1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * Keith Packard <keithp@keithp.com> 26 * 27 */ 28 29 #include <linux/seq_file.h> 30 #include <linux/circ_buf.h> 31 #include <linux/ctype.h> 32 #include <linux/debugfs.h> 33 #include <linux/slab.h> 34 #include <linux/export.h> 35 #include <linux/list_sort.h> 36 #include <asm/msr-index.h> 37 #include <drm/drmP.h> 38 #include "intel_drv.h" 39 #include "intel_ringbuffer.h" 40 #include <drm/i915_drm.h> 41 #include "i915_drv.h" 42 43 enum { 44 ACTIVE_LIST, 45 INACTIVE_LIST, 46 PINNED_LIST, 47 }; 48 49 static const char *yesno(int v) 50 { 51 return v ? "yes" : "no"; 52 } 53 54 /* As the drm_debugfs_init() routines are called before dev->dev_private is 55 * allocated we need to hook into the minor for release. */ 56 static int 57 drm_add_fake_info_node(struct drm_minor *minor, 58 struct dentry *ent, 59 const void *key) 60 { 61 struct drm_info_node *node; 62 63 node = kmalloc(sizeof(*node), GFP_KERNEL); 64 if (node == NULL) { 65 debugfs_remove(ent); 66 return -ENOMEM; 67 } 68 69 node->minor = minor; 70 node->dent = ent; 71 node->info_ent = (void *) key; 72 73 mutex_lock(&minor->debugfs_lock); 74 list_add(&node->list, &minor->debugfs_list); 75 mutex_unlock(&minor->debugfs_lock); 76 77 return 0; 78 } 79 80 static int i915_capabilities(struct seq_file *m, void *data) 81 { 82 struct drm_info_node *node = m->private; 83 struct drm_device *dev = node->minor->dev; 84 const struct intel_device_info *info = INTEL_INFO(dev); 85 86 seq_printf(m, "gen: %d\n", info->gen); 87 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev)); 88 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x)) 89 #define SEP_SEMICOLON ; 90 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON); 91 #undef PRINT_FLAG 92 #undef SEP_SEMICOLON 93 94 return 0; 95 } 96 97 static const char *get_pin_flag(struct drm_i915_gem_object *obj) 98 { 99 if (i915_gem_obj_is_pinned(obj)) 100 return "p"; 101 else 102 return " "; 103 } 104 105 static const char *get_tiling_flag(struct drm_i915_gem_object *obj) 106 { 107 switch (obj->tiling_mode) { 108 default: 109 case I915_TILING_NONE: return " "; 110 case I915_TILING_X: return "X"; 111 case I915_TILING_Y: return "Y"; 112 } 113 } 114 115 static inline const char *get_global_flag(struct drm_i915_gem_object *obj) 116 { 117 return i915_gem_obj_to_ggtt(obj) ? "g" : " "; 118 } 119 120 static void 121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj) 122 { 123 struct i915_vma *vma; 124 int pin_count = 0; 125 126 seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %x %x %x%s%s%s", 127 &obj->base, 128 get_pin_flag(obj), 129 get_tiling_flag(obj), 130 get_global_flag(obj), 131 obj->base.size / 1024, 132 obj->base.read_domains, 133 obj->base.write_domain, 134 i915_gem_request_get_seqno(obj->last_read_req), 135 i915_gem_request_get_seqno(obj->last_write_req), 136 i915_gem_request_get_seqno(obj->last_fenced_req), 137 i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level), 138 obj->dirty ? " dirty" : "", 139 obj->madv == I915_MADV_DONTNEED ? " purgeable" : ""); 140 if (obj->base.name) 141 seq_printf(m, " (name: %d)", obj->base.name); 142 list_for_each_entry(vma, &obj->vma_list, vma_link) { 143 if (vma->pin_count > 0) 144 pin_count++; 145 } 146 seq_printf(m, " (pinned x %d)", pin_count); 147 if (obj->pin_display) 148 seq_printf(m, " (display)"); 149 if (obj->fence_reg != I915_FENCE_REG_NONE) 150 seq_printf(m, " (fence: %d)", obj->fence_reg); 151 list_for_each_entry(vma, &obj->vma_list, vma_link) { 152 if (!i915_is_ggtt(vma->vm)) 153 seq_puts(m, " (pp"); 154 else 155 seq_puts(m, " (g"); 156 seq_printf(m, "gtt offset: %08llx, size: %08llx, type: %u)", 157 vma->node.start, vma->node.size, 158 vma->ggtt_view.type); 159 } 160 if (obj->stolen) 161 seq_printf(m, " (stolen: %08llx)", obj->stolen->start); 162 if (obj->pin_mappable || obj->fault_mappable) { 163 char s[3], *t = s; 164 if (obj->pin_mappable) 165 *t++ = 'p'; 166 if (obj->fault_mappable) 167 *t++ = 'f'; 168 *t = '\0'; 169 seq_printf(m, " (%s mappable)", s); 170 } 171 if (obj->last_read_req != NULL) 172 seq_printf(m, " (%s)", 173 i915_gem_request_get_ring(obj->last_read_req)->name); 174 if (obj->frontbuffer_bits) 175 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits); 176 } 177 178 static void describe_ctx(struct seq_file *m, struct intel_context *ctx) 179 { 180 seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i'); 181 seq_putc(m, ctx->remap_slice ? 'R' : 'r'); 182 seq_putc(m, ' '); 183 } 184 185 static int i915_gem_object_list_info(struct seq_file *m, void *data) 186 { 187 struct drm_info_node *node = m->private; 188 uintptr_t list = (uintptr_t) node->info_ent->data; 189 struct list_head *head; 190 struct drm_device *dev = node->minor->dev; 191 struct drm_i915_private *dev_priv = dev->dev_private; 192 struct i915_address_space *vm = &dev_priv->gtt.base; 193 struct i915_vma *vma; 194 size_t total_obj_size, total_gtt_size; 195 int count, ret; 196 197 ret = mutex_lock_interruptible(&dev->struct_mutex); 198 if (ret) 199 return ret; 200 201 /* FIXME: the user of this interface might want more than just GGTT */ 202 switch (list) { 203 case ACTIVE_LIST: 204 seq_puts(m, "Active:\n"); 205 head = &vm->active_list; 206 break; 207 case INACTIVE_LIST: 208 seq_puts(m, "Inactive:\n"); 209 head = &vm->inactive_list; 210 break; 211 default: 212 mutex_unlock(&dev->struct_mutex); 213 return -EINVAL; 214 } 215 216 total_obj_size = total_gtt_size = count = 0; 217 list_for_each_entry(vma, head, mm_list) { 218 seq_printf(m, " "); 219 describe_obj(m, vma->obj); 220 seq_printf(m, "\n"); 221 total_obj_size += vma->obj->base.size; 222 total_gtt_size += vma->node.size; 223 count++; 224 } 225 mutex_unlock(&dev->struct_mutex); 226 227 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n", 228 count, total_obj_size, total_gtt_size); 229 return 0; 230 } 231 232 static int obj_rank_by_stolen(void *priv, 233 struct list_head *A, struct list_head *B) 234 { 235 struct drm_i915_gem_object *a = 236 container_of(A, struct drm_i915_gem_object, obj_exec_link); 237 struct drm_i915_gem_object *b = 238 container_of(B, struct drm_i915_gem_object, obj_exec_link); 239 240 return a->stolen->start - b->stolen->start; 241 } 242 243 static int i915_gem_stolen_list_info(struct seq_file *m, void *data) 244 { 245 struct drm_info_node *node = m->private; 246 struct drm_device *dev = node->minor->dev; 247 struct drm_i915_private *dev_priv = dev->dev_private; 248 struct drm_i915_gem_object *obj; 249 size_t total_obj_size, total_gtt_size; 250 LIST_HEAD(stolen); 251 int count, ret; 252 253 ret = mutex_lock_interruptible(&dev->struct_mutex); 254 if (ret) 255 return ret; 256 257 total_obj_size = total_gtt_size = count = 0; 258 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 259 if (obj->stolen == NULL) 260 continue; 261 262 list_add(&obj->obj_exec_link, &stolen); 263 264 total_obj_size += obj->base.size; 265 total_gtt_size += i915_gem_obj_ggtt_size(obj); 266 count++; 267 } 268 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) { 269 if (obj->stolen == NULL) 270 continue; 271 272 list_add(&obj->obj_exec_link, &stolen); 273 274 total_obj_size += obj->base.size; 275 count++; 276 } 277 list_sort(NULL, &stolen, obj_rank_by_stolen); 278 seq_puts(m, "Stolen:\n"); 279 while (!list_empty(&stolen)) { 280 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link); 281 seq_puts(m, " "); 282 describe_obj(m, obj); 283 seq_putc(m, '\n'); 284 list_del_init(&obj->obj_exec_link); 285 } 286 mutex_unlock(&dev->struct_mutex); 287 288 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n", 289 count, total_obj_size, total_gtt_size); 290 return 0; 291 } 292 293 #define count_objects(list, member) do { \ 294 list_for_each_entry(obj, list, member) { \ 295 size += i915_gem_obj_ggtt_size(obj); \ 296 ++count; \ 297 if (obj->map_and_fenceable) { \ 298 mappable_size += i915_gem_obj_ggtt_size(obj); \ 299 ++mappable_count; \ 300 } \ 301 } \ 302 } while (0) 303 304 struct file_stats { 305 struct drm_i915_file_private *file_priv; 306 int count; 307 size_t total, unbound; 308 size_t global, shared; 309 size_t active, inactive; 310 }; 311 312 static int per_file_stats(int id, void *ptr, void *data) 313 { 314 struct drm_i915_gem_object *obj = ptr; 315 struct file_stats *stats = data; 316 struct i915_vma *vma; 317 318 stats->count++; 319 stats->total += obj->base.size; 320 321 if (obj->base.name || obj->base.dma_buf) 322 stats->shared += obj->base.size; 323 324 if (USES_FULL_PPGTT(obj->base.dev)) { 325 list_for_each_entry(vma, &obj->vma_list, vma_link) { 326 struct i915_hw_ppgtt *ppgtt; 327 328 if (!drm_mm_node_allocated(&vma->node)) 329 continue; 330 331 if (i915_is_ggtt(vma->vm)) { 332 stats->global += obj->base.size; 333 continue; 334 } 335 336 ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base); 337 if (ppgtt->file_priv != stats->file_priv) 338 continue; 339 340 if (obj->active) /* XXX per-vma statistic */ 341 stats->active += obj->base.size; 342 else 343 stats->inactive += obj->base.size; 344 345 return 0; 346 } 347 } else { 348 if (i915_gem_obj_ggtt_bound(obj)) { 349 stats->global += obj->base.size; 350 if (obj->active) 351 stats->active += obj->base.size; 352 else 353 stats->inactive += obj->base.size; 354 return 0; 355 } 356 } 357 358 if (!list_empty(&obj->global_list)) 359 stats->unbound += obj->base.size; 360 361 return 0; 362 } 363 364 #define print_file_stats(m, name, stats) \ 365 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n", \ 366 name, \ 367 stats.count, \ 368 stats.total, \ 369 stats.active, \ 370 stats.inactive, \ 371 stats.global, \ 372 stats.shared, \ 373 stats.unbound) 374 375 static void print_batch_pool_stats(struct seq_file *m, 376 struct drm_i915_private *dev_priv) 377 { 378 struct drm_i915_gem_object *obj; 379 struct file_stats stats; 380 381 memset(&stats, 0, sizeof(stats)); 382 383 list_for_each_entry(obj, 384 &dev_priv->mm.batch_pool.cache_list, 385 batch_pool_list) 386 per_file_stats(0, obj, &stats); 387 388 print_file_stats(m, "batch pool", stats); 389 } 390 391 #define count_vmas(list, member) do { \ 392 list_for_each_entry(vma, list, member) { \ 393 size += i915_gem_obj_ggtt_size(vma->obj); \ 394 ++count; \ 395 if (vma->obj->map_and_fenceable) { \ 396 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \ 397 ++mappable_count; \ 398 } \ 399 } \ 400 } while (0) 401 402 static int i915_gem_object_info(struct seq_file *m, void* data) 403 { 404 struct drm_info_node *node = m->private; 405 struct drm_device *dev = node->minor->dev; 406 struct drm_i915_private *dev_priv = dev->dev_private; 407 u32 count, mappable_count, purgeable_count; 408 size_t size, mappable_size, purgeable_size; 409 struct drm_i915_gem_object *obj; 410 struct i915_address_space *vm = &dev_priv->gtt.base; 411 struct drm_file *file; 412 struct i915_vma *vma; 413 int ret; 414 415 ret = mutex_lock_interruptible(&dev->struct_mutex); 416 if (ret) 417 return ret; 418 419 seq_printf(m, "%u objects, %zu bytes\n", 420 dev_priv->mm.object_count, 421 dev_priv->mm.object_memory); 422 423 size = count = mappable_size = mappable_count = 0; 424 count_objects(&dev_priv->mm.bound_list, global_list); 425 seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n", 426 count, mappable_count, size, mappable_size); 427 428 size = count = mappable_size = mappable_count = 0; 429 count_vmas(&vm->active_list, mm_list); 430 seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n", 431 count, mappable_count, size, mappable_size); 432 433 size = count = mappable_size = mappable_count = 0; 434 count_vmas(&vm->inactive_list, mm_list); 435 seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n", 436 count, mappable_count, size, mappable_size); 437 438 size = count = purgeable_size = purgeable_count = 0; 439 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) { 440 size += obj->base.size, ++count; 441 if (obj->madv == I915_MADV_DONTNEED) 442 purgeable_size += obj->base.size, ++purgeable_count; 443 } 444 seq_printf(m, "%u unbound objects, %zu bytes\n", count, size); 445 446 size = count = mappable_size = mappable_count = 0; 447 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 448 if (obj->fault_mappable) { 449 size += i915_gem_obj_ggtt_size(obj); 450 ++count; 451 } 452 if (obj->pin_mappable) { 453 mappable_size += i915_gem_obj_ggtt_size(obj); 454 ++mappable_count; 455 } 456 if (obj->madv == I915_MADV_DONTNEED) { 457 purgeable_size += obj->base.size; 458 ++purgeable_count; 459 } 460 } 461 seq_printf(m, "%u purgeable objects, %zu bytes\n", 462 purgeable_count, purgeable_size); 463 seq_printf(m, "%u pinned mappable objects, %zu bytes\n", 464 mappable_count, mappable_size); 465 seq_printf(m, "%u fault mappable objects, %zu bytes\n", 466 count, size); 467 468 seq_printf(m, "%zu [%lu] gtt total\n", 469 dev_priv->gtt.base.total, 470 dev_priv->gtt.mappable_end - dev_priv->gtt.base.start); 471 472 seq_putc(m, '\n'); 473 print_batch_pool_stats(m, dev_priv); 474 475 seq_putc(m, '\n'); 476 list_for_each_entry_reverse(file, &dev->filelist, lhead) { 477 struct file_stats stats; 478 struct task_struct *task; 479 480 memset(&stats, 0, sizeof(stats)); 481 stats.file_priv = file->driver_priv; 482 spin_lock(&file->table_lock); 483 idr_for_each(&file->object_idr, per_file_stats, &stats); 484 spin_unlock(&file->table_lock); 485 /* 486 * Although we have a valid reference on file->pid, that does 487 * not guarantee that the task_struct who called get_pid() is 488 * still alive (e.g. get_pid(current) => fork() => exit()). 489 * Therefore, we need to protect this ->comm access using RCU. 490 */ 491 rcu_read_lock(); 492 task = pid_task(file->pid, PIDTYPE_PID); 493 print_file_stats(m, task ? task->comm : "<unknown>", stats); 494 rcu_read_unlock(); 495 } 496 497 mutex_unlock(&dev->struct_mutex); 498 499 return 0; 500 } 501 502 static int i915_gem_gtt_info(struct seq_file *m, void *data) 503 { 504 struct drm_info_node *node = m->private; 505 struct drm_device *dev = node->minor->dev; 506 uintptr_t list = (uintptr_t) node->info_ent->data; 507 struct drm_i915_private *dev_priv = dev->dev_private; 508 struct drm_i915_gem_object *obj; 509 size_t total_obj_size, total_gtt_size; 510 int count, ret; 511 512 ret = mutex_lock_interruptible(&dev->struct_mutex); 513 if (ret) 514 return ret; 515 516 total_obj_size = total_gtt_size = count = 0; 517 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 518 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj)) 519 continue; 520 521 seq_puts(m, " "); 522 describe_obj(m, obj); 523 seq_putc(m, '\n'); 524 total_obj_size += obj->base.size; 525 total_gtt_size += i915_gem_obj_ggtt_size(obj); 526 count++; 527 } 528 529 mutex_unlock(&dev->struct_mutex); 530 531 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n", 532 count, total_obj_size, total_gtt_size); 533 534 return 0; 535 } 536 537 static int i915_gem_pageflip_info(struct seq_file *m, void *data) 538 { 539 struct drm_info_node *node = m->private; 540 struct drm_device *dev = node->minor->dev; 541 struct drm_i915_private *dev_priv = dev->dev_private; 542 struct intel_crtc *crtc; 543 int ret; 544 545 ret = mutex_lock_interruptible(&dev->struct_mutex); 546 if (ret) 547 return ret; 548 549 for_each_intel_crtc(dev, crtc) { 550 const char pipe = pipe_name(crtc->pipe); 551 const char plane = plane_name(crtc->plane); 552 struct intel_unpin_work *work; 553 554 spin_lock_irq(&dev->event_lock); 555 work = crtc->unpin_work; 556 if (work == NULL) { 557 seq_printf(m, "No flip due on pipe %c (plane %c)\n", 558 pipe, plane); 559 } else { 560 u32 addr; 561 562 if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) { 563 seq_printf(m, "Flip queued on pipe %c (plane %c)\n", 564 pipe, plane); 565 } else { 566 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n", 567 pipe, plane); 568 } 569 if (work->flip_queued_req) { 570 struct intel_engine_cs *ring = 571 i915_gem_request_get_ring(work->flip_queued_req); 572 573 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n", 574 ring->name, 575 i915_gem_request_get_seqno(work->flip_queued_req), 576 dev_priv->next_seqno, 577 ring->get_seqno(ring, true), 578 i915_gem_request_completed(work->flip_queued_req, true)); 579 } else 580 seq_printf(m, "Flip not associated with any ring\n"); 581 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n", 582 work->flip_queued_vblank, 583 work->flip_ready_vblank, 584 drm_crtc_vblank_count(&crtc->base)); 585 if (work->enable_stall_check) 586 seq_puts(m, "Stall check enabled, "); 587 else 588 seq_puts(m, "Stall check waiting for page flip ioctl, "); 589 seq_printf(m, "%d prepares\n", atomic_read(&work->pending)); 590 591 if (INTEL_INFO(dev)->gen >= 4) 592 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane))); 593 else 594 addr = I915_READ(DSPADDR(crtc->plane)); 595 seq_printf(m, "Current scanout address 0x%08x\n", addr); 596 597 if (work->pending_flip_obj) { 598 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset); 599 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset); 600 } 601 } 602 spin_unlock_irq(&dev->event_lock); 603 } 604 605 mutex_unlock(&dev->struct_mutex); 606 607 return 0; 608 } 609 610 static int i915_gem_batch_pool_info(struct seq_file *m, void *data) 611 { 612 struct drm_info_node *node = m->private; 613 struct drm_device *dev = node->minor->dev; 614 struct drm_i915_private *dev_priv = dev->dev_private; 615 struct drm_i915_gem_object *obj; 616 int count = 0; 617 int ret; 618 619 ret = mutex_lock_interruptible(&dev->struct_mutex); 620 if (ret) 621 return ret; 622 623 seq_puts(m, "cache:\n"); 624 list_for_each_entry(obj, 625 &dev_priv->mm.batch_pool.cache_list, 626 batch_pool_list) { 627 seq_puts(m, " "); 628 describe_obj(m, obj); 629 seq_putc(m, '\n'); 630 count++; 631 } 632 633 seq_printf(m, "total: %d\n", count); 