xref: /openbmc/linux/drivers/gpu/drm/i915/i915_debugfs.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42 
43 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
44 {
45 	return to_i915(node->minor->dev);
46 }
47 
48 /* As the drm_debugfs_init() routines are called before dev->dev_private is
49  * allocated we need to hook into the minor for release. */
50 static int
51 drm_add_fake_info_node(struct drm_minor *minor,
52 		       struct dentry *ent,
53 		       const void *key)
54 {
55 	struct drm_info_node *node;
56 
57 	node = kmalloc(sizeof(*node), GFP_KERNEL);
58 	if (node == NULL) {
59 		debugfs_remove(ent);
60 		return -ENOMEM;
61 	}
62 
63 	node->minor = minor;
64 	node->dent = ent;
65 	node->info_ent = (void *)key;
66 
67 	mutex_lock(&minor->debugfs_lock);
68 	list_add(&node->list, &minor->debugfs_list);
69 	mutex_unlock(&minor->debugfs_lock);
70 
71 	return 0;
72 }
73 
74 static int i915_capabilities(struct seq_file *m, void *data)
75 {
76 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
77 	const struct intel_device_info *info = INTEL_INFO(dev_priv);
78 
79 	seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
80 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
81 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
82 #define SEP_SEMICOLON ;
83 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
84 #undef PRINT_FLAG
85 #undef SEP_SEMICOLON
86 
87 	return 0;
88 }
89 
90 static char get_active_flag(struct drm_i915_gem_object *obj)
91 {
92 	return i915_gem_object_is_active(obj) ? '*' : ' ';
93 }
94 
95 static char get_pin_flag(struct drm_i915_gem_object *obj)
96 {
97 	return obj->pin_display ? 'p' : ' ';
98 }
99 
100 static char get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102 	switch (i915_gem_object_get_tiling(obj)) {
103 	default:
104 	case I915_TILING_NONE: return ' ';
105 	case I915_TILING_X: return 'X';
106 	case I915_TILING_Y: return 'Y';
107 	}
108 }
109 
110 static char get_global_flag(struct drm_i915_gem_object *obj)
111 {
112 	return i915_gem_object_to_ggtt(obj, NULL) ?  'g' : ' ';
113 }
114 
115 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
116 {
117 	return obj->mapping ? 'M' : ' ';
118 }
119 
120 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
121 {
122 	u64 size = 0;
123 	struct i915_vma *vma;
124 
125 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
126 		if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
127 			size += vma->node.size;
128 	}
129 
130 	return size;
131 }
132 
133 static void
134 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
135 {
136 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
137 	struct intel_engine_cs *engine;
138 	struct i915_vma *vma;
139 	unsigned int frontbuffer_bits;
140 	int pin_count = 0;
141 	enum intel_engine_id id;
142 
143 	lockdep_assert_held(&obj->base.dev->struct_mutex);
144 
145 	seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
146 		   &obj->base,
147 		   get_active_flag(obj),
148 		   get_pin_flag(obj),
149 		   get_tiling_flag(obj),
150 		   get_global_flag(obj),
151 		   get_pin_mapped_flag(obj),
152 		   obj->base.size / 1024,
153 		   obj->base.read_domains,
154 		   obj->base.write_domain);
155 	for_each_engine_id(engine, dev_priv, id)
156 		seq_printf(m, "%x ",
157 			   i915_gem_active_get_seqno(&obj->last_read[id],
158 						     &obj->base.dev->struct_mutex));
159 	seq_printf(m, "] %x %s%s%s",
160 		   i915_gem_active_get_seqno(&obj->last_write,
161 					     &obj->base.dev->struct_mutex),
162 		   i915_cache_level_str(dev_priv, obj->cache_level),
163 		   obj->dirty ? " dirty" : "",
164 		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
165 	if (obj->base.name)
166 		seq_printf(m, " (name: %d)", obj->base.name);
167 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
168 		if (i915_vma_is_pinned(vma))
169 			pin_count++;
170 	}
171 	seq_printf(m, " (pinned x %d)", pin_count);
172 	if (obj->pin_display)
173 		seq_printf(m, " (display)");
174 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
175 		if (!drm_mm_node_allocated(&vma->node))
176 			continue;
177 
178 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
179 			   i915_vma_is_ggtt(vma) ? "g" : "pp",
180 			   vma->node.start, vma->node.size);
181 		if (i915_vma_is_ggtt(vma))
182 			seq_printf(m, ", type: %u", vma->ggtt_view.type);
183 		if (vma->fence)
184 			seq_printf(m, " , fence: %d%s",
185 				   vma->fence->id,
186 				   i915_gem_active_isset(&vma->last_fence) ? "*" : "");
187 		seq_puts(m, ")");
188 	}
189 	if (obj->stolen)
190 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
191 	if (obj->pin_display || obj->fault_mappable) {
192 		char s[3], *t = s;
193 		if (obj->pin_display)
194 			*t++ = 'p';
195 		if (obj->fault_mappable)
196 			*t++ = 'f';
197 		*t = '\0';
198 		seq_printf(m, " (%s mappable)", s);
199 	}
200 
201 	engine = i915_gem_active_get_engine(&obj->last_write,
202 					    &dev_priv->drm.struct_mutex);
203 	if (engine)
204 		seq_printf(m, " (%s)", engine->name);
205 
206 	frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
207 	if (frontbuffer_bits)
208 		seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
209 }
210 
211 static int obj_rank_by_stolen(void *priv,
212 			      struct list_head *A, struct list_head *B)
213 {
214 	struct drm_i915_gem_object *a =
215 		container_of(A, struct drm_i915_gem_object, obj_exec_link);
216 	struct drm_i915_gem_object *b =
217 		container_of(B, struct drm_i915_gem_object, obj_exec_link);
218 
219 	if (a->stolen->start < b->stolen->start)
220 		return -1;
221 	if (a->stolen->start > b->stolen->start)
222 		return 1;
223 	return 0;
224 }
225 
226 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
227 {
228 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
229 	struct drm_device *dev = &dev_priv->drm;
230 	struct drm_i915_gem_object *obj;
231 	u64 total_obj_size, total_gtt_size;
232 	LIST_HEAD(stolen);
233 	int count, ret;
234 
235 	ret = mutex_lock_interruptible(&dev->struct_mutex);
236 	if (ret)
237 		return ret;
238 
239 	total_obj_size = total_gtt_size = count = 0;
240 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
241 		if (obj->stolen == NULL)
242 			continue;
243 
244 		list_add(&obj->obj_exec_link, &stolen);
245 
246 		total_obj_size += obj->base.size;
247 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
248 		count++;
249 	}
250 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
251 		if (obj->stolen == NULL)
252 			continue;
253 
254 		list_add(&obj->obj_exec_link, &stolen);
255 
256 		total_obj_size += obj->base.size;
257 		count++;
258 	}
259 	list_sort(NULL, &stolen, obj_rank_by_stolen);
260 	seq_puts(m, "Stolen:\n");
261 	while (!list_empty(&stolen)) {
262 		obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
263 		seq_puts(m, "   ");
264 		describe_obj(m, obj);
265 		seq_putc(m, '\n');
266 		list_del_init(&obj->obj_exec_link);
267 	}
268 	mutex_unlock(&dev->struct_mutex);
269 
270 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
271 		   count, total_obj_size, total_gtt_size);
272 	return 0;
273 }
274 
275 struct file_stats {
276 	struct drm_i915_file_private *file_priv;
277 	unsigned long count;
278 	u64 total, unbound;
279 	u64 global, shared;
280 	u64 active, inactive;
281 };
282 
283 static int per_file_stats(int id, void *ptr, void *data)
284 {
285 	struct drm_i915_gem_object *obj = ptr;
286 	struct file_stats *stats = data;
287 	struct i915_vma *vma;
288 
289 	stats->count++;
290 	stats->total += obj->base.size;
291 	if (!obj->bind_count)
292 		stats->unbound += obj->base.size;
293 	if (obj->base.name || obj->base.dma_buf)
294 		stats->shared += obj->base.size;
295 
296 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
297 		if (!drm_mm_node_allocated(&vma->node))
298 			continue;
299 
300 		if (i915_vma_is_ggtt(vma)) {
301 			stats->global += vma->node.size;
302 		} else {
303 			struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
304 
305 			if (ppgtt->base.file != stats->file_priv)
306 				continue;
307 		}
308 
309 		if (i915_vma_is_active(vma))
310 			stats->active += vma->node.size;
311 		else
312 			stats->inactive += vma->node.size;
313 	}
314 
315 	return 0;
316 }
317 
318 #define print_file_stats(m, name, stats) do { \
319 	if (stats.count) \
320 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
321 			   name, \
322 			   stats.count, \
323 			   stats.total, \
324 			   stats.active, \
325 			   stats.inactive, \
326 			   stats.global, \
327 			   stats.shared, \
328 			   stats.unbound); \
329 } while (0)
330 
331 static void print_batch_pool_stats(struct seq_file *m,
332 				   struct drm_i915_private *dev_priv)
333 {
334 	struct drm_i915_gem_object *obj;
335 	struct file_stats stats;
336 	struct intel_engine_cs *engine;
337 	int j;
338 
339 	memset(&stats, 0, sizeof(stats));
340 
341 	for_each_engine(engine, dev_priv) {
342 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
343 			list_for_each_entry(obj,
344 					    &engine->batch_pool.cache_list[j],
345 					    batch_pool_link)
346 				per_file_stats(0, obj, &stats);
347 		}
348 	}
349 
350 	print_file_stats(m, "[k]batch pool", stats);
351 }
352 
353 static int per_file_ctx_stats(int id, void *ptr, void *data)
354 {
355 	struct i915_gem_context *ctx = ptr;
356 	int n;
357 
358 	for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
359 		if (ctx->engine[n].state)
360 			per_file_stats(0, ctx->engine[n].state->obj, data);
361 		if (ctx->engine[n].ring)
362 			per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
363 	}
364 
365 	return 0;
366 }
367 
368 static void print_context_stats(struct seq_file *m,
369 				struct drm_i915_private *dev_priv)
370 {
371 	struct drm_device *dev = &dev_priv->drm;
372 	struct file_stats stats;
373 	struct drm_file *file;
374 
375 	memset(&stats, 0, sizeof(stats));
376 
377 	mutex_lock(&dev->struct_mutex);
378 	if (dev_priv->kernel_context)
379 		per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
380 
381 	list_for_each_entry(file, &dev->filelist, lhead) {
382 		struct drm_i915_file_private *fpriv = file->driver_priv;
383 		idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
384 	}
385 	mutex_unlock(&dev->struct_mutex);
386 
387 	print_file_stats(m, "[k]contexts", stats);
388 }
389 
390 static int i915_gem_object_info(struct seq_file *m, void *data)
391 {
392 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
393 	struct drm_device *dev = &dev_priv->drm;
394 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
395 	u32 count, mapped_count, purgeable_count, dpy_count;
396 	u64 size, mapped_size, purgeable_size, dpy_size;
397 	struct drm_i915_gem_object *obj;
398 	struct drm_file *file;
399 	int ret;
400 
401 	ret = mutex_lock_interruptible(&dev->struct_mutex);
402 	if (ret)
403 		return ret;
404 
405 	seq_printf(m, "%u objects, %zu bytes\n",
406 		   dev_priv->mm.object_count,
407 		   dev_priv->mm.object_memory);
408 
409 	size = count = 0;
410 	mapped_size = mapped_count = 0;
411 	purgeable_size = purgeable_count = 0;
412 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
413 		size += obj->base.size;
414 		++count;
415 
416 		if (obj->madv == I915_MADV_DONTNEED) {
417 			purgeable_size += obj->base.size;
418 			++purgeable_count;
419 		}
420 
421 		if (obj->mapping) {
422 			mapped_count++;
423 			mapped_size += obj->base.size;
424 		}
425 	}
426 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
427 
428 	size = count = dpy_size = dpy_count = 0;
429 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
430 		size += obj->base.size;
431 		++count;
432 
433 		if (obj->pin_display) {
434 			dpy_size += obj->base.size;
435 			++dpy_count;
436 		}
437 
438 		if (obj->madv == I915_MADV_DONTNEED) {
439 			purgeable_size += obj->base.size;
440 			++purgeable_count;
441 		}
442 
443 		if (obj->mapping) {
444 			mapped_count++;
445 			mapped_size += obj->base.size;
446 		}
447 	}
448 	seq_printf(m, "%u bound objects, %llu bytes\n",
449 		   count, size);
450 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
451 		   purgeable_count, purgeable_size);
452 	seq_printf(m, "%u mapped objects, %llu bytes\n",
453 		   mapped_count, mapped_size);
454 	seq_printf(m, "%u display objects (pinned), %llu bytes\n",
455 		   dpy_count, dpy_size);
456 
457 	seq_printf(m, "%llu [%llu] gtt total\n",
458 		   ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
459 
460 	seq_putc(m, '\n');
461 	print_batch_pool_stats(m, dev_priv);
462 	mutex_unlock(&dev->struct_mutex);
463 
464 	mutex_lock(&dev->filelist_mutex);
465 	print_context_stats(m, dev_priv);
466 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
467 		struct file_stats stats;
468 		struct drm_i915_file_private *file_priv = file->driver_priv;
469 		struct drm_i915_gem_request *request;
470 		struct task_struct *task;
471 
472 		memset(&stats, 0, sizeof(stats));
473 		stats.file_priv = file->driver_priv;
474 		spin_lock(&file->table_lock);
475 		idr_for_each(&file->object_idr, per_file_stats, &stats);
476 		spin_unlock(&file->table_lock);
477 		/*
478 		 * Although we have a valid reference on file->pid, that does
479 		 * not guarantee that the task_struct who called get_pid() is
480 		 * still alive (e.g. get_pid(current) => fork() => exit()).
481 		 * Therefore, we need to protect this ->comm access using RCU.
482 		 */
483 		mutex_lock(&dev->struct_mutex);
484 		request = list_first_entry_or_null(&file_priv->mm.request_list,
485 						   struct drm_i915_gem_request,
486 						   client_list);
487 		rcu_read_lock();
488 		task = pid_task(request && request->ctx->pid ?
489 				request->ctx->pid : file->pid,
490 				PIDTYPE_PID);
491 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
492 		rcu_read_unlock();
493 		mutex_unlock(&dev->struct_mutex);
494 	}
495 	mutex_unlock(&dev->filelist_mutex);
496 
497 	return 0;
498 }
499 
500 static int i915_gem_gtt_info(struct seq_file *m, void *data)
501 {
502 	struct drm_info_node *node = m->private;
503 	struct drm_i915_private *dev_priv = node_to_i915(node);
504 	struct drm_device *dev = &dev_priv->drm;
505 	bool show_pin_display_only = !!node->info_ent->data;
506 	struct drm_i915_gem_object *obj;
507 	u64 total_obj_size, total_gtt_size;
508 	int count, ret;
509 
510 	ret = mutex_lock_interruptible(&dev->struct_mutex);
511 	if (ret)
512 		return ret;
513 
514 	total_obj_size = total_gtt_size = count = 0;
515 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
516 		if (show_pin_display_only && !obj->pin_display)
517 			continue;
518 
519 		seq_puts(m, "   ");
520 		describe_obj(m, obj);
521 		seq_putc(m, '\n');
522 		total_obj_size += obj->base.size;
523 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
524 		count++;
525 	}
526 
527 	mutex_unlock(&dev->struct_mutex);
528 
529 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
530 		   count, total_obj_size, total_gtt_size);
531 
532 	return 0;
533 }
534 
535 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
536 {
537 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
538 	struct drm_device *dev = &dev_priv->drm;
539 	struct intel_crtc *crtc;
540 	int ret;
541 
542 	ret = mutex_lock_interruptible(&dev->struct_mutex);
543 	if (ret)
544 		return ret;
545 
546 	for_each_intel_crtc(dev, crtc) {
547 		const char pipe = pipe_name(crtc->pipe);
548 		const char plane = plane_name(crtc->plane);
549 		struct intel_flip_work *work;
550 
551 		spin_lock_irq(&dev->event_lock);
552 		work = crtc->flip_work;
553 		if (work == NULL) {
554 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
555 				   pipe, plane);
556 		} else {
557 			u32 pending;
558 			u32 addr;
559 
560 			pending = atomic_read(&work->pending);
561 			if (pending) {
562 				seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
563 					   pipe, plane);
564 			} else {
565 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
566 					   pipe, plane);
567 			}
568 			if (work->flip_queued_req) {
569 				struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
570 
571 				seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
572 					   engine->name,
573 					   i915_gem_request_get_seqno(work->flip_queued_req),
574 					   dev_priv->next_seqno,
575 					   intel_engine_get_seqno(engine),
576 					   i915_gem_request_completed(work->flip_queued_req));
577 			} else
578 				seq_printf(m, "Flip not associated with any ring\n");
579 			seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
580 				   work->flip_queued_vblank,
581 				   work->flip_ready_vblank,
582 				   intel_crtc_get_vblank_counter(crtc));
583 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
584 
585 			if (INTEL_GEN(dev_priv) >= 4)
586 				addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
587 			else
588 				addr = I915_READ(DSPADDR(crtc->plane));
589 			seq_printf(m, "Current scanout address 0x%08x\n", addr);
590 
591 			if (work->pending_flip_obj) {
592 				seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
593 				seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
594 			}
595 		}
596 		spin_unlock_irq(&dev->event_lock);
597 	}
598 
599 	mutex_unlock(&dev->struct_mutex);
600 
601 	return 0;
602 }
603 
604 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
605 {
606 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
607 	struct drm_device *dev = &dev_priv->drm;
608 	struct drm_i915_gem_object *obj;
609 	struct intel_engine_cs *engine;
610 	int total = 0;
611 	int ret, j;
612 
613 	ret = mutex_lock_interruptible(&dev->struct_mutex);
614 	if (ret)
615 		return ret;
616 
617 	for_each_engine(engine, dev_priv) {
618 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
619 			int count;
620 
621 			count = 0;
622 			list_for_each_entry(obj,
623 					    &engine->batch_pool.cache_list[j],
624 					    batch_pool_link)
625 				count++;
626 			seq_printf(m, "%s cache[%d]: %d objects\n",
627 				   engine->name, j, count);
628 
629 			list_for_each_entry(obj,
630 					    &engine->batch_pool.cache_list[j],
631 					    batch_pool_link) {
632 				seq_puts(m, "   ");
633 				describe_obj(m, obj);
634 				seq_putc(m, '\n');
635 			}
636 
637 			total += count;
638 		}
639 	}
640 
641 	seq_printf(m, "total: %d\n", total);
642 
643 	mutex_unlock(&dev->struct_mutex);
644 
645 	return 0;
646 }
647 
648 static int i915_gem_request_info(struct seq_file *m, void *data)
649 {
650 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
651 	struct drm_device *dev = &dev_priv->drm;
652 	struct intel_engine_cs *engine;
653 	struct drm_i915_gem_request *req;
654 	int ret, any;
655 
656 	ret = mutex_lock_interruptible(&dev->struct_mutex);
657 	if (ret)
658 		return ret;
659 
660 	any = 0;
661 	for_each_engine(engine, dev_priv) {
662 		int count;
663 
664 		count = 0;
665 		list_for_each_entry(req, &engine->request_list, link)
666 			count++;
667 		if (count == 0)
668 			continue;
669 
670 		seq_printf(m, "%s requests: %d\n", engine->name, count);
671 		list_for_each_entry(req, &engine->request_list, link) {
672 			struct pid *pid = req->ctx->pid;
673 			struct task_struct *task;
674 
675 			rcu_read_lock();
676 			task = pid ? pid_task(pid, PIDTYPE_PID) : NULL;
677 			seq_printf(m, "    %x @ %d: %s [%d]\n",
678 				   req->fence.seqno,
679 				   (int) (jiffies - req->emitted_jiffies),
680 				   task ? task->comm : "<unknown>",
681 				   task ? task->pid : -1);
682 			rcu_read_unlock();
683 		}
684 
685 		any++;
686 	}
687 	mutex_unlock(&dev->struct_mutex);
688 
689 	if (any == 0)
690 		seq_puts(m, "No requests\n");
691 
692 	return 0;
693 }
694 
695 static void i915_ring_seqno_info(struct seq_file *m,
696 				 struct intel_engine_cs *engine)
697 {
698 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
699 	struct rb_node *rb;
700 
701 	seq_printf(m, "Current sequence (%s): %x\n",
702 		   engine->name, intel_engine_get_seqno(engine));
703 
704 	spin_lock(&b->lock);
705 	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
706 		struct intel_wait *w = container_of(rb, typeof(*w), node);
707 
708 		seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
709 			   engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
710 	}
711 	spin_unlock(&b->lock);
712 }
713 
714 static int i915_gem_seqno_info(struct seq_file *m, void *data)
715 {
716 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
717 	struct intel_engine_cs *engine;
718 
719 	for_each_engine(engine, dev_priv)
720 		i915_ring_seqno_info(m, engine);
721 
722 	return 0;
723 }
724 
725 
726 static int i915_interrupt_info(struct seq_file *m, void *data)
727 {
728 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
729 	struct intel_engine_cs *engine;
730 	int i, pipe;
731 
732 	intel_runtime_pm_get(dev_priv);
733 
734 	if (IS_CHERRYVIEW(dev_priv)) {
735 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
736 			   I915_READ(GEN8_MASTER_IRQ));
737 
738 		seq_printf(m, "Display IER:\t%08x\n",
739 			   I915_READ(VLV_IER));
740 		seq_printf(m, "Display IIR:\t%08x\n",
741 			   I915_READ(VLV_IIR));
742 		seq_printf(m, "Display IIR_RW:\t%08x\n",
743 			   I915_READ(VLV_IIR_RW));
744 		seq_printf(m, "Display IMR:\t%08x\n",
745 			   I915_READ(VLV_IMR));
746 		for_each_pipe(dev_priv, pipe)
747 			seq_printf(m, "Pipe %c stat:\t%08x\n",
748 				   pipe_name(pipe),
749 				   I915_READ(PIPESTAT(pipe)));
750 
751 		seq_printf(m, "Port hotplug:\t%08x\n",
752 			   I915_READ(PORT_HOTPLUG_EN));
753 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
754 			   I915_READ(VLV_DPFLIPSTAT));
755 		seq_printf(m, "DPINVGTT:\t%08x\n",
756 			   I915_READ(DPINVGTT));
757 
758 		for (i = 0; i < 4; i++) {
759 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
760 				   i, I915_READ(GEN8_GT_IMR(i)));
761 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
762 				   i, I915_READ(GEN8_GT_IIR(i)));
763 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
764 				   i, I915_READ(GEN8_GT_IER(i)));
765 		}
766 
767 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
768 			   I915_READ(GEN8_PCU_IMR));
769 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
770 			   I915_READ(GEN8_PCU_IIR));
771 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
772 			   I915_READ(GEN8_PCU_IER));
773 	} else if (INTEL_GEN(dev_priv) >= 8) {
774 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
775 			   I915_READ(GEN8_MASTER_IRQ));
776 
777 		for (i = 0; i < 4; i++) {
778 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
779 				   i, I915_READ(GEN8_GT_IMR(i)));
780 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
