1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42 
43 enum {
44 	ACTIVE_LIST,
45 	INACTIVE_LIST,
46 	PINNED_LIST,
47 };
48 
49 static const char *yesno(int v)
50 {
51 	return v ? "yes" : "no";
52 }
53 
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58 		       struct dentry *ent,
59 		       const void *key)
60 {
61 	struct drm_info_node *node;
62 
63 	node = kmalloc(sizeof(*node), GFP_KERNEL);
64 	if (node == NULL) {
65 		debugfs_remove(ent);
66 		return -ENOMEM;
67 	}
68 
69 	node->minor = minor;
70 	node->dent = ent;
71 	node->info_ent = (void *) key;
72 
73 	mutex_lock(&minor->debugfs_lock);
74 	list_add(&node->list, &minor->debugfs_list);
75 	mutex_unlock(&minor->debugfs_lock);
76 
77 	return 0;
78 }
79 
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82 	struct drm_info_node *node = (struct drm_info_node *) m->private;
83 	struct drm_device *dev = node->minor->dev;
84 	const struct intel_device_info *info = INTEL_INFO(dev);
85 
86 	seq_printf(m, "gen: %d\n", info->gen);
87 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93 
94 	return 0;
95 }
96 
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 	if (obj->user_pin_count > 0)
100 		return "P";
101 	else if (obj->pin_count > 0)
102 		return "p";
103 	else
104 		return " ";
105 }
106 
107 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
108 {
109 	switch (obj->tiling_mode) {
110 	default:
111 	case I915_TILING_NONE: return " ";
112 	case I915_TILING_X: return "X";
113 	case I915_TILING_Y: return "Y";
114 	}
115 }
116 
117 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
118 {
119 	return obj->has_global_gtt_mapping ? "g" : " ";
120 }
121 
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125 	struct i915_vma *vma;
126 	seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
127 		   &obj->base,
128 		   get_pin_flag(obj),
129 		   get_tiling_flag(obj),
130 		   get_global_flag(obj),
131 		   obj->base.size / 1024,
132 		   obj->base.read_domains,
133 		   obj->base.write_domain,
134 		   obj->last_read_seqno,
135 		   obj->last_write_seqno,
136 		   obj->last_fenced_seqno,
137 		   i915_cache_level_str(obj->cache_level),
138 		   obj->dirty ? " dirty" : "",
139 		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
140 	if (obj->base.name)
141 		seq_printf(m, " (name: %d)", obj->base.name);
142 	if (obj->pin_count)
143 		seq_printf(m, " (pinned x %d)", obj->pin_count);
144 	if (obj->pin_display)
145 		seq_printf(m, " (display)");
146 	if (obj->fence_reg != I915_FENCE_REG_NONE)
147 		seq_printf(m, " (fence: %d)", obj->fence_reg);
148 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
149 		if (!i915_is_ggtt(vma->vm))
150 			seq_puts(m, " (pp");
151 		else
152 			seq_puts(m, " (g");
153 		seq_printf(m, "gtt offset: %08lx, size: %08lx)",
154 			   vma->node.start, vma->node.size);
155 	}
156 	if (obj->stolen)
157 		seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
158 	if (obj->pin_mappable || obj->fault_mappable) {
159 		char s[3], *t = s;
160 		if (obj->pin_mappable)
161 			*t++ = 'p';
162 		if (obj->fault_mappable)
163 			*t++ = 'f';
164 		*t = '\0';
165 		seq_printf(m, " (%s mappable)", s);
166 	}
167 	if (obj->ring != NULL)
168 		seq_printf(m, " (%s)", obj->ring->name);
169 }
170 
171 static void describe_ctx(struct seq_file *m, struct i915_hw_context *ctx)
172 {
173 	seq_putc(m, ctx->is_initialized ? 'I' : 'i');
174 	seq_putc(m, ctx->remap_slice ? 'R' : 'r');
175 	seq_putc(m, ' ');
176 }
177 
178 static int i915_gem_object_list_info(struct seq_file *m, void *data)
179 {
180 	struct drm_info_node *node = (struct drm_info_node *) m->private;
181 	uintptr_t list = (uintptr_t) node->info_ent->data;
182 	struct list_head *head;
183 	struct drm_device *dev = node->minor->dev;
184 	struct drm_i915_private *dev_priv = dev->dev_private;
185 	struct i915_address_space *vm = &dev_priv->gtt.base;
186 	struct i915_vma *vma;
187 	size_t total_obj_size, total_gtt_size;
188 	int count, ret;
189 
190 	ret = mutex_lock_interruptible(&dev->struct_mutex);
191 	if (ret)
192 		return ret;
193 
194 	/* FIXME: the user of this interface might want more than just GGTT */
195 	switch (list) {
196 	case ACTIVE_LIST:
197 		seq_puts(m, "Active:\n");
198 		head = &vm->active_list;
199 		break;
200 	case INACTIVE_LIST:
201 		seq_puts(m, "Inactive:\n");
202 		head = &vm->inactive_list;
203 		break;
204 	default:
205 		mutex_unlock(&dev->struct_mutex);
206 		return -EINVAL;
207 	}
208 
209 	total_obj_size = total_gtt_size = count = 0;
210 	list_for_each_entry(vma, head, mm_list) {
211 		seq_printf(m, "   ");
212 		describe_obj(m, vma->obj);
213 		seq_printf(m, "\n");
214 		total_obj_size += vma->obj->base.size;
215 		total_gtt_size += vma->node.size;
216 		count++;
217 	}
218 	mutex_unlock(&dev->struct_mutex);
219 
220 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
221 		   count, total_obj_size, total_gtt_size);
222 	return 0;
223 }
224 
225 static int obj_rank_by_stolen(void *priv,
226 			      struct list_head *A, struct list_head *B)
227 {
228 	struct drm_i915_gem_object *a =
229 		container_of(A, struct drm_i915_gem_object, obj_exec_link);
230 	struct drm_i915_gem_object *b =
231 		container_of(B, struct drm_i915_gem_object, obj_exec_link);
232 
233 	return a->stolen->start - b->stolen->start;
234 }
235 
236 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
237 {
238 	struct drm_info_node *node = (struct drm_info_node *) m->private;
239 	struct drm_device *dev = node->minor->dev;
240 	struct drm_i915_private *dev_priv = dev->dev_private;
241 	struct drm_i915_gem_object *obj;
242 	size_t total_obj_size, total_gtt_size;
243 	LIST_HEAD(stolen);
244 	int count, ret;
245 
246 	ret = mutex_lock_interruptible(&dev->struct_mutex);
247 	if (ret)
248 		return ret;
249 
250 	total_obj_size = total_gtt_size = count = 0;
251 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
252 		if (obj->stolen == NULL)
253 			continue;
254 
255 		list_add(&obj->obj_exec_link, &stolen);
256 
257 		total_obj_size += obj->base.size;
258 		total_gtt_size += i915_gem_obj_ggtt_size(obj);
259 		count++;
260 	}
261 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
262 		if (obj->stolen == NULL)
263 			continue;
264 
265 		list_add(&obj->obj_exec_link, &stolen);
266 
267 		total_obj_size += obj->base.size;
268 		count++;
269 	}
270 	list_sort(NULL, &stolen, obj_rank_by_stolen);
271 	seq_puts(m, "Stolen:\n");
272 	while (!list_empty(&stolen)) {
273 		obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
274 		seq_puts(m, "   ");
275 		describe_obj(m, obj);
276 		seq_putc(m, '\n');
277 		list_del_init(&obj->obj_exec_link);
278 	}
279 	mutex_unlock(&dev->struct_mutex);
280 
281 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
282 		   count, total_obj_size, total_gtt_size);
283 	return 0;
284 }
285 
286 #define count_objects(list, member) do { \
287 	list_for_each_entry(obj, list, member) { \
288 		size += i915_gem_obj_ggtt_size(obj); \
289 		++count; \
290 		if (obj->map_and_fenceable) { \
291 			mappable_size += i915_gem_obj_ggtt_size(obj); \
292 			++mappable_count; \
293 		} \
294 	} \
295 } while (0)
296 
297 struct file_stats {
298 	int count;
299 	size_t total, active, inactive, unbound;
300 };
301 
302 static int per_file_stats(int id, void *ptr, void *data)
303 {
304 	struct drm_i915_gem_object *obj = ptr;
305 	struct file_stats *stats = data;
306 
307 	stats->count++;
308 	stats->total += obj->base.size;
309 
310 	if (i915_gem_obj_ggtt_bound(obj)) {
311 		if (!list_empty(&obj->ring_list))
312 			stats->active += obj->base.size;
313 		else
314 			stats->inactive += obj->base.size;
315 	} else {
316 		if (!list_empty(&obj->global_list))
317 			stats->unbound += obj->base.size;
318 	}
319 
320 	return 0;
321 }
322 
323 #define count_vmas(list, member) do { \
324 	list_for_each_entry(vma, list, member) { \
325 		size += i915_gem_obj_ggtt_size(vma->obj); \
326 		++count; \
327 		if (vma->obj->map_and_fenceable) { \
328 			mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
329 			++mappable_count; \
330 		} \
331 	} \
332 } while (0)
333 
334 static int i915_gem_object_info(struct seq_file *m, void* data)
335 {
336 	struct drm_info_node *node = (struct drm_info_node *) m->private;
337 	struct drm_device *dev = node->minor->dev;
338 	struct drm_i915_private *dev_priv = dev->dev_private;
339 	u32 count, mappable_count, purgeable_count;
340 	size_t size, mappable_size, purgeable_size;
341 	struct drm_i915_gem_object *obj;
342 	struct i915_address_space *vm = &dev_priv->gtt.base;
343 	struct drm_file *file;
344 	struct i915_vma *vma;
345 	int ret;
346 
347 	ret = mutex_lock_interruptible(&dev->struct_mutex);
348 	if (ret)
349 		return ret;
350 
351 	seq_printf(m, "%u objects, %zu bytes\n",
352 		   dev_priv->mm.object_count,
353 		   dev_priv->mm.object_memory);
354 
355 	size = count = mappable_size = mappable_count = 0;
356 	count_objects(&dev_priv->mm.bound_list, global_list);
357 	seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
358 		   count, mappable_count, size, mappable_size);
359 
360 	size = count = mappable_size = mappable_count = 0;
361 	count_vmas(&vm->active_list, mm_list);
362 	seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
363 		   count, mappable_count, size, mappable_size);
364 
365 	size = count = mappable_size = mappable_count = 0;
366 	count_vmas(&vm->inactive_list, mm_list);
367 	seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
368 		   count, mappable_count, size, mappable_size);
369 
370 	size = count = purgeable_size = purgeable_count = 0;
371 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
372 		size += obj->base.size, ++count;
373 		if (obj->madv == I915_MADV_DONTNEED)
374 			purgeable_size += obj->base.size, ++purgeable_count;
375 	}
376 	seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
377 
378 	size = count = mappable_size = mappable_count = 0;
379 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
380 		if (obj->fault_mappable) {
381 			size += i915_gem_obj_ggtt_size(obj);
382 			++count;
383 		}
384 		if (obj->pin_mappable) {
385 			mappable_size += i915_gem_obj_ggtt_size(obj);
386 			++mappable_count;
387 		}
388 		if (obj->madv == I915_MADV_DONTNEED) {
389 			purgeable_size += obj->base.size;
390 			++purgeable_count;
391 		}
392 	}
393 	seq_printf(m, "%u purgeable objects, %zu bytes\n",
394 		   purgeable_count, purgeable_size);
395 	seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
396 		   mappable_count, mappable_size);
397 	seq_printf(m, "%u fault mappable objects, %zu bytes\n",
398 		   count, size);
399 
400 	seq_printf(m, "%zu [%lu] gtt total\n",
401 		   dev_priv->gtt.base.total,
402 		   dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
403 
404 	seq_putc(m, '\n');
405 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
406 		struct file_stats stats;
407 		struct task_struct *task;
408 
409 		memset(&stats, 0, sizeof(stats));
410 		idr_for_each(&file->object_idr, per_file_stats, &stats);
411 		/*
412 		 * Although we have a valid reference on file->pid, that does
413 		 * not guarantee that the task_struct who called get_pid() is
414 		 * still alive (e.g. get_pid(current) => fork() => exit()).
