_private *dev_priv = data;
4415 	u32 snpcr;
4416 
4417 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4418 		return -ENODEV;
4419 
4420 	intel_runtime_pm_get(dev_priv);
4421 
4422 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4423 
4424 	intel_runtime_pm_put(dev_priv);
4425 
4426 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4427 
4428 	return 0;
4429 }
4430 
4431 static int
4432 i915_cache_sharing_set(void *data, u64 val)
4433 {
4434 	struct drm_i915_private *dev_priv = data;
4435 	u32 snpcr;
4436 
4437 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4438 		return -ENODEV;
4439 
4440 	if (val > 3)
4441 		return -EINVAL;
4442 
4443 	intel_runtime_pm_get(dev_priv);
4444 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4445 
4446 	/* Update the cache sharing policy here as well */
4447 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4448 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
4449 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4450 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4451 
4452 	intel_runtime_pm_put(dev_priv);
4453 	return 0;
4454 }
4455 
4456 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4457 			i915_cache_sharing_get, i915_cache_sharing_set,
4458 			"%llu\n");
4459 
4460 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
4461 					  struct sseu_dev_info *sseu)
4462 {
4463 	int ss_max = 2;
4464 	int ss;
4465 	u32 sig1[ss_max], sig2[ss_max];
4466 
4467 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4468 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4469 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4470 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4471 
4472 	for (ss = 0; ss < ss_max; ss++) {
4473 		unsigned int eu_cnt;
4474 
4475 		if (sig1[ss] & CHV_SS_PG_ENABLE)
4476 			/* skip disabled subslice */
4477 			continue;
4478 
4479 		sseu->slice_mask = BIT(0);
4480 		sseu->subslice_mask |= BIT(ss);
4481 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4482 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4483 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4484 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4485 		sseu->eu_total += eu_cnt;
4486 		sseu->eu_per_subslice = max_t(unsigned int,
4487 					      sseu->eu_per_subslice, eu_cnt);
4488 	}
4489 }
4490 
4491 static void gen10_sseu_device_status(struct drm_i915_private *dev_priv,
4492 				     struct sseu_dev_info *sseu)
4493 {
4494 	const struct intel_device_info *info = INTEL_INFO(dev_priv);
4495 	int s_max = 6, ss_max = 4;
4496 	int s, ss;
4497 	u32 s_reg[s_max], eu_reg[2 * s_max], eu_mask[2];
4498 
4499 	for (s = 0; s < s_max; s++) {
4500 		/*
4501 		 * FIXME: Valid SS Mask respects the spec and read
4502 		 * only valid bits for those registers, excluding reserverd
4503 		 * although this seems wrong because it would leave many
4504 		 * subslices without ACK.
4505 		 */
4506 		s_reg[s] = I915_READ(GEN10_SLICE_PGCTL_ACK(s)) &
4507 			GEN10_PGCTL_VALID_SS_MASK(s);
4508 		eu_reg[2 * s] = I915_READ(GEN10_SS01_EU_PGCTL_ACK(s));
4509 		eu_reg[2 * s + 1] = I915_READ(GEN10_SS23_EU_PGCTL_ACK(s));
4510 	}
4511 
4512 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4513 		     GEN9_PGCTL_SSA_EU19_ACK |
4514 		     GEN9_PGCTL_SSA_EU210_ACK |
4515 		     GEN9_PGCTL_SSA_EU311_ACK;
4516 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4517 		     GEN9_PGCTL_SSB_EU19_ACK |
4518 		     GEN9_PGCTL_SSB_EU210_ACK |
4519 		     GEN9_PGCTL_SSB_EU311_ACK;
4520 
4521 	for (s = 0; s < s_max; s++) {
4522 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4523 			/* skip disabled slice */
4524 			continue;
4525 
4526 		sseu->slice_mask |= BIT(s);
4527 		sseu->subslice_mask = info->sseu.subslice_mask;
4528 
4529 		for (ss = 0; ss < ss_max; ss++) {
4530 			unsigned int eu_cnt;
4531 
4532 			if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4533 				/* skip disabled subslice */
4534 				continue;
4535 
4536 			eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
4537 					       eu_mask[ss % 2]);
4538 			sseu->eu_total += eu_cnt;
4539 			sseu->eu_per_subslice = max_t(unsigned int,
4540 						      sseu->eu_per_subslice,
4541 						      eu_cnt);
4542 		}
4543 	}
4544 }
4545 
4546 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
4547 				    struct sseu_dev_info *sseu)
4548 {
4549 	int s_max = 3, ss_max = 4;
4550 	int s, ss;