781 				   i, I915_READ(GEN8_GT_IIR(i)));
782 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
783 				   i, I915_READ(GEN8_GT_IER(i)));
784 		}
785 
786 		for_each_pipe(dev_priv, pipe) {
787 			enum intel_display_power_domain power_domain;
788 
789 			power_domain = POWER_DOMAIN_PIPE(pipe);
790 			if (!intel_display_power_get_if_enabled(dev_priv,
791 								power_domain)) {
792 				seq_printf(m, "Pipe %c power disabled\n",
793 					   pipe_name(pipe));
794 				continue;
795 			}
796 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
797 				   pipe_name(pipe),
798 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
799 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
800 				   pipe_name(pipe),
801 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
802 			seq_printf(m, "Pipe %c IER:\t%08x\n",
803 				   pipe_name(pipe),
804 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
805 
806 			intel_display_power_put(dev_priv, power_domain);
807 		}
808 
809 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
810 			   I915_READ(GEN8_DE_PORT_IMR));
811 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
812 			   I915_READ(GEN8_DE_PORT_IIR));
813 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
814 			   I915_READ(GEN8_DE_PORT_IER));
815 
816 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
817 			   I915_READ(GEN8_DE_MISC_IMR));
818 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
819 			   I915_READ(GEN8_DE_MISC_IIR));
820 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
821 			   I915_READ(GEN8_DE_MISC_IER));
822 
823 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
824 			   I915_READ(GEN8_PCU_IMR));
825 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
826 			   I915_READ(GEN8_PCU_IIR));
827 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
828 			   I915_READ(GEN8_PCU_IER));
829 	} else if (IS_VALLEYVIEW(dev_priv)) {
830 		seq_printf(m, "Display IER:\t%08x\n",
831 			   I915_READ(VLV_IER));
832 		seq_printf(m, "Display IIR:\t%08x\n",
833 			   I915_READ(VLV_IIR));
834 		seq_printf(m, "Display IIR_RW:\t%08x\n",
835 			   I915_READ(VLV_IIR_RW));
836 		seq_printf(m, "Display IMR:\t%08x\n",
837 			   I915_READ(VLV_IMR));
838 		for_each_pipe(dev_priv, pipe)
839 			seq_printf(m, "Pipe %c stat:\t%08x\n",
840 				   pipe_name(pipe),
841 				   I915_READ(PIPESTAT(pipe)));
842 
843 		seq_printf(m, "Master IER:\t%08x\n",
844 			   I915_READ(VLV_MASTER_IER));
845 
846 		seq_printf(m, "Render IER:\t%08x\n",
847 			   I915_READ(GTIER));
848 		seq_printf(m, "Render IIR:\t%08x\n",
849 			   I915_READ(GTIIR));
850 		seq_printf(m, "Render IMR:\t%08x\n",
851 			   I915_READ(GTIMR));
852 
853 		seq_printf(m, "PM IER:\t\t%08x\n",
854 			   I915_READ(GEN6_PMIER));
855 		seq_printf(m, "PM IIR:\t\t%08x\n",
856 			   I915_READ(GEN6_PMIIR));
857 		seq_printf(m, "PM IMR:\t\t%08x\n",
858 			   I915_READ(GEN6_PMIMR));
859 
860 		seq_printf(m, "Port hotplug:\t%08x\n",
861 			   I915_READ(PORT_HOTPLUG_EN));
862 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
863 			   I915_READ(VLV_DPFLIPSTAT));
864 		seq_printf(m, "DPINVGTT:\t%08x\n",
865 			   I915_READ(DPINVGTT));
866 
867 	} else if (!HAS_PCH_SPLIT(dev_priv)) {
868 		seq_printf(m, "Interrupt enable:    %08x\n",
869 			   I915_READ(IER));
870 		seq_printf(m, "Interrupt identity:  %08x\n",
871 			   I915_READ(IIR));
872 		seq_printf(m, "Interrupt mask:      %08x\n",
873 			   I915_READ(IMR));
874 		for_each_pipe(dev_priv, pipe)
875 			seq_printf(m, "Pipe %c stat:         %08x\n",
876 				   pipe_name(pipe),
877 				   I915_READ(PIPESTAT(pipe)));
878 	} else {
879 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
880 			   I915_READ(DEIER));
881 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
882 			   I915_READ(DEIIR));
883 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
884 			   I915_READ(DEIMR));
885 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
886 			   I915_READ(SDEIER));
887 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
888 			   I915_READ(SDEIIR));
889 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
890 			   I915_READ(SDEIMR));
891 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
892 			   I915_READ(GTIER));
893 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
894 			   I915_READ(GTIIR));
895 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
896 			   I915_READ(GTIMR));
897 	}
898 	for_each_engine(engine, dev_priv) {
899 		if (INTEL_GEN(dev_priv) >= 6) {
900 			seq_printf(m,
901 				   "Graphics Interrupt mask (%s):	%08x\n",
902 				   engine->name, I915_READ_IMR(engine));
903 		}
904 		i915_ring_seqno_info(m, engine);
905 	}
906 	intel_runtime_pm_put(dev_priv);
907 
908 	return 0;
909 }
910 
911 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
912 {
913 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
914 	struct drm_device *dev = &dev_priv->drm;
915 	int i, ret;
916 
917 	ret = mutex_lock_interruptible(&dev->struct_mutex);
918 	if (ret)
919 		return ret;
920 
921 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
922 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
923 		struct i915_vma *vma = dev_priv->fence_regs[i].vma;
924 
925 		seq_printf(m, "Fence %d, pin count = %d, object = ",
926 			   i, dev_priv->fence_regs[i].pin_count);
927 		if (!vma)
928 			seq_puts(m, "unused");
929 		else
930 			describe_obj(m, vma->obj);
931 		seq_putc(m, '\n');
932 	}
933 
934 	mutex_unlock(&dev->struct_mutex);
935 	return 0;
936 }
937 
938 static int i915_hws_info(struct seq_file *m, void *data)
939 {
940 	struct drm_info_node *node = m->private;
941 	struct drm_i915_private *dev_priv = node_to_i915(node);
942 	struct intel_engine_cs *engine;
943 	const u32 *hws;
944 	int i;
945 
946 	engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
947 	hws = engine->status_page.page_addr;
948 	if (hws == NULL)
949 		return 0;
950 
951 	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
952 		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
953 			   i * 4,
954 			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
955 	}
956 	return 0;
957 }
958 
959 static ssize_t
960 i915_error_state_write(struct file *filp,
961 		       const char __user *ubuf,
962 		       size_t cnt,
963 		       loff_t *ppos)
964 {
965 	struct i915_error_state_file_priv *error_priv = filp->private_data;
966 
967 	DRM_DEBUG_DRIVER("Resetting error state\n");
968 	i915_destroy_error_state(error_priv->dev);
969 
970 	return cnt;
971 }
972 
973 static int i915_error_state_open(struct inode *inode, struct file *file)
974 {
975 	struct drm_i915_private *dev_priv = inode->i_private;
976 	struct i915_error_state_file_priv *error_priv;
977 
978 	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
979 	if (!error_priv)
980 		return -ENOMEM;
981 
982 	error_priv->dev = &dev_priv->drm;
983 
984 	i915_error_state_get(&dev_priv->drm, error_priv);
985 
986 	file->private_data = error_priv;
987 
988 	return 0;
989 }
990 
991 static int i915_error_state_release(struct inode *inode, struct file *file)
992 {
993 	struct i915_error_state_file_priv *error_priv = file->private_data;
994 
995 	i915_error_state_put(error_priv);
996 	kfree(error_priv);
997 
998 	return 0;
999 }
1000 
1001 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1002 				     size_t count, loff_t *pos)
1003 {
1004 	struct i915_error_state_file_priv *error_priv = file->private_data;
1005 	struct drm_i915_error_state_buf error_str;
1006 	loff_t tmp_pos = 0;
1007 	ssize_t ret_count = 0;
1008 	int ret;
1009 
1010 	ret = i915_error_state_buf_init(&error_str,
1011 					to_i915(error_priv->dev), count, *pos);
1012 	if (ret)
1013 		return ret;
1014 
1015 	ret = i915_error_state_to_str(&error_str, error_priv);
1016 	if (ret)
1017 		goto out;
1018 
1019 	ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1020 					    error_str.buf,
1021 					    error_str.bytes);
1022 
1023 	if (ret_count < 0)
1024 		ret = ret_count;
1025 	else
1026 		*pos = error_str.start + ret_count;
1027 out:
1028 	i915_error_state_buf_release(&error_str);
1029 	return ret ?: ret_count;
1030 }
1031 
1032 static const struct file_operations i915_error_state_fops = {
1033 	.owner = THIS_MODULE,
1034 	.open = i915_error_state_open,
1035 	.read = i915_error_state_read,
1036 	.write = i915_error_state_write,
1037 	.llseek = default_llseek,
1038 	.release = i915_error_state_release,
1039 };
1040 
1041 static int
1042 i915_next_seqno_get(void *data, u64 *val)
1043 {
1044 	struct drm_i915_private *dev_priv = data;
1045 	int ret;
1046 
1047 	ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
1048 	if (ret)
1049 		return ret;
1050 
1051 	*val = dev_priv->next_seqno;
1052 	mutex_unlock(&dev_priv->drm.struct_mutex);
1053 
1054 	return 0;
1055 }
1056 
1057 static int
1058 i915_next_seqno_set(void *data, u64 val)
1059 {
1060 	struct drm_i915_private *dev_priv = data;
1061 	struct drm_device *dev = &dev_priv->drm;
1062 	int ret;
1063 
1064 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1065 	if (ret)
1066 		return ret;
1067 
1068 	ret = i915_gem_set_seqno(dev, val);
1069 	mutex_unlock(&dev->struct_mutex);
1070 
1071 	return ret;
1072 }
1073 
1074 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1075 			i915_next_seqno_get, i915_next_seqno_set,
1076 			"0x%llx\n");
1077 
1078 static int i915_frequency_info(struct seq_file *m, void *unused)
1079 {
1080 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1081 	struct drm_device *dev = &dev_priv->drm;
1082 	int ret = 0;
1083 
1084 	intel_runtime_pm_get(dev_priv);
1085 
1086 	if (IS_GEN5(dev_priv)) {
1087 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1088 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1089 
1090 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1091 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1092 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1093 			   MEMSTAT_VID_SHIFT);
1094 		seq_printf(m, "Current P-state: %d\n",
1095 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1096 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1097 		u32 freq_sts;
1098 
1099 		mutex_lock(&dev_priv->rps.hw_lock);
1100 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1101 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1102 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1103 
1104 		seq_printf(m, "actual GPU freq: %d MHz\n",
1105 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1106 
1107 		seq_printf(m, "current GPU freq: %d MHz\n",
1108 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1109 
1110 		seq_printf(m, "max GPU freq: %d MHz\n",
1111 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1112 
1113 		seq_printf(m, "min GPU freq: %d MHz\n",
1114 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1115 
1116 		seq_printf(m, "idle GPU freq: %d MHz\n",
1117 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1118 
1119 		seq_printf(m,
1120 			   "efficient (RPe) frequency: %d MHz\n",
1121 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1122 		mutex_unlock(&dev_priv->rps.hw_lock);
1123 	} else if (INTEL_GEN(dev_priv) >= 6) {
1124 		u32 rp_state_limits;
1125 		u32 gt_perf_status;
1126 		u32 rp_state_cap;
1127 		u32 rpmodectl, rpinclimit, rpdeclimit;
1128 		u32 rpstat, cagf, reqf;
1129 		u32 rpupei, rpcurup, rpprevup;
1130 		u32 rpdownei, rpcurdown, rpprevdown;
1131 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1132 		int max_freq;
1133 
1134 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1135 		if (IS_BROXTON(dev_priv)) {
1136 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1137 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1138 		} else {
1139 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1140 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1141 		}
1142 
1143 		/* RPSTAT1 is in the GT power well */
1144 		ret = mutex_lock_interruptible(&dev->struct_mutex);
1145 		if (ret)
1146 			goto out;
1147 
1148 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1149 
1150 		reqf = I915_READ(GEN6_RPNSWREQ);
1151 		if (IS_GEN9(dev_priv))
1152 			reqf >>= 23;
1153 		else {
1154 			reqf &= ~GEN6_TURBO_DISABLE;
1155 			if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1156 				reqf >>= 24;
1157 			else
1158 				reqf >>= 25;
1159 		}
1160 		reqf = intel_gpu_freq(dev_priv, reqf);
1161 
1162 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1163 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1164 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1165 
1166 		rpstat = I915_READ(GEN6_RPSTAT1);
1167 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1168 		rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1169 		rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1170 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1171 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1172 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1173 		if (IS_GEN9(dev_priv))
1174 			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1175 		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1176 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1177 		else
1178 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1179 		cagf = intel_gpu_freq(dev_priv, cagf);
1180 
1181 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1182 		mutex_unlock(&dev->struct_mutex);
1183 
1184 		if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1185 			pm_ier = I915_READ(GEN6_PMIER);
1186 			pm_imr = I915_READ(GEN6_PMIMR);
1187 			pm_isr = I915_READ(GEN6_PMISR);
1188 			pm_iir = I915_READ(GEN6_PMIIR);
1189 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1190 		} else {
1191 			pm_ier = I915_READ(GEN8_GT_IER(2));
1192 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1193 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1194 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1195 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1196 		}
1197 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1198 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1199 		seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
1200 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1201 		seq_printf(m, "Render p-state ratio: %d\n",
1202 			   (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
1203 		seq_printf(m, "Render p-state VID: %d\n",
1204 			   gt_perf_status & 0xff);
1205 		seq_printf(m, "Render p-state limit: %d\n",
1206 			   rp_state_limits & 0xff);
1207 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1208 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1209 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1210 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1211 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1212 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1213 		seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1214 			   rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1215 		seq_printf(m, "RP CUR UP: %d (%dus)\n",
1216 			   rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1217 		seq_printf(m, "RP PREV UP: %d (%dus)\n",
1218 			   rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1219 		seq_printf(m, "Up threshold: %d%%\n",
1220 			   dev_priv->rps.up_threshold);
1221 
1222 		seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1223 			   rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1224 		seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1225 			   rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1226 		seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1227 			   rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1228 		seq_printf(m, "Down threshold: %d%%\n",
1229 			   dev_priv->rps.down_threshold);
1230 
1231 		max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 0 :
1232 			    rp_state_cap >> 16) & 0xff;
1233 		max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1234 			     GEN9_FREQ_SCALER : 1);
1235 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1236 			   intel_gpu_freq(dev_priv, max_freq));
1237 
1238 		max_freq = (rp_state_cap & 0xff00) >> 8;
1239 		max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1240 			     GEN9_FREQ_SCALER : 1);
1241 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1242 			   intel_gpu_freq(dev_priv, max_freq));
1243 
1244 		max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 16 :
1245 			    rp_state_cap >> 0) & 0xff;
1246 		max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1247 			     GEN9_FREQ_SCALER : 1);
1248 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1249 			   intel_gpu_freq(dev_priv, max_freq));
1250 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1251 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1252 
1253 		seq_printf(m, "Current freq: %d MHz\n",
1254 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1255 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1256 		seq_printf(m, "Idle freq: %d MHz\n",
1257 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1258 		seq_printf(m, "Min freq: %d MHz\n",
1259 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1260 		seq_printf(m, "Boost freq: %d MHz\n",
1261 			   intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1262 		seq_printf(m, "Max freq: %d MHz\n",
1263 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1264 		seq_printf(m,
1265 			   "efficient (RPe) frequency: %d MHz\n",
1266 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1267 	} else {
1268 		seq_puts(m, "no P-state info available\n");
1269 	}
1270 
1271 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1272 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1273 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1274 
1275 out:
1276 	intel_runtime_pm_put(dev_priv);
1277 	return ret;
1278 }
1279 
1280 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1281 {
1282 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1283 	struct intel_engine_cs *engine;
1284 	u64 acthd[I915_NUM_ENGINES];
1285 	u32 seqno[I915_NUM_ENGINES];
1286 	u32 instdone[I915_NUM_INSTDONE_REG];
1287 	enum intel_engine_id id;
1288 	int j;
1289 
1290 	if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1291 		seq_printf(m, "Wedged\n");
1292 	if (test_bit(I915_RESET_IN_PROGRESS, &dev_priv->gpu_error.flags))
1293 		seq_printf(m, "Reset in progress\n");
1294 	if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1295 		seq_printf(m, "Waiter holding struct mutex\n");
1296 	if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1297 		seq_printf(m, "struct_mutex blocked for reset\n");
1298 
1299 	if (!i915.enable_hangcheck) {
1300 		seq_printf(m, "Hangcheck disabled\n");
1301 		return 0;
1302 	}
1303 
1304 	intel_runtime_pm_get(dev_priv);
1305 
1306 	for_each_engine_id(engine, dev_priv, id) {
1307 		acthd[id] = intel_engine_get_active_head(engine);
1308 		seqno[id] = intel_engine_get_seqno(engine);
1309 	}
1310 
1311 	i915_get_extra_instdone(dev_priv, instdone);
1312 
1313 	intel_runtime_pm_put(dev_priv);
1314 
1315 	if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1316 		seq_printf(m, "Hangcheck active, fires in %dms\n",
1317 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1318 					    jiffies));
1319 	} else
1320 		seq_printf(m, "Hangcheck inactive\n");
1321 
1322 	for_each_engine_id(engine, dev_priv, id) {
1323 		seq_printf(m, "%s:\n", engine->name);
1324 		seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1325 			   engine->hangcheck.seqno,
1326 			   seqno[id],
1327 			   engine->last_submitted_seqno);
1328 		seq_printf(m, "\twaiters? %s, fake irq active? %s\n",
1329 			   yesno(intel_engine_has_waiter(engine)),
1330 			   yesno(test_bit(engine->id,
1331 					  &dev_priv->gpu_error.missed_irq_rings)));
1332 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1333 			   (long long)engine->hangcheck.acthd,
1334 			   (long long)acthd[id]);
1335 		seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1336 		seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1337 
1338 		if (engine->id == RCS) {
1339 			seq_puts(m, "\tinstdone read =");
1340 
1341 			for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1342 				seq_printf(m, " 0x%08x", instdone[j]);
1343 
1344 			seq_puts(m, "\n\tinstdone accu =");
1345 
1346 			for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1347 				seq_printf(m, " 0x%08x",
1348 					   engine->hangcheck.instdone[j]);
1349 
1350 			seq_puts(m, "\n");
1351 		}
1352 	}
1353 
1354 	return 0;
1355 }
1356 
1357 static int ironlake_drpc_info(struct seq_file *m)
1358 {
1359 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1360 	struct drm_device *dev = &dev_priv->drm;
1361 	u32 rgvmodectl, rstdbyctl;
1362 	u16 crstandvid;
1363 	int ret;
1364 
1365 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1366 	if (ret)
1367 		return ret;
1368 	intel_runtime_pm_get(dev_priv);
1369 
1370 	rgvmodectl = I915_READ(MEMMODECTL);
1371 	rstdbyctl = I915_READ(RSTDBYCTL);
1372 	crstandvid = I915_READ16(CRSTANDVID);
1373 
1374 	intel_runtime_pm_put(dev_priv);
1375 	mutex_unlock(&dev->struct_mutex);
1376 
1377 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1378 	seq_printf(m, "Boost freq: %d\n",
1379 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1380 		   MEMMODE_BOOST_FREQ_SHIFT);
1381 	seq_printf(m, "HW control enabled: %s\n",
1382 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1383 	seq_printf(m, "SW control enabled: %s\n",
1384 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1385 	seq_printf(m, "Gated voltage change: %s\n",
1386 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1387 	seq_printf(m, "Starting frequency: P%d\n",
1388 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1389 	seq_printf(m, "Max P-state: P%d\n",
1390 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1391 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1392 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1393 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1394 	seq_printf(m, "Render standby enabled: %s\n",
1395 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1396 	seq_puts(m, "Current RS state: ");
1397 	switch (rstdbyctl & RSX_STATUS_MASK) {
1398 	case RSX_STATUS_ON:
1399 		seq_puts(m, "on\n");
1400 		break;
1401 	case RSX_STATUS_RC1:
1402 		seq_puts(m, "RC1\n");
1403 		break;
1404 	case RSX_STATUS_RC1E:
1405 		seq_puts(m, "RC1E\n");
1406 		break;
1407 	case RSX_STATUS_RS1:
1408 		seq_puts(m, "RS1\n");
1409 		break;
1410 	case RSX_STATUS_RS2:
