1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42 
43 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
44 {
45 	return to_i915(node->minor->dev);
46 }
47 
48 /* As the drm_debugfs_init() routines are called before dev->dev_private is
49  * allocated we need to hook into the minor for release. */
50 static int
51 drm_add_fake_info_node(struct drm_minor *minor,
52 		       struct dentry *ent,
53 		       const void *key)
54 {
55 	struct drm_info_node *node;
56 
57 	node = kmalloc(sizeof(*node), GFP_KERNEL);
58 	if (node == NULL) {
59 		debugfs_remove(ent);
60 		return -ENOMEM;
61 	}
62 
63 	node->minor = minor;
64 	node->dent = ent;
65 	node->info_ent = (void *)key;
66 
67 	mutex_lock(&minor->debugfs_lock);
68 	list_add(&node->list, &minor->debugfs_list);
69 	mutex_unlock(&minor->debugfs_lock);
70 
71 	return 0;
72 }
73 
74 static int i915_capabilities(struct seq_file *m, void *data)
75 {
76 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
77 	const struct intel_device_info *info = INTEL_INFO(dev_priv);
78 
79 	seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
80 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
81 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
82 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
83 #undef PRINT_FLAG
84 
85 	return 0;
86 }
87 
88 static char get_active_flag(struct drm_i915_gem_object *obj)
89 {
90 	return i915_gem_object_is_active(obj) ? '*' : ' ';
91 }
92 
93 static char get_pin_flag(struct drm_i915_gem_object *obj)
94 {
95 	return obj->pin_display ? 'p' : ' ';
96 }
97 
98 static char get_tiling_flag(struct drm_i915_gem_object *obj)
99 {
100 	switch (i915_gem_object_get_tiling(obj)) {
101 	default:
102 	case I915_TILING_NONE: return ' ';
103 	case I915_TILING_X: return 'X';
104 	case I915_TILING_Y: return 'Y';
105 	}
106 }
107 
108 static char get_global_flag(struct drm_i915_gem_object *obj)
109 {
110 	return !list_empty(&obj->userfault_link) ? 'g' : ' ';
111 }
112 
113 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
114 {
115 	return obj->mm.mapping ? 'M' : ' ';
116 }
117 
118 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
119 {
120 	u64 size = 0;
121 	struct i915_vma *vma;
122 
123 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
124 		if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
125 			size += vma->node.size;
126 	}
127 
128 	return size;
129 }
130 
131 static void
132 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
133 {
134 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
135 	struct intel_engine_cs *engine;
136 	struct i915_vma *vma;
137 	unsigned int frontbuffer_bits;
138 	int pin_count = 0;
139 
140 	lockdep_assert_held(&obj->base.dev->struct_mutex);
141 
142 	seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
143 		   &obj->base,
144 		   get_active_flag(obj),
145 		   get_pin_flag(obj),
146 		   get_tiling_flag(obj),
147 		   get_global_flag(obj),
148 		   get_pin_mapped_flag(obj),
149 		   obj->base.size / 1024,
150 		   obj->base.read_domains,
151 		   obj->base.write_domain,
152 		   i915_cache_level_str(dev_priv, obj->cache_level),
153 		   obj->mm.dirty ? " dirty" : "",
154 		   obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
155 	if (obj->base.name)
156 		seq_printf(m, " (name: %d)", obj->base.name);
157 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
158 		if (i915_vma_is_pinned(vma))
159 			pin_count++;
160 	}
161 	seq_printf(m, " (pinned x %d)", pin_count);
162 	if (obj->pin_display)
163 		seq_printf(m, " (display)");
164 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
165 		if (!drm_mm_node_allocated(&vma->node))
166 			continue;
167 
168 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169 			   i915_vma_is_ggtt(vma) ? "g" : "pp",
170 			   vma->node.start, vma->node.size);
171 		if (i915_vma_is_ggtt(vma))
172 			seq_printf(m, ", type: %u", vma->ggtt_view.type);
173 		if (vma->fence)
174 			seq_printf(m, " , fence: %d%s",
175 				   vma->fence->id,
176 				   i915_gem_active_isset(&vma->last_fence) ? "*" : "");
177 		seq_puts(m, ")");
178 	}
179 	if (obj->stolen)
180 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
181 
182 	engine = i915_gem_object_last_write_engine(obj);
183 	if (engine)
184 		seq_printf(m, " (%s)", engine->name);
185 
186 	frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
187 	if (frontbuffer_bits)
188 		seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
189 }
190 
191 static int obj_rank_by_stolen(void *priv,
192 			      struct list_head *A, struct list_head *B)
193 {
194 	struct drm_i915_gem_object *a =
195 		container_of(A, struct drm_i915_gem_object, obj_exec_link);
196 	struct drm_i915_gem_object *b =
197 		container_of(B, struct drm_i915_gem_object, obj_exec_link);
198 
199 	if (a->stolen->start < b->stolen->start)
200 		return -1;
201 	if (a->stolen->start > b->stolen->start)
202 		return 1;
203 	return 0;
204 }
205 
206 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
207 {
208 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
209 	struct drm_device *dev = &dev_priv->drm;
210 	struct drm_i915_gem_object *obj;
211 	u64 total_obj_size, total_gtt_size;
212 	LIST_HEAD(stolen);
213 	int count, ret;
214 
215 	ret = mutex_lock_interruptible(&dev->struct_mutex);
216 	if (ret)
217 		return ret;
218 
219 	total_obj_size = total_gtt_size = count = 0;
220 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
221 		if (obj->stolen == NULL)
222 			continue;
223 
224 		list_add(&obj->obj_exec_link, &stolen);
225 
226 		total_obj_size += obj->base.size;
227 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
228 		count++;
229 	}
230 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
231 		if (obj->stolen == NULL)
232 			continue;
233 
234 		list_add(&obj->obj_exec_link, &stolen);
235 
236 		total_obj_size += obj->base.size;
237 		count++;
238 	}
239 	list_sort(NULL, &stolen, obj_rank_by_stolen);
240 	seq_puts(m, "Stolen:\n");
241 	while (!list_empty(&stolen)) {
242 		obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
243 		seq_puts(m, "   ");
244 		describe_obj(m, obj);
245 		seq_putc(m, '\n');
246 		list_del_init(&obj->obj_exec_link);
247 	}
248 	mutex_unlock(&dev->struct_mutex);
249 
250 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
251 		   count, total_obj_size, total_gtt_size);
252 	return 0;
253 }
254 
255 struct file_stats {
256 	struct drm_i915_file_private *file_priv;
257 	unsigned long count;
258 	u64 total, unbound;
259 	u64 global, shared;
260 	u64 active, inactive;
261 };
262 
263 static int per_file_stats(int id, void *ptr, void *data)
264 {
265 	struct drm_i915_gem_object *obj = ptr;
266 	struct file_stats *stats = data;
267 	struct i915_vma *vma;
268 
269 	stats->count++;
270 	stats->total += obj->base.size;
271 	if (!obj->bind_count)
272 		stats->unbound += obj->base.size;
273 	if (obj->base.name || obj->base.dma_buf)
274 		stats->shared += obj->base.size;
275 
276 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
277 		if (!drm_mm_node_allocated(&vma->node))
278 			continue;
279 
280 		if (i915_vma_is_ggtt(vma)) {
281 			stats->global += vma->node.size;
282 		} else {
283 			struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
284 
285 			if (ppgtt->base.file != stats->file_priv)
286 				continue;
287 		}
288 
289 		if (i915_vma_is_active(vma))
290 			stats->active += vma->node.size;
291 		else
292 			stats->inactive += vma->node.size;
293 	}
294 
295 	return 0;
296 }
297 
298 #define print_file_stats(m, name, stats) do { \
299 	if (stats.count) \
300 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
301 			   name, \
302 			   stats.count, \
303 			   stats.total, \
304 			   stats.active, \
305 			   stats.inactive, \
306 			   stats.global, \
307 			   stats.shared, \
308 			   stats.unbound); \
309 } while (0)
310 
311 static void print_batch_pool_stats(struct seq_file *m,
312 				   struct drm_i915_private *dev_priv)
313 {
314 	struct drm_i915_gem_object *obj;
315 	struct file_stats stats;
316 	struct intel_engine_cs *engine;
317 	enum intel_engine_id id;
318 	int j;
319 
320 	memset(&stats, 0, sizeof(stats));
321 
322 	for_each_engine(engine, dev_priv, id) {
323 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
324 			list_for_each_entry(obj,
325 					    &engine->batch_pool.cache_list[j],
326 					    batch_pool_link)
327 				per_file_stats(0, obj, &stats);
328 		}
329 	}
330 
331 	print_file_stats(m, "[k]batch pool", stats);
332 }
333 
334 static int per_file_ctx_stats(int id, void *ptr, void *data)
335 {
336 	struct i915_gem_context *ctx = ptr;
337 	int n;
338 
339 	for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
340 		if (ctx->engine[n].state)
341 			per_file_stats(0, ctx->engine[n].state->obj, data);
342 		if (ctx->engine[n].ring)
343 			per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
344 	}
345 
346 	return 0;
347 }
348 
349 static void print_context_stats(struct seq_file *m,
350 				struct drm_i915_private *dev_priv)
351 {
352 	struct drm_device *dev = &dev_priv->drm;
353 	struct file_stats stats;
354 	struct drm_file *file;
355 
356 	memset(&stats, 0, sizeof(stats));
357 
358 	mutex_lock(&dev->struct_mutex);
359 	if (dev_priv->kernel_context)
360 		per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
361 
362 	list_for_each_entry(file, &dev->filelist, lhead) {
363 		struct drm_i915_file_private *fpriv = file->driver_priv;
364 		idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
365 	}
366 	mutex_unlock(&dev->struct_mutex);
367 
368 	print_file_stats(m, "[k]contexts", stats);
369 }
370 
371 static int i915_gem_object_info(struct seq_file *m, void *data)
372 {
373 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
374 	struct drm_device *dev = &dev_priv->drm;
375 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
376 	u32 count, mapped_count, purgeable_count, dpy_count;
377 	u64 size, mapped_size, purgeable_size, dpy_size;
378 	struct drm_i915_gem_object *obj;
379 	struct drm_file *file;
380 	int ret;
381 
382 	ret = mutex_lock_interruptible(&dev->struct_mutex);
383 	if (ret)
384 		return ret;
385 
386 	seq_printf(m, "%u objects, %llu bytes\n",
387 		   dev_priv->mm.object_count,
388 		   dev_priv->mm.object_memory);
389 
390 	size = count = 0;
391 	mapped_size = mapped_count = 0;
392 	purgeable_size = purgeable_count = 0;
393 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
394 		size += obj->base.size;
395 		++count;
396 
397 		if (obj->mm.madv == I915_MADV_DONTNEED) {
398 			purgeable_size += obj->base.size;
399 			++purgeable_count;
400 		}
401 
402 		if (obj->mm.mapping) {
403 			mapped_count++;
404 			mapped_size += obj->base.size;
405 		}
406 	}
407 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
408 
409 	size = count = dpy_size = dpy_count = 0;
410 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
411 		size += obj->base.size;
412 		++count;
413 
414 		if (obj->pin_display) {
415 			dpy_size += obj->base.size;
416 			++dpy_count;
417 		}
418 
419 		if (obj->mm.madv == I915_MADV_DONTNEED) {
420 			purgeable_size += obj->base.size;
421 			++purgeable_count;
422 		}
423 
424 		if (obj->mm.mapping) {
425 			mapped_count++;
426 			mapped_size += obj->base.size;
427 		}
428 	}
429 	seq_printf(m, "%u bound objects, %llu bytes\n",
430 		   count, size);
431 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
432 		   purgeable_count, purgeable_size);
433 	seq_printf(m, "%u mapped objects, %llu bytes\n",
434 		   mapped_count, mapped_size);
435 	seq_printf(m, "%u display objects (pinned), %llu bytes\n",
436 		   dpy_count, dpy_size);
437 
438 	seq_printf(m, "%llu [%llu] gtt total\n",
439 		   ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
440 
441 	seq_putc(m, '\n');
442 	print_batch_pool_stats(m, dev_priv);
443 	mutex_unlock(&dev->struct_mutex);
444 
445 	mutex_lock(&dev->filelist_mutex);
446 	print_context_stats(m, dev_priv);
447 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
448 		struct file_stats stats;
449 		struct drm_i915_file_private *file_priv = file->driver_priv;
450 		struct drm_i915_gem_request *request;
451 		struct task_struct *task;
452 
453 		memset(&stats, 0, sizeof(stats));
454 		stats.file_priv = file->driver_priv;
455 		spin_lock(&file->table_lock);
456 		idr_for_each(&file->object_idr, per_file_stats, &stats);
457 		spin_unlock(&file->table_lock);
458 		/*
459 		 * Although we have a valid reference on file->pid, that does
460 		 * not guarantee that the task_struct who called get_pid() is
461 		 * still alive (e.g. get_pid(current) => fork() => exit()).
462 		 * Therefore, we need to protect this ->comm access using RCU.
463 		 */
464 		mutex_lock(&dev->struct_mutex);
465 		request = list_first_entry_or_null(&file_priv->mm.request_list,
466 						   struct drm_i915_gem_request,
467 						   client_list);
468 		rcu_read_lock();
469 		task = pid_task(request && request->ctx->pid ?
470 				request->ctx->pid : file->pid,
471 				PIDTYPE_PID);
472 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
473 		rcu_read_unlock();
474 		mutex_unlock(&dev->struct_mutex);
475 	}
476 	mutex_unlock(&dev->filelist_mutex);
477 
478 	return 0;
479 }
480 
481 static int i915_gem_gtt_info(struct seq_file *m, void *data)
482 {
483 	struct drm_info_node *node = m->private;
484 	struct drm_i915_private *dev_priv = node_to_i915(node);
485 	struct drm_device *dev = &dev_priv->drm;
486 	bool show_pin_display_only = !!node->info_ent->data;
487 	struct drm_i915_gem_object *obj;
488 	u64 total_obj_size, total_gtt_size;
489 	int count, ret;
490 
491 	ret = mutex_lock_interruptible(&dev->struct_mutex);
492 	if (ret)
493 		return ret;
494 
495 	total_obj_size = total_gtt_size = count = 0;
496 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
497 		if (show_pin_display_only && !obj->pin_display)
498 			continue;
499 
500 		seq_puts(m, "   ");
501 		describe_obj(m, obj);
502 		seq_putc(m, '\n');
503 		total_obj_size += obj->base.size;
504 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
505 		count++;
506 	}
507 
508 	mutex_unlock(&dev->struct_mutex);
509 
510 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
511 		   count, total_obj_size, total_gtt_size);
512 
513 	return 0;
514 }
515 
516 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
517 {
518 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
519 	struct drm_device *dev = &dev_priv->drm;
520 	struct intel_crtc *crtc;
521 	int ret;
522 
523 	ret = mutex_lock_interruptible(&dev->struct_mutex);
524 	if (ret)
525 		return ret;
526 
527 	for_each_intel_crtc(dev, crtc) {
528 		const char pipe = pipe_name(crtc->pipe);
529 		const char plane = plane_name(crtc->plane);
530 		struct intel_flip_work *work;
531 
532 		spin_lock_irq(&dev->event_lock);
533 		work = crtc->flip_work;
534 		if (work == NULL) {
535 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
536 				   pipe, plane);
537 		} else {
538 			u32 pending;
539 			u32 addr;
540 
541 			pending = atomic_read(&work->pending);
542 			if (pending) {
543 				seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
544 					   pipe, plane);
545 			} else {
546 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
547 					   pipe, plane);
548 			}
549 			if (work->flip_queued_req) {
550 				struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
551 
552 				seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
553 					   engine->name,
554 					   i915_gem_request_get_seqno(work->flip_queued_req),
555 					   atomic_read(&dev_priv->gt.global_timeline.next_seqno),
556 					   intel_engine_get_seqno(engine),
557 					   i915_gem_request_completed(work->flip_queued_req));
558 			} else
559 				seq_printf(m, "Flip not associated with any ring\n");
560 			seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
561 				   work->flip_queued_vblank,
562 				   work->flip_ready_vblank,
563 				   intel_crtc_get_vblank_counter(crtc));
564 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
565 
566 			if (INTEL_GEN(dev_priv) >= 4)
567 				addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
568 			else
569 				addr = I915_READ(DSPADDR(crtc->plane));
570 			seq_printf(m, "Current scanout address 0x%08x\n", addr);
571 
572 			if (work->pending_flip_obj) {
573 				seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
574 				seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
575 			}
576 		}
577 		spin_unlock_irq(&dev->event_lock);
578 	}
579 
580 	mutex_unlock(&dev->struct_mutex);
581 
582 	return 0;
583 }
584 
585 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
586 {
587 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
588 	struct drm_device *dev = &dev_priv->drm;
589 	struct drm_i915_gem_object *obj;
590 	struct intel_engine_cs *engine;
591 	enum intel_engine_id id;
592 	int total = 0;
593 	int ret, j;
594 
595 	ret = mutex_lock_interruptible(&dev->struct_mutex);
596 	if (ret)
597 		return ret;
598 
599 	for_each_engine(engine, dev_priv, id) {
600 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
601 			int count;
602 
603 			count = 0;
604 			list_for_each_entry(obj,
605 					    &engine->batch_pool.cache_list[j],
606 					    batch_pool_link)
607 				count++;
608 			seq_printf(m, "%s cache[%d]: %d objects\n",
609 				   engine->name, j, count);
610 
611 			list_for_each_entry(obj,
612 					    &engine->batch_pool.cache_list[j],
613 					    batch_pool_link) {
614 				seq_puts(m, "   ");
615 				describe_obj(m, obj);
616 				seq_putc(m, '\n');
617 			}
618 
619 			total += count;
620 		}
621 	}
622 
623 	seq_printf(m, "total: %d\n", total);
624 
625 	mutex_unlock(&dev->struct_mutex);
626 
627 	return 0;
628 }
629 
630 static void print_request(struct seq_file *m,
631 			  struct drm_i915_gem_request *rq,
632 			  const char *prefix)
633 {
634 	seq_printf(m, "%s%x [%x:%x] @ %d: %s\n", prefix,
635 		   rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
636 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
637 		   rq->timeline->common->name);
638 }
639 
640 static int i915_gem_request_info(struct seq_file *m, void *data)
641 {
642 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
643 	struct drm_device *dev = &dev_priv->drm;
644 	struct drm_i915_gem_request *req;
645 	struct intel_engine_cs *engine;
646 	enum intel_engine_id id;
647 	int ret, any;
648 
649 	ret = mutex_lock_interruptible(&dev->struct_mutex);
650 	if (ret)
651 		return ret;
652 
653 	any = 0;
654 	for_each_engine(engine, dev_priv, id) {
655 		int count;
656 
657 		count = 0;
658 		list_for_each_entry(req, &engine->timeline->requests, link)
659 			count++;
660 		if (count == 0)
661 			continue;
662 
663 		seq_printf(m, "%s requests: %d\n", engine->name, count);
664 		list_for_each_entry(req, &engine->timeline->requests, link)
665 			print_request(m, req, "    ");
666 
667 		any++;
668 	}
669 	mutex_unlock(&dev->struct_mutex);
670 
671 	if (any == 0)
672 		seq_puts(m, "No requests\n");
673 
674 	return 0;
675 }
676 
677 static void i915_ring_seqno_info(struct seq_file *m,
678 				 struct intel_engine_cs *engine)
679 {
680 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
681 	struct rb_node *rb;
682 
683 	seq_printf(m, "Current sequence (%s): %x\n",
684 		   engine->name, intel_engine_get_seqno(engine));
685 
686 	spin_lock_irq(&b->lock);
687 	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
688 		struct intel_wait *w = container_of(rb, typeof(*w), node);
689 
690 		seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
691 			   engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
692 	}
693 	spin_unlock_irq(&b->lock);
694 }
695 
696 static int i915_gem_seqno_info(struct seq_file *m, void *data)
697 {
698 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
699 	struct intel_engine_cs *engine;
700 	enum intel_engine_id id;
701 
702 	for_each_engine(engine, dev_priv, id)
703 		i915_ring_seqno_info(m, engine);
704 
705 	return 0;
706 }
707 
708 
709 static int i915_interrupt_info(struct seq_file *m, void *data)
710 {
711 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
712 	struct intel_engine_cs *engine;
713 	enum intel_engine_id id;
714 	int i, pipe;
715 
716 	intel_runtime_pm_get(dev_priv);
717 
718 	if (IS_CHERRYVIEW(dev_priv)) {
719 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
720 			   I915_READ(GEN8_MASTER_IRQ));
721 
722 		seq_printf(m, "Display IER:\t%08x\n",
723 			   I915_READ(VLV_IER));
724 		seq_printf(m, "Display IIR:\t%08x\n",
725 			   I915_READ(VLV_IIR));
726 		seq_printf(m, "Display IIR_RW:\t%08x\n",
727 			   I915_READ(VLV_IIR_RW));
728 		seq_printf(m, "Display IMR:\t%08x\n",
729 			   I915_READ(VLV_IMR));
730 		for_each_pipe(dev_priv, pipe) {
731 			enum intel_display_power_domain power_domain;
732 
733 			power_domain = POWER_DOMAIN_PIPE(pipe);
734 			if (!intel_display_power_get_if_enabled(dev_priv,
735 								power_domain)) {
736 				seq_printf(m, "Pipe %c power disabled\n",
737 					   pipe_name(pipe));
738 				continue;
739 			}
740 
741 			seq_printf(m, "Pipe %c stat:\t%08x\n",
742 				   pipe_name(pipe),
743 				   I915_READ(PIPESTAT(pipe)));
744 
745 			intel_display_power_put(dev_priv, power_domain);
746 		}
747 
748 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
749 		seq_printf(m, "Port hotplug:\t%08x\n",
750 			   I915_READ(PORT_HOTPLUG_EN));
751 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
752 			   I915_READ(VLV_DPFLIPSTAT));
753 		seq_printf(m, "DPINVGTT:\t%08x\n",
754 			   I915_READ(DPINVGTT));
755 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
756 
757 		for (i = 0; i < 4; i++) {
758 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
759 				   i, I915_READ(GEN8_GT_IMR(i)));
760 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
761 				   i, I915_READ(GEN8_GT_IIR(i)));
762 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
763 				   i, I915_READ(GEN8_GT_IER(i)));
764 		}
765 
766 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
767 			   I915_READ(GEN8_PCU_IMR));
768 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
769 			   I915_READ(GEN8_PCU_IIR));
770 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
771 			   I915_READ(GEN8_PCU_IER));
772 	} else if (INTEL_GEN(dev_priv) >= 8) {
773 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
774 			   I915_READ(GEN8_MASTER_IRQ));
775 
776 		for (i = 0; i < 4; i++) {
777 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
778 				   i, I915_READ(GEN8_GT_IMR(i)));
779 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
780 				   i, I915_READ(GEN8_GT_IIR(i)));
781 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
782 				   i, I915_READ(GEN8_GT_IER(i)));
783 		}
784 
785 		for_each_pipe(dev_priv, pipe) {
786 			enum intel_display_power_domain power_domain;
787 
788 			power_domain = POWER_DOMAIN_PIPE(pipe);
789 			if (!intel_display_power_get_if_enabled(dev_priv,
790 								power_domain)) {
791 				seq_printf(m, "Pipe %c power disabled\n",
792 					   pipe_name(pipe));
793 				continue;
794 			}
795 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
796 				   pipe_name(pipe),
797 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
798 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
799 				   pipe_name(pipe),
800 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
801 			seq_printf(m, "Pipe %c IER:\t%08x\n",
802 				   pipe_name(pipe),
803 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
804 
805 			intel_display_power_put(dev_priv, power_domain);
806 		}
807 
808 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
809 			   I915_READ(GEN8_DE_PORT_IMR));
810 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
811 			   I915_READ(GEN8_DE_PORT_IIR));
812 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
813 			   I915_READ(GEN8_DE_PORT_IER));
814 
815 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
816 			   I915_READ(GEN8_DE_MISC_IMR));
817 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
818 			   I915_READ(GEN8_DE_MISC_IIR));
819 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
820 			   I915_READ(GEN8_DE_MISC_IER));
821 
822 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
823 			   I915_READ(GEN8_PCU_IMR));
824 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
825 			   I915_READ(GEN8_PCU_IIR));