634 635 mutex_unlock(&dev->struct_mutex); 636 637 return 0; 638 } 639 640 static int i915_gem_request_info(struct seq_file *m, void *data) 641 { 642 struct drm_info_node *node = m->private; 643 struct drm_device *dev = node->minor->dev; 644 struct drm_i915_private *dev_priv = dev->dev_private; 645 struct intel_engine_cs *ring; 646 struct drm_i915_gem_request *gem_request; 647 int ret, count, i; 648 649 ret = mutex_lock_interruptible(&dev->struct_mutex); 650 if (ret) 651 return ret; 652 653 count = 0; 654 for_each_ring(ring, dev_priv, i) { 655 if (list_empty(&ring->request_list)) 656 continue; 657 658 seq_printf(m, "%s requests:\n", ring->name); 659 list_for_each_entry(gem_request, 660 &ring->request_list, 661 list) { 662 seq_printf(m, " %x @ %d\n", 663 gem_request->seqno, 664 (int) (jiffies - gem_request->emitted_jiffies)); 665 } 666 count++; 667 } 668 mutex_unlock(&dev->struct_mutex); 669 670 if (count == 0) 671 seq_puts(m, "No requests\n"); 672 673 return 0; 674 } 675 676 static void i915_ring_seqno_info(struct seq_file *m, 677 struct intel_engine_cs *ring) 678 { 679 if (ring->get_seqno) { 680 seq_printf(m, "Current sequence (%s): %x\n", 681 ring->name, ring->get_seqno(ring, false)); 682 } 683 } 684 685 static int i915_gem_seqno_info(struct seq_file *m, void *data) 686 { 687 struct drm_info_node *node = m->private; 688 struct drm_device *dev = node->minor->dev; 689 struct drm_i915_private *dev_priv = dev->dev_private; 690 struct intel_engine_cs *ring; 691 int ret, i; 692 693 ret = mutex_lock_interruptible(&dev->struct_mutex); 694 if (ret) 695 return ret; 696 intel_runtime_pm_get(dev_priv); 697 698 for_each_ring(ring, dev_priv, i) 699 i915_ring_seqno_info(m, ring); 700 701 intel_runtime_pm_put(dev_priv); 702 mutex_unlock(&dev->struct_mutex); 703 704 return 0; 705 } 706 707 708 static int i915_interrupt_info(struct seq_file *m, void *data) 709 { 710 struct drm_info_node *node = m->private; 711 struct drm_device *dev = node->minor->dev; 712 struct drm_i915_private *dev_priv = dev->dev_private; 713 struct intel_engine_cs *ring; 714 int ret, i, pipe; 715 716 ret = mutex_lock_interruptible(&dev->struct_mutex); 717 if (ret) 718 return ret; 719 intel_runtime_pm_get(dev_priv); 720 721 if (IS_CHERRYVIEW(dev)) { 722 seq_printf(m, "Master Interrupt Control:\t%08x\n", 723 I915_READ(GEN8_MASTER_IRQ)); 724 725 seq_printf(m, "Display IER:\t%08x\n", 726 I915_READ(VLV_IER)); 727 seq_printf(m, "Display IIR:\t%08x\n", 728 I915_READ(VLV_IIR)); 729 seq_printf(m, "Display IIR_RW:\t%08x\n", 730 I915_READ(VLV_IIR_RW)); 731 seq_printf(m, "Display IMR:\t%08x\n", 732 I915_READ(VLV_IMR)); 733 for_each_pipe(dev_priv, pipe) 734 seq_printf(m, "Pipe %c stat:\t%08x\n", 735 pipe_name(pipe), 736 I915_READ(PIPESTAT(pipe))); 737 738 seq_printf(m, "Port hotplug:\t%08x\n", 739 I915_READ(PORT_HOTPLUG_EN)); 740 seq_printf(m, "DPFLIPSTAT:\t%08x\n", 741 I915_READ(VLV_DPFLIPSTAT)); 742 seq_printf(m, "DPINVGTT:\t%08x\n", 743 I915_READ(DPINVGTT)); 744 745 for (i = 0; i < 4; i++) { 746 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n", 747 i, I915_READ(GEN8_GT_IMR(i))); 748 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n", 749 i, I915_READ(GEN8_GT_IIR(i))); 750 seq_printf(m, "GT Interrupt IER %d:\t%08x\n", 751 i, I915_READ(GEN8_GT_IER(i))); 752 } 753 754 seq_printf(m, "PCU interrupt mask:\t%08x\n", 755 I915_READ(GEN8_PCU_IMR)); 756 seq_printf(m, "PCU interrupt identity:\t%08x\n", 757 I915_READ(GEN8_PCU_IIR)); 758 seq_printf(m, "PCU interrupt enable:\t%08x\n", 759 I915_READ(GEN8_PCU_IER)); 760 } else if (INTEL_INFO(dev)->gen >= 8) { 761 seq_printf(m, "Master Interrupt Control:\t%08x\n", 762 I915_READ(GEN8_MASTER_IRQ)); 763 764 for (i = 0; i < 4; i++) { 765 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n", 766 i, I915_READ(GEN8_GT_IMR(i))); 767 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n", 768 i, I915_READ(GEN8_GT_IIR(i))); 769 seq_printf(m, "GT Interrupt IER %d:\t%08x\n", 770 i, I915_READ(GEN8_GT_IER(i))); 771 } 772 773 for_each_pipe(dev_priv, pipe) { 774 if (!intel_display_power_is_enabled(dev_priv, 775 POWER_DOMAIN_PIPE(pipe))) { 776 seq_printf(m, "Pipe %c power disabled\n", 777 pipe_name(pipe)); 778 continue; 779 } 780 seq_printf(m, "Pipe %c IMR:\t%08x\n", 781 pipe_name(pipe), 782 I915_READ(GEN8_DE_PIPE_IMR(pipe))); 783 seq_printf(m, "Pipe %c IIR:\t%08x\n", 784 pipe_name(pipe), 785 I915_READ(GEN8_DE_PIPE_IIR(pipe))); 786 seq_printf(m, "Pipe %c IER:\t%08x\n", 787 pipe_name(pipe), 788 I915_READ(GEN8_DE_PIPE_IER(pipe))); 789 } 790 791 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n", 792 I915_READ(GEN8_DE_PORT_IMR)); 793 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n", 794 I915_READ(GEN8_DE_PORT_IIR)); 795 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n", 796 I915_READ(GEN8_DE_PORT_IER)); 797 798 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n", 799 I915_READ(GEN8_DE_MISC_IMR)); 800 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n", 801 I915_READ(GEN8_DE_MISC_IIR)); 802 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n", 803 I915_READ(GEN8_DE_MISC_IER)); 804 805 seq_printf(m, "PCU interrupt mask:\t%08x\n", 806 I915_READ(GEN8_PCU_IMR)); 807 seq_printf(m, "PCU interrupt identity:\t%08x\n", 808 I915_READ(GEN8_PCU_IIR)); 809 seq_printf(m, "PCU interrupt enable:\t%08x\n", 810 I915_READ(GEN8_PCU_IER)); 811 } else if (IS_VALLEYVIEW(dev)) { 812 seq_printf(m, "Display IER:\t%08x\n", 813 I915_READ(VLV_IER)); 814 seq_printf(m, "Display IIR:\t%08x\n", 815 I915_READ(VLV_IIR)); 816 seq_printf(m, "Display IIR_RW:\t%08x\n", 817 I915_READ(VLV_IIR_RW)); 818 seq_printf(m, "Display IMR:\t%08x\n", 819 I915_READ(VLV_IMR)); 820 for_each_pipe(dev_priv, pipe) 821 seq_printf(m, "Pipe %c stat:\t%08x\n", 822 pipe_name(pipe), 823 I915_READ(PIPESTAT(pipe))); 824 825 seq_printf(m, "Master IER:\t%08x\n", 826 I915_READ(VLV_MASTER_IER)); 827 828 seq_printf(m, "Render IER:\t%08x\n", 829 I915_READ(GTIER)); 830 seq_printf(m, "Render IIR:\t%08x\n", 831 I915_READ(GTIIR)); 832 seq_printf(m, "Render IMR:\t%08x\n", 833 I915_READ(GTIMR)); 834 835 seq_printf(m, "PM IER:\t\t%08x\n", 836 I915_READ(GEN6_PMIER)); 837 seq_printf(m, "PM IIR:\t\t%08x\n", 838 I915_READ(GEN6_PMIIR)); 839 seq_printf(m, "PM IMR:\t\t%08x\n", 840 I915_READ(GEN6_PMIMR)); 841 842 seq_printf(m, "Port hotplug:\t%08x\n", 843 I915_READ(PORT_HOTPLUG_EN)); 844 seq_printf(m, "DPFLIPSTAT:\t%08x\n", 845 I915_READ(VLV_DPFLIPSTAT)); 846 seq_printf(m, "DPINVGTT:\t%08x\n", 847 I915_READ(DPINVGTT)); 848 849 } else if (!HAS_PCH_SPLIT(dev)) { 850 seq_printf(m, "Interrupt enable: %08x\n", 851 I915_READ(IER)); 852 seq_printf(m, "Interrupt identity: %08x\n", 853 I915_READ(IIR)); 854 seq_printf(m, "Interrupt mask: %08x\n", 855 I915_READ(IMR)); 856 for_each_pipe(dev_priv, pipe) 857 seq_printf(m, "Pipe %c stat: %08x\n", 858 pipe_name(pipe), 859 I915_READ(PIPESTAT(pipe))); 860 } else { 861 seq_printf(m, "North Display Interrupt enable: %08x\n", 862 I915_READ(DEIER)); 863 seq_printf(m, "North Display Interrupt identity: %08x\n", 864 I915_READ(DEIIR)); 865 seq_printf(m, "North Display Interrupt mask: %08x\n", 866 I915_READ(DEIMR)); 867 seq_printf(m, "South Display Interrupt enable: %08x\n", 868 I915_READ(SDEIER)); 869 seq_printf(m, "South Display Interrupt identity: %08x\n", 870 I915_READ(SDEIIR)); 871 seq_printf(m, "South Display Interrupt mask: %08x\n", 872 I915_READ(SDEIMR)); 873 seq_printf(m, "Graphics Interrupt enable: %08x\n", 874 I915_READ(GTIER)); 875 seq_printf(m, "Graphics Interrupt identity: %08x\n", 876 I915_READ(GTIIR)); 877 seq_printf(m, "Graphics Interrupt mask: %08x\n", 878 I915_READ(GTIMR)); 879 } 880 for_each_ring(ring, dev_priv, i) { 881 if (INTEL_INFO(dev)->gen >= 6) { 882 seq_printf(m, 883 "Graphics Interrupt mask (%s): %08x\n", 884 ring->name, I915_READ_IMR(ring)); 885 } 886 i915_ring_seqno_info(m, ring); 887 } 888 intel_runtime_pm_put(dev_priv); 889 mutex_unlock(&dev->struct_mutex); 890 891 return 0; 892 } 893 894 static int i915_gem_fence_regs_info(struct seq_file *m, void *data) 895 { 896 struct drm_info_node *node = m->private; 897 struct drm_device *dev = node->minor->dev; 898 struct drm_i915_private *dev_priv = dev->dev_private; 899 int i, ret; 900 901 ret = mutex_lock_interruptible(&dev->struct_mutex); 902 if (ret) 903 return ret; 904 905 seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start); 906 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs); 907 for (i = 0; i < dev_priv->num_fence_regs; i++) { 908 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj; 909 910 seq_printf(m, "Fence %d, pin count = %d, object = ", 911 i, dev_priv->fence_regs[i].pin_count); 912 if (obj == NULL) 913 seq_puts(m, "unused"); 914 else 915 describe_obj(m, obj); 916 seq_putc(m, '\n'); 917 } 918 919 mutex_unlock(&dev->struct_mutex); 920 return 0; 921 } 922 923 static int i915_hws_info(struct seq_file *m, void *data) 924 { 925 struct drm_info_node *node = m->private; 926 struct drm_device *dev = node->minor->dev; 927 struct drm_i915_private *dev_priv = dev->dev_private; 928 struct intel_engine_cs *ring; 929 const u32 *hws; 930 int i; 931 932 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data]; 933 hws = ring->status_page.page_addr; 934 if (hws == NULL) 935 return 0; 936 937 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) { 938 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 939 i * 4, 940 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]); 941 } 942 return 0; 943 } 944 945 static ssize_t 946 i915_error_state_write(struct file *filp, 947 const char __user *ubuf, 948 size_t cnt, 949 loff_t *ppos) 950 { 951 struct i915_error_state_file_priv *error_priv = filp->private_data; 952 struct drm_device *dev = error_priv->dev; 953 int ret; 954 955 DRM_DEBUG_DRIVER("Resetting error state\n"); 956 957 ret = mutex_lock_interruptible(&dev->struct_mutex); 958 if (ret) 959 return ret; 960 961 i915_destroy_error_state(dev); 962 mutex_unlock(&dev->struct_mutex); 963 964 return cnt; 965 } 966 967 static int i915_error_state_open(struct inode *inode, struct file *file) 968 { 969 struct drm_device *dev = inode->i_private; 970 struct i915_error_state_file_priv *error_priv; 971 972 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL); 973 if (!error_priv) 974 return -ENOMEM; 975 976 error_priv->dev = dev; 977 978 i915_error_state_get(dev, error_priv); 979 980 file->private_data = error_priv; 981 982 return 0; 983 } 984 985 static int i915_error_state_release(struct inode *inode, struct file *file) 986 { 987 struct i915_error_state_file_priv *error_priv = file->private_data; 988 989 i915_error_state_put(error_priv); 990 kfree(error_priv); 991 992 return 0; 993 } 994 995 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf, 996 size_t count, loff_t *pos) 997 { 998 struct i915_error_state_file_priv *error_priv = file->private_data; 999 struct drm_i915_error_state_buf error_str; 1000 loff_t tmp_pos = 0; 1001 ssize_t ret_count = 0; 1002 int ret; 1003 1004 ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos); 1005 if (ret) 1006 return ret; 1007 1008 ret = i915_error_state_to_str(&error_str, error_priv); 1009 if (ret) 1010 goto out; 1011 1012 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos, 1013 error_str.buf, 1014 error_str.bytes); 1015 1016 if (ret_count < 0) 1017 ret = ret_count; 1018 else 1019 *pos = error_str.start + ret_count; 1020 out: 1021 i915_error_state_buf_release(&error_str); 1022 return ret ?: ret_count; 1023 } 1024 1025 static const struct file_operations i915_error_state_fops = { 1026 .owner = THIS_MODULE, 1027 .open = i915_error_state_open, 1028 .read = i915_error_state_read, 1029 .write = i915_error_state_write, 1030 .llseek = default_llseek, 1031 .release = i915_error_state_release, 1032 }; 1033 1034 static int 1035 i915_next_seqno_get(void *data, u64 *val) 1036 { 1037 struct drm_device *dev = data; 1038 struct drm_i915_private *dev_priv = dev->dev_private; 1039 int ret; 1040 1041 ret = mutex_lock_interruptible(&dev->struct_mutex); 1042 if (ret) 1043 return ret; 1044 1045 *val = dev_priv->next_seqno; 1046 mutex_unlock(&dev->struct_mutex); 1047 1048 return 0; 1049 } 1050 1051 static int 1052 i915_next_seqno_set(void *data, u64 val) 1053 { 1054 struct drm_device *dev = data; 1055 int ret; 1056 1057 ret = mutex_lock_interruptible(&dev->struct_mutex); 1058 if (ret) 1059 return ret; 1060 1061 ret = i915_gem_set_seqno(dev, val); 1062 mutex_unlock(&dev->struct_mutex); 1063 1064 return ret; 1065 } 1066 1067 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops, 1068 i915_next_seqno_get, i915_next_seqno_set, 1069 "0x%llx\n"); 1070 1071 static int i915_frequency_info(struct seq_file *m, void *unused) 1072 { 1073 struct drm_info_node *node = m->private; 1074 struct drm_device *dev = node->minor->dev; 1075 struct drm_i915_private *dev_priv = dev->dev_private; 1076 int ret = 0; 1077 1078 intel_runtime_pm_get(dev_priv); 1079 1080 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 1081 1082 if (IS_GEN5(dev)) { 1083 u16 rgvswctl = I915_READ16(MEMSWCTL); 1084 u16 rgvstat = I915_READ16(MEMSTAT_ILK); 1085 1086 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf); 1087 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f); 1088 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >> 1089 MEMSTAT_VID_SHIFT); 1090 seq_printf(m, "Current P-state: %d\n", 1091 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT); 1092 } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) || 1093 IS_BROADWELL(dev) || IS_GEN9(dev)) { 1094 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS); 1095 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS); 1096 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); 1097 u32 rpmodectl, rpinclimit, rpdeclimit; 1098 u32 rpstat, cagf, reqf; 1099 u32 rpupei, rpcurup, rpprevup; 1100 u32 rpdownei, rpcurdown, rpprevdown; 1101 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask; 1102 int max_freq; 1103 1104 /* RPSTAT1 is in the GT power well */ 1105 ret = mutex_lock_interruptible(&dev->struct_mutex); 1106 if (ret) 1107 goto out; 1108 1109 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 1110 1111 reqf = I915_READ(GEN6_RPNSWREQ); 1112 if (IS_GEN9(dev)) 1113 reqf >>= 23; 1114 else { 1115 reqf &= ~GEN6_TURBO_DISABLE; 1116 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) 1117 reqf >>= 24; 1118 else 1119 reqf >>= 25; 1120 } 1121 reqf = intel_gpu_freq(dev_priv, reqf); 1122 1123 rpmodectl = I915_READ(GEN6_RP_CONTROL); 1124 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD); 1125 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD); 1126 1127 rpstat = I915_READ(GEN6_RPSTAT1); 1128 rpupei = I915_READ(GEN6_RP_CUR_UP_EI); 1129 rpcurup = I915_READ(GEN6_RP_CUR_UP); 1130 rpprevup = I915_READ(GEN6_RP_PREV_UP); 1131 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI); 1132 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN); 1133 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN); 1134 if (IS_GEN9(dev)) 1135 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT; 1136 else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) 1137 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT; 1138 else 1139 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT; 1140 cagf = intel_gpu_freq(dev_priv, cagf); 1141 1142 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 1143 mutex_unlock(&dev->struct_mutex); 1144 1145 if (IS_GEN6(dev) || IS_GEN7(dev)) { 1146 pm_ier = I915_READ(GEN6_PMIER); 1147 pm_imr = I915_READ(GEN6_PMIMR); 1148 pm_isr = I915_READ(GEN6_PMISR); 1149 pm_iir = I915_READ(GEN6_PMIIR); 1150 pm_mask = I915_READ(GEN6_PMINTRMSK); 1151 } else { 1152 pm_ier = I915_READ(GEN8_GT_IER(2)); 1153 pm_imr = I915_READ(GEN8_GT_IMR(2)); 1154 pm_isr = I915_READ(GEN8_GT_ISR(2)); 1155 pm_iir = I915_READ(GEN8_GT_IIR(2)); 1156 pm_mask = I915_READ(GEN6_PMINTRMSK); 1157 } 1158 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n", 1159 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask); 1160 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status); 1161 seq_printf(m, "Render p-state ratio: %d\n", 1162 (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8); 1163 seq_printf(m, "Render p-state VID: %d\n", 1164 gt_perf_status & 0xff); 1165 seq_printf(m, "Render p-state limit: %d\n", 1166 rp_state_limits & 0xff); 1167 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat); 1168 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl); 1169 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit); 1170 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit); 1171 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf); 1172 seq_printf(m, "CAGF: %dMHz\n", cagf); 1173 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei & 1174 GEN6_CURICONT_MASK); 1175 seq_printf(m, "RP CUR UP: %dus\n", rpcurup & 1176 GEN6_CURBSYTAVG_MASK); 1177 seq_printf(m, "RP PREV UP: %dus\n", rpprevup & 1178 GEN6_CURBSYTAVG_MASK); 1179 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei & 1180 GEN6_CURIAVG_MASK); 1181 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown & 1182 GEN6_CURBSYTAVG_MASK); 1183 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown & 1184 GEN6_CURBSYTAVG_MASK); 1185 1186 max_freq = (rp_state_cap & 0xff0000) >> 16; 1187 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1); 1188 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n", 1189 intel_gpu_freq(dev_priv, max_freq)); 1190 1191 max_freq = (rp_state_cap & 0xff00) >> 8; 1192 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1); 1193 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n", 1194 intel_gpu_freq(dev_priv, max_freq)); 1195 1196 max_freq = rp_state_cap & 0xff; 1197 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1); 1198 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n", 1199 