1411 		seq_puts(m, "RS2 (RC6)\n");
1412 		break;
1413 	case RSX_STATUS_RS3:
1414 		seq_puts(m, "RC3 (RC6+)\n");
1415 		break;
1416 	default:
1417 		seq_puts(m, "unknown\n");
1418 		break;
1419 	}
1420 
1421 	return 0;
1422 }
1423 
1424 static int i915_forcewake_domains(struct seq_file *m, void *data)
1425 {
1426 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1427 	struct intel_uncore_forcewake_domain *fw_domain;
1428 
1429 	spin_lock_irq(&dev_priv->uncore.lock);
1430 	for_each_fw_domain(fw_domain, dev_priv) {
1431 		seq_printf(m, "%s.wake_count = %u\n",
1432 			   intel_uncore_forcewake_domain_to_str(fw_domain->id),
1433 			   fw_domain->wake_count);
1434 	}
1435 	spin_unlock_irq(&dev_priv->uncore.lock);
1436 
1437 	return 0;
1438 }
1439 
1440 static int vlv_drpc_info(struct seq_file *m)
1441 {
1442 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1443 	u32 rpmodectl1, rcctl1, pw_status;
1444 
1445 	intel_runtime_pm_get(dev_priv);
1446 
1447 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1448 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1449 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1450 
1451 	intel_runtime_pm_put(dev_priv);
1452 
1453 	seq_printf(m, "Video Turbo Mode: %s\n",
1454 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1455 	seq_printf(m, "Turbo enabled: %s\n",
1456 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1457 	seq_printf(m, "HW control enabled: %s\n",
1458 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1459 	seq_printf(m, "SW control enabled: %s\n",
1460 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1461 			  GEN6_RP_MEDIA_SW_MODE));
1462 	seq_printf(m, "RC6 Enabled: %s\n",
1463 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1464 					GEN6_RC_CTL_EI_MODE(1))));
1465 	seq_printf(m, "Render Power Well: %s\n",
1466 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1467 	seq_printf(m, "Media Power Well: %s\n",
1468 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1469 
1470 	seq_printf(m, "Render RC6 residency since boot: %u\n",
1471 		   I915_READ(VLV_GT_RENDER_RC6));
1472 	seq_printf(m, "Media RC6 residency since boot: %u\n",
1473 		   I915_READ(VLV_GT_MEDIA_RC6));
1474 
1475 	return i915_forcewake_domains(m, NULL);
1476 }
1477 
1478 static int gen6_drpc_info(struct seq_file *m)
1479 {
1480 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1481 	struct drm_device *dev = &dev_priv->drm;
1482 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1483 	u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1484 	unsigned forcewake_count;
1485 	int count = 0, ret;
1486 
1487 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1488 	if (ret)
1489 		return ret;
1490 	intel_runtime_pm_get(dev_priv);
1491 
1492 	spin_lock_irq(&dev_priv->uncore.lock);
1493 	forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1494 	spin_unlock_irq(&dev_priv->uncore.lock);
1495 
1496 	if (forcewake_count) {
1497 		seq_puts(m, "RC information inaccurate because somebody "
1498 			    "holds a forcewake reference \n");
1499 	} else {
1500 		/* NB: we cannot use forcewake, else we read the wrong values */
1501 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1502 			udelay(10);
1503 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1504 	}
1505 
1506 	gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1507 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1508 
1509 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1510 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1511 	if (INTEL_GEN(dev_priv) >= 9) {
1512 		gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1513 		gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1514 	}
1515 	mutex_unlock(&dev->struct_mutex);
1516 	mutex_lock(&dev_priv->rps.hw_lock);
1517 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1518 	mutex_unlock(&dev_priv->rps.hw_lock);
1519 
1520 	intel_runtime_pm_put(dev_priv);
1521 
1522 	seq_printf(m, "Video Turbo Mode: %s\n",
1523 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1524 	seq_printf(m, "HW control enabled: %s\n",
1525 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1526 	seq_printf(m, "SW control enabled: %s\n",
1527 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1528 			  GEN6_RP_MEDIA_SW_MODE));
1529 	seq_printf(m, "RC1e Enabled: %s\n",
1530 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1531 	seq_printf(m, "RC6 Enabled: %s\n",
1532 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1533 	if (INTEL_GEN(dev_priv) >= 9) {
1534 		seq_printf(m, "Render Well Gating Enabled: %s\n",
1535 			yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1536 		seq_printf(m, "Media Well Gating Enabled: %s\n",
1537 			yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1538 	}
1539 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1540 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1541 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1542 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1543 	seq_puts(m, "Current RC state: ");
1544 	switch (gt_core_status & GEN6_RCn_MASK) {
1545 	case GEN6_RC0:
1546 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1547 			seq_puts(m, "Core Power Down\n");
1548 		else
1549 			seq_puts(m, "on\n");
1550 		break;
1551 	case GEN6_RC3:
1552 		seq_puts(m, "RC3\n");
1553 		break;
1554 	case GEN6_RC6:
1555 		seq_puts(m, "RC6\n");
1556 		break;
1557 	case GEN6_RC7:
1558 		seq_puts(m, "RC7\n");
1559 		break;
1560 	default:
1561 		seq_puts(m, "Unknown\n");
1562 		break;
1563 	}
1564 
1565 	seq_printf(m, "Core Power Down: %s\n",
1566 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1567 	if (INTEL_GEN(dev_priv) >= 9) {
1568 		seq_printf(m, "Render Power Well: %s\n",
1569 			(gen9_powergate_status &
1570 			 GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1571 		seq_printf(m, "Media Power Well: %s\n",
1572 			(gen9_powergate_status &
1573 			 GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1574 	}
1575 
1576 	/* Not exactly sure what this is */
1577 	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1578 		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1579 	seq_printf(m, "RC6 residency since boot: %u\n",
1580 		   I915_READ(GEN6_GT_GFX_RC6));
1581 	seq_printf(m, "RC6+ residency since boot: %u\n",
1582 		   I915_READ(GEN6_GT_GFX_RC6p));
1583 	seq_printf(m, "RC6++ residency since boot: %u\n",
1584 		   I915_READ(GEN6_GT_GFX_RC6pp));
1585 
1586 	seq_printf(m, "RC6   voltage: %dmV\n",
1587 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1588 	seq_printf(m, "RC6+  voltage: %dmV\n",
1589 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1590 	seq_printf(m, "RC6++ voltage: %dmV\n",
1591 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1592 	return i915_forcewake_domains(m, NULL);
1593 }
1594 
1595 static int i915_drpc_info(struct seq_file *m, void *unused)
1596 {
1597 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1598 
1599 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1600 		return vlv_drpc_info(m);
1601 	else if (INTEL_GEN(dev_priv) >= 6)
1602 		return gen6_drpc_info(m);
1603 	else
1604 		return ironlake_drpc_info(m);
1605 }
1606 
1607 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1608 {
1609 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1610 
1611 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1612 		   dev_priv->fb_tracking.busy_bits);
1613 
1614 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1615 		   dev_priv->fb_tracking.flip_bits);
1616 
1617 	return 0;
1618 }
1619 
1620 static int i915_fbc_status(struct seq_file *m, void *unused)
1621 {
1622 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1623 
1624 	if (!HAS_FBC(dev_priv)) {
1625 		seq_puts(m, "FBC unsupported on this chipset\n");
1626 		return 0;
1627 	}
1628 
1629 	intel_runtime_pm_get(dev_priv);
1630 	mutex_lock(&dev_priv->fbc.lock);
1631 
1632 	if (intel_fbc_is_active(dev_priv))
1633 		seq_puts(m, "FBC enabled\n");
1634 	else
1635 		seq_printf(m, "FBC disabled: %s\n",
1636 			   dev_priv->fbc.no_fbc_reason);
1637 
1638 	if (INTEL_GEN(dev_priv) >= 7)
1639 		seq_printf(m, "Compressing: %s\n",
1640 			   yesno(I915_READ(FBC_STATUS2) &
1641 				 FBC_COMPRESSION_MASK));
1642 
1643 	mutex_unlock(&dev_priv->fbc.lock);
1644 	intel_runtime_pm_put(dev_priv);
1645 
1646 	return 0;
1647 }
1648 
1649 static int i915_fbc_fc_get(void *data, u64 *val)
1650 {
1651 	struct drm_i915_private *dev_priv = data;
1652 
1653 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1654 		return -ENODEV;
1655 
1656 	*val = dev_priv->fbc.false_color;
1657 
1658 	return 0;
1659 }
1660 
1661 static int i915_fbc_fc_set(void *data, u64 val)
1662 {
1663 	struct drm_i915_private *dev_priv = data;
1664 	u32 reg;
1665 
1666 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1667 		return -ENODEV;
1668 
1669 	mutex_lock(&dev_priv->fbc.lock);
1670 
1671 	reg = I915_READ(ILK_DPFC_CONTROL);
1672 	dev_priv->fbc.false_color = val;
1673 
1674 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1675 		   (reg | FBC_CTL_FALSE_COLOR) :
1676 		   (reg & ~FBC_CTL_FALSE_COLOR));
1677 
1678 	mutex_unlock(&dev_priv->fbc.lock);
1679 	return 0;
1680 }
1681 
1682 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1683 			i915_fbc_fc_get, i915_fbc_fc_set,
1684 			"%llu\n");
1685 
1686 static int i915_ips_status(struct seq_file *m, void *unused)
1687 {
1688 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1689 
1690 	if (!HAS_IPS(dev_priv)) {
1691 		seq_puts(m, "not supported\n");
1692 		return 0;
1693 	}
1694 
1695 	intel_runtime_pm_get(dev_priv);
1696 
1697 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1698 		   yesno(i915.enable_ips));
1699 
1700 	if (INTEL_GEN(dev_priv) >= 8) {
1701 		seq_puts(m, "Currently: unknown\n");
1702 	} else {
1703 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1704 			seq_puts(m, "Currently: enabled\n");
1705 		else
1706 			seq_puts(m, "Currently: disabled\n");
1707 	}
1708 
1709 	intel_runtime_pm_put(dev_priv);
1710 
1711 	return 0;
1712 }
1713 
1714 static int i915_sr_status(struct seq_file *m, void *unused)
1715 {
1716 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1717 	bool sr_enabled = false;
1718 
1719 	intel_runtime_pm_get(dev_priv);
1720 
1721 	if (HAS_PCH_SPLIT(dev_priv))
1722 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1723 	else if (IS_CRESTLINE(dev_priv) || IS_G4X(dev_priv) ||
1724 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1725 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1726 	else if (IS_I915GM(dev_priv))
1727 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1728 	else if (IS_PINEVIEW(dev_priv))
1729 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1730 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1731 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1732 
1733 	intel_runtime_pm_put(dev_priv);
1734 
1735 	seq_printf(m, "self-refresh: %s\n",
1736 		   sr_enabled ? "enabled" : "disabled");
1737 
1738 	return 0;
1739 }
1740 
1741 static int i915_emon_status(struct seq_file *m, void *unused)
1742 {
1743 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1744 	struct drm_device *dev = &dev_priv->drm;
1745 	unsigned long temp, chipset, gfx;
1746 	int ret;
1747 
1748 	if (!IS_GEN5(dev_priv))
1749 		return -ENODEV;
1750 
1751 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1752 	if (ret)
1753 		return ret;
1754 
1755 	temp = i915_mch_val(dev_priv);
1756 	chipset = i915_chipset_val(dev_priv);
1757 	gfx = i915_gfx_val(dev_priv);
1758 	mutex_unlock(&dev->struct_mutex);
1759 
1760 	seq_printf(m, "GMCH temp: %ld\n", temp);
1761 	seq_printf(m, "Chipset power: %ld\n", chipset);
1762 	seq_printf(m, "GFX power: %ld\n", gfx);
1763 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1764 
1765 	return 0;
1766 }
1767 
1768 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1769 {
1770 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1771 	int ret = 0;
1772 	int gpu_freq, ia_freq;
1773 	unsigned int max_gpu_freq, min_gpu_freq;
1774 
1775 	if (!HAS_LLC(dev_priv)) {
1776 		seq_puts(m, "unsupported on this chipset\n");
1777 		return 0;
1778 	}
1779 
1780 	intel_runtime_pm_get(dev_priv);
1781 
1782 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1783 	if (ret)
1784 		goto out;
1785 
1786 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1787 		/* Convert GT frequency to 50 HZ units */
1788 		min_gpu_freq =
1789 			dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1790 		max_gpu_freq =
1791 			dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1792 	} else {
1793 		min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1794 		max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1795 	}
1796 
1797 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1798 
1799 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1800 		ia_freq = gpu_freq;
1801 		sandybridge_pcode_read(dev_priv,
1802 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1803 				       &ia_freq);
1804 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1805 			   intel_gpu_freq(dev_priv, (gpu_freq *
1806 				(IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1807 				 GEN9_FREQ_SCALER : 1))),
1808 			   ((ia_freq >> 0) & 0xff) * 100,
1809 			   ((ia_freq >> 8) & 0xff) * 100);
1810 	}
1811 
1812 	mutex_unlock(&dev_priv->rps.hw_lock);
1813 
1814 out:
1815 	intel_runtime_pm_put(dev_priv);
1816 	return ret;
1817 }
1818 
1819 static int i915_opregion(struct seq_file *m, void *unused)
1820 {
1821 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1822 	struct drm_device *dev = &dev_priv->drm;
1823 	struct intel_opregion *opregion = &dev_priv->opregion;
1824 	int ret;
1825 
1826 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1827 	if (ret)
1828 		goto out;
1829 
1830 	if (opregion->header)
1831 		seq_write(m, opregion->header, OPREGION_SIZE);
1832 
1833 	mutex_unlock(&dev->struct_mutex);
1834 
1835 out:
1836 	return 0;
1837 }
1838 
1839 static int i915_vbt(struct seq_file *m, void *unused)
1840 {
1841 	struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1842 
1843 	if (opregion->vbt)
1844 		seq_write(m, opregion->vbt, opregion->vbt_size);
1845 
1846 	return 0;
1847 }
1848 
1849 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1850 {
1851 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1852 	struct drm_device *dev = &dev_priv->drm;
1853 	struct intel_framebuffer *fbdev_fb = NULL;
1854 	struct drm_framebuffer *drm_fb;
1855 	int ret;
1856 
1857 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1858 	if (ret)
1859 		return ret;
1860 
1861 #ifdef CONFIG_DRM_FBDEV_EMULATION
1862 	if (dev_priv->fbdev) {
1863 		fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1864 
1865 		seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1866 			   fbdev_fb->base.width,
1867 			   fbdev_fb->base.height,
1868 			   fbdev_fb->base.depth,
1869 			   fbdev_fb->base.bits_per_pixel,
1870 			   fbdev_fb->base.modifier[0],
1871 			   drm_framebuffer_read_refcount(&fbdev_fb->base));
1872 		describe_obj(m, fbdev_fb->obj);
1873 		seq_putc(m, '\n');
1874 	}
1875 #endif
1876 
1877 	mutex_lock(&dev->mode_config.fb_lock);
1878 	drm_for_each_fb(drm_fb, dev) {
1879 		struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1880 		if (fb == fbdev_fb)
1881 			continue;
1882 
1883 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1884 			   fb->base.width,
1885 			   fb->base.height,
1886 			   fb->base.depth,
1887 			   fb->base.bits_per_pixel,
1888 			   fb->base.modifier[0],
1889 			   drm_framebuffer_read_refcount(&fb->base));
1890 		describe_obj(m, fb->obj);
1891 		seq_putc(m, '\n');
1892 	}
1893 	mutex_unlock(&dev->mode_config.fb_lock);
1894 	mutex_unlock(&dev->struct_mutex);
1895 
1896 	return 0;
1897 }
1898 
1899 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1900 {
1901 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1902 		   ring->space, ring->head, ring->tail,
1903 		   ring->last_retired_head);
1904 }
1905 
1906 static int i915_context_status(struct seq_file *m, void *unused)
1907 {
1908 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1909 	struct drm_device *dev = &dev_priv->drm;
1910 	struct intel_engine_cs *engine;
1911 	struct i915_gem_context *ctx;
1912 	int ret;
1913 
1914 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1915 	if (ret)
1916 		return ret;
1917 
1918 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1919 		seq_printf(m, "HW context %u ", ctx->hw_id);
1920 		if (ctx->pid) {
1921 			struct task_struct *task;
1922 
1923 			task = get_pid_task(ctx->pid, PIDTYPE_PID);
1924 			if (task) {
1925 				seq_printf(m, "(%s [%d]) ",
1926 					   task->comm, task->pid);
1927 				put_task_struct(task);
1928 			}
1929 		} else if (IS_ERR(ctx->file_priv)) {
1930 			seq_puts(m, "(deleted) ");
1931 		} else {
1932 			seq_puts(m, "(kernel) ");
1933 		}
1934 
1935 		seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1936 		seq_putc(m, '\n');
1937 
1938 		for_each_engine(engine, dev_priv) {
1939 			struct intel_context *ce = &ctx->engine[engine->id];
1940 
1941 			seq_printf(m, "%s: ", engine->name);
1942 			seq_putc(m, ce->initialised ? 'I' : 'i');
1943 			if (ce->state)
1944 				describe_obj(m, ce->state->obj);
1945 			if (ce->ring)
1946 				describe_ctx_ring(m, ce->ring);
1947 			seq_putc(m, '\n');
1948 		}
1949 
1950 		seq_putc(m, '\n');
1951 	}
1952 
1953 	mutex_unlock(&dev->struct_mutex);
1954 
1955 	return 0;
1956 }
1957 
1958 static void i915_dump_lrc_obj(struct seq_file *m,
1959 			      struct i915_gem_context *ctx,
1960 			      struct intel_engine_cs *engine)
1961 {
1962 	struct i915_vma *vma = ctx->engine[engine->id].state;
1963 	struct page *page;
1964 	int j;
1965 
1966 	seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
1967 
1968 	if (!vma) {
1969 		seq_puts(m, "\tFake context\n");
1970 		return;
1971 	}
1972 
1973 	if (vma->flags & I915_VMA_GLOBAL_BIND)
1974 		seq_printf(m, "\tBound in GGTT at 0x%08x\n",
1975 			   i915_ggtt_offset(vma));
1976 
1977 	if (i915_gem_object_get_pages(vma->obj)) {
1978 		seq_puts(m, "\tFailed to get pages for context object\n\n");
1979 		return;
1980 	}
1981 
1982 	page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
1983 	if (page) {
1984 		u32 *reg_state = kmap_atomic(page);
1985 
1986 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1987 			seq_printf(m,
1988 				   "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1989 				   j * 4,
1990 				   reg_state[j], reg_state[j + 1],
1991 				   reg_state[j + 2], reg_state[j + 3]);
1992 		}
1993 		kunmap_atomic(reg_state);
1994 	}
1995 
1996 	seq_putc(m, '\n');
1997 }
1998 
1999 static int i915_dump_lrc(struct seq_file *m, void *unused)
2000 {
2001 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2002 	struct drm_device *dev = &dev_priv->drm;
2003 	struct intel_engine_cs *engine;
2004 	struct i915_gem_context *ctx;
2005 	int ret;
2006 
2007 	if (!i915.enable_execlists) {
2008 		seq_printf(m, "Logical Ring Contexts are disabled\n");
2009 		return 0;
2010 	}
2011 
2012 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2013 	if (ret)
2014 		return ret;
2015 
2016 	list_for_each_entry(ctx, &dev_priv->context_list, link)
2017 		for_each_engine(engine, dev_priv)
2018 			i915_dump_lrc_obj(m, ctx, engine);
2019 
2020 	mutex_unlock(&dev->struct_mutex);
2021 
2022 	return 0;
2023 }
2024 
2025 static int i915_execlists(struct seq_file *m, void *data)
2026 {
2027 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2028 	struct drm_device *dev = &dev_priv->drm;
2029 	struct intel_engine_cs *engine;
2030 	u32 status_pointer;
2031 	u8 read_pointer;
2032 	u8 write_pointer;
2033 	u32 status;
2034 	u32 ctx_id;
2035 	struct list_head *cursor;
2036 	int i, ret;
2037 
2038 	if (!i915.enable_execlists) {
2039 		seq_puts(m, "Logical Ring Contexts are disabled\n");
2040 		return 0;
2041 	}
2042 
2043 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2044 	if (ret)
2045 		return ret;
2046 
2047 	intel_runtime_pm_get(dev_priv);
2048 
2049 	for_each_engine(engine, dev_priv) {
2050 		struct drm_i915_gem_request *head_req = NULL;
2051 		int count = 0;
2052 
2053 		seq_printf(m, "%s\n", engine->name);
2054 
2055 		status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
2056 		ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
2057 		seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2058 			   status, ctx_id);
2059 
2060 		status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
2061 		seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2062 
2063 		read_pointer = GEN8_CSB_READ_PTR(status_pointer);
2064 		write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2065 		if (read_pointer > write_pointer)
2066 			write_pointer += GEN8_CSB_ENTRIES;
2067 		seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2068 			   read_pointer, write_pointer);
2069 
2070 		for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2071 			status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
2072 			ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
2073 
2074 			seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2075 				   i, status, ctx_id);
2076 		}
2077 
2078 		spin_lock_bh(&engine->execlist_lock);
2079 		list_for_each(cursor, &engine->execlist_queue)
2080 			count++;
2081 		head_req = list_first_entry_or_null(&engine->execlist_queue,
2082 						    struct drm_i915_gem_request,
2083 						    execlist_link);
2084 		spin_unlock_bh(&engine->execlist_lock);
2085 
2086 		seq_printf(m, "\t%d requests in queue\n", count);
2087 		if (head_req) {
2088 			seq_printf(m, "\tHead request context: %u\n",
2089 				   head_req->ctx->hw_id);
2090 			seq_printf(m, "\tHead request tail: %u\n",
2091 				   head_req->tail);
2092 		}
2093 
2094 		seq_putc(m, '\n');
2095 	}
2096 
2097 	intel_runtime_pm_put(dev_priv);
2098 	mutex_unlock(&dev->struct_mutex);
2099 
2100 	return 0;
2101 }
2102 
2103 static const char *swizzle_string(unsigned swizzle)
2104 {
2105 	switch (swizzle) {
2106 	case I915_BIT_6_SWIZZLE_NONE:
2107 		return "none";
2108 	case I915_BIT_6_SWIZZLE_9:
2109 		return "bit9";
2110 	case I915_BIT_6_SWIZZLE_9_10:
2111 		return "bit9/bit10";
2112 	case I915_BIT_6_SWIZZLE_9_11:
2113 		return "bit9/bit11";
2114 	case I915_BIT_6_SWIZZLE_9_10_11:
2115 		return "bit9/bit10/bit11";
2116 	case I915_BIT_6_SWIZZLE_9_17:
2117 		return "bit9/bit17";
2118 	case I915_BIT_6_SWIZZLE_9_10_17:
2119 		return "bit9/bit10/bit17";
2120 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2121 		return "unknown";
2122 	}