826 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
827 			   I915_READ(GEN8_PCU_IER));
828 	} else if (IS_VALLEYVIEW(dev_priv)) {
829 		seq_printf(m, "Display IER:\t%08x\n",
830 			   I915_READ(VLV_IER));
831 		seq_printf(m, "Display IIR:\t%08x\n",
832 			   I915_READ(VLV_IIR));
833 		seq_printf(m, "Display IIR_RW:\t%08x\n",
834 			   I915_READ(VLV_IIR_RW));
835 		seq_printf(m, "Display IMR:\t%08x\n",
836 			   I915_READ(VLV_IMR));
837 		for_each_pipe(dev_priv, pipe)
838 			seq_printf(m, "Pipe %c stat:\t%08x\n",
839 				   pipe_name(pipe),
840 				   I915_READ(PIPESTAT(pipe)));
841 
842 		seq_printf(m, "Master IER:\t%08x\n",
843 			   I915_READ(VLV_MASTER_IER));
844 
845 		seq_printf(m, "Render IER:\t%08x\n",
846 			   I915_READ(GTIER));
847 		seq_printf(m, "Render IIR:\t%08x\n",
848 			   I915_READ(GTIIR));
849 		seq_printf(m, "Render IMR:\t%08x\n",
850 			   I915_READ(GTIMR));
851 
852 		seq_printf(m, "PM IER:\t\t%08x\n",
853 			   I915_READ(GEN6_PMIER));
854 		seq_printf(m, "PM IIR:\t\t%08x\n",
855 			   I915_READ(GEN6_PMIIR));
856 		seq_printf(m, "PM IMR:\t\t%08x\n",
857 			   I915_READ(GEN6_PMIMR));
858 
859 		seq_printf(m, "Port hotplug:\t%08x\n",
860 			   I915_READ(PORT_HOTPLUG_EN));
861 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
862 			   I915_READ(VLV_DPFLIPSTAT));
863 		seq_printf(m, "DPINVGTT:\t%08x\n",
864 			   I915_READ(DPINVGTT));
865 
866 	} else if (!HAS_PCH_SPLIT(dev_priv)) {
867 		seq_printf(m, "Interrupt enable:    %08x\n",
868 			   I915_READ(IER));
869 		seq_printf(m, "Interrupt identity:  %08x\n",
870 			   I915_READ(IIR));
871 		seq_printf(m, "Interrupt mask:      %08x\n",
872 			   I915_READ(IMR));
873 		for_each_pipe(dev_priv, pipe)
874 			seq_printf(m, "Pipe %c stat:         %08x\n",
875 				   pipe_name(pipe),
876 				   I915_READ(PIPESTAT(pipe)));
877 	} else {
878 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
879 			   I915_READ(DEIER));
880 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
881 			   I915_READ(DEIIR));
882 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
883 			   I915_READ(DEIMR));
884 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
885 			   I915_READ(SDEIER));
886 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
887 			   I915_READ(SDEIIR));
888 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
889 			   I915_READ(SDEIMR));
890 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
891 			   I915_READ(GTIER));
892 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
893 			   I915_READ(GTIIR));
894 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
895 			   I915_READ(GTIMR));
896 	}
897 	for_each_engine(engine, dev_priv, id) {
898 		if (INTEL_GEN(dev_priv) >= 6) {
899 			seq_printf(m,
900 				   "Graphics Interrupt mask (%s):	%08x\n",
901 				   engine->name, I915_READ_IMR(engine));
902 		}
903 		i915_ring_seqno_info(m, engine);
904 	}
905 	intel_runtime_pm_put(dev_priv);
906 
907 	return 0;
908 }
909 
910 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
911 {
912 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
913 	struct drm_device *dev = &dev_priv->drm;
914 	int i, ret;
915 
916 	ret = mutex_lock_interruptible(&dev->struct_mutex);
917 	if (ret)
918 		return ret;
919 
920 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
921 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
922 		struct i915_vma *vma = dev_priv->fence_regs[i].vma;
923 
924 		seq_printf(m, "Fence %d, pin count = %d, object = ",
925 			   i, dev_priv->fence_regs[i].pin_count);
926 		if (!vma)
927 			seq_puts(m, "unused");
928 		else
929 			describe_obj(m, vma->obj);
930 		seq_putc(m, '\n');
931 	}
932 
933 	mutex_unlock(&dev->struct_mutex);
934 	return 0;
935 }
936 
937 static int i915_hws_info(struct seq_file *m, void *data)
938 {
939 	struct drm_info_node *node = m->private;
940 	struct drm_i915_private *dev_priv = node_to_i915(node);
941 	struct intel_engine_cs *engine;
942 	const u32 *hws;
943 	int i;
944 
945 	engine = dev_priv->engine[(uintptr_t)node->info_ent->data];
946 	hws = engine->status_page.page_addr;
947 	if (hws == NULL)
948 		return 0;
949 
950 	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
951 		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
952 			   i * 4,
953 			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
954 	}
955 	return 0;
956 }
957 
958 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
959 
960 static ssize_t
961 i915_error_state_write(struct file *filp,
962 		       const char __user *ubuf,
963 		       size_t cnt,
964 		       loff_t *ppos)
965 {
966 	struct i915_error_state_file_priv *error_priv = filp->private_data;
967 
968 	DRM_DEBUG_DRIVER("Resetting error state\n");
969 	i915_destroy_error_state(error_priv->dev);
970 
971 	return cnt;
972 }
973 
974 static int i915_error_state_open(struct inode *inode, struct file *file)
975 {
976 	struct drm_i915_private *dev_priv = inode->i_private;
977 	struct i915_error_state_file_priv *error_priv;
978 
979 	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
980 	if (!error_priv)
981 		return -ENOMEM;
982 
983 	error_priv->dev = &dev_priv->drm;
984 
985 	i915_error_state_get(&dev_priv->drm, error_priv);
986 
987 	file->private_data = error_priv;
988 
989 	return 0;
990 }
991 
992 static int i915_error_state_release(struct inode *inode, struct file *file)
993 {
994 	struct i915_error_state_file_priv *error_priv = file->private_data;
995 
996 	i915_error_state_put(error_priv);
997 	kfree(error_priv);
998 
999 	return 0;
1000 }
1001 
1002 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1003 				     size_t count, loff_t *pos)
1004 {
1005 	struct i915_error_state_file_priv *error_priv = file->private_data;
1006 	struct drm_i915_error_state_buf error_str;
1007 	loff_t tmp_pos = 0;
1008 	ssize_t ret_count = 0;
1009 	int ret;
1010 
1011 	ret = i915_error_state_buf_init(&error_str,
1012 					to_i915(error_priv->dev), count, *pos);
1013 	if (ret)
1014 		return ret;
1015 
1016 	ret = i915_error_state_to_str(&error_str, error_priv);
1017 	if (ret)
1018 		goto out;
1019 
1020 	ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1021 					    error_str.buf,
1022 					    error_str.bytes);
1023 
1024 	if (ret_count < 0)
1025 		ret = ret_count;
1026 	else
1027 		*pos = error_str.start + ret_count;
1028 out:
1029 	i915_error_state_buf_release(&error_str);
1030 	return ret ?: ret_count;
1031 }
1032 
1033 static const struct file_operations i915_error_state_fops = {
1034 	.owner = THIS_MODULE,
1035 	.open = i915_error_state_open,
1036 	.read = i915_error_state_read,
1037 	.write = i915_error_state_write,
1038 	.llseek = default_llseek,
1039 	.release = i915_error_state_release,
1040 };
1041 
1042 #endif
1043 
1044 static int
1045 i915_next_seqno_get(void *data, u64 *val)
1046 {
1047 	struct drm_i915_private *dev_priv = data;
1048 
1049 	*val = atomic_read(&dev_priv->gt.global_timeline.next_seqno);
1050 	return 0;
1051 }
1052 
1053 static int
1054 i915_next_seqno_set(void *data, u64 val)
1055 {
1056 	struct drm_i915_private *dev_priv = data;
1057 	struct drm_device *dev = &dev_priv->drm;
1058 	int ret;
1059 
1060 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1061 	if (ret)
1062 		return ret;
1063 
1064 	ret = i915_gem_set_global_seqno(dev, val);
1065 	mutex_unlock(&dev->struct_mutex);
1066 
1067 	return ret;
1068 }
1069 
1070 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1071 			i915_next_seqno_get, i915_next_seqno_set,
1072 			"0x%llx\n");
1073 
1074 static int i915_frequency_info(struct seq_file *m, void *unused)
1075 {
1076 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1077 	struct drm_device *dev = &dev_priv->drm;
1078 	int ret = 0;
1079 
1080 	intel_runtime_pm_get(dev_priv);
1081 
1082 	if (IS_GEN5(dev_priv)) {
1083 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1084 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1085 
1086 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1087 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1088 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1089 			   MEMSTAT_VID_SHIFT);
1090 		seq_printf(m, "Current P-state: %d\n",
1091 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1092 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1093 		u32 freq_sts;
1094 
1095 		mutex_lock(&dev_priv->rps.hw_lock);
1096 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1097 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1098 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1099 
1100 		seq_printf(m, "actual GPU freq: %d MHz\n",
1101 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1102 
1103 		seq_printf(m, "current GPU freq: %d MHz\n",
1104 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1105 
1106 		seq_printf(m, "max GPU freq: %d MHz\n",
1107 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1108 
1109 		seq_printf(m, "min GPU freq: %d MHz\n",
1110 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1111 
1112 		seq_printf(m, "idle GPU freq: %d MHz\n",
1113 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1114 
1115 		seq_printf(m,
1116 			   "efficient (RPe) frequency: %d MHz\n",
1117 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1118 		mutex_unlock(&dev_priv->rps.hw_lock);
1119 	} else if (INTEL_GEN(dev_priv) >= 6) {
1120 		u32 rp_state_limits;
1121 		u32 gt_perf_status;
1122 		u32 rp_state_cap;
1123 		u32 rpmodectl, rpinclimit, rpdeclimit;
1124 		u32 rpstat, cagf, reqf;
1125 		u32 rpupei, rpcurup, rpprevup;
1126 		u32 rpdownei, rpcurdown, rpprevdown;
1127 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1128 		int max_freq;
1129 
1130 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1131 		if (IS_BROXTON(dev_priv)) {
1132 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1133 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1134 		} else {
1135 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1136 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1137 		}
1138 
1139 		/* RPSTAT1 is in the GT power well */
1140 		ret = mutex_lock_interruptible(&dev->struct_mutex);
1141 		if (ret)
1142 			goto out;
1143 
1144 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1145 
1146 		reqf = I915_READ(GEN6_RPNSWREQ);
1147 		if (IS_GEN9(dev_priv))
1148 			reqf >>= 23;
1149 		else {
1150 			reqf &= ~GEN6_TURBO_DISABLE;
1151 			if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1152 				reqf >>= 24;
1153 			else
1154 				reqf >>= 25;
1155 		}
1156 		reqf = intel_gpu_freq(dev_priv, reqf);
1157 
1158 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1159 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1160 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1161 
1162 		rpstat = I915_READ(GEN6_RPSTAT1);
1163 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1164 		rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1165 		rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1166 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1167 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1168 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1169 		if (IS_GEN9(dev_priv))
1170 			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1171 		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1172 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1173 		else
1174 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1175 		cagf = intel_gpu_freq(dev_priv, cagf);
1176 
1177 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1178 		mutex_unlock(&dev->struct_mutex);
1179 
1180 		if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1181 			pm_ier = I915_READ(GEN6_PMIER);
1182 			pm_imr = I915_READ(GEN6_PMIMR);
1183 			pm_isr = I915_READ(GEN6_PMISR);
1184 			pm_iir = I915_READ(GEN6_PMIIR);
1185 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1186 		} else {
1187 			pm_ier = I915_READ(GEN8_GT_IER(2));
1188 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1189 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1190 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1191 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1192 		}
1193 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1194 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1195 		seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
1196 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1197 		seq_printf(m, "Render p-state ratio: %d\n",
1198 			   (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
1199 		seq_printf(m, "Render p-state VID: %d\n",
1200 			   gt_perf_status & 0xff);
1201 		seq_printf(m, "Render p-state limit: %d\n",
1202 			   rp_state_limits & 0xff);
1203 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1204 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1205 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1206 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1207 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1208 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1209 		seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1210 			   rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1211 		seq_printf(m, "RP CUR UP: %d (%dus)\n",
1212 			   rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1213 		seq_printf(m, "RP PREV UP: %d (%dus)\n",
1214 			   rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1215 		seq_printf(m, "Up threshold: %d%%\n",
1216 			   dev_priv->rps.up_threshold);
1217 
1218 		seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1219 			   rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1220 		seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1221 			   rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1222 		seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1223 			   rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1224 		seq_printf(m, "Down threshold: %d%%\n",
1225 			   dev_priv->rps.down_threshold);
1226 
1227 		max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 0 :
1228 			    rp_state_cap >> 16) & 0xff;
1229 		max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1230 			     GEN9_FREQ_SCALER : 1);
1231 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1232 			   intel_gpu_freq(dev_priv, max_freq));
1233 
1234 		max_freq = (rp_state_cap & 0xff00) >> 8;
1235 		max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1236 			     GEN9_FREQ_SCALER : 1);
1237 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1238 			   intel_gpu_freq(dev_priv, max_freq));
1239 
1240 		max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 16 :
1241 			    rp_state_cap >> 0) & 0xff;
1242 		max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1243 			     GEN9_FREQ_SCALER : 1);
1244 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1245 			   intel_gpu_freq(dev_priv, max_freq));
1246 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1247 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1248 
1249 		seq_printf(m, "Current freq: %d MHz\n",
1250 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1251 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1252 		seq_printf(m, "Idle freq: %d MHz\n",
1253 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1254 		seq_printf(m, "Min freq: %d MHz\n",
1255 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1256 		seq_printf(m, "Boost freq: %d MHz\n",
1257 			   intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1258 		seq_printf(m, "Max freq: %d MHz\n",
1259 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1260 		seq_printf(m,
1261 			   "efficient (RPe) frequency: %d MHz\n",
1262 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1263 	} else {
1264 		seq_puts(m, "no P-state info available\n");
1265 	}
1266 
1267 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1268 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1269 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1270 
1271 out:
1272 	intel_runtime_pm_put(dev_priv);
1273 	return ret;
1274 }
1275 
1276 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1277 			       struct seq_file *m,
1278 			       struct intel_instdone *instdone)
1279 {
1280 	int slice;
1281 	int subslice;
1282 
1283 	seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1284 		   instdone->instdone);
1285 
1286 	if (INTEL_GEN(dev_priv) <= 3)
1287 		return;
1288 
1289 	seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1290 		   instdone->slice_common);
1291 
1292 	if (INTEL_GEN(dev_priv) <= 6)
1293 		return;
1294 
1295 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1296 		seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1297 			   slice, subslice, instdone->sampler[slice][subslice]);
1298 
1299 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1300 		seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1301 			   slice, subslice, instdone->row[slice][subslice]);
1302 }
1303 
1304 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1305 {
1306 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1307 	struct intel_engine_cs *engine;
1308 	u64 acthd[I915_NUM_ENGINES];
1309 	u32 seqno[I915_NUM_ENGINES];
1310 	struct intel_instdone instdone;
1311 	enum intel_engine_id id;
1312 
1313 	if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1314 		seq_printf(m, "Wedged\n");
1315 	if (test_bit(I915_RESET_IN_PROGRESS, &dev_priv->gpu_error.flags))
1316 		seq_printf(m, "Reset in progress\n");
1317 	if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1318 		seq_printf(m, "Waiter holding struct mutex\n");
1319 	if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1320 		seq_printf(m, "struct_mutex blocked for reset\n");
1321 
1322 	if (!i915.enable_hangcheck) {
1323 		seq_printf(m, "Hangcheck disabled\n");
1324 		return 0;
1325 	}
1326 
1327 	intel_runtime_pm_get(dev_priv);
1328 
1329 	for_each_engine(engine, dev_priv, id) {
1330 		acthd[id] = intel_engine_get_active_head(engine);
1331 		seqno[id] = intel_engine_get_seqno(engine);
1332 	}
1333 
1334 	intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1335 
1336 	intel_runtime_pm_put(dev_priv);
1337 
1338 	if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1339 		seq_printf(m, "Hangcheck active, fires in %dms\n",
1340 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1341 					    jiffies));
1342 	} else
1343 		seq_printf(m, "Hangcheck inactive\n");
1344 
1345 	for_each_engine(engine, dev_priv, id) {
1346 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
1347 		struct rb_node *rb;
1348 
1349 		seq_printf(m, "%s:\n", engine->name);
1350 		seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1351 			   engine->hangcheck.seqno, seqno[id],
1352 			   intel_engine_last_submit(engine));
1353 		seq_printf(m, "\twaiters? %s, fake irq active? %s\n",
1354 			   yesno(intel_engine_has_waiter(engine)),
1355 			   yesno(test_bit(engine->id,
1356 					  &dev_priv->gpu_error.missed_irq_rings)));
1357 		spin_lock_irq(&b->lock);
1358 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1359 			struct intel_wait *w = container_of(rb, typeof(*w), node);
1360 
1361 			seq_printf(m, "\t%s [%d] waiting for %x\n",
1362 				   w->tsk->comm, w->tsk->pid, w->seqno);
1363 		}
1364 		spin_unlock_irq(&b->lock);
1365 
1366 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1367 			   (long long)engine->hangcheck.acthd,
1368 			   (long long)acthd[id]);
1369 		seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1370 		seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1371 
1372 		if (engine->id == RCS) {
1373 			seq_puts(m, "\tinstdone read =\n");
1374 
1375 			i915_instdone_info(dev_priv, m, &instdone);
1376 
1377 			seq_puts(m, "\tinstdone accu =\n");
1378 
1379 			i915_instdone_info(dev_priv, m,
1380 					   &engine->hangcheck.instdone);
1381 		}
1382 	}
1383 
1384 	return 0;
1385 }
1386 
1387 static int ironlake_drpc_info(struct seq_file *m)
1388 {
1389 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1390 	u32 rgvmodectl, rstdbyctl;
1391 	u16 crstandvid;
1392 
1393 	intel_runtime_pm_get(dev_priv);
1394 
1395 	rgvmodectl = I915_READ(MEMMODECTL);
1396 	rstdbyctl = I915_READ(RSTDBYCTL);
1397 	crstandvid = I915_READ16(CRSTANDVID);
1398 
1399 	intel_runtime_pm_put(dev_priv);
1400 
1401 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1402 	seq_printf(m, "Boost freq: %d\n",
1403 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1404 		   MEMMODE_BOOST_FREQ_SHIFT);
1405 	seq_printf(m, "HW control enabled: %s\n",
1406 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1407 	seq_printf(m, "SW control enabled: %s\n",
1408 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1409 	seq_printf(m, "Gated voltage change: %s\n",
1410 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1411 	seq_printf(m, "Starting frequency: P%d\n",
1412 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1413 	seq_printf(m, "Max P-state: P%d\n",
1414 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1415 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1416 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1417 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1418 	seq_printf(m, "Render standby enabled: %s\n",
1419 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1420 	seq_puts(m, "Current RS state: ");
1421 	switch (rstdbyctl & RSX_STATUS_MASK) {
1422 	case RSX_STATUS_ON:
1423 		seq_puts(m, "on\n");
1424 		break;
1425 	case RSX_STATUS_RC1:
1426 		seq_puts(m, "RC1\n");
1427 		break;
1428 	case RSX_STATUS_RC1E:
1429 		seq_puts(m, "RC1E\n");
1430 		break;
1431 	case RSX_STATUS_RS1:
1432 		seq_puts(m, "RS1\n");
1433 		break;
1434 	case RSX_STATUS_RS2:
1435 		seq_puts(m, "RS2 (RC6)\n");
1436 		break;
1437 	case RSX_STATUS_RS3:
1438 		seq_puts(m, "RC3 (RC6+)\n");
1439 		break;
1440 	default:
1441 		seq_puts(m, "unknown\n");
1442 		break;
1443 	}
1444 
1445 	return 0;
1446 }
1447 
1448 static int i915_forcewake_domains(struct seq_file *m, void *data)
1449 {
1450 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1451 	struct intel_uncore_forcewake_domain *fw_domain;
1452 
1453 	spin_lock_irq(&dev_priv->uncore.lock);
1454 	for_each_fw_domain(fw_domain, dev_priv) {
1455 		seq_printf(m, "%s.wake_count = %u\n",
1456 			   intel_uncore_forcewake_domain_to_str(fw_domain->id),
1457 			   fw_domain->wake_count);
1458 	}
1459 	spin_unlock_irq(&dev_priv->uncore.lock);
1460 
1461 	return 0;
1462 }
1463 
1464 static int vlv_drpc_info(struct seq_file *m)
1465 {
1466 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1467 	u32 rpmodectl1, rcctl1, pw_status;
1468 
1469 	intel_runtime_pm_get(dev_priv);
1470 
1471 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1472 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1473 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1474 
1475 	intel_runtime_pm_put(dev_priv);
1476 
1477 	seq_printf(m, "Video Turbo Mode: %s\n",
1478 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1479 	seq_printf(m, "Turbo enabled: %s\n",
1480 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1481 	seq_printf(m, "HW control enabled: %s\n",
1482 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1483 	seq_printf(m, "SW control enabled: %s\n",
1484 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1485 			  GEN6_RP_MEDIA_SW_MODE));
1486 	seq_printf(m, "RC6 Enabled: %s\n",
1487 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1488 					GEN6_RC_CTL_EI_MODE(1))));
1489 	seq_printf(m, "Render Power Well: %s\n",
1490 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1491 	seq_printf(m, "Media Power Well: %s\n",
1492 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1493 
1494 	seq_printf(m, "Render RC6 residency since boot: %u\n",
1495 		   I915_READ(VLV_GT_RENDER_RC6));
1496 	seq_printf(m, "Media RC6 residency since boot: %u\n",
1497 		   I915_READ(VLV_GT_MEDIA_RC6));
1498 
1499 	return i915_forcewake_domains(m, NULL);
1500 }
1501 
1502 static int gen6_drpc_info(struct seq_file *m)
1503 {
1504 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1505 	struct drm_device *dev = &dev_priv->drm;
1506 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1507 	u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1508 	unsigned forcewake_count;
1509 	int count = 0, ret;
1510 
1511 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1512 	if (ret)
1513 		return ret;