415 		 * Therefore, we need to protect this ->comm access using RCU.
416 		 */
417 		rcu_read_lock();
418 		task = pid_task(file->pid, PIDTYPE_PID);
419 		seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu unbound)\n",
420 			   task ? task->comm : "<unknown>",
421 			   stats.count,
422 			   stats.total,
423 			   stats.active,
424 			   stats.inactive,
425 			   stats.unbound);
426 		rcu_read_unlock();
427 	}
428 
429 	mutex_unlock(&dev->struct_mutex);
430 
431 	return 0;
432 }
433 
434 static int i915_gem_gtt_info(struct seq_file *m, void *data)
435 {
436 	struct drm_info_node *node = (struct drm_info_node *) m->private;
437 	struct drm_device *dev = node->minor->dev;
438 	uintptr_t list = (uintptr_t) node->info_ent->data;
439 	struct drm_i915_private *dev_priv = dev->dev_private;
440 	struct drm_i915_gem_object *obj;
441 	size_t total_obj_size, total_gtt_size;
442 	int count, ret;
443 
444 	ret = mutex_lock_interruptible(&dev->struct_mutex);
445 	if (ret)
446 		return ret;
447 
448 	total_obj_size = total_gtt_size = count = 0;
449 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
450 		if (list == PINNED_LIST && obj->pin_count == 0)
451 			continue;
452 
453 		seq_puts(m, "   ");
454 		describe_obj(m, obj);
455 		seq_putc(m, '\n');
456 		total_obj_size += obj->base.size;
457 		total_gtt_size += i915_gem_obj_ggtt_size(obj);
458 		count++;
459 	}
460 
461 	mutex_unlock(&dev->struct_mutex);
462 
463 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
464 		   count, total_obj_size, total_gtt_size);
465 
466 	return 0;
467 }
468 
469 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
470 {
471 	struct drm_info_node *node = (struct drm_info_node *) m->private;
472 	struct drm_device *dev = node->minor->dev;
473 	unsigned long flags;
474 	struct intel_crtc *crtc;
475 
476 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
477 		const char pipe = pipe_name(crtc->pipe);
478 		const char plane = plane_name(crtc->plane);
479 		struct intel_unpin_work *work;
480 
481 		spin_lock_irqsave(&dev->event_lock, flags);
482 		work = crtc->unpin_work;
483 		if (work == NULL) {
484 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
485 				   pipe, plane);
486 		} else {
487 			if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
488 				seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
489 					   pipe, plane);
490 			} else {
491 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
492 					   pipe, plane);
493 			}
494 			if (work->enable_stall_check)
495 				seq_puts(m, "Stall check enabled, ");
496 			else
497 				seq_puts(m, "Stall check waiting for page flip ioctl, ");
498 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
499 
500 			if (work->old_fb_obj) {
501 				struct drm_i915_gem_object *obj = work->old_fb_obj;
502 				if (obj)
503 					seq_printf(m, "Old framebuffer gtt_offset 0x%08lx\n",
504 						   i915_gem_obj_ggtt_offset(obj));
505 			}
506 			if (work->pending_flip_obj) {
507 				struct drm_i915_gem_object *obj = work->pending_flip_obj;
508 				if (obj)
509 					seq_printf(m, "New framebuffer gtt_offset 0x%08lx\n",
510 						   i915_gem_obj_ggtt_offset(obj));
511 			}
512 		}
513 		spin_unlock_irqrestore(&dev->event_lock, flags);
514 	}
515 
516 	return 0;
517 }
518 
519 static int i915_gem_request_info(struct seq_file *m, void *data)
520 {
521 	struct drm_info_node *node = (struct drm_info_node *) m->private;
522 	struct drm_device *dev = node->minor->dev;
523 	drm_i915_private_t *dev_priv = dev->dev_private;
524 	struct intel_ring_buffer *ring;
525 	struct drm_i915_gem_request *gem_request;
526 	int ret, count, i;
527 
528 	ret = mutex_lock_interruptible(&dev->struct_mutex);
529 	if (ret)
530 		return ret;
531 
532 	count = 0;
533 	for_each_ring(ring, dev_priv, i) {
534 		if (list_empty(&ring->request_list))
535 			continue;
536 
537 		seq_printf(m, "%s requests:\n", ring->name);
538 		list_for_each_entry(gem_request,
539 				    &ring->request_list,
540 				    list) {
541 			seq_printf(m, "    %d @ %d\n",
542 				   gem_request->seqno,
543 				   (int) (jiffies - gem_request->emitted_jiffies));
544 		}
545 		count++;
546 	}
547 	mutex_unlock(&dev->struct_mutex);
548 
549 	if (count == 0)
550 		seq_puts(m, "No requests\n");
551 
552 	return 0;
553 }
554 
555 static void i915_ring_seqno_info(struct seq_file *m,
556 				 struct intel_ring_buffer *ring)
557 {
558 	if (ring->get_seqno) {
559 		seq_printf(m, "Current sequence (%s): %u\n",
560 			   ring->name, ring->get_seqno(ring, false));
561 	}
562 }
563 
564 static int i915_gem_seqno_info(struct seq_file *m, void *data)
565 {
566 	struct drm_info_node *node = (struct drm_info_node *) m->private;
567 	struct drm_device *dev = node->minor->dev;
568 	drm_i915_private_t *dev_priv = dev->dev_private;
569 	struct intel_ring_buffer *ring;
570 	int ret, i;
571 
572 	ret = mutex_lock_interruptible(&dev->struct_mutex);
573 	if (ret)
574 		return ret;
575 	intel_runtime_pm_get(dev_priv);
576 
577 	for_each_ring(ring, dev_priv, i)
578 		i915_ring_seqno_info(m, ring);
579 
580 	intel_runtime_pm_put(dev_priv);
581 	mutex_unlock(&dev->struct_mutex);
582 
583 	return 0;
584 }
585 
586 
587 static int i915_interrupt_info(struct seq_file *m, void *data)
588 {
589 	struct drm_info_node *node = (struct drm_info_node *) m->private;
590 	struct drm_device *dev = node->minor->dev;
591 	drm_i915_private_t *dev_priv = dev->dev_private;
592 	struct intel_ring_buffer *ring;
593 	int ret, i, pipe;
594 
595 	ret = mutex_lock_interruptible(&dev->struct_mutex);
596 	if (ret)
597 		return ret;
598 	intel_runtime_pm_get(dev_priv);
599 
600 	if (INTEL_INFO(dev)->gen >= 8) {
601 		int i;
602 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
603 			   I915_READ(GEN8_MASTER_IRQ));
604 
605 		for (i = 0; i < 4; i++) {
606 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
607 				   i, I915_READ(GEN8_GT_IMR(i)));
608 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
609 				   i, I915_READ(GEN8_GT_IIR(i)));
610 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
611 				   i, I915_READ(GEN8_GT_IER(i)));
612 		}
613 
614 		for_each_pipe(i) {
615 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
616 				   pipe_name(i),
617 				   I915_READ(GEN8_DE_PIPE_IMR(i)));
618 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
619 				   pipe_name(i),
620 				   I915_READ(GEN8_DE_PIPE_IIR(i)));
621 			seq_printf(m, "Pipe %c IER:\t%08x\n",
622 				   pipe_name(i),
623 				   I915_READ(GEN8_DE_PIPE_IER(i)));
624 		}
625 
626 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
627 			   I915_READ(GEN8_DE_PORT_IMR));
628 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
629 			   I915_READ(GEN8_DE_PORT_IIR));
630 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
631 			   I915_READ(GEN8_DE_PORT_IER));
632 
633 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
634 			   I915_READ(GEN8_DE_MISC_IMR));
635 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
636 			   I915_READ(GEN8_DE_MISC_IIR));
637 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
638 			   I915_READ(GEN8_DE_MISC_IER));
639 
640 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
641 			   I915_READ(GEN8_PCU_IMR));
642 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
643 			   I915_READ(GEN8_PCU_IIR));
644 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
645 			   I915_READ(GEN8_PCU_IER));
646 	} else if (IS_VALLEYVIEW(dev)) {
647 		seq_printf(m, "Display IER:\t%08x\n",
648 			   I915_READ(VLV_IER));
649 		seq_printf(m, "Display IIR:\t%08x\n",
650 			   I915_READ(VLV_IIR));
651 		seq_printf(m, "Display IIR_RW:\t%08x\n",
652 			   I915_READ(VLV_IIR_RW));
653 		seq_printf(m, "Display IMR:\t%08x\n",
654 			   I915_READ(VLV_IMR));
655 		for_each_pipe(pipe)
656 			seq_printf(m, "Pipe %c stat:\t%08x\n",
657 				   pipe_name(pipe),
658 				   I915_READ(PIPESTAT(pipe)));
659 
660 		seq_printf(m, "Master IER:\t%08x\n",
661 			   I915_READ(VLV_MASTER_IER));
662 
663 		seq_printf(m, "Render IER:\t%08x\n",
664 			   I915_READ(GTIER));
665 		seq_printf(m, "Render IIR:\t%08x\n",
666 			   I915_READ(GTIIR));
667 		seq_printf(m, "Render IMR:\t%08x\n",
668 			   I915_READ(GTIMR));
669 
670 		seq_printf(m, "PM IER:\t\t%08x\n",
671 			   I915_READ(GEN6_PMIER));
672 		seq_printf(m, "PM IIR:\t\t%08x\n",
673 			   I915_READ(GEN6_PMIIR));
674 		seq_printf(m, "PM IMR:\t\t%08x\n",
675 			   I915_READ(GEN6_PMIMR));
676 
677 		seq_printf(m, "Port hotplug:\t%08x\n",
678 			   I915_READ(PORT_HOTPLUG_EN));
679 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
680 			   I915_READ(VLV_DPFLIPSTAT));
681 		seq_printf(m, "DPINVGTT:\t%08x\n",
682 			   I915_READ(DPINVGTT));
683 
684 	} else if (!HAS_PCH_SPLIT(dev)) {
685 		seq_printf(m, "Interrupt enable:    %08x\n",
686 			   I915_READ(IER));
687 		seq_printf(m, "Interrupt identity:  %08x\n",
688 			   I915_READ(IIR));
689 		seq_printf(m, "Interrupt mask:      %08x\n",
690 			   I915_READ(IMR));
691 		for_each_pipe(pipe)
692 			seq_printf(m, "Pipe %c stat:         %08x\n",
693 				   pipe_name(pipe),
694 				   I915_READ(PIPESTAT(pipe)));
695 	} else {
696 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
697 			   I915_READ(DEIER));
698 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
699 			   I915_READ(DEIIR));
700 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
701 			   I915_READ(DEIMR));
702 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
703 			   I915_READ(SDEIER));
704 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
705 			   I915_READ(SDEIIR));
706 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
707 			   I915_READ(SDEIMR));
708 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
709 			   I915_READ(GTIER));
710 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
711 			   I915_READ(GTIIR));
712 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
713 			   I915_READ(GTIMR));
714 	}
715 	seq_printf(m, "Interrupts received: %d\n",
716 		   atomic_read(&dev_priv->irq_received));
717 	for_each_ring(ring, dev_priv, i) {
718 		if (INTEL_INFO(dev)->gen >= 6) {
719 			seq_printf(m,
720 				   "Graphics Interrupt mask (%s):	%08x\n",
721 				   ring->name, I915_READ_IMR(ring));
722 		}
723 		i915_ring_seqno_info(m, ring);
724 	}
725 	intel_runtime_pm_put(dev_priv);
726 	mutex_unlock(&dev->struct_mutex);
727 
728 	return 0;
729 }
730 
731 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
732 {
733 	struct drm_info_node *node = (struct drm_info_node *) m->private;
734 	struct drm_device *dev = node->minor->dev;
735 	drm_i915_private_t *dev_priv = dev->dev_private;
736 	int i, ret;
737 
738 	ret = mutex_lock_interruptible(&dev->struct_mutex);
739 	if (ret)
740 		return ret;
741 
742 	seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
743 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