2123 
2124 	return "bug";
2125 }
2126 
2127 static int i915_swizzle_info(struct seq_file *m, void *data)
2128 {
2129 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2130 	struct drm_device *dev = &dev_priv->drm;
2131 	int ret;
2132 
2133 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2134 	if (ret)
2135 		return ret;
2136 	intel_runtime_pm_get(dev_priv);
2137 
2138 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2139 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2140 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2141 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2142 
2143 	if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2144 		seq_printf(m, "DDC = 0x%08x\n",
2145 			   I915_READ(DCC));
2146 		seq_printf(m, "DDC2 = 0x%08x\n",
2147 			   I915_READ(DCC2));
2148 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2149 			   I915_READ16(C0DRB3));
2150 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2151 			   I915_READ16(C1DRB3));
2152 	} else if (INTEL_GEN(dev_priv) >= 6) {
2153 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2154 			   I915_READ(MAD_DIMM_C0));
2155 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2156 			   I915_READ(MAD_DIMM_C1));
2157 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2158 			   I915_READ(MAD_DIMM_C2));
2159 		seq_printf(m, "TILECTL = 0x%08x\n",
2160 			   I915_READ(TILECTL));
2161 		if (INTEL_GEN(dev_priv) >= 8)
2162 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2163 				   I915_READ(GAMTARBMODE));
2164 		else
2165 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2166 				   I915_READ(ARB_MODE));
2167 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2168 			   I915_READ(DISP_ARB_CTL));
2169 	}
2170 
2171 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2172 		seq_puts(m, "L-shaped memory detected\n");
2173 
2174 	intel_runtime_pm_put(dev_priv);
2175 	mutex_unlock(&dev->struct_mutex);
2176 
2177 	return 0;
2178 }
2179 
2180 static int per_file_ctx(int id, void *ptr, void *data)
2181 {
2182 	struct i915_gem_context *ctx = ptr;
2183 	struct seq_file *m = data;
2184 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2185 
2186 	if (!ppgtt) {
2187 		seq_printf(m, "  no ppgtt for context %d\n",
2188 			   ctx->user_handle);
2189 		return 0;
2190 	}
2191 
2192 	if (i915_gem_context_is_default(ctx))
2193 		seq_puts(m, "  default context:\n");
2194 	else
2195 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2196 	ppgtt->debug_dump(ppgtt, m);
2197 
2198 	return 0;
2199 }
2200 
2201 static void gen8_ppgtt_info(struct seq_file *m,
2202 			    struct drm_i915_private *dev_priv)
2203 {
2204 	struct intel_engine_cs *engine;
2205 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2206 	int i;
2207 
2208 	if (!ppgtt)
2209 		return;
2210 
2211 	for_each_engine(engine, dev_priv) {
2212 		seq_printf(m, "%s\n", engine->name);
2213 		for (i = 0; i < 4; i++) {
2214 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2215 			pdp <<= 32;
2216 			pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2217 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2218 		}
2219 	}
2220 }
2221 
2222 static void gen6_ppgtt_info(struct seq_file *m,
2223 			    struct drm_i915_private *dev_priv)
2224 {
2225 	struct intel_engine_cs *engine;
2226 
2227 	if (IS_GEN6(dev_priv))
2228 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2229 
2230 	for_each_engine(engine, dev_priv) {
2231 		seq_printf(m, "%s\n", engine->name);
2232 		if (IS_GEN7(dev_priv))
2233 			seq_printf(m, "GFX_MODE: 0x%08x\n",
2234 				   I915_READ(RING_MODE_GEN7(engine)));
2235 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2236 			   I915_READ(RING_PP_DIR_BASE(engine)));
2237 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2238 			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
2239 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2240 			   I915_READ(RING_PP_DIR_DCLV(engine)));
2241 	}
2242 	if (dev_priv->mm.aliasing_ppgtt) {
2243 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2244 
2245 		seq_puts(m, "aliasing PPGTT:\n");
2246 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2247 
2248 		ppgtt->debug_dump(ppgtt, m);
2249 	}
2250 
2251 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2252 }
2253 
2254 static int i915_ppgtt_info(struct seq_file *m, void *data)
2255 {
2256 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2257 	struct drm_device *dev = &dev_priv->drm;
2258 	struct drm_file *file;
2259 	int ret;
2260 
2261 	mutex_lock(&dev->filelist_mutex);
2262 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2263 	if (ret)
2264 		goto out_unlock;
2265 
2266 	intel_runtime_pm_get(dev_priv);
2267 
2268 	if (INTEL_GEN(dev_priv) >= 8)
2269 		gen8_ppgtt_info(m, dev_priv);
2270 	else if (INTEL_GEN(dev_priv) >= 6)
2271 		gen6_ppgtt_info(m, dev_priv);
2272 
2273 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2274 		struct drm_i915_file_private *file_priv = file->driver_priv;
2275 		struct task_struct *task;
2276 
2277 		task = get_pid_task(file->pid, PIDTYPE_PID);
2278 		if (!task) {
2279 			ret = -ESRCH;
2280 			goto out_rpm;
2281 		}
2282 		seq_printf(m, "\nproc: %s\n", task->comm);
2283 		put_task_struct(task);
2284 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2285 			     (void *)(unsigned long)m);
2286 	}
2287 
2288 out_rpm:
2289 	intel_runtime_pm_put(dev_priv);
2290 	mutex_unlock(&dev->struct_mutex);
2291 out_unlock:
2292 	mutex_unlock(&dev->filelist_mutex);
2293 	return ret;
2294 }
2295 
2296 static int count_irq_waiters(struct drm_i915_private *i915)
2297 {
2298 	struct intel_engine_cs *engine;
2299 	int count = 0;
2300 
2301 	for_each_engine(engine, i915)
2302 		count += intel_engine_has_waiter(engine);
2303 
2304 	return count;
2305 }
2306 
2307 static const char *rps_power_to_str(unsigned int power)
2308 {
2309 	static const char * const strings[] = {
2310 		[LOW_POWER] = "low power",
2311 		[BETWEEN] = "mixed",
2312 		[HIGH_POWER] = "high power",
2313 	};
2314 
2315 	if (power >= ARRAY_SIZE(strings) || !strings[power])
2316 		return "unknown";
2317 
2318 	return strings[power];
2319 }
2320 
2321 static int i915_rps_boost_info(struct seq_file *m, void *data)
2322 {
2323 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2324 	struct drm_device *dev = &dev_priv->drm;
2325 	struct drm_file *file;
2326 
2327 	seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2328 	seq_printf(m, "GPU busy? %s [%x]\n",
2329 		   yesno(dev_priv->gt.awake), dev_priv->gt.active_engines);
2330 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2331 	seq_printf(m, "Frequency requested %d\n",
2332 		   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
2333 	seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2334 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2335 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2336 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2337 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2338 	seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2339 		   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
2340 		   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2341 		   intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
2342 
2343 	mutex_lock(&dev->filelist_mutex);
2344 	spin_lock(&dev_priv->rps.client_lock);
2345 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2346 		struct drm_i915_file_private *file_priv = file->driver_priv;
2347 		struct task_struct *task;
2348 
2349 		rcu_read_lock();
2350 		task = pid_task(file->pid, PIDTYPE_PID);
2351 		seq_printf(m, "%s [%d]: %d boosts%s\n",
2352 			   task ? task->comm : "<unknown>",
2353 			   task ? task->pid : -1,
2354 			   file_priv->rps.boosts,
2355 			   list_empty(&file_priv->rps.link) ? "" : ", active");
2356 		rcu_read_unlock();
2357 	}
2358 	seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2359 	spin_unlock(&dev_priv->rps.client_lock);
2360 	mutex_unlock(&dev->filelist_mutex);
2361 
2362 	if (INTEL_GEN(dev_priv) >= 6 &&
2363 	    dev_priv->rps.enabled &&
2364 	    dev_priv->gt.active_engines) {
2365 		u32 rpup, rpupei;
2366 		u32 rpdown, rpdownei;
2367 
2368 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2369 		rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2370 		rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2371 		rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2372 		rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2373 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2374 
2375 		seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2376 			   rps_power_to_str(dev_priv->rps.power));
2377 		seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2378 			   100 * rpup / rpupei,
2379 			   dev_priv->rps.up_threshold);
2380 		seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2381 			   100 * rpdown / rpdownei,
2382 			   dev_priv->rps.down_threshold);
2383 	} else {
2384 		seq_puts(m, "\nRPS Autotuning inactive\n");
2385 	}
2386 
2387 	return 0;
2388 }
2389 
2390 static int i915_llc(struct seq_file *m, void *data)
2391 {
2392 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2393 	const bool edram = INTEL_GEN(dev_priv) > 8;
2394 
2395 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2396 	seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2397 		   intel_uncore_edram_size(dev_priv)/1024/1024);
2398 
2399 	return 0;
2400 }
2401 
2402 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2403 {
2404 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2405 	struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2406 	u32 tmp, i;
2407 
2408 	if (!HAS_GUC_UCODE(dev_priv))
2409 		return 0;
2410 
2411 	seq_printf(m, "GuC firmware status:\n");
2412 	seq_printf(m, "\tpath: %s\n",
2413 		guc_fw->guc_fw_path);
2414 	seq_printf(m, "\tfetch: %s\n",
2415 		intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2416 	seq_printf(m, "\tload: %s\n",
2417 		intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2418 	seq_printf(m, "\tversion wanted: %d.%d\n",
2419 		guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2420 	seq_printf(m, "\tversion found: %d.%d\n",
2421 		guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2422 	seq_printf(m, "\theader: offset is %d; size = %d\n",
2423 		guc_fw->header_offset, guc_fw->header_size);
2424 	seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2425 		guc_fw->ucode_offset, guc_fw->ucode_size);
2426 	seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2427 		guc_fw->rsa_offset, guc_fw->rsa_size);
2428 
2429 	tmp = I915_READ(GUC_STATUS);
2430 
2431 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2432 	seq_printf(m, "\tBootrom status = 0x%x\n",
2433 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2434 	seq_printf(m, "\tuKernel status = 0x%x\n",
2435 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2436 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2437 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2438 	seq_puts(m, "\nScratch registers:\n");
2439 	for (i = 0; i < 16; i++)
2440 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2441 
2442 	return 0;
2443 }
2444 
2445 static void i915_guc_client_info(struct seq_file *m,
2446 				 struct drm_i915_private *dev_priv,
2447 				 struct i915_guc_client *client)
2448 {
2449 	struct intel_engine_cs *engine;
2450 	enum intel_engine_id id;
2451 	uint64_t tot = 0;
2452 
2453 	seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2454 		client->priority, client->ctx_index, client->proc_desc_offset);
2455 	seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2456 		client->doorbell_id, client->doorbell_offset, client->cookie);
2457 	seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2458 		client->wq_size, client->wq_offset, client->wq_tail);
2459 
2460 	seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2461 	seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2462 	seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2463 
2464 	for_each_engine_id(engine, dev_priv, id) {
2465 		u64 submissions = client->submissions[id];
2466 		tot += submissions;
2467 		seq_printf(m, "\tSubmissions: %llu %s\n",
2468 				submissions, engine->name);
2469 	}
2470 	seq_printf(m, "\tTotal: %llu\n", tot);
2471 }
2472 
2473 static int i915_guc_info(struct seq_file *m, void *data)
2474 {
2475 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2476 	struct drm_device *dev = &dev_priv->drm;
2477 	struct intel_guc guc;
2478 	struct i915_guc_client client = {};
2479 	struct intel_engine_cs *engine;
2480 	enum intel_engine_id id;
2481 	u64 total = 0;
2482 
2483 	if (!HAS_GUC_SCHED(dev_priv))
2484 		return 0;
2485 
2486 	if (mutex_lock_interruptible(&dev->struct_mutex))
2487 		return 0;
2488 
2489 	/* Take a local copy of the GuC data, so we can dump it at leisure */
2490 	guc = dev_priv->guc;
2491 	if (guc.execbuf_client)
2492 		client = *guc.execbuf_client;
2493 
2494 	mutex_unlock(&dev->struct_mutex);
2495 
2496 	seq_printf(m, "Doorbell map:\n");
2497 	seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
2498 	seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
2499 
2500 	seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2501 	seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2502 	seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2503 	seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2504 	seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2505 
2506 	seq_printf(m, "\nGuC submissions:\n");
2507 	for_each_engine_id(engine, dev_priv, id) {
2508 		u64 submissions = guc.submissions[id];
2509 		total += submissions;
2510 		seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2511 			engine->name, submissions, guc.last_seqno[id]);
2512 	}
2513 	seq_printf(m, "\t%s: %llu\n", "Total", total);
2514 
2515 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2516 	i915_guc_client_info(m, dev_priv, &client);
2517 
2518 	/* Add more as required ... */
2519 
2520 	return 0;
2521 }
2522 
2523 static int i915_guc_log_dump(struct seq_file *m, void *data)
2524 {
2525 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2526 	struct drm_i915_gem_object *obj;
2527 	int i = 0, pg;
2528 
2529 	if (!dev_priv->guc.log_vma)
2530 		return 0;
2531 
2532 	obj = dev_priv->guc.log_vma->obj;
2533 	for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
2534 		u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
2535 
2536 		for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2537 			seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2538 				   *(log + i), *(log + i + 1),
2539 				   *(log + i + 2), *(log + i + 3));
2540 
2541 		kunmap_atomic(log);
2542 	}
2543 
2544 	seq_putc(m, '\n');
2545 
2546 	return 0;
2547 }
2548 
2549 static int i915_edp_psr_status(struct seq_file *m, void *data)
2550 {
2551 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2552 	u32 psrperf = 0;
2553 	u32 stat[3];
2554 	enum pipe pipe;
2555 	bool enabled = false;
2556 
2557 	if (!HAS_PSR(dev_priv)) {
2558 		seq_puts(m, "PSR not supported\n");
2559 		return 0;
2560 	}
2561 
2562 	intel_runtime_pm_get(dev_priv);
2563 
2564 	mutex_lock(&dev_priv->psr.lock);
2565 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2566 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2567 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2568 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2569 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2570 		   dev_priv->psr.busy_frontbuffer_bits);
2571 	seq_printf(m, "Re-enable work scheduled: %s\n",
2572 		   yesno(work_busy(&dev_priv->psr.work.work)));
2573 
2574 	if (HAS_DDI(dev_priv))
2575 		enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2576 	else {
2577 		for_each_pipe(dev_priv, pipe) {
2578 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2579 				VLV_EDP_PSR_CURR_STATE_MASK;
2580 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2581 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2582 				enabled = true;
2583 		}
2584 	}
2585 
2586 	seq_printf(m, "Main link in standby mode: %s\n",
2587 		   yesno(dev_priv->psr.link_standby));
2588 
2589 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2590 
2591 	if (!HAS_DDI(dev_priv))
2592 		for_each_pipe(dev_priv, pipe) {
2593 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2594 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2595 				seq_printf(m, " pipe %c", pipe_name(pipe));
2596 		}
2597 	seq_puts(m, "\n");
2598 
2599 	/*
2600 	 * VLV/CHV PSR has no kind of performance counter
2601 	 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2602 	 */
2603 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2604 		psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2605 			EDP_PSR_PERF_CNT_MASK;
2606 
2607 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2608 	}
2609 	mutex_unlock(&dev_priv->psr.lock);
2610 
2611 	intel_runtime_pm_put(dev_priv);
2612 	return 0;
2613 }
2614 
2615 static int i915_sink_crc(struct seq_file *m, void *data)
2616 {
2617 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2618 	struct drm_device *dev = &dev_priv->drm;
2619 	struct intel_connector *connector;
2620 	struct intel_dp *intel_dp = NULL;
2621 	int ret;
2622 	u8 crc[6];
2623 
2624 	drm_modeset_lock_all(dev);
2625 	for_each_intel_connector(dev, connector) {
2626 		struct drm_crtc *crtc;
2627 
2628 		if (!connector->base.state->best_encoder)
2629 			continue;
2630 
2631 		crtc = connector->base.state->crtc;
2632 		if (!crtc->state->active)
2633 			continue;
2634 
2635 		if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2636 			continue;
2637 
2638 		intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2639 
2640 		ret = intel_dp_sink_crc(intel_dp, crc);
2641 		if (ret)
2642 			goto out;
2643 
2644 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2645 			   crc[0], crc[1], crc[2],
2646 			   crc[3], crc[4], crc[5]);
2647 		goto out;
2648 	}
2649 	ret = -ENODEV;
2650 out:
2651 	drm_modeset_unlock_all(dev);
2652 	return ret;
2653 }
2654 
2655 static int i915_energy_uJ(struct seq_file *m, void *data)
2656 {
2657 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2658 	u64 power;
2659 	u32 units;
2660 
2661 	if (INTEL_GEN(dev_priv) < 6)
2662 		return -ENODEV;
2663 
2664 	intel_runtime_pm_get(dev_priv);
2665 
2666 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2667 	power = (power & 0x1f00) >> 8;
2668 	units = 1000000 / (1 << power); /* convert to uJ */
2669 	power = I915_READ(MCH_SECP_NRG_STTS);
2670 	power *= units;
2671 
2672 	intel_runtime_pm_put(dev_priv);
2673 
2674 	seq_printf(m, "%llu", (long long unsigned)power);
2675 
2676 	return 0;
2677 }
2678 
2679 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2680 {
2681 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2682 	struct pci_dev *pdev = dev_priv->drm.pdev;
2683 
2684 	if (!HAS_RUNTIME_PM(dev_priv))
2685 		seq_puts(m, "Runtime power management not supported\n");
2686 
2687 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2688 	seq_printf(m, "IRQs disabled: %s\n",
2689 		   yesno(!intel_irqs_enabled(dev_priv)));
2690 #ifdef CONFIG_PM
2691 	seq_printf(m, "Usage count: %d\n",
2692 		   atomic_read(&dev_priv->drm.dev->power.usage_count));
2693 #else
2694 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2695 #endif
2696 	seq_printf(m, "PCI device power state: %s [%d]\n",
2697 		   pci_power_name(pdev->current_state),
2698 		   pdev->current_state);
2699 
2700 	return 0;
2701 }
2702 
2703 static int i915_power_domain_info(struct seq_file *m, void *unused)
2704 {
2705 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2706 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2707 	int i;
2708 
2709 	mutex_lock(&power_domains->lock);
2710 
2711 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2712 	for (i = 0; i < power_domains->power_well_count; i++) {
2713 		struct i915_power_well *power_well;
2714 		enum intel_display_power_domain power_domain;
2715 
2716 		power_well = &power_domains->power_wells[i];
2717 		seq_printf(m, "%-25s %d\n", power_well->name,
2718 			   power_well->count);
2719 
2720 		for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2721 		     power_domain++) {
2722 			if (!(BIT(power_domain) & power_well->domains))
2723 				continue;
2724 
2725 			seq_printf(m, "  %-23s %d\n",
2726 				 intel_display_power_domain_str(power_domain),
2727 				 power_domains->domain_use_count[power_domain]);
2728 		}
2729 	}
2730 
2731 	mutex_unlock(&power_domains->lock);
2732 
2733 	return 0;
2734 }
2735 
2736 static int i915_dmc_info(struct seq_file *m, void *unused)
2737 {
2738 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2739 	struct intel_csr *csr;
2740 
2741 	if (!HAS_CSR(dev_priv)) {
2742 		seq_puts(m, "not supported\n");
2743 		return 0;
2744 	}
2745 
2746 	csr = &dev_priv->csr;
2747 
2748 	intel_runtime_pm_get(dev_priv);
2749 
2750 	seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2751 	seq_printf(m, "path: %s\n", csr->fw_path);
2752 
2753 	if (!csr->dmc_payload)
2754 		goto out;
2755 
2756 	seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2757 		   CSR_VERSION_MINOR(csr->version));
2758 
2759 	if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
2760 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2761 			   I915_READ(SKL_CSR_DC3_DC5_COUNT));
2762 		seq_printf(m, "DC5 -> DC6 count: %d\n",
2763 			   I915_READ(SKL_CSR_DC5_DC6_COUNT));
2764 	} else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2765 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2766 			   I915_READ(BXT_CSR_DC3_DC5_COUNT));
2767 	}
2768 
2769 out:
2770 	seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2771 	seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2772 	seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2773 
2774 	intel_runtime_pm_put(dev_priv);
2775 
2776 	return 0;
2777 }
2778 
2779 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2780 				 struct drm_display_mode *mode)
2781 {
2782 	int i;
2783 
2784 	for (i = 0; i < tabs; i++)
2785 		seq_putc(m, '\t');
2786 
2787 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2788 		   mode->base.id, mode->name,
2789 		   mode->vrefresh, mode->clock,
2790 		   mode->hdisplay, mode->hsync_start,
2791 		   mode->hsync_end, mode->htotal,
2792 		   mode->vdisplay, mode->vsync_start,
2793 		   mode->vsync_end, mode->vtotal,
2794 		   mode->type, mode->flags);
2795 }
2796 
2797 static void intel_encoder_info(struct seq_file *m,
2798 			       struct intel_crtc *intel_crtc,
