1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/sort.h>
31 #include <linux/sched/mm.h>
32 #include "intel_drv.h"
33 #include "intel_guc_submission.h"
34 
35 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
36 {
37 	return to_i915(node->minor->dev);
38 }
39 
40 static int i915_capabilities(struct seq_file *m, void *data)
41 {
42 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
43 	const struct intel_device_info *info = INTEL_INFO(dev_priv);
44 	struct drm_printer p = drm_seq_file_printer(m);
45 
46 	seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
47 	seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
48 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
49 
50 	intel_device_info_dump_flags(info, &p);
51 	intel_device_info_dump_runtime(info, &p);
52 
53 	kernel_param_lock(THIS_MODULE);
54 	i915_params_dump(&i915_modparams, &p);
55 	kernel_param_unlock(THIS_MODULE);
56 
57 	return 0;
58 }
59 
60 static char get_active_flag(struct drm_i915_gem_object *obj)
61 {
62 	return i915_gem_object_is_active(obj) ? '*' : ' ';
63 }
64 
65 static char get_pin_flag(struct drm_i915_gem_object *obj)
66 {
67 	return obj->pin_global ? 'p' : ' ';
68 }
69 
70 static char get_tiling_flag(struct drm_i915_gem_object *obj)
71 {
72 	switch (i915_gem_object_get_tiling(obj)) {
73 	default:
74 	case I915_TILING_NONE: return ' ';
75 	case I915_TILING_X: return 'X';
76 	case I915_TILING_Y: return 'Y';
77 	}
78 }
79 
80 static char get_global_flag(struct drm_i915_gem_object *obj)
81 {
82 	return obj->userfault_count ? 'g' : ' ';
83 }
84 
85 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
86 {
87 	return obj->mm.mapping ? 'M' : ' ';
88 }
89 
90 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
91 {
92 	u64 size = 0;
93 	struct i915_vma *vma;
94 
95 	for_each_ggtt_vma(vma, obj) {
96 		if (drm_mm_node_allocated(&vma->node))
97 			size += vma->node.size;
98 	}
99 
100 	return size;
101 }
102 
103 static const char *
104 stringify_page_sizes(unsigned int page_sizes, char *buf, size_t len)
105 {
106 	size_t x = 0;
107 
108 	switch (page_sizes) {
109 	case 0:
110 		return "";
111 	case I915_GTT_PAGE_SIZE_4K:
112 		return "4K";
113 	case I915_GTT_PAGE_SIZE_64K:
114 		return "64K";
115 	case I915_GTT_PAGE_SIZE_2M:
116 		return "2M";
117 	default:
118 		if (!buf)
119 			return "M";
120 
121 		if (page_sizes & I915_GTT_PAGE_SIZE_2M)
122 			x += snprintf(buf + x, len - x, "2M, ");
123 		if (page_sizes & I915_GTT_PAGE_SIZE_64K)
124 			x += snprintf(buf + x, len - x, "64K, ");
125 		if (page_sizes & I915_GTT_PAGE_SIZE_4K)
126 			x += snprintf(buf + x, len - x, "4K, ");
127 		buf[x-2] = '\0';
128 
129 		return buf;
130 	}
131 }
132 
133 static void
134 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
135 {
136 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
137 	struct intel_engine_cs *engine;
138 	struct i915_vma *vma;
139 	unsigned int frontbuffer_bits;
140 	int pin_count = 0;
141 
142 	lockdep_assert_held(&obj->base.dev->struct_mutex);
143 
144 	seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
145 		   &obj->base,
146 		   get_active_flag(obj),
147 		   get_pin_flag(obj),
148 		   get_tiling_flag(obj),
149 		   get_global_flag(obj),
150 		   get_pin_mapped_flag(obj),
151 		   obj->base.size / 1024,
152 		   obj->base.read_domains,
153 		   obj->base.write_domain,
154 		   i915_cache_level_str(dev_priv, obj->cache_level),
155 		   obj->mm.dirty ? " dirty" : "",
156 		   obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
157 	if (obj->base.name)
158 		seq_printf(m, " (name: %d)", obj->base.name);
159 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
160 		if (i915_vma_is_pinned(vma))
161 			pin_count++;
162 	}
163 	seq_printf(m, " (pinned x %d)", pin_count);
164 	if (obj->pin_global)
165 		seq_printf(m, " (global)");
166 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
167 		if (!drm_mm_node_allocated(&vma->node))
168 			continue;
169 
170 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx, pages: %s",
171 			   i915_vma_is_ggtt(vma) ? "g" : "pp",
172 			   vma->node.start, vma->node.size,
173 			   stringify_page_sizes(vma->page_sizes.gtt, NULL, 0));
174 		if (i915_vma_is_ggtt(vma)) {
175 			switch (vma->ggtt_view.type) {
176 			case I915_GGTT_VIEW_NORMAL:
177 				seq_puts(m, ", normal");
178 				break;
179 
180 			case I915_GGTT_VIEW_PARTIAL:
181 				seq_printf(m, ", partial [%08llx+%x]",
182 					   vma->ggtt_view.partial.offset << PAGE_SHIFT,
183 					   vma->ggtt_view.partial.size << PAGE_SHIFT);
184 				break;
185 
186 			case I915_GGTT_VIEW_ROTATED:
187 				seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
188 					   vma->ggtt_view.rotated.plane[0].width,
189 					   vma->ggtt_view.rotated.plane[0].height,
190 					   vma->ggtt_view.rotated.plane[0].stride,
191 					   vma->ggtt_view.rotated.plane[0].offset,
192 					   vma->ggtt_view.rotated.plane[1].width,
193 					   vma->ggtt_view.rotated.plane[1].height,
194 					   vma->ggtt_view.rotated.plane[1].stride,
195 					   vma->ggtt_view.rotated.plane[1].offset);
196 				break;
197 
198 			default:
199 				MISSING_CASE(vma->ggtt_view.type);
200 				break;
201 			}
202 		}
203 		if (vma->fence)
204 			seq_printf(m, " , fence: %d%s",
205 				   vma->fence->id,
206 				   i915_gem_active_isset(&vma->last_fence) ? "*" : "");
207 		seq_puts(m, ")");
208 	}
209 	if (obj->stolen)
210 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
211 
212 	engine = i915_gem_object_last_write_engine(obj);
213 	if (engine)
214 		seq_printf(m, " (%s)", engine->name);
215 
216 	frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
217 	if (frontbuffer_bits)
218 		seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
219 }
220 
221 static int obj_rank_by_stolen(const void *A, const void *B)
222 {
223 	const struct drm_i915_gem_object *a =
224 		*(const struct drm_i915_gem_object **)A;
225 	const struct drm_i915_gem_object *b =
226 		*(const struct drm_i915_gem_object **)B;
227 
228 	if (a->stolen->start < b->stolen->start)
229 		return -1;
230 	if (a->stolen->start > b->stolen->start)
231 		return 1;
232 	return 0;
233 }
234 
235 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
236 {
237 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
238 	struct drm_device *dev = &dev_priv->drm;
239 	struct drm_i915_gem_object **objects;
240 	struct drm_i915_gem_object *obj;
241 	u64 total_obj_size, total_gtt_size;
242 	unsigned long total, count, n;
243 	int ret;
244 
245 	total = READ_ONCE(dev_priv->mm.object_count);
246 	objects = kvmalloc_array(total, sizeof(*objects), GFP_KERNEL);
247 	if (!objects)
248 		return -ENOMEM;
249 
250 	ret = mutex_lock_interruptible(&dev->struct_mutex);
251 	if (ret)
252 		goto out;
253 
254 	total_obj_size = total_gtt_size = count = 0;
255 
256 	spin_lock(&dev_priv->mm.obj_lock);
257 	list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
258 		if (count == total)
259 			break;
260 
261 		if (obj->stolen == NULL)
262 			continue;
263 
264 		objects[count++] = obj;
265 		total_obj_size += obj->base.size;
266 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
267 
268 	}
269 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
270 		if (count == total)
271 			break;
272 
273 		if (obj->stolen == NULL)
274 			continue;
275 
276 		objects[count++] = obj;
277 		total_obj_size += obj->base.size;
278 	}
279 	spin_unlock(&dev_priv->mm.obj_lock);
280 
281 	sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
282 
283 	seq_puts(m, "Stolen:\n");
284 	for (n = 0; n < count; n++) {
285 		seq_puts(m, "   ");
286 		describe_obj(m, objects[n]);
287 		seq_putc(m, '\n');
288 	}
289 	seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
290 		   count, total_obj_size, total_gtt_size);
291 
292 	mutex_unlock(&dev->struct_mutex);
293 out:
294 	kvfree(objects);
295 	return ret;
296 }
297 
298 struct file_stats {
299 	struct drm_i915_file_private *file_priv;
300 	unsigned long count;
301 	u64 total, unbound;
302 	u64 global, shared;
303 	u64 active, inactive;
304 };
305 
306 static int per_file_stats(int id, void *ptr, void *data)
307 {
308 	struct drm_i915_gem_object *obj = ptr;
309 	struct file_stats *stats = data;
310 	struct i915_vma *vma;
311 
312 	lockdep_assert_held(&obj->base.dev->struct_mutex);
313 
314 	stats->count++;
315 	stats->total += obj->base.size;
316 	if (!obj->bind_count)
317 		stats->unbound += obj->base.size;
318 	if (obj->base.name || obj->base.dma_buf)
319 		stats->shared += obj->base.size;
320 
321 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
322 		if (!drm_mm_node_allocated(&vma->node))
323 			continue;
324 
325 		if (i915_vma_is_ggtt(vma)) {
326 			stats->global += vma->node.size;
327 		} else {
328 			struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
329 
330 			if (ppgtt->base.file != stats->file_priv)
331 				continue;
332 		}
333 
334 		if (i915_vma_is_active(vma))
335 			stats->active += vma->node.size;
336 		else
337 			stats->inactive += vma->node.size;
338 	}
339 
340 	return 0;
341 }
342 
343 #define print_file_stats(m, name, stats) do { \
344 	if (stats.count) \
345 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
346 			   name, \
347 			   stats.count, \
348 			   stats.total, \
349 			   stats.active, \
350 			   stats.inactive, \
351 			   stats.global, \
352 			   stats.shared, \
353 			   stats.unbound); \
354 } while (0)
355 
356 static void print_batch_pool_stats(struct seq_file *m,
357 				   struct drm_i915_private *dev_priv)
358 {
359 	struct drm_i915_gem_object *obj;
360 	struct file_stats stats;
361 	struct intel_engine_cs *engine;
362 	enum intel_engine_id id;
363 	int j;
364 
365 	memset(&stats, 0, sizeof(stats));
366 
367 	for_each_engine(engine, dev_priv, id) {
368 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
369 			list_for_each_entry(obj,
370 					    &engine->batch_pool.cache_list[j],
371 					    batch_pool_link)
372 				per_file_stats(0, obj, &stats);
373 		}
374 	}
375 
376 	print_file_stats(m, "[k]batch pool", stats);
377 }
378 
379 static int per_file_ctx_stats(int id, void *ptr, void *data)
380 {
381 	struct i915_gem_context *ctx = ptr;
382 	int n;
383 
384 	for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
385 		if (ctx->engine[n].state)
386 			per_file_stats(0, ctx->engine[n].state->obj, data);
387 		if (ctx->engine[n].ring)
388 			per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
389 	}
390 
391 	return 0;
392 }
393 
394 static void print_context_stats(struct seq_file *m,
395 				struct drm_i915_private *dev_priv)
396 {
397 	struct drm_device *dev = &dev_priv->drm;
398 	struct file_stats stats;
399 	struct drm_file *file;
400 
401 	memset(&stats, 0, sizeof(stats));
402 
403 	mutex_lock(&dev->struct_mutex);
404 	if (dev_priv->kernel_context)
405 		per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
406 
407 	list_for_each_entry(file, &dev->filelist, lhead) {
408 		struct drm_i915_file_private *fpriv = file->driver_priv;
409 		idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
410 	}
411 	mutex_unlock(&dev->struct_mutex);
412 
413 	print_file_stats(m, "[k]contexts", stats);
414 }
415 
416 static int i915_gem_object_info(struct seq_file *m, void *data)
417 {
418 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
419 	struct drm_device *dev = &dev_priv->drm;
420 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
421 	u32 count, mapped_count, purgeable_count, dpy_count, huge_count;
422 	u64 size, mapped_size, purgeable_size, dpy_size, huge_size;
423 	struct drm_i915_gem_object *obj;
424 	unsigned int page_sizes = 0;
425 	struct drm_file *file;
426 	char buf[80];
427 	int ret;
428 
429 	ret = mutex_lock_interruptible(&dev->struct_mutex);
430 	if (ret)
431 		return ret;
432 
433 	seq_printf(m, "%u objects, %llu bytes\n",
434 		   dev_priv->mm.object_count,
435 		   dev_priv->mm.object_memory);
436 
437 	size = count = 0;
438 	mapped_size = mapped_count = 0;
439 	purgeable_size = purgeable_count = 0;
440 	huge_size = huge_count = 0;
441 
442 	spin_lock(&dev_priv->mm.obj_lock);
443 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
444 		size += obj->base.size;
445 		++count;
446 
447 		if (obj->mm.madv == I915_MADV_DONTNEED) {
448 			purgeable_size += obj->base.size;
449 			++purgeable_count;
450 		}
451 
452 		if (obj->mm.mapping) {
453 			mapped_count++;
454 			mapped_size += obj->base.size;
455 		}
456 
457 		if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
458 			huge_count++;
459 			huge_size += obj->base.size;
460 			page_sizes |= obj->mm.page_sizes.sg;
461 		}
462 	}
463 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
464 
465 	size = count = dpy_size = dpy_count = 0;
466 	list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
467 		size += obj->base.size;
468 		++count;
469 
470 		if (obj->pin_global) {
471 			dpy_size += obj->base.size;
472 			++dpy_count;
473 		}
474 
475 		if (obj->mm.madv == I915_MADV_DONTNEED) {
476 			purgeable_size += obj->base.size;
477 			++purgeable_count;
478 		}
479 
480 		if (obj->mm.mapping) {
481 			mapped_count++;
482 			mapped_size += obj->base.size;
483 		}
484 
485 		if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
486 			huge_count++;
487 			huge_size += obj->base.size;
488 			page_sizes |= obj->mm.page_sizes.sg;
489 		}
490 	}
491 	spin_unlock(&dev_priv->mm.obj_lock);
492 
493 	seq_printf(m, "%u bound objects, %llu bytes\n",
494 		   count, size);
495 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
496 		   purgeable_count, purgeable_size);
497 	seq_printf(m, "%u mapped objects, %llu bytes\n",
498 		   mapped_count, mapped_size);
499 	seq_printf(m, "%u huge-paged objects (%s) %llu bytes\n",
500 		   huge_count,
501 		   stringify_page_sizes(page_sizes, buf, sizeof(buf)),
502 		   huge_size);
503 	seq_printf(m, "%u display objects (globally pinned), %llu bytes\n",
504 		   dpy_count, dpy_size);
505 
506 	seq_printf(m, "%llu [%pa] gtt total\n",
507 		   ggtt->base.total, &ggtt->mappable_end);
508 	seq_printf(m, "Supported page sizes: %s\n",
509 		   stringify_page_sizes(INTEL_INFO(dev_priv)->page_sizes,
510 					buf, sizeof(buf)));
511 
512 	seq_putc(m, '\n');
513 	print_batch_pool_stats(m, dev_priv);
514 	mutex_unlock(&dev->struct_mutex);
515 
516 	mutex_lock(&dev->filelist_mutex);
517 	print_context_stats(m, dev_priv);
518 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
519 		struct file_stats stats;
520 		struct drm_i915_file_private *file_priv = file->driver_priv;
521 		struct drm_i915_gem_request *request;
522 		struct task_struct *task;
523 
524 		mutex_lock(&dev->struct_mutex);
525 
526 		memset(&stats, 0, sizeof(stats));
527 		stats.file_priv = file->driver_priv;
528 		spin_lock(&file->table_lock);
529 		idr_for_each(&file->object_idr, per_file_stats, &stats);
530 		spin_unlock(&file->table_lock);
531 		/*
532 		 * Although we have a valid reference on file->pid, that does
533 		 * not guarantee that the task_struct who called get_pid() is
534 		 * still alive (e.g. get_pid(current) => fork() => exit()).
535 		 * Therefore, we need to protect this ->comm access using RCU.
536 		 */
537 		request = list_first_entry_or_null(&file_priv->mm.request_list,
538 						   struct drm_i915_gem_request,
539 						   client_link);
540 		rcu_read_lock();
541 		task = pid_task(request && request->ctx->pid ?