intel_gpu_freq(dev_priv, max_freq)); 1200 1201 seq_printf(m, "Max overclocked frequency: %dMHz\n", 1202 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq)); 1203 1204 seq_printf(m, "Idle freq: %d MHz\n", 1205 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq)); 1206 } else if (IS_VALLEYVIEW(dev)) { 1207 u32 freq_sts; 1208 1209 mutex_lock(&dev_priv->rps.hw_lock); 1210 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); 1211 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts); 1212 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq); 1213 1214 seq_printf(m, "max GPU freq: %d MHz\n", 1215 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq)); 1216 1217 seq_printf(m, "min GPU freq: %d MHz\n", 1218 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq)); 1219 1220 seq_printf(m, "idle GPU freq: %d MHz\n", 1221 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq)); 1222 1223 seq_printf(m, 1224 "efficient (RPe) frequency: %d MHz\n", 1225 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq)); 1226 1227 seq_printf(m, "current GPU freq: %d MHz\n", 1228 intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff)); 1229 mutex_unlock(&dev_priv->rps.hw_lock); 1230 } else { 1231 seq_puts(m, "no P-state info available\n"); 1232 } 1233 1234 out: 1235 intel_runtime_pm_put(dev_priv); 1236 return ret; 1237 } 1238 1239 static int i915_hangcheck_info(struct seq_file *m, void *unused) 1240 { 1241 struct drm_info_node *node = m->private; 1242 struct drm_device *dev = node->minor->dev; 1243 struct drm_i915_private *dev_priv = dev->dev_private; 1244 struct intel_engine_cs *ring; 1245 u64 acthd[I915_NUM_RINGS]; 1246 u32 seqno[I915_NUM_RINGS]; 1247 int i; 1248 1249 if (!i915.enable_hangcheck) { 1250 seq_printf(m, "Hangcheck disabled\n"); 1251 return 0; 1252 } 1253 1254 intel_runtime_pm_get(dev_priv); 1255 1256 for_each_ring(ring, dev_priv, i) { 1257 seqno[i] = ring->get_seqno(ring, false); 1258 acthd[i] = intel_ring_get_active_head(ring); 1259 } 1260 1261 intel_runtime_pm_put(dev_priv); 1262 1263 if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) { 1264 seq_printf(m, "Hangcheck active, fires in %dms\n", 1265 jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires - 1266 jiffies)); 1267 } else 1268 seq_printf(m, "Hangcheck inactive\n"); 1269 1270 for_each_ring(ring, dev_priv, i) { 1271 seq_printf(m, "%s:\n", ring->name); 1272 seq_printf(m, "\tseqno = %x [current %x]\n", 1273 ring->hangcheck.seqno, seqno[i]); 1274 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n", 1275 (long long)ring->hangcheck.acthd, 1276 (long long)acthd[i]); 1277 seq_printf(m, "\tmax ACTHD = 0x%08llx\n", 1278 (long long)ring->hangcheck.max_acthd); 1279 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score); 1280 seq_printf(m, "\taction = %d\n", ring->hangcheck.action); 1281 } 1282 1283 return 0; 1284 } 1285 1286 static int ironlake_drpc_info(struct seq_file *m) 1287 { 1288 struct drm_info_node *node = m->private; 1289 struct drm_device *dev = node->minor->dev; 1290 struct drm_i915_private *dev_priv = dev->dev_private; 1291 u32 rgvmodectl, rstdbyctl; 1292 u16 crstandvid; 1293 int ret; 1294 1295 ret = mutex_lock_interruptible(&dev->struct_mutex); 1296 if (ret) 1297 return ret; 1298 intel_runtime_pm_get(dev_priv); 1299 1300 rgvmodectl = I915_READ(MEMMODECTL); 1301 rstdbyctl = I915_READ(RSTDBYCTL); 1302 crstandvid = I915_READ16(CRSTANDVID); 1303 1304 intel_runtime_pm_put(dev_priv); 1305 mutex_unlock(&dev->struct_mutex); 1306 1307 seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ? 1308 "yes" : "no"); 1309 seq_printf(m, "Boost freq: %d\n", 1310 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >> 1311 MEMMODE_BOOST_FREQ_SHIFT); 1312 seq_printf(m, "HW control enabled: %s\n", 1313 rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no"); 1314 seq_printf(m, "SW control enabled: %s\n", 1315 rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no"); 1316 seq_printf(m, "Gated voltage change: %s\n", 1317 rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no"); 1318 seq_printf(m, "Starting frequency: P%d\n", 1319 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT); 1320 seq_printf(m, "Max P-state: P%d\n", 1321 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT); 1322 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK)); 1323 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f)); 1324 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f)); 1325 seq_printf(m, "Render standby enabled: %s\n", 1326 (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes"); 1327 seq_puts(m, "Current RS state: "); 1328 switch (rstdbyctl & RSX_STATUS_MASK) { 1329 case RSX_STATUS_ON: 1330 seq_puts(m, "on\n"); 1331 break; 1332 case RSX_STATUS_RC1: 1333 seq_puts(m, "RC1\n"); 1334 break; 1335 case RSX_STATUS_RC1E: 1336 seq_puts(m, "RC1E\n"); 1337 break; 1338 case RSX_STATUS_RS1: 1339 seq_puts(m, "RS1\n"); 1340 break; 1341 case RSX_STATUS_RS2: 1342 seq_puts(m, "RS2 (RC6)\n"); 1343 break; 1344 case RSX_STATUS_RS3: 1345 seq_puts(m, "RC3 (RC6+)\n"); 1346 break; 1347 default: 1348 seq_puts(m, "unknown\n"); 1349 break; 1350 } 1351 1352 return 0; 1353 } 1354 1355 static int i915_forcewake_domains(struct seq_file *m, void *data) 1356 { 1357 struct drm_info_node *node = m->private; 1358 struct drm_device *dev = node->minor->dev; 1359 struct drm_i915_private *dev_priv = dev->dev_private; 1360 struct intel_uncore_forcewake_domain *fw_domain; 1361 int i; 1362 1363 spin_lock_irq(&dev_priv->uncore.lock); 1364 for_each_fw_domain(fw_domain, dev_priv, i) { 1365 seq_printf(m, "%s.wake_count = %u\n", 1366 intel_uncore_forcewake_domain_to_str(i), 1367 fw_domain->wake_count); 1368 } 1369 spin_unlock_irq(&dev_priv->uncore.lock); 1370 1371 return 0; 1372 } 1373 1374 static int vlv_drpc_info(struct seq_file *m) 1375 { 1376 struct drm_info_node *node = m->private; 1377 struct drm_device *dev = node->minor->dev; 1378 struct drm_i915_private *dev_priv = dev->dev_private; 1379 u32 rpmodectl1, rcctl1, pw_status; 1380 1381 intel_runtime_pm_get(dev_priv); 1382 1383 pw_status = I915_READ(VLV_GTLC_PW_STATUS); 1384 rpmodectl1 = I915_READ(GEN6_RP_CONTROL); 1385 rcctl1 = I915_READ(GEN6_RC_CONTROL); 1386 1387 intel_runtime_pm_put(dev_priv); 1388 1389 seq_printf(m, "Video Turbo Mode: %s\n", 1390 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO)); 1391 seq_printf(m, "Turbo enabled: %s\n", 1392 yesno(rpmodectl1 & GEN6_RP_ENABLE)); 1393 seq_printf(m, "HW control enabled: %s\n", 1394 yesno(rpmodectl1 & GEN6_RP_ENABLE)); 1395 seq_printf(m, "SW control enabled: %s\n", 1396 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) == 1397 GEN6_RP_MEDIA_SW_MODE)); 1398 seq_printf(m, "RC6 Enabled: %s\n", 1399 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE | 1400 GEN6_RC_CTL_EI_MODE(1)))); 1401 seq_printf(m, "Render Power Well: %s\n", 1402 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down"); 1403 seq_printf(m, "Media Power Well: %s\n", 1404 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down"); 1405 1406 seq_printf(m, "Render RC6 residency since boot: %u\n", 1407 I915_READ(VLV_GT_RENDER_RC6)); 1408 seq_printf(m, "Media RC6 residency since boot: %u\n", 1409 I915_READ(VLV_GT_MEDIA_RC6)); 1410 1411 return i915_forcewake_domains(m, NULL); 1412 } 1413 1414 static int gen6_drpc_info(struct seq_file *m) 1415 { 1416 struct drm_info_node *node = m->private; 1417 struct drm_device *dev = node->minor->dev; 1418 struct drm_i915_private *dev_priv = dev->dev_private; 1419 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0; 1420 unsigned forcewake_count; 1421 int count = 0, ret; 1422 1423 ret = mutex_lock_interruptible(&dev->struct_mutex); 1424 if (ret) 1425 return ret; 1426 intel_runtime_pm_get(dev_priv); 1427 1428 spin_lock_irq(&dev_priv->uncore.lock); 1429 forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count; 1430 spin_unlock_irq(&dev_priv->uncore.lock); 1431 1432 if (forcewake_count) { 1433 seq_puts(m, "RC information inaccurate because somebody " 1434 "holds a forcewake reference \n"); 1435 } else { 1436 /* NB: we cannot use forcewake, else we read the wrong values */ 1437 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1)) 1438 udelay(10); 1439 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51)); 1440 } 1441 1442 gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS); 1443 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true); 1444 1445 rpmodectl1 = I915_READ(GEN6_RP_CONTROL); 1446 rcctl1 = I915_READ(GEN6_RC_CONTROL); 1447 mutex_unlock(&dev->struct_mutex); 1448 mutex_lock(&dev_priv->rps.hw_lock); 1449 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids); 1450 mutex_unlock(&dev_priv->rps.hw_lock); 1451 1452 intel_runtime_pm_put(dev_priv); 1453 1454 seq_printf(m, "Video Turbo Mode: %s\n", 1455 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO)); 1456 seq_printf(m, "HW control enabled: %s\n", 1457 yesno(rpmodectl1 & GEN6_RP_ENABLE)); 1458 seq_printf(m, "SW control enabled: %s\n", 1459 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) == 1460 GEN6_RP_MEDIA_SW_MODE)); 1461 seq_printf(m, "RC1e Enabled: %s\n", 1462 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE)); 1463 seq_printf(m, "RC6 Enabled: %s\n", 1464 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE)); 1465 seq_printf(m, "Deep RC6 Enabled: %s\n", 1466 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE)); 1467 seq_printf(m, "Deepest RC6 Enabled: %s\n", 1468 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE)); 1469 seq_puts(m, "Current RC state: "); 1470 switch (gt_core_status & GEN6_RCn_MASK) { 1471 case GEN6_RC0: 1472 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK) 1473 seq_puts(m, "Core Power Down\n"); 1474 else 1475 seq_puts(m, "on\n"); 1476 break; 1477 case GEN6_RC3: 1478 seq_puts(m, "RC3\n"); 1479 break; 1480 case GEN6_RC6: 1481 seq_puts(m, "RC6\n"); 1482 break; 1483 case GEN6_RC7: 1484 seq_puts(m, "RC7\n"); 1485 break; 1486 default: 1487 seq_puts(m, "Unknown\n"); 1488 break; 1489 } 1490 1491 seq_printf(m, "Core Power Down: %s\n", 1492 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK)); 1493 1494 /* Not exactly sure what this is */ 1495 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n", 1496 I915_READ(GEN6_GT_GFX_RC6_LOCKED)); 1497 seq_printf(m, "RC6 residency since boot: %u\n", 1498 I915_READ(GEN6_GT_GFX_RC6)); 1499 seq_printf(m, "RC6+ residency since boot: %u\n", 1500 I915_READ(GEN6_GT_GFX_RC6p)); 1501 seq_printf(m, "RC6++ residency since boot: %u\n", 1502 I915_READ(GEN6_GT_GFX_RC6pp)); 1503 1504 seq_printf(m, "RC6 voltage: %dmV\n", 1505 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff))); 1506 seq_printf(m, "RC6+ voltage: %dmV\n", 1507 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff))); 1508 seq_printf(m, "RC6++ voltage: %dmV\n", 1509 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff))); 1510 return 0; 1511 } 1512 1513 static int i915_drpc_info(struct seq_file *m, void *unused) 1514 { 1515 struct drm_info_node *node = m->private; 1516 struct drm_device *dev = node->minor->dev; 1517 1518 if (IS_VALLEYVIEW(dev)) 1519 return vlv_drpc_info(m); 1520 else if (INTEL_INFO(dev)->gen >= 6) 1521 return gen6_drpc_info(m); 1522 else 1523 return ironlake_drpc_info(m); 1524 } 1525 1526 static int i915_fbc_status(struct seq_file *m, void *unused) 1527 { 1528 struct drm_info_node *node = m->private; 1529 struct drm_device *dev = node->minor->dev; 1530 struct drm_i915_private *dev_priv = dev->dev_private; 1531 1532 if (!HAS_FBC(dev)) { 1533 seq_puts(m, "FBC unsupported on this chipset\n"); 1534 return 0; 1535 } 1536 1537 intel_runtime_pm_get(dev_priv); 1538 1539 if (intel_fbc_enabled(dev)) { 1540 seq_puts(m, "FBC enabled\n"); 1541 } else { 1542 seq_puts(m, "FBC disabled: "); 1543 switch (dev_priv->fbc.no_fbc_reason) { 1544 case FBC_OK: 1545 seq_puts(m, "FBC actived, but currently disabled in hardware"); 1546 break; 1547 case FBC_UNSUPPORTED: 1548 seq_puts(m, "unsupported by this chipset"); 1549 break; 1550 case FBC_NO_OUTPUT: 1551 seq_puts(m, "no outputs"); 1552 break; 1553 case FBC_STOLEN_TOO_SMALL: 1554 seq_puts(m, "not enough stolen memory"); 1555 break; 1556 case FBC_UNSUPPORTED_MODE: 1557 seq_puts(m, "mode not supported"); 1558 break; 1559 case FBC_MODE_TOO_LARGE: 1560 seq_puts(m, "mode too large"); 1561 break; 1562 case FBC_BAD_PLANE: 1563 seq_puts(m, "FBC unsupported on plane"); 1564 break; 1565 case FBC_NOT_TILED: 1566 seq_puts(m, "scanout buffer not tiled"); 1567 break; 1568 case FBC_MULTIPLE_PIPES: 1569 seq_puts(m, "multiple pipes are enabled"); 1570 break; 1571 case FBC_MODULE_PARAM: 1572 seq_puts(m, "disabled per module param (default off)"); 1573 break; 1574 case FBC_CHIP_DEFAULT: 1575 seq_puts(m, "disabled per chip default"); 1576 break; 1577 default: 1578 seq_puts(m, "unknown reason"); 1579 } 1580 seq_putc(m, '\n'); 1581 } 1582 1583 intel_runtime_pm_put(dev_priv); 1584 1585 return 0; 1586 } 1587 1588 static int i915_fbc_fc_get(void *data, u64 *val) 1589 { 1590 struct drm_device *dev = data; 1591 struct drm_i915_private *dev_priv = dev->dev_private; 1592 1593 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev)) 1594 return -ENODEV; 1595 1596 drm_modeset_lock_all(dev); 1597 *val = dev_priv->fbc.false_color; 1598 drm_modeset_unlock_all(dev); 1599 1600 return 0; 1601 } 1602 1603 static int i915_fbc_fc_set(void *data, u64 val) 1604 { 1605 struct drm_device *dev = data; 1606 struct drm_i915_private *dev_priv = dev->dev_private; 1607 u32 reg; 1608 1609 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev)) 1610 return -ENODEV; 1611 1612 drm_modeset_lock_all(dev); 1613 1614 reg = I915_READ(ILK_DPFC_CONTROL); 1615 dev_priv->fbc.false_color = val; 1616 1617 I915_WRITE(ILK_DPFC_CONTROL, val ? 1618 (reg | FBC_CTL_FALSE_COLOR) : 1619 (reg & ~FBC_CTL_FALSE_COLOR)); 1620 1621 drm_modeset_unlock_all(dev); 1622 return 0; 1623 } 1624 1625 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops, 1626 i915_fbc_fc_get, i915_fbc_fc_set, 1627 "%llu\n"); 1628 1629 static int i915_ips_status(struct seq_file *m, void *unused) 1630 { 1631 struct drm_info_node *node = m->private; 1632 struct drm_device *dev = node->minor->dev; 1633 struct drm_i915_private *dev_priv = dev->dev_private; 1634 1635 if (!HAS_IPS(dev)) { 1636 seq_puts(m, "not supported\n"); 1637 return 0; 1638 } 1639 1640 intel_runtime_pm_get(dev_priv); 1641 1642 seq_printf(m, "Enabled by kernel parameter: %s\n", 1643 yesno(i915.enable_ips)); 1644 1645 if (INTEL_INFO(dev)->gen >= 8) { 1646 seq_puts(m, "Currently: unknown\n"); 1647 } else { 1648 if (I915_READ(IPS_CTL) & IPS_ENABLE) 1649 seq_puts(m, "Currently: enabled\n"); 1650 else 1651 seq_puts(m, "Currently: disabled\n"); 1652 } 1653 1654 intel_runtime_pm_put(dev_priv); 1655 1656 return 0; 1657 } 1658 1659 static int i915_sr_status(struct seq_file *m, void *unused) 1660 { 1661 struct drm_info_node *node = m->private; 1662 struct drm_device *dev = node->minor->dev; 1663 struct drm_i915_private *dev_priv = dev->dev_private; 1664 bool sr_enabled = false; 1665 1666 intel_runtime_pm_get(dev_priv); 1667 1668 if (HAS_PCH_SPLIT(dev)) 1669 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN; 1670 else if (IS_CRESTLINE(dev) || IS_G4X(dev) || 1671 IS_I945G(dev) || IS_I945GM(dev)) 1672 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; 1673 else if (IS_I915GM(dev)) 1674 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN; 1675 else if (IS_PINEVIEW(dev)) 1676 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN; 1677 else if (IS_VALLEYVIEW(dev)) 1678 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; 1679 1680 intel_runtime_pm_put(dev_priv); 1681 1682 seq_printf(m, "self-refresh: %s\n", 1683 sr_enabled ? "enabled" : "disabled"); 1684 1685 return 0; 1686 } 1687 1688 static int i915_emon_status(struct seq_file *m, void *unused) 1689 { 1690 struct drm_info_node *node = m->private; 1691 struct drm_device *dev = node->minor->dev; 1692 struct drm_i915_private *dev_priv = dev->dev_private; 1693 unsigned long temp, chipset, gfx; 1694 int ret; 1695 1696 if (!IS_GEN5(dev)) 1697 return -ENODEV; 1698 1699 ret = mutex_lock_interruptible(&dev->struct_mutex); 1700 if (ret) 1701 return ret; 1702 1703 temp = i915_mch_val(dev_priv); 1704 chipset = i915_chipset_val(dev_priv); 1705 gfx = i915_gfx_val(dev_priv); 1706 mutex_unlock(&dev->struct_mutex); 1707 1708 seq_printf(m, "GMCH temp: %ld\n", temp); 1709 seq_printf(m, "Chipset power: %ld\n", chipset); 1710 seq_printf(m, "GFX power: %ld\n", gfx); 1711 seq_printf(m, "Total power: %ld\n", chipset + gfx); 1712 1713 return 0; 1714 } 1715 1716 static int i915_ring_freq_table(struct seq_file *m, void *unused) 1717 { 1718 struct drm_info_node *node = m->private; 1719 struct drm_device *dev = node->minor->dev; 1720 struct drm_i915_private *dev_priv = dev->dev_private; 1721 int ret = 0; 1722 int gpu_freq, ia_freq; 1723 1724 if (!