2799 			       struct intel_encoder *intel_encoder)
2800 {
2801 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2802 	struct drm_device *dev = &dev_priv->drm;
2803 	struct drm_crtc *crtc = &intel_crtc->base;
2804 	struct intel_connector *intel_connector;
2805 	struct drm_encoder *encoder;
2806 
2807 	encoder = &intel_encoder->base;
2808 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2809 		   encoder->base.id, encoder->name);
2810 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2811 		struct drm_connector *connector = &intel_connector->base;
2812 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2813 			   connector->base.id,
2814 			   connector->name,
2815 			   drm_get_connector_status_name(connector->status));
2816 		if (connector->status == connector_status_connected) {
2817 			struct drm_display_mode *mode = &crtc->mode;
2818 			seq_printf(m, ", mode:\n");
2819 			intel_seq_print_mode(m, 2, mode);
2820 		} else {
2821 			seq_putc(m, '\n');
2822 		}
2823 	}
2824 }
2825 
2826 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2827 {
2828 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2829 	struct drm_device *dev = &dev_priv->drm;
2830 	struct drm_crtc *crtc = &intel_crtc->base;
2831 	struct intel_encoder *intel_encoder;
2832 	struct drm_plane_state *plane_state = crtc->primary->state;
2833 	struct drm_framebuffer *fb = plane_state->fb;
2834 
2835 	if (fb)
2836 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2837 			   fb->base.id, plane_state->src_x >> 16,
2838 			   plane_state->src_y >> 16, fb->width, fb->height);
2839 	else
2840 		seq_puts(m, "\tprimary plane disabled\n");
2841 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2842 		intel_encoder_info(m, intel_crtc, intel_encoder);
2843 }
2844 
2845 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2846 {
2847 	struct drm_display_mode *mode = panel->fixed_mode;
2848 
2849 	seq_printf(m, "\tfixed mode:\n");
2850 	intel_seq_print_mode(m, 2, mode);
2851 }
2852 
2853 static void intel_dp_info(struct seq_file *m,
2854 			  struct intel_connector *intel_connector)
2855 {
2856 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2857 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2858 
2859 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2860 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2861 	if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2862 		intel_panel_info(m, &intel_connector->panel);
2863 
2864 	drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2865 				&intel_dp->aux);
2866 }
2867 
2868 static void intel_hdmi_info(struct seq_file *m,
2869 			    struct intel_connector *intel_connector)
2870 {
2871 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2872 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2873 
2874 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2875 }
2876 
2877 static void intel_lvds_info(struct seq_file *m,
2878 			    struct intel_connector *intel_connector)
2879 {
2880 	intel_panel_info(m, &intel_connector->panel);
2881 }
2882 
2883 static void intel_connector_info(struct seq_file *m,
2884 				 struct drm_connector *connector)
2885 {
2886 	struct intel_connector *intel_connector = to_intel_connector(connector);
2887 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2888 	struct drm_display_mode *mode;
2889 
2890 	seq_printf(m, "connector %d: type %s, status: %s\n",
2891 		   connector->base.id, connector->name,
2892 		   drm_get_connector_status_name(connector->status));
2893 	if (connector->status == connector_status_connected) {
2894 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
2895 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2896 			   connector->display_info.width_mm,
2897 			   connector->display_info.height_mm);
2898 		seq_printf(m, "\tsubpixel order: %s\n",
2899 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2900 		seq_printf(m, "\tCEA rev: %d\n",
2901 			   connector->display_info.cea_rev);
2902 	}
2903 
2904 	if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
2905 		return;
2906 
2907 	switch (connector->connector_type) {
2908 	case DRM_MODE_CONNECTOR_DisplayPort:
2909 	case DRM_MODE_CONNECTOR_eDP:
2910 		intel_dp_info(m, intel_connector);
2911 		break;
2912 	case DRM_MODE_CONNECTOR_LVDS:
2913 		if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2914 			intel_lvds_info(m, intel_connector);
2915 		break;
2916 	case DRM_MODE_CONNECTOR_HDMIA:
2917 		if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
2918 		    intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
2919 			intel_hdmi_info(m, intel_connector);
2920 		break;
2921 	default:
2922 		break;
2923 	}
2924 
2925 	seq_printf(m, "\tmodes:\n");
2926 	list_for_each_entry(mode, &connector->modes, head)
2927 		intel_seq_print_mode(m, 2, mode);
2928 }
2929 
2930 static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
2931 {
2932 	u32 state;
2933 
2934 	if (IS_845G(dev_priv) || IS_I865G(dev_priv))
2935 		state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2936 	else
2937 		state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2938 
2939 	return state;
2940 }
2941 
2942 static bool cursor_position(struct drm_i915_private *dev_priv,
2943 			    int pipe, int *x, int *y)
2944 {
2945 	u32 pos;
2946 
2947 	pos = I915_READ(CURPOS(pipe));
2948 
2949 	*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2950 	if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2951 		*x = -*x;
2952 
2953 	*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2954 	if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2955 		*y = -*y;
2956 
2957 	return cursor_active(dev_priv, pipe);
2958 }
2959 
2960 static const char *plane_type(enum drm_plane_type type)
2961 {
2962 	switch (type) {
2963 	case DRM_PLANE_TYPE_OVERLAY:
2964 		return "OVL";
2965 	case DRM_PLANE_TYPE_PRIMARY:
2966 		return "PRI";
2967 	case DRM_PLANE_TYPE_CURSOR:
2968 		return "CUR";
2969 	/*
2970 	 * Deliberately omitting default: to generate compiler warnings
2971 	 * when a new drm_plane_type gets added.
2972 	 */
2973 	}
2974 
2975 	return "unknown";
2976 }
2977 
2978 static const char *plane_rotation(unsigned int rotation)
2979 {
2980 	static char buf[48];
2981 	/*
2982 	 * According to doc only one DRM_ROTATE_ is allowed but this
2983 	 * will print them all to visualize if the values are misused
2984 	 */
2985 	snprintf(buf, sizeof(buf),
2986 		 "%s%s%s%s%s%s(0x%08x)",
2987 		 (rotation & DRM_ROTATE_0) ? "0 " : "",
2988 		 (rotation & DRM_ROTATE_90) ? "90 " : "",
2989 		 (rotation & DRM_ROTATE_180) ? "180 " : "",
2990 		 (rotation & DRM_ROTATE_270) ? "270 " : "",
2991 		 (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
2992 		 (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
2993 		 rotation);
2994 
2995 	return buf;
2996 }
2997 
2998 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2999 {
3000 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3001 	struct drm_device *dev = &dev_priv->drm;
3002 	struct intel_plane *intel_plane;
3003 
3004 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3005 		struct drm_plane_state *state;
3006 		struct drm_plane *plane = &intel_plane->base;
3007 		char *format_name;
3008 
3009 		if (!plane->state) {
3010 			seq_puts(m, "plane->state is NULL!\n");
3011 			continue;
3012 		}
3013 
3014 		state = plane->state;
3015 
3016 		if (state->fb) {
3017 			format_name = drm_get_format_name(state->fb->pixel_format);
3018 		} else {
3019 			format_name = kstrdup("N/A", GFP_KERNEL);
3020 		}
3021 
3022 		seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3023 			   plane->base.id,
3024 			   plane_type(intel_plane->base.type),
3025 			   state->crtc_x, state->crtc_y,
3026 			   state->crtc_w, state->crtc_h,
3027 			   (state->src_x >> 16),
3028 			   ((state->src_x & 0xffff) * 15625) >> 10,
3029 			   (state->src_y >> 16),
3030 			   ((state->src_y & 0xffff) * 15625) >> 10,
3031 			   (state->src_w >> 16),
3032 			   ((state->src_w & 0xffff) * 15625) >> 10,
3033 			   (state->src_h >> 16),
3034 			   ((state->src_h & 0xffff) * 15625) >> 10,
3035 			   format_name,
3036 			   plane_rotation(state->rotation));
3037 
3038 		kfree(format_name);
3039 	}
3040 }
3041 
3042 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3043 {
3044 	struct intel_crtc_state *pipe_config;
3045 	int num_scalers = intel_crtc->num_scalers;
3046 	int i;
3047 
3048 	pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3049 
3050 	/* Not all platformas have a scaler */
3051 	if (num_scalers) {
3052 		seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3053 			   num_scalers,
3054 			   pipe_config->scaler_state.scaler_users,
3055 			   pipe_config->scaler_state.scaler_id);
3056 
3057 		for (i = 0; i < SKL_NUM_SCALERS; i++) {
3058 			struct intel_scaler *sc =
3059 					&pipe_config->scaler_state.scalers[i];
3060 
3061 			seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3062 				   i, yesno(sc->in_use), sc->mode);
3063 		}
3064 		seq_puts(m, "\n");
3065 	} else {
3066 		seq_puts(m, "\tNo scalers available on this platform\n");
3067 	}
3068 }
3069 
3070 static int i915_display_info(struct seq_file *m, void *unused)
3071 {
3072 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3073 	struct drm_device *dev = &dev_priv->drm;
3074 	struct intel_crtc *crtc;
3075 	struct drm_connector *connector;
3076 
3077 	intel_runtime_pm_get(dev_priv);
3078 	drm_modeset_lock_all(dev);
3079 	seq_printf(m, "CRTC info\n");
3080 	seq_printf(m, "---------\n");
3081 	for_each_intel_crtc(dev, crtc) {
3082 		bool active;
3083 		struct intel_crtc_state *pipe_config;
3084 		int x, y;
3085 
3086 		pipe_config = to_intel_crtc_state(crtc->base.state);
3087 
3088 		seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3089 			   crtc->base.base.id, pipe_name(crtc->pipe),
3090 			   yesno(pipe_config->base.active),
3091 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3092 			   yesno(pipe_config->dither), pipe_config->pipe_bpp);
3093 
3094 		if (pipe_config->base.active) {
3095 			intel_crtc_info(m, crtc);
3096 
3097 			active = cursor_position(dev_priv, crtc->pipe, &x, &y);
3098 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3099 				   yesno(crtc->cursor_base),
3100 				   x, y, crtc->base.cursor->state->crtc_w,
3101 				   crtc->base.cursor->state->crtc_h,
3102 				   crtc->cursor_addr, yesno(active));
3103 			intel_scaler_info(m, crtc);
3104 			intel_plane_info(m, crtc);
3105 		}
3106 
3107 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3108 			   yesno(!crtc->cpu_fifo_underrun_disabled),
3109 			   yesno(!crtc->pch_fifo_underrun_disabled));
3110 	}
3111 
3112 	seq_printf(m, "\n");
3113 	seq_printf(m, "Connector info\n");
3114 	seq_printf(m, "--------------\n");
3115 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3116 		intel_connector_info(m, connector);
3117 	}
3118 	drm_modeset_unlock_all(dev);
3119 	intel_runtime_pm_put(dev_priv);
3120 
3121 	return 0;
3122 }
3123 
3124 static int i915_semaphore_status(struct seq_file *m, void *unused)
3125 {
3126 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3127 	struct drm_device *dev = &dev_priv->drm;
3128 	struct intel_engine_cs *engine;
3129 	int num_rings = INTEL_INFO(dev_priv)->num_rings;
3130 	enum intel_engine_id id;
3131 	int j, ret;
3132 
3133 	if (!i915.semaphores) {
3134 		seq_puts(m, "Semaphores are disabled\n");
3135 		return 0;
3136 	}
3137 
3138 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3139 	if (ret)
3140 		return ret;
3141 	intel_runtime_pm_get(dev_priv);
3142 
3143 	if (IS_BROADWELL(dev_priv)) {
3144 		struct page *page;
3145 		uint64_t *seqno;
3146 
3147 		page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3148 
3149 		seqno = (uint64_t *)kmap_atomic(page);
3150 		for_each_engine_id(engine, dev_priv, id) {
3151 			uint64_t offset;
3152 
3153 			seq_printf(m, "%s\n", engine->name);
3154 
3155 			seq_puts(m, "  Last signal:");
3156 			for (j = 0; j < num_rings; j++) {
3157 				offset = id * I915_NUM_ENGINES + j;
3158 				seq_printf(m, "0x%08llx (0x%02llx) ",
3159 					   seqno[offset], offset * 8);
3160 			}
3161 			seq_putc(m, '\n');
3162 
3163 			seq_puts(m, "  Last wait:  ");
3164 			for (j = 0; j < num_rings; j++) {
3165 				offset = id + (j * I915_NUM_ENGINES);
3166 				seq_printf(m, "0x%08llx (0x%02llx) ",
3167 					   seqno[offset], offset * 8);
3168 			}
3169 			seq_putc(m, '\n');
3170 
3171 		}
3172 		kunmap_atomic(seqno);
3173 	} else {
3174 		seq_puts(m, "  Last signal:");
3175 		for_each_engine(engine, dev_priv)
3176 			for (j = 0; j < num_rings; j++)
3177 				seq_printf(m, "0x%08x\n",
3178 					   I915_READ(engine->semaphore.mbox.signal[j]));
3179 		seq_putc(m, '\n');
3180 	}
3181 
3182 	seq_puts(m, "\nSync seqno:\n");
3183 	for_each_engine(engine, dev_priv) {
3184 		for (j = 0; j < num_rings; j++)
3185 			seq_printf(m, "  0x%08x ",
3186 				   engine->semaphore.sync_seqno[j]);
3187 		seq_putc(m, '\n');
3188 	}
3189 	seq_putc(m, '\n');
3190 
3191 	intel_runtime_pm_put(dev_priv);
3192 	mutex_unlock(&dev->struct_mutex);
3193 	return 0;
3194 }
3195 
3196 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3197 {
3198 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3199 	struct drm_device *dev = &dev_priv->drm;
3200 	int i;
3201 
3202 	drm_modeset_lock_all(dev);
3203 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3204 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3205 
3206 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3207 		seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3208 			   pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3209 		seq_printf(m, " tracked hardware state:\n");
3210 		seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3211 		seq_printf(m, " dpll_md: 0x%08x\n",
3212 			   pll->config.hw_state.dpll_md);
3213 		seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3214 		seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3215 		seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3216 	}
3217 	drm_modeset_unlock_all(dev);
3218 
3219 	return 0;
3220 }
3221 
3222 static int i915_wa_registers(struct seq_file *m, void *unused)
3223 {
3224 	int i;
3225 	int ret;
3226 	struct intel_engine_cs *engine;
3227 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3228 	struct drm_device *dev = &dev_priv->drm;
3229 	struct i915_workarounds *workarounds = &dev_priv->workarounds;
3230 	enum intel_engine_id id;
3231 
3232 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3233 	if (ret)
3234 		return ret;
3235 
3236 	intel_runtime_pm_get(dev_priv);
3237 
3238 	seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3239 	for_each_engine_id(engine, dev_priv, id)
3240 		seq_printf(m, "HW whitelist count for %s: %d\n",
3241 			   engine->name, workarounds->hw_whitelist_count[id]);
3242 	for (i = 0; i < workarounds->count; ++i) {
3243 		i915_reg_t addr;
3244 		u32 mask, value, read;
3245 		bool ok;
3246 
3247 		addr = workarounds->reg[i].addr;
3248 		mask = workarounds->reg[i].mask;
3249 		value = workarounds->reg[i].value;
3250 		read = I915_READ(addr);
3251 		ok = (value & mask) == (read & mask);
3252 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3253 			   i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3254 	}
3255 
3256 	intel_runtime_pm_put(dev_priv);
3257 	mutex_unlock(&dev->struct_mutex);
3258 
3259 	return 0;
3260 }
3261 
3262 static int i915_ddb_info(struct seq_file *m, void *unused)
3263 {
3264 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3265 	struct drm_device *dev = &dev_priv->drm;
3266 	struct skl_ddb_allocation *ddb;
3267 	struct skl_ddb_entry *entry;
3268 	enum pipe pipe;
3269 	int plane;
3270 
3271 	if (INTEL_GEN(dev_priv) < 9)
3272 		return 0;
3273 
3274 	drm_modeset_lock_all(dev);
3275 
3276 	ddb = &dev_priv->wm.skl_hw.ddb;
3277 
3278 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3279 
3280 	for_each_pipe(dev_priv, pipe) {
3281 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3282 
3283 		for_each_plane(dev_priv, pipe, plane) {
3284 			entry = &ddb->plane[pipe][plane];
3285 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3286 				   entry->start, entry->end,
3287 				   skl_ddb_entry_size(entry));
3288 		}
3289 
3290 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3291 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3292 			   entry->end, skl_ddb_entry_size(entry));
3293 	}
3294 
3295 	drm_modeset_unlock_all(dev);
3296 
3297 	return 0;
3298 }
3299 
3300 static void drrs_status_per_crtc(struct seq_file *m,
3301 				 struct drm_device *dev,
3302 				 struct intel_crtc *intel_crtc)
3303 {
3304 	struct drm_i915_private *dev_priv = to_i915(dev);
3305 	struct i915_drrs *drrs = &dev_priv->drrs;
3306 	int vrefresh = 0;
3307 	struct drm_connector *connector;
3308 
3309 	drm_for_each_connector(connector, dev) {
3310 		if (connector->state->crtc != &intel_crtc->base)
3311 			continue;
3312 
3313 		seq_printf(m, "%s:\n", connector->name);
3314 	}
3315 
3316 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3317 		seq_puts(m, "\tVBT: DRRS_type: Static");
3318 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3319 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3320 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3321 		seq_puts(m, "\tVBT: DRRS_type: None");
3322 	else
3323 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3324 
3325 	seq_puts(m, "\n\n");
3326 
3327 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3328 		struct intel_panel *panel;
3329 
3330 		mutex_lock(&drrs->mutex);
3331 		/* DRRS Supported */
3332 		seq_puts(m, "\tDRRS Supported: Yes\n");
3333 
3334 		/* disable_drrs() will make drrs->dp NULL */
3335 		if (!drrs->dp) {
3336 			seq_puts(m, "Idleness DRRS: Disabled");
3337 			mutex_unlock(&drrs->mutex);
3338 			return;
3339 		}
3340 
3341 		panel = &drrs->dp->attached_connector->panel;
3342 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3343 					drrs->busy_frontbuffer_bits);
3344 
3345 		seq_puts(m, "\n\t\t");
3346 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3347 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3348 			vrefresh = panel->fixed_mode->vrefresh;
3349 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3350 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3351 			vrefresh = panel->downclock_mode->vrefresh;
3352 		} else {
3353 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3354 						drrs->refresh_rate_type);
3355 			mutex_unlock(&drrs->mutex);
3356 			return;
3357 		}
3358 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3359 
3360 		seq_puts(m, "\n\t\t");
3361 		mutex_unlock(&drrs->mutex);
3362 	} else {
3363 		/* DRRS not supported. Print the VBT parameter*/
3364 		seq_puts(m, "\tDRRS Supported : No");
3365 	}
3366 	seq_puts(m, "\n");
3367 }
3368 
3369 static int i915_drrs_status(struct seq_file *m, void *unused)
3370 {
3371 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3372 	struct drm_device *dev = &dev_priv->drm;
3373 	struct intel_crtc *intel_crtc;
3374 	int active_crtc_cnt = 0;
3375 
3376 	drm_modeset_lock_all(dev);
3377 	for_each_intel_crtc(dev, intel_crtc) {
3378 		if (intel_crtc->base.state->active) {
3379 			active_crtc_cnt++;
3380 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3381 
3382 			drrs_status_per_crtc(m, dev, intel_crtc);
3383 		}
3384 	}
3385 	drm_modeset_unlock_all(dev);
3386 
3387 	if (!active_crtc_cnt)
3388 		seq_puts(m, "No active crtc found\n");
3389 
3390 	return 0;
3391 }
3392 
3393 struct pipe_crc_info {
3394 	const char *name;
3395 	struct drm_i915_private *dev_priv;
3396 	enum pipe pipe;
3397 };
3398 
3399 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3400 {
3401 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3402 	struct drm_device *dev = &dev_priv->drm;
3403 	struct intel_encoder *intel_encoder;
3404 	struct intel_digital_port *intel_dig_port;
3405 	struct drm_connector *connector;
3406 
3407 	drm_modeset_lock_all(dev);
3408 	drm_for_each_connector(connector, dev) {
3409 		if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3410 			continue;
3411 
3412 		intel_encoder = intel_attached_encoder(connector);
3413 		if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3414 			continue;
3415 
3416 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3417 		if (!intel_dig_port->dp.can_mst)
3418 			continue;
3419 
3420 		seq_printf(m, "MST Source Port %c\n",
3421 			   port_name(intel_dig_port->port));
3422 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3423 	}
3424 	drm_modeset_unlock_all(dev);
3425 	return 0;
3426 }
3427 
3428 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3429 {
3430 	struct pipe_crc_info *info = inode->i_private;
3431 	struct drm_i915_private *dev_priv = info->dev_priv;
3432 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3433 
3434 	if (info->pipe >= INTEL_INFO(dev_priv)->num_pipes)
3435 		return -ENODEV;
3436 
3437 	spin_lock_irq(&pipe_crc->lock);
3438 
3439 	if (pipe_crc->opened) {
3440 		spin_unlock_irq(&pipe_crc->lock);
3441 		return -EBUSY; /* already open */
3442 	}
3443 
3444 	pipe_crc->opened = true;
3445 	filep->private_data = inode->i_private;
3446 
3447 	spin_unlock_irq(&pipe_crc->lock);
3448 
3449 	return 0;
3450 }
3451 
3452 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3453 {
3454 	struct pipe_crc_info *info = inode->i_private;
3455 	struct drm_i915_private *dev_priv = info->dev_priv;
3456 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3457 
3458 	spin_lock_irq(&pipe_crc->lock);
3459 	pipe_crc->opened = false;
3460 	spin_unlock_irq(&pipe_crc->lock);
3461 
3462 	return 0;
3463 }
3464 
3465 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3466 #define PIPE_CRC_LINE_LEN	(6 * 8 + 5 + 1)
3467 /* account for \'0' */
3468 #define PIPE_CRC_BUFFER_LEN	(PIPE_CRC_LINE_LEN + 1)
3469 
3470 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3471 {
3472 	assert_spin_locked(&pipe_crc->lock);
3473 	return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3474 			INTEL_PIPE_CRC_ENTRIES_NR);
3475 }
3476 
3477 static ssize_t
3478 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3479 		   loff_t *pos)
3480 {
3481 	struct pipe_crc_info *info = filep->private_data;
3482 	struct drm_i915_private *dev_priv = info->dev_priv;
3483 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3484 	char buf[PIPE_CRC_BUFFER_LEN];
3485 	int n_entries;
3486 	ssize_t bytes_read;
3487 
3488 	/*
3489 	 * Don't allow user space to provide buffers not big enough to hold
3490 	 * a line of data.