542 				request->ctx->pid : file->pid,
543 				PIDTYPE_PID);
544 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
545 		rcu_read_unlock();
546 
547 		mutex_unlock(&dev->struct_mutex);
548 	}
549 	mutex_unlock(&dev->filelist_mutex);
550 
551 	return 0;
552 }
553 
554 static int i915_gem_gtt_info(struct seq_file *m, void *data)
555 {
556 	struct drm_info_node *node = m->private;
557 	struct drm_i915_private *dev_priv = node_to_i915(node);
558 	struct drm_device *dev = &dev_priv->drm;
559 	struct drm_i915_gem_object **objects;
560 	struct drm_i915_gem_object *obj;
561 	u64 total_obj_size, total_gtt_size;
562 	unsigned long nobject, n;
563 	int count, ret;
564 
565 	nobject = READ_ONCE(dev_priv->mm.object_count);
566 	objects = kvmalloc_array(nobject, sizeof(*objects), GFP_KERNEL);
567 	if (!objects)
568 		return -ENOMEM;
569 
570 	ret = mutex_lock_interruptible(&dev->struct_mutex);
571 	if (ret)
572 		return ret;
573 
574 	count = 0;
575 	spin_lock(&dev_priv->mm.obj_lock);
576 	list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
577 		objects[count++] = obj;
578 		if (count == nobject)
579 			break;
580 	}
581 	spin_unlock(&dev_priv->mm.obj_lock);
582 
583 	total_obj_size = total_gtt_size = 0;
584 	for (n = 0;  n < count; n++) {
585 		obj = objects[n];
586 
587 		seq_puts(m, "   ");
588 		describe_obj(m, obj);
589 		seq_putc(m, '\n');
590 		total_obj_size += obj->base.size;
591 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
592 	}
593 
594 	mutex_unlock(&dev->struct_mutex);
595 
596 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
597 		   count, total_obj_size, total_gtt_size);
598 	kvfree(objects);
599 
600 	return 0;
601 }
602 
603 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
604 {
605 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
606 	struct drm_device *dev = &dev_priv->drm;
607 	struct drm_i915_gem_object *obj;
608 	struct intel_engine_cs *engine;
609 	enum intel_engine_id id;
610 	int total = 0;
611 	int ret, j;
612 
613 	ret = mutex_lock_interruptible(&dev->struct_mutex);
614 	if (ret)
615 		return ret;
616 
617 	for_each_engine(engine, dev_priv, id) {
618 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
619 			int count;
620 
621 			count = 0;
622 			list_for_each_entry(obj,
623 					    &engine->batch_pool.cache_list[j],
624 					    batch_pool_link)
625 				count++;
626 			seq_printf(m, "%s cache[%d]: %d objects\n",
627 				   engine->name, j, count);
628 
629 			list_for_each_entry(obj,
630 					    &engine->batch_pool.cache_list[j],
631 					    batch_pool_link) {
632 				seq_puts(m, "   ");
633 				describe_obj(m, obj);
634 				seq_putc(m, '\n');
635 			}
636 
637 			total += count;
638 		}
639 	}
640 
641 	seq_printf(m, "total: %d\n", total);
642 
643 	mutex_unlock(&dev->struct_mutex);
644 
645 	return 0;
646 }
647 
648 static int i915_interrupt_info(struct seq_file *m, void *data)
649 {
650 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
651 	struct intel_engine_cs *engine;
652 	enum intel_engine_id id;
653 	int i, pipe;
654 
655 	intel_runtime_pm_get(dev_priv);
656 
657 	if (IS_CHERRYVIEW(dev_priv)) {
658 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
659 			   I915_READ(GEN8_MASTER_IRQ));
660 
661 		seq_printf(m, "Display IER:\t%08x\n",
662 			   I915_READ(VLV_IER));
663 		seq_printf(m, "Display IIR:\t%08x\n",
664 			   I915_READ(VLV_IIR));
665 		seq_printf(m, "Display IIR_RW:\t%08x\n",
666 			   I915_READ(VLV_IIR_RW));
667 		seq_printf(m, "Display IMR:\t%08x\n",
668 			   I915_READ(VLV_IMR));
669 		for_each_pipe(dev_priv, pipe) {
670 			enum intel_display_power_domain power_domain;
671 
672 			power_domain = POWER_DOMAIN_PIPE(pipe);
673 			if (!intel_display_power_get_if_enabled(dev_priv,
674 								power_domain)) {
675 				seq_printf(m, "Pipe %c power disabled\n",
676 					   pipe_name(pipe));
677 				continue;
678 			}
679 
680 			seq_printf(m, "Pipe %c stat:\t%08x\n",
681 				   pipe_name(pipe),
682 				   I915_READ(PIPESTAT(pipe)));
683 
684 			intel_display_power_put(dev_priv, power_domain);
685 		}
686 
687 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
688 		seq_printf(m, "Port hotplug:\t%08x\n",
689 			   I915_READ(PORT_HOTPLUG_EN));
690 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
691 			   I915_READ(VLV_DPFLIPSTAT));
692 		seq_printf(m, "DPINVGTT:\t%08x\n",
693 			   I915_READ(DPINVGTT));
694 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
695 
696 		for (i = 0; i < 4; i++) {
697 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
698 				   i, I915_READ(GEN8_GT_IMR(i)));
699 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
700 				   i, I915_READ(GEN8_GT_IIR(i)));
701 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
702 				   i, I915_READ(GEN8_GT_IER(i)));
703 		}
704 
705 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
706 			   I915_READ(GEN8_PCU_IMR));
707 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
708 			   I915_READ(GEN8_PCU_IIR));
709 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
710 			   I915_READ(GEN8_PCU_IER));
711 	} else if (INTEL_GEN(dev_priv) >= 8) {
712 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
713 			   I915_READ(GEN8_MASTER_IRQ));
714 
715 		for (i = 0; i < 4; i++) {
716 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
717 				   i, I915_READ(GEN8_GT_IMR(i)));
718 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
719 				   i, I915_READ(GEN8_GT_IIR(i)));
720 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
721 				   i, I915_READ(GEN8_GT_IER(i)));
722 		}
723 
724 		for_each_pipe(dev_priv, pipe) {
725 			enum intel_display_power_domain power_domain;
726 
727 			power_domain = POWER_DOMAIN_PIPE(pipe);
728 			if (!intel_display_power_get_if_enabled(dev_priv,
729 								power_domain)) {
730 				seq_printf(m, "Pipe %c power disabled\n",
731 					   pipe_name(pipe));
732 				continue;
733 			}
734 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
735 				   pipe_name(pipe),
736 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
737 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
738 				   pipe_name(pipe),
739 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
740 			seq_printf(m, "Pipe %c IER:\t%08x\n",
741 				   pipe_name(pipe),
742 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
743 
744 			intel_display_power_put(dev_priv, power_domain);
745 		}
746 
747 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
748 			   I915_READ(GEN8_DE_PORT_IMR));
749 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
750 			   I915_READ(GEN8_DE_PORT_IIR));
751 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
752 			   I915_READ(GEN8_DE_PORT_IER));
753 
754 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
755 			   I915_READ(GEN8_DE_MISC_IMR));
756 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
757 			   I915_READ(GEN8_DE_MISC_IIR));
758 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
759 			   I915_READ(GEN8_DE_MISC_IER));
760 
761 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
762 			   I915_READ(GEN8_PCU_IMR));
763 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
764 			   I915_READ(GEN8_PCU_IIR));
765 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
766 			   I915_READ(GEN8_PCU_IER));
767 	} else if (IS_VALLEYVIEW(dev_priv)) {
768 		seq_printf(m, "Display IER:\t%08x\n",
769 			   I915_READ(VLV_IER));
770 		seq_printf(m, "Display IIR:\t%08x\n",
771 			   I915_READ(VLV_IIR));
772 		seq_printf(m, "Display IIR_RW:\t%08x\n",
773 			   I915_READ(VLV_IIR_RW));
774 		seq_printf(m, "Display IMR:\t%08x\n",
775 			   I915_READ(VLV_IMR));
776 		for_each_pipe(dev_priv, pipe) {
777 			enum intel_display_power_domain power_domain;
778 
779 			power_domain = POWER_DOMAIN_PIPE(pipe);
780 			if (!intel_display_power_get_if_enabled(dev_priv,
781 								power_domain)) {
782 				seq_printf(m, "Pipe %c power disabled\n",
783 					   pipe_name(pipe));
784 				continue;
785 			}
786 
787 			seq_printf(m, "Pipe %c stat:\t%08x\n",
788 				   pipe_name(pipe),
789 				   I915_READ(PIPESTAT(pipe)));
790 			intel_display_power_put(dev_priv, power_domain);
791 		}
792 
793 		seq_printf(m, "Master IER:\t%08x\n",
794 			   I915_READ(VLV_MASTER_IER));
795 
796 		seq_printf(m, "Render IER:\t%08x\n",
797 			   I915_READ(GTIER));
798 		seq_printf(m, "Render IIR:\t%08x\n",
799 			   I915_READ(GTIIR));
800 		seq_printf(m, "Render IMR:\t%08x\n",
801 			   I915_READ(GTIMR));
802 
803 		seq_printf(m, "PM IER:\t\t%08x\n",
804 			   I915_READ(GEN6_PMIER));
805 		seq_printf(m, "PM IIR:\t\t%08x\n",
806 			   I915_READ(GEN6_PMIIR));
807 		seq_printf(m, "PM IMR:\t\t%08x\n",
808 			   I915_READ(GEN6_PMIMR));
809 
810 		seq_printf(m, "Port hotplug:\t%08x\n",
811 			   I915_READ(PORT_HOTPLUG_EN));
812 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
813 			   I915_READ(VLV_DPFLIPSTAT));
814 		seq_printf(m, "DPINVGTT:\t%08x\n",
815 			   I915_READ(DPINVGTT));
816 
817 	} else if (!HAS_PCH_SPLIT(dev_priv)) {
818 		seq_printf(m, "Interrupt enable:    %08x\n",
819 			   I915_READ(IER));
820 		seq_printf(m, "Interrupt identity:  %08x\n",
821 			   I915_READ(IIR));
822 		seq_printf(m, "Interrupt mask:      %08x\n",
823 			   I915_READ(IMR));
824 		for_each_pipe(dev_priv, pipe)
825 			seq_printf(m, "Pipe %c stat:         %08x\n",
826 				   pipe_name(pipe),
827 				   I915_READ(PIPESTAT(pipe)));
828 	} else {
829 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
830 			   I915_READ(DEIER));
831 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
832 			   I915_READ(DEIIR));
833 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
834 			   I915_READ(DEIMR));
835 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
836 			   I915_READ(SDEIER));
837 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
838 			   I915_READ(SDEIIR));
839 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
840 			   I915_READ(SDEIMR));
841 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
842 			   I915_READ(GTIER));
843 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
844 			   I915_READ(GTIIR));
845 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
846 			   I915_READ(GTIMR));
847 	}
848 	if (INTEL_GEN(dev_priv) >= 6) {
849 		for_each_engine(engine, dev_priv, id) {
850 			seq_printf(m,
851 				   "Graphics Interrupt mask (%s):	%08x\n",
852 				   engine->name, I915_READ_IMR(engine));
853 		}
854 	}
855 	intel_runtime_pm_put(dev_priv);
856 
857 	return 0;
858 }
859 
860 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
861 {
862 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
863 	struct drm_device *dev = &dev_priv->drm;
864 	int i, ret;
865 
866 	ret = mutex_lock_interruptible(&dev->struct_mutex);
867 	if (ret)
868 		return ret;
869 
870 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
871 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
872 		struct i915_vma *vma = dev_priv->fence_regs[i].vma;
873 
874 		seq_printf(m, "Fence %d, pin count = %d, object = ",
875 			   i, dev_priv->fence_regs[i].pin_count);
876 		if (!vma)
877 			seq_puts(m, "unused");
878 		else
879 			describe_obj(m, vma->obj);
880 		seq_putc(m, '\n');
881 	}
882 
883 	mutex_unlock(&dev->struct_mutex);
884 	return 0;
885 }
886 
887 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
888 static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
889 			      size_t count, loff_t *pos)
890 {
891 	struct i915_gpu_state *error = file->private_data;
892 	struct drm_i915_error_state_buf str;
893 	ssize_t ret;
894 	loff_t tmp;
895 
896 	if (!error)
897 		return 0;
898 
899 	ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
900 	if (ret)
901 		return ret;
902 
903 	ret = i915_error_state_to_str(&str, error);
904 	if (ret)
905 		goto out;
906 
907 	tmp = 0;
908 	ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
909 	if (ret < 0)
910 		goto out;
911 
912 	*pos = str.start + ret;
913 out:
914 	i915_error_state_buf_release(&str);
915 	return ret;
916 }
917 
918 static int gpu_state_release(struct inode *inode, struct file *file)
919 {
920 	i915_gpu_state_put(file->private_data);
921 	return 0;
922 }
923 
924 static int i915_gpu_info_open(struct inode *inode, struct file *file)
925 {
926 	struct drm_i915_private *i915 = inode->i_private;
927 	struct i915_gpu_state *gpu;
928 
929 	intel_runtime_pm_get(i915);
930 	gpu = i915_capture_gpu_state(i915);
931 	intel_runtime_pm_put(i915);
932 	if (!gpu)
933 		return -ENOMEM;
934 
935 	file->private_data = gpu;
936 	return 0;
937 }
938 
939 static const struct file_operations i915_gpu_info_fops = {
940 	.owner = THIS_MODULE,
941 	.open = i915_gpu_info_open,
942 	.read = gpu_state_read,
943 	.llseek = default_llseek,
944 	.release = gpu_state_release,
945 };
946 
947 static ssize_t
948 i915_error_state_write(struct file *filp,
949 		       const char __user *ubuf,
950 		       size_t cnt,
951 		       loff_t *ppos)
952 {
953 	struct i915_gpu_state *error = filp->private_data;
954 
955 	if (!error)
956 		return 0;
957 
958 	DRM_DEBUG_DRIVER("Resetting error state\n");
959 	i915_reset_error_state(error->i915);
960 
961 	return cnt;
962 }
963 
964 static int i915_error_state_open(struct inode *inode, struct file *file)
965 {
966 	file->private_data = i915_first_error_state(inode->i_private);
967 	return 0;
968 }
969 
970 static const struct file_operations i915_error_state_fops = {
971 	.owner = THIS_MODULE,
972 	.open = i915_error_state_open,
973 	.read = gpu_state_read,
974 	.write = i915_error_state_write,
975 	.llseek = default_llseek,
976 	.release = gpu_state_release,
977 };
978 #endif
979 
980 static int
981 i915_next_seqno_set(void *data, u64 val)
982 {
983 	struct drm_i915_private *dev_priv = data;
984 	struct drm_device *dev = &dev_priv->drm;
985 	int ret;
986 
987 	ret = mutex_lock_interruptible(&dev->struct_mutex);
988 	if (ret)
989 		return ret;
990 
991 	ret = i915_gem_set_global_seqno(dev, val);
992 	mutex_unlock(&dev->struct_mutex);
993 
994 	return ret;
995 }
996 
997 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
998 			NULL, i915_next_seqno_set,
999 			"0x%llx\n");
1000 
1001 static int i915_frequency_info(struct seq_file *m, void *unused)
1002 {
1003 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1004 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1005 	int ret = 0;
1006 
1007 	intel_runtime_pm_get(dev_priv);
1008 
1009 	if (IS_GEN5(dev_priv)) {
1010 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1011 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1012 
1013 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1014 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1015 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1016 			   MEMSTAT_VID_SHIFT);
1017 		seq_printf(m, "Current P-state: %d\n",
1018 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1019 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1020 		u32 rpmodectl, freq_sts;
1021 
1022 		mutex_lock(&dev_priv->pcu_lock);
1023 
1024 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1025 		seq_printf(m, "Video Turbo Mode: %s\n",
1026 			   yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
1027 		seq_printf(m, "HW control enabled: %s\n",
1028 			   yesno(rpmodectl & GEN6_RP_ENABLE));
1029 		seq_printf(m, "SW control enabled: %s\n",
1030 			   yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
1031 				  GEN6_RP_MEDIA_SW_MODE));
1032 
1033 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1034 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1035 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1036 
1037 		seq_printf(m, "actual GPU freq: %d MHz\n",
1038 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1039 
1040 		seq_printf(m, "current GPU freq: %d MHz\n",
1041 			   intel_gpu_freq(dev_priv, rps->cur_freq));
1042 
1043 		seq_printf(m, "max GPU freq: %d MHz\n",
1044 			   intel_gpu_freq(dev_priv, rps->max_freq));
1045 
1046 		seq_printf(m, "min GPU freq: %d MHz\n",
1047 			   intel_gpu_freq(dev_priv, rps->min_freq));
1048 
1049 		seq_printf(m, "idle GPU freq: %d MHz\n",
1050 			   intel_gpu_freq(dev_priv, rps->idle_freq));
1051 
1052 		seq_printf(m,
1053 			   "efficient (RPe) frequency: %d MHz\n",
1054 			   intel_gpu_freq(dev_priv, rps->efficient_freq));
1055 		mutex_unlock(&dev_priv->pcu_lock);
1056 	} else if (INTEL_GEN(dev_priv) >= 6) {
1057 		u32 rp_state_limits;
1058 		u32 gt_perf_status;
1059 		u32 rp_state_cap;
1060 		u32 rpmodectl, rpinclimit, rpdeclimit;
1061 		u32 rpstat, cagf, reqf;
1062 		u32 rpupei, rpcurup, rpprevup;
1063 		u32 rpdownei, rpcurdown, rpprevdown;
1064 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1065 		int max_freq;
1066 
1067 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1068 		if (IS_GEN9_LP(dev_priv)) {
1069 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1070 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1071 		} else {
1072 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1073 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1074 		}
1075 
1076 		/* RPSTAT1 is in the GT power well */
1077 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1078 
1079 		reqf = I915_READ(GEN6_RPNSWREQ);
1080 		if (INTEL_GEN(dev_priv) >= 9)
1081 			reqf >>= 23;
1082 		else {
1083 			reqf &= ~GEN6_TURBO_DISABLE;
1084 			if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1085 				reqf >>= 24;
1086 			else
1087 				reqf >>= 25;
1088 		}
1089 		reqf = intel_gpu_freq(dev_priv, reqf);
1090 
1091 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1092 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1093 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1094 
1095 		rpstat = I915_READ(GEN6_RPSTAT1);
1096 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1097 		rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1098 		rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1099 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1100 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1101 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1102 		cagf = intel_gpu_freq(dev_priv,
1103 				      intel_get_cagf(dev_priv, rpstat));
1104 
1105 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1106 
1107 		if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1108 			pm_ier = I915_READ(GEN6_PMIER);
1109 			pm_imr = I915_READ(GEN6_PMIMR);
1110 			pm_isr = I915_READ(GEN6_PMISR);
1111 			pm_iir = I915_READ(GEN6_PMIIR);
1112 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1113 		} else {
1114 			pm_ier = I915_READ(GEN8_GT_IER(2));
1115 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1116 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1117 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1118 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1119 		}
1120 		seq_printf(m, "Video Turbo Mode: %s\n",
1121 			   yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
1122 		seq_printf(m, "HW control enabled: %s\n",
1123 			   yesno(rpmodectl & GEN6_RP_ENABLE));
1124 		seq_printf(m, "SW control enabled: %s\n",
1125 			   yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
1126 				  GEN6_RP_MEDIA_SW_MODE));
1127 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1128 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1129 		seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
1130 			   rps->pm_intrmsk_mbz);
1131 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1132 		seq_printf(m, "Render p-state ratio: %d\n",
1133 			   (gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
1134 		seq_printf(m, "Render p-state VID: %d\n",
1135 			   gt_perf_status & 0xff);
1136 		seq_printf(m, "Render p-state limit: %d\n",
1137 			   rp_state_limits & 0xff);
1138 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1139 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1140 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1141 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1142 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1143 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1144 		seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1145 			   rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1146 		seq_printf(m, "RP CUR UP: %d (%dus)\n",
1147 			   rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1148 		seq_printf(m, "RP PREV UP: %d (%dus)\n",
1149 			   rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1150 		seq_printf(m, "Up threshold: %d%%\n", rps->up_threshold);
1151 
1152 		seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1153 			   rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1154 		seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1155 			   rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1156 		seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1157 			   rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1158 		seq_printf(m, "Down threshold: %d%%\n", rps->down_threshold);
1159 
1160 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
1161 			    rp_state_cap >> 16) & 0xff;
1162 		max_freq *= (IS_GEN9_BC(dev_priv) ||
1163 			     IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1164 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1165 			   intel_gpu_freq(dev_priv, max_freq));