(IS_GEN6(dev) || IS_GEN7(dev))) { 1725 seq_puts(m, "unsupported on this chipset\n"); 1726 return 0; 1727 } 1728 1729 intel_runtime_pm_get(dev_priv); 1730 1731 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 1732 1733 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); 1734 if (ret) 1735 goto out; 1736 1737 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n"); 1738 1739 for (gpu_freq = dev_priv->rps.min_freq_softlimit; 1740 gpu_freq <= dev_priv->rps.max_freq_softlimit; 1741 gpu_freq++) { 1742 ia_freq = gpu_freq; 1743 sandybridge_pcode_read(dev_priv, 1744 GEN6_PCODE_READ_MIN_FREQ_TABLE, 1745 &ia_freq); 1746 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n", 1747 intel_gpu_freq(dev_priv, gpu_freq), 1748 ((ia_freq >> 0) & 0xff) * 100, 1749 ((ia_freq >> 8) & 0xff) * 100); 1750 } 1751 1752 mutex_unlock(&dev_priv->rps.hw_lock); 1753 1754 out: 1755 intel_runtime_pm_put(dev_priv); 1756 return ret; 1757 } 1758 1759 static int i915_opregion(struct seq_file *m, void *unused) 1760 { 1761 struct drm_info_node *node = m->private; 1762 struct drm_device *dev = node->minor->dev; 1763 struct drm_i915_private *dev_priv = dev->dev_private; 1764 struct intel_opregion *opregion = &dev_priv->opregion; 1765 void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL); 1766 int ret; 1767 1768 if (data == NULL) 1769 return -ENOMEM; 1770 1771 ret = mutex_lock_interruptible(&dev->struct_mutex); 1772 if (ret) 1773 goto out; 1774 1775 if (opregion->header) { 1776 memcpy_fromio(data, opregion->header, OPREGION_SIZE); 1777 seq_write(m, data, OPREGION_SIZE); 1778 } 1779 1780 mutex_unlock(&dev->struct_mutex); 1781 1782 out: 1783 kfree(data); 1784 return 0; 1785 } 1786 1787 static int i915_gem_framebuffer_info(struct seq_file *m, void *data) 1788 { 1789 struct drm_info_node *node = m->private; 1790 struct drm_device *dev = node->minor->dev; 1791 struct intel_fbdev *ifbdev = NULL; 1792 struct intel_framebuffer *fb; 1793 1794 #ifdef CONFIG_DRM_I915_FBDEV 1795 struct drm_i915_private *dev_priv = dev->dev_private; 1796 1797 ifbdev = dev_priv->fbdev; 1798 fb = to_intel_framebuffer(ifbdev->helper.fb); 1799 1800 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ", 1801 fb->base.width, 1802 fb->base.height, 1803 fb->base.depth, 1804 fb->base.bits_per_pixel, 1805 fb->base.modifier[0], 1806 atomic_read(&fb->base.refcount.refcount)); 1807 describe_obj(m, fb->obj); 1808 seq_putc(m, '\n'); 1809 #endif 1810 1811 mutex_lock(&dev->mode_config.fb_lock); 1812 list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) { 1813 if (ifbdev && &fb->base == ifbdev->helper.fb) 1814 continue; 1815 1816 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ", 1817 fb->base.width, 1818 fb->base.height, 1819 fb->base.depth, 1820 fb->base.bits_per_pixel, 1821 fb->base.modifier[0], 1822 atomic_read(&fb->base.refcount.refcount)); 1823 describe_obj(m, fb->obj); 1824 seq_putc(m, '\n'); 1825 } 1826 mutex_unlock(&dev->mode_config.fb_lock); 1827 1828 return 0; 1829 } 1830 1831 static void describe_ctx_ringbuf(struct seq_file *m, 1832 struct intel_ringbuffer *ringbuf) 1833 { 1834 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)", 1835 ringbuf->space, ringbuf->head, ringbuf->tail, 1836 ringbuf->last_retired_head); 1837 } 1838 1839 static int i915_context_status(struct seq_file *m, void *unused) 1840 { 1841 struct drm_info_node *node = m->private; 1842 struct drm_device *dev = node->minor->dev; 1843 struct drm_i915_private *dev_priv = dev->dev_private; 1844 struct intel_engine_cs *ring; 1845 struct intel_context *ctx; 1846 int ret, i; 1847 1848 ret = mutex_lock_interruptible(&dev->struct_mutex); 1849 if (ret) 1850 return ret; 1851 1852 list_for_each_entry(ctx, &dev_priv->context_list, link) { 1853 if (!i915.enable_execlists && 1854 ctx->legacy_hw_ctx.rcs_state == NULL) 1855 continue; 1856 1857 seq_puts(m, "HW context "); 1858 describe_ctx(m, ctx); 1859 for_each_ring(ring, dev_priv, i) { 1860 if (ring->default_context == ctx) 1861 seq_printf(m, "(default context %s) ", 1862 ring->name); 1863 } 1864 1865 if (i915.enable_execlists) { 1866 seq_putc(m, '\n'); 1867 for_each_ring(ring, dev_priv, i) { 1868 struct drm_i915_gem_object *ctx_obj = 1869 ctx->engine[i].state; 1870 struct intel_ringbuffer *ringbuf = 1871 ctx->engine[i].ringbuf; 1872 1873 seq_printf(m, "%s: ", ring->name); 1874 if (ctx_obj) 1875 describe_obj(m, ctx_obj); 1876 if (ringbuf) 1877 describe_ctx_ringbuf(m, ringbuf); 1878 seq_putc(m, '\n'); 1879 } 1880 } else { 1881 describe_obj(m, ctx->legacy_hw_ctx.rcs_state); 1882 } 1883 1884 seq_putc(m, '\n'); 1885 } 1886 1887 mutex_unlock(&dev->struct_mutex); 1888 1889 return 0; 1890 } 1891 1892 static void i915_dump_lrc_obj(struct seq_file *m, 1893 struct intel_engine_cs *ring, 1894 struct drm_i915_gem_object *ctx_obj) 1895 { 1896 struct page *page; 1897 uint32_t *reg_state; 1898 int j; 1899 unsigned long ggtt_offset = 0; 1900 1901 if (ctx_obj == NULL) { 1902 seq_printf(m, "Context on %s with no gem object\n", 1903 ring->name); 1904 return; 1905 } 1906 1907 seq_printf(m, "CONTEXT: %s %u\n", ring->name, 1908 intel_execlists_ctx_id(ctx_obj)); 1909 1910 if (!i915_gem_obj_ggtt_bound(ctx_obj)) 1911 seq_puts(m, "\tNot bound in GGTT\n"); 1912 else 1913 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj); 1914 1915 if (i915_gem_object_get_pages(ctx_obj)) { 1916 seq_puts(m, "\tFailed to get pages for context object\n"); 1917 return; 1918 } 1919 1920 page = i915_gem_object_get_page(ctx_obj, 1); 1921 if (!WARN_ON(page == NULL)) { 1922 reg_state = kmap_atomic(page); 1923 1924 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) { 1925 seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n", 1926 ggtt_offset + 4096 + (j * 4), 1927 reg_state[j], reg_state[j + 1], 1928 reg_state[j + 2], reg_state[j + 3]); 1929 } 1930 kunmap_atomic(reg_state); 1931 } 1932 1933 seq_putc(m, '\n'); 1934 } 1935 1936 static int i915_dump_lrc(struct seq_file *m, void *unused) 1937 { 1938 struct drm_info_node *node = (struct drm_info_node *) m->private; 1939 struct drm_device *dev = node->minor->dev; 1940 struct drm_i915_private *dev_priv = dev->dev_private; 1941 struct intel_engine_cs *ring; 1942 struct intel_context *ctx; 1943 int ret, i; 1944 1945 if (!i915.enable_execlists) { 1946 seq_printf(m, "Logical Ring Contexts are disabled\n"); 1947 return 0; 1948 } 1949 1950 ret = mutex_lock_interruptible(&dev->struct_mutex); 1951 if (ret) 1952 return ret; 1953 1954 list_for_each_entry(ctx, &dev_priv->context_list, link) { 1955 for_each_ring(ring, dev_priv, i) { 1956 if (ring->default_context != ctx) 1957 i915_dump_lrc_obj(m, ring, 1958 ctx->engine[i].state); 1959 } 1960 } 1961 1962 mutex_unlock(&dev->struct_mutex); 1963 1964 return 0; 1965 } 1966 1967 static int i915_execlists(struct seq_file *m, void *data) 1968 { 1969 struct drm_info_node *node = (struct drm_info_node *)m->private; 1970 struct drm_device *dev = node->minor->dev; 1971 struct drm_i915_private *dev_priv = dev->dev_private; 1972 struct intel_engine_cs *ring; 1973 u32 status_pointer; 1974 u8 read_pointer; 1975 u8 write_pointer; 1976 u32 status; 1977 u32 ctx_id; 1978 struct list_head *cursor; 1979 int ring_id, i; 1980 int ret; 1981 1982 if (!i915.enable_execlists) { 1983 seq_puts(m, "Logical Ring Contexts are disabled\n"); 1984 return 0; 1985 } 1986 1987 ret = mutex_lock_interruptible(&dev->struct_mutex); 1988 if (ret) 1989 return ret; 1990 1991 intel_runtime_pm_get(dev_priv); 1992 1993 for_each_ring(ring, dev_priv, ring_id) { 1994 struct drm_i915_gem_request *head_req = NULL; 1995 int count = 0; 1996 unsigned long flags; 1997 1998 seq_printf(m, "%s\n", ring->name); 1999 2000 status = I915_READ(RING_EXECLIST_STATUS(ring)); 2001 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4); 2002 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n", 2003 status, ctx_id); 2004 2005 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring)); 2006 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer); 2007 2008 read_pointer = ring->next_context_status_buffer; 2009 write_pointer = status_pointer & 0x07; 2010 if (read_pointer > write_pointer) 2011 write_pointer += 6; 2012 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n", 2013 read_pointer, write_pointer); 2014 2015 for (i = 0; i < 6; i++) { 2016 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i); 2017 ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4); 2018 2019 seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n", 2020 i, status, ctx_id); 2021 } 2022 2023 spin_lock_irqsave(&ring->execlist_lock, flags); 2024 list_for_each(cursor, &ring->execlist_queue) 2025 count++; 2026 head_req = list_first_entry_or_null(&ring->execlist_queue, 2027 struct drm_i915_gem_request, execlist_link); 2028 spin_unlock_irqrestore(&ring->execlist_lock, flags); 2029 2030 seq_printf(m, "\t%d requests in queue\n", count); 2031 if (head_req) { 2032 struct drm_i915_gem_object *ctx_obj; 2033 2034 ctx_obj = head_req->ctx->engine[ring_id].state; 2035 seq_printf(m, "\tHead request id: %u\n", 2036 intel_execlists_ctx_id(ctx_obj)); 2037 seq_printf(m, "\tHead request tail: %u\n", 2038 head_req->tail); 2039 } 2040 2041 seq_putc(m, '\n'); 2042 } 2043 2044 intel_runtime_pm_put(dev_priv); 2045 mutex_unlock(&dev->struct_mutex); 2046 2047 return 0; 2048 } 2049 2050 static const char *swizzle_string(unsigned swizzle) 2051 { 2052 switch (swizzle) { 2053 case I915_BIT_6_SWIZZLE_NONE: 2054 return "none"; 2055 case I915_BIT_6_SWIZZLE_9: 2056 return "bit9"; 2057 case I915_BIT_6_SWIZZLE_9_10: 2058 return "bit9/bit10"; 2059 case I915_BIT_6_SWIZZLE_9_11: 2060 return "bit9/bit11"; 2061 case I915_BIT_6_SWIZZLE_9_10_11: 2062 return "bit9/bit10/bit11"; 2063 case I915_BIT_6_SWIZZLE_9_17: 2064 return "bit9/bit17"; 2065 case I915_BIT_6_SWIZZLE_9_10_17: 2066 return "bit9/bit10/bit17"; 2067 case I915_BIT_6_SWIZZLE_UNKNOWN: 2068 return "unknown"; 2069 } 2070 2071 return "bug"; 2072 } 2073 2074 static int i915_swizzle_info(struct seq_file *m, void *data) 2075 { 2076 struct drm_info_node *node = m->private; 2077 struct drm_device *dev = node->minor->dev; 2078 struct drm_i915_private *dev_priv = dev->dev_private; 2079 int ret; 2080 2081 ret = mutex_lock_interruptible(&dev->struct_mutex); 2082 if (ret) 2083 return ret; 2084 intel_runtime_pm_get(dev_priv); 2085 2086 seq_printf(m, "bit6 swizzle for X-tiling = %s\n", 2087 swizzle_string(dev_priv->mm.bit_6_swizzle_x)); 2088 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n", 2089 swizzle_string(dev_priv->mm.bit_6_swizzle_y)); 2090 2091 if (IS_GEN3(dev) || IS_GEN4(dev)) { 2092 seq_printf(m, "DDC = 0x%08x\n", 2093 I915_READ(DCC)); 2094 seq_printf(m, "DDC2 = 0x%08x\n", 2095 I915_READ(DCC2)); 2096 seq_printf(m, "C0DRB3 = 0x%04x\n", 2097 I915_READ16(C0DRB3)); 2098 seq_printf(m, "C1DRB3 = 0x%04x\n", 2099 I915_READ16(C1DRB3)); 2100 } else if (INTEL_INFO(dev)->gen >= 6) { 2101 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n", 2102 I915_READ(MAD_DIMM_C0)); 2103 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n", 2104 I915_READ(MAD_DIMM_C1)); 2105 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n", 2106 I915_READ(MAD_DIMM_C2)); 2107 seq_printf(m, "TILECTL = 0x%08x\n", 2108 I915_READ(TILECTL)); 2109 if (INTEL_INFO(dev)->gen >= 8) 2110 seq_printf(m, "GAMTARBMODE = 0x%08x\n", 2111 I915_READ(GAMTARBMODE)); 2112 else 2113 seq_printf(m, "ARB_MODE = 0x%08x\n", 2114 I915_READ(ARB_MODE)); 2115 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n", 2116 I915_READ(DISP_ARB_CTL)); 2117 } 2118 2119 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) 2120 seq_puts(m, "L-shaped memory detected\n"); 2121 2122 intel_runtime_pm_put(dev_priv); 2123 mutex_unlock(&dev->struct_mutex); 2124 2125 return 0; 2126 } 2127 2128 static int per_file_ctx(int id, void *ptr, void *data) 2129 { 2130 struct intel_context *ctx = ptr; 2131 struct seq_file *m = data; 2132 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt; 2133 2134 if (!ppgtt) { 2135 seq_printf(m, " no ppgtt for context %d\n", 2136 ctx->user_handle); 2137 return 0; 2138 } 2139 2140 if (i915_gem_context_is_default(ctx)) 2141 seq_puts(m, " default context:\n"); 2142 else 2143 seq_printf(m, " context %d:\n", ctx->user_handle); 2144 ppgtt->debug_dump(ppgtt, m); 2145 2146 return 0; 2147 } 2148 2149 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev) 2150 { 2151 struct drm_i915_private *dev_priv = dev->dev_private; 2152 struct intel_engine_cs *ring; 2153 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; 2154 int unused, i; 2155 2156 if (!ppgtt) 2157 return; 2158 2159 seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages); 2160 seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries); 2161 for_each_ring(ring, dev_priv, unused) { 2162 seq_printf(m, "%s\n", ring->name); 2163 for (i = 0; i < 4; i++) { 2164 u32 offset = 0x270 + i * 8; 2165 u64 pdp = I915_READ(ring->mmio_base + offset + 4); 2166 pdp <<= 32; 2167 pdp |= I915_READ(ring->mmio_base + offset); 2168 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp); 2169 } 2170 } 2171 } 2172 2173 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev) 2174 { 2175 struct drm_i915_private *dev_priv = dev->dev_private; 2176 struct intel_engine_cs *ring; 2177 struct drm_file *file; 2178 int i; 2179 2180 if (INTEL_INFO(dev)->gen == 6) 2181 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE)); 2182 2183 for_each_ring(ring, dev_priv, i) { 2184 seq_printf(m, "%s\n", ring->name); 2185 if (INTEL_INFO(dev)->gen == 7) 2186 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring))); 2187 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring))); 2188 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring))); 2189 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring))); 2190 } 2191 if (dev_priv->mm.aliasing_ppgtt) { 2192 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; 2193 2194 seq_puts(m, "aliasing PPGTT:\n"); 2195 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.pd_offset); 2196 2197 ppgtt->debug_dump(ppgtt, m); 2198 } 2199 2200 list_for_each_entry_reverse(file, &dev->filelist, lhead) { 2201 struct drm_i915_file_private *file_priv = file->driver_priv; 2202 2203 seq_printf(m, "proc: %s\n", 2204 get_pid_task(file->pid, PIDTYPE_PID)->comm); 2205 idr_for_each(&file_priv->context_idr, per_file_ctx, m); 2206 } 2207 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK)); 2208 } 2209 2210 static int i915_ppgtt_info(struct seq_file *m, void *data) 2211 { 2212 struct drm_info_node *node = m->private; 2213 struct drm_device *dev = node->minor->dev; 2214 struct drm_i915_private *dev_priv = dev->dev_private; 2215 2216 int ret = mutex_lock_interruptible(&dev->struct_mutex); 2217 if (ret) 2218 return ret; 2219 intel_runtime_pm_get(dev_priv); 2220 2221 if (INTEL_INFO(dev)->gen >= 8) 2222 gen8_ppgtt_info(m, dev); 2223 else if (INTEL_INFO(dev)->gen >= 6) 2224 gen6_ppgtt_info(m, dev); 2225 2226 intel_runtime_pm_put(dev_priv); 2227 mutex_unlock(&dev->struct_mutex); 2228 2229 return 0; 2230 } 2231 2232 static int i915_llc(struct seq_file *m, void *data) 2233 { 2234 struct drm_info_node *node = m->private; 2235 struct drm_device *dev = node->minor->dev; 2236 struct drm_i915_private *dev_priv = dev->dev_private; 2237 2238 /* Size calculation for LLC is a bit of a pain. Ignore for now. */ 2239 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev))); 2240 seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size); 2241 2242 return 0; 2243 } 2244 2245 static int i915_edp_psr_status(struct seq_file *m, void *data) 2246 { 2247 struct drm_info_node *node = m->private; 2248 struct drm_device *dev = node->minor->dev; 2249 struct drm_i915_private *dev_priv = dev->dev_private; 2250 u32 psrperf = 0; 2251 u32 stat[3]; 2252 enum pipe pipe; 2253 bool enabled = false; 2254 2255 if (!HAS_PSR(dev)) { 2256 seq_puts(m, "PSR not supported\n"); 2257 return 0; 2258 } 2259 2260 intel_runtime_pm_get(dev_priv); 2261 2262 mutex_lock(&dev_priv->psr.lock); 2263 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support)); 2264 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok)); 2265 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled)); 2266 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active)); 2267 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n", 2268 dev_priv->psr.busy_frontbuffer_bits); 2269 seq_printf(m, "Re-enable work scheduled: %s\n", 2270 yesno(work_busy(&dev_priv->psr.work.work))); 2271 2272 if (HAS_DDI(dev)) 2273 enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE; 2274 else { 2275 for_each_pipe(dev_priv, pipe) { 2276 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) & 2277 VLV_EDP_PSR_CURR_STATE_MASK; 2278 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) || 2279 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE)) 2280 enabled = true; 2281 } 2282 } 2283 seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled)); 2284 2285 if (!HAS_DDI(dev)) 2286 for_each_pipe(dev_priv, pipe) { 2287 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) || 2288 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE)) 2289 seq_printf(m, " pipe %c", pipe_name(pipe)); 2290 } 2291 seq_puts(m, "\n"); 2292 2293 seq_printf(m, "Link standby: %s\n", 2294 yesno((bool)dev_priv->psr.link_standby)); 2295 2296 /* CHV PSR has no kind of performance counter */ 2297 if (HAS_DDI(dev)) { 2298 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) & 2299 EDP_PSR_PERF_CNT_MASK; 2300 2301 seq_printf(m, "Performance_Counter: %u\n", psrperf); 2302 } 2303 mutex_unlock(&dev_priv->psr.lock); 2304 2305 intel_runtime_pm_put(dev_priv); 2306 return 0; 2307 } 2308 2309 static int i915_sink_crc(struct seq_file *m, void *data) 2310 { 2311 struct drm_info_node *node = m->private; 2312 struct drm_device *dev = node->minor->dev; 2313 struct intel_encoder *encoder; 2314 struct intel_connector *connector; 2315 struct intel_dp *intel_dp = NULL; 2316 int ret; 2317 u8 crc[6]; 2318 2319 drm_modeset_lock_all(dev); 2320 for_each_intel_connector(dev, connector) { 2321 2322 if (connector->base.dpms != DRM_MODE_DPMS_ON) 2323 continue; 2324 2325 if (!connector->base.encoder) 2326 continue; 2327 2328 encoder = to_intel_encoder(connector->base.encoder); 2329 if (encoder->type != INTEL_OUTPUT_EDP) 2330 continue; 2331 2332 intel_dp = enc_to_intel_dp(&encoder->base); 2333 2334 ret = intel_dp_sink_crc(intel_dp, crc); 2335 if (ret) 2336 goto out; 2337 2338 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n", 2339 crc[0], crc[1], crc[2], 2340 crc[3], crc[4], crc[5]); 2341 goto out; 2342 } 2343 ret = -ENODEV; 2344 out: 2345 drm_modeset_unlock_all(dev); 2346 return ret; 2347 } 2348 2349 static int i915_energy_uJ(struct seq_file *m, void *data) 2350 { 2351 struct drm_info_node *node = m->private; 2352 struct drm_device *dev = node->minor->dev; 2353 struct drm_i915_private *dev_priv = dev->dev_private; 2354 u64 power; 2355 u32 units; 2356 2357 if (INTEL_INFO(dev)->gen < 6) 2358 return -ENODEV; 2359 2360 intel_runtime_pm_get(dev_priv); 2361 2362 rdmsrl(MSR_RAPL_POWER_UNIT, power); 2363 power = (power & 0x1f00) >> 8; 2364 units = 1000000 / (1 << power); /* convert to uJ */ 2365 power = I915_READ(MCH_SECP_NRG_STTS); 2366 power *= units; 2367 2368 intel_runtime_pm_put(dev_priv); 2369 2370 seq_printf(m, "%llu", (long long unsigned)power); 2371 2372 return 0; 2373 } 2374 2375 static int i915_pc8_status(struct seq_file *m, void *unused) 2376 { 2377 struct drm_info_node *node = m->private; 2378 struct drm_device *dev = node->minor->dev; 2379 struct drm_i915_private *dev_priv = dev->dev_private; 2380 2381 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) { 2382 seq_puts(m, "not supported\n"); 2383 return 0; 2384 } 2385 2386 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy)); 2387 seq_printf(m, "IRQs disabled: %s\n", 2388 yesno(!intel_irqs_enabled(dev_priv))); 2389 2390 return 0; 2391 } 2392 2393 static const char *power_domain_str(enum intel_display_power_domain domain) 2394 { 2395 switch (domain) { 2396 case POWER_DOMAIN_PIPE_A: 2397 return "PIPE_A"; 2398 case POWER_DOMAIN_PIPE_B: 2399 return "PIPE_B"; 2400 case POWER_DOMAIN_PIPE_C: 2401 return "PIPE_C"; 2402 case POWER_DOMAIN_PIPE_A_PANEL_FITTER: 2403 return "PIPE_A_PANEL_FITTER"; 2404 case POWER_DOMAIN_PIPE_B_PANEL_FITTER: 2405 return "PIPE_B_PANEL_FITTER"; 2406 case POWER_DOMAIN_PIPE_C_PANEL_FITTER: 2407 return "PIPE_C_PANEL_FITTER"; 2408 case POWER_DOMAIN_TRANSCODER_A: 2409 return "TRANSCODER_A"; 2410 case POWER_DOMAIN_TRANSCODER_B: 2411 return "TRANSCODER_B"; 2412 case POWER_DOMAIN_TRANSCODER_C: 2413 return "TRANSCODER_C"; 2414 case POWER_DOMAIN_TRANSCODER_EDP: 2415 return "TRANSCODER_EDP"; 2416 case POWER_DOMAIN_PORT_DDI_A_2_LANES: 2417 return "PORT_DDI_A_2_LANES"; 2418 case POWER_DOMAIN_PORT_DDI_A_4_LANES: 2419 return "PORT_DDI_A_4_LANES"; 2420 case POWER_DOMAIN_PORT_DDI_B_2_LANES: 2421 return "PORT_DDI_B_2_LANES"; 2422 case POWER_DOMAIN_PORT_DDI_B_4_LANES: 2423 return "PORT_DDI_B_4_LANES"; 2424 case POWER_DOMAIN_PORT_DDI_C_2_LANES: 2425 return "PORT_DDI_C_2_LANES"; 2426 case POWER_DOMAIN_PORT_DDI_C_4_LANES: 2427 return "PORT_DDI_C_4_LANES"; 2428 case POWER_DOMAIN_PORT_DDI_D_2_LANES: 2429 return "PORT_DDI_D_2_LANES"; 2430 case POWER_DOMAIN_PORT_DDI_D_4_LANES: 2431 return "PORT_DDI_D_4_LANES"; 2432 case POWER_DOMAIN_PORT_DSI: 2433 return "PORT_DSI"; 2434 case POWER_DOMAIN_PORT_CRT: 2435 return "PORT_CRT"; 2436 case POWER_DOMAIN_PORT_OTHER: 2437 return "PORT_OTHER"; 2438 case POWER_DOMAIN_VGA: 2439 return "VGA"; 2440 case POWER_DOMAIN_AUDIO: 2441 return "AUDIO"; 2442 case POWER_DOMAIN_PLLS: 2443 return "PLLS"; 2444 case POWER_DOMAIN_AUX_A: 2445 return "AUX_A"; 2446 case POWER_DOMAIN_AUX_B: 2447 return "AUX_B"; 2448 case POWER_DOMAIN_AUX_C: 2449 return "AUX_C"; 2450 case POWER_DOMAIN_AUX_D: 2451 return "AUX_D"; 2452 case POWER_DOMAIN_INIT: 2453 return "INIT"; 2454 default: 2455 MISSING_CASE(domain); 2456 return "?"; 2457 } 2458 } 2459 2460 static int i915_power_domain_info(struct seq_file *m, void *unused) 2461 { 2462 struct drm_info_node *node = m->private; 2463 struct drm_device *dev = node->minor->dev; 2464 struct drm_i915_private *dev_priv = dev->dev_private; 2465 struct i915_power_domains *power_domains = &dev_priv->power_domains; 2466 int i; 2467 2468 mutex_lock(&power_domains->lock); 2469 2470 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count"); 2471 for (i = 0; i < power_domains->power_well_count; i++) { 2472 struct i915_power_well *power_well; 2473 enum intel_display_power_domain power_domain; 2474 2475 power_well = &power_domains->power_wells[i]; 2476 seq_printf(m, "%-25s %d\n", power_well->name, 2477 power_well->count); 2478 2479 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM; 2480 power_domain++) { 2481 if (!(BIT(power_domain) & power_well->domains)) 2482 continue; 2483 2484 seq_printf(m, " %-23s %d\n", 2485 power_domain_str(power_domain), 2486 power_domains->domain_use_count[power_domain]); 2487 } 2488 } 2489 2490 mutex_unlock(&power_domains->lock); 2491 2492 return 0; 2493 } 2494 2495 static void intel_seq_print_mode(struct seq_file *m, int tabs, 2496 struct drm_display_mode *mode) 2497 { 2498 int i; 2499 2500 for (i = 0; i < tabs; i++) 2501 seq_putc(m, '\t'); 2502 2503 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n", 2504 mode->base.id, mode->name, 2505 mode->vrefresh, mode->clock, 2506 mode->hdisplay, mode->hsync_start, 2507 mode->hsync_end, mode->htotal, 2508 mode->vdisplay, mode->vsync_start, 2509 mode->vsync_end, mode->vtotal, 2510 mode->type, mode->flags); 2511 } 2512 2513 static void intel_encoder_info(struct seq_file *m, 2514 struct intel_crtc *intel_crtc, 2515 struct intel_encoder *intel_encoder) 2516 { 2517 struct drm_info_node *node = m->private; 2518 struct drm_device *dev = node->minor->dev; 2519 struct drm_crtc *crtc = &intel_crtc->base; 2520 struct intel_connector *intel_connector; 2521 struct drm_encoder *encoder; 2522 2523 encoder = &intel_encoder->base; 2524 seq_printf(m, "\tencoder %d: type: %s, connectors:\n", 2525 encoder->base.id, encoder->name); 2526 for_each_connector_on_encoder(dev, encoder, intel_connector) { 2527 struct drm_connector *connector = &intel_connector->base; 2528 seq_printf(m, "\t\tconnector %d: type: %s, status: %s", 2529 connector->base.id, 2530 connector->name, 2531 drm_get_connector_status_name(connector->status)); 2532 if (connector->status == connector_status_connected) { 2533 struct drm_display_mode *mode = &crtc->mode; 2534 seq_printf(m, ", mode:\n"); 2535 intel_seq_print_mode(m, 2, mode); 2536 } else { 2537 seq_putc(m, '\n'); 2538 } 2539 } 2540 } 2541 2542 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc) 2543 { 2544 struct drm_info_node *node = m->private; 2545 struct drm_device *dev = node->minor->dev; 2546 struct drm_crtc *crtc = &intel_crtc->base; 2547 struct intel_encoder *intel_encoder; 2548 2549 if (crtc->primary->fb) 2550 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n", 2551 crtc->primary->fb->base.id, crtc->x, crtc->y, 2552 crtc->primary->fb->width, crtc->primary->fb->height); 2553 else 2554 seq_puts(m, "\tprimary plane disabled\n"); 2555 for_each_encoder_on_crtc(dev, crtc, intel_encoder) 2556 intel_encoder_info(m, intel_crtc, intel_encoder); 2557 } 2558 2559 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel) 2560 { 2561 struct drm_display_mode *mode = panel->fixed_mode; 2562 2563 seq_printf(m, "\tfixed mode:\n"); 2564 intel_seq_print_mode(m, 2, mode); 2565 } 2566 2567 static void intel_dp_info(struct seq_file *m, 2568 struct intel_connector *intel_connector) 2569 { 2570 struct intel_encoder *intel_encoder = intel_connector->encoder; 2571 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); 2572 2573 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]); 2574 seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" : 2575 "no"); 2576 if (intel_encoder->type == INTEL_OUTPUT_EDP) 2577 intel_panel_info(m, &intel_connector->panel); 2578 } 2579 2580 static void intel_hdmi_info(struct seq_file *m, 2581 struct intel_connector *intel_connector) 2582 { 2583 struct intel_encoder *intel_encoder = intel_connector->encoder; 2584 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base); 2585 2586 seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" : 2587 "no"); 2588 } 2589 2590 static void intel_lvds_info(struct seq_file *m, 2591 struct intel_connector *intel_connector) 2592 { 2593 intel_panel_info(m, &intel_connector->panel); 2594 } 2595 2596 static void intel_connector_info(struct seq_file *m, 2597 struct drm_connector *connector) 2598 { 2599 struct intel_connector *intel_connector = to_intel_connector(connector); 2600 struct intel_encoder *intel_encoder = intel_connector->encoder; 2601 struct drm_display_mode *mode; 2602 2603 seq_printf(m, "connector %d: type %s, status: %s\n", 2604 connector->base.id, connector->name, 2605 drm_get_connector_status_name(connector->status)); 2606 if (connector->status == connector_status_connected) { 2607 seq_printf(m, "\tname: %s\n", connector->display_info.name); 2608 seq_printf(m, "\tphysical dimensions: %dx%dmm\n", 2609 connector->display_info.width_mm, 2610 connector->display_info.height_mm); 2611 seq_printf(m, "\tsubpixel order: %s\n", 2612 drm_get_subpixel_order_name(connector->display_info.subpixel_order)); 2613 seq_printf(m, "\tCEA rev: %d\n", 2614 connector->display_info.cea_rev); 2615 } 2616 if (intel_encoder) { 2617 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT || 2618 intel_encoder->type == INTEL_OUTPUT_EDP) 2619 intel_dp_info(m, intel_connector); 2620 else if (intel_encoder->type == INTEL_OUTPUT_HDMI) 2621 intel_hdmi_info(m, intel_connector); 2622 else if (intel_encoder->type == INTEL_OUTPUT_LVDS) 2623 intel_lvds_info(m, intel_connector); 2624 } 2625 2626 seq_printf(m, "\tmodes:\n"); 2627 list_for_each_entry(mode, &connector->modes, head) 2628 intel_seq_print_mode(m, 2, mode); 2629 } 2630 2631 static bool cursor_active(struct drm_device *dev, int pipe) 2632 { 2633 struct drm_i915_private *dev_priv = dev->dev_private; 2634 u32 state; 2635 2636 if (IS_845G(dev) || IS_I865G(dev)) 2637 state = I915_READ(_CURACNTR) & CURSOR_ENABLE; 2638 else 2639 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE; 2640 2641 return state; 2642 } 2643 2644 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y) 2645 { 2646 struct drm_i915_private *dev_priv = dev->dev_private; 2647 u32 pos; 2648 2649 pos = I915_READ(CURPOS(pipe)); 2650 2651 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK; 2652 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT)) 2653 *x = -*x; 2654 2655 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK; 2656 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT)) 2657 *y = -*y; 2658 2659 return cursor_active(dev, pipe); 2660 } 2661 2662 static int i915_display_info(struct seq_file *m, void *unused) 2663 { 2664 struct drm_info_node *node = m->private; 2665 struct drm_device *dev = node->minor->dev; 2666 struct drm_i915_private *dev_priv = dev->dev_private; 2667 struct intel_crtc *crtc; 2668 struct drm_connector *connector; 2669 2670 intel_runtime_pm_get(dev_priv); 2671 drm_modeset_lock_all(dev); 2672 seq_printf(m, "CRTC info\n"); 2673 seq_printf(m, "---------\n"); 2674 for_each_intel_crtc(dev, crtc) { 2675 bool active; 2676 int x, y; 2677 2678 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n", 2679 crtc->base.base.id, pipe_name(crtc->pipe), 2680 yesno(crtc->active), crtc->config->pipe_src_w, 2681 crtc->config->pipe_src_h); 2682 if (crtc->active) { 2683 intel_crtc_info(m, crtc); 2684 2685 active = cursor_position(dev, crtc->pipe, &x, &y); 2686 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n", 2687 yesno(crtc->cursor_base), 2688 x, y, crtc->base.cursor->state->crtc_w, 2689 crtc->base.cursor->state->crtc_h, 2690 crtc->cursor_addr, yesno(active)); 2691 } 2692 2693 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n", 2694 yesno(!crtc->cpu_fifo_underrun_disabled), 2695 yesno(!crtc->pch_fifo_underrun_disabled)); 2696 } 2697 2698 seq_printf(m, "\n"); 2699 seq_printf(m, "Connector info\n"); 2700 seq_printf(m, "--------------\n"); 2701 list_for_each_entry(connector, &dev->mode_config.connector_list, head) { 2702 intel_connector_info(m, connector); 2703 } 2704 drm_modeset_unlock_all(dev); 2705 intel_runtime_pm_put(dev_priv); 2706 2707 return 0; 2708 } 2709 2710 static int i915_semaphore_status(struct seq_file *m, void *unused) 2711 { 2712 struct drm_info_node *node = (struct drm_info_node *) m->private; 2713 struct drm_device *dev = node->minor->dev; 2714 struct drm_i915_private *dev_priv = dev->dev_private; 2715 struct intel_engine_cs *ring; 2716 int num_rings = hweight32(INTEL_INFO(dev)->ring_mask); 2717 int i, j, ret; 2718 2719 if (!i915_semaphore_is_enabled(dev)) { 2720 seq_puts(m, "Semaphores are disabled\n"); 2721 return 0; 2722 } 2723 2724 ret = mutex_lock_interruptible(&dev->struct_mutex); 2725 if (ret) 2726 return ret; 2727 intel_runtime_pm_get(dev_priv); 2728 2729 if (IS_BROADWELL(dev)) { 2730 struct page *page; 2731 uint64_t *seqno; 2732 2733 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0); 2734 2735 seqno = (uint64_t *)kmap_atomic(page); 2736 for_each_ring(ring, dev_priv, i) { 2737 uint64_t offset; 2738 2739 seq_printf(m, "%s\n", ring->name); 2740 2741 seq_puts(m, " Last signal:"); 2742 for (j = 0; j < num_rings; j++) { 2743 offset = i * I915_NUM_RINGS + j; 2744 seq_printf(m, "0x%08llx (0x%02llx) ", 2745 seqno[offset], offset * 8); 2746 } 2747 seq_putc(m, '\n'); 2748 2749 seq_puts(m, " Last wait: "); 2750 for (j = 0; j < num_rings; j++) { 2751 offset = i + (j * I915_NUM_RINGS); 2752 seq_printf(m, "0x%08llx (0x%02llx) ", 2753 seqno[offset], offset * 8); 2754 } 2755 seq_putc(m, '\n'); 2756 2757 } 2758 kunmap_atomic(seqno); 2759 } else { 2760 seq_puts(m, " Last signal:"); 2761 for_each_ring(ring, dev_priv, i) 2762 for (j = 0; j < num_rings; j++) 2763 seq_printf(m, "0x%08x\n", 2764 I915_READ(ring->semaphore.mbox.signal[j])); 2765 seq_putc(m, '\n'); 2766 } 2767 2768 seq_puts(m, "\nSync seqno:\n"); 2769 for_each_ring(ring, dev_priv, i) { 2770 for (j = 0; j < num_rings; j++) { 2771 seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]); 2772 } 2773 seq_putc(m, '\n'); 2774 } 2775 seq_putc(m, '\n'); 2776 2777 intel_runtime_pm_put(dev_priv); 2778 mutex_unlock(&dev->struct_mutex); 2779 return 0; 2780 } 2781 2782 static int i915_shared_dplls_info(struct seq_file *m, void *unused) 2783 { 2784 struct drm_info_node *node = (struct drm_info_node *) m->private; 2785 struct drm_device *dev = node->minor->dev; 2786 struct drm_i915_private *dev_priv = dev->dev_private; 2787 int i; 2788 2789 drm_modeset_lock_all(dev); 2790 for (i = 0; i < dev_priv->num_shared_dpll; i++) { 2791 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; 2792 2793 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id); 2794 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n", 2795 pll->config.crtc_mask, pll->active, yesno(pll->on)); 2796 seq_printf(m, " tracked hardware state:\n"); 2797 seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll); 2798 seq_printf(m, " dpll_md: 0x%08x\n", 2799 pll->config.hw_state.dpll_md); 2800 seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0); 2801 seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1); 2802 seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll); 2803 } 2804 drm_modeset_unlock_all(dev); 2805 2806 return 0; 2807 } 2808 2809 static int i915_wa_registers(struct seq_file *m, void *unused) 2810 { 2811 int i; 2812 int ret; 2813 struct drm_info_node *node = (struct drm_info_node *) m->private; 2814 struct drm_device *dev = node->minor->dev; 2815 struct drm_i915_private *dev_priv = dev->dev_private; 2816 2817 ret = mutex_lock_interruptible(&dev->struct_mutex); 2818 if (ret) 2819 return ret; 2820 2821 intel_runtime_pm_get(dev_priv); 2822 2823 seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count); 2824 for (i = 0; i < dev_priv->workarounds.count; ++i) { 2825 u32 addr, mask, value, read; 2826 bool ok; 2827 2828 addr = dev_priv->workarounds.reg[i].addr; 2829 mask = dev_priv->workarounds.reg[i].mask; 2830 value = dev_priv->workarounds.reg[i].value; 2831 read = I915_READ(addr); 2832 ok = (value & mask) == (read & mask); 2833 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n", 2834 addr, value, mask, read, ok ? "OK" : "FAIL"); 2835 } 2836 2837 intel_runtime_pm_put(dev_priv); 2838 mutex_unlock(&dev->struct_mutex); 2839 2840 return 0; 2841 } 2842 2843 static int i915_ddb_info(struct seq_file *m, void *unused) 2844 { 2845 struct drm_info_node *node = m->private; 2846 struct drm_device *dev = node->minor->dev; 2847 struct drm_i915_private *dev_priv = dev->dev_private; 2848 struct skl_ddb_allocation *ddb; 2849 struct skl_ddb_entry *entry; 2850 enum pipe pipe; 2851 int plane; 2852 2853 if (INTEL_INFO(dev)->gen < 9) 2854 return 0; 2855 2856 drm_modeset_lock_all(dev); 2857 2858 ddb = &dev_priv->wm.skl_hw.ddb; 2859 2860 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size"); 2861 2862 for_each_pipe(dev_priv, pipe) { 2863 seq_printf(m, "Pipe %c\n", pipe_name(pipe)); 2864 2865 for_each_plane(dev_priv, pipe, plane) { 2866 entry = &ddb->plane[pipe][plane]; 2867 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1, 2868 entry->start, entry->end, 2869 skl_ddb_entry_size(entry)); 2870 } 2871 2872 entry = &ddb->cursor[pipe]; 2873 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start, 2874 entry->end, skl_ddb_entry_size(entry)); 2875 } 2876 2877 drm_modeset_unlock_all(dev); 2878 2879 return 0; 2880 } 2881 2882 static void drrs_status_per_crtc(struct seq_file *m, 2883 struct drm_device *dev, struct intel_crtc *intel_crtc) 2884 { 2885 struct intel_encoder *intel_encoder; 2886 struct drm_i915_private *dev_priv = dev->dev_private; 2887 struct i915_drrs *drrs = &dev_priv->drrs; 2888 int vrefresh = 0; 2889 2890 for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) { 2891 /* Encoder connected on this CRTC */ 2892 switch (intel_encoder->type) { 2893 case INTEL_OUTPUT_EDP: 2894 seq_puts(m, "eDP:\n"); 2895 break; 2896 case INTEL_OUTPUT_DSI: 2897 seq_puts(m, "DSI:\n"); 2898 break; 2899 case INTEL_OUTPUT_HDMI: 2900 seq_puts(m, "HDMI:\n"); 2901 break; 2902 case INTEL_OUTPUT_DISPLAYPORT: 2903 seq_puts(m, "DP:\n"); 2904 break; 2905 default: 2906 seq_printf(m, "Other encoder (id=%d).