4551 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4552 
4553 	/* BXT has a single slice and at most 3 subslices. */
4554 	if (IS_GEN9_LP(dev_priv)) {
4555 		s_max = 1;
4556 		ss_max = 3;
4557 	}
4558 
4559 	for (s = 0; s < s_max; s++) {
4560 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4561 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4562 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4563 	}
4564 
4565 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4566 		     GEN9_PGCTL_SSA_EU19_ACK |
4567 		     GEN9_PGCTL_SSA_EU210_ACK |
4568 		     GEN9_PGCTL_SSA_EU311_ACK;
4569 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4570 		     GEN9_PGCTL_SSB_EU19_ACK |
4571 		     GEN9_PGCTL_SSB_EU210_ACK |
4572 		     GEN9_PGCTL_SSB_EU311_ACK;
4573 
4574 	for (s = 0; s < s_max; s++) {
4575 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4576 			/* skip disabled slice */
4577 			continue;
4578 
4579 		sseu->slice_mask |= BIT(s);
4580 
4581 		if (IS_GEN9_BC(dev_priv))
4582 			sseu->subslice_mask =
4583 				INTEL_INFO(dev_priv)->sseu.subslice_mask;
4584 
4585 		for (ss = 0; ss < ss_max; ss++) {
4586 			unsigned int eu_cnt;
4587 
4588 			if (IS_GEN9_LP(dev_priv)) {
4589 				if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4590 					/* skip disabled subslice */
4591 					continue;
4592 
4593 				sseu->subslice_mask |= BIT(ss);
4594 			}
4595 
4596 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4597 					       eu_mask[ss%2]);
4598 			sseu->eu_total += eu_cnt;
4599 			sseu->eu_per_subslice = max_t(unsigned int,
4600 						      sseu->eu_per_subslice,
4601 						      eu_cnt);
4602 		}
4603 	}
4604 }
4605 
4606 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
4607 					 struct sseu_dev_info *sseu)
4608 {
4609 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
4610 	int s;
4611 
4612 	sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
4613 
4614 	if (sseu->slice_mask) {
4615 		sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
4616 		sseu->eu_per_subslice =
4617 				INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
4618 		sseu->eu_total = sseu->eu_per_subslice *
4619 				 sseu_subslice_total(sseu);
4620 
4621 		/* subtract fused off EU(s) from enabled slice(s) */
4622 		for (s = 0; s < fls(sseu->slice_mask); s++) {
4623 			u8 subslice_7eu =
4624 				INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
4625 
4626 			sseu->eu_total -= hweight8(subslice_7eu);
4627 		}
4628 	}
4629 }
4630 
4631 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
4632 				 const struct sseu_dev_info *sseu)
4633 {
4634 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4635 	const char *type = is_available_info ? "Available" : "Enabled";
4636 
4637 	seq_printf(m, "  %s Slice Mask: %04x\n", type,
4638 		   sseu->slice_mask);
4639 	seq_printf(m, "  %s Slice Total: %u\n", type,
4640 		   hweight8(sseu->slice_mask));
4641 	seq_printf(m, "  %s Subslice Total: %u\n", type,
4642 		   sseu_subslice_total(sseu));
4643 	seq_printf(m, "  %s Subslice Mask: %04x\n", type,
4644 		   sseu->subslice_mask);
4645 	seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
4646 		   hweight8(sseu->subslice_mask));
4647 	seq_printf(m, "  %s EU Total: %u\n", type,
4648 		   sseu->eu_total);
4649 	seq_printf(m, "  %s EU Per Subslice: %u\n", type,
4650 		   sseu->eu_per_subslice);
4651 
4652 	if (!is_available_info)
4653 		return;
4654 
4655 	seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
4656 	if (HAS_POOLED_EU(dev_priv))
4657 		seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
4658 
4659 	seq_printf(m, "  Has Slice Power Gating: %s\n",
4660 		   yesno(sseu->has_slice_pg));
4661 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
4662 		   yesno(sseu->has_subslice_pg));
4663 	seq_printf(m, "  Has EU Power Gating: %s\n",
4664 		   yesno(sseu->has_eu_pg));
4665 }
4666 
4667 static int i915_sseu_status(struct seq_file *m, void *unused)
4668 {
4669 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4670 	struct sseu_dev_info sseu;
4671 
4672 	if (INTEL_GEN(dev_priv) < 8)
4673 		return -ENODEV;
4674 
4675 	seq_puts(m, "SSEU Device Info\n");
4676 	i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
4677 
4678 	seq_puts(m, "SSEU Device Status\n");
4679 	memset(&sseu, 0, sizeof(sseu));
4680 
4681 	intel_runtime_pm_get(dev_priv);
4682 
4683 	if (IS_CHERRYVIEW(dev_priv)) {