1166 
1167 		max_freq = (rp_state_cap & 0xff00) >> 8;
1168 		max_freq *= (IS_GEN9_BC(dev_priv) ||
1169 			     IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1170 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1171 			   intel_gpu_freq(dev_priv, max_freq));
1172 
1173 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
1174 			    rp_state_cap >> 0) & 0xff;
1175 		max_freq *= (IS_GEN9_BC(dev_priv) ||
1176 			     IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1177 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1178 			   intel_gpu_freq(dev_priv, max_freq));
1179 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1180 			   intel_gpu_freq(dev_priv, rps->max_freq));
1181 
1182 		seq_printf(m, "Current freq: %d MHz\n",
1183 			   intel_gpu_freq(dev_priv, rps->cur_freq));
1184 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1185 		seq_printf(m, "Idle freq: %d MHz\n",
1186 			   intel_gpu_freq(dev_priv, rps->idle_freq));
1187 		seq_printf(m, "Min freq: %d MHz\n",
1188 			   intel_gpu_freq(dev_priv, rps->min_freq));
1189 		seq_printf(m, "Boost freq: %d MHz\n",
1190 			   intel_gpu_freq(dev_priv, rps->boost_freq));
1191 		seq_printf(m, "Max freq: %d MHz\n",
1192 			   intel_gpu_freq(dev_priv, rps->max_freq));
1193 		seq_printf(m,
1194 			   "efficient (RPe) frequency: %d MHz\n",
1195 			   intel_gpu_freq(dev_priv, rps->efficient_freq));
1196 	} else {
1197 		seq_puts(m, "no P-state info available\n");
1198 	}
1199 
1200 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
1201 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1202 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1203 
1204 	intel_runtime_pm_put(dev_priv);
1205 	return ret;
1206 }
1207 
1208 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1209 			       struct seq_file *m,
1210 			       struct intel_instdone *instdone)
1211 {
1212 	int slice;
1213 	int subslice;
1214 
1215 	seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1216 		   instdone->instdone);
1217 
1218 	if (INTEL_GEN(dev_priv) <= 3)
1219 		return;
1220 
1221 	seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1222 		   instdone->slice_common);
1223 
1224 	if (INTEL_GEN(dev_priv) <= 6)
1225 		return;
1226 
1227 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1228 		seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1229 			   slice, subslice, instdone->sampler[slice][subslice]);
1230 
1231 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1232 		seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1233 			   slice, subslice, instdone->row[slice][subslice]);
1234 }
1235 
1236 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1237 {
1238 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1239 	struct intel_engine_cs *engine;
1240 	u64 acthd[I915_NUM_ENGINES];
1241 	u32 seqno[I915_NUM_ENGINES];
1242 	struct intel_instdone instdone;
1243 	enum intel_engine_id id;
1244 
1245 	if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1246 		seq_puts(m, "Wedged\n");
1247 	if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
1248 		seq_puts(m, "Reset in progress: struct_mutex backoff\n");
1249 	if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
1250 		seq_puts(m, "Reset in progress: reset handoff to waiter\n");
1251 	if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1252 		seq_puts(m, "Waiter holding struct mutex\n");
1253 	if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1254 		seq_puts(m, "struct_mutex blocked for reset\n");
1255 
1256 	if (!i915_modparams.enable_hangcheck) {
1257 		seq_puts(m, "Hangcheck disabled\n");
1258 		return 0;
1259 	}
1260 
1261 	intel_runtime_pm_get(dev_priv);
1262 
1263 	for_each_engine(engine, dev_priv, id) {
1264 		acthd[id] = intel_engine_get_active_head(engine);
1265 		seqno[id] = intel_engine_get_seqno(engine);
1266 	}
1267 
1268 	intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1269 
1270 	intel_runtime_pm_put(dev_priv);
1271 
1272 	if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
1273 		seq_printf(m, "Hangcheck active, timer fires in %dms\n",
1274 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1275 					    jiffies));
1276 	else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
1277 		seq_puts(m, "Hangcheck active, work pending\n");
1278 	else
1279 		seq_puts(m, "Hangcheck inactive\n");
1280 
1281 	seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
1282 
1283 	for_each_engine(engine, dev_priv, id) {
1284 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
1285 		struct rb_node *rb;
1286 
1287 		seq_printf(m, "%s:\n", engine->name);
1288 		seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
1289 			   engine->hangcheck.seqno, seqno[id],
1290 			   intel_engine_last_submit(engine),
1291 			   engine->timeline->inflight_seqnos);
1292 		seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
1293 			   yesno(intel_engine_has_waiter(engine)),
1294 			   yesno(test_bit(engine->id,
1295 					  &dev_priv->gpu_error.missed_irq_rings)),
1296 			   yesno(engine->hangcheck.stalled));
1297 
1298 		spin_lock_irq(&b->rb_lock);
1299 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1300 			struct intel_wait *w = rb_entry(rb, typeof(*w), node);
1301 
1302 			seq_printf(m, "\t%s [%d] waiting for %x\n",
1303 				   w->tsk->comm, w->tsk->pid, w->seqno);
1304 		}
1305 		spin_unlock_irq(&b->rb_lock);
1306 
1307 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1308 			   (long long)engine->hangcheck.acthd,
1309 			   (long long)acthd[id]);
1310 		seq_printf(m, "\taction = %s(%d) %d ms ago\n",
1311 			   hangcheck_action_to_str(engine->hangcheck.action),
1312 			   engine->hangcheck.action,
1313 			   jiffies_to_msecs(jiffies -
1314 					    engine->hangcheck.action_timestamp));
1315 
1316 		if (engine->id == RCS) {
1317 			seq_puts(m, "\tinstdone read =\n");
1318 
1319 			i915_instdone_info(dev_priv, m, &instdone);
1320 
1321 			seq_puts(m, "\tinstdone accu =\n");
1322 
1323 			i915_instdone_info(dev_priv, m,
1324 					   &engine->hangcheck.instdone);
1325 		}
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 static int i915_reset_info(struct seq_file *m, void *unused)
1332 {
1333 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1334 	struct i915_gpu_error *error = &dev_priv->gpu_error;
1335 	struct intel_engine_cs *engine;
1336 	enum intel_engine_id id;
1337 
1338 	seq_printf(m, "full gpu reset = %u\n", i915_reset_count(error));
1339 
1340 	for_each_engine(engine, dev_priv, id) {
1341 		seq_printf(m, "%s = %u\n", engine->name,
1342 			   i915_reset_engine_count(error, engine));
1343 	}
1344 
1345 	return 0;
1346 }
1347 
1348 static int ironlake_drpc_info(struct seq_file *m)
1349 {
1350 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1351 	u32 rgvmodectl, rstdbyctl;
1352 	u16 crstandvid;
1353 
1354 	rgvmodectl = I915_READ(MEMMODECTL);
1355 	rstdbyctl = I915_READ(RSTDBYCTL);
1356 	crstandvid = I915_READ16(CRSTANDVID);
1357 
1358 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1359 	seq_printf(m, "Boost freq: %d\n",
1360 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1361 		   MEMMODE_BOOST_FREQ_SHIFT);
1362 	seq_printf(m, "HW control enabled: %s\n",
1363 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1364 	seq_printf(m, "SW control enabled: %s\n",
1365 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1366 	seq_printf(m, "Gated voltage change: %s\n",
1367 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1368 	seq_printf(m, "Starting frequency: P%d\n",
1369 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1370 	seq_printf(m, "Max P-state: P%d\n",
1371 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1372 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1373 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1374 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1375 	seq_printf(m, "Render standby enabled: %s\n",
1376 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1377 	seq_puts(m, "Current RS state: ");
1378 	switch (rstdbyctl & RSX_STATUS_MASK) {
1379 	case RSX_STATUS_ON:
1380 		seq_puts(m, "on\n");
1381 		break;
1382 	case RSX_STATUS_RC1:
1383 		seq_puts(m, "RC1\n");
1384 		break;
1385 	case RSX_STATUS_RC1E:
1386 		seq_puts(m, "RC1E\n");
1387 		break;
1388 	case RSX_STATUS_RS1:
1389 		seq_puts(m, "RS1\n");
1390 		break;
1391 	case RSX_STATUS_RS2:
1392 		seq_puts(m, "RS2 (RC6)\n");
1393 		break;
1394 	case RSX_STATUS_RS3:
1395 		seq_puts(m, "RC3 (RC6+)\n");
1396 		break;
1397 	default:
1398 		seq_puts(m, "unknown\n");
1399 		break;
1400 	}
1401 
1402 	return 0;
1403 }
1404 
1405 static int i915_forcewake_domains(struct seq_file *m, void *data)
1406 {
1407 	struct drm_i915_private *i915 = node_to_i915(m->private);
1408 	struct intel_uncore_forcewake_domain *fw_domain;
1409 	unsigned int tmp;
1410 
1411 	seq_printf(m, "user.bypass_count = %u\n",
1412 		   i915->uncore.user_forcewake.count);
1413 
1414 	for_each_fw_domain(fw_domain, i915, tmp)
1415 		seq_printf(m, "%s.wake_count = %u\n",
1416 			   intel_uncore_forcewake_domain_to_str(fw_domain->id),
1417 			   READ_ONCE(fw_domain->wake_count));
1418 
1419 	return 0;
1420 }
1421 
1422 static void print_rc6_res(struct seq_file *m,
1423 			  const char *title,
1424 			  const i915_reg_t reg)
1425 {
1426 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1427 
1428 	seq_printf(m, "%s %u (%llu us)\n",
1429 		   title, I915_READ(reg),
1430 		   intel_rc6_residency_us(dev_priv, reg));
1431 }
1432 
1433 static int vlv_drpc_info(struct seq_file *m)
1434 {
1435 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1436 	u32 rcctl1, pw_status;
1437 
1438 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1439 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1440 
1441 	seq_printf(m, "RC6 Enabled: %s\n",
1442 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1443 					GEN6_RC_CTL_EI_MODE(1))));
1444 	seq_printf(m, "Render Power Well: %s\n",
1445 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1446 	seq_printf(m, "Media Power Well: %s\n",
1447 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1448 
1449 	print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
1450 	print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
1451 
1452 	return i915_forcewake_domains(m, NULL);
1453 }
1454 
1455 static int gen6_drpc_info(struct seq_file *m)
1456 {
1457 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1458 	u32 gt_core_status, rcctl1, rc6vids = 0;
1459 	u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1460 	unsigned forcewake_count;
1461 	int count = 0;
1462 
1463 	forcewake_count = READ_ONCE(dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count);
1464 	if (forcewake_count) {
1465 		seq_puts(m, "RC information inaccurate because somebody "
1466 			    "holds a forcewake reference \n");
1467 	} else {
1468 		/* NB: we cannot use forcewake, else we read the wrong values */
1469 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1470 			udelay(10);
1471 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1472 	}
1473 
1474 	gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1475 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1476 
1477 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1478 	if (INTEL_GEN(dev_priv) >= 9) {
1479 		gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1480 		gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1481 	}
1482 
1483 	mutex_lock(&dev_priv->pcu_lock);
1484 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1485 	mutex_unlock(&dev_priv->pcu_lock);
1486 
1487 	seq_printf(m, "RC1e Enabled: %s\n",
1488 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1489 	seq_printf(m, "RC6 Enabled: %s\n",
1490 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1491 	if (INTEL_GEN(dev_priv) >= 9) {
1492 		seq_printf(m, "Render Well Gating Enabled: %s\n",
1493 			yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1494 		seq_printf(m, "Media Well Gating Enabled: %s\n",
1495 			yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1496 	}
1497 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1498 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1499 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1500 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1501 	seq_puts(m, "Current RC state: ");
1502 	switch (gt_core_status & GEN6_RCn_MASK) {
1503 	case GEN6_RC0:
1504 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1505 			seq_puts(m, "Core Power Down\n");
1506 		else
1507 			seq_puts(m, "on\n");
1508 		break;
1509 	case GEN6_RC3:
1510 		seq_puts(m, "RC3\n");
1511 		break;
1512 	case GEN6_RC6:
1513 		seq_puts(m, "RC6\n");
1514 		break;
1515 	case GEN6_RC7:
1516 		seq_puts(m, "RC7\n");
1517 		break;
1518 	default:
1519 		seq_puts(m, "Unknown\n");
1520 		break;
1521 	}
1522 
1523 	seq_printf(m, "Core Power Down: %s\n",
1524 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1525 	if (INTEL_GEN(dev_priv) >= 9) {
1526 		seq_printf(m, "Render Power Well: %s\n",
1527 			(gen9_powergate_status &
1528 			 GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1529 		seq_printf(m, "Media Power Well: %s\n",
1530 			(gen9_powergate_status &
1531 			 GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1532 	}
1533 
1534 	/* Not exactly sure what this is */
1535 	print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
1536 		      GEN6_GT_GFX_RC6_LOCKED);
1537 	print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
1538 	print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
1539 	print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
1540 
1541 	seq_printf(m, "RC6   voltage: %dmV\n",
1542 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1543 	seq_printf(m, "RC6+  voltage: %dmV\n",
1544 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1545 	seq_printf(m, "RC6++ voltage: %dmV\n",
1546 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1547 	return i915_forcewake_domains(m, NULL);
1548 }
1549 
1550 static int i915_drpc_info(struct seq_file *m, void *unused)
1551 {
1552 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1553 	int err;
1554 
1555 	intel_runtime_pm_get(dev_priv);
1556 
1557 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1558 		err = vlv_drpc_info(m);
1559 	else if (INTEL_GEN(dev_priv) >= 6)
1560 		err = gen6_drpc_info(m);
1561 	else
1562 		err = ironlake_drpc_info(m);
1563 
1564 	intel_runtime_pm_put(dev_priv);
1565 
1566 	return err;
1567 }
1568 
1569 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1570 {
1571 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1572 
1573 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1574 		   dev_priv->fb_tracking.busy_bits);
1575 
1576 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1577 		   dev_priv->fb_tracking.flip_bits);
1578 
1579 	return 0;
1580 }
1581 
1582 static int i915_fbc_status(struct seq_file *m, void *unused)
1583 {
1584 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1585 	struct intel_fbc *fbc = &dev_priv->fbc;
1586 
1587 	if (!HAS_FBC(dev_priv))
1588 		return -ENODEV;
1589 
1590 	intel_runtime_pm_get(dev_priv);
1591 	mutex_lock(&fbc->lock);
1592 
1593 	if (intel_fbc_is_active(dev_priv))
1594 		seq_puts(m, "FBC enabled\n");
1595 	else
1596 		seq_printf(m, "FBC disabled: %s\n", fbc->no_fbc_reason);
1597 
1598 	if (fbc->work.scheduled)
1599 		seq_printf(m, "FBC worker scheduled on vblank %u, now %llu\n",
1600 			   fbc->work.scheduled_vblank,
1601 			   drm_crtc_vblank_count(&fbc->crtc->base));
1602 
1603 	if (intel_fbc_is_active(dev_priv)) {
1604 		u32 mask;
1605 
1606 		if (INTEL_GEN(dev_priv) >= 8)
1607 			mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK;
1608 		else if (INTEL_GEN(dev_priv) >= 7)
1609 			mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK;
1610 		else if (INTEL_GEN(dev_priv) >= 5)
1611 			mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK;
1612 		else if (IS_G4X(dev_priv))
1613 			mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK;
1614 		else
1615 			mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING |
1616 							FBC_STAT_COMPRESSED);
1617 
1618 		seq_printf(m, "Compressing: %s\n", yesno(mask));
1619 	}
1620 
1621 	mutex_unlock(&fbc->lock);
1622 	intel_runtime_pm_put(dev_priv);
1623 
1624 	return 0;
1625 }
1626 
1627 static int i915_fbc_false_color_get(void *data, u64 *val)
1628 {
1629 	struct drm_i915_private *dev_priv = data;
1630 
1631 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1632 		return -ENODEV;
1633 
1634 	*val = dev_priv->fbc.false_color;
1635 
1636 	return 0;
1637 }
1638 
1639 static int i915_fbc_false_color_set(void *data, u64 val)
1640 {
1641 	struct drm_i915_private *dev_priv = data;
1642 	u32 reg;
1643 
1644 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1645 		return -ENODEV;
1646 
1647 	mutex_lock(&dev_priv->fbc.lock);
1648 
1649 	reg = I915_READ(ILK_DPFC_CONTROL);
1650 	dev_priv->fbc.false_color = val;
1651 
1652 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1653 		   (reg | FBC_CTL_FALSE_COLOR) :
1654 		   (reg & ~FBC_CTL_FALSE_COLOR));
1655 
1656 	mutex_unlock(&dev_priv->fbc.lock);
1657 	return 0;
1658 }
1659 
1660 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops,
1661 			i915_fbc_false_color_get, i915_fbc_false_color_set,
1662 			"%llu\n");
1663 
1664 static int i915_ips_status(struct seq_file *m, void *unused)
1665 {
1666 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1667 
1668 	if (!HAS_IPS(dev_priv))
1669 		return -ENODEV;
1670 
1671 	intel_runtime_pm_get(dev_priv);
1672 
1673 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1674 		   yesno(i915_modparams.enable_ips));
1675 
1676 	if (INTEL_GEN(dev_priv) >= 8) {
1677 		seq_puts(m, "Currently: unknown\n");
1678 	} else {
1679 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1680 			seq_puts(m, "Currently: enabled\n");
1681 		else
1682 			seq_puts(m, "Currently: disabled\n");
1683 	}
1684 
1685 	intel_runtime_pm_put(dev_priv);
1686 
1687 	return 0;
1688 }
1689 
1690 static int i915_sr_status(struct seq_file *m, void *unused)
1691 {
1692 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1693 	bool sr_enabled = false;
1694 
1695 	intel_runtime_pm_get(dev_priv);
1696 	intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1697 
1698 	if (INTEL_GEN(dev_priv) >= 9)
1699 		/* no global SR status; inspect per-plane WM */;
1700 	else if (HAS_PCH_SPLIT(dev_priv))
1701 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1702 	else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
1703 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1704 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1705 	else if (IS_I915GM(dev_priv))
1706 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1707 	else if (IS_PINEVIEW(dev_priv))
1708 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1709 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1710 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1711 
1712 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1713 	intel_runtime_pm_put(dev_priv);
1714 
1715 	seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
1716 
1717 	return 0;
1718 }
1719 
1720 static int i915_emon_status(struct seq_file *m, void *unused)
1721 {
1722 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1723 	struct drm_device *dev = &dev_priv->drm;
1724 	unsigned long temp, chipset, gfx;
1725 	int ret;
1726 
1727 	if (!IS_GEN5(dev_priv))
1728 		return -ENODEV;
1729 
1730 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1731 	if (ret)
1732 		return ret;
1733 
1734 	temp = i915_mch_val(dev_priv);
1735 	chipset = i915_chipset_val(dev_priv);
1736 	gfx = i915_gfx_val(dev_priv);
1737 	mutex_unlock(&dev->struct_mutex);
1738 
1739 	seq_printf(m, "GMCH temp: %ld\n", temp);
1740 	seq_printf(m, "Chipset power: %ld\n", chipset);
1741 	seq_printf(m, "GFX power: %ld\n", gfx);
1742 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1743 
1744 	return 0;
1745 }
1746 
1747 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1748 {
1749 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1750 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1751 	int ret = 0;
1752 	int gpu_freq, ia_freq;
1753 	unsigned int max_gpu_freq, min_gpu_freq;
1754 
1755 	if (!HAS_LLC(dev_priv))
1756 		return -ENODEV;
1757 
1758 	intel_runtime_pm_get(dev_priv);
1759 
1760 	ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
1761 	if (ret)
1762 		goto out;
1763 
1764 	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
1765 		/* Convert GT frequency to 50 HZ units */
1766 		min_gpu_freq = rps->min_freq_softlimit / GEN9_FREQ_SCALER;
1767 		max_gpu_freq = rps->max_freq_softlimit / GEN9_FREQ_SCALER;
1768 	} else {
1769 		min_gpu_freq = rps->min_freq_softlimit;
1770 		max_gpu_freq = rps->max_freq_softlimit;
1771 	}
1772 
1773 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1774 
1775 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1776 		ia_freq = gpu_freq;
1777 		sandybridge_pcode_read(dev_priv,
1778 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1779 				       &ia_freq);
1780 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1781 			   intel_gpu_freq(dev_priv, (gpu_freq *