3491 	 */
3492 	if (count < PIPE_CRC_LINE_LEN)
3493 		return -EINVAL;
3494 
3495 	if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3496 		return 0;
3497 
3498 	/* nothing to read */
3499 	spin_lock_irq(&pipe_crc->lock);
3500 	while (pipe_crc_data_count(pipe_crc) == 0) {
3501 		int ret;
3502 
3503 		if (filep->f_flags & O_NONBLOCK) {
3504 			spin_unlock_irq(&pipe_crc->lock);
3505 			return -EAGAIN;
3506 		}
3507 
3508 		ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3509 				pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3510 		if (ret) {
3511 			spin_unlock_irq(&pipe_crc->lock);
3512 			return ret;
3513 		}
3514 	}
3515 
3516 	/* We now have one or more entries to read */
3517 	n_entries = count / PIPE_CRC_LINE_LEN;
3518 
3519 	bytes_read = 0;
3520 	while (n_entries > 0) {
3521 		struct intel_pipe_crc_entry *entry =
3522 			&pipe_crc->entries[pipe_crc->tail];
3523 
3524 		if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3525 			     INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3526 			break;
3527 
3528 		BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3529 		pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3530 
3531 		bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3532 				       "%8u %8x %8x %8x %8x %8x\n",
3533 				       entry->frame, entry->crc[0],
3534 				       entry->crc[1], entry->crc[2],
3535 				       entry->crc[3], entry->crc[4]);
3536 
3537 		spin_unlock_irq(&pipe_crc->lock);
3538 
3539 		if (copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN))
3540 			return -EFAULT;
3541 
3542 		user_buf += PIPE_CRC_LINE_LEN;
3543 		n_entries--;
3544 
3545 		spin_lock_irq(&pipe_crc->lock);
3546 	}
3547 
3548 	spin_unlock_irq(&pipe_crc->lock);
3549 
3550 	return bytes_read;
3551 }
3552 
3553 static const struct file_operations i915_pipe_crc_fops = {
3554 	.owner = THIS_MODULE,
3555 	.open = i915_pipe_crc_open,
3556 	.read = i915_pipe_crc_read,
3557 	.release = i915_pipe_crc_release,
3558 };
3559 
3560 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3561 	{
3562 		.name = "i915_pipe_A_crc",
3563 		.pipe = PIPE_A,
3564 	},
3565 	{
3566 		.name = "i915_pipe_B_crc",
3567 		.pipe = PIPE_B,
3568 	},
3569 	{
3570 		.name = "i915_pipe_C_crc",
3571 		.pipe = PIPE_C,
3572 	},
3573 };
3574 
3575 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3576 				enum pipe pipe)
3577 {
3578 	struct drm_i915_private *dev_priv = to_i915(minor->dev);
3579 	struct dentry *ent;
3580 	struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3581 
3582 	info->dev_priv = dev_priv;
3583 	ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3584 				  &i915_pipe_crc_fops);
3585 	if (!ent)
3586 		return -ENOMEM;
3587 
3588 	return drm_add_fake_info_node(minor, ent, info);
3589 }
3590 
3591 static const char * const pipe_crc_sources[] = {
3592 	"none",
3593 	"plane1",
3594 	"plane2",
3595 	"pf",
3596 	"pipe",
3597 	"TV",
3598 	"DP-B",
3599 	"DP-C",
3600 	"DP-D",
3601 	"auto",
3602 };
3603 
3604 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3605 {
3606 	BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3607 	return pipe_crc_sources[source];
3608 }
3609 
3610 static int display_crc_ctl_show(struct seq_file *m, void *data)
3611 {
3612 	struct drm_i915_private *dev_priv = m->private;
3613 	int i;
3614 
3615 	for (i = 0; i < I915_MAX_PIPES; i++)
3616 		seq_printf(m, "%c %s\n", pipe_name(i),
3617 			   pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3618 
3619 	return 0;
3620 }
3621 
3622 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3623 {
3624 	return single_open(file, display_crc_ctl_show, inode->i_private);
3625 }
3626 
3627 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3628 				 uint32_t *val)
3629 {
3630 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3631 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3632 
3633 	switch (*source) {
3634 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3635 		*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3636 		break;
3637 	case INTEL_PIPE_CRC_SOURCE_NONE:
3638 		*val = 0;
3639 		break;
3640 	default:
3641 		return -EINVAL;
3642 	}
3643 
3644 	return 0;
3645 }
3646 
3647 static int i9xx_pipe_crc_auto_source(struct drm_i915_private *dev_priv,
3648 				     enum pipe pipe,
3649 				     enum intel_pipe_crc_source *source)
3650 {
3651 	struct drm_device *dev = &dev_priv->drm;
3652 	struct intel_encoder *encoder;
3653 	struct intel_crtc *crtc;
3654 	struct intel_digital_port *dig_port;
3655 	int ret = 0;
3656 
3657 	*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3658 
3659 	drm_modeset_lock_all(dev);
3660 	for_each_intel_encoder(dev, encoder) {
3661 		if (!encoder->base.crtc)
3662 			continue;
3663 
3664 		crtc = to_intel_crtc(encoder->base.crtc);
3665 
3666 		if (crtc->pipe != pipe)
3667 			continue;
3668 
3669 		switch (encoder->type) {
3670 		case INTEL_OUTPUT_TVOUT:
3671 			*source = INTEL_PIPE_CRC_SOURCE_TV;
3672 			break;
3673 		case INTEL_OUTPUT_DP:
3674 		case INTEL_OUTPUT_EDP:
3675 			dig_port = enc_to_dig_port(&encoder->base);
3676 			switch (dig_port->port) {
3677 			case PORT_B:
3678 				*source = INTEL_PIPE_CRC_SOURCE_DP_B;
3679 				break;
3680 			case PORT_C:
3681 				*source = INTEL_PIPE_CRC_SOURCE_DP_C;
3682 				break;
3683 			case PORT_D:
3684 				*source = INTEL_PIPE_CRC_SOURCE_DP_D;
3685 				break;
3686 			default:
3687 				WARN(1, "nonexisting DP port %c\n",
3688 				     port_name(dig_port->port));
3689 				break;
3690 			}
3691 			break;
3692 		default:
3693 			break;
3694 		}
3695 	}
3696 	drm_modeset_unlock_all(dev);
3697 
3698 	return ret;
3699 }
3700 
3701 static int vlv_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3702 				enum pipe pipe,
3703 				enum intel_pipe_crc_source *source,
3704 				uint32_t *val)
3705 {
3706 	bool need_stable_symbols = false;
3707 
3708 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3709 		int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3710 		if (ret)
3711 			return ret;
3712 	}
3713 
3714 	switch (*source) {
3715 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3716 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3717 		break;
3718 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3719 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3720 		need_stable_symbols = true;
3721 		break;
3722 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3723 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3724 		need_stable_symbols = true;
3725 		break;
3726 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3727 		if (!IS_CHERRYVIEW(dev_priv))
3728 			return -EINVAL;
3729 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3730 		need_stable_symbols = true;
3731 		break;
3732 	case INTEL_PIPE_CRC_SOURCE_NONE:
3733 		*val = 0;
3734 		break;
3735 	default:
3736 		return -EINVAL;
3737 	}
3738 
3739 	/*
3740 	 * When the pipe CRC tap point is after the transcoders we need
3741 	 * to tweak symbol-level features to produce a deterministic series of
3742 	 * symbols for a given frame. We need to reset those features only once
3743 	 * a frame (instead of every nth symbol):
3744 	 *   - DC-balance: used to ensure a better clock recovery from the data
3745 	 *     link (SDVO)
3746 	 *   - DisplayPort scrambling: used for EMI reduction
3747 	 */
3748 	if (need_stable_symbols) {
3749 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3750 
3751 		tmp |= DC_BALANCE_RESET_VLV;
3752 		switch (pipe) {
3753 		case PIPE_A:
3754 			tmp |= PIPE_A_SCRAMBLE_RESET;
3755 			break;
3756 		case PIPE_B:
3757 			tmp |= PIPE_B_SCRAMBLE_RESET;
3758 			break;
3759 		case PIPE_C:
3760 			tmp |= PIPE_C_SCRAMBLE_RESET;
3761 			break;
3762 		default:
3763 			return -EINVAL;
3764 		}
3765 		I915_WRITE(PORT_DFT2_G4X, tmp);
3766 	}
3767 
3768 	return 0;
3769 }
3770 
3771 static int i9xx_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3772 				 enum pipe pipe,
3773 				 enum intel_pipe_crc_source *source,
3774 				 uint32_t *val)
3775 {
3776 	bool need_stable_symbols = false;
3777 
3778 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3779 		int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3780 		if (ret)
3781 			return ret;
3782 	}
3783 
3784 	switch (*source) {
3785 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3786 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3787 		break;
3788 	case INTEL_PIPE_CRC_SOURCE_TV:
3789 		if (!SUPPORTS_TV(dev_priv))
3790 			return -EINVAL;
3791 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3792 		break;
3793 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3794 		if (!IS_G4X(dev_priv))
3795 			return -EINVAL;
3796 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3797 		need_stable_symbols = true;
3798 		break;
3799 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3800 		if (!IS_G4X(dev_priv))
3801 			return -EINVAL;
3802 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3803 		need_stable_symbols = true;
3804 		break;
3805 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3806 		if (!IS_G4X(dev_priv))
3807 			return -EINVAL;
3808 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3809 		need_stable_symbols = true;
3810 		break;
3811 	case INTEL_PIPE_CRC_SOURCE_NONE:
3812 		*val = 0;
3813 		break;
3814 	default:
3815 		return -EINVAL;
3816 	}
3817 
3818 	/*
3819 	 * When the pipe CRC tap point is after the transcoders we need
3820 	 * to tweak symbol-level features to produce a deterministic series of
3821 	 * symbols for a given frame. We need to reset those features only once
3822 	 * a frame (instead of every nth symbol):
3823 	 *   - DC-balance: used to ensure a better clock recovery from the data
3824 	 *     link (SDVO)
3825 	 *   - DisplayPort scrambling: used for EMI reduction
3826 	 */
3827 	if (need_stable_symbols) {
3828 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3829 
3830 		WARN_ON(!IS_G4X(dev_priv));
3831 
3832 		I915_WRITE(PORT_DFT_I9XX,
3833 			   I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3834 
3835 		if (pipe == PIPE_A)
3836 			tmp |= PIPE_A_SCRAMBLE_RESET;
3837 		else
3838 			tmp |= PIPE_B_SCRAMBLE_RESET;
3839 
3840 		I915_WRITE(PORT_DFT2_G4X, tmp);
3841 	}
3842 
3843 	return 0;
3844 }
3845 
3846 static void vlv_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
3847 					 enum pipe pipe)
3848 {
3849 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3850 
3851 	switch (pipe) {
3852 	case PIPE_A:
3853 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3854 		break;
3855 	case PIPE_B:
3856 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3857 		break;
3858 	case PIPE_C:
3859 		tmp &= ~PIPE_C_SCRAMBLE_RESET;
3860 		break;
3861 	default:
3862 		return;
3863 	}
3864 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3865 		tmp &= ~DC_BALANCE_RESET_VLV;
3866 	I915_WRITE(PORT_DFT2_G4X, tmp);
3867 
3868 }
3869 
3870 static void g4x_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
3871 					 enum pipe pipe)
3872 {
3873 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3874 
3875 	if (pipe == PIPE_A)
3876 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3877 	else
3878 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3879 	I915_WRITE(PORT_DFT2_G4X, tmp);
3880 
3881 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3882 		I915_WRITE(PORT_DFT_I9XX,
3883 			   I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3884 	}
3885 }
3886 
3887 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3888 				uint32_t *val)
3889 {
3890 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3891 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3892 
3893 	switch (*source) {
3894 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3895 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3896 		break;
3897 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3898 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3899 		break;
3900 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3901 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3902 		break;
3903 	case INTEL_PIPE_CRC_SOURCE_NONE:
3904 		*val = 0;
3905 		break;
3906 	default:
3907 		return -EINVAL;
3908 	}
3909 
3910 	return 0;
3911 }
3912 
3913 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_i915_private *dev_priv,
3914 					bool enable)
3915 {
3916 	struct drm_device *dev = &dev_priv->drm;
3917 	struct intel_crtc *crtc =
3918 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3919 	struct intel_crtc_state *pipe_config;
3920 	struct drm_atomic_state *state;
3921 	int ret = 0;
3922 
3923 	drm_modeset_lock_all(dev);
3924 	state = drm_atomic_state_alloc(dev);
3925 	if (!state) {
3926 		ret = -ENOMEM;
3927 		goto out;
3928 	}
3929 
3930 	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3931 	pipe_config = intel_atomic_get_crtc_state(state, crtc);
3932 	if (IS_ERR(pipe_config)) {
3933 		ret = PTR_ERR(pipe_config);
3934 		goto out;
3935 	}
3936 
3937 	pipe_config->pch_pfit.force_thru = enable;
3938 	if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3939 	    pipe_config->pch_pfit.enabled != enable)
3940 		pipe_config->base.connectors_changed = true;
3941 
3942 	ret = drm_atomic_commit(state);
3943 out:
3944 	drm_modeset_unlock_all(dev);
3945 	WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3946 	if (ret)
3947 		drm_atomic_state_free(state);
3948 }
3949 
3950 static int ivb_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3951 				enum pipe pipe,
3952 				enum intel_pipe_crc_source *source,
3953 				uint32_t *val)
3954 {
3955 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3956 		*source = INTEL_PIPE_CRC_SOURCE_PF;
3957 
3958 	switch (*source) {
3959 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3960 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3961 		break;
3962 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3963 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3964 		break;
3965 	case INTEL_PIPE_CRC_SOURCE_PF:
3966 		if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
3967 			hsw_trans_edp_pipe_A_crc_wa(dev_priv, true);
3968 
3969 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3970 		break;
3971 	case INTEL_PIPE_CRC_SOURCE_NONE:
3972 		*val = 0;
3973 		break;
3974 	default:
3975 		return -EINVAL;
3976 	}
3977 
3978 	return 0;
3979 }
3980 
3981 static int pipe_crc_set_source(struct drm_i915_private *dev_priv,
3982 			       enum pipe pipe,
3983 			       enum intel_pipe_crc_source source)
3984 {
3985 	struct drm_device *dev = &dev_priv->drm;
3986 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3987 	struct intel_crtc *crtc =
3988 			to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
3989 	enum intel_display_power_domain power_domain;
3990 	u32 val = 0; /* shut up gcc */
3991 	int ret;
3992 
3993 	if (pipe_crc->source == source)
3994 		return 0;
3995 
3996 	/* forbid changing the source without going back to 'none' */
3997 	if (pipe_crc->source && source)
3998 		return -EINVAL;
3999 
4000 	power_domain = POWER_DOMAIN_PIPE(pipe);
4001 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4002 		DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4003 		return -EIO;
4004 	}
4005 
4006 	if (IS_GEN2(dev_priv))
4007 		ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4008 	else if (INTEL_GEN(dev_priv) < 5)
4009 		ret = i9xx_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4010 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4011 		ret = vlv_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4012 	else if (IS_GEN5(dev_priv) || IS_GEN6(dev_priv))
4013 		ret = ilk_pipe_crc_ctl_reg(&source, &val);
4014 	else
4015 		ret = ivb_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4016 
4017 	if (ret != 0)
4018 		goto out;
4019 
4020 	/* none -> real source transition */
4021 	if (source) {
4022 		struct intel_pipe_crc_entry *entries;
4023 
4024 		DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4025 				 pipe_name(pipe), pipe_crc_source_name(source));
4026 
4027 		entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4028 				  sizeof(pipe_crc->entries[0]),
4029 				  GFP_KERNEL);
4030 		if (!entries) {
4031 			ret = -ENOMEM;
4032 			goto out;
4033 		}
4034 
4035 		/*
4036 		 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4037 		 * enabled and disabled dynamically based on package C states,
4038 		 * user space can't make reliable use of the CRCs, so let's just
4039 		 * completely disable it.