1514 	intel_runtime_pm_get(dev_priv);
1515 
1516 	spin_lock_irq(&dev_priv->uncore.lock);
1517 	forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1518 	spin_unlock_irq(&dev_priv->uncore.lock);
1519 
1520 	if (forcewake_count) {
1521 		seq_puts(m, "RC information inaccurate because somebody "
1522 			    "holds a forcewake reference \n");
1523 	} else {
1524 		/* NB: we cannot use forcewake, else we read the wrong values */
1525 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1526 			udelay(10);
1527 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1528 	}
1529 
1530 	gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1531 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1532 
1533 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1534 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1535 	if (INTEL_GEN(dev_priv) >= 9) {
1536 		gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1537 		gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1538 	}
1539 	mutex_unlock(&dev->struct_mutex);
1540 	mutex_lock(&dev_priv->rps.hw_lock);
1541 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1542 	mutex_unlock(&dev_priv->rps.hw_lock);
1543 
1544 	intel_runtime_pm_put(dev_priv);
1545 
1546 	seq_printf(m, "Video Turbo Mode: %s\n",
1547 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1548 	seq_printf(m, "HW control enabled: %s\n",
1549 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1550 	seq_printf(m, "SW control enabled: %s\n",
1551 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1552 			  GEN6_RP_MEDIA_SW_MODE));
1553 	seq_printf(m, "RC1e Enabled: %s\n",
1554 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1555 	seq_printf(m, "RC6 Enabled: %s\n",
1556 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1557 	if (INTEL_GEN(dev_priv) >= 9) {
1558 		seq_printf(m, "Render Well Gating Enabled: %s\n",
1559 			yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1560 		seq_printf(m, "Media Well Gating Enabled: %s\n",
1561 			yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1562 	}
1563 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1564 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1565 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1566 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1567 	seq_puts(m, "Current RC state: ");
1568 	switch (gt_core_status & GEN6_RCn_MASK) {
1569 	case GEN6_RC0:
1570 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1571 			seq_puts(m, "Core Power Down\n");
1572 		else
1573 			seq_puts(m, "on\n");
1574 		break;
1575 	case GEN6_RC3:
1576 		seq_puts(m, "RC3\n");
1577 		break;
1578 	case GEN6_RC6:
1579 		seq_puts(m, "RC6\n");
1580 		break;
1581 	case GEN6_RC7:
1582 		seq_puts(m, "RC7\n");
1583 		break;
1584 	default:
1585 		seq_puts(m, "Unknown\n");
1586 		break;
1587 	}
1588 
1589 	seq_printf(m, "Core Power Down: %s\n",
1590 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1591 	if (INTEL_GEN(dev_priv) >= 9) {
1592 		seq_printf(m, "Render Power Well: %s\n",
1593 			(gen9_powergate_status &
1594 			 GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1595 		seq_printf(m, "Media Power Well: %s\n",
1596 			(gen9_powergate_status &
1597 			 GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1598 	}
1599 
1600 	/* Not exactly sure what this is */
1601 	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1602 		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1603 	seq_printf(m, "RC6 residency since boot: %u\n",
1604 		   I915_READ(GEN6_GT_GFX_RC6));
1605 	seq_printf(m, "RC6+ residency since boot: %u\n",
1606 		   I915_READ(GEN6_GT_GFX_RC6p));
1607 	seq_printf(m, "RC6++ residency since boot: %u\n",
1608 		   I915_READ(GEN6_GT_GFX_RC6pp));
1609 
1610 	seq_printf(m, "RC6   voltage: %dmV\n",
1611 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1612 	seq_printf(m, "RC6+  voltage: %dmV\n",
1613 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1614 	seq_printf(m, "RC6++ voltage: %dmV\n",
1615 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1616 	return i915_forcewake_domains(m, NULL);
1617 }
1618 
1619 static int i915_drpc_info(struct seq_file *m, void *unused)
1620 {
1621 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1622 
1623 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1624 		return vlv_drpc_info(m);
1625 	else if (INTEL_GEN(dev_priv) >= 6)
1626 		return gen6_drpc_info(m);
1627 	else
1628 		return ironlake_drpc_info(m);
1629 }
1630 
1631 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1632 {
1633 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1634 
1635 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1636 		   dev_priv->fb_tracking.busy_bits);
1637 
1638 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1639 		   dev_priv->fb_tracking.flip_bits);
1640 
1641 	return 0;
1642 }
1643 
1644 static int i915_fbc_status(struct seq_file *m, void *unused)
1645 {
1646 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1647 
1648 	if (!HAS_FBC(dev_priv)) {
1649 		seq_puts(m, "FBC unsupported on this chipset\n");
1650 		return 0;
1651 	}
1652 
1653 	intel_runtime_pm_get(dev_priv);
1654 	mutex_lock(&dev_priv->fbc.lock);
1655 
1656 	if (intel_fbc_is_active(dev_priv))
1657 		seq_puts(m, "FBC enabled\n");
1658 	else
1659 		seq_printf(m, "FBC disabled: %s\n",
1660 			   dev_priv->fbc.no_fbc_reason);
1661 
1662 	if (intel_fbc_is_active(dev_priv) && INTEL_GEN(dev_priv) >= 7) {
1663 		uint32_t mask = INTEL_GEN(dev_priv) >= 8 ?
1664 				BDW_FBC_COMPRESSION_MASK :
1665 				IVB_FBC_COMPRESSION_MASK;
1666 		seq_printf(m, "Compressing: %s\n",
1667 			   yesno(I915_READ(FBC_STATUS2) & mask));
1668 	}
1669 
1670 	mutex_unlock(&dev_priv->fbc.lock);
1671 	intel_runtime_pm_put(dev_priv);
1672 
1673 	return 0;
1674 }
1675 
1676 static int i915_fbc_fc_get(void *data, u64 *val)
1677 {
1678 	struct drm_i915_private *dev_priv = data;
1679 
1680 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1681 		return -ENODEV;
1682 
1683 	*val = dev_priv->fbc.false_color;
1684 
1685 	return 0;
1686 }
1687 
1688 static int i915_fbc_fc_set(void *data, u64 val)
1689 {
1690 	struct drm_i915_private *dev_priv = data;
1691 	u32 reg;
1692 
1693 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1694 		return -ENODEV;
1695 
1696 	mutex_lock(&dev_priv->fbc.lock);
1697 
1698 	reg = I915_READ(ILK_DPFC_CONTROL);
1699 	dev_priv->fbc.false_color = val;
1700 
1701 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1702 		   (reg | FBC_CTL_FALSE_COLOR) :
1703 		   (reg & ~FBC_CTL_FALSE_COLOR));
1704 
1705 	mutex_unlock(&dev_priv->fbc.lock);
1706 	return 0;
1707 }
1708 
1709 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1710 			i915_fbc_fc_get, i915_fbc_fc_set,
1711 			"%llu\n");
1712 
1713 static int i915_ips_status(struct seq_file *m, void *unused)
1714 {
1715 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1716 
1717 	if (!HAS_IPS(dev_priv)) {
1718 		seq_puts(m, "not supported\n");
1719 		return 0;
1720 	}
1721 
1722 	intel_runtime_pm_get(dev_priv);
1723 
1724 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1725 		   yesno(i915.enable_ips));
1726 
1727 	if (INTEL_GEN(dev_priv) >= 8) {
1728 		seq_puts(m, "Currently: unknown\n");
1729 	} else {
1730 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1731 			seq_puts(m, "Currently: enabled\n");
1732 		else
1733 			seq_puts(m, "Currently: disabled\n");
1734 	}
1735 
1736 	intel_runtime_pm_put(dev_priv);
1737 
1738 	return 0;
1739 }
1740 
1741 static int i915_sr_status(struct seq_file *m, void *unused)
1742 {
1743 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1744 	bool sr_enabled = false;
1745 
1746 	intel_runtime_pm_get(dev_priv);
1747 	intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1748 
1749 	if (HAS_PCH_SPLIT(dev_priv))
1750 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1751 	else if (IS_CRESTLINE(dev_priv) || IS_G4X(dev_priv) ||
1752 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1753 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1754 	else if (IS_I915GM(dev_priv))
1755 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1756 	else if (IS_PINEVIEW(dev_priv))
1757 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1758 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1759 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1760 
1761 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1762 	intel_runtime_pm_put(dev_priv);
1763 
1764 	seq_printf(m, "self-refresh: %s\n",
1765 		   sr_enabled ? "enabled" : "disabled");
1766 
1767 	return 0;
1768 }
1769 
1770 static int i915_emon_status(struct seq_file *m, void *unused)
1771 {
1772 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1773 	struct drm_device *dev = &dev_priv->drm;
1774 	unsigned long temp, chipset, gfx;
1775 	int ret;
1776 
1777 	if (!IS_GEN5(dev_priv))
1778 		return -ENODEV;
1779 
1780 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1781 	if (ret)
1782 		return ret;
1783 
1784 	temp = i915_mch_val(dev_priv);
1785 	chipset = i915_chipset_val(dev_priv);
1786 	gfx = i915_gfx_val(dev_priv);
1787 	mutex_unlock(&dev->struct_mutex);
1788 
1789 	seq_printf(m, "GMCH temp: %ld\n", temp);
1790 	seq_printf(m, "Chipset power: %ld\n", chipset);
1791 	seq_printf(m, "GFX power: %ld\n", gfx);
1792 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1793 
1794 	return 0;
1795 }
1796 
1797 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1798 {
1799 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1800 	int ret = 0;
1801 	int gpu_freq, ia_freq;
1802 	unsigned int max_gpu_freq, min_gpu_freq;
1803 
1804 	if (!HAS_LLC(dev_priv)) {
1805 		seq_puts(m, "unsupported on this chipset\n");
1806 		return 0;
1807 	}
1808 
1809 	intel_runtime_pm_get(dev_priv);
1810 
1811 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1812 	if (ret)
1813 		goto out;
1814 
1815 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1816 		/* Convert GT frequency to 50 HZ units */
1817 		min_gpu_freq =
1818 			dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1819 		max_gpu_freq =
1820 			dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1821 	} else {
1822 		min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1823 		max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1824 	}
1825 
1826 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1827 
1828 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1829 		ia_freq = gpu_freq;
1830 		sandybridge_pcode_read(dev_priv,
1831 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1832 				       &ia_freq);
1833 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1834 			   intel_gpu_freq(dev_priv, (gpu_freq *
1835 				(IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1836 				 GEN9_FREQ_SCALER : 1))),
1837 			   ((ia_freq >> 0) & 0xff) * 100,
1838 			   ((ia_freq >> 8) & 0xff) * 100);
1839 	}
1840 
1841 	mutex_unlock(&dev_priv->rps.hw_lock);
1842 
1843 out:
1844 	intel_runtime_pm_put(dev_priv);
1845 	return ret;
1846 }
1847 
1848 static int i915_opregion(struct seq_file *m, void *unused)
1849 {
1850 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1851 	struct drm_device *dev = &dev_priv->drm;
1852 	struct intel_opregion *opregion = &dev_priv->opregion;
1853 	int ret;
1854 
1855 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1856 	if (ret)
1857 		goto out;
1858 
1859 	if (opregion->header)
1860 		seq_write(m, opregion->header, OPREGION_SIZE);
1861 
1862 	mutex_unlock(&dev->struct_mutex);
1863 
1864 out:
1865 	return 0;
1866 }
1867 
1868 static int i915_vbt(struct seq_file *m, void *unused)
1869 {
1870 	struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1871 
1872 	if (opregion->vbt)
1873 		seq_write(m, opregion->vbt, opregion->vbt_size);
1874 
1875 	return 0;
1876 }
1877 
1878 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1879 {
1880 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1881 	struct drm_device *dev = &dev_priv->drm;
1882 	struct intel_framebuffer *fbdev_fb = NULL;
1883 	struct drm_framebuffer *drm_fb;
1884 	int ret;
1885 
1886 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1887 	if (ret)
1888 		return ret;
1889 
1890 #ifdef CONFIG_DRM_FBDEV_EMULATION
1891 	if (dev_priv->fbdev) {
1892 		fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1893 
1894 		seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1895 			   fbdev_fb->base.width,
1896 			   fbdev_fb->base.height,
1897 			   fbdev_fb->base.depth,
1898 			   fbdev_fb->base.bits_per_pixel,
1899 			   fbdev_fb->base.modifier[0],
1900 			   drm_framebuffer_read_refcount(&fbdev_fb->base));
1901 		describe_obj(m, fbdev_fb->obj);
1902 		seq_putc(m, '\n');
1903 	}
1904 #endif
1905 
1906 	mutex_lock(&dev->mode_config.fb_lock);
1907 	drm_for_each_fb(drm_fb, dev) {
1908 		struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1909 		if (fb == fbdev_fb)
1910 			continue;
1911 
1912 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1913 			   fb->base.width,
1914 			   fb->base.height,
1915 			   fb->base.depth,
1916 			   fb->base.bits_per_pixel,
1917 			   fb->base.modifier[0],
1918 			   drm_framebuffer_read_refcount(&fb->base));
1919 		describe_obj(m, fb->obj);
1920 		seq_putc(m, '\n');
1921 	}
1922 	mutex_unlock(&dev->mode_config.fb_lock);
1923 	mutex_unlock(&dev->struct_mutex);
1924 
1925 	return 0;
1926 }
1927 
1928 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1929 {
1930 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1931 		   ring->space, ring->head, ring->tail,
1932 		   ring->last_retired_head);
1933 }
1934 
1935 static int i915_context_status(struct seq_file *m, void *unused)
1936 {
1937 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1938 	struct drm_device *dev = &dev_priv->drm;
1939 	struct intel_engine_cs *engine;
1940 	struct i915_gem_context *ctx;
1941 	enum intel_engine_id id;
1942 	int ret;
1943 
1944 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1945 	if (ret)
1946 		return ret;
1947 
1948 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1949 		seq_printf(m, "HW context %u ", ctx->hw_id);
1950 		if (ctx->pid) {
1951 			struct task_struct *task;
1952 
1953 			task = get_pid_task(ctx->pid, PIDTYPE_PID);
1954 			if (task) {
1955 				seq_printf(m, "(%s [%d]) ",
1956 					   task->comm, task->pid);
1957 				put_task_struct(task);
1958 			}
1959 		} else if (IS_ERR(ctx->file_priv)) {
1960 			seq_puts(m, "(deleted) ");
1961 		} else {
1962 			seq_puts(m, "(kernel) ");
1963 		}
1964 
1965 		seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1966 		seq_putc(m, '\n');
1967 
1968 		for_each_engine(engine, dev_priv, id) {
1969 			struct intel_context *ce = &ctx->engine[engine->id];
1970 
1971 			seq_printf(m, "%s: ", engine->name);
1972 			seq_putc(m, ce->initialised ? 'I' : 'i');
1973 			if (ce->state)
1974 				describe_obj(m, ce->state->obj);
1975 			if (ce->ring)
1976 				describe_ctx_ring(m, ce->ring);
1977 			seq_putc(m, '\n');
1978 		}
1979 
1980 		seq_putc(m, '\n');
1981 	}
1982 
1983 	mutex_unlock(&dev->struct_mutex);
1984 
1985 	return 0;
1986 }
1987 
1988 static void i915_dump_lrc_obj(struct seq_file *m,
1989 			      struct i915_gem_context *ctx,
1990 			      struct intel_engine_cs *engine)
1991 {
1992 	struct i915_vma *vma = ctx->engine[engine->id].state;
1993 	struct page *page;
1994 	int j;
1995 
1996 	seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
1997 
1998 	if (!vma) {
1999 		seq_puts(m, "\tFake context\n");
2000 		return;
2001 	}
2002 
2003 	if (vma->flags & I915_VMA_GLOBAL_BIND)
2004 		seq_printf(m, "\tBound in GGTT at 0x%08x\n",
2005 			   i915_ggtt_offset(vma));
2006 
2007 	if (i915_gem_object_pin_pages(vma->obj)) {
2008 		seq_puts(m, "\tFailed to get pages for context object\n\n");
2009 		return;
2010 	}
2011 
2012 	page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
2013 	if (page) {
2014 		u32 *reg_state = kmap_atomic(page);
2015 
2016 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2017 			seq_printf(m,
2018 				   "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2019 				   j * 4,
2020 				   reg_state[j], reg_state[j + 1],
2021 				   reg_state[j + 2], reg_state[j + 3]);
2022 		}
2023 		kunmap_atomic(reg_state);
2024 	}
2025 
2026 	i915_gem_object_unpin_pages(vma->obj);
2027 	seq_putc(m, '\n');
2028 }
2029 
2030 static int i915_dump_lrc(struct seq_file *m, void *unused)
2031 {
2032 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2033 	struct drm_device *dev = &dev_priv->drm;
2034 	struct intel_engine_cs *engine;
2035 	struct i915_gem_context *ctx;
2036 	enum intel_engine_id id;
2037 	int ret;
2038 
2039 	if (!i915.enable_execlists) {
2040 		seq_printf(m, "Logical Ring Contexts are disabled\n");
2041 		return 0;
2042 	}
2043 
2044 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2045 	if (ret)
2046 		return ret;
2047 
2048 	list_for_each_entry(ctx, &dev_priv->context_list, link)
2049 		for_each_engine(engine, dev_priv, id)
2050 			i915_dump_lrc_obj(m, ctx, engine);
2051 
2052 	mutex_unlock(&dev->struct_mutex);
2053 
2054 	return 0;
2055 }
2056 
2057 static const char *swizzle_string(unsigned swizzle)
2058 {
2059 	switch (swizzle) {
2060 	case I915_BIT_6_SWIZZLE_NONE:
2061 		return "none";
2062 	case I915_BIT_6_SWIZZLE_9:
2063 		return "bit9";
2064 	case I915_BIT_6_SWIZZLE_9_10:
2065 		return "bit9/bit10";
2066 	case I915_BIT_6_SWIZZLE_9_11:
2067 		return "bit9/bit11";
2068 	case I915_BIT_6_SWIZZLE_9_10_11:
2069 		return "bit9/bit10/bit11";
2070 	case I915_BIT_6_SWIZZLE_9_17:
2071 		return "bit9/bit17";
2072 	case I915_BIT_6_SWIZZLE_9_10_17:
2073 		return "bit9/bit10/bit17";
2074 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2075 		return "unknown";
2076 	}
2077 
2078 	return "bug";
2079 }
2080 
2081 static int i915_swizzle_info(struct seq_file *m, void *data)
2082 {
2083 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2084 
2085 	intel_runtime_pm_get(dev_priv);
2086 
2087 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2088 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2089 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2090 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2091 
2092 	if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2093 		seq_printf(m, "DDC = 0x%08x\n",
2094 			   I915_READ(DCC));
2095 		seq_printf(m, "DDC2 = 0x%08x\n",
2096 			   I915_READ(DCC2));
2097 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2098 			   I915_READ16(C0DRB3));
2099 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2100 			   I915_READ16(C1DRB3));
2101 	} else if (INTEL_GEN(dev_priv) >= 6) {
2102 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2103 			   I915_READ(MAD_DIMM_C0));
2104 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2105 			   I915_READ(MAD_DIMM_C1));
2106 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2107 			   I915_READ(MAD_DIMM_C2));
2108 		seq_printf(m, "TILECTL = 0x%08x\n",
2109 			   I915_READ(TILECTL));
2110 		if (INTEL_GEN(dev_priv) >= 8)
2111 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2112 				   I915_READ(GAMTARBMODE));
2113 		else
2114 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2115 				   I915_READ(ARB_MODE));
2116 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2117 			   I915_READ(DISP_ARB_CTL));
2118 	}
2119 
2120 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2121 		seq_puts(m, "L-shaped memory detected\n");
2122 
2123 	intel_runtime_pm_put(dev_priv);
2124 
2125 	return 0;
2126 }
2127 
2128 static int per_file_ctx(int id, void *ptr, void *data)
2129 {
2130 	struct i915_gem_context *ctx = ptr;
2131 	struct seq_file *m = data;
2132 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2133 
2134 	if (!ppgtt) {
2135 		seq_printf(m, "  no ppgtt for context %d\n",
2136 			   ctx->user_handle);
2137 		return 0;
2138 	}
2139 
2140 	if (i915_gem_context_is_default(ctx))
2141 		seq_puts(m, "  default context:\n");
2142 	else
2143 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2144 	ppgtt->debug_dump(ppgtt, m);
2145 
2146 	return 0;
2147 }
2148 
2149 static void gen8_ppgtt_info(struct seq_file *m,
2150 			    struct drm_i915_private *dev_priv)
2151 {
2152 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2153 	struct intel_engine_cs *engine;
2154 	enum intel_engine_id id;
2155 	int i;
2156 
2157 	if (!ppgtt)
2158 		return;
2159 
2160 	for_each_engine(engine, dev_priv, id) {
2161 		seq_printf(m, "%s\n", engine->name);
2162 		for (i = 0; i < 4; i++) {
2163 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2164 			pdp <<= 32;
2165 			pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2166 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2167 		}
2168 	}
2169 }
2170 
2171 static void gen6_ppgtt_info(struct seq_file *m,
2172 			    struct drm_i915_private *dev_priv)
2173 {
2174 	struct intel_engine_cs *engine;
2175 	enum intel_engine_id id;
2176 
2177 	if (IS_GEN6(dev_priv))
2178 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2179 
2180 	for_each_engine(engine, dev_priv, id) {
2181 		seq_printf(m, "%s\n", engine->name);
2182 		if (IS_GEN7(dev_priv))
2183 			seq_printf(m, "GFX_MODE: 0x%08x\n",
2184 				   I915_READ(RING_MODE_GEN7(engine)));
2185 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2186 			   I915_READ(RING_PP_DIR_BASE(engine)));
2187 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2188 			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
2189 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2190 			   I915_READ(RING_PP_DIR_DCLV(engine)));
2191 	}
2192 	if (dev_priv->mm.aliasing_ppgtt) {
2193 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2194 
2195 		seq_puts(m, "aliasing PPGTT:\n");
2196 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2197 
2198 		ppgtt->debug_dump(ppgtt, m);
2199 	}
2200 
2201 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2202 }
2203 
2204 static int i915_ppgtt_info(struct seq_file *m, void *data)
2205 {
2206 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2207 	struct drm_device *dev = &dev_priv->drm;
2208 	struct drm_file *file;
2209 	int ret;
2210 
2211 	mutex_lock(&dev->filelist_mutex);
2212 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2213 	if (ret)
2214 		goto out_unlock;
2215 
2216 	intel_runtime_pm_get(dev_priv);
2217 
2218 	if (INTEL_GEN(dev_priv) >= 8)
2219 		gen8_ppgtt_info(m, dev_priv);
2220 	else if (INTEL_GEN(dev_priv) >= 6)
2221 		gen6_ppgtt_info(m, dev_priv);
2222 
2223 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2224 		struct drm_i915_file_private *file_priv = file->driver_priv;
2225 		struct task_struct *task;
2226 
2227 		task = get_pid_task(file->pid, PIDTYPE_PID);
2228 		if (!task) {
2229 			ret = -ESRCH;
2230 			goto out_rpm;
2231 		}
2232 		seq_printf(m, "\nproc: %s\n", task->comm);
2233 		put_task_struct(task);
2234 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2235 			     (void *)(unsigned long)m);
2236 	}
2237 
2238 out_rpm:
2239 	intel_runtime_pm_put(dev_priv);
2240 	mutex_unlock(&dev->struct_mutex);
2241 out_unlock:
2242 	mutex_unlock(&dev->filelist_mutex);
2243 	return ret;
2244 }
2245 
2246 static int count_irq_waiters(struct drm_i915_private *i915)
2247 {
2248 	struct intel_engine_cs *engine;
2249 	enum intel_engine_id id;
2250 	int count = 0;
2251 
2252 	for_each_engine(engine, i915, id)
2253 		count += intel_engine_has_waiter(engine);
2254 
2255 	return count;
2256 }
2257 
2258 static const char *rps_power_to_str(unsigned int power)
2259 {
2260 	static const char * const strings[] = {
2261 		[LOW_POWER] = "low power",
2262 		[BETWEEN] = "mixed",
2263 		[HIGH_POWER] = "high power",
2264 	};
2265 
2266 	if (power >= ARRAY_SIZE(strings) || !strings[power])
2267 		return "unknown";
2268 
2269 	return strings[power];
2270 }
2271 
2272 static int i915_rps_boost_info(struct seq_file *m, void *data)
2273 {
2274 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2275 	struct drm_device *dev = &dev_priv->drm;
2276 	struct drm_file *file;
2277 
2278 	seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2279 	seq_printf(m, "GPU busy? %s [%d requests]\n",
2280 		   yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
2281 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2282 	seq_printf(m, "Frequency requested %d\n",
2283 		   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