1782 						     (IS_GEN9_BC(dev_priv) ||
1783 						      IS_CANNONLAKE(dev_priv) ?
1784 						      GEN9_FREQ_SCALER : 1))),
1785 			   ((ia_freq >> 0) & 0xff) * 100,
1786 			   ((ia_freq >> 8) & 0xff) * 100);
1787 	}
1788 
1789 	mutex_unlock(&dev_priv->pcu_lock);
1790 
1791 out:
1792 	intel_runtime_pm_put(dev_priv);
1793 	return ret;
1794 }
1795 
1796 static int i915_opregion(struct seq_file *m, void *unused)
1797 {
1798 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1799 	struct drm_device *dev = &dev_priv->drm;
1800 	struct intel_opregion *opregion = &dev_priv->opregion;
1801 	int ret;
1802 
1803 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1804 	if (ret)
1805 		goto out;
1806 
1807 	if (opregion->header)
1808 		seq_write(m, opregion->header, OPREGION_SIZE);
1809 
1810 	mutex_unlock(&dev->struct_mutex);
1811 
1812 out:
1813 	return 0;
1814 }
1815 
1816 static int i915_vbt(struct seq_file *m, void *unused)
1817 {
1818 	struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1819 
1820 	if (opregion->vbt)
1821 		seq_write(m, opregion->vbt, opregion->vbt_size);
1822 
1823 	return 0;
1824 }
1825 
1826 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1827 {
1828 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1829 	struct drm_device *dev = &dev_priv->drm;
1830 	struct intel_framebuffer *fbdev_fb = NULL;
1831 	struct drm_framebuffer *drm_fb;
1832 	int ret;
1833 
1834 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1835 	if (ret)
1836 		return ret;
1837 
1838 #ifdef CONFIG_DRM_FBDEV_EMULATION
1839 	if (dev_priv->fbdev && dev_priv->fbdev->helper.fb) {
1840 		fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1841 
1842 		seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1843 			   fbdev_fb->base.width,
1844 			   fbdev_fb->base.height,
1845 			   fbdev_fb->base.format->depth,
1846 			   fbdev_fb->base.format->cpp[0] * 8,
1847 			   fbdev_fb->base.modifier,
1848 			   drm_framebuffer_read_refcount(&fbdev_fb->base));
1849 		describe_obj(m, fbdev_fb->obj);
1850 		seq_putc(m, '\n');
1851 	}
1852 #endif
1853 
1854 	mutex_lock(&dev->mode_config.fb_lock);
1855 	drm_for_each_fb(drm_fb, dev) {
1856 		struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1857 		if (fb == fbdev_fb)
1858 			continue;
1859 
1860 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1861 			   fb->base.width,
1862 			   fb->base.height,
1863 			   fb->base.format->depth,
1864 			   fb->base.format->cpp[0] * 8,
1865 			   fb->base.modifier,
1866 			   drm_framebuffer_read_refcount(&fb->base));
1867 		describe_obj(m, fb->obj);
1868 		seq_putc(m, '\n');
1869 	}
1870 	mutex_unlock(&dev->mode_config.fb_lock);
1871 	mutex_unlock(&dev->struct_mutex);
1872 
1873 	return 0;
1874 }
1875 
1876 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1877 {
1878 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u)",
1879 		   ring->space, ring->head, ring->tail);
1880 }
1881 
1882 static int i915_context_status(struct seq_file *m, void *unused)
1883 {
1884 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1885 	struct drm_device *dev = &dev_priv->drm;
1886 	struct intel_engine_cs *engine;
1887 	struct i915_gem_context *ctx;
1888 	enum intel_engine_id id;
1889 	int ret;
1890 
1891 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1892 	if (ret)
1893 		return ret;
1894 
1895 	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1896 		seq_printf(m, "HW context %u ", ctx->hw_id);
1897 		if (ctx->pid) {
1898 			struct task_struct *task;
1899 
1900 			task = get_pid_task(ctx->pid, PIDTYPE_PID);
1901 			if (task) {
1902 				seq_printf(m, "(%s [%d]) ",
1903 					   task->comm, task->pid);
1904 				put_task_struct(task);
1905 			}
1906 		} else if (IS_ERR(ctx->file_priv)) {
1907 			seq_puts(m, "(deleted) ");
1908 		} else {
1909 			seq_puts(m, "(kernel) ");
1910 		}
1911 
1912 		seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1913 		seq_putc(m, '\n');
1914 
1915 		for_each_engine(engine, dev_priv, id) {
1916 			struct intel_context *ce = &ctx->engine[engine->id];
1917 
1918 			seq_printf(m, "%s: ", engine->name);
1919 			if (ce->state)
1920 				describe_obj(m, ce->state->obj);
1921 			if (ce->ring)
1922 				describe_ctx_ring(m, ce->ring);
1923 			seq_putc(m, '\n');
1924 		}
1925 
1926 		seq_putc(m, '\n');
1927 	}
1928 
1929 	mutex_unlock(&dev->struct_mutex);
1930 
1931 	return 0;
1932 }
1933 
1934 static const char *swizzle_string(unsigned swizzle)
1935 {
1936 	switch (swizzle) {
1937 	case I915_BIT_6_SWIZZLE_NONE:
1938 		return "none";
1939 	case I915_BIT_6_SWIZZLE_9:
1940 		return "bit9";
1941 	case I915_BIT_6_SWIZZLE_9_10:
1942 		return "bit9/bit10";
1943 	case I915_BIT_6_SWIZZLE_9_11:
1944 		return "bit9/bit11";
1945 	case I915_BIT_6_SWIZZLE_9_10_11:
1946 		return "bit9/bit10/bit11";
1947 	case I915_BIT_6_SWIZZLE_9_17:
1948 		return "bit9/bit17";
1949 	case I915_BIT_6_SWIZZLE_9_10_17:
1950 		return "bit9/bit10/bit17";
1951 	case I915_BIT_6_SWIZZLE_UNKNOWN:
1952 		return "unknown";
1953 	}
1954 
1955 	return "bug";
1956 }
1957 
1958 static int i915_swizzle_info(struct seq_file *m, void *data)
1959 {
1960 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1961 
1962 	intel_runtime_pm_get(dev_priv);
1963 
1964 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1965 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1966 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1967 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1968 
1969 	if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
1970 		seq_printf(m, "DDC = 0x%08x\n",
1971 			   I915_READ(DCC));
1972 		seq_printf(m, "DDC2 = 0x%08x\n",
1973 			   I915_READ(DCC2));
1974 		seq_printf(m, "C0DRB3 = 0x%04x\n",
1975 			   I915_READ16(C0DRB3));
1976 		seq_printf(m, "C1DRB3 = 0x%04x\n",
1977 			   I915_READ16(C1DRB3));
1978 	} else if (INTEL_GEN(dev_priv) >= 6) {
1979 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1980 			   I915_READ(MAD_DIMM_C0));
1981 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1982 			   I915_READ(MAD_DIMM_C1));
1983 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1984 			   I915_READ(MAD_DIMM_C2));
1985 		seq_printf(m, "TILECTL = 0x%08x\n",
1986 			   I915_READ(TILECTL));
1987 		if (INTEL_GEN(dev_priv) >= 8)
1988 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1989 				   I915_READ(GAMTARBMODE));
1990 		else
1991 			seq_printf(m, "ARB_MODE = 0x%08x\n",
1992 				   I915_READ(ARB_MODE));
1993 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1994 			   I915_READ(DISP_ARB_CTL));
1995 	}
1996 
1997 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
1998 		seq_puts(m, "L-shaped memory detected\n");
1999 
2000 	intel_runtime_pm_put(dev_priv);
2001 
2002 	return 0;
2003 }
2004 
2005 static int per_file_ctx(int id, void *ptr, void *data)
2006 {
2007 	struct i915_gem_context *ctx = ptr;
2008 	struct seq_file *m = data;
2009 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2010 
2011 	if (!ppgtt) {
2012 		seq_printf(m, "  no ppgtt for context %d\n",
2013 			   ctx->user_handle);
2014 		return 0;
2015 	}
2016 
2017 	if (i915_gem_context_is_default(ctx))
2018 		seq_puts(m, "  default context:\n");
2019 	else
2020 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2021 	ppgtt->debug_dump(ppgtt, m);
2022 
2023 	return 0;
2024 }
2025 
2026 static void gen8_ppgtt_info(struct seq_file *m,
2027 			    struct drm_i915_private *dev_priv)
2028 {
2029 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2030 	struct intel_engine_cs *engine;
2031 	enum intel_engine_id id;
2032 	int i;
2033 
2034 	if (!ppgtt)
2035 		return;
2036 
2037 	for_each_engine(engine, dev_priv, id) {
2038 		seq_printf(m, "%s\n", engine->name);
2039 		for (i = 0; i < 4; i++) {
2040 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2041 			pdp <<= 32;
2042 			pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2043 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2044 		}
2045 	}
2046 }
2047 
2048 static void gen6_ppgtt_info(struct seq_file *m,
2049 			    struct drm_i915_private *dev_priv)
2050 {
2051 	struct intel_engine_cs *engine;
2052 	enum intel_engine_id id;
2053 
2054 	if (IS_GEN6(dev_priv))
2055 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2056 
2057 	for_each_engine(engine, dev_priv, id) {
2058 		seq_printf(m, "%s\n", engine->name);
2059 		if (IS_GEN7(dev_priv))
2060 			seq_printf(m, "GFX_MODE: 0x%08x\n",
2061 				   I915_READ(RING_MODE_GEN7(engine)));
2062 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2063 			   I915_READ(RING_PP_DIR_BASE(engine)));
2064 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2065 			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
2066 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2067 			   I915_READ(RING_PP_DIR_DCLV(engine)));
2068 	}
2069 	if (dev_priv->mm.aliasing_ppgtt) {
2070 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2071 
2072 		seq_puts(m, "aliasing PPGTT:\n");
2073 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2074 
2075 		ppgtt->debug_dump(ppgtt, m);
2076 	}
2077 
2078 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2079 }
2080 
2081 static int i915_ppgtt_info(struct seq_file *m, void *data)
2082 {
2083 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2084 	struct drm_device *dev = &dev_priv->drm;
2085 	struct drm_file *file;
2086 	int ret;
2087 
2088 	mutex_lock(&dev->filelist_mutex);
2089 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2090 	if (ret)
2091 		goto out_unlock;
2092 
2093 	intel_runtime_pm_get(dev_priv);
2094 
2095 	if (INTEL_GEN(dev_priv) >= 8)
2096 		gen8_ppgtt_info(m, dev_priv);
2097 	else if (INTEL_GEN(dev_priv) >= 6)
2098 		gen6_ppgtt_info(m, dev_priv);
2099 
2100 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2101 		struct drm_i915_file_private *file_priv = file->driver_priv;
2102 		struct task_struct *task;
2103 
2104 		task = get_pid_task(file->pid, PIDTYPE_PID);
2105 		if (!task) {
2106 			ret = -ESRCH;
2107 			goto out_rpm;
2108 		}
2109 		seq_printf(m, "\nproc: %s\n", task->comm);
2110 		put_task_struct(task);
2111 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2112 			     (void *)(unsigned long)m);
2113 	}
2114 
2115 out_rpm:
2116 	intel_runtime_pm_put(dev_priv);
2117 	mutex_unlock(&dev->struct_mutex);
2118 out_unlock:
2119 	mutex_unlock(&dev->filelist_mutex);
2120 	return ret;
2121 }
2122 
2123 static int count_irq_waiters(struct drm_i915_private *i915)
2124 {
2125 	struct intel_engine_cs *engine;
2126 	enum intel_engine_id id;
2127 	int count = 0;
2128 
2129 	for_each_engine(engine, i915, id)
2130 		count += intel_engine_has_waiter(engine);
2131 
2132 	return count;
2133 }
2134 
2135 static const char *rps_power_to_str(unsigned int power)
2136 {
2137 	static const char * const strings[] = {
2138 		[LOW_POWER] = "low power",
2139 		[BETWEEN] = "mixed",
2140 		[HIGH_POWER] = "high power",
2141 	};
2142 
2143 	if (power >= ARRAY_SIZE(strings) || !strings[power])
2144 		return "unknown";
2145 
2146 	return strings[power];
2147 }
2148 
2149 static int i915_rps_boost_info(struct seq_file *m, void *data)
2150 {
2151 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2152 	struct drm_device *dev = &dev_priv->drm;
2153 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
2154 	struct drm_file *file;
2155 
2156 	seq_printf(m, "RPS enabled? %d\n", rps->enabled);
2157 	seq_printf(m, "GPU busy? %s [%d requests]\n",
2158 		   yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
2159 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2160 	seq_printf(m, "Boosts outstanding? %d\n",
2161 		   atomic_read(&rps->num_waiters));
2162 	seq_printf(m, "Frequency requested %d\n",
2163 		   intel_gpu_freq(dev_priv, rps->cur_freq));
2164 	seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2165 		   intel_gpu_freq(dev_priv, rps->min_freq),
2166 		   intel_gpu_freq(dev_priv, rps->min_freq_softlimit),
2167 		   intel_gpu_freq(dev_priv, rps->max_freq_softlimit),
2168 		   intel_gpu_freq(dev_priv, rps->max_freq));
2169 	seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2170 		   intel_gpu_freq(dev_priv, rps->idle_freq),
2171 		   intel_gpu_freq(dev_priv, rps->efficient_freq),
2172 		   intel_gpu_freq(dev_priv, rps->boost_freq));
2173 
2174 	mutex_lock(&dev->filelist_mutex);
2175 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2176 		struct drm_i915_file_private *file_priv = file->driver_priv;
2177 		struct task_struct *task;
2178 
2179 		rcu_read_lock();
2180 		task = pid_task(file->pid, PIDTYPE_PID);
2181 		seq_printf(m, "%s [%d]: %d boosts\n",
2182 			   task ? task->comm : "<unknown>",
2183 			   task ? task->pid : -1,
2184 			   atomic_read(&file_priv->rps_client.boosts));
2185 		rcu_read_unlock();
2186 	}
2187 	seq_printf(m, "Kernel (anonymous) boosts: %d\n",
2188 		   atomic_read(&rps->boosts));
2189 	mutex_unlock(&dev->filelist_mutex);
2190 
2191 	if (INTEL_GEN(dev_priv) >= 6 &&
2192 	    rps->enabled &&
2193 	    dev_priv->gt.active_requests) {
2194 		u32 rpup, rpupei;
2195 		u32 rpdown, rpdownei;
2196 
2197 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2198 		rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2199 		rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2200 		rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2201 		rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2202 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2203 
2204 		seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2205 			   rps_power_to_str(rps->power));
2206 		seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2207 			   rpup && rpupei ? 100 * rpup / rpupei : 0,
2208 			   rps->up_threshold);
2209 		seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2210 			   rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
2211 			   rps->down_threshold);
2212 	} else {
2213 		seq_puts(m, "\nRPS Autotuning inactive\n");
2214 	}
2215 
2216 	return 0;
2217 }
2218 
2219 static int i915_llc(struct seq_file *m, void *data)
2220 {
2221 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2222 	const bool edram = INTEL_GEN(dev_priv) > 8;
2223 
2224 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2225 	seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2226 		   intel_uncore_edram_size(dev_priv)/1024/1024);
2227 
2228 	return 0;
2229 }
2230 
2231 static int i915_huc_load_status_info(struct seq_file *m, void *data)
2232 {
2233 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2234 	struct drm_printer p;
2235 
2236 	if (!HAS_HUC(dev_priv))
2237 		return -ENODEV;
2238 
2239 	p = drm_seq_file_printer(m);
2240 	intel_uc_fw_dump(&dev_priv->huc.fw, &p);
2241 
2242 	intel_runtime_pm_get(dev_priv);
2243 	seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
2244 	intel_runtime_pm_put(dev_priv);
2245 
2246 	return 0;
2247 }
2248 
2249 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2250 {
2251 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2252 	struct drm_printer p;
2253 	u32 tmp, i;
2254 
2255 	if (!HAS_GUC(dev_priv))
2256 		return -ENODEV;
2257 
2258 	p = drm_seq_file_printer(m);
2259 	intel_uc_fw_dump(&dev_priv->guc.fw, &p);
2260 
2261 	intel_runtime_pm_get(dev_priv);
2262 
2263 	tmp = I915_READ(GUC_STATUS);
2264 
2265 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2266 	seq_printf(m, "\tBootrom status = 0x%x\n",
2267 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2268 	seq_printf(m, "\tuKernel status = 0x%x\n",
2269 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2270 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2271 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2272 	seq_puts(m, "\nScratch registers:\n");
2273 	for (i = 0; i < 16; i++)
2274 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2275 
2276 	intel_runtime_pm_put(dev_priv);
2277 
2278 	return 0;
2279 }
2280 
2281 static void i915_guc_log_info(struct seq_file *m,
2282 			      struct drm_i915_private *dev_priv)
2283 {
2284 	struct intel_guc *guc = &dev_priv->guc;
2285 
2286 	seq_puts(m, "\nGuC logging stats:\n");
2287 
2288 	seq_printf(m, "\tISR:   flush count %10u, overflow count %10u\n",
2289 		   guc->log.flush_count[GUC_ISR_LOG_BUFFER],
2290 		   guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
2291 
2292 	seq_printf(m, "\tDPC:   flush count %10u, overflow count %10u\n",
2293 		   guc->log.flush_count[GUC_DPC_LOG_BUFFER],
2294 		   guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
2295 
2296 	seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
2297 		   guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
2298 		   guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
2299 
2300 	seq_printf(m, "\tTotal flush interrupt count: %u\n",
2301 		   guc->log.flush_interrupt_count);
2302 
2303 	seq_printf(m, "\tCapture miss count: %u\n",
2304 		   guc->log.capture_miss_count);
2305 }
2306 
2307 static void i915_guc_client_info(struct seq_file *m,
2308 				 struct drm_i915_private *dev_priv,
2309 				 struct intel_guc_client *client)
2310 {
2311 	struct intel_engine_cs *engine;
2312 	enum intel_engine_id id;
2313 	uint64_t tot = 0;
2314 
2315 	seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
2316 		client->priority, client->stage_id, client->proc_desc_offset);
2317 	seq_printf(m, "\tDoorbell id %d, offset: 0x%lx\n",
2318 		client->doorbell_id, client->doorbell_offset);
2319 
2320 	for_each_engine(engine, dev_priv, id) {
2321 		u64 submissions = client->submissions[id];
2322 		tot += submissions;
2323 		seq_printf(m, "\tSubmissions: %llu %s\n",
2324 				submissions, engine->name);
2325 	}
2326 	seq_printf(m, "\tTotal: %llu\n", tot);
2327 }
2328 
2329 static int i915_guc_info(struct seq_file *m, void *data)
2330 {
2331 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2332 	const struct intel_guc *guc = &dev_priv->guc;
2333 
2334 	if (!USES_GUC_SUBMISSION(dev_priv))
2335 		return -ENODEV;
2336 
2337 	GEM_BUG_ON(!guc->execbuf_client);
2338 	GEM_BUG_ON(!guc->preempt_client);
2339 
2340 	seq_printf(m, "Doorbell map:\n");
2341 	seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
2342 	seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
2343 
2344 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
2345 	i915_guc_client_info(m, dev_priv, guc->execbuf_client);
2346 	seq_printf(m, "\nGuC preempt client @ %p:\n", guc->preempt_client);
2347 	i915_guc_client_info(m, dev_priv, guc->preempt_client);
2348 
2349 	i915_guc_log_info(m, dev_priv);
2350 
2351 	/* Add more as required ... */
2352 
2353 	return 0;
2354 }
2355 
2356 static int i915_guc_stage_pool(struct seq_file *m, void *data)
2357 {
2358 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2359 	const struct intel_guc *guc = &dev_priv->guc;
2360 	struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
2361 	struct intel_guc_client *client = guc->execbuf_client;
2362 	unsigned int tmp;
2363 	int index;
2364 
2365 	if (!USES_GUC_SUBMISSION(dev_priv))
2366 		return -ENODEV;
2367 
2368 	for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
2369 		struct intel_engine_cs *engine;
2370 
2371 		if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
2372 			continue;
2373 
2374 		seq_printf(m, "GuC stage descriptor %u:\n", index);
2375 		seq_printf(m, "\tIndex: %u\n", desc->stage_id);
2376 		seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
2377 		seq_printf(m, "\tPriority: %d\n", desc->priority);
2378 		seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
2379 		seq_printf(m, "\tEngines used: 0x%x\n",
2380 			   desc->engines_used);
2381 		seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
2382 			   desc->db_trigger_phy,
2383 			   desc->db_trigger_cpu,
2384 			   desc->db_trigger_uk);
2385 		seq_printf(m, "\tProcess descriptor: 0x%x\n",
2386 			   desc->process_desc);
2387 		seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
2388 			   desc->wq_addr, desc->wq_size);
2389 		seq_putc(m, '\n');
2390 
2391 		for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
2392 			u32 guc_engine_id = engine->guc_id;
2393 			struct guc_execlist_context *lrc =
2394 						&desc->lrc[guc_engine_id];
2395 
2396 			seq_printf(m, "\t%s LRC:\n", engine->name);
2397 			seq_printf(m, "\t\tContext desc: 0x%x\n",
2398 				   lrc->context_desc);
2399 			seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
2400 			seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
2401 			seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
2402 			seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
2403 			seq_putc(m, '\n');
2404 		}
2405 	}
2406 
2407 	return 0;
2408 }
2409 
2410 static int i915_guc_log_dump(struct seq_file *m, void *data)
2411 {
2412 	struct drm_info_node *node = m->private;
2413 	struct drm_i915_private *dev_priv = node_to_i915(node);
2414 	bool dump_load_err = !!node->info_ent->data;
2415 	struct drm_i915_gem_object *obj = NULL;
2416 	u32 *log;
2417 	int i = 0;
2418 
2419 	if (!HAS_GUC(dev_priv))
2420 		return -ENODEV;
2421 
2422 	if (dump_load_err)
2423 		obj = dev_priv->guc.load_err_log;
2424 	else if (dev_priv->guc.log.vma)
2425 		obj = dev_priv->guc.log.vma->obj;
2426 
2427 	if (!obj)
2428 		return 0;
2429 
2430 	log = i915_gem_object_pin_map(obj, I915_MAP_WC);
2431 	if (IS_ERR(log)) {
2432 		DRM_DEBUG("Failed to pin object\n");
2433 		seq_puts(m, "(log data unaccessible)\n");
2434 		return PTR_ERR(log);
2435 	}
2436 
2437 	for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
2438 		seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2439 			   *(log + i), *(log + i + 1),
2440 			   *(log + i + 2), *(log + i + 3));
2441 
2442 	seq_putc(m, '\n');
2443 
2444 	i915_gem_object_unpin_map(obj);
2445 
2446 	return 0;
2447 }
2448 
2449 static int i915_guc_log_control_get(void *data, u64 *val)
2450 {
2451 	struct drm_i915_private *dev_priv = data;
2452 
2453 	if (!HAS_GUC(dev_priv))
2454 		return -ENODEV;
2455 
2456 	if (!dev_priv->guc.log.vma)
2457 		return -EINVAL;
2458 
2459 	*val = i915_modparams.guc_log_level;
2460 
2461 	return 0;
2462 }
2463 
2464 static int i915_guc_log_control_set(void *data, u64 val)
2465 {
2466 	struct drm_i915_private *dev_priv = data;
2467 	int ret;
2468 
2469 	if (!HAS_GUC(dev_priv))
2470 		return -ENODEV;
2471 
2472 	if (!dev_priv->guc.log.vma)
2473 		return -EINVAL;
2474 
2475 	ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
2476 	if (ret)
2477 		return ret;
2478 
2479 	intel_runtime_pm_get(dev_priv);
2480 	ret = i915_guc_log_control(dev_priv, val);
2481 	intel_runtime_pm_put(dev_priv);
2482 
2483 	mutex_unlock(&dev_priv->drm.struct_mutex);
2484 	return ret;
2485 }
2486 
2487 DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
2488 			i915_guc_log_control_get, i915_guc_log_control_set,
2489 			"%lld\n");
2490 
2491 static const char *psr2_live_status(u32 val)
2492 {
2493 	static const char * const live_status[] = {
2494 		"IDLE",
2495 		"CAPTURE",
2496 		"CAPTURE_FS",
2497 		"SLEEP",
2498 		"BUFON_FW",
2499 		"ML_UP",
2500 		"SU_STANDBY",
2501 		"FAST_SLEEP",
2502 		"DEEP_SLEEP",
2503 		"BUF_ON",
2504 		"TG_ON"
2505 	};
2506 
2507 	val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
2508 	if (val < ARRAY_SIZE(live_status))
2509 		return live_status[val];
2510 
2511 	return "unknown";
2512 }
2513 
2514 static int i915_edp_psr_status(struct seq_file *m, void *data)
2515 {
2516 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2517 	u32 psrperf = 0;
2518 	u32 stat[3];
2519 	enum pipe pipe;
2520 	bool enabled = false;
2521 
2522 	if (!HAS_PSR(dev_priv))
2523 		return -ENODEV;
2524 
2525 	intel_runtime_pm_get(dev_priv);
2526 
2527 	mutex_lock(&dev_priv->psr.lock);
2528 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2529 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2530 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2531 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2532 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2533 		   dev_priv->psr.busy_frontbuffer_bits);
2534 	seq_printf(m, "Re-enable work scheduled: %s\n",
2535 		   yesno(work_busy(&dev_priv->psr.work.work)));
2536 
2537 	if (HAS_DDI(dev_priv)) {
2538 		if (dev_priv->psr.psr2_support)
2539 			enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
2540 		else
2541 			enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2542 	} else {
2543 		for_each_pipe(dev_priv, pipe) {
2544 			enum transcoder cpu_transcoder =
2545 				intel_pipe_to_cpu_transcoder(dev_priv, pipe);
2546 			enum intel_display_power_domain power_domain;
2547 
2548 			power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
2549 			if (!intel_display_power_get_if_enabled(dev_priv,
2550 								power_domain))
2551 				continue;
2552 
2553 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2554 				VLV_EDP_PSR_CURR_STATE_MASK;
2555 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2556 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2557 				enabled = true;
2558 
2559 			intel_display_power_put(dev_priv, power_domain);
2560 		}
2561 	}
2562 
2563 	seq_printf(m, "Main link in standby mode: %s\n",
2564 		   yesno(dev_priv->psr.link_standby));
2565 
2566 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2567 
2568 	if (!HAS_DDI(dev_priv))
2569 		for_each_pipe(dev_priv, pipe) {
2570 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2571 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2572 				seq_printf(m, " pipe %c", pipe_name(pipe));
2573 		}
2574 	seq_puts(m, "\n");
2575 
2576 	/*
2577 	 * VLV/CHV PSR has no kind of performance counter
2578 	 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2579 	 */
2580 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2581 		psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2582 			EDP_PSR_PERF_CNT_MASK;
2583 
2584 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2585 	}
2586 	if (dev_priv->psr.psr2_support) {
2587 		u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
2588 
2589 		seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
2590 			   psr2, psr2_live_status(psr2));
2591 	}
2592 	mutex_unlock(&dev_priv->psr.lock);
2593 
2594 	intel_runtime_pm_put(dev_priv);
2595 	return 0;
2596 }
2597 
2598 static int i915_sink_crc(struct seq_file *m, void *data)
2599 {
2600 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2601 	struct drm_device *dev = &dev_priv->drm;
2602 	struct intel_connector *connector;
2603 	struct drm_connector_list_iter conn_iter;
2604 	struct intel_dp *intel_dp = NULL;
2605 	struct drm_modeset_acquire_ctx ctx;
2606 	int ret;
2607 	u8 crc[6];
2608 
2609 	drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
2610 
2611 	drm_connector_list_iter_begin(dev, &conn_iter);
2612 
2613 	for_each_intel_connector_iter(connector, &conn_iter) {
2614 		struct drm_crtc *crtc;
2615 		struct drm_connector_state *state;
2616 		struct intel_crtc_state *crtc_state;
2617 
2618 		if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2619 			continue;
2620 
2621 retry:
2622 		ret = drm_modeset_lock(&dev->mode_config.connection_mutex, &ctx);
2623 		if (ret)
2624 			goto err;
2625 
2626 		state = connector->base.state;
2627 		if (!state->best_encoder)
2628 			continue;
2629 
2630 		crtc = state->crtc;
2631 		ret = drm_modeset_lock(&crtc->mutex, &ctx);
2632 		if (ret)
2633 			goto err;
2634 
2635 		crtc_state = to_intel_crtc_state(crtc->state);
2636 		if (!crtc_state->base.active)
2637 			continue;
2638 
2639 		/*
2640 		 * We need to wait for all crtc updates to complete, to make
2641 		 * sure any pending modesets and plane updates are completed.