744 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
745 		struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
746 
747 		seq_printf(m, "Fence %d, pin count = %d, object = ",
748 			   i, dev_priv->fence_regs[i].pin_count);
749 		if (obj == NULL)
750 			seq_puts(m, "unused");
751 		else
752 			describe_obj(m, obj);
753 		seq_putc(m, '\n');
754 	}
755 
756 	mutex_unlock(&dev->struct_mutex);
757 	return 0;
758 }
759 
760 static int i915_hws_info(struct seq_file *m, void *data)
761 {
762 	struct drm_info_node *node = (struct drm_info_node *) m->private;
763 	struct drm_device *dev = node->minor->dev;
764 	drm_i915_private_t *dev_priv = dev->dev_private;
765 	struct intel_ring_buffer *ring;
766 	const u32 *hws;
767 	int i;
768 
769 	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
770 	hws = ring->status_page.page_addr;
771 	if (hws == NULL)
772 		return 0;
773 
774 	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
775 		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
776 			   i * 4,
777 			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
778 	}
779 	return 0;
780 }
781 
782 static ssize_t
783 i915_error_state_write(struct file *filp,
784 		       const char __user *ubuf,
785 		       size_t cnt,
786 		       loff_t *ppos)
787 {
788 	struct i915_error_state_file_priv *error_priv = filp->private_data;
789 	struct drm_device *dev = error_priv->dev;
790 	int ret;
791 
792 	DRM_DEBUG_DRIVER("Resetting error state\n");
793 
794 	ret = mutex_lock_interruptible(&dev->struct_mutex);
795 	if (ret)
796 		return ret;
797 
798 	i915_destroy_error_state(dev);
799 	mutex_unlock(&dev->struct_mutex);
800 
801 	return cnt;
802 }
803 
804 static int i915_error_state_open(struct inode *inode, struct file *file)
805 {
806 	struct drm_device *dev = inode->i_private;
807 	struct i915_error_state_file_priv *error_priv;
808 
809 	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
810 	if (!error_priv)
811 		return -ENOMEM;
812 
813 	error_priv->dev = dev;
814 
815 	i915_error_state_get(dev, error_priv);
816 
817 	file->private_data = error_priv;
818 
819 	return 0;
820 }
821 
822 static int i915_error_state_release(struct inode *inode, struct file *file)
823 {
824 	struct i915_error_state_file_priv *error_priv = file->private_data;
825 
826 	i915_error_state_put(error_priv);
827 	kfree(error_priv);
828 
829 	return 0;
830 }
831 
832 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
833 				     size_t count, loff_t *pos)
834 {
835 	struct i915_error_state_file_priv *error_priv = file->private_data;
836 	struct drm_i915_error_state_buf error_str;
837 	loff_t tmp_pos = 0;
838 	ssize_t ret_count = 0;
839 	int ret;
840 
841 	ret = i915_error_state_buf_init(&error_str, count, *pos);
842 	if (ret)
843 		return ret;
844 
845 	ret = i915_error_state_to_str(&error_str, error_priv);
846 	if (ret)
847 		goto out;
848 
849 	ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
850 					    error_str.buf,
851 					    error_str.bytes);
852 
853 	if (ret_count < 0)
854 		ret = ret_count;
855 	else
856 		*pos = error_str.start + ret_count;
857 out:
858 	i915_error_state_buf_release(&error_str);
859 	return ret ?: ret_count;
860 }
861 
862 static const struct file_operations i915_error_state_fops = {
863 	.owner = THIS_MODULE,
864 	.open = i915_error_state_open,
865 	.read = i915_error_state_read,
866 	.write = i915_error_state_write,
867 	.llseek = default_llseek,
868 	.release = i915_error_state_release,
869 };
870 
871 static int
872 i915_next_seqno_get(void *data, u64 *val)
873 {
874 	struct drm_device *dev = data;
875 	drm_i915_private_t *dev_priv = dev->dev_private;
876 	int ret;
877 
878 	ret = mutex_lock_interruptible(&dev->struct_mutex);
879 	if (ret)
880 		return ret;
881 
882 	*val = dev_priv->next_seqno;
883 	mutex_unlock(&dev->struct_mutex);
884 
885 	return 0;
886 }
887 
888 static int
889 i915_next_seqno_set(void *data, u64 val)
890 {
891 	struct drm_device *dev = data;
892 	int ret;
893 
894 	ret = mutex_lock_interruptible(&dev->struct_mutex);
895 	if (ret)
896 		return ret;
897 
898 	ret = i915_gem_set_seqno(dev, val);
899 	mutex_unlock(&dev->struct_mutex);
900 
901 	return ret;
902 }
903 
904 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
905 			i915_next_seqno_get, i915_next_seqno_set,
906 			"0x%llx\n");
907 
908 static int i915_rstdby_delays(struct seq_file *m, void *unused)
909 {
910 	struct drm_info_node *node = (struct drm_info_node *) m->private;
911 	struct drm_device *dev = node->minor->dev;
912 	drm_i915_private_t *dev_priv = dev->dev_private;
913 	u16 crstanddelay;
914 	int ret;
915 
916 	ret = mutex_lock_interruptible(&dev->struct_mutex);
917 	if (ret)
918 		return ret;
919 	intel_runtime_pm_get(dev_priv);
920 
921 	crstanddelay = I915_READ16(CRSTANDVID);
922 
923 	intel_runtime_pm_put(dev_priv);
924 	mutex_unlock(&dev->struct_mutex);
925 
926 	seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
927 
928 	return 0;
929 }
930 
931 static int i915_cur_delayinfo(struct seq_file *m, void *unused)
932 {
933 	struct drm_info_node *node = (struct drm_info_node *) m->private;
934 	struct drm_device *dev = node->minor->dev;
935 	drm_i915_private_t *dev_priv = dev->dev_private;
936 	int ret = 0;
937 
938 	intel_runtime_pm_get(dev_priv);
939 
940 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
941 
942 	if (IS_GEN5(dev)) {
943 		u16 rgvswctl = I915_READ16(MEMSWCTL);
944 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
945 
946 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
947 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
948 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
949 			   MEMSTAT_VID_SHIFT);
950 		seq_printf(m, "Current P-state: %d\n",
951 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
952 	} else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
953 		u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
954 		u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
955 		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
956 		u32 rpstat, cagf, reqf;
957 		u32 rpupei, rpcurup, rpprevup;
958 		u32 rpdownei, rpcurdown, rpprevdown;
959 		int max_freq;
960 
961 		/* RPSTAT1 is in the GT power well */
962 		ret = mutex_lock_interruptible(&dev->struct_mutex);
963 		if (ret)
964 			goto out;
965 
966 		gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
967 
968 		reqf = I915_READ(GEN6_RPNSWREQ);
969 		reqf &= ~GEN6_TURBO_DISABLE;
970 		if (IS_HASWELL(dev))
971 			reqf >>= 24;
972 		else
973 			reqf >>= 25;
974 		reqf *= GT_FREQUENCY_MULTIPLIER;
975 
976 		rpstat = I915_READ(GEN6_RPSTAT1);
977 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
978 		rpcurup = I915_READ(GEN6_RP_CUR_UP);
979 		rpprevup = I915_READ(GEN6_RP_PREV_UP);
980 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
981 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
982 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
983 		if (IS_HASWELL(dev))
984 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
985 		else
986 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
987 		cagf *= GT_FREQUENCY_MULTIPLIER;
988 
989 		gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
990 		mutex_unlock(&dev->struct_mutex);
991 
992 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
993 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
994 		seq_printf(m, "Render p-state ratio: %d\n",
995 			   (gt_perf_status & 0xff00) >> 8);
996 		seq_printf(m, "Render p-state VID: %d\n",
997 			   gt_perf_status & 0xff);
998 		seq_printf(m, "Render p-state limit: %d\n",
999 			   rp_state_limits & 0xff);
1000 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1001 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1002 		seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1003 			   GEN6_CURICONT_MASK);
1004 		seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1005 			   GEN6_CURBSYTAVG_MASK);
1006 		seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1007 			   GEN6_CURBSYTAVG_MASK);
1008 		seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1009 			   GEN6_CURIAVG_MASK);
1010 		seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1011 			   GEN6_CURBSYTAVG_MASK);
1012 		seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1013 			   GEN6_CURBSYTAVG_MASK);
1014 
1015 		max_freq = (rp_state_cap & 0xff0000) >> 16;
1016 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1017 			   max_freq * GT_FREQUENCY_MULTIPLIER);
1018 
1019 		max_freq = (rp_state_cap & 0xff00) >> 8;
1020 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1021 			   max_freq * GT_FREQUENCY_MULTIPLIER);
1022 
1023 		max_freq = rp_state_cap & 0xff;
1024 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1025 			   max_freq * GT_FREQUENCY_MULTIPLIER);
1026 
1027 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1028 			   dev_priv->rps.hw_max * GT_FREQUENCY_MULTIPLIER);
1029 	} else if (IS_VALLEYVIEW(dev)) {
1030 		u32 freq_sts, val;
1031 
1032 		mutex_lock(&dev_priv->rps.hw_lock);
1033 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1034 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1035 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1036 
1037 		val = valleyview_rps_max_freq(dev_priv);
1038 		seq_printf(m, "max GPU freq: %d MHz\n",
1039 			   vlv_gpu_freq(dev_priv, val));
1040 
1041 		val = valleyview_rps_min_freq(dev_priv);
1042 		seq_printf(m, "min GPU freq: %d MHz\n",
1043 			   vlv_gpu_freq(dev_priv, val));
1044 
1045 		seq_printf(m, "current GPU freq: %d MHz\n",
1046 			   vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1047 		mutex_unlock(&dev_priv->rps.hw_lock);
1048 	} else {
1049 		seq_puts(m, "no P-state info available\n");
1050 	}
1051 
1052 out:
1053 	intel_runtime_pm_put(dev_priv);
1054 	return ret;
1055 }
1056 
1057 static int i915_delayfreq_table(struct seq_file *m, void *unused)
1058 {
1059 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1060 	struct drm_device *dev = node->minor->dev;
1061 	drm_i915_private_t *dev_priv = dev->dev_private;
1062 	u32 delayfreq;
1063 	int ret, i;
1064 
1065 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1066 	if (ret)
1067 		return ret;
1068 	intel_runtime_pm_get(dev_priv);
1069 
1070 	for (i = 0; i < 16; i++) {
1071 		delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
1072 		seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
1073 			   (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
1074 	}
1075 
1076 	intel_runtime_pm_put(dev_priv);
1077 
1078 	mutex_unlock(&dev->struct_mutex);
1079 
1080 	return 0;
1081 }
1082 
1083 static inline int MAP_TO_MV(int map)
1084 {
1085 	return 1250 - (map * 25);
1086 }
1087 
1088 static int i915_inttoext_table(struct seq_file *m, void *unused)
1089 {
1090 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1091 	struct drm_device *dev = node->minor->dev;