2284 	seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2285 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2286 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2287 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2288 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2289 	seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2290 		   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
2291 		   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2292 		   intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
2293 
2294 	mutex_lock(&dev->filelist_mutex);
2295 	spin_lock(&dev_priv->rps.client_lock);
2296 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2297 		struct drm_i915_file_private *file_priv = file->driver_priv;
2298 		struct task_struct *task;
2299 
2300 		rcu_read_lock();
2301 		task = pid_task(file->pid, PIDTYPE_PID);
2302 		seq_printf(m, "%s [%d]: %d boosts%s\n",
2303 			   task ? task->comm : "<unknown>",
2304 			   task ? task->pid : -1,
2305 			   file_priv->rps.boosts,
2306 			   list_empty(&file_priv->rps.link) ? "" : ", active");
2307 		rcu_read_unlock();
2308 	}
2309 	seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2310 	spin_unlock(&dev_priv->rps.client_lock);
2311 	mutex_unlock(&dev->filelist_mutex);
2312 
2313 	if (INTEL_GEN(dev_priv) >= 6 &&
2314 	    dev_priv->rps.enabled &&
2315 	    dev_priv->gt.active_requests) {
2316 		u32 rpup, rpupei;
2317 		u32 rpdown, rpdownei;
2318 
2319 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2320 		rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2321 		rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2322 		rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2323 		rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2324 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2325 
2326 		seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2327 			   rps_power_to_str(dev_priv->rps.power));
2328 		seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2329 			   100 * rpup / rpupei,
2330 			   dev_priv->rps.up_threshold);
2331 		seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2332 			   100 * rpdown / rpdownei,
2333 			   dev_priv->rps.down_threshold);
2334 	} else {
2335 		seq_puts(m, "\nRPS Autotuning inactive\n");
2336 	}
2337 
2338 	return 0;
2339 }
2340 
2341 static int i915_llc(struct seq_file *m, void *data)
2342 {
2343 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2344 	const bool edram = INTEL_GEN(dev_priv) > 8;
2345 
2346 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2347 	seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2348 		   intel_uncore_edram_size(dev_priv)/1024/1024);
2349 
2350 	return 0;
2351 }
2352 
2353 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2354 {
2355 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2356 	struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2357 	u32 tmp, i;
2358 
2359 	if (!HAS_GUC_UCODE(dev_priv))
2360 		return 0;
2361 
2362 	seq_printf(m, "GuC firmware status:\n");
2363 	seq_printf(m, "\tpath: %s\n",
2364 		guc_fw->guc_fw_path);
2365 	seq_printf(m, "\tfetch: %s\n",
2366 		intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2367 	seq_printf(m, "\tload: %s\n",
2368 		intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2369 	seq_printf(m, "\tversion wanted: %d.%d\n",
2370 		guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2371 	seq_printf(m, "\tversion found: %d.%d\n",
2372 		guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2373 	seq_printf(m, "\theader: offset is %d; size = %d\n",
2374 		guc_fw->header_offset, guc_fw->header_size);
2375 	seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2376 		guc_fw->ucode_offset, guc_fw->ucode_size);
2377 	seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2378 		guc_fw->rsa_offset, guc_fw->rsa_size);
2379 
2380 	tmp = I915_READ(GUC_STATUS);
2381 
2382 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2383 	seq_printf(m, "\tBootrom status = 0x%x\n",
2384 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2385 	seq_printf(m, "\tuKernel status = 0x%x\n",
2386 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2387 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2388 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2389 	seq_puts(m, "\nScratch registers:\n");
2390 	for (i = 0; i < 16; i++)
2391 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2392 
2393 	return 0;
2394 }
2395 
2396 static void i915_guc_log_info(struct seq_file *m,
2397 			      struct drm_i915_private *dev_priv)
2398 {
2399 	struct intel_guc *guc = &dev_priv->guc;
2400 
2401 	seq_puts(m, "\nGuC logging stats:\n");
2402 
2403 	seq_printf(m, "\tISR:   flush count %10u, overflow count %10u\n",
2404 		   guc->log.flush_count[GUC_ISR_LOG_BUFFER],
2405 		   guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
2406 
2407 	seq_printf(m, "\tDPC:   flush count %10u, overflow count %10u\n",
2408 		   guc->log.flush_count[GUC_DPC_LOG_BUFFER],
2409 		   guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
2410 
2411 	seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
2412 		   guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
2413 		   guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
2414 
2415 	seq_printf(m, "\tTotal flush interrupt count: %u\n",
2416 		   guc->log.flush_interrupt_count);
2417 
2418 	seq_printf(m, "\tCapture miss count: %u\n",
2419 		   guc->log.capture_miss_count);
2420 }
2421 
2422 static void i915_guc_client_info(struct seq_file *m,
2423 				 struct drm_i915_private *dev_priv,
2424 				 struct i915_guc_client *client)
2425 {
2426 	struct intel_engine_cs *engine;
2427 	enum intel_engine_id id;
2428 	uint64_t tot = 0;
2429 
2430 	seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2431 		client->priority, client->ctx_index, client->proc_desc_offset);
2432 	seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2433 		client->doorbell_id, client->doorbell_offset, client->cookie);
2434 	seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2435 		client->wq_size, client->wq_offset, client->wq_tail);
2436 
2437 	seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2438 	seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2439 	seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2440 
2441 	for_each_engine(engine, dev_priv, id) {
2442 		u64 submissions = client->submissions[id];
2443 		tot += submissions;
2444 		seq_printf(m, "\tSubmissions: %llu %s\n",
2445 				submissions, engine->name);
2446 	}
2447 	seq_printf(m, "\tTotal: %llu\n", tot);
2448 }
2449 
2450 static int i915_guc_info(struct seq_file *m, void *data)
2451 {
2452 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2453 	struct drm_device *dev = &dev_priv->drm;
2454 	struct intel_guc guc;
2455 	struct i915_guc_client client = {};
2456 	struct intel_engine_cs *engine;
2457 	enum intel_engine_id id;
2458 	u64 total = 0;
2459 
2460 	if (!HAS_GUC_SCHED(dev_priv))
2461 		return 0;
2462 
2463 	if (mutex_lock_interruptible(&dev->struct_mutex))
2464 		return 0;
2465 
2466 	/* Take a local copy of the GuC data, so we can dump it at leisure */
2467 	guc = dev_priv->guc;
2468 	if (guc.execbuf_client)
2469 		client = *guc.execbuf_client;
2470 
2471 	mutex_unlock(&dev->struct_mutex);
2472 
2473 	seq_printf(m, "Doorbell map:\n");
2474 	seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
2475 	seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
2476 
2477 	seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2478 	seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2479 	seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2480 	seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2481 	seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2482 
2483 	seq_printf(m, "\nGuC submissions:\n");
2484 	for_each_engine(engine, dev_priv, id) {
2485 		u64 submissions = guc.submissions[id];
2486 		total += submissions;
2487 		seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2488 			engine->name, submissions, guc.last_seqno[id]);
2489 	}
2490 	seq_printf(m, "\t%s: %llu\n", "Total", total);
2491 
2492 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2493 	i915_guc_client_info(m, dev_priv, &client);
2494 
2495 	i915_guc_log_info(m, dev_priv);
2496 
2497 	/* Add more as required ... */
2498 
2499 	return 0;
2500 }
2501 
2502 static int i915_guc_log_dump(struct seq_file *m, void *data)
2503 {
2504 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2505 	struct drm_i915_gem_object *obj;
2506 	int i = 0, pg;
2507 
2508 	if (!dev_priv->guc.log.vma)
2509 		return 0;
2510 
2511 	obj = dev_priv->guc.log.vma->obj;
2512 	for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
2513 		u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
2514 
2515 		for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2516 			seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2517 				   *(log + i), *(log + i + 1),
2518 				   *(log + i + 2), *(log + i + 3));
2519 
2520 		kunmap_atomic(log);
2521 	}
2522 
2523 	seq_putc(m, '\n');
2524 
2525 	return 0;
2526 }
2527 
2528 static int i915_guc_log_control_get(void *data, u64 *val)
2529 {
2530 	struct drm_device *dev = data;
2531 	struct drm_i915_private *dev_priv = to_i915(dev);
2532 
2533 	if (!dev_priv->guc.log.vma)
2534 		return -EINVAL;
2535 
2536 	*val = i915.guc_log_level;
2537 
2538 	return 0;
2539 }
2540 
2541 static int i915_guc_log_control_set(void *data, u64 val)
2542 {
2543 	struct drm_device *dev = data;
2544 	struct drm_i915_private *dev_priv = to_i915(dev);
2545 	int ret;
2546 
2547 	if (!dev_priv->guc.log.vma)
2548 		return -EINVAL;
2549 
2550 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2551 	if (ret)
2552 		return ret;
2553 
2554 	intel_runtime_pm_get(dev_priv);
2555 	ret = i915_guc_log_control(dev_priv, val);
2556 	intel_runtime_pm_put(dev_priv);
2557 
2558 	mutex_unlock(&dev->struct_mutex);
2559 	return ret;
2560 }
2561 
2562 DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
2563 			i915_guc_log_control_get, i915_guc_log_control_set,
2564 			"%lld\n");
2565 
2566 static int i915_edp_psr_status(struct seq_file *m, void *data)
2567 {
2568 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2569 	u32 psrperf = 0;
2570 	u32 stat[3];
2571 	enum pipe pipe;
2572 	bool enabled = false;
2573 
2574 	if (!HAS_PSR(dev_priv)) {
2575 		seq_puts(m, "PSR not supported\n");
2576 		return 0;
2577 	}
2578 
2579 	intel_runtime_pm_get(dev_priv);
2580 
2581 	mutex_lock(&dev_priv->psr.lock);
2582 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2583 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2584 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2585 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2586 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2587 		   dev_priv->psr.busy_frontbuffer_bits);
2588 	seq_printf(m, "Re-enable work scheduled: %s\n",
2589 		   yesno(work_busy(&dev_priv->psr.work.work)));
2590 
2591 	if (HAS_DDI(dev_priv))
2592 		enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2593 	else {
2594 		for_each_pipe(dev_priv, pipe) {
2595 			enum transcoder cpu_transcoder =
2596 				intel_pipe_to_cpu_transcoder(dev_priv, pipe);
2597 			enum intel_display_power_domain power_domain;
2598 
2599 			power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
2600 			if (!intel_display_power_get_if_enabled(dev_priv,
2601 								power_domain))
2602 				continue;
2603 
2604 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2605 				VLV_EDP_PSR_CURR_STATE_MASK;
2606 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2607 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2608 				enabled = true;
2609 
2610 			intel_display_power_put(dev_priv, power_domain);
2611 		}
2612 	}
2613 
2614 	seq_printf(m, "Main link in standby mode: %s\n",
2615 		   yesno(dev_priv->psr.link_standby));
2616 
2617 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2618 
2619 	if (!HAS_DDI(dev_priv))
2620 		for_each_pipe(dev_priv, pipe) {
2621 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2622 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2623 				seq_printf(m, " pipe %c", pipe_name(pipe));
2624 		}
2625 	seq_puts(m, "\n");
2626 
2627 	/*
2628 	 * VLV/CHV PSR has no kind of performance counter
2629 	 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2630 	 */
2631 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2632 		psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2633 			EDP_PSR_PERF_CNT_MASK;
2634 
2635 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2636 	}
2637 	mutex_unlock(&dev_priv->psr.lock);
2638 
2639 	intel_runtime_pm_put(dev_priv);
2640 	return 0;
2641 }
2642 
2643 static int i915_sink_crc(struct seq_file *m, void *data)
2644 {
2645 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2646 	struct drm_device *dev = &dev_priv->drm;
2647 	struct intel_connector *connector;
2648 	struct intel_dp *intel_dp = NULL;
2649 	int ret;
2650 	u8 crc[6];
2651 
2652 	drm_modeset_lock_all(dev);
2653 	for_each_intel_connector(dev, connector) {
2654 		struct drm_crtc *crtc;
2655 
2656 		if (!connector->base.state->best_encoder)
2657 			continue;
2658 
2659 		crtc = connector->base.state->crtc;
2660 		if (!crtc->state->active)
2661 			continue;
2662 
2663 		if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2664 			continue;
2665 
2666 		intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2667 
2668 		ret = intel_dp_sink_crc(intel_dp, crc);
2669 		if (ret)
2670 			goto out;
2671 
2672 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2673 			   crc[0], crc[1], crc[2],
2674 			   crc[3], crc[4], crc[5]);
2675 		goto out;
2676 	}
2677 	ret = -ENODEV;
2678 out:
2679 	drm_modeset_unlock_all(dev);
2680 	return ret;
2681 }
2682 
2683 static int i915_energy_uJ(struct seq_file *m, void *data)
2684 {
2685 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2686 	u64 power;
2687 	u32 units;
2688 
2689 	if (INTEL_GEN(dev_priv) < 6)
2690 		return -ENODEV;
2691 
2692 	intel_runtime_pm_get(dev_priv);
2693 
2694 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2695 	power = (power & 0x1f00) >> 8;
2696 	units = 1000000 / (1 << power); /* convert to uJ */
2697 	power = I915_READ(MCH_SECP_NRG_STTS);
2698 	power *= units;
2699 
2700 	intel_runtime_pm_put(dev_priv);
2701 
2702 	seq_printf(m, "%llu", (long long unsigned)power);
2703 
2704 	return 0;
2705 }
2706 
2707 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2708 {
2709 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2710 	struct pci_dev *pdev = dev_priv->drm.pdev;
2711 
2712 	if (!HAS_RUNTIME_PM(dev_priv))
2713 		seq_puts(m, "Runtime power management not supported\n");
2714 
2715 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2716 	seq_printf(m, "IRQs disabled: %s\n",
2717 		   yesno(!intel_irqs_enabled(dev_priv)));
2718 #ifdef CONFIG_PM
2719 	seq_printf(m, "Usage count: %d\n",
2720 		   atomic_read(&dev_priv->drm.dev->power.usage_count));
2721 #else
2722 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2723 #endif
2724 	seq_printf(m, "PCI device power state: %s [%d]\n",
2725 		   pci_power_name(pdev->current_state),
2726 		   pdev->current_state);
2727 
2728 	return 0;
2729 }
2730 
2731 static int i915_power_domain_info(struct seq_file *m, void *unused)
2732 {
2733 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2734 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2735 	int i;
2736 
2737 	mutex_lock(&power_domains->lock);
2738 
2739 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2740 	for (i = 0; i < power_domains->power_well_count; i++) {
2741 		struct i915_power_well *power_well;
2742 		enum intel_display_power_domain power_domain;
2743 
2744 		power_well = &power_domains->power_wells[i];
2745 		seq_printf(m, "%-25s %d\n", power_well->name,
2746 			   power_well->count);
2747 
2748 		for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2749 		     power_domain++) {
2750 			if (!(BIT(power_domain) & power_well->domains))
2751 				continue;
2752 
2753 			seq_printf(m, "  %-23s %d\n",
2754 				 intel_display_power_domain_str(power_domain),
2755 				 power_domains->domain_use_count[power_domain]);
2756 		}
2757 	}
2758 
2759 	mutex_unlock(&power_domains->lock);
2760 
2761 	return 0;
2762 }
2763 
2764 static int i915_dmc_info(struct seq_file *m, void *unused)
2765 {
2766 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2767 	struct intel_csr *csr;
2768 
2769 	if (!HAS_CSR(dev_priv)) {
2770 		seq_puts(m, "not supported\n");
2771 		return 0;
2772 	}
2773 
2774 	csr = &dev_priv->csr;
2775 
2776 	intel_runtime_pm_get(dev_priv);
2777 
2778 	seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2779 	seq_printf(m, "path: %s\n", csr->fw_path);
2780 
2781 	if (!csr->dmc_payload)
2782 		goto out;
2783 
2784 	seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2785 		   CSR_VERSION_MINOR(csr->version));
2786 
2787 	if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
2788 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2789 			   I915_READ(SKL_CSR_DC3_DC5_COUNT));
2790 		seq_printf(m, "DC5 -> DC6 count: %d\n",
2791 			   I915_READ(SKL_CSR_DC5_DC6_COUNT));
2792 	} else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2793 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2794 			   I915_READ(BXT_CSR_DC3_DC5_COUNT));
2795 	}
2796 
2797 out:
2798 	seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2799 	seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2800 	seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2801 
2802 	intel_runtime_pm_put(dev_priv);
2803 
2804 	return 0;
2805 }
2806 
2807 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2808 				 struct drm_display_mode *mode)
2809 {
2810 	int i;
2811 
2812 	for (i = 0; i < tabs; i++)
2813 		seq_putc(m, '\t');
2814 
2815 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2816 		   mode->base.id, mode->name,
2817 		   mode->vrefresh, mode->clock,
2818 		   mode->hdisplay, mode->hsync_start,
2819 		   mode->hsync_end, mode->htotal,
2820 		   mode->vdisplay, mode->vsync_start,
2821 		   mode->vsync_end, mode->vtotal,
2822 		   mode->type, mode->flags);
2823 }
2824 
2825 static void intel_encoder_info(struct seq_file *m,
2826 			       struct intel_crtc *intel_crtc,
2827 			       struct intel_encoder *intel_encoder)
2828 {
2829 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2830 	struct drm_device *dev = &dev_priv->drm;
2831 	struct drm_crtc *crtc = &intel_crtc->base;
2832 	struct intel_connector *intel_connector;
2833 	struct drm_encoder *encoder;
2834 
2835 	encoder = &intel_encoder->base;
2836 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2837 		   encoder->base.id, encoder->name);
2838 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2839 		struct drm_connector *connector = &intel_connector->base;
2840 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2841 			   connector->base.id,
2842 			   connector->name,
2843 			   drm_get_connector_status_name(connector->status));
2844 		if (connector->status == connector_status_connected) {
2845 			struct drm_display_mode *mode = &crtc->mode;
2846 			seq_printf(m, ", mode:\n");
2847 			intel_seq_print_mode(m, 2, mode);
2848 		} else {
2849 			seq_putc(m, '\n');
2850 		}
2851 	}
2852 }
2853 
2854 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2855 {
2856 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2857 	struct drm_device *dev = &dev_priv->drm;
2858 	struct drm_crtc *crtc = &intel_crtc->base;
2859 	struct intel_encoder *intel_encoder;
2860 	struct drm_plane_state *plane_state = crtc->primary->state;
2861 	struct drm_framebuffer *fb = plane_state->fb;
2862 
2863 	if (fb)
2864 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2865 			   fb->base.id, plane_state->src_x >> 16,
2866 			   plane_state->src_y >> 16, fb->width, fb->height);
2867 	else
2868 		seq_puts(m, "\tprimary plane disabled\n");
2869 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2870 		intel_encoder_info(m, intel_crtc, intel_encoder);
2871 }
2872 
2873 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2874 {
2875 	struct drm_display_mode *mode = panel->fixed_mode;
2876 
2877 	seq_printf(m, "\tfixed mode:\n");
2878 	intel_seq_print_mode(m, 2, mode);
2879 }
2880 
2881 static void intel_dp_info(struct seq_file *m,
2882 			  struct intel_connector *intel_connector)
2883 {
2884 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2885 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2886 
2887 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2888 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2889 	if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2890 		intel_panel_info(m, &intel_connector->panel);
2891 
2892 	drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2893 				&intel_dp->aux);
2894 }
2895 
2896 static void intel_hdmi_info(struct seq_file *m,
2897 			    struct intel_connector *intel_connector)
2898 {
2899 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2900 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2901 
2902 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2903 }
2904 
2905 static void intel_lvds_info(struct seq_file *m,
2906 			    struct intel_connector *intel_connector)
2907 {
2908 	intel_panel_info(m, &intel_connector->panel);
2909 }
2910 
2911 static void intel_connector_info(struct seq_file *m,
2912 				 struct drm_connector *connector)
2913 {
2914 	struct intel_connector *intel_connector = to_intel_connector(connector);
2915 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2916 	struct drm_display_mode *mode;
2917 
2918 	seq_printf(m, "connector %d: type %s, status: %s\n",
2919 		   connector->base.id, connector->name,
2920 		   drm_get_connector_status_name(connector->status));
2921 	if (connector->status == connector_status_connected) {
2922 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
2923 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2924 			   connector->display_info.width_mm,
2925 			   connector->display_info.height_mm);
2926 		seq_printf(m, "\tsubpixel order: %s\n",
2927 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2928 		seq_printf(m, "\tCEA rev: %d\n",
2929 			   connector->display_info.cea_rev);
2930 	}
2931 
2932 	if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
2933 		return;
2934 
2935 	switch (connector->connector_type) {
2936 	case DRM_MODE_CONNECTOR_DisplayPort:
2937 	case DRM_MODE_CONNECTOR_eDP:
2938 		intel_dp_info(m, intel_connector);
2939 		break;
2940 	case DRM_MODE_CONNECTOR_LVDS:
2941 		if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2942 			intel_lvds_info(m, intel_connector);
2943 		break;
2944 	case DRM_MODE_CONNECTOR_HDMIA:
2945 		if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
2946 		    intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
2947 			intel_hdmi_info(m, intel_connector);
2948 		break;
2949 	default:
2950 		break;
2951 	}
2952 
2953 	seq_printf(m, "\tmodes:\n");
2954 	list_for_each_entry(mode, &connector->modes, head)
2955 		intel_seq_print_mode(m, 2, mode);
2956 }
2957 
2958 static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
2959 {
2960 	u32 state;
2961 
2962 	if (IS_845G(dev_priv) || IS_I865G(dev_priv))
2963 		state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2964 	else
2965 		state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2966 
2967 	return state;
2968 }
2969 
2970 static bool cursor_position(struct drm_i915_private *dev_priv,
2971 			    int pipe, int *x, int *y)
2972 {
2973 	u32 pos;
2974 
2975 	pos = I915_READ(CURPOS(pipe));
2976 
2977 	*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2978 	if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2979 		*x = -*x;
2980 
2981 	*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2982 	if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2983 		*y = -*y;
2984 
2985 	return cursor_active(dev_priv, pipe);
2986 }
2987 
2988 static const char *plane_type(enum drm_plane_type type)
2989 {
2990 	switch (type) {
2991 	case DRM_PLANE_TYPE_OVERLAY:
2992 		return "OVL";
2993 	case DRM_PLANE_TYPE_PRIMARY:
2994 		return "PRI";
2995 	case DRM_PLANE_TYPE_CURSOR:
2996 		return "CUR";
2997 	/*
2998 	 * Deliberately omitting default: to generate compiler warnings
2999 	 * when a new drm_plane_type gets added.