2642 		 */
2643 		if (crtc_state->base.commit) {
2644 			ret = wait_for_completion_interruptible(&crtc_state->base.commit->hw_done);
2645 
2646 			if (ret)
2647 				goto err;
2648 		}
2649 
2650 		intel_dp = enc_to_intel_dp(state->best_encoder);
2651 
2652 		ret = intel_dp_sink_crc(intel_dp, crtc_state, crc);
2653 		if (ret)
2654 			goto err;
2655 
2656 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2657 			   crc[0], crc[1], crc[2],
2658 			   crc[3], crc[4], crc[5]);
2659 		goto out;
2660 
2661 err:
2662 		if (ret == -EDEADLK) {
2663 			ret = drm_modeset_backoff(&ctx);
2664 			if (!ret)
2665 				goto retry;
2666 		}
2667 		goto out;
2668 	}
2669 	ret = -ENODEV;
2670 out:
2671 	drm_connector_list_iter_end(&conn_iter);
2672 	drm_modeset_drop_locks(&ctx);
2673 	drm_modeset_acquire_fini(&ctx);
2674 
2675 	return ret;
2676 }
2677 
2678 static int i915_energy_uJ(struct seq_file *m, void *data)
2679 {
2680 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2681 	unsigned long long power;
2682 	u32 units;
2683 
2684 	if (INTEL_GEN(dev_priv) < 6)
2685 		return -ENODEV;
2686 
2687 	intel_runtime_pm_get(dev_priv);
2688 
2689 	if (rdmsrl_safe(MSR_RAPL_POWER_UNIT, &power)) {
2690 		intel_runtime_pm_put(dev_priv);
2691 		return -ENODEV;
2692 	}
2693 
2694 	units = (power & 0x1f00) >> 8;
2695 	power = I915_READ(MCH_SECP_NRG_STTS);
2696 	power = (1000000 * power) >> units; /* convert to uJ */
2697 
2698 	intel_runtime_pm_put(dev_priv);
2699 
2700 	seq_printf(m, "%llu", power);
2701 
2702 	return 0;
2703 }
2704 
2705 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2706 {
2707 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2708 	struct pci_dev *pdev = dev_priv->drm.pdev;
2709 
2710 	if (!HAS_RUNTIME_PM(dev_priv))
2711 		seq_puts(m, "Runtime power management not supported\n");
2712 
2713 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2714 	seq_printf(m, "IRQs disabled: %s\n",
2715 		   yesno(!intel_irqs_enabled(dev_priv)));
2716 #ifdef CONFIG_PM
2717 	seq_printf(m, "Usage count: %d\n",
2718 		   atomic_read(&dev_priv->drm.dev->power.usage_count));
2719 #else
2720 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2721 #endif
2722 	seq_printf(m, "PCI device power state: %s [%d]\n",
2723 		   pci_power_name(pdev->current_state),
2724 		   pdev->current_state);
2725 
2726 	return 0;
2727 }
2728 
2729 static int i915_power_domain_info(struct seq_file *m, void *unused)
2730 {
2731 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2732 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2733 	int i;
2734 
2735 	mutex_lock(&power_domains->lock);
2736 
2737 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2738 	for (i = 0; i < power_domains->power_well_count; i++) {
2739 		struct i915_power_well *power_well;
2740 		enum intel_display_power_domain power_domain;
2741 
2742 		power_well = &power_domains->power_wells[i];
2743 		seq_printf(m, "%-25s %d\n", power_well->name,
2744 			   power_well->count);
2745 
2746 		for_each_power_domain(power_domain, power_well->domains)
2747 			seq_printf(m, "  %-23s %d\n",
2748 				 intel_display_power_domain_str(power_domain),
2749 				 power_domains->domain_use_count[power_domain]);
2750 	}
2751 
2752 	mutex_unlock(&power_domains->lock);
2753 
2754 	return 0;
2755 }
2756 
2757 static int i915_dmc_info(struct seq_file *m, void *unused)
2758 {
2759 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2760 	struct intel_csr *csr;
2761 
2762 	if (!HAS_CSR(dev_priv))
2763 		return -ENODEV;
2764 
2765 	csr = &dev_priv->csr;
2766 
2767 	intel_runtime_pm_get(dev_priv);
2768 
2769 	seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2770 	seq_printf(m, "path: %s\n", csr->fw_path);
2771 
2772 	if (!csr->dmc_payload)
2773 		goto out;
2774 
2775 	seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2776 		   CSR_VERSION_MINOR(csr->version));
2777 
2778 	if (IS_KABYLAKE(dev_priv) ||
2779 	    (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6))) {
2780 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2781 			   I915_READ(SKL_CSR_DC3_DC5_COUNT));
2782 		seq_printf(m, "DC5 -> DC6 count: %d\n",
2783 			   I915_READ(SKL_CSR_DC5_DC6_COUNT));
2784 	} else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2785 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2786 			   I915_READ(BXT_CSR_DC3_DC5_COUNT));
2787 	}
2788 
2789 out:
2790 	seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2791 	seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2792 	seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2793 
2794 	intel_runtime_pm_put(dev_priv);
2795 
2796 	return 0;
2797 }
2798 
2799 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2800 				 struct drm_display_mode *mode)
2801 {
2802 	int i;
2803 
2804 	for (i = 0; i < tabs; i++)
2805 		seq_putc(m, '\t');
2806 
2807 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2808 		   mode->base.id, mode->name,
2809 		   mode->vrefresh, mode->clock,
2810 		   mode->hdisplay, mode->hsync_start,
2811 		   mode->hsync_end, mode->htotal,
2812 		   mode->vdisplay, mode->vsync_start,
2813 		   mode->vsync_end, mode->vtotal,
2814 		   mode->type, mode->flags);
2815 }
2816 
2817 static void intel_encoder_info(struct seq_file *m,
2818 			       struct intel_crtc *intel_crtc,
2819 			       struct intel_encoder *intel_encoder)
2820 {
2821 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2822 	struct drm_device *dev = &dev_priv->drm;
2823 	struct drm_crtc *crtc = &intel_crtc->base;
2824 	struct intel_connector *intel_connector;
2825 	struct drm_encoder *encoder;
2826 
2827 	encoder = &intel_encoder->base;
2828 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2829 		   encoder->base.id, encoder->name);
2830 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2831 		struct drm_connector *connector = &intel_connector->base;
2832 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2833 			   connector->base.id,
2834 			   connector->name,
2835 			   drm_get_connector_status_name(connector->status));
2836 		if (connector->status == connector_status_connected) {
2837 			struct drm_display_mode *mode = &crtc->mode;
2838 			seq_printf(m, ", mode:\n");
2839 			intel_seq_print_mode(m, 2, mode);
2840 		} else {
2841 			seq_putc(m, '\n');
2842 		}
2843 	}
2844 }
2845 
2846 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2847 {
2848 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2849 	struct drm_device *dev = &dev_priv->drm;
2850 	struct drm_crtc *crtc = &intel_crtc->base;
2851 	struct intel_encoder *intel_encoder;
2852 	struct drm_plane_state *plane_state = crtc->primary->state;
2853 	struct drm_framebuffer *fb = plane_state->fb;
2854 
2855 	if (fb)
2856 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2857 			   fb->base.id, plane_state->src_x >> 16,
2858 			   plane_state->src_y >> 16, fb->width, fb->height);
2859 	else
2860 		seq_puts(m, "\tprimary plane disabled\n");
2861 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2862 		intel_encoder_info(m, intel_crtc, intel_encoder);
2863 }
2864 
2865 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2866 {
2867 	struct drm_display_mode *mode = panel->fixed_mode;
2868 
2869 	seq_printf(m, "\tfixed mode:\n");
2870 	intel_seq_print_mode(m, 2, mode);
2871 }
2872 
2873 static void intel_dp_info(struct seq_file *m,
2874 			  struct intel_connector *intel_connector)
2875 {
2876 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2877 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2878 
2879 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2880 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2881 	if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2882 		intel_panel_info(m, &intel_connector->panel);
2883 
2884 	drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2885 				&intel_dp->aux);
2886 }
2887 
2888 static void intel_dp_mst_info(struct seq_file *m,
2889 			  struct intel_connector *intel_connector)
2890 {
2891 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2892 	struct intel_dp_mst_encoder *intel_mst =
2893 		enc_to_mst(&intel_encoder->base);
2894 	struct intel_digital_port *intel_dig_port = intel_mst->primary;
2895 	struct intel_dp *intel_dp = &intel_dig_port->dp;
2896 	bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2897 					intel_connector->port);
2898 
2899 	seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2900 }
2901 
2902 static void intel_hdmi_info(struct seq_file *m,
2903 			    struct intel_connector *intel_connector)
2904 {
2905 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2906 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2907 
2908 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2909 }
2910 
2911 static void intel_lvds_info(struct seq_file *m,
2912 			    struct intel_connector *intel_connector)
2913 {
2914 	intel_panel_info(m, &intel_connector->panel);
2915 }
2916 
2917 static void intel_connector_info(struct seq_file *m,
2918 				 struct drm_connector *connector)
2919 {
2920 	struct intel_connector *intel_connector = to_intel_connector(connector);
2921 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2922 	struct drm_display_mode *mode;
2923 
2924 	seq_printf(m, "connector %d: type %s, status: %s\n",
2925 		   connector->base.id, connector->name,
2926 		   drm_get_connector_status_name(connector->status));
2927 	if (connector->status == connector_status_connected) {
2928 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
2929 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2930 			   connector->display_info.width_mm,
2931 			   connector->display_info.height_mm);
2932 		seq_printf(m, "\tsubpixel order: %s\n",
2933 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2934 		seq_printf(m, "\tCEA rev: %d\n",
2935 			   connector->display_info.cea_rev);
2936 	}
2937 
2938 	if (!intel_encoder)
2939 		return;
2940 
2941 	switch (connector->connector_type) {
2942 	case DRM_MODE_CONNECTOR_DisplayPort:
2943 	case DRM_MODE_CONNECTOR_eDP:
2944 		if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
2945 			intel_dp_mst_info(m, intel_connector);
2946 		else
2947 			intel_dp_info(m, intel_connector);
2948 		break;
2949 	case DRM_MODE_CONNECTOR_LVDS:
2950 		if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2951 			intel_lvds_info(m, intel_connector);
2952 		break;
2953 	case DRM_MODE_CONNECTOR_HDMIA:
2954 		if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
2955 		    intel_encoder->type == INTEL_OUTPUT_DDI)
2956 			intel_hdmi_info(m, intel_connector);
2957 		break;
2958 	default:
2959 		break;
2960 	}
2961 
2962 	seq_printf(m, "\tmodes:\n");
2963 	list_for_each_entry(mode, &connector->modes, head)
2964 		intel_seq_print_mode(m, 2, mode);
2965 }
2966 
2967 static const char *plane_type(enum drm_plane_type type)
2968 {
2969 	switch (type) {
2970 	case DRM_PLANE_TYPE_OVERLAY:
2971 		return "OVL";
2972 	case DRM_PLANE_TYPE_PRIMARY:
2973 		return "PRI";
2974 	case DRM_PLANE_TYPE_CURSOR:
2975 		return "CUR";
2976 	/*
2977 	 * Deliberately omitting default: to generate compiler warnings
2978 	 * when a new drm_plane_type gets added.