\n", 2907 intel_encoder->type); 2908 return; 2909 } 2910 } 2911 2912 if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT) 2913 seq_puts(m, "\tVBT: DRRS_type: Static"); 2914 else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT) 2915 seq_puts(m, "\tVBT: DRRS_type: Seamless"); 2916 else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED) 2917 seq_puts(m, "\tVBT: DRRS_type: None"); 2918 else 2919 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value"); 2920 2921 seq_puts(m, "\n\n"); 2922 2923 if (intel_crtc->config->has_drrs) { 2924 struct intel_panel *panel; 2925 2926 mutex_lock(&drrs->mutex); 2927 /* DRRS Supported */ 2928 seq_puts(m, "\tDRRS Supported: Yes\n"); 2929 2930 /* disable_drrs() will make drrs->dp NULL */ 2931 if (!drrs->dp) { 2932 seq_puts(m, "Idleness DRRS: Disabled"); 2933 mutex_unlock(&drrs->mutex); 2934 return; 2935 } 2936 2937 panel = &drrs->dp->attached_connector->panel; 2938 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X", 2939 drrs->busy_frontbuffer_bits); 2940 2941 seq_puts(m, "\n\t\t"); 2942 if (drrs->refresh_rate_type == DRRS_HIGH_RR) { 2943 seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n"); 2944 vrefresh = panel->fixed_mode->vrefresh; 2945 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) { 2946 seq_puts(m, "DRRS_State: DRRS_LOW_RR\n"); 2947 vrefresh = panel->downclock_mode->vrefresh; 2948 } else { 2949 seq_printf(m, "DRRS_State: Unknown(%d)\n", 2950 drrs->refresh_rate_type); 2951 mutex_unlock(&drrs->mutex); 2952 return; 2953 } 2954 seq_printf(m, "\t\tVrefresh: %d", vrefresh); 2955 2956 seq_puts(m, "\n\t\t"); 2957 mutex_unlock(&drrs->mutex); 2958 } else { 2959 /* DRRS not supported. Print the VBT parameter*/ 2960 seq_puts(m, "\tDRRS Supported : No"); 2961 } 2962 seq_puts(m, "\n"); 2963 } 2964 2965 static int i915_drrs_status(struct seq_file *m, void *unused) 2966 { 2967 struct drm_info_node *node = m->private; 2968 struct drm_device *dev = node->minor->dev; 2969 struct intel_crtc *intel_crtc; 2970 int active_crtc_cnt = 0; 2971 2972 for_each_intel_crtc(dev, intel_crtc) { 2973 drm_modeset_lock(&intel_crtc->base.mutex, NULL); 2974 2975 if (intel_crtc->active) { 2976 active_crtc_cnt++; 2977 seq_printf(m, "\nCRTC %d: ", active_crtc_cnt); 2978 2979 drrs_status_per_crtc(m, dev, intel_crtc); 2980 } 2981 2982 drm_modeset_unlock(&intel_crtc->base.mutex); 2983 } 2984 2985 if (!active_crtc_cnt) 2986 seq_puts(m, "No active crtc found\n"); 2987 2988 return 0; 2989 } 2990 2991 struct pipe_crc_info { 2992 const char *name; 2993 struct drm_device *dev; 2994 enum pipe pipe; 2995 }; 2996 2997 static int i915_dp_mst_info(struct seq_file *m, void *unused) 2998 { 2999 struct drm_info_node *node = (struct drm_info_node *) m->private; 3000 struct drm_device *dev = node->minor->dev; 3001 struct drm_encoder *encoder; 3002 struct intel_encoder *intel_encoder; 3003 struct intel_digital_port *intel_dig_port; 3004 drm_modeset_lock_all(dev); 3005 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 3006 intel_encoder = to_intel_encoder(encoder); 3007 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT) 3008 continue; 3009 intel_dig_port = enc_to_dig_port(encoder); 3010 if (!intel_dig_port->dp.can_mst) 3011 continue; 3012 3013 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr); 3014 } 3015 drm_modeset_unlock_all(dev); 3016 return 0; 3017 } 3018 3019 static int i915_pipe_crc_open(struct inode *inode, struct file *filep) 3020 { 3021 struct pipe_crc_info *info = inode->i_private; 3022 struct drm_i915_private *dev_priv = info->dev->dev_private; 3023 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe]; 3024 3025 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes) 3026 return -ENODEV; 3027 3028 spin_lock_irq(&pipe_crc->lock); 3029 3030 if (pipe_crc->opened) { 3031 spin_unlock_irq(&pipe_crc->lock); 3032 return -EBUSY; /* already open */ 3033 } 3034 3035 pipe_crc->opened = true; 3036 filep->private_data = inode->i_private; 3037 3038 spin_unlock_irq(&pipe_crc->lock); 3039 3040 return 0; 3041 } 3042 3043 static int i915_pipe_crc_release(struct inode *inode, struct file *filep) 3044 { 3045 struct pipe_crc_info *info = inode->i_private; 3046 struct drm_i915_private *dev_priv = info->dev->dev_private; 3047 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe]; 3048 3049 spin_lock_irq(&pipe_crc->lock); 3050 pipe_crc->opened = false; 3051 spin_unlock_irq(&pipe_crc->lock); 3052 3053 return 0; 3054 } 3055 3056 /* (6 fields, 8 chars each, space separated (5) + '\n') */ 3057 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1) 3058 /* account for \'0' */ 3059 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1) 3060 3061 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc) 3062 { 3063 assert_spin_locked(&pipe_crc->lock); 3064 return CIRC_CNT(pipe_crc->head, pipe_crc->tail, 3065 INTEL_PIPE_CRC_ENTRIES_NR); 3066 } 3067 3068 static ssize_t 3069 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count, 3070 loff_t *pos) 3071 { 3072 struct pipe_crc_info *info = filep->private_data; 3073 struct drm_device *dev = info->dev; 3074 struct drm_i915_private *dev_priv = dev->dev_private; 3075 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe]; 3076 char buf[PIPE_CRC_BUFFER_LEN]; 3077 int n_entries; 3078 ssize_t bytes_read; 3079 3080 /* 3081 * Don't allow user space to provide buffers not big enough to hold 3082 * a line of data. 3083 */ 3084 if (count < PIPE_CRC_LINE_LEN) 3085 return -EINVAL; 3086 3087 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE) 3088 return 0; 3089 3090 /* nothing to read */ 3091 spin_lock_irq(&pipe_crc->lock); 3092 while (pipe_crc_data_count(pipe_crc) == 0) { 3093 int ret; 3094 3095 if (filep->f_flags & O_NONBLOCK) { 3096 spin_unlock_irq(&pipe_crc->lock); 3097 return -EAGAIN; 3098 } 3099 3100 ret = wait_event_interruptible_lock_irq(pipe_crc->wq, 3101 pipe_crc_data_count(pipe_crc), pipe_crc->lock); 3102 if (ret) { 3103 spin_unlock_irq(&pipe_crc->lock); 3104 return ret; 3105 } 3106 } 3107 3108 /* We now have one or more entries to read */ 3109 n_entries = count / PIPE_CRC_LINE_LEN; 3110 3111 bytes_read = 0; 3112 while (n_entries > 0) { 3113 struct intel_pipe_crc_entry *entry = 3114 &pipe_crc->entries[pipe_crc->tail]; 3115 int ret; 3116 3117 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail, 3118 INTEL_PIPE_CRC_ENTRIES_NR) < 1) 3119 break; 3120 3121 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR); 3122 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1); 3123 3124 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN, 3125 "%8u %8x %8x %8x %8x %8x\n", 3126 entry->frame, entry->crc[0], 3127 entry->crc[1], entry->crc[2], 3128 entry->crc[3], entry->crc[4]); 3129 3130 spin_unlock_irq(&pipe_crc->lock); 3131 3132 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN); 3133 if (ret == PIPE_CRC_LINE_LEN) 3134 return -EFAULT; 3135 3136 user_buf += PIPE_CRC_LINE_LEN; 3137 n_entries--; 3138 3139 spin_lock_irq(&pipe_crc->lock); 3140 } 3141 3142 spin_unlock_irq(&pipe_crc->lock); 3143 3144 return bytes_read; 3145 } 3146 3147 static const struct file_operations i915_pipe_crc_fops = { 3148 .owner = THIS_MODULE, 3149 .open = i915_pipe_crc_open, 3150 .read = i915_pipe_crc_read, 3151 .release = i915_pipe_crc_release, 3152 }; 3153 3154 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = { 3155 { 3156 .name = "i915_pipe_A_crc", 3157 .pipe = PIPE_A, 3158 }, 3159 { 3160 .name = "i915_pipe_B_crc", 3161 .pipe = PIPE_B, 3162 }, 3163 { 3164 .name = "i915_pipe_C_crc", 3165 .pipe = PIPE_C, 3166 }, 3167 }; 3168 3169 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor, 3170 enum pipe pipe) 3171 { 3172 struct drm_device *dev = minor->dev; 3173 struct dentry *ent; 3174 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe]; 3175 3176 info->dev = dev; 3177 ent = debugfs_create_file(info->name, S_IRUGO, root, info, 3178 &i915_pipe_crc_fops); 3179 if (!ent) 3180 return -ENOMEM; 3181 3182 return drm_add_fake_info_node(minor, ent, info); 3183 } 3184 3185 static const char * const pipe_crc_sources[] = { 3186 "none", 3187 "plane1", 3188 "plane2", 3189 "pf", 3190 "pipe", 3191 "TV", 3192 "DP-B", 3193 "DP-C", 3194 "DP-D", 3195 "auto", 3196 }; 3197 3198 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source) 3199 { 3200 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX); 3201 return pipe_crc_sources[source]; 3202 } 3203 3204 static int display_crc_ctl_show(struct seq_file *m, void *data) 3205 { 3206 struct drm_device *dev = m->private; 3207 struct drm_i915_private *dev_priv = dev->dev_private; 3208 int i; 3209 3210 for (i = 0; i < I915_MAX_PIPES; i++) 3211 seq_printf(m, "%c %s\n", pipe_name(i), 3212 pipe_crc_source_name(dev_priv->pipe_crc[i].source)); 3213 3214 return 0; 3215 } 3216 3217 static int display_crc_ctl_open(struct inode *inode, struct file *file) 3218 { 3219 struct drm_device *dev = inode->i_private; 3220 3221 return single_open(file, display_crc_ctl_show, dev); 3222 } 3223 3224 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source, 3225 uint32_t *val) 3226 { 3227 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) 3228 *source = INTEL_PIPE_CRC_SOURCE_PIPE; 3229 3230 switch (*source) { 3231 case INTEL_PIPE_CRC_SOURCE_PIPE: 3232 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX; 3233 break; 3234 case INTEL_PIPE_CRC_SOURCE_NONE: 3235 *val = 0; 3236 break; 3237 default: 3238 return -EINVAL; 3239 } 3240 3241 return 0; 3242 } 3243 3244 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe, 3245 enum intel_pipe_crc_source *source) 3246 { 3247 struct intel_encoder *encoder; 3248 struct intel_crtc *crtc; 3249 struct intel_digital_port *dig_port; 3250 int ret = 0; 3251 3252 *source = INTEL_PIPE_CRC_SOURCE_PIPE; 3253 3254 drm_modeset_lock_all(dev); 3255 for_each_intel_encoder(dev, encoder) { 3256 if (!encoder->base.crtc) 3257 continue; 3258 3259 crtc = to_intel_crtc(encoder->base.crtc); 3260 3261 if (crtc->pipe != pipe) 3262 continue; 3263 3264 switch (encoder->type) { 3265 case INTEL_OUTPUT_TVOUT: 3266 *source = INTEL_PIPE_CRC_SOURCE_TV; 3267 break; 3268 case INTEL_OUTPUT_DISPLAYPORT: 3269 case INTEL_OUTPUT_EDP: 3270 dig_port = enc_to_dig_port(&encoder->base); 3271 switch (dig_port->port) { 3272 case PORT_B: 3273 *source = INTEL_PIPE_CRC_SOURCE_DP_B; 3274 break; 3275 case PORT_C: 3276 *source = INTEL_PIPE_CRC_SOURCE_DP_C; 3277 break; 3278 case PORT_D: 3279 *source = INTEL_PIPE_CRC_SOURCE_DP_D; 3280 break; 3281 default: 3282 WARN(1, "nonexisting DP port %c\n", 3283 port_name(dig_port->port)); 3284 break; 3285 } 3286 break; 3287 default: 3288 break; 3289 } 3290 } 3291 drm_modeset_unlock_all(dev); 3292 3293 return ret; 3294 } 3295 3296 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev, 3297 enum pipe pipe, 3298 enum intel_pipe_crc_source *source, 3299 uint32_t *val) 3300 { 3301 struct drm_i915_private *dev_priv = dev->dev_private; 3302 bool need_stable_symbols = false; 3303 3304 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) { 3305 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source); 3306 if (ret) 3307 return ret; 3308 } 3309 3310 switch (*source) { 3311 case INTEL_PIPE_CRC_SOURCE_PIPE: 3312 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV; 3313 break; 3314 case INTEL_PIPE_CRC_SOURCE_DP_B: 3315 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV; 3316 need_stable_symbols = true; 3317 break; 3318 case INTEL_PIPE_CRC_SOURCE_DP_C: 3319 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV; 3320 need_stable_symbols = true; 3321 break; 3322 case INTEL_PIPE_CRC_SOURCE_DP_D: 3323 if (!IS_CHERRYVIEW(dev)) 3324 return -EINVAL; 3325 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV; 3326 need_stable_symbols = true; 3327 break; 3328 case INTEL_PIPE_CRC_SOURCE_NONE: 3329 *val = 0; 3330 break; 3331 default: 3332 return -EINVAL; 3333 } 3334 3335 /* 3336 * When the pipe CRC tap point is after the transcoders we need 3337 * to tweak symbol-level features to produce a deterministic series of 3338 * symbols for a given frame. We need to reset those features only once 3339 * a frame (instead of every nth symbol): 3340 * - DC-balance: used to ensure a better clock recovery from the data 3341 * link (SDVO) 3342 * - DisplayPort scrambling: used for EMI reduction 3343 */ 3344 if (need_stable_symbols) { 3345 uint32_t tmp = I915_READ(PORT_DFT2_G4X); 3346 3347 tmp |= DC_BALANCE_RESET_VLV; 3348 switch (pipe) { 3349 case PIPE_A: 3350 tmp |= PIPE_A_SCRAMBLE_RESET; 3351 break; 3352 case PIPE_B: 3353 tmp |= PIPE_B_SCRAMBLE_RESET; 3354 break; 3355 case PIPE_C: 3356 tmp |= PIPE_C_SCRAMBLE_RESET; 3357 break; 3358 default: 3359 return -EINVAL; 3360 } 3361 I915_WRITE(PORT_DFT2_G4X, tmp); 3362 } 3363 3364 return 0; 3365 } 3366 3367 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev, 3368 enum pipe pipe, 3369 enum intel_pipe_crc_source *source, 3370 uint32_t *val) 3371 { 3372 struct drm_i915_private *dev_priv = dev->dev_private; 3373 bool need_stable_symbols = false; 3374 3375 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) { 3376 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source); 3377 if (ret) 3378 return ret; 3379 } 3380 3381 switch (*source) { 3382 case INTEL_PIPE_CRC_SOURCE_PIPE: 3383 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX; 3384 break; 3385 case INTEL_PIPE_CRC_SOURCE_TV: 3386 if (!SUPPORTS_TV(dev)) 3387 return -EINVAL; 3388 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE; 3389 break; 3390 case INTEL_PIPE_CRC_SOURCE_DP_B: 3391 if (!IS_G4X(dev)) 3392 return -EINVAL; 3393 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X; 3394 need_stable_symbols = true; 3395 break; 3396 case INTEL_PIPE_CRC_SOURCE_DP_C: 3397 if (!IS_G4X(dev)) 3398 return -EINVAL; 3399 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X; 3400 need_stable_symbols = true; 3401 break; 3402 case INTEL_PIPE_CRC_SOURCE_DP_D: 3403 if (!IS_G4X(dev)) 3404 return -EINVAL; 3405 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X; 3406 need_stable_symbols = true; 3407 break; 3408 case INTEL_PIPE_CRC_SOURCE_NONE: 3409 *val = 0; 3410 break; 3411 default: 3412 return -EINVAL; 3413 } 3414 3415 /* 3416 * When the pipe CRC tap point is after the transcoders we need 3417 * to tweak symbol-level features to produce a deterministic series of 3418 * symbols for a given frame. We need to reset those features only once 3419 * a frame (instead of every nth symbol): 3420 * - DC-balance: used to ensure a better clock recovery from the data 3421 * link (SDVO) 3422 * - DisplayPort scrambling: used for EMI reduction 3423 */ 3424 if (need_stable_symbols) { 3425 uint32_t tmp = I915_READ(PORT_DFT2_G4X); 3426 3427 WARN_ON(!IS_G4X(dev)); 3428 3429 I915_WRITE(PORT_DFT_I9XX, 3430 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET); 3431 3432 if (pipe == PIPE_A) 3433 tmp |= PIPE_A_SCRAMBLE_RESET; 3434 else 3435 tmp |= PIPE_B_SCRAMBLE_RESET; 3436 3437 I915_WRITE(PORT_DFT2_G4X, tmp); 3438 } 3439 3440 return 0; 3441 } 3442 3443 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev, 3444 enum pipe pipe) 3445 { 3446 struct drm_i915_private *dev_priv = dev->dev_private; 3447 uint32_t tmp = I915_READ(PORT_DFT2_G4X); 3448 3449 switch (pipe) { 3450 case PIPE_A: 3451 tmp &= ~PIPE_A_SCRAMBLE_RESET; 3452 break; 3453 case PIPE_B: 3454 tmp &= ~PIPE_B_SCRAMBLE_RESET; 3455 break; 3456 case PIPE_C: 3457 tmp &= ~PIPE_C_SCRAMBLE_RESET; 3458 break; 3459 default: 3460 return; 3461 } 3462 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) 3463 tmp &= ~DC_BALANCE_RESET_VLV; 3464 I915_WRITE(PORT_DFT2_G4X, tmp); 3465 3466 } 3467 3468 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev, 3469 enum pipe pipe) 3470 { 3471 struct drm_i915_private *dev_priv = dev->dev_private; 3472 uint32_t tmp = I915_READ(PORT_DFT2_G4X); 3473 3474 if (pipe == PIPE_A) 3475 tmp &= ~PIPE_A_SCRAMBLE_RESET; 3476 else 3477 tmp &= ~PIPE_B_SCRAMBLE_RESET; 3478 I915_WRITE(PORT_DFT2_G4X, tmp); 3479 3480 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) { 3481 I915_WRITE(PORT_DFT_I9XX, 3482 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET); 3483 } 3484 } 3485 3486 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source, 3487 uint32_t *val) 3488 { 3489 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) 3490 *source = INTEL_PIPE_CRC_SOURCE_PIPE; 3491 3492 switch (*source) { 3493 case INTEL_PIPE_CRC_SOURCE_PLANE1: 3494 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK; 3495 break; 3496 case INTEL_PIPE_CRC_SOURCE_PLANE2: 3497 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK; 3498 break; 3499 case INTEL_PIPE_CRC_SOURCE_PIPE: 3500 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK; 3501 break; 3502 case INTEL_PIPE_CRC_SOURCE_NONE: 3503 *val = 0; 3504 break; 3505 default: 3506 return -EINVAL; 3507 } 3508 3509 return 0; 3510 } 3511 3512 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev) 3513 { 3514 struct drm_i915_private *dev_priv = dev->dev_private; 3515 struct intel_crtc *crtc = 3516 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]); 3517 3518 drm_modeset_lock_all(dev); 3519 /* 3520 * If we use the eDP transcoder we need to make sure that we don't 3521 * bypass the pfit, since otherwise the pipe CRC source won't work. Only 3522 * relevant on hsw with pipe A when using the always-on power well 3523 * routing. 3524 */ 3525 if (crtc->config->cpu_transcoder == TRANSCODER_EDP && 3526 !crtc->config->pch_pfit.enabled) { 3527 crtc->config->pch_pfit.force_thru = true; 3528 3529 intel_display_power_get(dev_priv, 3530 POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A)); 3531 3532 dev_priv->display.crtc_disable(&crtc->base); 3533 dev_priv->display.crtc_enable(&crtc->base); 3534 } 3535 drm_modeset_unlock_all(dev); 3536 } 3537 3538 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev) 3539 { 3540 struct drm_i915_private *dev_priv = dev->dev_private; 3541 struct intel_crtc *crtc = 3542 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]); 3543 3544 drm_modeset_lock_all(dev); 3545 /* 3546 * If we use the eDP transcoder we need to make sure that we don't 3547 * bypass the pfit, since otherwise the pipe CRC source won't work. Only 3548 * relevant on hsw with pipe A when using the always-on power well 3549 * routing. 