3000 	 */
3001 	}
3002 
3003 	return "unknown";
3004 }
3005 
3006 static const char *plane_rotation(unsigned int rotation)
3007 {
3008 	static char buf[48];
3009 	/*
3010 	 * According to doc only one DRM_ROTATE_ is allowed but this
3011 	 * will print them all to visualize if the values are misused
3012 	 */
3013 	snprintf(buf, sizeof(buf),
3014 		 "%s%s%s%s%s%s(0x%08x)",
3015 		 (rotation & DRM_ROTATE_0) ? "0 " : "",
3016 		 (rotation & DRM_ROTATE_90) ? "90 " : "",
3017 		 (rotation & DRM_ROTATE_180) ? "180 " : "",
3018 		 (rotation & DRM_ROTATE_270) ? "270 " : "",
3019 		 (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
3020 		 (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
3021 		 rotation);
3022 
3023 	return buf;
3024 }
3025 
3026 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3027 {
3028 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3029 	struct drm_device *dev = &dev_priv->drm;
3030 	struct intel_plane *intel_plane;
3031 
3032 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3033 		struct drm_plane_state *state;
3034 		struct drm_plane *plane = &intel_plane->base;
3035 		char *format_name;
3036 
3037 		if (!plane->state) {
3038 			seq_puts(m, "plane->state is NULL!\n");
3039 			continue;
3040 		}
3041 
3042 		state = plane->state;
3043 
3044 		if (state->fb) {
3045 			format_name = drm_get_format_name(state->fb->pixel_format);
3046 		} else {
3047 			format_name = kstrdup("N/A", GFP_KERNEL);
3048 		}
3049 
3050 		seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3051 			   plane->base.id,
3052 			   plane_type(intel_plane->base.type),
3053 			   state->crtc_x, state->crtc_y,
3054 			   state->crtc_w, state->crtc_h,
3055 			   (state->src_x >> 16),
3056 			   ((state->src_x & 0xffff) * 15625) >> 10,
3057 			   (state->src_y >> 16),
3058 			   ((state->src_y & 0xffff) * 15625) >> 10,
3059 			   (state->src_w >> 16),
3060 			   ((state->src_w & 0xffff) * 15625) >> 10,
3061 			   (state->src_h >> 16),
3062 			   ((state->src_h & 0xffff) * 15625) >> 10,
3063 			   format_name,
3064 			   plane_rotation(state->rotation));
3065 
3066 		kfree(format_name);
3067 	}
3068 }
3069 
3070 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3071 {
3072 	struct intel_crtc_state *pipe_config;
3073 	int num_scalers = intel_crtc->num_scalers;
3074 	int i;
3075 
3076 	pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3077 
3078 	/* Not all platformas have a scaler */
3079 	if (num_scalers) {
3080 		seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3081 			   num_scalers,
3082 			   pipe_config->scaler_state.scaler_users,
3083 			   pipe_config->scaler_state.scaler_id);
3084 
3085 		for (i = 0; i < SKL_NUM_SCALERS; i++) {
3086 			struct intel_scaler *sc =
3087 					&pipe_config->scaler_state.scalers[i];
3088 
3089 			seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3090 				   i, yesno(sc->in_use), sc->mode);
3091 		}
3092 		seq_puts(m, "\n");
3093 	} else {
3094 		seq_puts(m, "\tNo scalers available on this platform\n");
3095 	}
3096 }
3097 
3098 static int i915_display_info(struct seq_file *m, void *unused)
3099 {
3100 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3101 	struct drm_device *dev = &dev_priv->drm;
3102 	struct intel_crtc *crtc;
3103 	struct drm_connector *connector;
3104 
3105 	intel_runtime_pm_get(dev_priv);
3106 	drm_modeset_lock_all(dev);
3107 	seq_printf(m, "CRTC info\n");
3108 	seq_printf(m, "---------\n");
3109 	for_each_intel_crtc(dev, crtc) {
3110 		bool active;
3111 		struct intel_crtc_state *pipe_config;
3112 		int x, y;
3113 
3114 		pipe_config = to_intel_crtc_state(crtc->base.state);
3115 
3116 		seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3117 			   crtc->base.base.id, pipe_name(crtc->pipe),
3118 			   yesno(pipe_config->base.active),
3119 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3120 			   yesno(pipe_config->dither), pipe_config->pipe_bpp);
3121 
3122 		if (pipe_config->base.active) {
3123 			intel_crtc_info(m, crtc);
3124 
3125 			active = cursor_position(dev_priv, crtc->pipe, &x, &y);
3126 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3127 				   yesno(crtc->cursor_base),
3128 				   x, y, crtc->base.cursor->state->crtc_w,
3129 				   crtc->base.cursor->state->crtc_h,
3130 				   crtc->cursor_addr, yesno(active));
3131 			intel_scaler_info(m, crtc);
3132 			intel_plane_info(m, crtc);
3133 		}
3134 
3135 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3136 			   yesno(!crtc->cpu_fifo_underrun_disabled),
3137 			   yesno(!crtc->pch_fifo_underrun_disabled));
3138 	}
3139 
3140 	seq_printf(m, "\n");
3141 	seq_printf(m, "Connector info\n");
3142 	seq_printf(m, "--------------\n");
3143 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3144 		intel_connector_info(m, connector);
3145 	}
3146 	drm_modeset_unlock_all(dev);
3147 	intel_runtime_pm_put(dev_priv);
3148 
3149 	return 0;
3150 }
3151 
3152 static int i915_engine_info(struct seq_file *m, void *unused)
3153 {
3154 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3155 	struct intel_engine_cs *engine;
3156 	enum intel_engine_id id;
3157 
3158 	intel_runtime_pm_get(dev_priv);
3159 
3160 	for_each_engine(engine, dev_priv, id) {
3161 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
3162 		struct drm_i915_gem_request *rq;
3163 		struct rb_node *rb;
3164 		u64 addr;
3165 
3166 		seq_printf(m, "%s\n", engine->name);
3167 		seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [score %d]\n",
3168 			   intel_engine_get_seqno(engine),
3169 			   intel_engine_last_submit(engine),
3170 			   engine->hangcheck.seqno,
3171 			   engine->hangcheck.score);
3172 
3173 		rcu_read_lock();
3174 
3175 		seq_printf(m, "\tRequests:\n");
3176 
3177 		rq = list_first_entry(&engine->timeline->requests,
3178 				      struct drm_i915_gem_request, link);
3179 		if (&rq->link != &engine->timeline->requests)
3180 			print_request(m, rq, "\t\tfirst  ");
3181 
3182 		rq = list_last_entry(&engine->timeline->requests,
3183 				     struct drm_i915_gem_request, link);
3184 		if (&rq->link != &engine->timeline->requests)
3185 			print_request(m, rq, "\t\tlast   ");
3186 
3187 		rq = i915_gem_find_active_request(engine);
3188 		if (rq) {
3189 			print_request(m, rq, "\t\tactive ");
3190 			seq_printf(m,
3191 				   "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
3192 				   rq->head, rq->postfix, rq->tail,
3193 				   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
3194 				   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
3195 		}
3196 
3197 		seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
3198 			   I915_READ(RING_START(engine->mmio_base)),
3199 			   rq ? i915_ggtt_offset(rq->ring->vma) : 0);
3200 		seq_printf(m, "\tRING_HEAD:  0x%08x [0x%08x]\n",
3201 			   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
3202 			   rq ? rq->ring->head : 0);
3203 		seq_printf(m, "\tRING_TAIL:  0x%08x [0x%08x]\n",
3204 			   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
3205 			   rq ? rq->ring->tail : 0);
3206 		seq_printf(m, "\tRING_CTL:   0x%08x [%s]\n",
3207 			   I915_READ(RING_CTL(engine->mmio_base)),
3208 			   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
3209 
3210 		rcu_read_unlock();
3211 
3212 		addr = intel_engine_get_active_head(engine);
3213 		seq_printf(m, "\tACTHD:  0x%08x_%08x\n",
3214 			   upper_32_bits(addr), lower_32_bits(addr));
3215 		addr = intel_engine_get_last_batch_head(engine);
3216 		seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
3217 			   upper_32_bits(addr), lower_32_bits(addr));
3218 
3219 		if (i915.enable_execlists) {
3220 			u32 ptr, read, write;
3221 
3222 			seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
3223 				   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
3224 				   I915_READ(RING_EXECLIST_STATUS_HI(engine)));
3225 
3226 			ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
3227 			read = GEN8_CSB_READ_PTR(ptr);
3228 			write = GEN8_CSB_WRITE_PTR(ptr);
3229 			seq_printf(m, "\tExeclist CSB read %d, write %d\n",
3230 				   read, write);
3231 			if (read >= GEN8_CSB_ENTRIES)
3232 				read = 0;
3233 			if (write >= GEN8_CSB_ENTRIES)
3234 				write = 0;
3235 			if (read > write)
3236 				write += GEN8_CSB_ENTRIES;
3237 			while (read < write) {
3238 				unsigned int idx = ++read % GEN8_CSB_ENTRIES;
3239 
3240 				seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
3241 					   idx,
3242 					   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
3243 					   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
3244 			}
3245 
3246 			rcu_read_lock();
3247 			rq = READ_ONCE(engine->execlist_port[0].request);
3248 			if (rq)
3249 				print_request(m, rq, "\t\tELSP[0] ");
3250 			else
3251 				seq_printf(m, "\t\tELSP[0] idle\n");
3252 			rq = READ_ONCE(engine->execlist_port[1].request);
3253 			if (rq)
3254 				print_request(m, rq, "\t\tELSP[1] ");
3255 			else
3256 				seq_printf(m, "\t\tELSP[1] idle\n");
3257 			rcu_read_unlock();
3258 
3259 			spin_lock_irq(&engine->execlist_lock);
3260 			list_for_each_entry(rq, &engine->execlist_queue, execlist_link) {
3261 				print_request(m, rq, "\t\tQ ");
3262 			}
3263 			spin_unlock_irq(&engine->execlist_lock);
3264 		} else if (INTEL_GEN(dev_priv) > 6) {
3265 			seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
3266 				   I915_READ(RING_PP_DIR_BASE(engine)));
3267 			seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
3268 				   I915_READ(RING_PP_DIR_BASE_READ(engine)));
3269 			seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
3270 				   I915_READ(RING_PP_DIR_DCLV(engine)));
3271 		}
3272 
3273 		spin_lock_irq(&b->lock);
3274 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
3275 			struct intel_wait *w = container_of(rb, typeof(*w), node);
3276 
3277 			seq_printf(m, "\t%s [%d] waiting for %x\n",
3278 				   w->tsk->comm, w->tsk->pid, w->seqno);
3279 		}
3280 		spin_unlock_irq(&b->lock);
3281 
3282 		seq_puts(m, "\n");
3283 	}
3284 
3285 	intel_runtime_pm_put(dev_priv);
3286 
3287 	return 0;
3288 }
3289 
3290 static int i915_semaphore_status(struct seq_file *m, void *unused)
3291 {
3292 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3293 	struct drm_device *dev = &dev_priv->drm;
3294 	struct intel_engine_cs *engine;
3295 	int num_rings = INTEL_INFO(dev_priv)->num_rings;
3296 	enum intel_engine_id id;
3297 	int j, ret;
3298 
3299 	if (!i915.semaphores) {
3300 		seq_puts(m, "Semaphores are disabled\n");
3301 		return 0;
3302 	}
3303 
3304 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3305 	if (ret)
3306 		return ret;
3307 	intel_runtime_pm_get(dev_priv);
3308 
3309 	if (IS_BROADWELL(dev_priv)) {
3310 		struct page *page;
3311 		uint64_t *seqno;
3312 
3313 		page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3314 
3315 		seqno = (uint64_t *)kmap_atomic(page);
3316 		for_each_engine(engine, dev_priv, id) {
3317 			uint64_t offset;
3318 
3319 			seq_printf(m, "%s\n", engine->name);
3320 
3321 			seq_puts(m, "  Last signal:");
3322 			for (j = 0; j < num_rings; j++) {
3323 				offset = id * I915_NUM_ENGINES + j;
3324 				seq_printf(m, "0x%08llx (0x%02llx) ",
3325 					   seqno[offset], offset * 8);
3326 			}
3327 			seq_putc(m, '\n');
3328 
3329 			seq_puts(m, "  Last wait:  ");
3330 			for (j = 0; j < num_rings; j++) {
3331 				offset = id + (j * I915_NUM_ENGINES);
3332 				seq_printf(m, "0x%08llx (0x%02llx) ",
3333 					   seqno[offset], offset * 8);
3334 			}
3335 			seq_putc(m, '\n');
3336 
3337 		}
3338 		kunmap_atomic(seqno);
3339 	} else {
3340 		seq_puts(m, "  Last signal:");
3341 		for_each_engine(engine, dev_priv, id)
3342 			for (j = 0; j < num_rings; j++)
3343 				seq_printf(m, "0x%08x\n",
3344 					   I915_READ(engine->semaphore.mbox.signal[j]));
3345 		seq_putc(m, '\n');
3346 	}
3347 
3348 	intel_runtime_pm_put(dev_priv);
3349 	mutex_unlock(&dev->struct_mutex);
3350 	return 0;
3351 }
3352 
3353 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3354 {
3355 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3356 	struct drm_device *dev = &dev_priv->drm;
3357 	int i;
3358 
3359 	drm_modeset_lock_all(dev);
3360 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3361 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3362 
3363 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3364 		seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3365 			   pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3366 		seq_printf(m, " tracked hardware state:\n");
3367 		seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3368 		seq_printf(m, " dpll_md: 0x%08x\n",
3369 			   pll->config.hw_state.dpll_md);
3370 		seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3371 		seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3372 		seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3373 	}
3374 	drm_modeset_unlock_all(dev);
3375 
3376 	return 0;
3377 }
3378 
3379 static int i915_wa_registers(struct seq_file *m, void *unused)
3380 {
3381 	int i;
3382 	int ret;
3383 	struct intel_engine_cs *engine;
3384 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3385 	struct drm_device *dev = &dev_priv->drm;
3386 	struct i915_workarounds *workarounds = &dev_priv->workarounds;
3387 	enum intel_engine_id id;
3388 
3389 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3390 	if (ret)
3391 		return ret;
3392 
3393 	intel_runtime_pm_get(dev_priv);
3394 
3395 	seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3396 	for_each_engine(engine, dev_priv, id)
3397 		seq_printf(m, "HW whitelist count for %s: %d\n",
3398 			   engine->name, workarounds->hw_whitelist_count[id]);
3399 	for (i = 0; i < workarounds->count; ++i) {
3400 		i915_reg_t addr;
3401 		u32 mask, value, read;
3402 		bool ok;
3403 
3404 		addr = workarounds->reg[i].addr;
3405 		mask = workarounds->reg[i].mask;
3406 		value = workarounds->reg[i].value;
3407 		read = I915_READ(addr);
3408 		ok = (value & mask) == (read & mask);
3409 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3410 			   i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3411 	}
3412 
3413 	intel_runtime_pm_put(dev_priv);
3414 	mutex_unlock(&dev->struct_mutex);
3415 
3416 	return 0;
3417 }
3418 
3419 static int i915_ddb_info(struct seq_file *m, void *unused)
3420 {
3421 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3422 	struct drm_device *dev = &dev_priv->drm;
3423 	struct skl_ddb_allocation *ddb;
3424 	struct skl_ddb_entry *entry;
3425 	enum pipe pipe;
3426 	int plane;
3427 
3428 	if (INTEL_GEN(dev_priv) < 9)
3429 		return 0;
3430 
3431 	drm_modeset_lock_all(dev);
3432 
3433 	ddb = &dev_priv->wm.skl_hw.ddb;
3434 
3435 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3436 
3437 	for_each_pipe(dev_priv, pipe) {
3438 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3439 
3440 		for_each_universal_plane(dev_priv, pipe, plane) {
3441 			entry = &ddb->plane[pipe][plane];
3442 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3443 				   entry->start, entry->end,
3444 				   skl_ddb_entry_size(entry));
3445 		}
3446 
3447 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3448 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3449 			   entry->end, skl_ddb_entry_size(entry));
3450 	}
3451 
3452 	drm_modeset_unlock_all(dev);
3453 
3454 	return 0;
3455 }
3456 
3457 static void drrs_status_per_crtc(struct seq_file *m,
3458 				 struct drm_device *dev,
3459 				 struct intel_crtc *intel_crtc)
3460 {
3461 	struct drm_i915_private *dev_priv = to_i915(dev);
3462 	struct i915_drrs *drrs = &dev_priv->drrs;
3463 	int vrefresh = 0;
3464 	struct drm_connector *connector;
3465 
3466 	drm_for_each_connector(connector, dev) {
3467 		if (connector->state->crtc != &intel_crtc->base)
3468 			continue;
3469 
3470 		seq_printf(m, "%s:\n", connector->name);
3471 	}
3472 
3473 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3474 		seq_puts(m, "\tVBT: DRRS_type: Static");
3475 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3476 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3477 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3478 		seq_puts(m, "\tVBT: DRRS_type: None");
3479 	else
3480 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3481 
3482 	seq_puts(m, "\n\n");
3483 
3484 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3485 		struct intel_panel *panel;
3486 
3487 		mutex_lock(&drrs->mutex);
3488 		/* DRRS Supported */
3489 		seq_puts(m, "\tDRRS Supported: Yes\n");
3490 
3491 		/* disable_drrs() will make drrs->dp NULL */
3492 		if (!drrs->dp) {
3493 			seq_puts(m, "Idleness DRRS: Disabled");
3494 			mutex_unlock(&drrs->mutex);
3495 			return;
3496 		}
3497 
3498 		panel = &drrs->dp->attached_connector->panel;
3499 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3500 					drrs->busy_frontbuffer_bits);
3501 
3502 		seq_puts(m, "\n\t\t");
3503 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3504 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3505 			vrefresh = panel->fixed_mode->vrefresh;
3506 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3507 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3508 			vrefresh = panel->downclock_mode->vrefresh;
3509 		} else {
3510 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3511 						drrs->refresh_rate_type);
3512 			mutex_unlock(&drrs->mutex);
3513 			return;
3514 		}
3515 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3516 
3517 		seq_puts(m, "\n\t\t");
3518 		mutex_unlock(&drrs->mutex);
3519 	} else {
3520 		/* DRRS not supported. Print the VBT parameter*/
3521 		seq_puts(m, "\tDRRS Supported : No");
3522 	}
3523 	seq_puts(m, "\n");
3524 }
3525 
3526 static int i915_drrs_status(struct seq_file *m, void *unused)
3527 {
3528 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3529 	struct drm_device *dev = &dev_priv->drm;
3530 	struct intel_crtc *intel_crtc;
3531 	int active_crtc_cnt = 0;
3532 
3533 	drm_modeset_lock_all(dev);
3534 	for_each_intel_crtc(dev, intel_crtc) {
3535 		if (intel_crtc->base.state->active) {
3536 			active_crtc_cnt++;
3537 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3538 
3539 			drrs_status_per_crtc(m, dev, intel_crtc);
3540 		}
3541 	}
3542 	drm_modeset_unlock_all(dev);
3543 
3544 	if (!active_crtc_cnt)
3545 		seq_puts(m, "No active crtc found\n");
3546 
3547 	return 0;
3548 }
3549 
3550 struct pipe_crc_info {
3551 	const char *name;
3552 	struct drm_i915_private *dev_priv;
3553 	enum pipe pipe;
3554 };
3555 
3556 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3557 {
3558 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3559 	struct drm_device *dev = &dev_priv->drm;
3560 	struct intel_encoder *intel_encoder;
3561 	struct intel_digital_port *intel_dig_port;
3562 	struct drm_connector *connector;
3563 
3564 	drm_modeset_lock_all(dev);
3565 	drm_for_each_connector(connector, dev) {
3566 		if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3567 			continue;
3568 
3569 		intel_encoder = intel_attached_encoder(connector);
3570 		if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3571 			continue;
3572 
3573 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3574 		if (!intel_dig_port->dp.can_mst)
3575 			continue;
3576 
3577 		seq_printf(m, "MST Source Port %c\n",
3578 			   port_name(intel_dig_port->port));
3579 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3580 	}
3581 	drm_modeset_unlock_all(dev);
3582 	return 0;
3583 }
3584 
3585 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3586 {
3587 	struct pipe_crc_info *info = inode->i_private;
3588 	struct drm_i915_private *dev_priv = info->dev_priv;
3589 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3590 
3591 	if (info->pipe >= INTEL_INFO(dev_priv)->num_pipes)
3592 		return -ENODEV;
3593 
3594 	spin_lock_irq(&pipe_crc->lock);
3595 
3596 	if (pipe_crc->opened) {
3597 		spin_unlock_irq(&pipe_crc->lock);
3598 		return -EBUSY; /* already open */
3599 	}
3600 
3601 	pipe_crc->opened = true;
3602 	filep->private_data = inode->i_private;
3603 
3604 	spin_unlock_irq(&pipe_crc->lock);
3605 
3606 	return 0;
3607 }
3608 
3609 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3610 {
3611 	struct pipe_crc_info *info = inode->i_private;
3612 	struct drm_i915_private *dev_priv = info->dev_priv;
3613 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3614 
3615 	spin_lock_irq(&pipe_crc->lock);
3616 	pipe_crc->opened = false;
3617 	spin_unlock_irq(&pipe_crc->lock);
3618 
3619 	return 0;
3620 }
3621 
3622 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3623 #define PIPE_CRC_LINE_LEN	(6 * 8 + 5 + 1)
3624 /* account for \'0' */
3625 #define PIPE_CRC_BUFFER_LEN	(PIPE_CRC_LINE_LEN + 1)
3626 
3627 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3628 {
3629 	assert_spin_locked(&pipe_crc->lock);
3630 	return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3631 			INTEL_PIPE_CRC_ENTRIES_NR);
3632 }
3633 
3634 static ssize_t
3635 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3636 		   loff_t *pos)
3637 {
3638 	struct pipe_crc_info *info = filep->private_data;
3639 	struct drm_i915_private *dev_priv = info->dev_priv;
3640 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3641 	char buf[PIPE_CRC_BUFFER_LEN];
3642 	int n_entries;
3643 	ssize_t bytes_read;
3644 
3645 	/*
3646 	 * Don't allow user space to provide buffers not big enough to hold
3647 	 * a line of data.