2979 	 */
2980 	}
2981 
2982 	return "unknown";
2983 }
2984 
2985 static const char *plane_rotation(unsigned int rotation)
2986 {
2987 	static char buf[48];
2988 	/*
2989 	 * According to doc only one DRM_MODE_ROTATE_ is allowed but this
2990 	 * will print them all to visualize if the values are misused
2991 	 */
2992 	snprintf(buf, sizeof(buf),
2993 		 "%s%s%s%s%s%s(0x%08x)",
2994 		 (rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
2995 		 (rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
2996 		 (rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
2997 		 (rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
2998 		 (rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
2999 		 (rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
3000 		 rotation);
3001 
3002 	return buf;
3003 }
3004 
3005 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3006 {
3007 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3008 	struct drm_device *dev = &dev_priv->drm;
3009 	struct intel_plane *intel_plane;
3010 
3011 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3012 		struct drm_plane_state *state;
3013 		struct drm_plane *plane = &intel_plane->base;
3014 		struct drm_format_name_buf format_name;
3015 
3016 		if (!plane->state) {
3017 			seq_puts(m, "plane->state is NULL!\n");
3018 			continue;
3019 		}
3020 
3021 		state = plane->state;
3022 
3023 		if (state->fb) {
3024 			drm_get_format_name(state->fb->format->format,
3025 					    &format_name);
3026 		} else {
3027 			sprintf(format_name.str, "N/A");
3028 		}
3029 
3030 		seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3031 			   plane->base.id,
3032 			   plane_type(intel_plane->base.type),
3033 			   state->crtc_x, state->crtc_y,
3034 			   state->crtc_w, state->crtc_h,
3035 			   (state->src_x >> 16),
3036 			   ((state->src_x & 0xffff) * 15625) >> 10,
3037 			   (state->src_y >> 16),
3038 			   ((state->src_y & 0xffff) * 15625) >> 10,
3039 			   (state->src_w >> 16),
3040 			   ((state->src_w & 0xffff) * 15625) >> 10,
3041 			   (state->src_h >> 16),
3042 			   ((state->src_h & 0xffff) * 15625) >> 10,
3043 			   format_name.str,
3044 			   plane_rotation(state->rotation));
3045 	}
3046 }
3047 
3048 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3049 {
3050 	struct intel_crtc_state *pipe_config;
3051 	int num_scalers = intel_crtc->num_scalers;
3052 	int i;
3053 
3054 	pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3055 
3056 	/* Not all platformas have a scaler */
3057 	if (num_scalers) {
3058 		seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3059 			   num_scalers,
3060 			   pipe_config->scaler_state.scaler_users,
3061 			   pipe_config->scaler_state.scaler_id);
3062 
3063 		for (i = 0; i < num_scalers; i++) {
3064 			struct intel_scaler *sc =
3065 					&pipe_config->scaler_state.scalers[i];
3066 
3067 			seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3068 				   i, yesno(sc->in_use), sc->mode);
3069 		}
3070 		seq_puts(m, "\n");
3071 	} else {
3072 		seq_puts(m, "\tNo scalers available on this platform\n");
3073 	}
3074 }
3075 
3076 static int i915_display_info(struct seq_file *m, void *unused)
3077 {
3078 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3079 	struct drm_device *dev = &dev_priv->drm;
3080 	struct intel_crtc *crtc;
3081 	struct drm_connector *connector;
3082 	struct drm_connector_list_iter conn_iter;
3083 
3084 	intel_runtime_pm_get(dev_priv);
3085 	seq_printf(m, "CRTC info\n");
3086 	seq_printf(m, "---------\n");
3087 	for_each_intel_crtc(dev, crtc) {
3088 		struct intel_crtc_state *pipe_config;
3089 
3090 		drm_modeset_lock(&crtc->base.mutex, NULL);
3091 		pipe_config = to_intel_crtc_state(crtc->base.state);
3092 
3093 		seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3094 			   crtc->base.base.id, pipe_name(crtc->pipe),
3095 			   yesno(pipe_config->base.active),
3096 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3097 			   yesno(pipe_config->dither), pipe_config->pipe_bpp);
3098 
3099 		if (pipe_config->base.active) {
3100 			struct intel_plane *cursor =
3101 				to_intel_plane(crtc->base.cursor);
3102 
3103 			intel_crtc_info(m, crtc);
3104 
3105 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
3106 				   yesno(cursor->base.state->visible),
3107 				   cursor->base.state->crtc_x,
3108 				   cursor->base.state->crtc_y,
3109 				   cursor->base.state->crtc_w,
3110 				   cursor->base.state->crtc_h,
3111 				   cursor->cursor.base);
3112 			intel_scaler_info(m, crtc);
3113 			intel_plane_info(m, crtc);
3114 		}
3115 
3116 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3117 			   yesno(!crtc->cpu_fifo_underrun_disabled),
3118 			   yesno(!crtc->pch_fifo_underrun_disabled));
3119 		drm_modeset_unlock(&crtc->base.mutex);
3120 	}
3121 
3122 	seq_printf(m, "\n");
3123 	seq_printf(m, "Connector info\n");
3124 	seq_printf(m, "--------------\n");
3125 	mutex_lock(&dev->mode_config.mutex);
3126 	drm_connector_list_iter_begin(dev, &conn_iter);
3127 	drm_for_each_connector_iter(connector, &conn_iter)
3128 		intel_connector_info(m, connector);
3129 	drm_connector_list_iter_end(&conn_iter);
3130 	mutex_unlock(&dev->mode_config.mutex);
3131 
3132 	intel_runtime_pm_put(dev_priv);
3133 
3134 	return 0;
3135 }
3136 
3137 static int i915_engine_info(struct seq_file *m, void *unused)
3138 {
3139 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3140 	struct intel_engine_cs *engine;
3141 	enum intel_engine_id id;
3142 	struct drm_printer p;
3143 
3144 	intel_runtime_pm_get(dev_priv);
3145 
3146 	seq_printf(m, "GT awake? %s\n",
3147 		   yesno(dev_priv->gt.awake));
3148 	seq_printf(m, "Global active requests: %d\n",
3149 		   dev_priv->gt.active_requests);
3150 	seq_printf(m, "CS timestamp frequency: %u kHz\n",
3151 		   dev_priv->info.cs_timestamp_frequency_khz);
3152 
3153 	p = drm_seq_file_printer(m);
3154 	for_each_engine(engine, dev_priv, id)
3155 		intel_engine_dump(engine, &p, "%s\n", engine->name);
3156 
3157 	intel_runtime_pm_put(dev_priv);
3158 
3159 	return 0;
3160 }
3161 
3162 static int i915_shrinker_info(struct seq_file *m, void *unused)
3163 {
3164 	struct drm_i915_private *i915 = node_to_i915(m->private);
3165 
3166 	seq_printf(m, "seeks = %d\n", i915->mm.shrinker.seeks);
3167 	seq_printf(m, "batch = %lu\n", i915->mm.shrinker.batch);
3168 
3169 	return 0;
3170 }
3171 
3172 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3173 {
3174 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3175 	struct drm_device *dev = &dev_priv->drm;
3176 	int i;
3177 
3178 	drm_modeset_lock_all(dev);
3179 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3180 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3181 
3182 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3183 		seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3184 			   pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
3185 		seq_printf(m, " tracked hardware state:\n");
3186 		seq_printf(m, " dpll:    0x%08x\n", pll->state.hw_state.dpll);
3187 		seq_printf(m, " dpll_md: 0x%08x\n",
3188 			   pll->state.hw_state.dpll_md);
3189 		seq_printf(m, " fp0:     0x%08x\n", pll->state.hw_state.fp0);
3190 		seq_printf(m, " fp1:     0x%08x\n", pll->state.hw_state.fp1);
3191 		seq_printf(m, " wrpll:   0x%08x\n", pll->state.hw_state.wrpll);
3192 	}
3193 	drm_modeset_unlock_all(dev);
3194 
3195 	return 0;
3196 }
3197 
3198 static int i915_wa_registers(struct seq_file *m, void *unused)
3199 {
3200 	int i;
3201 	int ret;
3202 	struct intel_engine_cs *engine;
3203 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3204 	struct drm_device *dev = &dev_priv->drm;
3205 	struct i915_workarounds *workarounds = &dev_priv->workarounds;
3206 	enum intel_engine_id id;
3207 
3208 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3209 	if (ret)
3210 		return ret;
3211 
3212 	intel_runtime_pm_get(dev_priv);
3213 
3214 	seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3215 	for_each_engine(engine, dev_priv, id)
3216 		seq_printf(m, "HW whitelist count for %s: %d\n",
3217 			   engine->name, workarounds->hw_whitelist_count[id]);
3218 	for (i = 0; i < workarounds->count; ++i) {
3219 		i915_reg_t addr;
3220 		u32 mask, value, read;
3221 		bool ok;
3222 
3223 		addr = workarounds->reg[i].addr;
3224 		mask = workarounds->reg[i].mask;
3225 		value = workarounds->reg[i].value;
3226 		read = I915_READ(addr);
3227 		ok = (value & mask) == (read & mask);
3228 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3229 			   i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3230 	}
3231 
3232 	intel_runtime_pm_put(dev_priv);
3233 	mutex_unlock(&dev->struct_mutex);
3234 
3235 	return 0;
3236 }
3237 
3238 static int i915_ipc_status_show(struct seq_file *m, void *data)
3239 {
3240 	struct drm_i915_private *dev_priv = m->private;
3241 
3242 	seq_printf(m, "Isochronous Priority Control: %s\n",
3243 			yesno(dev_priv->ipc_enabled));
3244 	return 0;
3245 }
3246 
3247 static int i915_ipc_status_open(struct inode *inode, struct file *file)
3248 {
3249 	struct drm_i915_private *dev_priv = inode->i_private;
3250 
3251 	if (!HAS_IPC(dev_priv))
3252 		return -ENODEV;
3253 
3254 	return single_open(file, i915_ipc_status_show, dev_priv);
3255 }
3256 
3257 static ssize_t i915_ipc_status_write(struct file *file, const char __user *ubuf,
3258 				     size_t len, loff_t *offp)
3259 {
3260 	struct seq_file *m = file->private_data;
3261 	struct drm_i915_private *dev_priv = m->private;
3262 	int ret;
3263 	bool enable;
3264 
3265 	ret = kstrtobool_from_user(ubuf, len, &enable);
3266 	if (ret < 0)
3267 		return ret;
3268 
3269 	intel_runtime_pm_get(dev_priv);
3270 	if (!dev_priv->ipc_enabled && enable)
3271 		DRM_INFO("Enabling IPC: WM will be proper only after next commit\n");
3272 	dev_priv->wm.distrust_bios_wm = true;
3273 	dev_priv->ipc_enabled = enable;
3274 	intel_enable_ipc(dev_priv);
3275 	intel_runtime_pm_put(dev_priv);
3276 
3277 	return len;
3278 }
3279 
3280 static const struct file_operations i915_ipc_status_fops = {
3281 	.owner = THIS_MODULE,
3282 	.open = i915_ipc_status_open,
3283 	.read = seq_read,
3284 	.llseek = seq_lseek,
3285 	.release = single_release,
3286 	.write = i915_ipc_status_write
3287 };
3288 
3289 static int i915_ddb_info(struct seq_file *m, void *unused)
3290 {
3291 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3292 	struct drm_device *dev = &dev_priv->drm;
3293 	struct skl_ddb_allocation *ddb;
3294 	struct skl_ddb_entry *entry;
3295 	enum pipe pipe;
3296 	int plane;
3297 
3298 	if (INTEL_GEN(dev_priv) < 9)
3299 		return -ENODEV;
3300 
3301 	drm_modeset_lock_all(dev);
3302 
3303 	ddb = &dev_priv->wm.skl_hw.ddb;
3304 
3305 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3306 
3307 	for_each_pipe(dev_priv, pipe) {
3308 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3309 
3310 		for_each_universal_plane(dev_priv, pipe, plane) {
3311 			entry = &ddb->plane[pipe][plane];
3312 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3313 				   entry->start, entry->end,
3314 				   skl_ddb_entry_size(entry));
3315 		}
3316 
3317 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3318 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3319 			   entry->end, skl_ddb_entry_size(entry));
3320 	}
3321 
3322 	drm_modeset_unlock_all(dev);
3323 
3324 	return 0;
3325 }
3326 
3327 static void drrs_status_per_crtc(struct seq_file *m,
3328 				 struct drm_device *dev,
3329 				 struct intel_crtc *intel_crtc)
3330 {
3331 	struct drm_i915_private *dev_priv = to_i915(dev);
3332 	struct i915_drrs *drrs = &dev_priv->drrs;
3333 	int vrefresh = 0;
3334 	struct drm_connector *connector;
3335 	struct drm_connector_list_iter conn_iter;
3336 
3337 	drm_connector_list_iter_begin(dev, &conn_iter);
3338 	drm_for_each_connector_iter(connector, &conn_iter) {
3339 		if (connector->state->crtc != &intel_crtc->base)
3340 			continue;
3341 
3342 		seq_printf(m, "%s:\n", connector->name);
3343 	}
3344 	drm_connector_list_iter_end(&conn_iter);
3345 
3346 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3347 		seq_puts(m, "\tVBT: DRRS_type: Static");
3348 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3349 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3350 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3351 		seq_puts(m, "\tVBT: DRRS_type: None");
3352 	else
3353 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3354 
3355 	seq_puts(m, "\n\n");
3356 
3357 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3358 		struct intel_panel *panel;
3359 
3360 		mutex_lock(&drrs->mutex);
3361 		/* DRRS Supported */
3362 		seq_puts(m, "\tDRRS Supported: Yes\n");
3363 
3364 		/* disable_drrs() will make drrs->dp NULL */
3365 		if (!drrs->dp) {
3366 			seq_puts(m, "Idleness DRRS: Disabled");
3367 			mutex_unlock(&drrs->mutex);
3368 			return;
3369 		}
3370 
3371 		panel = &drrs->dp->attached_connector->panel;
3372 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3373 					drrs->busy_frontbuffer_bits);
3374 
3375 		seq_puts(m, "\n\t\t");
3376 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3377 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3378 			vrefresh = panel->fixed_mode->vrefresh;
3379 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3380 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3381 			vrefresh = panel->downclock_mode->vrefresh;
3382 		} else {
3383 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3384 						drrs->refresh_rate_type);
3385 			mutex_unlock(&drrs->mutex);
3386 			return;
3387 		}
3388 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3389 
3390 		seq_puts(m, "\n\t\t");
3391 		mutex_unlock(&drrs->mutex);
3392 	} else {
3393 		/* DRRS not supported. Print the VBT parameter*/
3394 		seq_puts(m, "\tDRRS Supported : No");
3395 	}
3396 	seq_puts(m, "\n");
3397 }
3398 
3399 static int i915_drrs_status(struct seq_file *m, void *unused)
3400 {
3401 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3402 	struct drm_device *dev = &dev_priv->drm;
3403 	struct intel_crtc *intel_crtc;
3404 	int active_crtc_cnt = 0;
3405 
3406 	drm_modeset_lock_all(dev);
3407 	for_each_intel_crtc(dev, intel_crtc) {
3408 		if (intel_crtc->base.state->active) {
3409 			active_crtc_cnt++;
3410 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3411 
3412 			drrs_status_per_crtc(m, dev, intel_crtc);
3413 		}
3414 	}
3415 	drm_modeset_unlock_all(dev);
3416 
3417 	if (!active_crtc_cnt)
3418 		seq_puts(m, "No active crtc found\n");
3419 
3420 	return 0;
3421 }
3422 
3423 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3424 {
3425 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3426 	struct drm_device *dev = &dev_priv->drm;
3427 	struct intel_encoder *intel_encoder;
3428 	struct intel_digital_port *intel_dig_port;
3429 	struct drm_connector *connector;
3430 	struct drm_connector_list_iter conn_iter;
3431 
3432 	drm_connector_list_iter_begin(dev, &conn_iter);
3433 	drm_for_each_connector_iter(connector, &conn_iter) {
3434 		if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3435 			continue;
3436 
3437 		intel_encoder = intel_attached_encoder(connector);
3438 		if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3439 			continue;
3440 
3441 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3442 		if (!intel_dig_port->dp.can_mst)
3443 			continue;
3444 
3445 		seq_printf(m, "MST Source Port %c\n",
3446 			   port_name(intel_dig_port->base.port));
3447 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3448 	}
3449 	drm_connector_list_iter_end(&conn_iter);
3450 
3451 	return 0;
3452 }
3453 
3454 static ssize_t i915_displayport_test_active_write(struct file *file,
3455 						  const char __user *ubuf,
3456 						  size_t len, loff_t *offp)
3457 {
3458 	char *input_buffer;
3459 	int status = 0;
3460 	struct drm_device *dev;
3461 	struct drm_connector *connector;
3462 	struct drm_connector_list_iter conn_iter;
3463 	struct intel_dp *intel_dp;
3464 	int val = 0;
3465 
3466 	dev = ((struct seq_file *)file->private_data)->private;
3467 
3468 	if (len == 0)
3469 		return 0;
3470 
3471 	input_buffer = memdup_user_nul(ubuf, len);
3472 	if (IS_ERR(input_buffer))
3473 		return PTR_ERR(input_buffer);
3474 
3475 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
3476 
3477 	drm_connector_list_iter_begin(dev, &conn_iter);
3478 	drm_for_each_connector_iter(connector, &conn_iter) {
3479 		struct intel_encoder *encoder;
3480 
3481 		if (connector->connector_type !=
3482 		    DRM_MODE_CONNECTOR_DisplayPort)
3483 			continue;
3484 
3485 		encoder = to_intel_encoder(connector->encoder);
3486 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3487 			continue;
3488 
3489 		if (encoder && connector->status == connector_status_connected) {
3490 			intel_dp = enc_to_intel_dp(&encoder->base);
3491 			status = kstrtoint(input_buffer, 10, &val);
3492 			if (status < 0)
3493 				break;
3494 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
3495 			/* To prevent erroneous activation of the compliance
3496 			 * testing code, only accept an actual value of 1 here
3497 			 */
3498 			if (val == 1)
3499 				intel_dp->compliance.test_active = 1;
3500 			else
3501 				intel_dp->compliance.test_active = 0;
3502 		}
3503 	}
3504 	drm_connector_list_iter_end(&conn_iter);
3505 	kfree(input_buffer);
3506 	if (status < 0)
3507 		return status;
3508 
3509 	*offp += len;
3510 	return len;
3511 }
3512 
3513 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
3514 {
3515 	struct drm_device *dev = m->private;
3516 	struct drm_connector *connector;
3517 	struct drm_connector_list_iter conn_iter;
3518 	struct intel_dp *intel_dp;
3519 
3520 	drm_connector_list_iter_begin(dev, &conn_iter);
3521 	drm_for_each_connector_iter(connector, &conn_iter) {
3522 		struct intel_encoder *encoder;
3523 
3524 		if (connector->connector_type !=
3525 		    DRM_MODE_CONNECTOR_DisplayPort)
3526 			continue;
3527 
3528 		encoder = to_intel_encoder(connector->encoder);
3529 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3530 			continue;
3531 
3532 		if (encoder && connector->status == connector_status_connected) {
3533 			intel_dp = enc_to_intel_dp(&encoder->base);
3534 			if (intel_dp->compliance.test_active)
3535 				seq_puts(m, "1");
3536 			else
3537 				seq_puts(m, "0");
3538 		} else
3539 			seq_puts(m, "0");
3540 	}
3541 	drm_connector_list_iter_end(&conn_iter);
3542 
3543 	return 0;
3544 }
3545 
3546 static int i915_displayport_test_active_open(struct inode *inode,
3547 					     struct file *file)
3548 {
3549 	struct drm_i915_private *dev_priv = inode->i_private;
3550 
3551 	return single_open(file, i915_displayport_test_active_show,
3552 			   &dev_priv->drm);
3553 }
3554 
3555 static const struct file_operations i915_displayport_test_active_fops = {
3556 	.owner = THIS_MODULE,
3557 	.open = i915_displayport_test_active_open,
3558 	.read = seq_read,
3559 	.llseek = seq_lseek,
3560 	.release = single_release,
3561 	.write = i915_displayport_test_active_write
3562 };
3563 
3564 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
3565 {
3566 	struct drm_device *dev = m->private;
3567 	struct drm_connector *connector;
3568 	struct drm_connector_list_iter conn_iter;
3569 	struct intel_dp *intel_dp;
3570 
3571 	drm_connector_list_iter_begin(dev, &conn_iter);
3572 	drm_for_each_connector_iter(connector, &conn_iter) {
3573 		struct intel_encoder *encoder;
3574 
3575 		if (connector->connector_type !=
3576 		    DRM_MODE_CONNECTOR_DisplayPort)
3577 			continue;
3578 
3579 		encoder = to_intel_encoder(connector->encoder);
3580 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3581 			continue;
3582 
3583 		if (encoder && connector->status == connector_status_connected) {
3584 			intel_dp = enc_to_intel_dp(&encoder->base);
3585 			if (intel_dp->compliance.test_type ==
3586 			    DP_TEST_LINK_EDID_READ)
3587 				seq_printf(m, "%lx",
3588 					   intel_dp->compliance.test_data.edid);
3589 			else if (intel_dp->compliance.test_type ==
3590 				 DP_TEST_LINK_VIDEO_PATTERN) {
3591 				seq_printf(m, "hdisplay: %d\n",
3592 					   intel_dp->compliance.test_data.hdisplay);
3593 				seq_printf(m, "vdisplay: %d\n",