1092 	drm_i915_private_t *dev_priv = dev->dev_private;
1093 	u32 inttoext;
1094 	int ret, i;
1095 
1096 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1097 	if (ret)
1098 		return ret;
1099 	intel_runtime_pm_get(dev_priv);
1100 
1101 	for (i = 1; i <= 32; i++) {
1102 		inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
1103 		seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
1104 	}
1105 
1106 	intel_runtime_pm_put(dev_priv);
1107 	mutex_unlock(&dev->struct_mutex);
1108 
1109 	return 0;
1110 }
1111 
1112 static int ironlake_drpc_info(struct seq_file *m)
1113 {
1114 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1115 	struct drm_device *dev = node->minor->dev;
1116 	drm_i915_private_t *dev_priv = dev->dev_private;
1117 	u32 rgvmodectl, rstdbyctl;
1118 	u16 crstandvid;
1119 	int ret;
1120 
1121 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1122 	if (ret)
1123 		return ret;
1124 	intel_runtime_pm_get(dev_priv);
1125 
1126 	rgvmodectl = I915_READ(MEMMODECTL);
1127 	rstdbyctl = I915_READ(RSTDBYCTL);
1128 	crstandvid = I915_READ16(CRSTANDVID);
1129 
1130 	intel_runtime_pm_put(dev_priv);
1131 	mutex_unlock(&dev->struct_mutex);
1132 
1133 	seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1134 		   "yes" : "no");
1135 	seq_printf(m, "Boost freq: %d\n",
1136 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1137 		   MEMMODE_BOOST_FREQ_SHIFT);
1138 	seq_printf(m, "HW control enabled: %s\n",
1139 		   rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1140 	seq_printf(m, "SW control enabled: %s\n",
1141 		   rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1142 	seq_printf(m, "Gated voltage change: %s\n",
1143 		   rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1144 	seq_printf(m, "Starting frequency: P%d\n",
1145 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1146 	seq_printf(m, "Max P-state: P%d\n",
1147 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1148 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1149 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1150 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1151 	seq_printf(m, "Render standby enabled: %s\n",
1152 		   (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1153 	seq_puts(m, "Current RS state: ");
1154 	switch (rstdbyctl & RSX_STATUS_MASK) {
1155 	case RSX_STATUS_ON:
1156 		seq_puts(m, "on\n");
1157 		break;
1158 	case RSX_STATUS_RC1:
1159 		seq_puts(m, "RC1\n");
1160 		break;
1161 	case RSX_STATUS_RC1E:
1162 		seq_puts(m, "RC1E\n");
1163 		break;
1164 	case RSX_STATUS_RS1:
1165 		seq_puts(m, "RS1\n");
1166 		break;
1167 	case RSX_STATUS_RS2:
1168 		seq_puts(m, "RS2 (RC6)\n");
1169 		break;
1170 	case RSX_STATUS_RS3:
1171 		seq_puts(m, "RC3 (RC6+)\n");
1172 		break;
1173 	default:
1174 		seq_puts(m, "unknown\n");
1175 		break;
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 static int vlv_drpc_info(struct seq_file *m)
1182 {
1183 
1184 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1185 	struct drm_device *dev = node->minor->dev;
1186 	struct drm_i915_private *dev_priv = dev->dev_private;
1187 	u32 rpmodectl1, rcctl1;
1188 	unsigned fw_rendercount = 0, fw_mediacount = 0;
1189 
1190 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1191 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1192 
1193 	seq_printf(m, "Video Turbo Mode: %s\n",
1194 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1195 	seq_printf(m, "Turbo enabled: %s\n",
1196 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1197 	seq_printf(m, "HW control enabled: %s\n",
1198 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1199 	seq_printf(m, "SW control enabled: %s\n",
1200 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1201 			  GEN6_RP_MEDIA_SW_MODE));
1202 	seq_printf(m, "RC6 Enabled: %s\n",
1203 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1204 					GEN6_RC_CTL_EI_MODE(1))));
1205 	seq_printf(m, "Render Power Well: %s\n",
1206 			(I915_READ(VLV_GTLC_PW_STATUS) &
1207 				VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1208 	seq_printf(m, "Media Power Well: %s\n",
1209 			(I915_READ(VLV_GTLC_PW_STATUS) &
1210 				VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1211 
1212 	spin_lock_irq(&dev_priv->uncore.lock);
1213 	fw_rendercount = dev_priv->uncore.fw_rendercount;
1214 	fw_mediacount = dev_priv->uncore.fw_mediacount;
1215 	spin_unlock_irq(&dev_priv->uncore.lock);
1216 
1217 	seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1218 	seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1219 
1220 
1221 	return 0;
1222 }
1223 
1224 
1225 static int gen6_drpc_info(struct seq_file *m)
1226 {
1227 
1228 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1229 	struct drm_device *dev = node->minor->dev;
1230 	struct drm_i915_private *dev_priv = dev->dev_private;
1231 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1232 	unsigned forcewake_count;
1233 	int count = 0, ret;
1234 
1235 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1236 	if (ret)
1237 		return ret;
1238 	intel_runtime_pm_get(dev_priv);
1239 
1240 	spin_lock_irq(&dev_priv->uncore.lock);
1241 	forcewake_count = dev_priv->uncore.forcewake_count;
1242 	spin_unlock_irq(&dev_priv->uncore.lock);
1243 
1244 	if (forcewake_count) {
1245 		seq_puts(m, "RC information inaccurate because somebody "
1246 			    "holds a forcewake reference \n");
1247 	} else {
1248 		/* NB: we cannot use forcewake, else we read the wrong values */
1249 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1250 			udelay(10);
1251 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1252 	}
1253 
1254 	gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1255 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1256 
1257 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1258 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1259 	mutex_unlock(&dev->struct_mutex);
1260 	mutex_lock(&dev_priv->rps.hw_lock);
1261 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1262 	mutex_unlock(&dev_priv->rps.hw_lock);
1263 
1264 	intel_runtime_pm_put(dev_priv);
1265 
1266 	seq_printf(m, "Video Turbo Mode: %s\n",
1267 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1268 	seq_printf(m, "HW control enabled: %s\n",
1269 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1270 	seq_printf(m, "SW control enabled: %s\n",
1271 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1272 			  GEN6_RP_MEDIA_SW_MODE));
1273 	seq_printf(m, "RC1e Enabled: %s\n",
1274 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1275 	seq_printf(m, "RC6 Enabled: %s\n",
1276 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1277 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1278 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1279 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1280 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1281 	seq_puts(m, "Current RC state: ");
1282 	switch (gt_core_status & GEN6_RCn_MASK) {
1283 	case GEN6_RC0:
1284 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1285 			seq_puts(m, "Core Power Down\n");
1286 		else
1287 			seq_puts(m, "on\n");
1288 		break;
1289 	case GEN6_RC3:
1290 		seq_puts(m, "RC3\n");
1291 		break;
1292 	case GEN6_RC6:
1293 		seq_puts(m, "RC6\n");
1294 		break;
1295 	case GEN6_RC7:
1296 		seq_puts(m, "RC7\n");
1297 		break;
1298 	default:
1299 		seq_puts(m, "Unknown\n");
1300 		break;
1301 	}
1302 
1303 	seq_printf(m, "Core Power Down: %s\n",
1304 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1305 
1306 	/* Not exactly sure what this is */
1307 	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1308 		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1309 	seq_printf(m, "RC6 residency since boot: %u\n",
1310 		   I915_READ(GEN6_GT_GFX_RC6));
1311 	seq_printf(m, "RC6+ residency since boot: %u\n",
1312 		   I915_READ(GEN6_GT_GFX_RC6p));
1313 	seq_printf(m, "RC6++ residency since boot: %u\n",
1314 		   I915_READ(GEN6_GT_GFX_RC6pp));
1315 
1316 	seq_printf(m, "RC6   voltage: %dmV\n",
1317 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1318 	seq_printf(m, "RC6+  voltage: %dmV\n",
1319 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1320 	seq_printf(m, "RC6++ voltage: %dmV\n",
1321 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1322 	return 0;
1323 }
1324 
1325 static int i915_drpc_info(struct seq_file *m, void *unused)
1326 {
1327 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1328 	struct drm_device *dev = node->minor->dev;
1329 
1330 	if (IS_VALLEYVIEW(dev))
1331 		return vlv_drpc_info(m);
1332 	else if (IS_GEN6(dev) || IS_GEN7(dev))
1333 		return gen6_drpc_info(m);
1334 	else
1335 		return ironlake_drpc_info(m);
1336 }
1337 
1338 static int i915_fbc_status(struct seq_file *m, void *unused)
1339 {
1340 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1341 	struct drm_device *dev = node->minor->dev;
1342 	drm_i915_private_t *dev_priv = dev->dev_private;
1343 
1344 	if (!HAS_FBC(dev)) {
1345 		seq_puts(m, "FBC unsupported on this chipset\n");
1346 		return 0;
1347 	}
1348 
1349 	if (intel_fbc_enabled(dev)) {
1350 		seq_puts(m, "FBC enabled\n");
1351 	} else {
1352 		seq_puts(m, "FBC disabled: ");
1353 		switch (dev_priv->fbc.no_fbc_reason) {
1354 		case FBC_OK:
1355 			seq_puts(m, "FBC actived, but currently disabled in hardware");
1356 			break;
1357 		case FBC_UNSUPPORTED:
1358 			seq_puts(m, "unsupported by this chipset");
1359 			break;
1360 		case FBC_NO_OUTPUT:
1361 			seq_puts(m, "no outputs");
1362 			break;
1363 		case FBC_STOLEN_TOO_SMALL:
1364 			seq_puts(m, "not enough stolen memory");
1365 			break;
1366 		case FBC_UNSUPPORTED_MODE:
1367 			seq_puts(m, "mode not supported");
1368 			break;
1369 		case FBC_MODE_TOO_LARGE:
1370 			seq_puts(m, "mode too large");
1371 			break;
1372 		case FBC_BAD_PLANE:
1373 			seq_puts(m, "FBC unsupported on plane");
1374 			break;
1375 		case FBC_NOT_TILED:
1376 			seq_puts(m, "scanout buffer not tiled");
1377 			break;
1378 		case FBC_MULTIPLE_PIPES:
1379 			seq_puts(m, "multiple pipes are enabled");
1380 			break;
1381 		case FBC_MODULE_PARAM:
1382 			seq_puts(m, "disabled per module param (default off)");
1383 			break;
1384 		case FBC_CHIP_DEFAULT:
1385 			seq_puts(m, "disabled per chip default");
1386 			break;
1387 		default:
1388 			seq_puts(m, "unknown reason");
1389 		}
1390 		seq_putc(m, '\n');
1391 	}
1392 	return 0;
1393 }
1394 
1395 static int i915_ips_status(struct seq_file *m, void *unused)
1396 {
1397 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1398 	struct drm_device *dev = node->minor->dev;
1399 	struct drm_i915_private *dev_priv = dev->dev_private;
1400 
1401 	if (!HAS_IPS(dev)) {
1402 		seq_puts(m, "not supported\n");
1403 		return 0;
1404 	}
1405 
1406 	if (IS_BROADWELL(dev) || I915_READ(IPS_CTL) & IPS_ENABLE)