3648 	 */
3649 	if (count < PIPE_CRC_LINE_LEN)
3650 		return -EINVAL;
3651 
3652 	if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3653 		return 0;
3654 
3655 	/* nothing to read */
3656 	spin_lock_irq(&pipe_crc->lock);
3657 	while (pipe_crc_data_count(pipe_crc) == 0) {
3658 		int ret;
3659 
3660 		if (filep->f_flags & O_NONBLOCK) {
3661 			spin_unlock_irq(&pipe_crc->lock);
3662 			return -EAGAIN;
3663 		}
3664 
3665 		ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3666 				pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3667 		if (ret) {
3668 			spin_unlock_irq(&pipe_crc->lock);
3669 			return ret;
3670 		}
3671 	}
3672 
3673 	/* We now have one or more entries to read */
3674 	n_entries = count / PIPE_CRC_LINE_LEN;
3675 
3676 	bytes_read = 0;
3677 	while (n_entries > 0) {
3678 		struct intel_pipe_crc_entry *entry =
3679 			&pipe_crc->entries[pipe_crc->tail];
3680 
3681 		if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3682 			     INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3683 			break;
3684 
3685 		BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3686 		pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3687 
3688 		bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3689 				       "%8u %8x %8x %8x %8x %8x\n",
3690 				       entry->frame, entry->crc[0],
3691 				       entry->crc[1], entry->crc[2],
3692 				       entry->crc[3], entry->crc[4]);
3693 
3694 		spin_unlock_irq(&pipe_crc->lock);
3695 
3696 		if (copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN))
3697 			return -EFAULT;
3698 
3699 		user_buf += PIPE_CRC_LINE_LEN;
3700 		n_entries--;
3701 
3702 		spin_lock_irq(&pipe_crc->lock);
3703 	}
3704 
3705 	spin_unlock_irq(&pipe_crc->lock);
3706 
3707 	return bytes_read;
3708 }
3709 
3710 static const struct file_operations i915_pipe_crc_fops = {
3711 	.owner = THIS_MODULE,
3712 	.open = i915_pipe_crc_open,
3713 	.read = i915_pipe_crc_read,
3714 	.release = i915_pipe_crc_release,
3715 };
3716 
3717 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3718 	{
3719 		.name = "i915_pipe_A_crc",
3720 		.pipe = PIPE_A,
3721 	},
3722 	{
3723 		.name = "i915_pipe_B_crc",
3724 		.pipe = PIPE_B,
3725 	},
3726 	{
3727 		.name = "i915_pipe_C_crc",
3728 		.pipe = PIPE_C,
3729 	},
3730 };
3731 
3732 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3733 				enum pipe pipe)
3734 {
3735 	struct drm_i915_private *dev_priv = to_i915(minor->dev);
3736 	struct dentry *ent;
3737 	struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3738 
3739 	info->dev_priv = dev_priv;
3740 	ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3741 				  &i915_pipe_crc_fops);
3742 	if (!ent)
3743 		return -ENOMEM;
3744 
3745 	return drm_add_fake_info_node(minor, ent, info);
3746 }
3747 
3748 static const char * const pipe_crc_sources[] = {
3749 	"none",
3750 	"plane1",
3751 	"plane2",
3752 	"pf",
3753 	"pipe",
3754 	"TV",
3755 	"DP-B",
3756 	"DP-C",
3757 	"DP-D",
3758 	"auto",
3759 };
3760 
3761 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3762 {
3763 	BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3764 	return pipe_crc_sources[source];
3765 }
3766 
3767 static int display_crc_ctl_show(struct seq_file *m, void *data)
3768 {
3769 	struct drm_i915_private *dev_priv = m->private;
3770 	int i;
3771 
3772 	for (i = 0; i < I915_MAX_PIPES; i++)
3773 		seq_printf(m, "%c %s\n", pipe_name(i),
3774 			   pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3775 
3776 	return 0;
3777 }
3778 
3779 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3780 {
3781 	return single_open(file, display_crc_ctl_show, inode->i_private);
3782 }
3783 
3784 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3785 				 uint32_t *val)
3786 {
3787 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3788 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3789 
3790 	switch (*source) {
3791 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3792 		*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3793 		break;
3794 	case INTEL_PIPE_CRC_SOURCE_NONE:
3795 		*val = 0;
3796 		break;
3797 	default:
3798 		return -EINVAL;
3799 	}
3800 
3801 	return 0;
3802 }
3803 
3804 static int i9xx_pipe_crc_auto_source(struct drm_i915_private *dev_priv,
3805 				     enum pipe pipe,
3806 				     enum intel_pipe_crc_source *source)
3807 {
3808 	struct drm_device *dev = &dev_priv->drm;
3809 	struct intel_encoder *encoder;
3810 	struct intel_crtc *crtc;
3811 	struct intel_digital_port *dig_port;
3812 	int ret = 0;
3813 
3814 	*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3815 
3816 	drm_modeset_lock_all(dev);
3817 	for_each_intel_encoder(dev, encoder) {
3818 		if (!encoder->base.crtc)
3819 			continue;
3820 
3821 		crtc = to_intel_crtc(encoder->base.crtc);
3822 
3823 		if (crtc->pipe != pipe)
3824 			continue;
3825 
3826 		switch (encoder->type) {
3827 		case INTEL_OUTPUT_TVOUT:
3828 			*source = INTEL_PIPE_CRC_SOURCE_TV;
3829 			break;
3830 		case INTEL_OUTPUT_DP:
3831 		case INTEL_OUTPUT_EDP:
3832 			dig_port = enc_to_dig_port(&encoder->base);
3833 			switch (dig_port->port) {
3834 			case PORT_B:
3835 				*source = INTEL_PIPE_CRC_SOURCE_DP_B;
3836 				break;
3837 			case PORT_C:
3838 				*source = INTEL_PIPE_CRC_SOURCE_DP_C;
3839 				break;
3840 			case PORT_D:
3841 				*source = INTEL_PIPE_CRC_SOURCE_DP_D;
3842 				break;
3843 			default:
3844 				WARN(1, "nonexisting DP port %c\n",
3845 				     port_name(dig_port->port));
3846 				break;
3847 			}
3848 			break;
3849 		default:
3850 			break;
3851 		}
3852 	}
3853 	drm_modeset_unlock_all(dev);
3854 
3855 	return ret;
3856 }
3857 
3858 static int vlv_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3859 				enum pipe pipe,
3860 				enum intel_pipe_crc_source *source,
3861 				uint32_t *val)
3862 {
3863 	bool need_stable_symbols = false;
3864 
3865 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3866 		int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3867 		if (ret)
3868 			return ret;
3869 	}
3870 
3871 	switch (*source) {
3872 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3873 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3874 		break;
3875 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3876 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3877 		need_stable_symbols = true;
3878 		break;
3879 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3880 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3881 		need_stable_symbols = true;
3882 		break;
3883 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3884 		if (!IS_CHERRYVIEW(dev_priv))
3885 			return -EINVAL;
3886 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3887 		need_stable_symbols = true;
3888 		break;
3889 	case INTEL_PIPE_CRC_SOURCE_NONE:
3890 		*val = 0;
3891 		break;
3892 	default:
3893 		return -EINVAL;
3894 	}
3895 
3896 	/*
3897 	 * When the pipe CRC tap point is after the transcoders we need
3898 	 * to tweak symbol-level features to produce a deterministic series of
3899 	 * symbols for a given frame. We need to reset those features only once
3900 	 * a frame (instead of every nth symbol):
3901 	 *   - DC-balance: used to ensure a better clock recovery from the data
3902 	 *     link (SDVO)
3903 	 *   - DisplayPort scrambling: used for EMI reduction
3904 	 */
3905 	if (need_stable_symbols) {
3906 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3907 
3908 		tmp |= DC_BALANCE_RESET_VLV;
3909 		switch (pipe) {
3910 		case PIPE_A:
3911 			tmp |= PIPE_A_SCRAMBLE_RESET;
3912 			break;
3913 		case PIPE_B:
3914 			tmp |= PIPE_B_SCRAMBLE_RESET;
3915 			break;
3916 		case PIPE_C:
3917 			tmp |= PIPE_C_SCRAMBLE_RESET;
3918 			break;
3919 		default:
3920 			return -EINVAL;
3921 		}
3922 		I915_WRITE(PORT_DFT2_G4X, tmp);
3923 	}
3924 
3925 	return 0;
3926 }
3927 
3928 static int i9xx_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3929 				 enum pipe pipe,
3930 				 enum intel_pipe_crc_source *source,
3931 				 uint32_t *val)
3932 {
3933 	bool need_stable_symbols = false;
3934 
3935 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3936 		int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3937 		if (ret)
3938 			return ret;
3939 	}
3940 
3941 	switch (*source) {
3942 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3943 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3944 		break;
3945 	case INTEL_PIPE_CRC_SOURCE_TV:
3946 		if (!SUPPORTS_TV(dev_priv))
3947 			return -EINVAL;
3948 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3949 		break;
3950 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3951 		if (!IS_G4X(dev_priv))
3952 			return -EINVAL;
3953 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3954 		need_stable_symbols = true;
3955 		break;
3956 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3957 		if (!IS_G4X(dev_priv))
3958 			return -EINVAL;
3959 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3960 		need_stable_symbols = true;
3961 		break;
3962 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3963 		if (!IS_G4X(dev_priv))
3964 			return -EINVAL;
3965 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3966 		need_stable_symbols = true;
3967 		break;
3968 	case INTEL_PIPE_CRC_SOURCE_NONE:
3969 		*val = 0;
3970 		break;
3971 	default:
3972 		return -EINVAL;
3973 	}
3974 
3975 	/*
3976 	 * When the pipe CRC tap point is after the transcoders we need
3977 	 * to tweak symbol-level features to produce a deterministic series of
3978 	 * symbols for a given frame. We need to reset those features only once
3979 	 * a frame (instead of every nth symbol):
3980 	 *   - DC-balance: used to ensure a better clock recovery from the data
3981 	 *     link (SDVO)
3982 	 *   - DisplayPort scrambling: used for EMI reduction
3983 	 */
3984 	if (need_stable_symbols) {
3985 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3986 
3987 		WARN_ON(!IS_G4X(dev_priv));
3988 
3989 		I915_WRITE(PORT_DFT_I9XX,
3990 			   I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3991 
3992 		if (pipe == PIPE_A)
3993 			tmp |= PIPE_A_SCRAMBLE_RESET;
3994 		else
3995 			tmp |= PIPE_B_SCRAMBLE_RESET;
3996 
3997 		I915_WRITE(PORT_DFT2_G4X, tmp);
3998 	}
3999 
4000 	return 0;
4001 }
4002 
4003 static void vlv_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
4004 					 enum pipe pipe)
4005 {
4006 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
4007 
4008 	switch (pipe) {
4009 	case PIPE_A:
4010 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
4011 		break;
4012 	case PIPE_B:
4013 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
4014 		break;
4015 	case PIPE_C:
4016 		tmp &= ~PIPE_C_SCRAMBLE_RESET;
4017 		break;
4018 	default:
4019 		return;
4020 	}
4021 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
4022 		tmp &= ~DC_BALANCE_RESET_VLV;
4023 	I915_WRITE(PORT_DFT2_G4X, tmp);
4024 
4025 }
4026 
4027 static void g4x_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
4028 					 enum pipe pipe)
4029 {
4030 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
4031 
4032 	if (pipe == PIPE_A)
4033 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
4034 	else
4035 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
4036 	I915_WRITE(PORT_DFT2_G4X, tmp);
4037 
4038 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
4039 		I915_WRITE(PORT_DFT_I9XX,
4040 			   I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
4041 	}
4042 }
4043 
4044 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
4045 				uint32_t *val)
4046 {
4047 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4048 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
4049 
4050 	switch (*source) {
4051 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
4052 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
4053 		break;
4054 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
4055 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
4056 		break;
4057 	case INTEL_PIPE_CRC_SOURCE_PIPE:
4058 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
4059 		break;
4060 	case INTEL_PIPE_CRC_SOURCE_NONE:
4061 		*val = 0;
4062 		break;
4063 	default:
4064 		return -EINVAL;
4065 	}
4066 
4067 	return 0;
4068 }
4069 
4070 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_i915_private *dev_priv,
4071 					bool enable)
4072 {
4073 	struct drm_device *dev = &dev_priv->drm;
4074 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_A);
4075 	struct intel_crtc_state *pipe_config;
4076 	struct drm_atomic_state *state;
4077 	int ret = 0;
4078 
4079 	drm_modeset_lock_all(dev);
4080 	state = drm_atomic_state_alloc(dev);
4081 	if (!state) {
4082 		ret = -ENOMEM;
4083 		goto out;
4084 	}
4085 
4086 	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
4087 	pipe_config = intel_atomic_get_crtc_state(state, crtc);
4088 	if (IS_ERR(pipe_config)) {
4089 		ret = PTR_ERR(pipe_config);
4090 		goto out;
4091 	}
4092 
4093 	pipe_config->pch_pfit.force_thru = enable;
4094 	if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
4095 	    pipe_config->pch_pfit.enabled != enable)
4096 		pipe_config->base.connectors_changed = true;
4097 
4098 	ret = drm_atomic_commit(state);
4099 out:
4100 	WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
4101 	drm_modeset_unlock_all(dev);
4102 	drm_atomic_state_put(state);
4103 }
4104 
4105 static int ivb_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
4106 				enum pipe pipe,
4107 				enum intel_pipe_crc_source *source,
4108 				uint32_t *val)
4109 {
4110 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4111 		*source = INTEL_PIPE_CRC_SOURCE_PF;
4112 
4113 	switch (*source) {
4114 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
4115 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4116 		break;
4117 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
4118 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4119 		break;
4120 	case INTEL_PIPE_CRC_SOURCE_PF:
4121 		if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
4122 			hsw_trans_edp_pipe_A_crc_wa(dev_priv, true);
4123 
4124 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4125 		break;
4126 	case INTEL_PIPE_CRC_SOURCE_NONE:
4127 		*val = 0;
4128 		break;
4129 	default:
4130 		return -EINVAL;
4131 	}
4132 
4133 	return 0;
4134 }
4135 
4136 static int pipe_crc_set_source(struct drm_i915_private *dev_priv,
4137 			       enum pipe pipe,
4138 			       enum intel_pipe_crc_source source)
4139 {
4140 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4141 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
4142 	enum intel_display_power_domain power_domain;
4143 	u32 val = 0; /* shut up gcc */
4144 	int ret;
4145 
4146 	if (pipe_crc->source == source)
4147 		return 0;
4148 
4149 	/* forbid changing the source without going back to 'none' */
4150 	if (pipe_crc->source && source)
4151 		return -EINVAL;
4152 
4153 	power_domain = POWER_DOMAIN_PIPE(pipe);
4154 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4155 		DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4156 		return -EIO;
4157 	}
4158 
4159 	if (IS_GEN2(dev_priv))
4160 		ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4161 	else if (INTEL_GEN(dev_priv) < 5)
4162 		ret = i9xx_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4163 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4164 		ret = vlv_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4165 	else if (IS_GEN5(dev_priv) || IS_GEN6(dev_priv))
4166 		ret = ilk_pipe_crc_ctl_reg(&source, &val);
4167 	else
4168 		ret = ivb_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4169 
4170 	if (ret != 0)
4171 		goto out;
4172 
4173 	/* none -> real source transition */
4174 	if (source) {
4175 		struct intel_pipe_crc_entry *entries;
4176 
4177 		DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4178 				 pipe_name(pipe), pipe_crc_source_name(source));
4179 
4180 		entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4181 				  sizeof(pipe_crc->entries[0]),
4182 				  GFP_KERNEL);
4183 		if (!entries) {
4184 			ret = -ENOMEM;
4185 			goto out;
4186 		}
4187 
4188 		/*
4189 		 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4190 		 * enabled and disabled dynamically based on package C states,
4191 		 * user space can't make reliable use of the CRCs, so let's just
4192 		 * completely disable it.