4684 		cherryview_sseu_device_status(dev_priv, &sseu);
4685 	} else if (IS_BROADWELL(dev_priv)) {
4686 		broadwell_sseu_device_status(dev_priv, &sseu);
4687 	} else if (IS_GEN9(dev_priv)) {
4688 		gen9_sseu_device_status(dev_priv, &sseu);
4689 	} else if (INTEL_GEN(dev_priv) >= 10) {
4690 		gen10_sseu_device_status(dev_priv, &sseu);
4691 	}
4692 
4693 	intel_runtime_pm_put(dev_priv);
4694 
4695 	i915_print_sseu_info(m, false, &sseu);
4696 
4697 	return 0;
4698 }
4699 
4700 static int i915_forcewake_open(struct inode *inode, struct file *file)
4701 {
4702 	struct drm_i915_private *i915 = inode->i_private;
4703 
4704 	if (INTEL_GEN(i915) < 6)
4705 		return 0;
4706 
4707 	intel_runtime_pm_get(i915);
4708 	intel_uncore_forcewake_user_get(i915);
4709 
4710 	return 0;
4711 }
4712 
4713 static int i915_forcewake_release(struct inode *inode, struct file *file)
4714 {
4715 	struct drm_i915_private *i915 = inode->i_private;
4716 
4717 	if (INTEL_GEN(i915) < 6)
4718 		return 0;
4719 
4720 	intel_uncore_forcewake_user_put(i915);
4721 	intel_runtime_pm_put(i915);
4722 
4723 	return 0;
4724 }
4725 
4726 static const struct file_operations i915_forcewake_fops = {
4727 	.owner = THIS_MODULE,
4728 	.open = i915_forcewake_open,
4729 	.release = i915_forcewake_release,
4730 };
4731 
4732 static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
4733 {
4734 	struct drm_i915_private *dev_priv = m->private;
4735 	struct i915_hotplug *hotplug = &dev_priv->hotplug;
4736 
4737 	seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
4738 	seq_printf(m, "Detected: %s\n",
4739 		   yesno(delayed_work_pending(&hotplug->reenable_work)));
4740 
4741 	return 0;
4742 }
4743 
4744 static ssize_t i915_hpd_storm_ctl_write(struct file *file,
4745 					const char __user *ubuf, size_t len,
4746 					loff_t *offp)
4747 {
4748 	struct seq_file *m = file->private_data;
4749 	struct drm_i915_private *dev_priv = m->private;
4750 	struct i915_hotplug *hotplug = &dev_priv->hotplug;
4751 	unsigned int new_threshold;
4752 	int i;
4753 	char *newline;
4754 	char tmp[16];
4755 
4756 	if (len >= sizeof(tmp))
4757 		return -EINVAL;
4758 
4759 	if (copy_from_user(tmp, ubuf, len))
4760 		return -EFAULT;
4761 
4762 	tmp[len] = '\0';
4763 
4764 	/* Strip newline, if any */
4765 	newline = strchr(tmp, '\n');
4766 	if (newline)
4767 		*newline = '\0';
4768 
4769 	if (strcmp(tmp, "reset") == 0)
4770 		new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4771 	else if (kstrtouint(tmp, 10, &new_threshold) != 0)
4772 		return -EINVAL;
4773 
4774 	if (new_threshold > 0)
4775 		DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
4776 			      new_threshold);
4777 	else
4778 		DRM_DEBUG_KMS("Disabling HPD storm detection\n");
4779 
4780 	spin_lock_irq(&dev_priv->irq_lock);
4781 	hotplug->hpd_storm_threshold = new_threshold;
4782 	/* Reset the HPD storm stats so we don't accidentally trigger a storm */
4783 	for_each_hpd_pin(i)
4784 		hotplug->stats[i].count = 0;
4785 	spin_unlock_irq(&dev_priv->irq_lock);
4786 
4787 	/* Re-enable hpd immediately if we were in an irq storm */
4788 	flush_delayed_work(&dev_priv->hotplug.reenable_work);
4789 
4790 	return len;
4791 }
4792 
4793 static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
4794 {
4795 	return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
4796 }
4797 
4798 static const struct file_operations i915_hpd_storm_ctl_fops = {
4799 	.owner = THIS_MODULE,
4800 	.open = i915_hpd_storm_ctl_open,
4801 	.read = seq_read,
4802 	.llseek = seq_lseek,
4803 	.release = single_release,
4804 	.write = i915_hpd_storm_ctl_write
4805 };
4806 
4807 static const struct drm_info_list i915_debugfs_list[] = {
4808 	{"i915_capabilities", i915_capabilities, 0},
4809 	{"i915_gem_objects", i915_gem_object_info, 0},
4810 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
4811 	{"i915_gem_stolen", i915_gem_stolen_list_info },
4812 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
4813 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4814 	{"i915_gem_interrupt", i915_interrupt_info, 0},
4815 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4816 	{"i915_guc_info", i915_guc_info, 0},
4817 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
4818 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
4819 	{"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
4820 	{"i915_guc_stage_pool", i915_guc_stage_pool, 0},