1407 		seq_puts(m, "enabled\n");
1408 	else
1409 		seq_puts(m, "disabled\n");
1410 
1411 	return 0;
1412 }
1413 
1414 static int i915_sr_status(struct seq_file *m, void *unused)
1415 {
1416 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1417 	struct drm_device *dev = node->minor->dev;
1418 	drm_i915_private_t *dev_priv = dev->dev_private;
1419 	bool sr_enabled = false;
1420 
1421 	if (HAS_PCH_SPLIT(dev))
1422 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1423 	else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1424 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1425 	else if (IS_I915GM(dev))
1426 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1427 	else if (IS_PINEVIEW(dev))
1428 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1429 
1430 	seq_printf(m, "self-refresh: %s\n",
1431 		   sr_enabled ? "enabled" : "disabled");
1432 
1433 	return 0;
1434 }
1435 
1436 static int i915_emon_status(struct seq_file *m, void *unused)
1437 {
1438 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1439 	struct drm_device *dev = node->minor->dev;
1440 	drm_i915_private_t *dev_priv = dev->dev_private;
1441 	unsigned long temp, chipset, gfx;
1442 	int ret;
1443 
1444 	if (!IS_GEN5(dev))
1445 		return -ENODEV;
1446 
1447 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1448 	if (ret)
1449 		return ret;
1450 
1451 	temp = i915_mch_val(dev_priv);
1452 	chipset = i915_chipset_val(dev_priv);
1453 	gfx = i915_gfx_val(dev_priv);
1454 	mutex_unlock(&dev->struct_mutex);
1455 
1456 	seq_printf(m, "GMCH temp: %ld\n", temp);
1457 	seq_printf(m, "Chipset power: %ld\n", chipset);
1458 	seq_printf(m, "GFX power: %ld\n", gfx);
1459 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1460 
1461 	return 0;
1462 }
1463 
1464 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1465 {
1466 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1467 	struct drm_device *dev = node->minor->dev;
1468 	drm_i915_private_t *dev_priv = dev->dev_private;
1469 	int ret;
1470 	int gpu_freq, ia_freq;
1471 
1472 	if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1473 		seq_puts(m, "unsupported on this chipset\n");
1474 		return 0;
1475 	}
1476 
1477 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1478 
1479 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1480 	if (ret)
1481 		return ret;
1482 	intel_runtime_pm_get(dev_priv);
1483 
1484 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1485 
1486 	for (gpu_freq = dev_priv->rps.min_delay;
1487 	     gpu_freq <= dev_priv->rps.max_delay;
1488 	     gpu_freq++) {
1489 		ia_freq = gpu_freq;
1490 		sandybridge_pcode_read(dev_priv,
1491 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1492 				       &ia_freq);
1493 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1494 			   gpu_freq * GT_FREQUENCY_MULTIPLIER,
1495 			   ((ia_freq >> 0) & 0xff) * 100,
1496 			   ((ia_freq >> 8) & 0xff) * 100);
1497 	}
1498 
1499 	intel_runtime_pm_put(dev_priv);
1500 	mutex_unlock(&dev_priv->rps.hw_lock);
1501 
1502 	return 0;
1503 }
1504 
1505 static int i915_gfxec(struct seq_file *m, void *unused)
1506 {
1507 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1508 	struct drm_device *dev = node->minor->dev;
1509 	drm_i915_private_t *dev_priv = dev->dev_private;
1510 	int ret;
1511 
1512 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1513 	if (ret)
1514 		return ret;
1515 	intel_runtime_pm_get(dev_priv);
1516 
1517 	seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
1518 	intel_runtime_pm_put(dev_priv);
1519 
1520 	mutex_unlock(&dev->struct_mutex);
1521 
1522 	return 0;
1523 }
1524 
1525 static int i915_opregion(struct seq_file *m, void *unused)
1526 {
1527 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1528 	struct drm_device *dev = node->minor->dev;
1529 	drm_i915_private_t *dev_priv = dev->dev_private;
1530 	struct intel_opregion *opregion = &dev_priv->opregion;
1531 	void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1532 	int ret;
1533 
1534 	if (data == NULL)
1535 		return -ENOMEM;
1536 
1537 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1538 	if (ret)
1539 		goto out;
1540 
1541 	if (opregion->header) {
1542 		memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1543 		seq_write(m, data, OPREGION_SIZE);
1544 	}
1545 
1546 	mutex_unlock(&dev->struct_mutex);
1547 
1548 out:
1549 	kfree(data);
1550 	return 0;
1551 }
1552 
1553 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1554 {
1555 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1556 	struct drm_device *dev = node->minor->dev;
1557 	struct intel_fbdev *ifbdev = NULL;
1558 	struct intel_framebuffer *fb;
1559 
1560 #ifdef CONFIG_DRM_I915_FBDEV
1561 	struct drm_i915_private *dev_priv = dev->dev_private;
1562 	int ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1563 	if (ret)
1564 		return ret;
1565 
1566 	ifbdev = dev_priv->fbdev;
1567 	fb = to_intel_framebuffer(ifbdev->helper.fb);
1568 
1569 	seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1570 		   fb->base.width,
1571 		   fb->base.height,
1572 		   fb->base.depth,
1573 		   fb->base.bits_per_pixel,
1574 		   atomic_read(&fb->base.refcount.refcount));
1575 	describe_obj(m, fb->obj);
1576 	seq_putc(m, '\n');
1577 	mutex_unlock(&dev->mode_config.mutex);
1578 #endif
1579 
1580 	mutex_lock(&dev->mode_config.fb_lock);
1581 	list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1582 		if (ifbdev && &fb->base == ifbdev->helper.fb)
1583 			continue;
1584 
1585 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1586 			   fb->base.width,
1587 			   fb->base.height,
1588 			   fb->base.depth,
1589 			   fb->base.bits_per_pixel,
1590 			   atomic_read(&fb->base.refcount.refcount));
1591 		describe_obj(m, fb->obj);
1592 		seq_putc(m, '\n');
1593 	}
1594 	mutex_unlock(&dev->mode_config.fb_lock);
1595 
1596 	return 0;
1597 }
1598 
1599 static int i915_context_status(struct seq_file *m, void *unused)
1600 {
1601 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1602 	struct drm_device *dev = node->minor->dev;
1603 	drm_i915_private_t *dev_priv = dev->dev_private;
1604 	struct intel_ring_buffer *ring;
1605 	struct i915_hw_context *ctx;
1606 	int ret, i;
1607 
1608 	ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1609 	if (ret)
1610 		return ret;
1611 
1612 	if (dev_priv->ips.pwrctx) {
1613 		seq_puts(m, "power context ");
1614 		describe_obj(m, dev_priv->ips.pwrctx);
1615 		seq_putc(m, '\n');
1616 	}
1617 
1618 	if (dev_priv->ips.renderctx) {
1619 		seq_puts(m, "render context ");
1620 		describe_obj(m, dev_priv->ips.renderctx);
1621 		seq_putc(m, '\n');
1622 	}
1623 
1624 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1625 		seq_puts(m, "HW context ");
1626 		describe_ctx(m, ctx);
1627 		for_each_ring(ring, dev_priv, i)
1628 			if (ring->default_context == ctx)
1629 				seq_printf(m, "(default context %s) ", ring->name);
1630 
1631 		describe_obj(m, ctx->obj);
1632 		seq_putc(m, '\n');
1633 	}
1634 
1635 	mutex_unlock(&dev->mode_config.mutex);
1636 
1637 	return 0;
1638 }
1639 
1640 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1641 {
1642 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1643 	struct drm_device *dev = node->minor->dev;
1644 	struct drm_i915_private *dev_priv = dev->dev_private;
1645 	unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1646 
1647 	spin_lock_irq(&dev_priv->uncore.lock);
1648 	if (IS_VALLEYVIEW(dev)) {
1649 		fw_rendercount = dev_priv->uncore.fw_rendercount;
1650 		fw_mediacount = dev_priv->uncore.fw_mediacount;
1651 	} else
1652 		forcewake_count = dev_priv->uncore.forcewake_count;
1653 	spin_unlock_irq(&dev_priv->uncore.lock);
1654 
1655 	if (IS_VALLEYVIEW(dev)) {
1656 		seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1657 		seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1658 	} else
1659 		seq_printf(m, "forcewake count = %u\n", forcewake_count);
1660 
1661 	return 0;
1662 }
1663 
1664 static const char *swizzle_string(unsigned swizzle)
1665 {
1666 	switch (swizzle) {
1667 	case I915_BIT_6_SWIZZLE_NONE:
1668 		return "none";
1669 	case I915_BIT_6_SWIZZLE_9:
1670 		return "bit9";
1671 	case I915_BIT_6_SWIZZLE_9_10:
1672 		return "bit9/bit10";
1673 	case I915_BIT_6_SWIZZLE_9_11:
1674 		return "bit9/bit11";
1675 	case I915_BIT_6_SWIZZLE_9_10_11:
1676 		return "bit9/bit10/bit11";
1677 	case I915_BIT_6_SWIZZLE_9_17:
1678 		return "bit9/bit17";
1679 	case I915_BIT_6_SWIZZLE_9_10_17:
1680 		return "bit9/bit10/bit17";
1681 	case I915_BIT_6_SWIZZLE_UNKNOWN:
1682 		return "unknown";
1683 	}
1684 
1685 	return "bug";
1686 }
1687 
1688 static int i915_swizzle_info(struct seq_file *m, void *data)
1689 {
1690 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1691 	struct drm_device *dev = node->minor->dev;
1692 	struct drm_i915_private *dev_priv = dev->dev_private;
1693 	int ret;
1694 
1695 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1696 	if (ret)
1697 		return ret;
1698 	intel_runtime_pm_get(dev_priv);
1699 
1700 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1701 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1702 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1703 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1704 
1705 	if (IS_GEN3(dev) || IS_GEN4(dev)) {
1706 		seq_printf(m, "DDC = 0x%08x\n",
1707 			   I915_READ(DCC));
1708 		seq_printf(m, "C0DRB3 = 0x%04x\n",
1709 			   I915_READ16(C0DRB3));
1710 		seq_printf(m, "C1DRB3 = 0x%04x\n",
1711 			   I915_READ16(C1DRB3));
1712 	} else if (INTEL_INFO(dev)->gen >= 6) {
1713 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1714 			   I915_READ(MAD_DIMM_C0));
1715 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1716 			   I915_READ(MAD_DIMM_C1));
1717 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1718 			   I915_READ(MAD_DIMM_C2));
1719 		seq_printf(m, "TILECTL = 0x%08x\n",
1720 			   I915_READ(TILECTL));
1721 		if (IS_GEN8(dev))
1722 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1723 				   I915_READ(GAMTARBMODE));
1724 		else
1725 			seq_printf(m, "ARB_MODE = 0x%08x\n",
1726 				   I915_READ(ARB_MODE));
1727 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1728 			   I915_READ(DISP_ARB_CTL));
1729 	}
1730 	intel_runtime_pm_put(dev_priv);
1731 	mutex_unlock(&dev->struct_mutex);
1732 
1733 	return 0;
1734 }
1735 
1736 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1737 {
1738 	struct drm_i915_private *dev_priv = dev->dev_private;
1739 	struct intel_ring_buffer *ring;
1740 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1741 	int unused, i;
1742 
1743 	if (!ppgtt)
1744 		return;
1745 
1746 	seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
1747 	seq_printf(m, "Page tables: %d\n", ppgtt->num_pt_pages);
1748 	for_each_ring(ring, dev_priv, unused) {
1749 		seq_printf(m, "%s\n", ring->name);
1750 		for (i = 0; i < 4; i++) {