4193 		 */
4194 		hsw_disable_ips(crtc);
4195 
4196 		spin_lock_irq(&pipe_crc->lock);
4197 		kfree(pipe_crc->entries);
4198 		pipe_crc->entries = entries;
4199 		pipe_crc->head = 0;
4200 		pipe_crc->tail = 0;
4201 		spin_unlock_irq(&pipe_crc->lock);
4202 	}
4203 
4204 	pipe_crc->source = source;
4205 
4206 	I915_WRITE(PIPE_CRC_CTL(pipe), val);
4207 	POSTING_READ(PIPE_CRC_CTL(pipe));
4208 
4209 	/* real source -> none transition */
4210 	if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4211 		struct intel_pipe_crc_entry *entries;
4212 		struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
4213 								  pipe);
4214 
4215 		DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4216 				 pipe_name(pipe));
4217 
4218 		drm_modeset_lock(&crtc->base.mutex, NULL);
4219 		if (crtc->base.state->active)
4220 			intel_wait_for_vblank(dev_priv, pipe);
4221 		drm_modeset_unlock(&crtc->base.mutex);
4222 
4223 		spin_lock_irq(&pipe_crc->lock);
4224 		entries = pipe_crc->entries;
4225 		pipe_crc->entries = NULL;
4226 		pipe_crc->head = 0;
4227 		pipe_crc->tail = 0;
4228 		spin_unlock_irq(&pipe_crc->lock);
4229 
4230 		kfree(entries);
4231 
4232 		if (IS_G4X(dev_priv))
4233 			g4x_undo_pipe_scramble_reset(dev_priv, pipe);
4234 		else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4235 			vlv_undo_pipe_scramble_reset(dev_priv, pipe);
4236 		else if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
4237 			hsw_trans_edp_pipe_A_crc_wa(dev_priv, false);
4238 
4239 		hsw_enable_ips(crtc);
4240 	}
4241 
4242 	ret = 0;
4243 
4244 out:
4245 	intel_display_power_put(dev_priv, power_domain);
4246 
4247 	return ret;
4248 }
4249 
4250 /*
4251  * Parse pipe CRC command strings:
4252  *   command: wsp* object wsp+ name wsp+ source wsp*
4253  *   object: 'pipe'
4254  *   name: (A | B | C)
4255  *   source: (none | plane1 | plane2 | pf)
4256  *   wsp: (#0x20 | #0x9 | #0xA)+
4257  *
4258  * eg.:
4259  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4260  *  "pipe A none"    ->  Stop CRC
4261  */
4262 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4263 {
4264 	int n_words = 0;
4265 
4266 	while (*buf) {
4267 		char *end;
4268 
4269 		/* skip leading white space */
4270 		buf = skip_spaces(buf);
4271 		if (!*buf)
4272 			break;	/* end of buffer */
4273 
4274 		/* find end of word */
4275 		for (end = buf; *end && !isspace(*end); end++)
4276 			;
4277 
4278 		if (n_words == max_words) {
4279 			DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4280 					 max_words);
4281 			return -EINVAL;	/* ran out of words[] before bytes */
4282 		}
4283 
4284 		if (*end)
4285 			*end++ = '\0';
4286 		words[n_words++] = buf;
4287 		buf = end;
4288 	}
4289 
4290 	return n_words;
4291 }
4292 
4293 enum intel_pipe_crc_object {
4294 	PIPE_CRC_OBJECT_PIPE,
4295 };
4296 
4297 static const char * const pipe_crc_objects[] = {
4298 	"pipe",
4299 };
4300 
4301 static int
4302 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4303 {
4304 	int i;
4305 
4306 	for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4307 		if (!strcmp(buf, pipe_crc_objects[i])) {
4308 			*o = i;
4309 			return 0;
4310 		    }
4311 
4312 	return -EINVAL;
4313 }
4314 
4315 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4316 {
4317 	const char name = buf[0];
4318 
4319 	if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4320 		return -EINVAL;
4321 
4322 	*pipe = name - 'A';
4323 
4324 	return 0;
4325 }
4326 
4327 static int
4328 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4329 {
4330 	int i;
4331 
4332 	for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4333 		if (!strcmp(buf, pipe_crc_sources[i])) {
4334 			*s = i;
4335 			return 0;
4336 		    }
4337 
4338 	return -EINVAL;
4339 }
4340 
4341 static int display_crc_ctl_parse(struct drm_i915_private *dev_priv,
4342 				 char *buf, size_t len)
4343 {
4344 #define N_WORDS 3
4345 	int n_words;
4346 	char *words[N_WORDS];
4347 	enum pipe pipe;
4348 	enum intel_pipe_crc_object object;
4349 	enum intel_pipe_crc_source source;
4350 
4351 	n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4352 	if (n_words != N_WORDS) {
4353 		DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4354 				 N_WORDS);
4355 		return -EINVAL;
4356 	}
4357 
4358 	if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4359 		DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4360 		return -EINVAL;
4361 	}
4362 
4363 	if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4364 		DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4365 		return -EINVAL;
4366 	}
4367 
4368 	if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4369 		DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4370 		return -EINVAL;
4371 	}
4372 
4373 	return pipe_crc_set_source(dev_priv, pipe, source);
4374 }
4375 
4376 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4377 				     size_t len, loff_t *offp)
4378 {
4379 	struct seq_file *m = file->private_data;
4380 	struct drm_i915_private *dev_priv = m->private;
4381 	char *tmpbuf;
4382 	int ret;
4383 
4384 	if (len == 0)
4385 		return 0;
4386 
4387 	if (len > PAGE_SIZE - 1) {
4388 		DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4389 				 PAGE_SIZE);
4390 		return -E2BIG;
4391 	}
4392 
4393 	tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4394 	if (!tmpbuf)
4395 		return -ENOMEM;
4396 
4397 	if (copy_from_user(tmpbuf, ubuf, len)) {
4398 		ret = -EFAULT;
4399 		goto out;
4400 	}
4401 	tmpbuf[len] = '\0';
4402 
4403 	ret = display_crc_ctl_parse(dev_priv, tmpbuf, len);
4404 
4405 out:
4406 	kfree(tmpbuf);
4407 	if (ret < 0)
4408 		return ret;
4409 
4410 	*offp += len;
4411 	return len;
4412 }
4413 
4414 static const struct file_operations i915_display_crc_ctl_fops = {
4415 	.owner = THIS_MODULE,
4416 	.open = display_crc_ctl_open,
4417 	.read = seq_read,
4418 	.llseek = seq_lseek,
4419 	.release = single_release,
4420 	.write = display_crc_ctl_write
4421 };
4422 
4423 static ssize_t i915_displayport_test_active_write(struct file *file,
4424 						  const char __user *ubuf,
4425 						  size_t len, loff_t *offp)
4426 {
4427 	char *input_buffer;
4428 	int status = 0;
4429 	struct drm_device *dev;
4430 	struct drm_connector *connector;
4431 	struct list_head *connector_list;
4432 	struct intel_dp *intel_dp;
4433 	int val = 0;
4434 
4435 	dev = ((struct seq_file *)file->private_data)->private;
4436 
4437 	connector_list = &dev->mode_config.connector_list;
4438 
4439 	if (len == 0)
4440 		return 0;
4441 
4442 	input_buffer = kmalloc(len + 1, GFP_KERNEL);
4443 	if (!input_buffer)
4444 		return -ENOMEM;
4445 
4446 	if (copy_from_user(input_buffer, ubuf, len)) {
4447 		status = -EFAULT;
4448 		goto out;
4449 	}
4450 
4451 	input_buffer[len] = '\0';
4452 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4453 
4454 	list_for_each_entry(connector, connector_list, head) {
4455 		if (connector->connector_type !=
4456 		    DRM_MODE_CONNECTOR_DisplayPort)
4457 			continue;
4458 
4459 		if (connector->status == connector_status_connected &&
4460 		    connector->encoder != NULL) {
4461 			intel_dp = enc_to_intel_dp(connector->encoder);
4462 			status = kstrtoint(input_buffer, 10, &val);
4463 			if (status < 0)
4464 				goto out;
4465 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4466 			/* To prevent erroneous activation of the compliance
4467 			 * testing code, only accept an actual value of 1 here
4468 			 */
4469 			if (val == 1)
4470 				intel_dp->compliance_test_active = 1;
4471 			else
4472 				intel_dp->compliance_test_active = 0;
4473 		}
4474 	}
4475 out:
4476 	kfree(input_buffer);
4477 	if (status < 0)
4478 		return status;
4479 
4480 	*offp += len;
4481 	return len;
4482 }
4483 
4484 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4485 {
4486 	struct drm_device *dev = m->private;
4487 	struct drm_connector *connector;
4488 	struct list_head *connector_list = &dev->mode_config.connector_list;
4489 	struct intel_dp *intel_dp;
4490 
4491 	list_for_each_entry(connector, connector_list, head) {
4492 		if (connector->connector_type !=
4493 		    DRM_MODE_CONNECTOR_DisplayPort)
4494 			continue;
4495 
4496 		if (connector->status == connector_status_connected &&
4497 		    connector->encoder != NULL) {
4498 			intel_dp = enc_to_intel_dp(connector->encoder);
4499 			if (intel_dp->compliance_test_active)
4500 				seq_puts(m, "1");
4501 			else
4502 				seq_puts(m, "0");
4503 		} else
4504 			seq_puts(m, "0");
4505 	}
4506 
4507 	return 0;
4508 }
4509 
4510 static int i915_displayport_test_active_open(struct inode *inode,
4511 					     struct file *file)
4512 {
4513 	struct drm_i915_private *dev_priv = inode->i_private;
4514 
4515 	return single_open(file, i915_displayport_test_active_show,
4516 			   &dev_priv->drm);
4517 }
4518 
4519 static const struct file_operations i915_displayport_test_active_fops = {
4520 	.owner = THIS_MODULE,
4521 	.open = i915_displayport_test_active_open,
4522 	.read = seq_read,
4523 	.llseek = seq_lseek,
4524 	.release = single_release,
4525 	.write = i915_displayport_test_active_write
4526 };
4527 
4528 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4529 {
4530 	struct drm_device *dev = m->private;
4531 	struct drm_connector *connector;
4532 	struct list_head *connector_list = &dev->mode_config.connector_list;
4533 	struct intel_dp *intel_dp;
4534 
4535 	list_for_each_entry(connector, connector_list, head) {
4536 		if (connector->connector_type !=
4537 		    DRM_MODE_CONNECTOR_DisplayPort)
4538 			continue;
4539 
4540 		if (connector->status == connector_status_connected &&
4541 		    connector->encoder != NULL) {
4542 			intel_dp = enc_to_intel_dp(connector->encoder);
4543 			seq_printf(m, "%lx", intel_dp->compliance_test_data);
4544 		} else
4545 			seq_puts(m, "0");
4546 	}
4547 
4548 	return 0;
4549 }
4550 static int i915_displayport_test_data_open(struct inode *inode,
4551 					   struct file *file)
4552 {
4553 	struct drm_i915_private *dev_priv = inode->i_private;
4554 
4555 	return single_open(file, i915_displayport_test_data_show,
4556 			   &dev_priv->drm);
4557 }
4558 
4559 static const struct file_operations i915_displayport_test_data_fops = {
4560 	.owner = THIS_MODULE,
4561 	.open = i915_displayport_test_data_open,
4562 	.read = seq_read,
4563 	.llseek = seq_lseek,
4564 	.release = single_release
4565 };
4566 
4567 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4568 {
4569 	struct drm_device *dev = m->private;
4570 	struct drm_connector *connector;
4571 	struct list_head *connector_list = &dev->mode_config.connector_list;
4572 	struct intel_dp *intel_dp;
4573 
4574 	list_for_each_entry(connector, connector_list, head) {
4575 		if (connector->connector_type !=
4576 		    DRM_MODE_CONNECTOR_DisplayPort)
4577 			continue;
4578 
4579 		if (connector->status == connector_status_connected &&
4580 		    connector->encoder != NULL) {
4581 			intel_dp = enc_to_intel_dp(connector->encoder);
4582 			seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4583 		} else
4584 			seq_puts(m, "0");
4585 	}
4586 
4587 	return 0;
4588 }
4589 
4590 static int i915_displayport_test_type_open(struct inode *inode,
4591 				       struct file *file)
4592 {
4593 	struct drm_i915_private *dev_priv = inode->i_private;
4594 
4595 	return single_open(file, i915_displayport_test_type_show,
4596 			   &dev_priv->drm);
4597 }
4598 
4599 static const struct file_operations i915_displayport_test_type_fops = {
4600 	.owner = THIS_MODULE,
4601 	.open = i915_displayport_test_type_open,
4602 	.read = seq_read,
4603 	.llseek = seq_lseek,
4604 	.release = single_release
4605 };
4606 
4607 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4608 {
4609 	struct drm_i915_private *dev_priv = m->private;
4610 	struct drm_device *dev = &dev_priv->drm;
4611 	int level;
4612 	int num_levels;
4613 
4614 	if (IS_CHERRYVIEW(dev_priv))
4615 		num_levels = 3;
4616 	else if (IS_VALLEYVIEW(dev_priv))
4617 		num_levels = 1;
4618 	else
4619 		num_levels = ilk_wm_max_level(dev_priv) + 1;
4620 
4621 	drm_modeset_lock_all(dev);
4622 
4623 	for (level = 0; level < num_levels; level++) {
4624 		unsigned int latency = wm[level];
4625 
4626 		/*
4627 		 * - WM1+ latency values in 0.5us units
4628 		 * - latencies are in us on gen9/vlv/chv
4629 		 */
4630 		if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
4631 		    IS_CHERRYVIEW(dev_priv))
4632 			latency *= 10;
4633 		else if (level > 0)
4634 			latency *= 5;
4635 
4636 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
4637 			   level, wm[level], latency / 10, latency % 10);
4638 	}
4639 
4640 	drm_modeset_unlock_all(dev);
4641 }
4642 
4643 static int pri_wm_latency_show(struct seq_file *m, void *data)
4644 {
4645 	struct drm_i915_private *dev_priv = m->private;
4646 	const uint16_t *latencies;
4647 
4648 	if (INTEL_GEN(dev_priv) >= 9)
4649 		latencies = dev_priv->wm.skl_latency;
4650 	else
4651 		latencies = dev_priv->wm.pri_latency;
4652 
4653 	wm_latency_show(m, latencies);
4654 
4655 	return 0;
4656 }
4657 
4658 static int spr_wm_latency_show(struct seq_file *m, void *data)
4659 {
4660 	struct drm_i915_private *dev_priv = m->private;
4661 	const uint16_t *latencies;
4662 
4663 	if (INTEL_GEN(dev_priv) >= 9)
4664 		latencies = dev_priv->wm.skl_latency;
4665 	else
4666 		latencies = dev_priv->wm.spr_latency;
4667 
4668 	wm_latency_show(m, latencies);
4669 
4670 	return 0;
4671 }
4672 
4673 static int cur_wm_latency_show(struct seq_file *m, void *data)
4674 {
4675 	struct drm_i915_private *dev_priv = m->private;
4676 	const uint16_t *latencies;
4677 
4678 	if (INTEL_GEN(dev_priv) >= 9)
4679 		latencies = dev_priv->wm.skl_latency;
4680 	else
4681 		latencies = dev_priv->wm.cur_latency;
4682 
4683 	wm_latency_show(m, latencies);
4684 
4685 	return 0;
4686 }
4687 
4688 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4689 {
4690 	struct drm_i915_private *dev_priv = inode->i_private;
4691 
4692 	if (INTEL_GEN(dev_priv) < 5)
4693 		return -ENODEV;
4694 
4695 	return single_open(file, pri_wm_latency_show, dev_priv);
4696 }
4697 
4698 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4699 {
4700 	struct drm_i915_private *dev_priv = inode->i_private;
4701 
4702 	if (HAS_GMCH_DISPLAY(dev_priv))
4703 		return -ENODEV;
4704 
4705 	return single_open(file, spr_wm_latency_show, dev_priv);
4706 }
4707 
4708 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4709 {
4710 	struct drm_i915_private *dev_priv = inode->i_private;
4711 
4712 	if (HAS_GMCH_DISPLAY(dev_priv))
4713 		return -ENODEV;
4714 
4715 	return single_open(file, cur_wm_latency_show, dev_priv);
4716 }
4717 
4718 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4719 				size_t len, loff_t *offp, uint16_t wm[8])
4720 {
4721 	struct seq_file *m = file->private_data;
4722 	struct drm_i915_private *dev_priv = m->private;
4723 	struct drm_device *dev = &dev_priv->drm;
4724 	uint16_t new[8] = { 0 };
4725 	int num_levels;
4726 	int level;
4727 	int ret;
4728 	char tmp[32];
4729 
4730 	if (IS_CHERRYVIEW(dev_priv))
4731 		num_levels = 3;
4732 	else if (IS_VALLEYVIEW(dev_priv))
4733 		num_levels = 1;
4734 	else
4735 		num_levels = ilk_wm_max_level(dev_priv) + 1;
4736 
4737 	if (len >= sizeof(tmp))
4738 		return -EINVAL;
4739 
4740 	if (copy_from_user(tmp, ubuf, len))
4741 		return -EFAULT;
4742 
4743 	tmp[len] = '\0';
4744 
4745 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4746 		     &new[0], &new[1], &new[2], &new[3],
4747 		     &new[4], &new[5], &new[6], &new[7]);
4748 	if (ret != num_levels)
4749 		return -EINVAL;
4750 
4751 	drm_modeset_lock_all(dev);
4752 
4753 	for (level = 0; level < num_levels; level++)
4754 		wm[level] = new[level];
4755 
4756 	drm_modeset_unlock_all(dev);
4757 
4758 	return len;
4759 }
4760 
4761 
4762 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4763 				    size_t len, loff_t *offp)
4764 {
4765 	struct seq_file *m = file->private_data;
4766 	struct drm_i915_private *dev_priv = m->private;
4767 	uint16_t *latencies;
4768 
4769 	if (INTEL_GEN(dev_priv) >= 9)
4770 		latencies = dev_priv->wm.skl_latency;
4771 	else
4772 		latencies = dev_priv->wm.pri_latency;
4773 
4774 	return wm_latency_write(file, ubuf, len, offp, latencies);
4775 }
4776 
4777 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4778 				    size_t len, loff_t *offp)
4779 {
4780 	struct seq_file *m = file->private_data;
4781 	struct drm_i915_private *dev_priv = m->private;
4782 	uint16_t *latencies;
4783 
4784 	if (INTEL_GEN(dev_priv) >= 9)
4785 		latencies = dev_priv->wm.skl_latency;
4786 	else
4787 		latencies = dev_priv->wm.spr_latency;
4788 
4789 	return wm_latency_write(file, ubuf, len, offp, latencies);
4790 }
4791 
4792 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4793 				    size_t len, loff_t *offp)
4794 {
4795 	struct seq_file *m = file->private_data;
4796 	struct drm_i915_private *dev_priv = m->private;
4797 	uint16_t *latencies;
4798 
4799 	if (INTEL_GEN(dev_priv) >= 9)
4800 		latencies = dev_priv->wm.skl_latency;
4801 	else
4802 		latencies = dev_priv->wm.cur_latency;
4803 
4804 	return wm_latency_write(file, ubuf, len, offp, latencies);
4805 }
4806 
4807 static const struct file_operations i915_pri_wm_latency_fops = {
4808 	.owner = THIS_MODULE,
4809 	.open = pri_wm_latency_open,
4810 	.read = seq_read,
4811 	.llseek = seq_lseek,
4812 	.release = single_release,
4813 	.write = pri_wm_latency_write
4814 };
4815 
4816 static const struct file_operations i915_spr_wm_latency_fops = {
4817 	.owner = THIS_MODULE,
4818 	.open = spr_wm_latency_open,
4819 	.read = seq_read,
4820 	.llseek = seq_lseek,
4821 	.release = single_release,
4822 	.write = spr_wm_latency_write
4823 };
4824 
4825 static const struct file_operations i915_cur_wm_latency_fops = {
4826 	.owner = THIS_MODULE,
4827 	.open = cur_wm_latency_open,
4828 	.read = seq_read,
4829 	.llseek = seq_lseek,
4830 	.release = single_release,
4831 	.write = cur_wm_latency_write
4832 };
4833 
4834 static int
4835 i915_wedged_get(void *data, u64 *val)
4836 {
4837 	struct drm_i915_private *dev_priv = data;
4838 
4839 	*val = i915_terminally_wedged(&dev_priv->gpu_error);
4840 
4841 	return 0;
4842 }
4843 
4844 static int
4845 i915_wedged_set(void *data, u64 val)
4846 {
4847 	struct drm_i915_private *dev_priv = data;
4848 
4849 	/*
4850 	 * There is no safeguard against this debugfs entry colliding
4851 	 * with the hangcheck calling same i915_handle_error() in
4852 	 * parallel, causing an explosion. For now we assume that the
4853 	 * test harness is responsible enough not to inject gpu hangs
4854 	 * while it is writing to 'i915_wedged'
4855 	 */
4856 
4857 	if (i915_reset_in_progress(&dev_priv->gpu_error))
4858 		return -EAGAIN;
4859 
4860 	i915_handle_error(dev_priv, val,
4861 			  "Manually setting wedged to %llu", val);
4862 
4863 	return 0;
4864 }
4865 
4866 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4867 			i915_wedged_get, i915_wedged_set,
4868 			"%llu\n");
4869 
4870 static int
4871 i915_ring_missed_irq_get(void *data, u64 *val)
4872 {
4873 	struct drm_i915_private *dev_priv = data;
4874 
4875 	*val = dev_priv->gpu_error.missed_irq_rings;
4876 	return 0;
4877 }
4878 
4879 static int
4880 i915_ring_missed_irq_set(void *data, u64 val)
4881 {
4882 	struct drm_i915_private *dev_priv = data;
4883 	struct drm_device *dev = &dev_priv->drm;
4884 	int ret;
4885 
4886 	/* Lock against concurrent debugfs callers */
4887 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4888 	if (ret)
4889 		return ret;
4890 	dev_priv->gpu_error.missed_irq_rings = val;
4891 	mutex_unlock(&dev->struct_mutex);
4892 
4893 	return 0;
4894 }
4895 
4896 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4897 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4898 			"0x%08llx\n");
4899 
4900 static int
4901 i915_ring_test_irq_get(void *data, u64 *val)
4902 {
4903 	struct drm_i915_private *dev_priv = data;
4904 
4905 	*val = dev_priv->gpu_error.test_irq_rings;
4906 
4907 	return 0;
4908 }
4909 
4910 static int
4911 i915_ring_test_irq_set(void *data, u64 val)
4912 {
4913 	struct drm_i915_private *dev_priv = data;
4914 
4915 	val &= INTEL_INFO(dev_priv)->ring_mask;
4916 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4917 	dev_priv->gpu_error.test_irq_rings = val;
4918 
4919 	return 0;
4920 }
4921 
4922 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4923 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4924 			"0x%08llx\n");
4925 
4926 #define DROP_UNBOUND 0x1
4927 #define DROP_BOUND 0x2
4928 #define DROP_RETIRE 0x4
4929 #define DROP_ACTIVE 0x8
4930 #define DROP_FREED 0x10
4931 #define DROP_ALL (DROP_UNBOUND	| \
4932 		  DROP_BOUND	| \
4933 		  DROP_RETIRE	| \
4934 		  DROP_ACTIVE	| \
4935 		  DROP_FREED)
4936 static int
4937 i915_drop_caches_get(void *data, u64 *val)
4938 {
4939 	*val = DROP_ALL;
4940 
4941 	return 0;
4942 }
4943 
4944 static int
4945 i915_drop_caches_set(void *data, u64 val)
4946 {
4947 	struct drm_i915_private *dev_priv = data;
4948 	struct drm_device *dev = &dev_priv->drm;
4949 	int ret;
4950 
4951 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4952 
4953 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4954 	 * on ioctls on -EAGAIN. */
4955 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4956 	if (ret)
4957 		return ret;
4958 
4959 	if (val & DROP_ACTIVE) {
4960 		ret = i915_gem_wait_for_idle(dev_priv,
4961 					     I915_WAIT_INTERRUPTIBLE |
4962 					     I915_WAIT_LOCKED);
4963 		if (ret)
4964 			goto unlock;
4965 	}
4966 
4967 	if (val & (DROP_RETIRE | DROP_ACTIVE))
4968 		i915_gem_retire_requests(dev_priv);
4969 
4970 	if (val & DROP_BOUND)
4971 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4972 
4973 	if (val & DROP_UNBOUND)
4974 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4975 
4976 unlock:
4977 	mutex_unlock(&dev->struct_mutex);
4978 
4979 	if (val & DROP_FREED) {
4980 		synchronize_rcu();
4981 		flush_work(&dev_priv->mm.free_work);
4982 	}
4983 
4984 	return ret;
4985 }
4986 
4987 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4988 			i915_drop_caches_get, i915_drop_caches_set,
4989 			"0x%08llx\n");
4990 
4991 static int
4992 i915_max_freq_get(void *data, u64 *val)
4993 {
4994 	struct drm_i915_private *dev_priv = data;
4995 
4996 	if (INTEL_GEN(dev_priv) < 6)
4997 		return -ENODEV;
4998 
4999 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
5000 	return 0;
5001 }
5002 
5003 static int
5004 i915_max_freq_set(void *data, u64 val)
5005 {
5006 	struct drm_i915_private *dev_priv = data;
5007 	u32 hw_max, hw_min;
5008 	int ret;
5009 
5010 	if (INTEL_GEN(dev_priv) < 6)
5011 		return -ENODEV;
5012 
5013 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
5014 
5015 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5016 	if (ret)
5017 		return ret;
5018 
5019 	/*
5020 	 * Turbo will still be enabled, but won't go above the set value.