4821 	{"i915_huc_load_status", i915_huc_load_status_info, 0},
4822 	{"i915_frequency_info", i915_frequency_info, 0},
4823 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
4824 	{"i915_reset_info", i915_reset_info, 0},
4825 	{"i915_drpc_info", i915_drpc_info, 0},
4826 	{"i915_emon_status", i915_emon_status, 0},
4827 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
4828 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
4829 	{"i915_fbc_status", i915_fbc_status, 0},
4830 	{"i915_ips_status", i915_ips_status, 0},
4831 	{"i915_sr_status", i915_sr_status, 0},
4832 	{"i915_opregion", i915_opregion, 0},
4833 	{"i915_vbt", i915_vbt, 0},
4834 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4835 	{"i915_context_status", i915_context_status, 0},
4836 	{"i915_dump_lrc", i915_dump_lrc, 0},
4837 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
4838 	{"i915_swizzle_info", i915_swizzle_info, 0},
4839 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
4840 	{"i915_llc", i915_llc, 0},
4841 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
4842 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
4843 	{"i915_energy_uJ", i915_energy_uJ, 0},
4844 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
4845 	{"i915_power_domain_info", i915_power_domain_info, 0},
4846 	{"i915_dmc_info", i915_dmc_info, 0},
4847 	{"i915_display_info", i915_display_info, 0},
4848 	{"i915_engine_info", i915_engine_info, 0},
4849 	{"i915_shrinker_info", i915_shrinker_info, 0},
4850 	{"i915_semaphore_status", i915_semaphore_status, 0},
4851 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4852 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
4853 	{"i915_wa_registers", i915_wa_registers, 0},
4854 	{"i915_ddb_info", i915_ddb_info, 0},
4855 	{"i915_sseu_status", i915_sseu_status, 0},
4856 	{"i915_drrs_status", i915_drrs_status, 0},
4857 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
4858 };
4859 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4860 
4861 static const struct i915_debugfs_files {
4862 	const char *name;
4863 	const struct file_operations *fops;
4864 } i915_debugfs_files[] = {
4865 	{"i915_wedged", &i915_wedged_fops},
4866 	{"i915_max_freq", &i915_max_freq_fops},
4867 	{"i915_min_freq", &i915_min_freq_fops},
4868 	{"i915_cache_sharing", &i915_cache_sharing_fops},
4869 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4870 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
4871 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
4872 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
4873 	{"i915_error_state", &i915_error_state_fops},
4874 	{"i915_gpu_info", &i915_gpu_info_fops},
4875 #endif
4876 	{"i915_next_seqno", &i915_next_seqno_fops},
4877 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4878 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4879 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4880 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4881 	{"i915_fbc_false_color", &i915_fbc_false_color_fops},
4882 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
4883 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
4884 	{"i915_dp_test_active", &i915_displayport_test_active_fops},
4885 	{"i915_guc_log_control", &i915_guc_log_control_fops},
4886 	{"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops},
4887 	{"i915_ipc_status", &i915_ipc_status_fops}
4888 };
4889 
4890 int i915_debugfs_register(struct drm_i915_private *dev_priv)
4891 {
4892 	struct drm_minor *minor = dev_priv->drm.primary;
4893 	struct dentry *ent;
4894 	int ret, i;
4895 
4896 	ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
4897 				  minor->debugfs_root, to_i915(minor->dev),
4898 				  &i915_forcewake_fops);
4899 	if (!ent)
4900 		return -ENOMEM;
4901 
4902 	ret = intel_pipe_crc_create(minor);
4903 	if (ret)
4904 		return ret;
4905 
4906 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4907 		ent = debugfs_create_file(i915_debugfs_files[i].name,
4908 					  S_IRUGO | S_IWUSR,
4909 					  minor->debugfs_root,
4910 					  to_i915(minor->dev),
4911 					  i915_debugfs_files[i].fops);
4912 		if (!ent)
4913 			return -ENOMEM;
4914 	}
4915 
4916 	return drm_debugfs_create_files(i915_debugfs_list,
4917 					I915_DEBUGFS_ENTRIES,
4918 					minor->debugfs_root, minor);
4919 }
4920 
4921 struct dpcd_block {
4922 	/* DPCD dump start address. */