4040 		 */
4041 		hsw_disable_ips(crtc);
4042 
4043 		spin_lock_irq(&pipe_crc->lock);
4044 		kfree(pipe_crc->entries);
4045 		pipe_crc->entries = entries;
4046 		pipe_crc->head = 0;
4047 		pipe_crc->tail = 0;
4048 		spin_unlock_irq(&pipe_crc->lock);
4049 	}
4050 
4051 	pipe_crc->source = source;
4052 
4053 	I915_WRITE(PIPE_CRC_CTL(pipe), val);
4054 	POSTING_READ(PIPE_CRC_CTL(pipe));
4055 
4056 	/* real source -> none transition */
4057 	if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4058 		struct intel_pipe_crc_entry *entries;
4059 		struct intel_crtc *crtc =
4060 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4061 
4062 		DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4063 				 pipe_name(pipe));
4064 
4065 		drm_modeset_lock(&crtc->base.mutex, NULL);
4066 		if (crtc->base.state->active)
4067 			intel_wait_for_vblank(dev, pipe);
4068 		drm_modeset_unlock(&crtc->base.mutex);
4069 
4070 		spin_lock_irq(&pipe_crc->lock);
4071 		entries = pipe_crc->entries;
4072 		pipe_crc->entries = NULL;
4073 		pipe_crc->head = 0;
4074 		pipe_crc->tail = 0;
4075 		spin_unlock_irq(&pipe_crc->lock);
4076 
4077 		kfree(entries);
4078 
4079 		if (IS_G4X(dev_priv))
4080 			g4x_undo_pipe_scramble_reset(dev_priv, pipe);
4081 		else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4082 			vlv_undo_pipe_scramble_reset(dev_priv, pipe);
4083 		else if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
4084 			hsw_trans_edp_pipe_A_crc_wa(dev_priv, false);
4085 
4086 		hsw_enable_ips(crtc);
4087 	}
4088 
4089 	ret = 0;
4090 
4091 out:
4092 	intel_display_power_put(dev_priv, power_domain);
4093 
4094 	return ret;
4095 }
4096 
4097 /*
4098  * Parse pipe CRC command strings:
4099  *   command: wsp* object wsp+ name wsp+ source wsp*
4100  *   object: 'pipe'
4101  *   name: (A | B | C)
4102  *   source: (none | plane1 | plane2 | pf)
4103  *   wsp: (#0x20 | #0x9 | #0xA)+
4104  *
4105  * eg.:
4106  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4107  *  "pipe A none"    ->  Stop CRC
4108  */
4109 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4110 {
4111 	int n_words = 0;
4112 
4113 	while (*buf) {
4114 		char *end;
4115 
4116 		/* skip leading white space */
4117 		buf = skip_spaces(buf);
4118 		if (!*buf)
4119 			break;	/* end of buffer */
4120 
4121 		/* find end of word */
4122 		for (end = buf; *end && !isspace(*end); end++)
4123 			;
4124 
4125 		if (n_words == max_words) {
4126 			DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4127 					 max_words);
4128 			return -EINVAL;	/* ran out of words[] before bytes */
4129 		}
4130 
4131 		if (*end)
4132 			*end++ = '\0';
4133 		words[n_words++] = buf;
4134 		buf = end;
4135 	}
4136 
4137 	return n_words;
4138 }
4139 
4140 enum intel_pipe_crc_object {
4141 	PIPE_CRC_OBJECT_PIPE,
4142 };
4143 
4144 static const char * const pipe_crc_objects[] = {
4145 	"pipe",
4146 };
4147 
4148 static int
4149 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4150 {
4151 	int i;
4152 
4153 	for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4154 		if (!strcmp(buf, pipe_crc_objects[i])) {
4155 			*o = i;
4156 			return 0;
4157 		    }
4158 
4159 	return -EINVAL;
4160 }
4161 
4162 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4163 {
4164 	const char name = buf[0];
4165 
4166 	if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4167 		return -EINVAL;
4168 
4169 	*pipe = name - 'A';
4170 
4171 	return 0;
4172 }
4173 
4174 static int
4175 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4176 {
4177 	int i;
4178 
4179 	for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4180 		if (!strcmp(buf, pipe_crc_sources[i])) {
4181 			*s = i;
4182 			return 0;
4183 		    }
4184 
4185 	return -EINVAL;
4186 }
4187 
4188 static int display_crc_ctl_parse(struct drm_i915_private *dev_priv,
4189 				 char *buf, size_t len)
4190 {
4191 #define N_WORDS 3
4192 	int n_words;
4193 	char *words[N_WORDS];
4194 	enum pipe pipe;
4195 	enum intel_pipe_crc_object object;
4196 	enum intel_pipe_crc_source source;
4197 
4198 	n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4199 	if (n_words != N_WORDS) {
4200 		DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4201 				 N_WORDS);
4202 		return -EINVAL;
4203 	}
4204 
4205 	if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4206 		DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4207 		return -EINVAL;
4208 	}
4209 
4210 	if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4211 		DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4212 		return -EINVAL;
4213 	}
4214 
4215 	if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4216 		DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4217 		return -EINVAL;
4218 	}
4219 
4220 	return pipe_crc_set_source(dev_priv, pipe, source);
4221 }
4222 
4223 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4224 				     size_t len, loff_t *offp)
4225 {
4226 	struct seq_file *m = file->private_data;
4227 	struct drm_i915_private *dev_priv = m->private;
4228 	char *tmpbuf;
4229 	int ret;
4230 
4231 	if (len == 0)
4232 		return 0;
4233 
4234 	if (len > PAGE_SIZE - 1) {
4235 		DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4236 				 PAGE_SIZE);
4237 		return -E2BIG;
4238 	}
4239 
4240 	tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4241 	if (!tmpbuf)
4242 		return -ENOMEM;
4243 
4244 	if (copy_from_user(tmpbuf, ubuf, len)) {
4245 		ret = -EFAULT;
4246 		goto out;
4247 	}
4248 	tmpbuf[len] = '\0';
4249 
4250 	ret = display_crc_ctl_parse(dev_priv, tmpbuf, len);
4251 
4252 out:
4253 	kfree(tmpbuf);
4254 	if (ret < 0)
4255 		return ret;
4256 
4257 	*offp += len;
4258 	return len;
4259 }
4260 
4261 static const struct file_operations i915_display_crc_ctl_fops = {
4262 	.owner = THIS_MODULE,
4263 	.open = display_crc_ctl_open,
4264 	.read = seq_read,
4265 	.llseek = seq_lseek,
4266 	.release = single_release,
4267 	.write = display_crc_ctl_write
4268 };
4269 
4270 static ssize_t i915_displayport_test_active_write(struct file *file,
4271 						  const char __user *ubuf,
4272 						  size_t len, loff_t *offp)
4273 {
4274 	char *input_buffer;
4275 	int status = 0;
4276 	struct drm_device *dev;
4277 	struct drm_connector *connector;
4278 	struct list_head *connector_list;
4279 	struct intel_dp *intel_dp;
4280 	int val = 0;
4281 
4282 	dev = ((struct seq_file *)file->private_data)->private;
4283 
4284 	connector_list = &dev->mode_config.connector_list;
4285 
4286 	if (len == 0)
4287 		return 0;
4288 
4289 	input_buffer = kmalloc(len + 1, GFP_KERNEL);
4290 	if (!input_buffer)
4291 		return -ENOMEM;
4292 
4293 	if (copy_from_user(input_buffer, ubuf, len)) {
4294 		status = -EFAULT;
4295 		goto out;
4296 	}
4297 
4298 	input_buffer[len] = '\0';
4299 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4300 
4301 	list_for_each_entry(connector, connector_list, head) {
4302 		if (connector->connector_type !=
4303 		    DRM_MODE_CONNECTOR_DisplayPort)
4304 			continue;
4305 
4306 		if (connector->status == connector_status_connected &&
4307 		    connector->encoder != NULL) {
4308 			intel_dp = enc_to_intel_dp(connector->encoder);
4309 			status = kstrtoint(input_buffer, 10, &val);
4310 			if (status < 0)
4311 				goto out;
4312 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4313 			/* To prevent erroneous activation of the compliance
4314 			 * testing code, only accept an actual value of 1 here
4315 			 */
4316 			if (val == 1)
4317 				intel_dp->compliance_test_active = 1;
4318 			else
4319 				intel_dp->compliance_test_active = 0;
4320 		}
4321 	}
4322 out:
4323 	kfree(input_buffer);
4324 	if (status < 0)
4325 		return status;
4326 
4327 	*offp += len;
4328 	return len;
4329 }
4330 
4331 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4332 {
4333 	struct drm_device *dev = m->private;
4334 	struct drm_connector *connector;
4335 	struct list_head *connector_list = &dev->mode_config.connector_list;
4336 	struct intel_dp *intel_dp;
4337 
4338 	list_for_each_entry(connector, connector_list, head) {
4339 		if (connector->connector_type !=
4340 		    DRM_MODE_CONNECTOR_DisplayPort)
4341 			continue;
4342 
4343 		if (connector->status == connector_status_connected &&
4344 		    connector->encoder != NULL) {
4345 			intel_dp = enc_to_intel_dp(connector->encoder);
4346 			if (intel_dp->compliance_test_active)
4347 				seq_puts(m, "1");
4348 			else
4349 				seq_puts(m, "0");
4350 		} else
4351 			seq_puts(m, "0");
4352 	}
4353 
4354 	return 0;
4355 }
4356 
4357 static int i915_displayport_test_active_open(struct inode *inode,
4358 					     struct file *file)
4359 {
4360 	struct drm_i915_private *dev_priv = inode->i_private;
4361 
4362 	return single_open(file, i915_displayport_test_active_show,
4363 			   &dev_priv->drm);
4364 }
4365 
4366 static const struct file_operations i915_displayport_test_active_fops = {
4367 	.owner = THIS_MODULE,
4368 	.open = i915_displayport_test_active_open,
4369 	.read = seq_read,
4370 	.llseek = seq_lseek,
4371 	.release = single_release,
4372 	.write = i915_displayport_test_active_write
4373 };
4374 
4375 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4376 {
4377 	struct drm_device *dev = m->private;
4378 	struct drm_connector *connector;
4379 	struct list_head *connector_list = &dev->mode_config.connector_list;
4380 	struct intel_dp *intel_dp;
4381 
4382 	list_for_each_entry(connector, connector_list, head) {
4383 		if (connector->connector_type !=
4384 		    DRM_MODE_CONNECTOR_DisplayPort)
4385 			continue;
4386 
4387 		if (connector->status == connector_status_connected &&
4388 		    connector->encoder != NULL) {
4389 			intel_dp = enc_to_intel_dp(connector->encoder);
4390 			seq_printf(m, "%lx", intel_dp->compliance_test_data);
4391 		} else
4392 			seq_puts(m, "0");
4393 	}
4394 
4395 	return 0;
4396 }
4397 static int i915_displayport_test_data_open(struct inode *inode,
4398 					   struct file *file)
4399 {
4400 	struct drm_i915_private *dev_priv = inode->i_private;
4401 
4402 	return single_open(file, i915_displayport_test_data_show,
4403 			   &dev_priv->drm);
4404 }
4405 
4406 static const struct file_operations i915_displayport_test_data_fops = {
4407 	.owner = THIS_MODULE,
4408 	.open = i915_displayport_test_data_open,
4409 	.read = seq_read,
4410 	.llseek = seq_lseek,
4411 	.release = single_release
4412 };
4413 
4414 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4415 {
4416 	struct drm_device *dev = m->private;
4417 	struct drm_connector *connector;
4418 	struct list_head *connector_list = &dev->mode_config.connector_list;
4419 	struct intel_dp *intel_dp;
4420 
4421 	list_for_each_entry(connector, connector_list, head) {
4422 		if (connector->connector_type !=
4423 		    DRM_MODE_CONNECTOR_DisplayPort)
4424 			continue;
4425 
4426 		if (connector->status == connector_status_connected &&
4427 		    connector->encoder != NULL) {
4428 			intel_dp = enc_to_intel_dp(connector->encoder);
4429 			seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4430 		} else
4431 			seq_puts(m, "0");
4432 	}
4433 
4434 	return 0;
4435 }
4436 
4437 static int i915_displayport_test_type_open(struct inode *inode,
4438 				       struct file *file)
4439 {
4440 	struct drm_i915_private *dev_priv = inode->i_private;
4441 
4442 	return single_open(file, i915_displayport_test_type_show,
4443 			   &dev_priv->drm);
4444 }
4445 
4446 static const struct file_operations i915_displayport_test_type_fops = {
4447 	.owner = THIS_MODULE,
4448 	.open = i915_displayport_test_type_open,
4449 	.read = seq_read,
4450 	.llseek = seq_lseek,
4451 	.release = single_release
4452 };
4453 
4454 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4455 {
4456 	struct drm_i915_private *dev_priv = m->private;
4457 	struct drm_device *dev = &dev_priv->drm;
4458 	int level;
4459 	int num_levels;
4460 
4461 	if (IS_CHERRYVIEW(dev_priv))
4462 		num_levels = 3;
4463 	else if (IS_VALLEYVIEW(dev_priv))
4464 		num_levels = 1;
4465 	else
4466 		num_levels = ilk_wm_max_level(dev) + 1;
4467 
4468 	drm_modeset_lock_all(dev);
4469 
4470 	for (level = 0; level < num_levels; level++) {
4471 		unsigned int latency = wm[level];
4472 
4473 		/*
4474 		 * - WM1+ latency values in 0.5us units
4475 		 * - latencies are in us on gen9/vlv/chv
4476 		 */
4477 		if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
4478 		    IS_CHERRYVIEW(dev_priv))
4479 			latency *= 10;
4480 		else if (level > 0)
4481 			latency *= 5;
4482 
4483 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
4484 			   level, wm[level], latency / 10, latency % 10);
4485 	}
4486 
4487 	drm_modeset_unlock_all(dev);
4488 }
4489 
4490 static int pri_wm_latency_show(struct seq_file *m, void *data)
4491 {
4492 	struct drm_i915_private *dev_priv = m->private;
4493 	const uint16_t *latencies;
4494 
4495 	if (INTEL_GEN(dev_priv) >= 9)
4496 		latencies = dev_priv->wm.skl_latency;
4497 	else
4498 		latencies = dev_priv->wm.pri_latency;
4499 
4500 	wm_latency_show(m, latencies);
4501 
4502 	return 0;
4503 }
4504 
4505 static int spr_wm_latency_show(struct seq_file *m, void *data)
4506 {
4507 	struct drm_i915_private *dev_priv = m->private;
4508 	const uint16_t *latencies;
4509 
4510 	if (INTEL_GEN(dev_priv) >= 9)
4511 		latencies = dev_priv->wm.skl_latency;
4512 	else
4513 		latencies = dev_priv->wm.spr_latency;
4514 
4515 	wm_latency_show(m, latencies);
4516 
4517 	return 0;
4518 }
4519 
4520 static int cur_wm_latency_show(struct seq_file *m, void *data)
4521 {
4522 	struct drm_i915_private *dev_priv = m->private;
4523 	const uint16_t *latencies;
4524 
4525 	if (INTEL_GEN(dev_priv) >= 9)
4526 		latencies = dev_priv->wm.skl_latency;
4527 	else
4528 		latencies = dev_priv->wm.cur_latency;
4529 
4530 	wm_latency_show(m, latencies);
4531 
4532 	return 0;
4533 }
4534 
4535 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4536 {
4537 	struct drm_i915_private *dev_priv = inode->i_private;
4538 
4539 	if (INTEL_GEN(dev_priv) < 5)
4540 		return -ENODEV;
4541 
4542 	return single_open(file, pri_wm_latency_show, dev_priv);
4543 }
4544 
4545 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4546 {
4547 	struct drm_i915_private *dev_priv = inode->i_private;
4548 
4549 	if (HAS_GMCH_DISPLAY(dev_priv))
4550 		return -ENODEV;
4551 
4552 	return single_open(file, spr_wm_latency_show, dev_priv);
4553 }
4554 
4555 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4556 {
4557 	struct drm_i915_private *dev_priv = inode->i_private;
4558 
4559 	if (HAS_GMCH_DISPLAY(dev_priv))
4560 		return -ENODEV;
4561 
4562 	return single_open(file, cur_wm_latency_show, dev_priv);
4563 }
4564 
4565 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4566 				size_t len, loff_t *offp, uint16_t wm[8])
4567 {
4568 	struct seq_file *m = file->private_data;
4569 	struct drm_i915_private *dev_priv = m->private;
4570 	struct drm_device *dev = &dev_priv->drm;
4571 	uint16_t new[8] = { 0 };
4572 	int num_levels;
4573 	int level;
4574 	int ret;
4575 	char tmp[32];
4576 
4577 	if (IS_CHERRYVIEW(dev_priv))
4578 		num_levels = 3;
4579 	else if (IS_VALLEYVIEW(dev_priv))
4580 		num_levels = 1;
4581 	else
4582 		num_levels = ilk_wm_max_level(dev) + 1;
4583 
4584 	if (len >= sizeof(tmp))
4585 		return -EINVAL;
4586 
4587 	if (copy_from_user(tmp, ubuf, len))
4588 		return -EFAULT;
4589 
4590 	tmp[len] = '\0';
4591 
4592 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4593 		     &new[0], &new[1], &new[2], &new[3],
4594 		     &new[4], &new[5], &new[6], &new[7]);
4595 	if (ret != num_levels)
4596 		return -EINVAL;
4597 
4598 	drm_modeset_lock_all(dev);
4599 
4600 	for (level = 0; level < num_levels; level++)
4601 		wm[level] = new[level];
4602 
4603 	drm_modeset_unlock_all(dev);
4604 
4605 	return len;
4606 }
4607 
4608 
4609 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4610 				    size_t len, loff_t *offp)
4611 {
4612 	struct seq_file *m = file->private_data;
4613 	struct drm_i915_private *dev_priv = m->private;
4614 	uint16_t *latencies;
4615 
4616 	if (INTEL_GEN(dev_priv) >= 9)
4617 		latencies = dev_priv->wm.skl_latency;
4618 	else
4619 		latencies = dev_priv->wm.pri_latency;
4620 
4621 	return wm_latency_write(file, ubuf, len, offp, latencies);
4622 }
4623 
4624 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4625 				    size_t len, loff_t *offp)
4626 {
4627 	struct seq_file *m = file->private_data;
4628 	struct drm_i915_private *dev_priv = m->private;
4629 	uint16_t *latencies;
4630 
4631 	if (INTEL_GEN(dev_priv) >= 9)
4632 		latencies = dev_priv->wm.skl_latency;
4633 	else
4634 		latencies = dev_priv->wm.spr_latency;
4635 
4636 	return wm_latency_write(file, ubuf, len, offp, latencies);
4637 }
4638 
4639 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4640 				    size_t len, loff_t *offp)
4641 {
4642 	struct seq_file *m = file->private_data;
4643 	struct drm_i915_private *dev_priv = m->private;
4644 	uint16_t *latencies;
4645 
4646 	if (INTEL_GEN(dev_priv) >= 9)
4647 		latencies = dev_priv->wm.skl_latency;
4648 	else
4649 		latencies = dev_priv->wm.cur_latency;
4650 
4651 	return wm_latency_write(file, ubuf, len, offp, latencies);
4652 }
4653 
4654 static const struct file_operations i915_pri_wm_latency_fops = {
4655 	.owner = THIS_MODULE,
4656 	.open = pri_wm_latency_open,
4657 	.read = seq_read,
4658 	.llseek = seq_lseek,
4659 	.release = single_release,
4660 	.write = pri_wm_latency_write
4661 };
4662 
4663 static const struct file_operations i915_spr_wm_latency_fops = {
4664 	.owner = THIS_MODULE,
4665 	.open = spr_wm_latency_open,
4666 	.read = seq_read,
4667 	.llseek = seq_lseek,
4668 	.release = single_release,
4669 	.write = spr_wm_latency_write
4670 };
4671 
4672 static const struct file_operations i915_cur_wm_latency_fops = {
4673 	.owner = THIS_MODULE,
4674 	.open = cur_wm_latency_open,
4675 	.read = seq_read,
4676 	.llseek = seq_lseek,
4677 	.release = single_release,
4678 	.write = cur_wm_latency_write
4679 };
4680 
4681 static int
4682 i915_wedged_get(void *data, u64 *val)
4683 {
4684 	struct drm_i915_private *dev_priv = data;
4685 
4686 	*val = i915_terminally_wedged(&dev_priv->gpu_error);
4687 
4688 	return 0;
4689 }
4690 
4691 static int
4692 i915_wedged_set(void *data, u64 val)
4693 {
4694 	struct drm_i915_private *dev_priv = data;
4695 
4696 	/*
4697 	 * There is no safeguard against this debugfs entry colliding
4698 	 * with the hangcheck calling same i915_handle_error() in
4699 	 * parallel, causing an explosion. For now we assume that the
4700 	 * test harness is responsible enough not to inject gpu hangs
4701 	 * while it is writing to 'i915_wedged'
4702 	 */
4703 
4704 	if (i915_reset_in_progress(&dev_priv->gpu_error))
4705 		return -EAGAIN;
4706 
4707 	intel_runtime_pm_get(dev_priv);
4708 
4709 	i915_handle_error(dev_priv, val,
4710 			  "Manually setting wedged to %llu", val);
4711 
4712 	intel_runtime_pm_put(dev_priv);
4713 
4714 	return 0;
4715 }
4716 
4717 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4718 			i915_wedged_get, i915_wedged_set,
4719 			"%llu\n");
4720 
4721 static int
4722 i915_ring_missed_irq_get(void *data, u64 *val)
4723 {
4724 	struct drm_i915_private *dev_priv = data;
4725 
4726 	*val = dev_priv->gpu_error.missed_irq_rings;
4727 	return 0;
4728 }
4729 
4730 static int
4731 i915_ring_missed_irq_set(void *data, u64 val)
4732 {
4733 	struct drm_i915_private *dev_priv = data;
4734 	struct drm_device *dev = &dev_priv->drm;
4735 	int ret;
4736 
4737 	/* Lock against concurrent debugfs callers */
4738 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4739 	if (ret)
4740 		return ret;
4741 	dev_priv->gpu_error.missed_irq_rings = val;
4742 	mutex_unlock(&dev->struct_mutex);
4743 
4744 	return 0;
4745 }
4746 
4747 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4748 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4749 			"0x%08llx\n");
4750 
4751 static int
4752 i915_ring_test_irq_get(void *data, u64 *val)
4753 {
4754 	struct drm_i915_private *dev_priv = data;
4755 
4756 	*val = dev_priv->gpu_error.test_irq_rings;
4757 
4758 	return 0;
4759 }
4760 
4761 static int
4762 i915_ring_test_irq_set(void *data, u64 val)
4763 {
4764 	struct drm_i915_private *dev_priv = data;
4765 
4766 	val &= INTEL_INFO(dev_priv)->ring_mask;
4767 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4768 	dev_priv->gpu_error.test_irq_rings = val;
4769 
4770 	return 0;
4771 }
4772 
4773 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4774 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4775 			"0x%08llx\n");
4776 
4777 #define DROP_UNBOUND 0x1
4778 #define DROP_BOUND 0x2
4779 #define DROP_RETIRE 0x4
4780 #define DROP_ACTIVE 0x8
4781 #define DROP_ALL (DROP_UNBOUND | \
4782 		  DROP_BOUND | \
4783 		  DROP_RETIRE | \
4784 		  DROP_ACTIVE)
4785 static int
4786 i915_drop_caches_get(void *data, u64 *val)
4787 {
4788 	*val = DROP_ALL;
4789 
4790 	return 0;
4791 }
4792 
4793 static int
4794 i915_drop_caches_set(void *data, u64 val)
4795 {
4796 	struct drm_i915_private *dev_priv = data;
4797 	struct drm_device *dev = &dev_priv->drm;
4798 	int ret;
4799 
4800 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4801 
4802 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4803 	 * on ioctls on -EAGAIN. */
4804 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4805 	if (ret)
4806 		return ret;
4807 
4808 	if (val & DROP_ACTIVE) {
4809 		ret = i915_gem_wait_for_idle(dev_priv,
4810 					     I915_WAIT_INTERRUPTIBLE |
4811 					     I915_WAIT_LOCKED);
4812 		if (ret)
4813 			goto unlock;
4814 	}
4815 
4816 	if (val & (DROP_RETIRE | DROP_ACTIVE))
4817 		i915_gem_retire_requests(dev_priv);
4818 
4819 	if (val & DROP_BOUND)
4820 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4821 
4822 	if (val & DROP_UNBOUND)
4823 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4824 
4825 unlock:
4826 	mutex_unlock(&dev->struct_mutex);
4827 
4828 	return ret;
4829 }
4830 
4831 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4832 			i915_drop_caches_get, i915_drop_caches_set,
4833 			"0x%08llx\n");
4834 
4835 static int
4836 i915_max_freq_get(void *data, u64 *val)
4837 {
4838 	struct drm_i915_private *dev_priv = data;
4839 
4840 	if (INTEL_GEN(dev_priv) < 6)
4841 		return -ENODEV;
4842 
4843 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4844 	return 0;
4845 }
4846 
4847 static int
4848 i915_max_freq_set(void *data, u64 val)
4849 {
4850 	struct drm_i915_private *dev_priv = data;
4851 	u32 hw_max, hw_min;
4852 	int ret;
4853 
4854 	if (INTEL_GEN(dev_priv) < 6)
4855 		return -ENODEV;
4856 
4857 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4858 
4859 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4860 	if (ret)
4861 		return ret;
4862 
4863 	/*
4864 	 * Turbo will still be enabled, but won't go above the set value.