1751 			u32 offset = 0x270 + i * 8;
1752 			u64 pdp = I915_READ(ring->mmio_base + offset + 4);
1753 			pdp <<= 32;
1754 			pdp |= I915_READ(ring->mmio_base + offset);
1755 			for (i = 0; i < 4; i++)
1756 				seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
1757 		}
1758 	}
1759 }
1760 
1761 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1762 {
1763 	struct drm_i915_private *dev_priv = dev->dev_private;
1764 	struct intel_ring_buffer *ring;
1765 	int i;
1766 
1767 	if (INTEL_INFO(dev)->gen == 6)
1768 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
1769 
1770 	for_each_ring(ring, dev_priv, i) {
1771 		seq_printf(m, "%s\n", ring->name);
1772 		if (INTEL_INFO(dev)->gen == 7)
1773 			seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
1774 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
1775 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
1776 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
1777 	}
1778 	if (dev_priv->mm.aliasing_ppgtt) {
1779 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1780 
1781 		seq_puts(m, "aliasing PPGTT:\n");
1782 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
1783 	}
1784 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
1785 }
1786 
1787 static int i915_ppgtt_info(struct seq_file *m, void *data)
1788 {
1789 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1790 	struct drm_device *dev = node->minor->dev;
1791 	struct drm_i915_private *dev_priv = dev->dev_private;
1792 
1793 	int ret = mutex_lock_interruptible(&dev->struct_mutex);
1794 	if (ret)
1795 		return ret;
1796 	intel_runtime_pm_get(dev_priv);
1797 
1798 	if (INTEL_INFO(dev)->gen >= 8)
1799 		gen8_ppgtt_info(m, dev);
1800 	else if (INTEL_INFO(dev)->gen >= 6)
1801 		gen6_ppgtt_info(m, dev);
1802 
1803 	intel_runtime_pm_put(dev_priv);
1804 	mutex_unlock(&dev->struct_mutex);
1805 
1806 	return 0;
1807 }
1808 
1809 static int i915_dpio_info(struct seq_file *m, void *data)
1810 {
1811 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1812 	struct drm_device *dev = node->minor->dev;
1813 	struct drm_i915_private *dev_priv = dev->dev_private;
1814 	int ret;
1815 
1816 
1817 	if (!IS_VALLEYVIEW(dev)) {
1818 		seq_puts(m, "unsupported\n");
1819 		return 0;
1820 	}
1821 
1822 	ret = mutex_lock_interruptible(&dev_priv->dpio_lock);
1823 	if (ret)
1824 		return ret;
1825 
1826 	seq_printf(m, "DPIO_CTL: 0x%08x\n", I915_READ(DPIO_CTL));
1827 
1828 	seq_printf(m, "DPIO PLL DW3 CH0 : 0x%08x\n",
1829 		   vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW3(0)));
1830 	seq_printf(m, "DPIO PLL DW3 CH1: 0x%08x\n",
1831 		   vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW3(1)));
1832 
1833 	seq_printf(m, "DPIO PLL DW5 CH0: 0x%08x\n",
1834 		   vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW5(0)));
1835 	seq_printf(m, "DPIO PLL DW5 CH1: 0x%08x\n",
1836 		   vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW5(1)));
1837 
1838 	seq_printf(m, "DPIO PLL DW7 CH0: 0x%08x\n",
1839 		   vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW7(0)));
1840 	seq_printf(m, "DPIO PLL DW7 CH1: 0x%08x\n",
1841 		   vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW7(1)));
1842 
1843 	seq_printf(m, "DPIO PLL DW10 CH0: 0x%08x\n",
1844 		   vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW10(0)));
1845 	seq_printf(m, "DPIO PLL DW10 CH1: 0x%08x\n",
1846 		   vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW10(1)));
1847 
1848 	seq_printf(m, "DPIO_FASTCLK_DISABLE: 0x%08x\n",
1849 		   vlv_dpio_read(dev_priv, PIPE_A, VLV_CMN_DW0));
1850 
1851 	mutex_unlock(&dev_priv->dpio_lock);
1852 
1853 	return 0;
1854 }
1855 
1856 static int i915_llc(struct seq_file *m, void *data)
1857 {
1858 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1859 	struct drm_device *dev = node->minor->dev;
1860 	struct drm_i915_private *dev_priv = dev->dev_private;
1861 
1862 	/* Size calculation for LLC is a bit of a pain. Ignore for now. */
1863 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
1864 	seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
1865 
1866 	return 0;
1867 }
1868 
1869 static int i915_edp_psr_status(struct seq_file *m, void *data)
1870 {
1871 	struct drm_info_node *node = m->private;
1872 	struct drm_device *dev = node->minor->dev;
1873 	struct drm_i915_private *dev_priv = dev->dev_private;
1874 	u32 psrperf = 0;
1875 	bool enabled = false;
1876 
1877 	intel_runtime_pm_get(dev_priv);
1878 
1879 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
1880 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
1881 
1882 	enabled = HAS_PSR(dev) &&
1883 		I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1884 	seq_printf(m, "Enabled: %s\n", yesno(enabled));
1885 
1886 	if (HAS_PSR(dev))
1887 		psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
1888 			EDP_PSR_PERF_CNT_MASK;
1889 	seq_printf(m, "Performance_Counter: %u\n", psrperf);
1890 
1891 	intel_runtime_pm_put(dev_priv);
1892 	return 0;
1893 }
1894 
1895 static int i915_energy_uJ(struct seq_file *m, void *data)
1896 {
1897 	struct drm_info_node *node = m->private;
1898 	struct drm_device *dev = node->minor->dev;
1899 	struct drm_i915_private *dev_priv = dev->dev_private;
1900 	u64 power;
1901 	u32 units;
1902 
1903 	if (INTEL_INFO(dev)->gen < 6)
1904 		return -ENODEV;
1905 
1906 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
1907 	power = (power & 0x1f00) >> 8;
1908 	units = 1000000 / (1 << power); /* convert to uJ */
1909 	power = I915_READ(MCH_SECP_NRG_STTS);
1910 	power *= units;
1911 
1912 	seq_printf(m, "%llu", (long long unsigned)power);
1913 
1914 	return 0;
1915 }
1916 
1917 static int i915_pc8_status(struct seq_file *m, void *unused)
1918 {
1919 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1920 	struct drm_device *dev = node->minor->dev;
1921 	struct drm_i915_private *dev_priv = dev->dev_private;
1922 
1923 	if (!IS_HASWELL(dev)) {
1924 		seq_puts(m, "not supported\n");
1925 		return 0;
1926 	}
1927 
1928 	mutex_lock(&dev_priv->pc8.lock);
1929 	seq_printf(m, "Requirements met: %s\n",
1930 		   yesno(dev_priv->pc8.requirements_met));
1931 	seq_printf(m, "GPU idle: %s\n", yesno(dev_priv->pc8.gpu_idle));
1932 	seq_printf(m, "Disable count: %d\n", dev_priv->pc8.disable_count);
1933 	seq_printf(m, "IRQs disabled: %s\n",
1934 		   yesno(dev_priv->pc8.irqs_disabled));
1935 	seq_printf(m, "Enabled: %s\n", yesno(dev_priv->pc8.enabled));
1936 	mutex_unlock(&dev_priv->pc8.lock);
1937 
1938 	return 0;
1939 }
1940 
1941 static const char *power_domain_str(enum intel_display_power_domain domain)
1942 {
1943 	switch (domain) {
1944 	case POWER_DOMAIN_PIPE_A:
1945 		return "PIPE_A";
1946 	case POWER_DOMAIN_PIPE_B:
1947 		return "PIPE_B";
1948 	case POWER_DOMAIN_PIPE_C:
1949 		return "PIPE_C";
1950 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
1951 		return "PIPE_A_PANEL_FITTER";
1952 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
1953 		return "PIPE_B_PANEL_FITTER";
1954 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
1955 		return "PIPE_C_PANEL_FITTER";
1956 	case POWER_DOMAIN_TRANSCODER_A:
1957 		return "TRANSCODER_A";
1958 	case POWER_DOMAIN_TRANSCODER_B:
1959 		return "TRANSCODER_B";
1960 	case POWER_DOMAIN_TRANSCODER_C:
1961 		return "TRANSCODER_C";
1962 	case POWER_DOMAIN_TRANSCODER_EDP:
1963 		return "TRANSCODER_EDP";
1964 	case POWER_DOMAIN_VGA:
1965 		return "VGA";
1966 	case POWER_DOMAIN_AUDIO:
1967 		return "AUDIO";
1968 	case POWER_DOMAIN_INIT:
1969 		return "INIT";
1970 	default:
1971 		WARN_ON(1);
1972 		return "?";
1973 	}
1974 }
1975 
1976 static int i915_power_domain_info(struct seq_file *m, void *unused)
1977 {
1978 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1979 	struct drm_device *dev = node->minor->dev;
1980 	struct drm_i915_private *dev_priv = dev->dev_private;
1981 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1982 	int i;
1983 
1984 	mutex_lock(&power_domains->lock);
1985 
1986 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
1987 	for (i = 0; i < power_domains->power_well_count; i++) {
1988 		struct i915_power_well *power_well;
1989 		enum intel_display_power_domain power_domain;
1990 
1991 		power_well = &power_domains->power_wells[i];
1992 		seq_printf(m, "%-25s %d\n", power_well->name,
1993 			   power_well->count);
1994 
1995 		for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
1996 		     power_domain++) {
1997 			if (!(BIT(power_domain) & power_well->domains))
1998 				continue;
1999 
2000 			seq_printf(m, "  %-23s %d\n",
2001 				 power_domain_str(power_domain),
2002 				 power_domains->domain_use_count[power_domain]);
2003 		}
2004 	}
2005 
2006 	mutex_unlock(&power_domains->lock);
2007 
2008 	return 0;
2009 }
2010 
2011 struct pipe_crc_info {
2012 	const char *name;
2013 	struct drm_device *dev;
2014 	enum pipe pipe;
2015 };
2016 
2017 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2018 {
2019 	struct pipe_crc_info *info = inode->i_private;
2020 	struct drm_i915_private *dev_priv = info->dev->dev_private;
2021 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2022 
2023 	if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2024 		return -ENODEV;
2025 
2026 	spin_lock_irq(&pipe_crc->lock);
2027 
2028 	if (pipe_crc->opened) {
2029 		spin_unlock_irq(&pipe_crc->lock);
2030 		return -EBUSY; /* already open */
2031 	}
2032 
2033 	pipe_crc->opened = true;
2034 	filep->private_data = inode->i_private;
2035 
2036 	spin_unlock_irq(&pipe_crc->lock);
2037 
2038 	return 0;
2039 }
2040 
2041 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2042 {
2043 	struct pipe_crc_info *info = inode->i_private;
2044 	struct drm_i915_private *dev_priv = info->dev->dev_private;
2045 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2046 
2047 	spin_lock_irq(&pipe_crc->lock);
2048 	pipe_crc->opened = false;
2049 	spin_unlock_irq(&pipe_crc->lock);
2050 
2051 	return 0;
2052 }
2053 
2054 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2055 #define PIPE_CRC_LINE_LEN	(6 * 8 + 5 + 1)
2056 /* account for \'0' */
2057 #define PIPE_CRC_BUFFER_LEN	(PIPE_CRC_LINE_LEN + 1)
2058 
2059 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2060 {
2061 	assert_spin_locked(&pipe_crc->lock);
2062 	return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2063 			INTEL_PIPE_CRC_ENTRIES_NR);
2064 }
2065 
2066 static ssize_t
2067 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2068 		   loff_t *pos)
2069 {
2070 	struct pipe_crc_info *info = filep->private_data;
2071 	struct drm_device *dev = info->dev;
2072 	struct drm_i915_private *dev_priv = dev->dev_private;
2073 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2074 	char buf[PIPE_CRC_BUFFER_LEN];
2075 	int head, tail, n_entries, n;
2076 	ssize_t bytes_read;
2077 
2078 	/*
2079 	 * Don't allow user space to provide buffers not big enough to hold
2080 	 * a line of data.