4923 	unsigned int offset;
4924 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
4925 	unsigned int end;
4926 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
4927 	size_t size;
4928 	/* Only valid for eDP. */
4929 	bool edp;
4930 };
4931 
4932 static const struct dpcd_block i915_dpcd_debug[] = {
4933 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
4934 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
4935 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
4936 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
4937 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
4938 	{ .offset = DP_SET_POWER },
4939 	{ .offset = DP_EDP_DPCD_REV },
4940 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
4941 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
4942 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
4943 };
4944 
4945 static int i915_dpcd_show(struct seq_file *m, void *data)
4946 {
4947 	struct drm_connector *connector = m->private;
4948 	struct intel_dp *intel_dp =
4949 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4950 	uint8_t buf[16];
4951 	ssize_t err;
4952 	int i;
4953 
4954 	if (connector->status != connector_status_connected)
4955 		return -ENODEV;
4956 
4957 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
4958 		const struct dpcd_block *b = &i915_dpcd_debug[i];
4959 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
4960 
4961 		if (b->edp &&
4962 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
4963 			continue;
4964 
4965 		/* low tech for now */
4966 		if (WARN_ON(size > sizeof(buf)))
4967 			continue;
4968 
4969 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
4970 		if (err <= 0) {
4971 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
4972 				  size, b->offset, err);
4973 			continue;
4974 		}
4975 
4976 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
4977 	}
4978 
4979 	return 0;
4980 }
4981 
4982 static int i915_dpcd_open(struct inode *inode, struct file *file)
4983 {
4984 	return single_open(file, i915_dpcd_show, inode->i_private);
4985 }
4986 
4987 static const struct file_operations i915_dpcd_fops = {
4988 	.owner = THIS_MODULE,
4989 	.open = i915_dpcd_open,
4990 	.read = seq_read,
4991 	.llseek = seq_lseek,
4992 	.release = single_release,
4993 };
4994 
4995 static int i915_panel_show(struct seq_file *m, void *data)
4996 {
4997 	struct drm_connector *connector = m->private;
4998 	struct intel_dp *intel_dp =
4999 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5000 
5001 	if (connector->status != connector_status_connected)
5002 		return -ENODEV;
5003 
5004 	seq_printf(m, "Panel power up delay: %d\n",
5005 		   intel_dp->panel_power_up_delay);
5006 	seq_printf(m, "Panel power down delay: %d\n",
5007 		   intel_dp->panel_power_down_delay);
5008 	seq_printf(m, "Backlight on delay: %d\n",
5009 		   intel_dp->backlight_on_delay);
5010 	seq_printf(m, "Backlight off delay: %d\n",
5011 		   intel_dp->backlight_off_delay);
5012 
5013 	return 0;
5014 }
5015 
5016 static int i915_panel_open(struct inode *inode, struct file *file)
5017 {
5018 	return single_open(file, i915_panel_show, inode->i_private);
5019 }
5020 
5021 static const struct file_operations i915_panel_fops = {
5022 	.owner = THIS_MODULE,
5023 	.open = i915_panel_open,
5024 	.read = seq_read,
5025 	.llseek = seq_lseek,
5026 	.release = single_release,
5027 };
5028 
5029 /**
5030  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5031  * @connector: pointer to a registered drm_connector
5032  *
5033  * Cleanup will be done by drm_connector_unregister() through a call to
5034  * drm_debugfs_connector_remove().
5035  *
5036  * Returns 0 on success, negative error codes on error.
5037  */
5038 int i915_debugfs_connector_add(struct drm_connector *connector)
5039 {
5040 	struct dentry *root = connector->debugfs_entry;
5041 
5042 	/* The connector must have been registered beforehands. */
5043 	if (!root)
5044 		return -ENODEV;
5045 
5046 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5047 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5048 		debugfs_create_file("i915_dpcd", S_IRUGO, root,
5049 				    connector, &i915_dpcd_fops);
5050 
5051 	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5052 		debugfs_create_file("i915_panel_timings", S_IRUGO, root,
5053 				    connector, &i915_panel_fops);
5054 
5055 	return 0;
5056 }
5057