3550 */ 3551 if (crtc->config->pch_pfit.force_thru) { 3552 crtc->config->pch_pfit.force_thru = false; 3553 3554 dev_priv->display.crtc_disable(&crtc->base); 3555 dev_priv->display.crtc_enable(&crtc->base); 3556 3557 intel_display_power_put(dev_priv, 3558 POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A)); 3559 } 3560 drm_modeset_unlock_all(dev); 3561 } 3562 3563 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev, 3564 enum pipe pipe, 3565 enum intel_pipe_crc_source *source, 3566 uint32_t *val) 3567 { 3568 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) 3569 *source = INTEL_PIPE_CRC_SOURCE_PF; 3570 3571 switch (*source) { 3572 case INTEL_PIPE_CRC_SOURCE_PLANE1: 3573 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB; 3574 break; 3575 case INTEL_PIPE_CRC_SOURCE_PLANE2: 3576 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB; 3577 break; 3578 case INTEL_PIPE_CRC_SOURCE_PF: 3579 if (IS_HASWELL(dev) && pipe == PIPE_A) 3580 hsw_trans_edp_pipe_A_crc_wa(dev); 3581 3582 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB; 3583 break; 3584 case INTEL_PIPE_CRC_SOURCE_NONE: 3585 *val = 0; 3586 break; 3587 default: 3588 return -EINVAL; 3589 } 3590 3591 return 0; 3592 } 3593 3594 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe, 3595 enum intel_pipe_crc_source source) 3596 { 3597 struct drm_i915_private *dev_priv = dev->dev_private; 3598 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; 3599 struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, 3600 pipe)); 3601 u32 val = 0; /* shut up gcc */ 3602 int ret; 3603 3604 if (pipe_crc->source == source) 3605 return 0; 3606 3607 /* forbid changing the source without going back to 'none' */ 3608 if (pipe_crc->source && source) 3609 return -EINVAL; 3610 3611 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) { 3612 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n"); 3613 return -EIO; 3614 } 3615 3616 if (IS_GEN2(dev)) 3617 ret = i8xx_pipe_crc_ctl_reg(&source, &val); 3618 else if (INTEL_INFO(dev)->gen < 5) 3619 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val); 3620 else if (IS_VALLEYVIEW(dev)) 3621 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val); 3622 else if (IS_GEN5(dev) || IS_GEN6(dev)) 3623 ret = ilk_pipe_crc_ctl_reg(&source, &val); 3624 else 3625 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val); 3626 3627 if (ret != 0) 3628 return ret; 3629 3630 /* none -> real source transition */ 3631 if (source) { 3632 struct intel_pipe_crc_entry *entries; 3633 3634 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n", 3635 pipe_name(pipe), pipe_crc_source_name(source)); 3636 3637 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR, 3638 sizeof(pipe_crc->entries[0]), 3639 GFP_KERNEL); 3640 if (!entries) 3641 return -ENOMEM; 3642 3643 /* 3644 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 3645 * enabled and disabled dynamically based on package C states, 3646 * user space can't make reliable use of the CRCs, so let's just 3647 * completely disable it. 3648 */ 3649 hsw_disable_ips(crtc); 3650 3651 spin_lock_irq(&pipe_crc->lock); 3652 kfree(pipe_crc->entries); 3653 pipe_crc->entries = entries; 3654 pipe_crc->head = 0; 3655 pipe_crc->tail = 0; 3656 spin_unlock_irq(&pipe_crc->lock); 3657 } 3658 3659 pipe_crc->source = source; 3660 3661 I915_WRITE(PIPE_CRC_CTL(pipe), val); 3662 POSTING_READ(PIPE_CRC_CTL(pipe)); 3663 3664 /* real source -> none transition */ 3665 if (source == INTEL_PIPE_CRC_SOURCE_NONE) { 3666 struct intel_pipe_crc_entry *entries; 3667 struct intel_crtc *crtc = 3668 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); 3669 3670 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n", 3671 pipe_name(pipe)); 3672 3673 drm_modeset_lock(&crtc->base.mutex, NULL); 3674 if (crtc->active) 3675 intel_wait_for_vblank(dev, pipe); 3676 drm_modeset_unlock(&crtc->base.mutex); 3677 3678 spin_lock_irq(&pipe_crc->lock); 3679 entries = pipe_crc->entries; 3680 pipe_crc->entries = NULL; 3681 pipe_crc->head = 0; 3682 pipe_crc->tail = 0; 3683 spin_unlock_irq(&pipe_crc->lock); 3684 3685 kfree(entries); 3686 3687 if (IS_G4X(dev)) 3688 g4x_undo_pipe_scramble_reset(dev, pipe); 3689 else if (IS_VALLEYVIEW(dev)) 3690 vlv_undo_pipe_scramble_reset(dev, pipe); 3691 else if (IS_HASWELL(dev) && pipe == PIPE_A) 3692 hsw_undo_trans_edp_pipe_A_crc_wa(dev); 3693 3694 hsw_enable_ips(crtc); 3695 } 3696 3697 return 0; 3698 } 3699 3700 /* 3701 * Parse pipe CRC command strings: 3702 * command: wsp* object wsp+ name wsp+ source wsp* 3703 * object: 'pipe' 3704 * name: (A | B | C) 3705 * source: (none | plane1 | plane2 | pf) 3706 * wsp: (#0x20 | #0x9 | #0xA)+ 3707 * 3708 * eg.: 3709 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A 3710 * "pipe A none" -> Stop CRC 3711 */ 3712 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words) 3713 { 3714 int n_words = 0; 3715 3716 while (*buf) { 3717 char *end; 3718 3719 /* skip leading white space */ 3720 buf = skip_spaces(buf); 3721 if (!*buf) 3722 break; /* end of buffer */ 3723 3724 /* find end of word */ 3725 for (end = buf; *end && !isspace(*end); end++) 3726 ; 3727 3728 if (n_words == max_words) { 3729 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n", 3730 max_words); 3731 return -EINVAL; /* ran out of words[] before bytes */ 3732 } 3733 3734 if (*end) 3735 *end++ = '\0'; 3736 words[n_words++] = buf; 3737 buf = end; 3738 } 3739 3740 return n_words; 3741 } 3742 3743 enum intel_pipe_crc_object { 3744 PIPE_CRC_OBJECT_PIPE, 3745 }; 3746 3747 static const char * const pipe_crc_objects[] = { 3748 "pipe", 3749 }; 3750 3751 static int 3752 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o) 3753 { 3754 int i; 3755 3756 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++) 3757 if (!strcmp(buf, pipe_crc_objects[i])) { 3758 *o = i; 3759 return 0; 3760 } 3761 3762 return -EINVAL; 3763 } 3764 3765 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe) 3766 { 3767 const char name = buf[0]; 3768 3769 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES)) 3770 return -EINVAL; 3771 3772 *pipe = name - 'A'; 3773 3774 return 0; 3775 } 3776 3777 static int 3778 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s) 3779 { 3780 int i; 3781 3782 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++) 3783 if (!strcmp(buf, pipe_crc_sources[i])) { 3784 *s = i; 3785 return 0; 3786 } 3787 3788 return -EINVAL; 3789 } 3790 3791 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len) 3792 { 3793 #define N_WORDS 3 3794 int n_words; 3795 char *words[N_WORDS]; 3796 enum pipe pipe; 3797 enum intel_pipe_crc_object object; 3798 enum intel_pipe_crc_source source; 3799 3800 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS); 3801 if (n_words != N_WORDS) { 3802 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n", 3803 N_WORDS); 3804 return -EINVAL; 3805 } 3806 3807 if (display_crc_ctl_parse_object(words[0], &object) < 0) { 3808 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]); 3809 return -EINVAL; 3810 } 3811 3812 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) { 3813 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]); 3814 return -EINVAL; 3815 } 3816 3817 if (display_crc_ctl_parse_source(words[2], &source) < 0) { 3818 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]); 3819 return -EINVAL; 3820 } 3821 3822 return pipe_crc_set_source(dev, pipe, source); 3823 } 3824 3825 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf, 3826 size_t len, loff_t *offp) 3827 { 3828 struct seq_file *m = file->private_data; 3829 struct drm_device *dev = m->private; 3830 char *tmpbuf; 3831 int ret; 3832 3833 if (len == 0) 3834 return 0; 3835 3836 if (len > PAGE_SIZE - 1) { 3837 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n", 3838 PAGE_SIZE); 3839 return -E2BIG; 3840 } 3841 3842 tmpbuf = kmalloc(len + 1, GFP_KERNEL); 3843 if (!tmpbuf) 3844 return -ENOMEM; 3845 3846 if (copy_from_user(tmpbuf, ubuf, len)) { 3847 ret = -EFAULT; 3848 goto out; 3849 } 3850 tmpbuf[len] = '\0'; 3851 3852 ret = display_crc_ctl_parse(dev, tmpbuf, len); 3853 3854 out: 3855 kfree(tmpbuf); 3856 if (ret < 0) 3857 return ret; 3858 3859 *offp += len; 3860 return len; 3861 } 3862 3863 static const struct file_operations i915_display_crc_ctl_fops = { 3864 .owner = THIS_MODULE, 3865 .open = display_crc_ctl_open, 3866 .read = seq_read, 3867 .llseek = seq_lseek, 3868 .release = single_release, 3869 .write = display_crc_ctl_write 3870 }; 3871 3872 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8]) 3873 { 3874 struct drm_device *dev = m->private; 3875 int num_levels = ilk_wm_max_level(dev) + 1; 3876 int level; 3877 3878 drm_modeset_lock_all(dev); 3879 3880 for (level = 0; level < num_levels; level++) { 3881 unsigned int latency = wm[level]; 3882 3883 /* 3884 * - WM1+ latency values in 0.5us units 3885 * - latencies are in us on gen9 3886 */ 3887 if (INTEL_INFO(dev)->gen >= 9) 3888 latency *= 10; 3889 else if (level > 0) 3890 latency *= 5; 3891 3892 seq_printf(m, "WM%d %u (%u.%u usec)\n", 3893 level, wm[level], latency / 10, latency % 10); 3894 } 3895 3896 drm_modeset_unlock_all(dev); 3897 } 3898 3899 static int pri_wm_latency_show(struct seq_file *m, void *data) 3900 { 3901 struct drm_device *dev = m->private; 3902 struct drm_i915_private *dev_priv = dev->dev_private; 3903 const uint16_t *latencies; 3904 3905 if (INTEL_INFO(dev)->gen >= 9) 3906 latencies = dev_priv->wm.skl_latency; 3907 else 3908 latencies = to_i915(dev)->wm.pri_latency; 3909 3910 wm_latency_show(m, latencies); 3911 3912 return 0; 3913 } 3914 3915 static int spr_wm_latency_show(struct seq_file *m, void *data) 3916 { 3917 struct drm_device *dev = m->private; 3918 struct drm_i915_private *dev_priv = dev->dev_private; 3919 const uint16_t *latencies; 3920 3921 if (INTEL_INFO(dev)->gen >= 9) 3922 latencies = dev_priv->wm.skl_latency; 3923 else 3924 latencies = to_i915(dev)->wm.spr_latency; 3925 3926 wm_latency_show(m, latencies); 3927 3928 return 0; 3929 } 3930 3931 static int cur_wm_latency_show(struct seq_file *m, void *data) 3932 { 3933 struct drm_device *dev = m->private; 3934 struct drm_i915_private *dev_priv = dev->dev_private; 3935 const uint16_t *latencies; 3936 3937 if (INTEL_INFO(dev)->gen >= 9) 3938 latencies = dev_priv->wm.skl_latency; 3939 else 3940 latencies = to_i915(dev)->wm.cur_latency; 3941 3942 wm_latency_show(m, latencies); 3943 3944 return 0; 3945 } 3946 3947 static int pri_wm_latency_open(struct inode *inode, struct file *file) 3948 { 3949 struct drm_device *dev = inode->i_private; 3950 3951 if (HAS_GMCH_DISPLAY(dev)) 3952 return -ENODEV; 3953 3954 return single_open(file, pri_wm_latency_show, dev); 3955 } 3956 3957 static int spr_wm_latency_open(struct inode *inode, struct file *file) 3958 { 3959 struct drm_device *dev = inode->i_private; 3960 3961 if (HAS_GMCH_DISPLAY(dev)) 3962 return -ENODEV; 3963 3964 return single_open(file, spr_wm_latency_show, dev); 3965 } 3966 3967 static int cur_wm_latency_open(struct inode *inode, struct file *file) 3968 { 3969 struct drm_device *dev = inode->i_private; 3970 3971 if (HAS_GMCH_DISPLAY(dev)) 3972 return -ENODEV; 3973 3974 return single_open(file, cur_wm_latency_show, dev); 3975 } 3976 3977 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf, 3978 size_t len, loff_t *offp, uint16_t wm[8]) 3979 { 3980 struct seq_file *m = file->private_data; 3981 struct drm_device *dev = m->private; 3982 uint16_t new[8] = { 0 }; 3983 int num_levels = ilk_wm_max_level(dev) + 1; 3984 int level; 3985 int ret; 3986 char tmp[32]; 3987 3988 if (len >= sizeof(tmp)) 3989 return -EINVAL; 3990 3991 if (copy_from_user(tmp, ubuf, len)) 3992 return -EFAULT; 3993 3994 tmp[len] = '\0'; 3995 3996 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu", 3997 &new[0], &new[1], &new[2], &new[3], 3998 &new[4], &new[5], &new[6], &new[7]); 3999 if (ret != num_levels) 4000 return -EINVAL; 4001 4002 drm_modeset_lock_all(dev); 4003 4004 for (level = 0; level < num_levels; level++) 4005 wm[level] = new[level]; 4006 4007 drm_modeset_unlock_all(dev); 4008 4009 return len; 4010 } 4011 4012 4013 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf, 4014 size_t len, loff_t *offp) 4015 { 4016 struct seq_file *m = file->private_data; 4017 struct drm_device *dev = m->private; 4018 struct drm_i915_private *dev_priv = dev->dev_private; 4019 uint16_t *latencies; 4020 4021 if (INTEL_INFO(dev)->gen >= 9) 4022 latencies = dev_priv->wm.skl_latency; 4023 else 4024 latencies = to_i915(dev)->wm.pri_latency; 4025 4026 return wm_latency_write(file, ubuf, len, offp, latencies); 4027 } 4028 4029 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf, 4030 size_t len, loff_t *offp) 4031 { 4032 struct seq_file *m = file->private_data; 4033 struct drm_device *dev = m->private; 4034 struct drm_i915_private *dev_priv = dev->dev_private; 4035 uint16_t *latencies; 4036 4037 if (INTEL_INFO(dev)->gen >= 9) 4038 latencies = dev_priv->wm.skl_latency; 4039 else 4040 latencies = to_i915(dev)->wm.spr_latency; 4041 4042 return wm_latency_write(file, ubuf, len, offp, latencies); 4043 } 4044 4045 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf, 4046 size_t len, loff_t *offp) 4047 { 4048 struct seq_file *m = file->private_data; 4049 struct drm_device *dev = m->private; 4050 struct drm_i915_private *dev_priv = dev->dev_private; 4051 uint16_t *latencies; 4052 4053 if (INTEL_INFO(dev)->gen >= 9) 4054 latencies = dev_priv->wm.skl_latency; 4055 else 4056 latencies = to_i915(dev)->wm.cur_latency; 4057 4058 return wm_latency_write(file, ubuf, len, offp, latencies); 4059 } 4060 4061 static const struct file_operations i915_pri_wm_latency_fops = { 4062 .owner = THIS_MODULE, 4063 .open = pri_wm_latency_open, 4064 .read = seq_read, 4065 .llseek = seq_lseek, 4066 .release = single_release, 4067 .write = pri_wm_latency_write 4068 }; 4069 4070 static const struct file_operations i915_spr_wm_latency_fops = { 4071 .owner = THIS_MODULE, 4072 .open = spr_wm_latency_open, 4073 .read = seq_read, 4074 .llseek = seq_lseek, 4075 .release = single_release, 4076 .write = spr_wm_latency_write 4077 }; 4078 4079 static const struct file_operations i915_cur_wm_latency_fops = { 4080 .owner = THIS_MODULE, 4081 .open = cur_wm_latency_open, 4082 .read = seq_read, 4083 .llseek = seq_lseek, 4084 .release = single_release, 4085 .write = cur_wm_latency_write 4086 }; 4087 4088 static int 4089 i915_wedged_get(void *data, u64 *val) 4090 { 4091 struct drm_device *dev = data; 4092 struct drm_i915_private *dev_priv = dev->dev_private; 4093 4094 *val = atomic_read(&dev_priv->gpu_error.reset_counter); 4095 4096 return 0; 4097 } 4098 4099 static int 4100 i915_wedged_set(void *data, u64 val) 4101 { 4102 struct drm_device *dev = data; 4103 struct drm_i915_private *dev_priv = dev->dev_private; 4104 4105 /* 4106 * There is no safeguard against this debugfs entry colliding 4107 * with the hangcheck calling same i915_handle_error() in 4108 * parallel, causing an explosion. For now we assume that the 4109 * test harness is responsible enough not to inject gpu hangs 4110 * while it is writing to 'i915_wedged' 4111 */ 4112 4113 if (i915_reset_in_progress(&dev_priv->gpu_error)) 4114 return -EAGAIN; 4115 4116 intel_runtime_pm_get(dev_priv); 4117 4118 i915_handle_error(dev, val, 4119 "Manually setting wedged to %llu", val); 4120 4121 intel_runtime_pm_put(dev_priv); 4122 4123 return 0; 4124 } 4125 4126 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops, 4127 i915_wedged_get, i915_wedged_set, 4128 "%llu\n"); 4129 4130 static int 4131 i915_ring_stop_get(void *data, u64 *val) 4132 { 4133 struct drm_device *dev = data; 4134 struct drm_i915_private *dev_priv = dev->dev_private; 4135 4136 *val = dev_priv->gpu_error.stop_rings; 4137 4138 return 0; 4139 } 4140 4141 static int 4142 i915_ring_stop_set(void *data, u64 val) 4143 { 4144 struct drm_device *dev = data; 4145 struct drm_i915_private *dev_priv = dev->dev_private; 4146 int ret; 4147 4148 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val); 4149 4150 ret = mutex_lock_interruptible(&dev->struct_mutex); 4151 if (ret) 4152 return ret; 4153 4154 dev_priv->gpu_error.stop_rings = val; 4155 mutex_unlock(&dev->struct_mutex); 4156 4157 return 0; 4158 } 4159 4160 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops, 4161 i915_ring_stop_get, i915_ring_stop_set, 4162 "0x%08llx\n"); 4163 4164 static int 4165 i915_ring_missed_irq_get(void *data, u64 *val) 4166 { 4167 struct drm_device *dev = data; 4168 struct drm_i915_private *dev_priv = dev->dev_private; 4169 4170 *val = dev_priv->gpu_error.missed_irq_rings; 4171 return 0; 4172 } 4173 4174 static int 4175 i915_ring_missed_irq_set(void *data, u64 val) 4176 { 4177 struct drm_device *dev = data; 4178 struct drm_i915_private *dev_priv = dev->dev_private; 4179 int ret; 4180 4181 /* Lock against concurrent debugfs callers */ 4182 ret = mutex_lock_interruptible(&dev->struct_mutex); 4183 if (ret) 4184 return ret; 4185 dev_priv->gpu_error.missed_irq_rings = val; 4186 mutex_unlock(&dev->struct_mutex); 4187 4188 return 0; 4189 } 4190 4191 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops, 4192 i915_ring_missed_irq_get, i915_ring_missed_irq_set, 4193 "0x%08llx\n"); 4194 4195 static int 4196 i915_ring_test_irq_get(void *data, u64 *val) 4197 { 4198 struct drm_device *dev = data; 4199 struct drm_i915_private *dev_priv = dev->dev_private; 4200 4201 *val = dev_priv->gpu_error.test_irq_rings; 4202 4203 return 0; 4204 } 4205 4206 static int 4207 i915_ring_test_irq_set(void *data, u64 val) 4208 { 4209 struct drm_device *dev = data; 4210 struct drm_i915_private *dev_priv = dev->dev_private; 4211 int ret; 4212 4213 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val); 