2081 	 */
2082 	if (count < PIPE_CRC_LINE_LEN)
2083 		return -EINVAL;
2084 
2085 	if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2086 		return 0;
2087 
2088 	/* nothing to read */
2089 	spin_lock_irq(&pipe_crc->lock);
2090 	while (pipe_crc_data_count(pipe_crc) == 0) {
2091 		int ret;
2092 
2093 		if (filep->f_flags & O_NONBLOCK) {
2094 			spin_unlock_irq(&pipe_crc->lock);
2095 			return -EAGAIN;
2096 		}
2097 
2098 		ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2099 				pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2100 		if (ret) {
2101 			spin_unlock_irq(&pipe_crc->lock);
2102 			return ret;
2103 		}
2104 	}
2105 
2106 	/* We now have one or more entries to read */
2107 	head = pipe_crc->head;
2108 	tail = pipe_crc->tail;
2109 	n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2110 			count / PIPE_CRC_LINE_LEN);
2111 	spin_unlock_irq(&pipe_crc->lock);
2112 
2113 	bytes_read = 0;
2114 	n = 0;
2115 	do {
2116 		struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2117 		int ret;
2118 
2119 		bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2120 				       "%8u %8x %8x %8x %8x %8x\n",
2121 				       entry->frame, entry->crc[0],
2122 				       entry->crc[1], entry->crc[2],
2123 				       entry->crc[3], entry->crc[4]);
2124 
2125 		ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2126 				   buf, PIPE_CRC_LINE_LEN);
2127 		if (ret == PIPE_CRC_LINE_LEN)
2128 			return -EFAULT;
2129 
2130 		BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2131 		tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2132 		n++;
2133 	} while (--n_entries);
2134 
2135 	spin_lock_irq(&pipe_crc->lock);
2136 	pipe_crc->tail = tail;
2137 	spin_unlock_irq(&pipe_crc->lock);
2138 
2139 	return bytes_read;
2140 }
2141 
2142 static const struct file_operations i915_pipe_crc_fops = {
2143 	.owner = THIS_MODULE,
2144 	.open = i915_pipe_crc_open,
2145 	.read = i915_pipe_crc_read,
2146 	.release = i915_pipe_crc_release,
2147 };
2148 
2149 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2150 	{
2151 		.name = "i915_pipe_A_crc",
2152 		.pipe = PIPE_A,
2153 	},
2154 	{
2155 		.name = "i915_pipe_B_crc",
2156 		.pipe = PIPE_B,
2157 	},
2158 	{
2159 		.name = "i915_pipe_C_crc",
2160 		.pipe = PIPE_C,
2161 	},
2162 };
2163 
2164 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2165 				enum pipe pipe)
2166 {
2167 	struct drm_device *dev = minor->dev;
2168 	struct dentry *ent;
2169 	struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2170 
2171 	info->dev = dev;
2172 	ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2173 				  &i915_pipe_crc_fops);
2174 	if (!ent)
2175 		return -ENOMEM;
2176 
2177 	return drm_add_fake_info_node(minor, ent, info);
2178 }
2179 
2180 static const char * const pipe_crc_sources[] = {
2181 	"none",
2182 	"plane1",
2183 	"plane2",
2184 	"pf",
2185 	"pipe",
2186 	"TV",
2187 	"DP-B",
2188 	"DP-C",
2189 	"DP-D",
2190 	"auto",
2191 };
2192 
2193 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2194 {
2195 	BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2196 	return pipe_crc_sources[source];
2197 }
2198 
2199 static int display_crc_ctl_show(struct seq_file *m, void *data)
2200 {
2201 	struct drm_device *dev = m->private;
2202 	struct drm_i915_private *dev_priv = dev->dev_private;
2203 	int i;
2204 
2205 	for (i = 0; i < I915_MAX_PIPES; i++)
2206 		seq_printf(m, "%c %s\n", pipe_name(i),
2207 			   pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2208 
2209 	return 0;
2210 }
2211 
2212 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2213 {
2214 	struct drm_device *dev = inode->i_private;
2215 
2216 	return single_open(file, display_crc_ctl_show, dev);
2217 }
2218 
2219 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2220 				 uint32_t *val)
2221 {
2222 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2223 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
2224 
2225 	switch (*source) {
2226 	case INTEL_PIPE_CRC_SOURCE_PIPE:
2227 		*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2228 		break;
2229 	case INTEL_PIPE_CRC_SOURCE_NONE:
2230 		*val = 0;
2231 		break;
2232 	default:
2233 		return -EINVAL;
2234 	}
2235 
2236 	return 0;
2237 }
2238 
2239 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2240 				     enum intel_pipe_crc_source *source)
2241 {
2242 	struct intel_encoder *encoder;
2243 	struct intel_crtc *crtc;
2244 	struct intel_digital_port *dig_port;
2245 	int ret = 0;
2246 
2247 	*source = INTEL_PIPE_CRC_SOURCE_PIPE;
2248 
2249 	mutex_lock(&dev->mode_config.mutex);
2250 	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2251 			    base.head) {
2252 		if (!encoder->base.crtc)
2253 			continue;
2254 
2255 		crtc = to_intel_crtc(encoder->base.crtc);
2256 
2257 		if (crtc->pipe != pipe)
2258 			continue;
2259 
2260 		switch (encoder->type) {
2261 		case INTEL_OUTPUT_TVOUT:
2262 			*source = INTEL_PIPE_CRC_SOURCE_TV;
2263 			break;
2264 		case INTEL_OUTPUT_DISPLAYPORT:
2265 		case INTEL_OUTPUT_EDP:
2266 			dig_port = enc_to_dig_port(&encoder->base);
2267 			switch (dig_port->port) {
2268 			case PORT_B:
2269 				*source = INTEL_PIPE_CRC_SOURCE_DP_B;
2270 				break;
2271 			case PORT_C:
2272 				*source = INTEL_PIPE_CRC_SOURCE_DP_C;
2273 				break;
2274 			case PORT_D:
2275 				*source = INTEL_PIPE_CRC_SOURCE_DP_D;
2276 				break;
2277 			default:
2278 				WARN(1, "nonexisting DP port %c\n",
2279 				     port_name(dig_port->port));
2280 				break;
2281 			}
2282 			break;
2283 		}
2284 	}
2285 	mutex_unlock(&dev->mode_config.mutex);
2286 
2287 	return ret;
2288 }
2289 
2290 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
2291 				enum pipe pipe,
2292 				enum intel_pipe_crc_source *source,
2293 				uint32_t *val)
2294 {
2295 	struct drm_i915_private *dev_priv = dev->dev_private;
2296 	bool need_stable_symbols = false;
2297 
2298 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2299 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2300 		if (ret)
2301 			return ret;
2302 	}
2303 
2304 	switch (*source) {
2305 	case INTEL_PIPE_CRC_SOURCE_PIPE:
2306 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
2307 		break;
2308 	case INTEL_PIPE_CRC_SOURCE_DP_B:
2309 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
2310 		need_stable_symbols = true;
2311 		break;
2312 	case INTEL_PIPE_CRC_SOURCE_DP_C:
2313 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
2314 		need_stable_symbols = true;
2315 		break;
2316 	case INTEL_PIPE_CRC_SOURCE_NONE:
2317 		*val = 0;
2318 		break;
2319 	default:
2320 		return -EINVAL;
2321 	}
2322 
2323 	/*
2324 	 * When the pipe CRC tap point is after the transcoders we need
2325 	 * to tweak symbol-level features to produce a deterministic series of
2326 	 * symbols for a given frame. We need to reset those features only once
2327 	 * a frame (instead of every nth symbol):
2328 	 *   - DC-balance: used to ensure a better clock recovery from the data
2329 	 *     link (SDVO)
2330 	 *   - DisplayPort scrambling: used for EMI reduction
2331 	 */
2332 	if (need_stable_symbols) {
2333 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2334 
2335 		WARN_ON(!IS_G4X(dev));
2336 
2337 		tmp |= DC_BALANCE_RESET_VLV;
2338 		if (pipe == PIPE_A)
2339 			tmp |= PIPE_A_SCRAMBLE_RESET;
2340 		else
2341 			tmp |= PIPE_B_SCRAMBLE_RESET;
2342 
2343 		I915_WRITE(PORT_DFT2_G4X, tmp);
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
2350 				 enum pipe pipe,
2351 				 enum intel_pipe_crc_source *source,
2352 				 uint32_t *val)
2353 {
2354 	struct drm_i915_private *dev_priv = dev->dev_private;
2355 	bool need_stable_symbols = false;
2356 
2357 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2358 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2359 		if (ret)
2360 			return ret;
2361 	}
2362 
2363 	switch (*source) {
2364 	case INTEL_PIPE_CRC_SOURCE_PIPE:
2365 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
2366 		break;
2367 	case INTEL_PIPE_CRC_SOURCE_TV:
2368 		if (!SUPPORTS_TV(dev))
2369 			return -EINVAL;
2370 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
2371 		break;
2372 	case INTEL_PIPE_CRC_SOURCE_DP_B:
2373 		if (!IS_G4X(dev))
2374 			return -EINVAL;
2375 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
2376 		need_stable_symbols = true;
2377 		break;
2378 	case INTEL_PIPE_CRC_SOURCE_DP_C:
2379 		if (!IS_G4X(dev))
2380 			return -EINVAL;
2381 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
2382 		need_stable_symbols = true;
2383 		break;
2384 	case INTEL_PIPE_CRC_SOURCE_DP_D:
2385 		if (!IS_G4X(dev))
2386 			return -EINVAL;
2387 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
2388 		need_stable_symbols = true;
2389 		break;
2390 	case INTEL_PIPE_CRC_SOURCE_NONE:
2391 		*val = 0;
2392 		break;
2393 	default:
2394 		return -EINVAL;
2395 	}
2396 
2397 	/*
2398 	 * When the pipe CRC tap point is after the transcoders we need
2399 	 * to tweak symbol-level features to produce a deterministic series of
2400 	 * symbols for a given frame. We need to reset those features only once
2401 	 * a frame (instead of every nth symbol):
2402 	 *   - DC-balance: used to ensure a better clock recovery from the data
2403 	 *     link (SDVO)
2404 	 *   - DisplayPort scrambling: used for EMI reduction
2405 	 */
2406 	if (need_stable_symbols) {
2407 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2408 
2409 		WARN_ON(!IS_G4X(dev));
2410 
2411 		I915_WRITE(PORT_DFT_I9XX,
2412 			   I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