3594 					   intel_dp->compliance.test_data.vdisplay);
3595 				seq_printf(m, "bpc: %u\n",
3596 					   intel_dp->compliance.test_data.bpc);
3597 			}
3598 		} else
3599 			seq_puts(m, "0");
3600 	}
3601 	drm_connector_list_iter_end(&conn_iter);
3602 
3603 	return 0;
3604 }
3605 static int i915_displayport_test_data_open(struct inode *inode,
3606 					   struct file *file)
3607 {
3608 	struct drm_i915_private *dev_priv = inode->i_private;
3609 
3610 	return single_open(file, i915_displayport_test_data_show,
3611 			   &dev_priv->drm);
3612 }
3613 
3614 static const struct file_operations i915_displayport_test_data_fops = {
3615 	.owner = THIS_MODULE,
3616 	.open = i915_displayport_test_data_open,
3617 	.read = seq_read,
3618 	.llseek = seq_lseek,
3619 	.release = single_release
3620 };
3621 
3622 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
3623 {
3624 	struct drm_device *dev = m->private;
3625 	struct drm_connector *connector;
3626 	struct drm_connector_list_iter conn_iter;
3627 	struct intel_dp *intel_dp;
3628 
3629 	drm_connector_list_iter_begin(dev, &conn_iter);
3630 	drm_for_each_connector_iter(connector, &conn_iter) {
3631 		struct intel_encoder *encoder;
3632 
3633 		if (connector->connector_type !=
3634 		    DRM_MODE_CONNECTOR_DisplayPort)
3635 			continue;
3636 
3637 		encoder = to_intel_encoder(connector->encoder);
3638 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3639 			continue;
3640 
3641 		if (encoder && connector->status == connector_status_connected) {
3642 			intel_dp = enc_to_intel_dp(&encoder->base);
3643 			seq_printf(m, "%02lx", intel_dp->compliance.test_type);
3644 		} else
3645 			seq_puts(m, "0");
3646 	}
3647 	drm_connector_list_iter_end(&conn_iter);
3648 
3649 	return 0;
3650 }
3651 
3652 static int i915_displayport_test_type_open(struct inode *inode,
3653 				       struct file *file)
3654 {
3655 	struct drm_i915_private *dev_priv = inode->i_private;
3656 
3657 	return single_open(file, i915_displayport_test_type_show,
3658 			   &dev_priv->drm);
3659 }
3660 
3661 static const struct file_operations i915_displayport_test_type_fops = {
3662 	.owner = THIS_MODULE,
3663 	.open = i915_displayport_test_type_open,
3664 	.read = seq_read,
3665 	.llseek = seq_lseek,
3666 	.release = single_release
3667 };
3668 
3669 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3670 {
3671 	struct drm_i915_private *dev_priv = m->private;
3672 	struct drm_device *dev = &dev_priv->drm;
3673 	int level;
3674 	int num_levels;
3675 
3676 	if (IS_CHERRYVIEW(dev_priv))
3677 		num_levels = 3;
3678 	else if (IS_VALLEYVIEW(dev_priv))
3679 		num_levels = 1;
3680 	else if (IS_G4X(dev_priv))
3681 		num_levels = 3;
3682 	else
3683 		num_levels = ilk_wm_max_level(dev_priv) + 1;
3684 
3685 	drm_modeset_lock_all(dev);
3686 
3687 	for (level = 0; level < num_levels; level++) {
3688 		unsigned int latency = wm[level];
3689 
3690 		/*
3691 		 * - WM1+ latency values in 0.5us units
3692 		 * - latencies are in us on gen9/vlv/chv
3693 		 */
3694 		if (INTEL_GEN(dev_priv) >= 9 ||
3695 		    IS_VALLEYVIEW(dev_priv) ||
3696 		    IS_CHERRYVIEW(dev_priv) ||
3697 		    IS_G4X(dev_priv))
3698 			latency *= 10;
3699 		else if (level > 0)
3700 			latency *= 5;
3701 
3702 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
3703 			   level, wm[level], latency / 10, latency % 10);
3704 	}
3705 
3706 	drm_modeset_unlock_all(dev);
3707 }
3708 
3709 static int pri_wm_latency_show(struct seq_file *m, void *data)
3710 {
3711 	struct drm_i915_private *dev_priv = m->private;
3712 	const uint16_t *latencies;
3713 
3714 	if (INTEL_GEN(dev_priv) >= 9)
3715 		latencies = dev_priv->wm.skl_latency;
3716 	else
3717 		latencies = dev_priv->wm.pri_latency;
3718 
3719 	wm_latency_show(m, latencies);
3720 
3721 	return 0;
3722 }
3723 
3724 static int spr_wm_latency_show(struct seq_file *m, void *data)
3725 {
3726 	struct drm_i915_private *dev_priv = m->private;
3727 	const uint16_t *latencies;
3728 
3729 	if (INTEL_GEN(dev_priv) >= 9)
3730 		latencies = dev_priv->wm.skl_latency;
3731 	else
3732 		latencies = dev_priv->wm.spr_latency;
3733 
3734 	wm_latency_show(m, latencies);
3735 
3736 	return 0;
3737 }
3738 
3739 static int cur_wm_latency_show(struct seq_file *m, void *data)
3740 {
3741 	struct drm_i915_private *dev_priv = m->private;
3742 	const uint16_t *latencies;
3743 
3744 	if (INTEL_GEN(dev_priv) >= 9)
3745 		latencies = dev_priv->wm.skl_latency;
3746 	else
3747 		latencies = dev_priv->wm.cur_latency;
3748 
3749 	wm_latency_show(m, latencies);
3750 
3751 	return 0;
3752 }
3753 
3754 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3755 {
3756 	struct drm_i915_private *dev_priv = inode->i_private;
3757 
3758 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
3759 		return -ENODEV;
3760 
3761 	return single_open(file, pri_wm_latency_show, dev_priv);
3762 }
3763 
3764 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3765 {
3766 	struct drm_i915_private *dev_priv = inode->i_private;
3767 
3768 	if (HAS_GMCH_DISPLAY(dev_priv))
3769 		return -ENODEV;
3770 
3771 	return single_open(file, spr_wm_latency_show, dev_priv);
3772 }
3773 
3774 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3775 {
3776 	struct drm_i915_private *dev_priv = inode->i_private;
3777 
3778 	if (HAS_GMCH_DISPLAY(dev_priv))
3779 		return -ENODEV;
3780 
3781 	return single_open(file, cur_wm_latency_show, dev_priv);
3782 }
3783 
3784 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3785 				size_t len, loff_t *offp, uint16_t wm[8])
3786 {
3787 	struct seq_file *m = file->private_data;
3788 	struct drm_i915_private *dev_priv = m->private;
3789 	struct drm_device *dev = &dev_priv->drm;
3790 	uint16_t new[8] = { 0 };
3791 	int num_levels;
3792 	int level;
3793 	int ret;
3794 	char tmp[32];
3795 
3796 	if (IS_CHERRYVIEW(dev_priv))
3797 		num_levels = 3;
3798 	else if (IS_VALLEYVIEW(dev_priv))
3799 		num_levels = 1;
3800 	else if (IS_G4X(dev_priv))
3801 		num_levels = 3;
3802 	else
3803 		num_levels = ilk_wm_max_level(dev_priv) + 1;
3804 
3805 	if (len >= sizeof(tmp))
3806 		return -EINVAL;
3807 
3808 	if (copy_from_user(tmp, ubuf, len))
3809 		return -EFAULT;
3810 
3811 	tmp[len] = '\0';
3812 
3813 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
3814 		     &new[0], &new[1], &new[2], &new[3],
3815 		     &new[4], &new[5], &new[6], &new[7]);
3816 	if (ret != num_levels)
3817 		return -EINVAL;
3818 
3819 	drm_modeset_lock_all(dev);
3820 
3821 	for (level = 0; level < num_levels; level++)
3822 		wm[level] = new[level];
3823 
3824 	drm_modeset_unlock_all(dev);
3825 
3826 	return len;
3827 }
3828 
3829 
3830 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3831 				    size_t len, loff_t *offp)
3832 {
3833 	struct seq_file *m = file->private_data;
3834 	struct drm_i915_private *dev_priv = m->private;
3835 	uint16_t *latencies;
3836 
3837 	if (INTEL_GEN(dev_priv) >= 9)
3838 		latencies = dev_priv->wm.skl_latency;
3839 	else
3840 		latencies = dev_priv->wm.pri_latency;
3841 
3842 	return wm_latency_write(file, ubuf, len, offp, latencies);
3843 }
3844 
3845 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3846 				    size_t len, loff_t *offp)
3847 {
3848 	struct seq_file *m = file->private_data;
3849 	struct drm_i915_private *dev_priv = m->private;
3850 	uint16_t *latencies;
3851 
3852 	if (INTEL_GEN(dev_priv) >= 9)
3853 		latencies = dev_priv->wm.skl_latency;
3854 	else
3855 		latencies = dev_priv->wm.spr_latency;
3856 
3857 	return wm_latency_write(file, ubuf, len, offp, latencies);
3858 }
3859 
3860 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3861 				    size_t len, loff_t *offp)
3862 {
3863 	struct seq_file *m = file->private_data;
3864 	struct drm_i915_private *dev_priv = m->private;
3865 	uint16_t *latencies;
3866 
3867 	if (INTEL_GEN(dev_priv) >= 9)
3868 		latencies = dev_priv->wm.skl_latency;
3869 	else
3870 		latencies = dev_priv->wm.cur_latency;
3871 
3872 	return wm_latency_write(file, ubuf, len, offp, latencies);
3873 }
3874 
3875 static const struct file_operations i915_pri_wm_latency_fops = {
3876 	.owner = THIS_MODULE,
3877 	.open = pri_wm_latency_open,
3878 	.read = seq_read,
3879 	.llseek = seq_lseek,
3880 	.release = single_release,
3881 	.write = pri_wm_latency_write
3882 };
3883 
3884 static const struct file_operations i915_spr_wm_latency_fops = {
3885 	.owner = THIS_MODULE,
3886 	.open = spr_wm_latency_open,
3887 	.read = seq_read,
3888 	.llseek = seq_lseek,
3889 	.release = single_release,
3890 	.write = spr_wm_latency_write
3891 };
3892 
3893 static const struct file_operations i915_cur_wm_latency_fops = {
3894 	.owner = THIS_MODULE,
3895 	.open = cur_wm_latency_open,
3896 	.read = seq_read,
3897 	.llseek = seq_lseek,
3898 	.release = single_release,
3899 	.write = cur_wm_latency_write
3900 };
3901 
3902 static int
3903 i915_wedged_get(void *data, u64 *val)
3904 {
3905 	struct drm_i915_private *dev_priv = data;
3906 
3907 	*val = i915_terminally_wedged(&dev_priv->gpu_error);
3908 
3909 	return 0;
3910 }
3911 
3912 static int
3913 i915_wedged_set(void *data, u64 val)
3914 {
3915 	struct drm_i915_private *i915 = data;
3916 	struct intel_engine_cs *engine;
3917 	unsigned int tmp;
3918 
3919 	/*
3920 	 * There is no safeguard against this debugfs entry colliding
3921 	 * with the hangcheck calling same i915_handle_error() in
3922 	 * parallel, causing an explosion. For now we assume that the
3923 	 * test harness is responsible enough not to inject gpu hangs
3924 	 * while it is writing to 'i915_wedged'
3925 	 */
3926 
3927 	if (i915_reset_backoff(&i915->gpu_error))
3928 		return -EAGAIN;
3929 
3930 	for_each_engine_masked(engine, i915, val, tmp) {
3931 		engine->hangcheck.seqno = intel_engine_get_seqno(engine);
3932 		engine->hangcheck.stalled = true;
3933 	}
3934 
3935 	i915_handle_error(i915, val, "Manually setting wedged to %llu", val);
3936 
3937 	wait_on_bit(&i915->gpu_error.flags,
3938 		    I915_RESET_HANDOFF,
3939 		    TASK_UNINTERRUPTIBLE);
3940 
3941 	return 0;
3942 }
3943 
3944 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3945 			i915_wedged_get, i915_wedged_set,
3946 			"%llu\n");
3947 
3948 static int
3949 fault_irq_set(struct drm_i915_private *i915,
3950 	      unsigned long *irq,
3951 	      unsigned long val)
3952 {
3953 	int err;
3954 
3955 	err = mutex_lock_interruptible(&i915->drm.struct_mutex);
3956 	if (err)
3957 		return err;
3958 
3959 	err = i915_gem_wait_for_idle(i915,
3960 				     I915_WAIT_LOCKED |
3961 				     I915_WAIT_INTERRUPTIBLE);
3962 	if (err)
3963 		goto err_unlock;
3964 
3965 	*irq = val;
3966 	mutex_unlock(&i915->drm.struct_mutex);
3967 
3968 	/* Flush idle worker to disarm irq */
3969 	drain_delayed_work(&i915->gt.idle_work);
3970 
3971 	return 0;
3972 
3973 err_unlock:
3974 	mutex_unlock(&i915->drm.struct_mutex);
3975 	return err;
3976 }
3977 
3978 static int
3979 i915_ring_missed_irq_get(void *data, u64 *val)
3980 {
3981 	struct drm_i915_private *dev_priv = data;
3982 
3983 	*val = dev_priv->gpu_error.missed_irq_rings;
3984 	return 0;
3985 }
3986 
3987 static int
3988 i915_ring_missed_irq_set(void *data, u64 val)
3989 {
3990 	struct drm_i915_private *i915 = data;
3991 
3992 	return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
3993 }
3994 
3995 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3996 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3997 			"0x%08llx\n");
3998 
3999 static int
4000 i915_ring_test_irq_get(void *data, u64 *val)
4001 {
4002 	struct drm_i915_private *dev_priv = data;
4003 
4004 	*val = dev_priv->gpu_error.test_irq_rings;
4005 
4006 	return 0;
4007 }
4008 
4009 static int
4010 i915_ring_test_irq_set(void *data, u64 val)
4011 {
4012 	struct drm_i915_private *i915 = data;
4013 
4014 	val &= INTEL_INFO(i915)->ring_mask;
4015 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4016 
4017 	return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
4018 }
4019 
4020 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4021 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4022 			"0x%08llx\n");
4023 
4024 #define DROP_UNBOUND	BIT(0)
4025 #define DROP_BOUND	BIT(1)
4026 #define DROP_RETIRE	BIT(2)
4027 #define DROP_ACTIVE	BIT(3)
4028 #define DROP_FREED	BIT(4)
4029 #define DROP_SHRINK_ALL	BIT(5)
4030 #define DROP_IDLE	BIT(6)
4031 #define DROP_ALL (DROP_UNBOUND	| \
4032 		  DROP_BOUND	| \
4033 		  DROP_RETIRE	| \
4034 		  DROP_ACTIVE	| \
4035 		  DROP_FREED	| \
4036 		  DROP_SHRINK_ALL |\
4037 		  DROP_IDLE)
4038 static int
4039 i915_drop_caches_get(void *data, u64 *val)
4040 {
4041 	*val = DROP_ALL;
4042 
4043 	return 0;
4044 }
4045 
4046 static int
4047 i915_drop_caches_set(void *data, u64 val)
4048 {
4049 	struct drm_i915_private *dev_priv = data;
4050 	struct drm_device *dev = &dev_priv->drm;
4051 	int ret = 0;
4052 
4053 	DRM_DEBUG("Dropping caches: 0x%08llx [0x%08llx]\n",
4054 		  val, val & DROP_ALL);
4055 
4056 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4057 	 * on ioctls on -EAGAIN. */
4058 	if (val & (DROP_ACTIVE | DROP_RETIRE)) {
4059 		ret = mutex_lock_interruptible(&dev->struct_mutex);
4060 		if (ret)
4061 			return ret;
4062 
4063 		if (val & DROP_ACTIVE)
4064 			ret = i915_gem_wait_for_idle(dev_priv,
4065 						     I915_WAIT_INTERRUPTIBLE |
4066 						     I915_WAIT_LOCKED);
4067 
4068 		if (val & DROP_RETIRE)
4069 			i915_gem_retire_requests(dev_priv);
4070 
4071 		mutex_unlock(&dev->struct_mutex);
4072 	}
4073 
4074 	fs_reclaim_acquire(GFP_KERNEL);
4075 	if (val & DROP_BOUND)
4076 		i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_BOUND);
4077 
4078 	if (val & DROP_UNBOUND)
4079 		i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_UNBOUND);
4080 
4081 	if (val & DROP_SHRINK_ALL)
4082 		i915_gem_shrink_all(dev_priv);
4083 	fs_reclaim_release(GFP_KERNEL);
4084 
4085 	if (val & DROP_IDLE)
4086 		drain_delayed_work(&dev_priv->gt.idle_work);
4087 
4088 	if (val & DROP_FREED) {
4089 		synchronize_rcu();
4090 		i915_gem_drain_freed_objects(dev_priv);
4091 	}
4092 
4093 	return ret;
4094 }
4095 
4096 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4097 			i915_drop_caches_get, i915_drop_caches_set,
4098 			"0x%08llx\n");
4099 
4100 static int
4101 i915_max_freq_get(void *data, u64 *val)
4102 {
4103 	struct drm_i915_private *dev_priv = data;
4104 
4105 	if (INTEL_GEN(dev_priv) < 6)
4106 		return -ENODEV;
4107 
4108 	*val = intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.max_freq_softlimit);
4109 	return 0;
4110 }
4111 
4112 static int
4113 i915_max_freq_set(void *data, u64 val)
4114 {
4115 	struct drm_i915_private *dev_priv = data;
4116 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4117 	u32 hw_max, hw_min;
4118 	int ret;
4119 
4120 	if (INTEL_GEN(dev_priv) < 6)
4121 		return -ENODEV;
4122 
4123 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4124 
4125 	ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
4126 	if (ret)
4127 		return ret;
4128 
4129 	/*
4130 	 * Turbo will still be enabled, but won't go above the set value.
4131 	 */
4132 	val = intel_freq_opcode(dev_priv, val);
4133 
4134 	hw_max = rps->max_freq;
4135 	hw_min = rps->min_freq;
4136 
4137 	if (val < hw_min || val > hw_max || val < rps->min_freq_softlimit) {
4138 		mutex_unlock(&dev_priv->pcu_lock);
4139 		return -EINVAL;
4140 	}
4141 
4142 	rps->max_freq_softlimit = val;
4143 
4144 	if (intel_set_rps(dev_priv, val))
4145 		DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4146 
4147 	mutex_unlock(&dev_priv->pcu_lock);
4148 
4149 	return 0;
4150 }
4151 
4152 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4153 			i915_max_freq_get, i915_max_freq_set,
4154 			"%llu\n");
4155 
4156 static int
4157 i915_min_freq_get(void *data, u64 *val)
4158 {
4159 	struct drm_i915_private *dev_priv = data;
4160 
4161 	if (INTEL_GEN(dev_priv) < 6)
4162 		return -ENODEV;
4163 
4164 	*val = intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.min_freq_softlimit);
4165 	return 0;
4166 }
4167 
4168 static int
4169 i915_min_freq_set(void *data, u64 val)
4170 {
4171 	struct drm_i915_private *dev_priv = data;
4172 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4173 	u32 hw_max, hw_min;
4174 	int ret;
4175 
4176 	if (INTEL_GEN(dev_priv) < 6)
4177 		return -ENODEV;
4178 
4179 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4180 
4181 	ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
4182 	if (ret)
4183 		return ret;
4184 
4185 	/*
4186 	 * Turbo will still be enabled, but won't go below the set value.
4187 	 */
4188 	val = intel_freq_opcode(dev_priv, val);
4189 
4190 	hw_max = rps->max_freq;
4191 	hw_min = rps->min_freq;
4192 
4193 	if (val < hw_min ||
4194 	    val > hw_max || val > rps->max_freq_softlimit) {
4195 		mutex_unlock(&dev_priv->pcu_lock);
4196 		return -EINVAL;
4197 	}
4198 
4199 	rps->min_freq_softlimit = val;
4200 
4201 	if (intel_set_rps(dev_priv, val))
4202 		DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4203 
4204 	mutex_unlock(&dev_priv->pcu_lock);
4205 
4206 	return 0;
4207 }
4208 
4209 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4210 			i915_min_freq_get, i915_min_freq_set,
4211 			"%llu\n");
4212 
4213 static int
4214 i915_cache_sharing_get(void *data, u64 *val)
4215 {
4216 	struct drm_i915_private *dev_priv = data;
4217 	u32 snpcr;
4218 
4219 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4220 		return -ENODEV;
4221 
4222 	intel_runtime_pm_get(dev_priv);
4223 
4224 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4225 
4226 	intel_runtime_pm_put(dev_priv);
4227 
4228 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4229 
4230 	return 0;
4231 }
4232 
4233 static int
4234 i915_cache_sharing_set(void *data, u64 val)
4235 {
4236 	struct drm_i915_private *dev_priv = data;
4237 	u32 snpcr;
4238 
4239 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4240 		return -ENODEV;
4241 
4242 	if (val > 3)
4243 		return -EINVAL;
4244 
4245 	intel_runtime_pm_get(dev_priv);
4246 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4247 
4248 	/* Update the cache sharing policy here as well */
4249 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4250 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
4251 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4252 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4253 
4254 	intel_runtime_pm_put(dev_priv);
4255 	return 0;
4256 }
4257 
4258 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4259 			i915_cache_sharing_get, i915_cache_sharing_set,
4260 			"%llu\n");
4261 
4262 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
4263 					  struct sseu_dev_info *sseu)
4264 {
4265 	int ss_max = 2;
4266 	int ss;
4267 	u32 sig1[ss_max], sig2[ss_max];
4268 
4269 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4270 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4271 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4272 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4273 
4274 	for (ss = 0; ss < ss_max; ss++) {
4275 		unsigned int eu_cnt;
4276 
4277 		if (sig1[ss] & CHV_SS_PG_ENABLE)
4278 			/* skip disabled subslice */
4279 			continue;
4280 
4281 		sseu->slice_mask = BIT(0);
4282 		sseu->subslice_mask |= BIT(ss);
4283 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4284 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4285 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4286 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4287 		sseu->eu_total += eu_cnt;
4288 		sseu->eu_per_subslice = max_t(unsigned int,
4289 					      sseu->eu_per_subslice, eu_cnt);
4290 	}
4291 }
4292 
4293 static void gen10_sseu_device_status(struct drm_i915_private *dev_priv,
4294 				     struct sseu_dev_info *sseu)
4295 {
4296 	const struct intel_device_info *info = INTEL_INFO(dev_priv);
4297 	int s_max = 6, ss_max = 4;
4298 	int s, ss;
4299 	u32 s_reg[s_max], eu_reg[2 * s_max], eu_mask[2];
4300 
4301 	for (s = 0; s < s_max; s++) {
4302 		/*
4303 		 * FIXME: Valid SS Mask respects the spec and read
4304 		 * only valid bits for those registers, excluding reserverd
4305 		 * although this seems wrong because it would leave many
4306 		 * subslices without ACK.