4214 4215 /* Lock against concurrent debugfs callers */ 4216 ret = mutex_lock_interruptible(&dev->struct_mutex); 4217 if (ret) 4218 return ret; 4219 4220 dev_priv->gpu_error.test_irq_rings = val; 4221 mutex_unlock(&dev->struct_mutex); 4222 4223 return 0; 4224 } 4225 4226 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops, 4227 i915_ring_test_irq_get, i915_ring_test_irq_set, 4228 "0x%08llx\n"); 4229 4230 #define DROP_UNBOUND 0x1 4231 #define DROP_BOUND 0x2 4232 #define DROP_RETIRE 0x4 4233 #define DROP_ACTIVE 0x8 4234 #define DROP_ALL (DROP_UNBOUND | \ 4235 DROP_BOUND | \ 4236 DROP_RETIRE | \ 4237 DROP_ACTIVE) 4238 static int 4239 i915_drop_caches_get(void *data, u64 *val) 4240 { 4241 *val = DROP_ALL; 4242 4243 return 0; 4244 } 4245 4246 static int 4247 i915_drop_caches_set(void *data, u64 val) 4248 { 4249 struct drm_device *dev = data; 4250 struct drm_i915_private *dev_priv = dev->dev_private; 4251 int ret; 4252 4253 DRM_DEBUG("Dropping caches: 0x%08llx\n", val); 4254 4255 /* No need to check and wait for gpu resets, only libdrm auto-restarts 4256 * on ioctls on -EAGAIN. */ 4257 ret = mutex_lock_interruptible(&dev->struct_mutex); 4258 if (ret) 4259 return ret; 4260 4261 if (val & DROP_ACTIVE) { 4262 ret = i915_gpu_idle(dev); 4263 if (ret) 4264 goto unlock; 4265 } 4266 4267 if (val & (DROP_RETIRE | DROP_ACTIVE)) 4268 i915_gem_retire_requests(dev); 4269 4270 if (val & DROP_BOUND) 4271 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND); 4272 4273 if (val & DROP_UNBOUND) 4274 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND); 4275 4276 unlock: 4277 mutex_unlock(&dev->struct_mutex); 4278 4279 return ret; 4280 } 4281 4282 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops, 4283 i915_drop_caches_get, i915_drop_caches_set, 4284 "0x%08llx\n"); 4285 4286 static int 4287 i915_max_freq_get(void *data, u64 *val) 4288 { 4289 struct drm_device *dev = data; 4290 struct drm_i915_private *dev_priv = dev->dev_private; 4291 int ret; 4292 4293 if (INTEL_INFO(dev)->gen < 6) 4294 return -ENODEV; 4295 4296 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 4297 4298 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); 4299 if (ret) 4300 return ret; 4301 4302 *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit); 4303 mutex_unlock(&dev_priv->rps.hw_lock); 4304 4305 return 0; 4306 } 4307 4308 static int 4309 i915_max_freq_set(void *data, u64 val) 4310 { 4311 struct drm_device *dev = data; 4312 struct drm_i915_private *dev_priv = dev->dev_private; 4313 u32 hw_max, hw_min; 4314 int ret; 4315 4316 if (INTEL_INFO(dev)->gen < 6) 4317 return -ENODEV; 4318 4319 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 4320 4321 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val); 4322 4323 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); 4324 if (ret) 4325 return ret; 4326 4327 /* 4328 * Turbo will still be enabled, but won't go above the set value. 4329 */ 4330 val = intel_freq_opcode(dev_priv, val); 4331 4332 hw_max = dev_priv->rps.max_freq; 4333 hw_min = dev_priv->rps.min_freq; 4334 4335 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) { 4336 mutex_unlock(&dev_priv->rps.hw_lock); 4337 return -EINVAL; 4338 } 4339 4340 dev_priv->rps.max_freq_softlimit = val; 4341 4342 intel_set_rps(dev, val); 4343 4344 mutex_unlock(&dev_priv->rps.hw_lock); 4345 4346 return 0; 4347 } 4348 4349 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops, 4350 i915_max_freq_get, i915_max_freq_set, 4351 "%llu\n"); 4352 4353 static int 4354 i915_min_freq_get(void *data, u64 *val) 4355 { 4356 struct drm_device *dev = data; 4357 struct drm_i915_private *dev_priv = dev->dev_private; 4358 int ret; 4359 4360 if (INTEL_INFO(dev)->gen < 6) 4361 return -ENODEV; 4362 4363 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 4364 4365 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); 4366 if (ret) 4367 return ret; 4368 4369 *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit); 4370 mutex_unlock(&dev_priv->rps.hw_lock); 4371 4372 return 0; 4373 } 4374 4375 static int 4376 i915_min_freq_set(void *data, u64 val) 4377 { 4378 struct drm_device *dev = data; 4379 struct drm_i915_private *dev_priv = dev->dev_private; 4380 u32 hw_max, hw_min; 4381 int ret; 4382 4383 if (INTEL_INFO(dev)->gen < 6) 4384 return -ENODEV; 4385 4386 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 4387 4388 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val); 4389 4390 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); 4391 if (ret) 4392 return ret; 4393 4394 /* 4395 * Turbo will still be enabled, but won't go below the set value. 4396 */ 4397 val = intel_freq_opcode(dev_priv, val); 4398 4399 hw_max = dev_priv->rps.max_freq; 4400 hw_min = dev_priv->rps.min_freq; 4401 4402 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) { 4403 mutex_unlock(&dev_priv->rps.hw_lock); 4404 return -EINVAL; 4405 } 4406 4407 dev_priv->rps.min_freq_softlimit = val; 4408 4409 intel_set_rps(dev, val); 4410 4411 mutex_unlock(&dev_priv->rps.hw_lock); 4412 4413 return 0; 4414 } 4415 4416 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops, 4417 i915_min_freq_get, i915_min_freq_set, 4418 "%llu\n"); 4419 4420 static int 4421 i915_cache_sharing_get(void *data, u64 *val) 4422 { 4423 struct drm_device *dev = data; 4424 struct drm_i915_private *dev_priv = dev->dev_private; 4425 u32 snpcr; 4426 int ret; 4427 4428 if (!(IS_GEN6(dev) || IS_GEN7(dev))) 4429 return -ENODEV; 4430 4431 ret = mutex_lock_interruptible(&dev->struct_mutex); 4432 if (ret) 4433 return ret; 4434 intel_runtime_pm_get(dev_priv); 4435 4436 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); 4437 4438 intel_runtime_pm_put(dev_priv); 4439 mutex_unlock(&dev_priv->dev->struct_mutex); 4440 4441 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT; 4442 4443 return 0; 4444 } 4445 4446 static int 4447 i915_cache_sharing_set(void *data, u64 val) 4448 { 4449 struct drm_device *dev = data; 4450 struct drm_i915_private *dev_priv = dev->dev_private; 4451 u32 snpcr; 4452 4453 if (!(IS_GEN6(dev) || IS_GEN7(dev))) 4454 return -ENODEV; 4455 4456 if (val > 3) 4457 return -EINVAL; 4458 4459 intel_runtime_pm_get(dev_priv); 4460 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val); 4461 4462 /* Update the cache sharing policy here as well */ 4463 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); 4464 snpcr &= ~GEN6_MBC_SNPCR_MASK; 4465 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT); 4466 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr); 4467 4468 intel_runtime_pm_put(dev_priv); 4469 return 0; 4470 } 4471 4472 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops, 4473 i915_cache_sharing_get, i915_cache_sharing_set, 4474 "%llu\n"); 4475 4476 static int i915_sseu_status(struct seq_file *m, void *unused) 4477 { 4478 struct drm_info_node *node = (struct drm_info_node *) m->private; 4479 struct drm_device *dev = node->minor->dev; 4480 struct drm_i915_private *dev_priv = dev->dev_private; 4481 unsigned int s_tot = 0, ss_tot = 0, ss_per = 0, eu_tot = 0, eu_per = 0; 4482 4483 if ((INTEL_INFO(dev)->gen < 8) || IS_BROADWELL(dev)) 4484 return -ENODEV; 4485 4486 seq_puts(m, "SSEU Device Info\n"); 4487 seq_printf(m, " Available Slice Total: %u\n", 4488 INTEL_INFO(dev)->slice_total); 4489 seq_printf(m, " Available Subslice Total: %u\n", 4490 INTEL_INFO(dev)->subslice_total); 4491 seq_printf(m, " Available Subslice Per Slice: %u\n", 4492 INTEL_INFO(dev)->subslice_per_slice); 4493 seq_printf(m, " Available EU Total: %u\n", 4494 INTEL_INFO(dev)->eu_total); 4495 seq_printf(m, " Available EU Per Subslice: %u\n", 4496 INTEL_INFO(dev)->eu_per_subslice); 4497 seq_printf(m, " Has Slice Power Gating: %s\n", 4498 yesno(INTEL_INFO(dev)->has_slice_pg)); 4499 seq_printf(m, " Has Subslice Power Gating: %s\n", 4500 yesno(INTEL_INFO(dev)->has_subslice_pg)); 4501 seq_printf(m, " Has EU Power Gating: %s\n", 4502 yesno(INTEL_INFO(dev)->has_eu_pg)); 4503 4504 seq_puts(m, "SSEU Device Status\n"); 4505 if (IS_CHERRYVIEW(dev)) { 4506 const int ss_max = 2; 4507 int ss; 4508 u32 sig1[ss_max], sig2[ss_max]; 4509 4510 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1); 4511 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1); 4512 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2); 4513 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2); 4514 4515 for (ss = 0; ss < ss_max; ss++) { 4516 unsigned int eu_cnt; 4517 4518 if (sig1[ss] & CHV_SS_PG_ENABLE) 4519 /* skip disabled subslice */ 4520 continue; 4521 4522 s_tot = 1; 4523 ss_per++; 4524 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) + 4525 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) + 4526 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) + 4527 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2); 4528 eu_tot += eu_cnt; 4529 eu_per = max(eu_per, eu_cnt); 4530 } 4531 ss_tot = ss_per; 4532 } else if (IS_SKYLAKE(dev)) { 4533 const int s_max = 3, ss_max = 4; 4534 int s, ss; 4535 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2]; 4536 4537 s_reg[0] = I915_READ(GEN9_SLICE0_PGCTL_ACK); 4538 s_reg[1] = I915_READ(GEN9_SLICE1_PGCTL_ACK); 4539 s_reg[2] = I915_READ(GEN9_SLICE2_PGCTL_ACK); 4540 eu_reg[0] = I915_READ(GEN9_SLICE0_SS01_EU_PGCTL_ACK); 4541 eu_reg[1] = I915_READ(GEN9_SLICE0_SS23_EU_PGCTL_ACK); 4542 eu_reg[2] = I915_READ(GEN9_SLICE1_SS01_EU_PGCTL_ACK); 4543 eu_reg[3] = I915_READ(GEN9_SLICE1_SS23_EU_PGCTL_ACK); 4544 eu_reg[4] = I915_READ(GEN9_SLICE2_SS01_EU_PGCTL_ACK); 4545 eu_reg[5] = I915_READ(GEN9_SLICE2_SS23_EU_PGCTL_ACK); 4546 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK | 4547 GEN9_PGCTL_SSA_EU19_ACK | 4548 GEN9_PGCTL_SSA_EU210_ACK | 4549 GEN9_PGCTL_SSA_EU311_ACK; 4550 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK | 4551 GEN9_PGCTL_SSB_EU19_ACK | 4552 GEN9_PGCTL_SSB_EU210_ACK | 4553 GEN9_PGCTL_SSB_EU311_ACK; 4554 4555 for (s = 0; s < s_max; s++) { 4556 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0) 4557 /* skip disabled slice */ 4558 continue; 4559 4560 s_tot++; 4561 ss_per = INTEL_INFO(dev)->subslice_per_slice; 4562 ss_tot += ss_per; 4563 for (ss = 0; ss < ss_max; ss++) { 4564 unsigned int eu_cnt; 4565 4566 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] & 4567 eu_mask[ss%2]); 4568 eu_tot += eu_cnt; 4569 eu_per = max(eu_per, eu_cnt); 4570 } 4571 } 4572 } 4573 seq_printf(m, " Enabled Slice Total: %u\n", s_tot); 4574 seq_printf(m, " Enabled Subslice Total: %u\n", ss_tot); 4575 seq_printf(m, " Enabled Subslice Per Slice: %u\n", ss_per); 4576 seq_printf(m, " Enabled EU Total: %u\n", eu_tot); 4577 seq_printf(m, " Enabled EU Per Subslice: %u\n", eu_per); 4578 4579 return 0; 4580 } 4581 4582 static int i915_forcewake_open(struct inode *inode, struct file *file) 4583 { 4584 struct drm_device *dev = inode->i_private; 4585 struct drm_i915_private *dev_priv = dev->dev_private; 4586 4587 if (INTEL_INFO(dev)->gen < 6) 4588 return 0; 4589 4590 intel_runtime_pm_get(dev_priv); 4591 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4592 4593 return 0; 4594 } 4595 4596 static int i915_forcewake_release(struct inode *inode, struct file *file) 4597 { 4598 struct drm_device *dev = inode->i_private; 4599 struct drm_i915_private *dev_priv = dev->dev_private; 4600 4601 if (INTEL_INFO(dev)->gen < 6) 4602 return 0; 4603 4604 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 4605 intel_runtime_pm_put(dev_priv); 4606 4607 return 0; 4608 } 4609 4610 static const struct file_operations i915_forcewake_fops = { 4611 .owner = THIS_MODULE, 4612 .open = i915_forcewake_open, 4613 .release = i915_forcewake_release, 4614 }; 4615 4616 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor) 4617 { 4618 struct drm_device *dev = minor->dev; 4619 struct dentry *ent; 4620 4621 ent = debugfs_create_file("i915_forcewake_user", 4622 S_IRUSR, 4623 root, dev, 4624 &i915_forcewake_fops); 4625 if (!ent) 4626 return -ENOMEM; 4627 4628 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops); 4629 } 4630 4631 static int i915_debugfs_create(struct dentry *root, 4632 struct drm_minor *minor, 4633 const char *name, 4634 const struct file_operations *fops) 4635 { 4636 struct drm_device *dev = minor->dev; 4637 struct dentry *ent; 4638 4639 ent = debugfs_create_file(name, 4640 S_IRUGO | S_IWUSR, 4641 root, dev, 4642 fops); 4643 if (!ent) 4644 return -ENOMEM; 4645 4646 return drm_add_fake_info_node(minor, ent, fops); 4647 } 4648 4649 static const struct drm_info_list i915_debugfs_list[] = { 4650 {"i915_capabilities", i915_capabilities, 0}, 4651 {"i915_gem_objects", i915_gem_object_info, 0}, 4652 {"i915_gem_gtt", i915_gem_gtt_info, 0}, 4653 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST}, 4654 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST}, 4655 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST}, 4656 {"i915_gem_stolen", i915_gem_stolen_list_info }, 4657 {"i915_gem_pageflip", i915_gem_pageflip_info, 0}, 4658 {"i915_gem_request", i915_gem_request_info, 0}, 4659 {"i915_gem_seqno", i915_gem_seqno_info, 0}, 4660 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0}, 4661 {"i915_gem_interrupt", i915_interrupt_info, 0}, 4662 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS}, 4663 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS}, 4664 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS}, 4665 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS}, 4666 {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0}, 4667 {"i915_frequency_info", i915_frequency_info, 0}, 4668 {"i915_hangcheck_info", i915_hangcheck_info, 0}, 4669 {"i915_drpc_info", i915_drpc_info, 0}, 4670 {"i915_emon_status", i915_emon_status, 0}, 4671 {"i915_ring_freq_table", i915_ring_freq_table, 0}, 4672 {"i915_fbc_status", i915_fbc_status, 0}, 4673 {"i915_ips_status", i915_ips_status, 0}, 4674 {"i915_sr_status", i915_sr_status, 0}, 4675 {"i915_opregion", i915_opregion, 0}, 4676 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0}, 4677 {"i915_context_status", i915_context_status, 0}, 4678 {"i915_dump_lrc", i915_dump_lrc, 0}, 4679 {"i915_execlists", i915_execlists, 0}, 4680 {"i915_forcewake_domains", i915_forcewake_domains, 0}, 4681 {"i915_swizzle_info", i915_swizzle_info, 0}, 4682 {"i915_ppgtt_info", i915_ppgtt_info, 0}, 4683 {"i915_llc", i915_llc, 0}, 4684 {"i915_edp_psr_status", i915_edp_psr_status, 0}, 4685 {"i915_sink_crc_eDP1", i915_sink_crc, 0}, 4686 {"i915_energy_uJ", i915_energy_uJ, 0}, 4687 {"i915_pc8_status", i915_pc8_status, 0}, 4688 {"i915_power_domain_info", i915_power_domain_info, 0}, 4689 {"i915_display_info", i915_display_info, 0}, 4690 {"i915_semaphore_status", i915_semaphore_status, 0}, 4691 {"i915_shared_dplls_info", i915_shared_dplls_info, 0}, 4692 {"i915_dp_mst_info", i915_dp_mst_info, 0}, 4693 {"i915_wa_registers", i915_wa_registers, 0}, 4694 {"i915_ddb_info", i915_ddb_info, 0}, 4695 {"i915_sseu_status", i915_sseu_status, 0}, 4696 {"i915_drrs_status", i915_drrs_status, 0}, 4697 }; 4698 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list) 4699 4700 static const struct i915_debugfs_files { 4701 const char *name; 4702 const struct file_operations *fops; 4703 } i915_debugfs_files[] = { 4704 {"i915_wedged", &i915_wedged_fops}, 4705 {"i915_max_freq", &i915_max_freq_fops}, 4706 {"i915_min_freq", &i915_min_freq_fops}, 4707 {"i915_cache_sharing", &i915_cache_sharing_fops}, 4708 {"i915_ring_stop", &i915_ring_stop_fops}, 4709 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops}, 4710 {"i915_ring_test_irq", &i915_ring_test_irq_fops}, 4711 {"i915_gem_drop_caches", &i915_drop_caches_fops}, 4712 {"i915_error_state", &i915_error_state_fops}, 4713 {"i915_next_seqno", &i915_next_seqno_fops}, 4714 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops}, 4715 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops}, 4716 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops}, 4717 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops}, 4718 {"i915_fbc_false_color", &i915_fbc_fc_fops}, 4719 }; 4720 4721 void intel_display_crc_init(struct drm_device *dev) 4722 { 4723 struct drm_i915_private *dev_priv = dev->dev_private; 4724 enum pipe pipe; 4725 4726 for_each_pipe(dev_priv, pipe) { 4727 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; 4728 4729 pipe_crc->opened = false; 4730 spin_lock_init(&pipe_crc->lock); 4731 init_waitqueue_head(&pipe_crc->wq); 4732 } 4733 } 4734 4735 int i915_debugfs_init(struct drm_minor *minor) 4736 { 4737 int ret, i; 4738 4739 ret = i915_forcewake_create(minor->debugfs_root, minor); 4740 if (ret) 4741 return ret; 4742 4743 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) { 4744 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i); 4745 if (ret) 4746 return ret; 4747 } 4748 4749 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) { 4750 ret = i915_debugfs_create(minor->debugfs_root, minor, 4751 i915_debugfs_files[i].name, 4752 i915_debugfs_files[i].fops); 4753 if (ret) 4754 return ret; 4755 } 4756 4757 return drm_debugfs_create_files(i915_debugfs_list, 4758 I915_DEBUGFS_ENTRIES, 4759 minor->debugfs_root, minor); 4760 } 4761 4762 void i915_debugfs_cleanup(struct drm_minor *minor) 4763 { 4764 int i; 4765 4766 drm_debugfs_remove_files(i915_debugfs_list, 4767 I915_DEBUGFS_ENTRIES, minor); 4768 4769 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops, 4770 1, minor); 4771 4772 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) { 4773 struct drm_info_list *info_list = 4774 (struct drm_info_list *)&i915_pipe_crc_data[i]; 4775 4776 drm_debugfs_remove_files(info_list, 1, minor); 4777 } 4778 4779 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) { 4780 struct drm_info_list *info_list = 4781 (struct drm_info_list *) i915_debugfs_files[i].fops; 4782 4783 drm_debugfs_remove_files(info_list, 1, minor); 4784 } 4785 } 4786