4865 	 */
4866 	val = intel_freq_opcode(dev_priv, val);
4867 
4868 	hw_max = dev_priv->rps.max_freq;
4869 	hw_min = dev_priv->rps.min_freq;
4870 
4871 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4872 		mutex_unlock(&dev_priv->rps.hw_lock);
4873 		return -EINVAL;
4874 	}
4875 
4876 	dev_priv->rps.max_freq_softlimit = val;
4877 
4878 	intel_set_rps(dev_priv, val);
4879 
4880 	mutex_unlock(&dev_priv->rps.hw_lock);
4881 
4882 	return 0;
4883 }
4884 
4885 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4886 			i915_max_freq_get, i915_max_freq_set,
4887 			"%llu\n");
4888 
4889 static int
4890 i915_min_freq_get(void *data, u64 *val)
4891 {
4892 	struct drm_i915_private *dev_priv = data;
4893 
4894 	if (INTEL_GEN(dev_priv) < 6)
4895 		return -ENODEV;
4896 
4897 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4898 	return 0;
4899 }
4900 
4901 static int
4902 i915_min_freq_set(void *data, u64 val)
4903 {
4904 	struct drm_i915_private *dev_priv = data;
4905 	u32 hw_max, hw_min;
4906 	int ret;
4907 
4908 	if (INTEL_GEN(dev_priv) < 6)
4909 		return -ENODEV;
4910 
4911 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4912 
4913 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4914 	if (ret)
4915 		return ret;
4916 
4917 	/*
4918 	 * Turbo will still be enabled, but won't go below the set value.
4919 	 */
4920 	val = intel_freq_opcode(dev_priv, val);
4921 
4922 	hw_max = dev_priv->rps.max_freq;
4923 	hw_min = dev_priv->rps.min_freq;
4924 
4925 	if (val < hw_min ||
4926 	    val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4927 		mutex_unlock(&dev_priv->rps.hw_lock);
4928 		return -EINVAL;
4929 	}
4930 
4931 	dev_priv->rps.min_freq_softlimit = val;
4932 
4933 	intel_set_rps(dev_priv, val);
4934 
4935 	mutex_unlock(&dev_priv->rps.hw_lock);
4936 
4937 	return 0;
4938 }
4939 
4940 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4941 			i915_min_freq_get, i915_min_freq_set,
4942 			"%llu\n");
4943 
4944 static int
4945 i915_cache_sharing_get(void *data, u64 *val)
4946 {
4947 	struct drm_i915_private *dev_priv = data;
4948 	struct drm_device *dev = &dev_priv->drm;
4949 	u32 snpcr;
4950 	int ret;
4951 
4952 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4953 		return -ENODEV;
4954 
4955 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4956 	if (ret)
4957 		return ret;
4958 	intel_runtime_pm_get(dev_priv);
4959 
4960 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4961 
4962 	intel_runtime_pm_put(dev_priv);
4963 	mutex_unlock(&dev->struct_mutex);
4964 
4965 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4966 
4967 	return 0;
4968 }
4969 
4970 static int
4971 i915_cache_sharing_set(void *data, u64 val)
4972 {
4973 	struct drm_i915_private *dev_priv = data;
4974 	u32 snpcr;
4975 
4976 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4977 		return -ENODEV;
4978 
4979 	if (val > 3)
4980 		return -EINVAL;
4981 
4982 	intel_runtime_pm_get(dev_priv);
4983 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4984 
4985 	/* Update the cache sharing policy here as well */
4986 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4987 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
4988 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4989 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4990 
4991 	intel_runtime_pm_put(dev_priv);
4992 	return 0;
4993 }
4994 
4995 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4996 			i915_cache_sharing_get, i915_cache_sharing_set,
4997 			"%llu\n");
4998 
4999 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
5000 					  struct sseu_dev_info *sseu)
5001 {
5002 	int ss_max = 2;
5003 	int ss;
5004 	u32 sig1[ss_max], sig2[ss_max];
5005 
5006 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5007 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5008 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5009 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5010 
5011 	for (ss = 0; ss < ss_max; ss++) {
5012 		unsigned int eu_cnt;
5013 
5014 		if (sig1[ss] & CHV_SS_PG_ENABLE)
5015 			/* skip disabled subslice */
5016 			continue;
5017 
5018 		sseu->slice_mask = BIT(0);
5019 		sseu->subslice_mask |= BIT(ss);
5020 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5021 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5022 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5023 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5024 		sseu->eu_total += eu_cnt;
5025 		sseu->eu_per_subslice = max_t(unsigned int,
5026 					      sseu->eu_per_subslice, eu_cnt);
5027 	}
5028 }
5029 
5030 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
5031 				    struct sseu_dev_info *sseu)
5032 {
5033 	int s_max = 3, ss_max = 4;
5034 	int s, ss;
5035 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5036 
5037 	/* BXT has a single slice and at most 3 subslices. */
5038 	if (IS_BROXTON(dev_priv)) {
5039 		s_max = 1;
5040 		ss_max = 3;
5041 	}
5042 
5043 	for (s = 0; s < s_max; s++) {
5044 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5045 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5046 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5047 	}
5048 
5049 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5050 		     GEN9_PGCTL_SSA_EU19_ACK |
5051 		     GEN9_PGCTL_SSA_EU210_ACK |
5052 		     GEN9_PGCTL_SSA_EU311_ACK;
5053 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5054 		     GEN9_PGCTL_SSB_EU19_ACK |
5055 		     GEN9_PGCTL_SSB_EU210_ACK |
5056 		     GEN9_PGCTL_SSB_EU311_ACK;
5057 
5058 	for (s = 0; s < s_max; s++) {
5059 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5060 			/* skip disabled slice */
5061 			continue;
5062 
5063 		sseu->slice_mask |= BIT(s);
5064 
5065 		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
5066 			sseu->subslice_mask =
5067 				INTEL_INFO(dev_priv)->sseu.subslice_mask;
5068 
5069 		for (ss = 0; ss < ss_max; ss++) {
5070 			unsigned int eu_cnt;
5071 
5072 			if (IS_BROXTON(dev_priv)) {
5073 				if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5074 					/* skip disabled subslice */
5075 					continue;
5076 
5077 				sseu->subslice_mask |= BIT(ss);
5078 			}
5079 
5080 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5081 					       eu_mask[ss%2]);
5082 			sseu->eu_total += eu_cnt;
5083 			sseu->eu_per_subslice = max_t(unsigned int,
5084 						      sseu->eu_per_subslice,
5085 						      eu_cnt);
5086 		}
5087 	}
5088 }
5089 
5090 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
5091 					 struct sseu_dev_info *sseu)
5092 {
5093 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5094 	int s;
5095 
5096 	sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
5097 
5098 	if (sseu->slice_mask) {
5099 		sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
5100 		sseu->eu_per_subslice =
5101 				INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
5102 		sseu->eu_total = sseu->eu_per_subslice *
5103 				 sseu_subslice_total(sseu);
5104 
5105 		/* subtract fused off EU(s) from enabled slice(s) */
5106 		for (s = 0; s < fls(sseu->slice_mask); s++) {
5107 			u8 subslice_7eu =
5108 				INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
5109 
5110 			sseu->eu_total -= hweight8(subslice_7eu);
5111 		}
5112 	}
5113 }
5114 
5115 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
5116 				 const struct sseu_dev_info *sseu)
5117 {
5118 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
5119 	const char *type = is_available_info ? "Available" : "Enabled";
5120 
5121 	seq_printf(m, "  %s Slice Mask: %04x\n", type,
5122 		   sseu->slice_mask);
5123 	seq_printf(m, "  %s Slice Total: %u\n", type,
5124 		   hweight8(sseu->slice_mask));
5125 	seq_printf(m, "  %s Subslice Total: %u\n", type,
5126 		   sseu_subslice_total(sseu));
5127 	seq_printf(m, "  %s Subslice Mask: %04x\n", type,
5128 		   sseu->subslice_mask);
5129 	seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
5130 		   hweight8(sseu->subslice_mask));
5131 	seq_printf(m, "  %s EU Total: %u\n", type,
5132 		   sseu->eu_total);
5133 	seq_printf(m, "  %s EU Per Subslice: %u\n", type,
5134 		   sseu->eu_per_subslice);
5135 
5136 	if (!is_available_info)
5137 		return;
5138 
5139 	seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
5140 	if (HAS_POOLED_EU(dev_priv))
5141 		seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
5142 
5143 	seq_printf(m, "  Has Slice Power Gating: %s\n",
5144 		   yesno(sseu->has_slice_pg));
5145 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
5146 		   yesno(sseu->has_subslice_pg));
5147 	seq_printf(m, "  Has EU Power Gating: %s\n",
5148 		   yesno(sseu->has_eu_pg));
5149 }
5150 
5151 static int i915_sseu_status(struct seq_file *m, void *unused)
5152 {
5153 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
5154 	struct sseu_dev_info sseu;
5155 
5156 	if (INTEL_GEN(dev_priv) < 8)
5157 		return -ENODEV;
5158 
5159 	seq_puts(m, "SSEU Device Info\n");
5160 	i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
5161 
5162 	seq_puts(m, "SSEU Device Status\n");
5163 	memset(&sseu, 0, sizeof(sseu));
5164 
5165 	intel_runtime_pm_get(dev_priv);
5166 
5167 	if (IS_CHERRYVIEW(dev_priv)) {
5168 		cherryview_sseu_device_status(dev_priv, &sseu);
5169 	} else if (IS_BROADWELL(dev_priv)) {
5170 		broadwell_sseu_device_status(dev_priv, &sseu);
5171 	} else if (INTEL_GEN(dev_priv) >= 9) {
5172 		gen9_sseu_device_status(dev_priv, &sseu);
5173 	}
5174 
5175 	intel_runtime_pm_put(dev_priv);
5176 
5177 	i915_print_sseu_info(m, false, &sseu);
5178 
5179 	return 0;
5180 }
5181 
5182 static int i915_forcewake_open(struct inode *inode, struct file *file)
5183 {
5184 	struct drm_i915_private *dev_priv = inode->i_private;
5185 
5186 	if (INTEL_GEN(dev_priv) < 6)
5187 		return 0;
5188 
5189 	intel_runtime_pm_get(dev_priv);
5190 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5191 
5192 	return 0;
5193 }
5194 
5195 static int i915_forcewake_release(struct inode *inode, struct file *file)
5196 {
5197 	struct drm_i915_private *dev_priv = inode->i_private;
5198 
5199 	if (INTEL_GEN(dev_priv) < 6)
5200 		return 0;
5201 
5202 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5203 	intel_runtime_pm_put(dev_priv);
5204 
5205 	return 0;
5206 }
5207 
5208 static const struct file_operations i915_forcewake_fops = {
5209 	.owner = THIS_MODULE,
5210 	.open = i915_forcewake_open,
5211 	.release = i915_forcewake_release,
5212 };
5213 
5214 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5215 {
5216 	struct dentry *ent;
5217 
5218 	ent = debugfs_create_file("i915_forcewake_user",
5219 				  S_IRUSR,
5220 				  root, to_i915(minor->dev),
5221 				  &i915_forcewake_fops);
5222 	if (!ent)
5223 		return -ENOMEM;
5224 
5225 	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5226 }
5227 
5228 static int i915_debugfs_create(struct dentry *root,
5229 			       struct drm_minor *minor,
5230 			       const char *name,
5231 			       const struct file_operations *fops)
5232 {
5233 	struct dentry *ent;
5234 
5235 	ent = debugfs_create_file(name,
5236 				  S_IRUGO | S_IWUSR,
5237 				  root, to_i915(minor->dev),
5238 				  fops);
5239 	if (!ent)
5240 		return -ENOMEM;
5241 
5242 	return drm_add_fake_info_node(minor, ent, fops);
5243 }
5244 
5245 static const struct drm_info_list i915_debugfs_list[] = {
5246 	{"i915_capabilities", i915_capabilities, 0},
5247 	{"i915_gem_objects", i915_gem_object_info, 0},
5248 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
5249 	{"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
5250 	{"i915_gem_stolen", i915_gem_stolen_list_info },
5251 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5252 	{"i915_gem_request", i915_gem_request_info, 0},
5253 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
5254 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5255 	{"i915_gem_interrupt", i915_interrupt_info, 0},
5256 	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5257 	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5258 	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5259 	{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5260 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5261 	{"i915_guc_info", i915_guc_info, 0},
5262 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
5263 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
5264 	{"i915_frequency_info", i915_frequency_info, 0},
5265 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
5266 	{"i915_drpc_info", i915_drpc_info, 0},
5267 	{"i915_emon_status", i915_emon_status, 0},
5268 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
5269 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5270 	{"i915_fbc_status", i915_fbc_status, 0},
5271 	{"i915_ips_status", i915_ips_status, 0},
5272 	{"i915_sr_status", i915_sr_status, 0},
5273 	{"i915_opregion", i915_opregion, 0},
5274 	{"i915_vbt", i915_vbt, 0},
5275 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5276 	{"i915_context_status", i915_context_status, 0},
5277 	{"i915_dump_lrc", i915_dump_lrc, 0},
5278 	{"i915_execlists", i915_execlists, 0},
5279 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
5280 	{"i915_swizzle_info", i915_swizzle_info, 0},
5281 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
5282 	{"i915_llc", i915_llc, 0},
5283 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
5284 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
5285 	{"i915_energy_uJ", i915_energy_uJ, 0},
5286 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5287 	{"i915_power_domain_info", i915_power_domain_info, 0},
5288 	{"i915_dmc_info", i915_dmc_info, 0},
5289 	{"i915_display_info", i915_display_info, 0},
5290 	{"i915_semaphore_status", i915_semaphore_status, 0},
5291 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5292 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
5293 	{"i915_wa_registers", i915_wa_registers, 0},
5294 	{"i915_ddb_info", i915_ddb_info, 0},
5295 	{"i915_sseu_status", i915_sseu_status, 0},
5296 	{"i915_drrs_status", i915_drrs_status, 0},
5297 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
5298 };
5299 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5300 
5301 static const struct i915_debugfs_files {
5302 	const char *name;
5303 	const struct file_operations *fops;
5304 } i915_debugfs_files[] = {
5305 	{"i915_wedged", &i915_wedged_fops},
5306 	{"i915_max_freq", &i915_max_freq_fops},
5307 	{"i915_min_freq", &i915_min_freq_fops},
5308 	{"i915_cache_sharing", &i915_cache_sharing_fops},
5309 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5310 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
5311 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
5312 	{"i915_error_state", &i915_error_state_fops},
5313 	{"i915_next_seqno", &i915_next_seqno_fops},
5314 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5315 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5316 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5317 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5318 	{"i915_fbc_false_color", &i915_fbc_fc_fops},
5319 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
5320 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
5321 	{"i915_dp_test_active", &i915_displayport_test_active_fops}
5322 };
5323 
5324 void intel_display_crc_init(struct drm_i915_private *dev_priv)
5325 {
5326 	enum pipe pipe;
5327 
5328 	for_each_pipe(dev_priv, pipe) {
5329 		struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5330 
5331 		pipe_crc->opened = false;
5332 		spin_lock_init(&pipe_crc->lock);
5333 		init_waitqueue_head(&pipe_crc->wq);
5334 	}
5335 }
5336 
5337 int i915_debugfs_register(struct drm_i915_private *dev_priv)
5338 {
5339 	struct drm_minor *minor = dev_priv->drm.primary;
5340 	int ret, i;
5341 
5342 	ret = i915_forcewake_create(minor->debugfs_root, minor);
5343 	if (ret)
5344 		return ret;
5345 
5346 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5347 		ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5348 		if (ret)
5349 			return ret;
5350 	}
5351 
5352 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5353 		ret = i915_debugfs_create(minor->debugfs_root, minor,
5354 					  i915_debugfs_files[i].name,
5355 					  i915_debugfs_files[i].fops);
5356 		if (ret)
5357 			return ret;
5358 	}
5359 
5360 	return drm_debugfs_create_files(i915_debugfs_list,
5361 					I915_DEBUGFS_ENTRIES,
5362 					minor->debugfs_root, minor);
5363 }
5364 
5365 void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
5366 {
5367 	struct drm_minor *minor = dev_priv->drm.primary;
5368 	int i;
5369 
5370 	drm_debugfs_remove_files(i915_debugfs_list,
5371 				 I915_DEBUGFS_ENTRIES, minor);
5372 
5373 	drm_debugfs_remove_files((struct drm_info_list *)&i915_forcewake_fops,
5374 				 1, minor);
5375 
5376 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5377 		struct drm_info_list *info_list =
5378 			(struct drm_info_list *)&i915_pipe_crc_data[i];
5379 
5380 		drm_debugfs_remove_files(info_list, 1, minor);
5381 	}
5382 
5383 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5384 		struct drm_info_list *info_list =
5385 			(struct drm_info_list *)i915_debugfs_files[i].fops;
5386 
5387 		drm_debugfs_remove_files(info_list, 1, minor);
5388 	}
5389 }
5390 
5391 struct dpcd_block {
5392 	/* DPCD dump start address. */
5393 	unsigned int offset;
5394 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
5395 	unsigned int end;
5396 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5397 	size_t size;
5398 	/* Only valid for eDP. */
5399 	bool edp;
5400 };
5401 
5402 static const struct dpcd_block i915_dpcd_debug[] = {
5403 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5404 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5405 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5406 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5407 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5408 	{ .offset = DP_SET_POWER },
5409 	{ .offset = DP_EDP_DPCD_REV },
5410 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5411 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5412 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5413 };
5414 
5415 static int i915_dpcd_show(struct seq_file *m, void *data)
5416 {
5417 	struct drm_connector *connector = m->private;
5418 	struct intel_dp *intel_dp =
5419 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5420 	uint8_t buf[16];
5421 	ssize_t err;
5422 	int i;
5423 
5424 	if (connector->status != connector_status_connected)
5425 		return -ENODEV;
5426 
5427 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5428 		const struct dpcd_block *b = &i915_dpcd_debug[i];
5429 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5430 
5431 		if (b->edp &&
5432 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5433 			continue;
5434 
5435 		/* low tech for now */
5436 		if (WARN_ON(size > sizeof(buf)))
5437 			continue;
5438 
5439 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5440 		if (err <= 0) {
5441 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5442 				  size, b->offset, err);
5443 			continue;
5444 		}
5445 
5446 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5447 	}
5448 
5449 	return 0;
5450 }
5451 
5452 static int i915_dpcd_open(struct inode *inode, struct file *file)
5453 {
5454 	return single_open(file, i915_dpcd_show, inode->i_private);
5455 }
5456 
5457 static const struct file_operations i915_dpcd_fops = {
5458 	.owner = THIS_MODULE,
5459 	.open = i915_dpcd_open,
5460 	.read = seq_read,
5461 	.llseek = seq_lseek,
5462 	.release = single_release,
5463 };
5464 
5465 static int i915_panel_show(struct seq_file *m, void *data)
5466 {
5467 	struct drm_connector *connector = m->private;
5468 	struct intel_dp *intel_dp =
5469 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5470 
5471 	if (connector->status != connector_status_connected)
5472 		return -ENODEV;
5473 
5474 	seq_printf(m, "Panel power up delay: %d\n",
5475 		   intel_dp->panel_power_up_delay);
5476 	seq_printf(m, "Panel power down delay: %d\n",
5477 		   intel_dp->panel_power_down_delay);
5478 	seq_printf(m, "Backlight on delay: %d\n",
5479 		   intel_dp->backlight_on_delay);
5480 	seq_printf(m, "Backlight off delay: %d\n",
5481 		   intel_dp->backlight_off_delay);
5482 
5483 	return 0;
5484 }
5485 
5486 static int i915_panel_open(struct inode *inode, struct file *file)
5487 {
5488 	return single_open(file, i915_panel_show, inode->i_private);
5489 }
5490 
5491 static const struct file_operations i915_panel_fops = {
5492 	.owner = THIS_MODULE,
5493 	.open = i915_panel_open,
5494 	.read = seq_read,
5495 	.llseek = seq_lseek,
5496 	.release = single_release,
5497 };
5498 
5499 /**
5500  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5501  * @connector: pointer to a registered drm_connector
5502  *
5503  * Cleanup will be done by drm_connector_unregister() through a call to
5504  * drm_debugfs_connector_remove().
5505  *
5506  * Returns 0 on success, negative error codes on error.
5507  */
5508 int i915_debugfs_connector_add(struct drm_connector *connector)
5509 {
5510 	struct dentry *root = connector->debugfs_entry;
5511 
5512 	/* The connector must have been registered beforehands. */
5513 	if (!root)
5514 		return -ENODEV;
5515 
5516 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5517 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5518 		debugfs_create_file("i915_dpcd", S_IRUGO, root,
5519 				    connector, &i915_dpcd_fops);
5520 
5521 	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5522 		debugfs_create_file("i915_panel_timings", S_IRUGO, root,
5523 				    connector, &i915_panel_fops);
5524 
5525 	return 0;
5526 }
5527