4307 		 */
4308 		s_reg[s] = I915_READ(GEN10_SLICE_PGCTL_ACK(s)) &
4309 			GEN10_PGCTL_VALID_SS_MASK(s);
4310 		eu_reg[2 * s] = I915_READ(GEN10_SS01_EU_PGCTL_ACK(s));
4311 		eu_reg[2 * s + 1] = I915_READ(GEN10_SS23_EU_PGCTL_ACK(s));
4312 	}
4313 
4314 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4315 		     GEN9_PGCTL_SSA_EU19_ACK |
4316 		     GEN9_PGCTL_SSA_EU210_ACK |
4317 		     GEN9_PGCTL_SSA_EU311_ACK;
4318 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4319 		     GEN9_PGCTL_SSB_EU19_ACK |
4320 		     GEN9_PGCTL_SSB_EU210_ACK |
4321 		     GEN9_PGCTL_SSB_EU311_ACK;
4322 
4323 	for (s = 0; s < s_max; s++) {
4324 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4325 			/* skip disabled slice */
4326 			continue;
4327 
4328 		sseu->slice_mask |= BIT(s);
4329 		sseu->subslice_mask = info->sseu.subslice_mask;
4330 
4331 		for (ss = 0; ss < ss_max; ss++) {
4332 			unsigned int eu_cnt;
4333 
4334 			if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4335 				/* skip disabled subslice */
4336 				continue;
4337 
4338 			eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
4339 					       eu_mask[ss % 2]);
4340 			sseu->eu_total += eu_cnt;
4341 			sseu->eu_per_subslice = max_t(unsigned int,
4342 						      sseu->eu_per_subslice,
4343 						      eu_cnt);
4344 		}
4345 	}
4346 }
4347 
4348 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
4349 				    struct sseu_dev_info *sseu)
4350 {
4351 	int s_max = 3, ss_max = 4;
4352 	int s, ss;
4353 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4354 
4355 	/* BXT has a single slice and at most 3 subslices. */
4356 	if (IS_GEN9_LP(dev_priv)) {
4357 		s_max = 1;
4358 		ss_max = 3;
4359 	}
4360 
4361 	for (s = 0; s < s_max; s++) {
4362 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4363 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4364 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4365 	}
4366 
4367 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4368 		     GEN9_PGCTL_SSA_EU19_ACK |
4369 		     GEN9_PGCTL_SSA_EU210_ACK |
4370 		     GEN9_PGCTL_SSA_EU311_ACK;
4371 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4372 		     GEN9_PGCTL_SSB_EU19_ACK |
4373 		     GEN9_PGCTL_SSB_EU210_ACK |
4374 		     GEN9_PGCTL_SSB_EU311_ACK;
4375 
4376 	for (s = 0; s < s_max; s++) {
4377 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4378 			/* skip disabled slice */
4379 			continue;
4380 
4381 		sseu->slice_mask |= BIT(s);
4382 
4383 		if (IS_GEN9_BC(dev_priv))
4384 			sseu->subslice_mask =
4385 				INTEL_INFO(dev_priv)->sseu.subslice_mask;
4386 
4387 		for (ss = 0; ss < ss_max; ss++) {
4388 			unsigned int eu_cnt;
4389 
4390 			if (IS_GEN9_LP(dev_priv)) {
4391 				if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4392 					/* skip disabled subslice */
4393 					continue;
4394 
4395 				sseu->subslice_mask |= BIT(ss);
4396 			}
4397 
4398 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4399 					       eu_mask[ss%2]);
4400 			sseu->eu_total += eu_cnt;
4401 			sseu->eu_per_subslice = max_t(unsigned int,
4402 						      sseu->eu_per_subslice,
4403 						      eu_cnt);
4404 		}
4405 	}
4406 }
4407 
4408 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
4409 					 struct sseu_dev_info *sseu)
4410 {
4411 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
4412 	int s;
4413 
4414 	sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
4415 
4416 	if (sseu->slice_mask) {
4417 		sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
4418 		sseu->eu_per_subslice =
4419 				INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
4420 		sseu->eu_total = sseu->eu_per_subslice *
4421 				 sseu_subslice_total(sseu);
4422 
4423 		/* subtract fused off EU(s) from enabled slice(s) */
4424 		for (s = 0; s < fls(sseu->slice_mask); s++) {
4425 			u8 subslice_7eu =
4426 				INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
4427 
4428 			sseu->eu_total -= hweight8(subslice_7eu);
4429 		}
4430 	}
4431 }
4432 
4433 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
4434 				 const struct sseu_dev_info *sseu)
4435 {
4436 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4437 	const char *type = is_available_info ? "Available" : "Enabled";
4438 
4439 	seq_printf(m, "  %s Slice Mask: %04x\n", type,
4440 		   sseu->slice_mask);
4441 	seq_printf(m, "  %s Slice Total: %u\n", type,
4442 		   hweight8(sseu->slice_mask));
4443 	seq_printf(m, "  %s Subslice Total: %u\n", type,
4444 		   sseu_subslice_total(sseu));
4445 	seq_printf(m, "  %s Subslice Mask: %04x\n", type,
4446 		   sseu->subslice_mask);
4447 	seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
4448 		   hweight8(sseu->subslice_mask));
4449 	seq_printf(m, "  %s EU Total: %u\n", type,
4450 		   sseu->eu_total);
4451 	seq_printf(m, "  %s EU Per Subslice: %u\n", type,
4452 		   sseu->eu_per_subslice);
4453 
4454 	if (!is_available_info)
4455 		return;
4456 
4457 	seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
4458 	if (HAS_POOLED_EU(dev_priv))
4459 		seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
4460 
4461 	seq_printf(m, "  Has Slice Power Gating: %s\n",
4462 		   yesno(sseu->has_slice_pg));
4463 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
4464 		   yesno(sseu->has_subslice_pg));
4465 	seq_printf(m, "  Has EU Power Gating: %s\n",
4466 		   yesno(sseu->has_eu_pg));
4467 }
4468 
4469 static int i915_sseu_status(struct seq_file *m, void *unused)
4470 {
4471 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4472 	struct sseu_dev_info sseu;
4473 
4474 	if (INTEL_GEN(dev_priv) < 8)
4475 		return -ENODEV;
4476 
4477 	seq_puts(m, "SSEU Device Info\n");
4478 	i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
4479 
4480 	seq_puts(m, "SSEU Device Status\n");
4481 	memset(&sseu, 0, sizeof(sseu));
4482 
4483 	intel_runtime_pm_get(dev_priv);
4484 
4485 	if (IS_CHERRYVIEW(dev_priv)) {
4486 		cherryview_sseu_device_status(dev_priv, &sseu);
4487 	} else if (IS_BROADWELL(dev_priv)) {
4488 		broadwell_sseu_device_status(dev_priv, &sseu);
4489 	} else if (IS_GEN9(dev_priv)) {
4490 		gen9_sseu_device_status(dev_priv, &sseu);
4491 	} else if (INTEL_GEN(dev_priv) >= 10) {
4492 		gen10_sseu_device_status(dev_priv, &sseu);
4493 	}
4494 
4495 	intel_runtime_pm_put(dev_priv);
4496 
4497 	i915_print_sseu_info(m, false, &sseu);
4498 
4499 	return 0;
4500 }
4501 
4502 static int i915_forcewake_open(struct inode *inode, struct file *file)
4503 {
4504 	struct drm_i915_private *i915 = inode->i_private;
4505 
4506 	if (INTEL_GEN(i915) < 6)
4507 		return 0;
4508 
4509 	intel_runtime_pm_get(i915);
4510 	intel_uncore_forcewake_user_get(i915);
4511 
4512 	return 0;
4513 }
4514 
4515 static int i915_forcewake_release(struct inode *inode, struct file *file)
4516 {
4517 	struct drm_i915_private *i915 = inode->i_private;
4518 
4519 	if (INTEL_GEN(i915) < 6)
4520 		return 0;
4521 
4522 	intel_uncore_forcewake_user_put(i915);
4523 	intel_runtime_pm_put(i915);
4524 
4525 	return 0;
4526 }
4527 
4528 static const struct file_operations i915_forcewake_fops = {
4529 	.owner = THIS_MODULE,
4530 	.open = i915_forcewake_open,
4531 	.release = i915_forcewake_release,
4532 };
4533 
4534 static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
4535 {
4536 	struct drm_i915_private *dev_priv = m->private;
4537 	struct i915_hotplug *hotplug = &dev_priv->hotplug;
4538 
4539 	seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
4540 	seq_printf(m, "Detected: %s\n",
4541 		   yesno(delayed_work_pending(&hotplug->reenable_work)));
4542 
4543 	return 0;
4544 }
4545 
4546 static ssize_t i915_hpd_storm_ctl_write(struct file *file,
4547 					const char __user *ubuf, size_t len,
4548 					loff_t *offp)
4549 {
4550 	struct seq_file *m = file->private_data;
4551 	struct drm_i915_private *dev_priv = m->private;
4552 	struct i915_hotplug *hotplug = &dev_priv->hotplug;
4553 	unsigned int new_threshold;
4554 	int i;
4555 	char *newline;
4556 	char tmp[16];
4557 
4558 	if (len >= sizeof(tmp))
4559 		return -EINVAL;
4560 
4561 	if (copy_from_user(tmp, ubuf, len))
4562 		return -EFAULT;
4563 
4564 	tmp[len] = '\0';
4565 
4566 	/* Strip newline, if any */
4567 	newline = strchr(tmp, '\n');
4568 	if (newline)
4569 		*newline = '\0';
4570 
4571 	if (strcmp(tmp, "reset") == 0)
4572 		new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4573 	else if (kstrtouint(tmp, 10, &new_threshold) != 0)
4574 		return -EINVAL;
4575 
4576 	if (new_threshold > 0)
4577 		DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
4578 			      new_threshold);
4579 	else
4580 		DRM_DEBUG_KMS("Disabling HPD storm detection\n");
4581 
4582 	spin_lock_irq(&dev_priv->irq_lock);
4583 	hotplug->hpd_storm_threshold = new_threshold;
4584 	/* Reset the HPD storm stats so we don't accidentally trigger a storm */
4585 	for_each_hpd_pin(i)
4586 		hotplug->stats[i].count = 0;
4587 	spin_unlock_irq(&dev_priv->irq_lock);
4588 
4589 	/* Re-enable hpd immediately if we were in an irq storm */
4590 	flush_delayed_work(&dev_priv->hotplug.reenable_work);
4591 
4592 	return len;
4593 }
4594 
4595 static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
4596 {
4597 	return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
4598 }
4599 
4600 static const struct file_operations i915_hpd_storm_ctl_fops = {
4601 	.owner = THIS_MODULE,
4602 	.open = i915_hpd_storm_ctl_open,
4603 	.read = seq_read,
4604 	.llseek = seq_lseek,
4605 	.release = single_release,
4606 	.write = i915_hpd_storm_ctl_write
4607 };
4608 
4609 static const struct drm_info_list i915_debugfs_list[] = {
4610 	{"i915_capabilities", i915_capabilities, 0},
4611 	{"i915_gem_objects", i915_gem_object_info, 0},
4612 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
4613 	{"i915_gem_stolen", i915_gem_stolen_list_info },
4614 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4615 	{"i915_gem_interrupt", i915_interrupt_info, 0},
4616 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4617 	{"i915_guc_info", i915_guc_info, 0},
4618 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
4619 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
4620 	{"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
4621 	{"i915_guc_stage_pool", i915_guc_stage_pool, 0},
4622 	{"i915_huc_load_status", i915_huc_load_status_info, 0},
4623 	{"i915_frequency_info", i915_frequency_info, 0},
4624 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
4625 	{"i915_reset_info", i915_reset_info, 0},
4626 	{"i915_drpc_info", i915_drpc_info, 0},
4627 	{"i915_emon_status", i915_emon_status, 0},
4628 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
4629 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
4630 	{"i915_fbc_status", i915_fbc_status, 0},
4631 	{"i915_ips_status", i915_ips_status, 0},
4632 	{"i915_sr_status", i915_sr_status, 0},
4633 	{"i915_opregion", i915_opregion, 0},
4634 	{"i915_vbt", i915_vbt, 0},
4635 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4636 	{"i915_context_status", i915_context_status, 0},
4637 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
4638 	{"i915_swizzle_info", i915_swizzle_info, 0},
4639 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
4640 	{"i915_llc", i915_llc, 0},
4641 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
4642 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
4643 	{"i915_energy_uJ", i915_energy_uJ, 0},
4644 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
4645 	{"i915_power_domain_info", i915_power_domain_info, 0},
4646 	{"i915_dmc_info", i915_dmc_info, 0},
4647 	{"i915_display_info", i915_display_info, 0},
4648 	{"i915_engine_info", i915_engine_info, 0},
4649 	{"i915_shrinker_info", i915_shrinker_info, 0},
4650 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4651 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
4652 	{"i915_wa_registers", i915_wa_registers, 0},
4653 	{"i915_ddb_info", i915_ddb_info, 0},
4654 	{"i915_sseu_status", i915_sseu_status, 0},
4655 	{"i915_drrs_status", i915_drrs_status, 0},
4656 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
4657 };
4658 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4659 
4660 static const struct i915_debugfs_files {
4661 	const char *name;
4662 	const struct file_operations *fops;
4663 } i915_debugfs_files[] = {
4664 	{"i915_wedged", &i915_wedged_fops},
4665 	{"i915_max_freq", &i915_max_freq_fops},
4666 	{"i915_min_freq", &i915_min_freq_fops},
4667 	{"i915_cache_sharing", &i915_cache_sharing_fops},
4668 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4669 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
4670 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
4671 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
4672 	{"i915_error_state", &i915_error_state_fops},
4673 	{"i915_gpu_info", &i915_gpu_info_fops},
4674 #endif
4675 	{"i915_next_seqno", &i915_next_seqno_fops},
4676 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4677 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4678 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4679 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4680 	{"i915_fbc_false_color", &i915_fbc_false_color_fops},
4681 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
4682 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
4683 	{"i915_dp_test_active", &i915_displayport_test_active_fops},
4684 	{"i915_guc_log_control", &i915_guc_log_control_fops},
4685 	{"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops},
4686 	{"i915_ipc_status", &i915_ipc_status_fops}
4687 };
4688 
4689 int i915_debugfs_register(struct drm_i915_private *dev_priv)
4690 {
4691 	struct drm_minor *minor = dev_priv->drm.primary;
4692 	struct dentry *ent;
4693 	int ret, i;
4694 
4695 	ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
4696 				  minor->debugfs_root, to_i915(minor->dev),
4697 				  &i915_forcewake_fops);
4698 	if (!ent)
4699 		return -ENOMEM;
4700 
4701 	ret = intel_pipe_crc_create(minor);
4702 	if (ret)
4703 		return ret;
4704 
4705 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4706 		ent = debugfs_create_file(i915_debugfs_files[i].name,
4707 					  S_IRUGO | S_IWUSR,
4708 					  minor->debugfs_root,
4709 					  to_i915(minor->dev),
4710 					  i915_debugfs_files[i].fops);
4711 		if (!ent)
4712 			return -ENOMEM;
4713 	}
4714 
4715 	return drm_debugfs_create_files(i915_debugfs_list,
4716 					I915_DEBUGFS_ENTRIES,
4717 					minor->debugfs_root, minor);
4718 }
4719 
4720 struct dpcd_block {
4721 	/* DPCD dump start address. */
4722 	unsigned int offset;
4723 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
4724 	unsigned int end;
4725 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
4726 	size_t size;
4727 	/* Only valid for eDP. */
4728 	bool edp;
4729 };
4730 
4731 static const struct dpcd_block i915_dpcd_debug[] = {
4732 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
4733 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
4734 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
4735 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
4736 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
4737 	{ .offset = DP_SET_POWER },
4738 	{ .offset = DP_EDP_DPCD_REV },
4739 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
4740 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
4741 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
4742 };
4743 
4744 static int i915_dpcd_show(struct seq_file *m, void *data)
4745 {
4746 	struct drm_connector *connector = m->private;
4747 	struct intel_dp *intel_dp =
4748 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4749 	uint8_t buf[16];
4750 	ssize_t err;
4751 	int i;
4752 
4753 	if (connector->status != connector_status_connected)
4754 		return -ENODEV;
4755 
4756 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
4757 		const struct dpcd_block *b = &i915_dpcd_debug[i];
4758 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
4759 
4760 		if (b->edp &&
4761 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
4762 			continue;
4763 
4764 		/* low tech for now */
4765 		if (WARN_ON(size > sizeof(buf)))
4766 			continue;
4767 
4768 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
4769 		if (err <= 0) {
4770 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
4771 				  size, b->offset, err);
4772 			continue;
4773 		}
4774 
4775 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
4776 	}
4777 
4778 	return 0;
4779 }
4780 
4781 static int i915_dpcd_open(struct inode *inode, struct file *file)
4782 {
4783 	return single_open(file, i915_dpcd_show, inode->i_private);
4784 }
4785 
4786 static const struct file_operations i915_dpcd_fops = {
4787 	.owner = THIS_MODULE,
4788 	.open = i915_dpcd_open,
4789 	.read = seq_read,
4790 	.llseek = seq_lseek,
4791 	.release = single_release,
4792 };
4793 
4794 static int i915_panel_show(struct seq_file *m, void *data)
4795 {
4796 	struct drm_connector *connector = m->private;
4797 	struct intel_dp *intel_dp =
4798 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4799 
4800 	if (connector->status != connector_status_connected)
4801 		return -ENODEV;
4802 
4803 	seq_printf(m, "Panel power up delay: %d\n",
4804 		   intel_dp->panel_power_up_delay);
4805 	seq_printf(m, "Panel power down delay: %d\n",
4806 		   intel_dp->panel_power_down_delay);
4807 	seq_printf(m, "Backlight on delay: %d\n",
4808 		   intel_dp->backlight_on_delay);
4809 	seq_printf(m, "Backlight off delay: %d\n",
4810 		   intel_dp->backlight_off_delay);
4811 
4812 	return 0;
4813 }
4814 
4815 static int i915_panel_open(struct inode *inode, struct file *file)
4816 {
4817 	return single_open(file, i915_panel_show, inode->i_private);
4818 }
4819 
4820 static const struct file_operations i915_panel_fops = {
4821 	.owner = THIS_MODULE,
4822 	.open = i915_panel_open,
4823 	.read = seq_read,
4824 	.llseek = seq_lseek,
4825 	.release = single_release,
4826 };
4827 
4828 /**
4829  * i915_debugfs_connector_add - add i915 specific connector debugfs files
4830  * @connector: pointer to a registered drm_connector
4831  *
4832  * Cleanup will be done by drm_connector_unregister() through a call to
4833  * drm_debugfs_connector_remove().
4834  *
4835  * Returns 0 on success, negative error codes on error.
4836  */
4837 int i915_debugfs_connector_add(struct drm_connector *connector)
4838 {
4839 	struct dentry *root = connector->debugfs_entry;
4840 
4841 	/* The connector must have been registered beforehands. */
4842 	if (!root)
4843 		return -ENODEV;
4844 
4845 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
4846 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4847 		debugfs_create_file("i915_dpcd", S_IRUGO, root,
4848 				    connector, &i915_dpcd_fops);
4849 
4850 	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4851 		debugfs_create_file("i915_panel_timings", S_IRUGO, root,
4852 				    connector, &i915_panel_fops);
4853 
4854 	return 0;
4855 }
4856