5021 	 */
5022 	val = intel_freq_opcode(dev_priv, val);
5023 
5024 	hw_max = dev_priv->rps.max_freq;
5025 	hw_min = dev_priv->rps.min_freq;
5026 
5027 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
5028 		mutex_unlock(&dev_priv->rps.hw_lock);
5029 		return -EINVAL;
5030 	}
5031 
5032 	dev_priv->rps.max_freq_softlimit = val;
5033 
5034 	intel_set_rps(dev_priv, val);
5035 
5036 	mutex_unlock(&dev_priv->rps.hw_lock);
5037 
5038 	return 0;
5039 }
5040 
5041 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
5042 			i915_max_freq_get, i915_max_freq_set,
5043 			"%llu\n");
5044 
5045 static int
5046 i915_min_freq_get(void *data, u64 *val)
5047 {
5048 	struct drm_i915_private *dev_priv = data;
5049 
5050 	if (INTEL_GEN(dev_priv) < 6)
5051 		return -ENODEV;
5052 
5053 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5054 	return 0;
5055 }
5056 
5057 static int
5058 i915_min_freq_set(void *data, u64 val)
5059 {
5060 	struct drm_i915_private *dev_priv = data;
5061 	u32 hw_max, hw_min;
5062 	int ret;
5063 
5064 	if (INTEL_GEN(dev_priv) < 6)
5065 		return -ENODEV;
5066 
5067 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5068 
5069 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5070 	if (ret)
5071 		return ret;
5072 
5073 	/*
5074 	 * Turbo will still be enabled, but won't go below the set value.
5075 	 */
5076 	val = intel_freq_opcode(dev_priv, val);
5077 
5078 	hw_max = dev_priv->rps.max_freq;
5079 	hw_min = dev_priv->rps.min_freq;
5080 
5081 	if (val < hw_min ||
5082 	    val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5083 		mutex_unlock(&dev_priv->rps.hw_lock);
5084 		return -EINVAL;
5085 	}
5086 
5087 	dev_priv->rps.min_freq_softlimit = val;
5088 
5089 	intel_set_rps(dev_priv, val);
5090 
5091 	mutex_unlock(&dev_priv->rps.hw_lock);
5092 
5093 	return 0;
5094 }
5095 
5096 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5097 			i915_min_freq_get, i915_min_freq_set,
5098 			"%llu\n");
5099 
5100 static int
5101 i915_cache_sharing_get(void *data, u64 *val)
5102 {
5103 	struct drm_i915_private *dev_priv = data;
5104 	u32 snpcr;
5105 
5106 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
5107 		return -ENODEV;
5108 
5109 	intel_runtime_pm_get(dev_priv);
5110 
5111 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5112 
5113 	intel_runtime_pm_put(dev_priv);
5114 
5115 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5116 
5117 	return 0;
5118 }
5119 
5120 static int
5121 i915_cache_sharing_set(void *data, u64 val)
5122 {
5123 	struct drm_i915_private *dev_priv = data;
5124 	u32 snpcr;
5125 
5126 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
5127 		return -ENODEV;
5128 
5129 	if (val > 3)
5130 		return -EINVAL;
5131 
5132 	intel_runtime_pm_get(dev_priv);
5133 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5134 
5135 	/* Update the cache sharing policy here as well */
5136 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5137 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
5138 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5139 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5140 
5141 	intel_runtime_pm_put(dev_priv);
5142 	return 0;
5143 }
5144 
5145 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5146 			i915_cache_sharing_get, i915_cache_sharing_set,
5147 			"%llu\n");
5148 
5149 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
5150 					  struct sseu_dev_info *sseu)
5151 {
5152 	int ss_max = 2;
5153 	int ss;
5154 	u32 sig1[ss_max], sig2[ss_max];
5155 
5156 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5157 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5158 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5159 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5160 
5161 	for (ss = 0; ss < ss_max; ss++) {
5162 		unsigned int eu_cnt;
5163 
5164 		if (sig1[ss] & CHV_SS_PG_ENABLE)
5165 			/* skip disabled subslice */
5166 			continue;
5167 
5168 		sseu->slice_mask = BIT(0);
5169 		sseu->subslice_mask |= BIT(ss);
5170 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5171 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5172 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5173 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5174 		sseu->eu_total += eu_cnt;
5175 		sseu->eu_per_subslice = max_t(unsigned int,
5176 					      sseu->eu_per_subslice, eu_cnt);
5177 	}
5178 }
5179 
5180 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
5181 				    struct sseu_dev_info *sseu)
5182 {
5183 	int s_max = 3, ss_max = 4;
5184 	int s, ss;
5185 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5186 
5187 	/* BXT has a single slice and at most 3 subslices. */
5188 	if (IS_BROXTON(dev_priv)) {
5189 		s_max = 1;
5190 		ss_max = 3;
5191 	}
5192 
5193 	for (s = 0; s < s_max; s++) {
5194 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5195 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5196 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5197 	}
5198 
5199 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5200 		     GEN9_PGCTL_SSA_EU19_ACK |
5201 		     GEN9_PGCTL_SSA_EU210_ACK |
5202 		     GEN9_PGCTL_SSA_EU311_ACK;
5203 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5204 		     GEN9_PGCTL_SSB_EU19_ACK |
5205 		     GEN9_PGCTL_SSB_EU210_ACK |
5206 		     GEN9_PGCTL_SSB_EU311_ACK;
5207 
5208 	for (s = 0; s < s_max; s++) {
5209 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5210 			/* skip disabled slice */
5211 			continue;
5212 
5213 		sseu->slice_mask |= BIT(s);
5214 
5215 		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
5216 			sseu->subslice_mask =
5217 				INTEL_INFO(dev_priv)->sseu.subslice_mask;
5218 
5219 		for (ss = 0; ss < ss_max; ss++) {
5220 			unsigned int eu_cnt;
5221 
5222 			if (IS_BROXTON(dev_priv)) {
5223 				if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5224 					/* skip disabled subslice */
5225 					continue;
5226 
5227 				sseu->subslice_mask |= BIT(ss);
5228 			}
5229 
5230 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5231 					       eu_mask[ss%2]);
5232 			sseu->eu_total += eu_cnt;
5233 			sseu->eu_per_subslice = max_t(unsigned int,
5234 						      sseu->eu_per_subslice,
5235 						      eu_cnt);
5236 		}
5237 	}
5238 }
5239 
5240 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
5241 					 struct sseu_dev_info *sseu)
5242 {
5243 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5244 	int s;
5245 
5246 	sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
5247 
5248 	if (sseu->slice_mask) {
5249 		sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
5250 		sseu->eu_per_subslice =
5251 				INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
5252 		sseu->eu_total = sseu->eu_per_subslice *
5253 				 sseu_subslice_total(sseu);
5254 
5255 		/* subtract fused off EU(s) from enabled slice(s) */
5256 		for (s = 0; s < fls(sseu->slice_mask); s++) {
5257 			u8 subslice_7eu =
5258 				INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
5259 
5260 			sseu->eu_total -= hweight8(subslice_7eu);
5261 		}
5262 	}
5263 }
5264 
5265 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
5266 				 const struct sseu_dev_info *sseu)
5267 {
5268 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
5269 	const char *type = is_available_info ? "Available" : "Enabled";
5270 
5271 	seq_printf(m, "  %s Slice Mask: %04x\n", type,
5272 		   sseu->slice_mask);
5273 	seq_printf(m, "  %s Slice Total: %u\n", type,
5274 		   hweight8(sseu->slice_mask));
5275 	seq_printf(m, "  %s Subslice Total: %u\n", type,
5276 		   sseu_subslice_total(sseu));
5277 	seq_printf(m, "  %s Subslice Mask: %04x\n", type,
5278 		   sseu->subslice_mask);
5279 	seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
5280 		   hweight8(sseu->subslice_mask));
5281 	seq_printf(m, "  %s EU Total: %u\n", type,
5282 		   sseu->eu_total);
5283 	seq_printf(m, "  %s EU Per Subslice: %u\n", type,
5284 		   sseu->eu_per_subslice);
5285 
5286 	if (!is_available_info)
5287 		return;
5288 
5289 	seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
5290 	if (HAS_POOLED_EU(dev_priv))
5291 		seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
5292 
5293 	seq_printf(m, "  Has Slice Power Gating: %s\n",
5294 		   yesno(sseu->has_slice_pg));
5295 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
5296 		   yesno(sseu->has_subslice_pg));
5297 	seq_printf(m, "  Has EU Power Gating: %s\n",
5298 		   yesno(sseu->has_eu_pg));
5299 }
5300 
5301 static int i915_sseu_status(struct seq_file *m, void *unused)
5302 {
5303 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
5304 	struct sseu_dev_info sseu;
5305 
5306 	if (INTEL_GEN(dev_priv) < 8)
5307 		return -ENODEV;
5308 
5309 	seq_puts(m, "SSEU Device Info\n");
5310 	i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
5311 
5312 	seq_puts(m, "SSEU Device Status\n");
5313 	memset(&sseu, 0, sizeof(sseu));
5314 
5315 	intel_runtime_pm_get(dev_priv);
5316 
5317 	if (IS_CHERRYVIEW(dev_priv)) {
5318 		cherryview_sseu_device_status(dev_priv, &sseu);
5319 	} else if (IS_BROADWELL(dev_priv)) {
5320 		broadwell_sseu_device_status(dev_priv, &sseu);
5321 	} else if (INTEL_GEN(dev_priv) >= 9) {
5322 		gen9_sseu_device_status(dev_priv, &sseu);
5323 	}
5324 
5325 	intel_runtime_pm_put(dev_priv);
5326 
5327 	i915_print_sseu_info(m, false, &sseu);
5328 
5329 	return 0;
5330 }
5331 
5332 static int i915_forcewake_open(struct inode *inode, struct file *file)
5333 {
5334 	struct drm_i915_private *dev_priv = inode->i_private;
5335 
5336 	if (INTEL_GEN(dev_priv) < 6)
5337 		return 0;
5338 
5339 	intel_runtime_pm_get(dev_priv);
5340 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5341 
5342 	return 0;
5343 }
5344 
5345 static int i915_forcewake_release(struct inode *inode, struct file *file)
5346 {
5347 	struct drm_i915_private *dev_priv = inode->i_private;
5348 
5349 	if (INTEL_GEN(dev_priv) < 6)
5350 		return 0;
5351 
5352 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5353 	intel_runtime_pm_put(dev_priv);
5354 
5355 	return 0;
5356 }
5357 
5358 static const struct file_operations i915_forcewake_fops = {
5359 	.owner = THIS_MODULE,
5360 	.open = i915_forcewake_open,
5361 	.release = i915_forcewake_release,
5362 };
5363 
5364 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5365 {
5366 	struct dentry *ent;
5367 
5368 	ent = debugfs_create_file("i915_forcewake_user",
5369 				  S_IRUSR,
5370 				  root, to_i915(minor->dev),
5371 				  &i915_forcewake_fops);
5372 	if (!ent)
5373 		return -ENOMEM;
5374 
5375 	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5376 }
5377 
5378 static int i915_debugfs_create(struct dentry *root,
5379 			       struct drm_minor *minor,
5380 			       const char *name,
5381 			       const struct file_operations *fops)
5382 {
5383 	struct dentry *ent;
5384 
5385 	ent = debugfs_create_file(name,
5386 				  S_IRUGO | S_IWUSR,
5387 				  root, to_i915(minor->dev),
5388 				  fops);
5389 	if (!ent)
5390 		return -ENOMEM;
5391 
5392 	return drm_add_fake_info_node(minor, ent, fops);
5393 }
5394 
5395 static const struct drm_info_list i915_debugfs_list[] = {
5396 	{"i915_capabilities", i915_capabilities, 0},
5397 	{"i915_gem_objects", i915_gem_object_info, 0},
5398 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
5399 	{"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
5400 	{"i915_gem_stolen", i915_gem_stolen_list_info },
5401 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5402 	{"i915_gem_request", i915_gem_request_info, 0},
5403 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
5404 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5405 	{"i915_gem_interrupt", i915_interrupt_info, 0},
5406 	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5407 	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5408 	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5409 	{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5410 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5411 	{"i915_guc_info", i915_guc_info, 0},
5412 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
5413 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
5414 	{"i915_frequency_info", i915_frequency_info, 0},
5415 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
5416 	{"i915_drpc_info", i915_drpc_info, 0},
5417 	{"i915_emon_status", i915_emon_status, 0},
5418 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
5419 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5420 	{"i915_fbc_status", i915_fbc_status, 0},
5421 	{"i915_ips_status", i915_ips_status, 0},
5422 	{"i915_sr_status", i915_sr_status, 0},
5423 	{"i915_opregion", i915_opregion, 0},
5424 	{"i915_vbt", i915_vbt, 0},
5425 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5426 	{"i915_context_status", i915_context_status, 0},
5427 	{"i915_dump_lrc", i915_dump_lrc, 0},
5428 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
5429 	{"i915_swizzle_info", i915_swizzle_info, 0},
5430 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
5431 	{"i915_llc", i915_llc, 0},
5432 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
5433 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
5434 	{"i915_energy_uJ", i915_energy_uJ, 0},
5435 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5436 	{"i915_power_domain_info", i915_power_domain_info, 0},
5437 	{"i915_dmc_info", i915_dmc_info, 0},
5438 	{"i915_display_info", i915_display_info, 0},
5439 	{"i915_engine_info", i915_engine_info, 0},
5440 	{"i915_semaphore_status", i915_semaphore_status, 0},
5441 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5442 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
5443 	{"i915_wa_registers", i915_wa_registers, 0},
5444 	{"i915_ddb_info", i915_ddb_info, 0},
5445 	{"i915_sseu_status", i915_sseu_status, 0},
5446 	{"i915_drrs_status", i915_drrs_status, 0},
5447 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
5448 };
5449 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5450 
5451 static const struct i915_debugfs_files {
5452 	const char *name;
5453 	const struct file_operations *fops;
5454 } i915_debugfs_files[] = {
5455 	{"i915_wedged", &i915_wedged_fops},
5456 	{"i915_max_freq", &i915_max_freq_fops},
5457 	{"i915_min_freq", &i915_min_freq_fops},
5458 	{"i915_cache_sharing", &i915_cache_sharing_fops},
5459 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5460 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
5461 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
5462 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
5463 	{"i915_error_state", &i915_error_state_fops},
5464 #endif
5465 	{"i915_next_seqno", &i915_next_seqno_fops},
5466 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5467 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5468 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5469 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5470 	{"i915_fbc_false_color", &i915_fbc_fc_fops},
5471 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
5472 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
5473 	{"i915_dp_test_active", &i915_displayport_test_active_fops},
5474 	{"i915_guc_log_control", &i915_guc_log_control_fops}
5475 };
5476 
5477 void intel_display_crc_init(struct drm_i915_private *dev_priv)
5478 {
5479 	enum pipe pipe;
5480 
5481 	for_each_pipe(dev_priv, pipe) {
5482 		struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5483 
5484 		pipe_crc->opened = false;
5485 		spin_lock_init(&pipe_crc->lock);
5486 		init_waitqueue_head(&pipe_crc->wq);
5487 	}
5488 }
5489 
5490 int i915_debugfs_register(struct drm_i915_private *dev_priv)
5491 {
5492 	struct drm_minor *minor = dev_priv->drm.primary;
5493 	int ret, i;
5494 
5495 	ret = i915_forcewake_create(minor->debugfs_root, minor);
5496 	if (ret)
5497 		return ret;
5498 
5499 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5500 		ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5501 		if (ret)
5502 			return ret;
5503 	}
5504 
5505 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5506 		ret = i915_debugfs_create(minor->debugfs_root, minor,
5507 					  i915_debugfs_files[i].name,
5508 					  i915_debugfs_files[i].fops);
5509 		if (ret)
5510 			return ret;
5511 	}
5512 
5513 	return drm_debugfs_create_files(i915_debugfs_list,
5514 					I915_DEBUGFS_ENTRIES,
5515 					minor->debugfs_root, minor);
5516 }
5517 
5518 void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
5519 {
5520 	struct drm_minor *minor = dev_priv->drm.primary;
5521 	int i;
5522 
5523 	drm_debugfs_remove_files(i915_debugfs_list,
5524 				 I915_DEBUGFS_ENTRIES, minor);
5525 
5526 	drm_debugfs_remove_files((struct drm_info_list *)&i915_forcewake_fops,
5527 				 1, minor);
5528 
5529 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5530 		struct drm_info_list *info_list =
5531 			(struct drm_info_list *)&i915_pipe_crc_data[i];
5532 
5533 		drm_debugfs_remove_files(info_list, 1, minor);
5534 	}
5535 
5536 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5537 		struct drm_info_list *info_list =
5538 			(struct drm_info_list *)i915_debugfs_files[i].fops;
5539 
5540 		drm_debugfs_remove_files(info_list, 1, minor);
5541 	}
5542 }
5543 
5544 struct dpcd_block {
5545 	/* DPCD dump start address. */
5546 	unsigned int offset;
5547 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
5548 	unsigned int end;
5549 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5550 	size_t size;
5551 	/* Only valid for eDP. */
5552 	bool edp;
5553 };
5554 
5555 static const struct dpcd_block i915_dpcd_debug[] = {
5556 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5557 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5558 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5559 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5560 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5561 	{ .offset = DP_SET_POWER },
5562 	{ .offset = DP_EDP_DPCD_REV },
5563 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5564 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5565 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5566 };
5567 
5568 static int i915_dpcd_show(struct seq_file *m, void *data)
5569 {
5570 	struct drm_connector *connector = m->private;
5571 	struct intel_dp *intel_dp =
5572 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5573 	uint8_t buf[16];
5574 	ssize_t err;
5575 	int i;
5576 
5577 	if (connector->status != connector_status_connected)
5578 		return -ENODEV;
5579 
5580 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5581 		const struct dpcd_block *b = &i915_dpcd_debug[i];
5582 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5583 
5584 		if (b->edp &&
5585 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5586 			continue;
5587 
5588 		/* low tech for now */
5589 		if (WARN_ON(size > sizeof(buf)))
5590 			continue;
5591 
5592 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5593 		if (err <= 0) {
5594 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5595 				  size, b->offset, err);
5596 			continue;
5597 		}
5598 
5599 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5600 	}
5601 
5602 	return 0;
5603 }
5604 
5605 static int i915_dpcd_open(struct inode *inode, struct file *file)
5606 {
5607 	return single_open(file, i915_dpcd_show, inode->i_private);
5608 }
5609 
5610 static const struct file_operations i915_dpcd_fops = {
5611 	.owner = THIS_MODULE,
5612 	.open = i915_dpcd_open,
5613 	.read = seq_read,
5614 	.llseek = seq_lseek,
5615 	.release = single_release,
5616 };
5617 
5618 static int i915_panel_show(struct seq_file *m, void *data)
5619 {
5620 	struct drm_connector *connector = m->private;
5621 	struct intel_dp *intel_dp =
5622 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5623 
5624 	if (connector->status != connector_status_connected)
5625 		return -ENODEV;
5626 
5627 	seq_printf(m, "Panel power up delay: %d\n",
5628 		   intel_dp->panel_power_up_delay);
5629 	seq_printf(m, "Panel power down delay: %d\n",
5630 		   intel_dp->panel_power_down_delay);
5631 	seq_printf(m, "Backlight on delay: %d\n",
5632 		   intel_dp->backlight_on_delay);
5633 	seq_printf(m, "Backlight off delay: %d\n",
5634 		   intel_dp->backlight_off_delay);
5635 
5636 	return 0;
5637 }
5638 
5639 static int i915_panel_open(struct inode *inode, struct file *file)
5640 {
5641 	return single_open(file, i915_panel_show, inode->i_private);
5642 }
5643 
5644 static const struct file_operations i915_panel_fops = {
5645 	.owner = THIS_MODULE,
5646 	.open = i915_panel_open,
5647 	.read = seq_read,
5648 	.llseek = seq_lseek,
5649 	.release = single_release,
5650 };
5651 
5652 /**
5653  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5654  * @connector: pointer to a registered drm_connector
5655  *
5656  * Cleanup will be done by drm_connector_unregister() through a call to
5657  * drm_debugfs_connector_remove().
5658  *
5659  * Returns 0 on success, negative error codes on error.
5660  */
5661 int i915_debugfs_connector_add(struct drm_connector *connector)
5662 {
5663 	struct dentry *root = connector->debugfs_entry;
5664 
5665 	/* The connector must have been registered beforehands. */
5666 	if (!root)
5667 		return -ENODEV;
5668 
5669 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5670 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5671 		debugfs_create_file("i915_dpcd", S_IRUGO, root,
5672 				    connector, &i915_dpcd_fops);
5673 
5674 	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5675 		debugfs_create_file("i915_panel_timings", S_IRUGO, root,
5676 				    connector, &i915_panel_fops);
5677 
5678 	return 0;
5679 }
5680