2413 
2414 		if (pipe == PIPE_A)
2415 			tmp |= PIPE_A_SCRAMBLE_RESET;
2416 		else
2417 			tmp |= PIPE_B_SCRAMBLE_RESET;
2418 
2419 		I915_WRITE(PORT_DFT2_G4X, tmp);
2420 	}
2421 
2422 	return 0;
2423 }
2424 
2425 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
2426 					 enum pipe pipe)
2427 {
2428 	struct drm_i915_private *dev_priv = dev->dev_private;
2429 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2430 
2431 	if (pipe == PIPE_A)
2432 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
2433 	else
2434 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
2435 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
2436 		tmp &= ~DC_BALANCE_RESET_VLV;
2437 	I915_WRITE(PORT_DFT2_G4X, tmp);
2438 
2439 }
2440 
2441 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
2442 					 enum pipe pipe)
2443 {
2444 	struct drm_i915_private *dev_priv = dev->dev_private;
2445 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2446 
2447 	if (pipe == PIPE_A)
2448 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
2449 	else
2450 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
2451 	I915_WRITE(PORT_DFT2_G4X, tmp);
2452 
2453 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
2454 		I915_WRITE(PORT_DFT_I9XX,
2455 			   I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
2456 	}
2457 }
2458 
2459 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2460 				uint32_t *val)
2461 {
2462 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2463 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
2464 
2465 	switch (*source) {
2466 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
2467 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
2468 		break;
2469 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
2470 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
2471 		break;
2472 	case INTEL_PIPE_CRC_SOURCE_PIPE:
2473 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
2474 		break;
2475 	case INTEL_PIPE_CRC_SOURCE_NONE:
2476 		*val = 0;
2477 		break;
2478 	default:
2479 		return -EINVAL;
2480 	}
2481 
2482 	return 0;
2483 }
2484 
2485 static int ivb_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2486 				uint32_t *val)
2487 {
2488 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2489 		*source = INTEL_PIPE_CRC_SOURCE_PF;
2490 
2491 	switch (*source) {
2492 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
2493 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
2494 		break;
2495 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
2496 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
2497 		break;
2498 	case INTEL_PIPE_CRC_SOURCE_PF:
2499 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
2500 		break;
2501 	case INTEL_PIPE_CRC_SOURCE_NONE:
2502 		*val = 0;
2503 		break;
2504 	default:
2505 		return -EINVAL;
2506 	}
2507 
2508 	return 0;
2509 }
2510 
2511 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
2512 			       enum intel_pipe_crc_source source)
2513 {
2514 	struct drm_i915_private *dev_priv = dev->dev_private;
2515 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
2516 	u32 val = 0; /* shut up gcc */
2517 	int ret;
2518 
2519 	if (pipe_crc->source == source)
2520 		return 0;
2521 
2522 	/* forbid changing the source without going back to 'none' */
2523 	if (pipe_crc->source && source)
2524 		return -EINVAL;
2525 
2526 	if (IS_GEN2(dev))
2527 		ret = i8xx_pipe_crc_ctl_reg(&source, &val);
2528 	else if (INTEL_INFO(dev)->gen < 5)
2529 		ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
2530 	else if (IS_VALLEYVIEW(dev))
2531 		ret = vlv_pipe_crc_ctl_reg(dev,pipe, &source, &val);
2532 	else if (IS_GEN5(dev) || IS_GEN6(dev))
2533 		ret = ilk_pipe_crc_ctl_reg(&source, &val);
2534 	else
2535 		ret = ivb_pipe_crc_ctl_reg(&source, &val);
2536 
2537 	if (ret != 0)
2538 		return ret;
2539 
2540 	/* none -> real source transition */
2541 	if (source) {
2542 		DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
2543 				 pipe_name(pipe), pipe_crc_source_name(source));
2544 
2545 		pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
2546 					    INTEL_PIPE_CRC_ENTRIES_NR,
2547 					    GFP_KERNEL);
2548 		if (!pipe_crc->entries)
2549 			return -ENOMEM;
2550 
2551 		spin_lock_irq(&pipe_crc->lock);
2552 		pipe_crc->head = 0;
2553 		pipe_crc->tail = 0;
2554 		spin_unlock_irq(&pipe_crc->lock);
2555 	}
2556 
2557 	pipe_crc->source = source;
2558 
2559 	I915_WRITE(PIPE_CRC_CTL(pipe), val);
2560 	POSTING_READ(PIPE_CRC_CTL(pipe));
2561 
2562 	/* real source -> none transition */
2563 	if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
2564 		struct intel_pipe_crc_entry *entries;
2565 
2566 		DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
2567 				 pipe_name(pipe));
2568 
2569 		intel_wait_for_vblank(dev, pipe);
2570 
2571 		spin_lock_irq(&pipe_crc->lock);
2572 		entries = pipe_crc->entries;
2573 		pipe_crc->entries = NULL;
2574 		spin_unlock_irq(&pipe_crc->lock);
2575 
2576 		kfree(entries);
2577 
2578 		if (IS_G4X(dev))
2579 			g4x_undo_pipe_scramble_reset(dev, pipe);
2580 		else if (IS_VALLEYVIEW(dev))
2581 			vlv_undo_pipe_scramble_reset(dev, pipe);
2582 	}
2583 
2584 	return 0;
2585 }
2586 
2587 /*
2588  * Parse pipe CRC command strings:
2589  *   command: wsp* object wsp+ name wsp+ source wsp*
2590  *   object: 'pipe'
2591  *   name: (A | B | C)
2592  *   source: (none | plane1 | plane2 | pf)
2593  *   wsp: (#0x20 | #0x9 | #0xA)+
2594  *
2595  * eg.:
2596  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
2597  *  "pipe A none"    ->  Stop CRC
2598  */
2599 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
2600 {
2601 	int n_words = 0;
2602 
2603 	while (*buf) {
2604 		char *end;
2605 
2606 		/* skip leading white space */
2607 		buf = skip_spaces(buf);
2608 		if (!*buf)
2609 			break;	/* end of buffer */
2610 
2611 		/* find end of word */
2612 		for (end = buf; *end && !isspace(*end); end++)
2613 			;
2614 
2615 		if (n_words == max_words) {
2616 			DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
2617 					 max_words);
2618 			return -EINVAL;	/* ran out of words[] before bytes */
2619 		}
2620 
2621 		if (*end)
2622 			*end++ = '\0';
2623 		words[n_words++] = buf;
2624 		buf = end;
2625 	}
2626 
2627 	return n_words;
2628 }
2629 
2630 enum intel_pipe_crc_object {
2631 	PIPE_CRC_OBJECT_PIPE,
2632 };
2633 
2634 static const char * const pipe_crc_objects[] = {
2635 	"pipe",
2636 };
2637 
2638 static int
2639 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
2640 {
2641 	int i;
2642 
2643 	for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
2644 		if (!strcmp(buf, pipe_crc_objects[i])) {
2645 			*o = i;
2646 			return 0;
2647 		    }
2648 
2649 	return -EINVAL;
2650 }
2651 
2652 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
2653 {
2654 	const char name = buf[0];
2655 
2656 	if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
2657 		return -EINVAL;
2658 
2659 	*pipe = name - 'A';
2660 
2661 	return 0;
2662 }
2663 
2664 static int
2665 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
2666 {
2667 	int i;
2668 
2669 	for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
2670 		if (!strcmp(buf, pipe_crc_sources[i])) {
2671 			*s = i;
2672 			return 0;
2673 		    }
2674 
2675 	return -EINVAL;
2676 }
2677 
2678 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
2679 {
2680 #define N_WORDS 3
2681 	int n_words;
2682 	char *words[N_WORDS];
2683 	enum pipe pipe;
2684 	enum intel_pipe_crc_object object;
2685 	enum intel_pipe_crc_source source;
2686 
2687 	n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
2688 	if (n_words != N_WORDS) {
2689 		DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
2690 				 N_WORDS);
2691 		return -EINVAL;
2692 	}
2693 
2694 	if (display_crc_ctl_parse_object(words[0], &object) < 0) {
2695 		DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
2696 		return -EINVAL;
2697 	}
2698 
2699 	if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
2700 		DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
2701 		return -EINVAL;
2702 	}
2703 
2704 	if (display_crc_ctl_parse_source(words[2], &source) < 0) {
2705 		DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
2706 		return -EINVAL;
2707 	}
2708 
2709 	return pipe_crc_set_source(dev, pipe, source);
2710 }
2711 
2712 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
2713 				     size_t len, loff_t *offp)
2714 {
2715 	struct seq_file *m = file->private_data;
2716 	struct drm_device *dev = m->private;
2717 	char *tmpbuf;
2718 	int ret;
2719 
2720 	if (len == 0)
2721 		return 0;
2722 
2723 	if (len > PAGE_SIZE - 1) {
2724 		DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
2725 				 PAGE_SIZE);
2726 		return -E2BIG;
2727 	}
2728 
2729 	tmpbuf = kmalloc(len + 1, GFP_KERNEL);
2730 	if (!tmpbuf)
2731 		return -ENOMEM;
2732 
2733 	if (copy_from_user(tmpbuf, ubuf, len)) {
2734 		ret = -EFAULT;
2735 		goto out;
2736 	}
2737 	tmpbuf[len] = '\0';
2738 
2739 	ret = display_crc_ctl_parse(dev, tmpbuf, len);
2740 
2741 out:
2742 	kfree(tmpbuf);
2743 	if (ret < 0)
2744 		return ret;
2745 
2746 	*offp += len;
2747 	return len;
2748 }
2749 
2750 static const struct file_operations i915_display_crc_ctl_fops = {
2751 	.owner = THIS_MODULE,
2752 	.open = display_crc_ctl_open,
2753 	.read = seq_read,
2754 	.llseek = seq_lseek,
2755 	.release = single_release,
2756 	.write = display_crc_ctl_write
2757 };
2758 
2759 static int
2760 i915_wedged_get(void *data, u64 *val)
2761 {
2762 	struct drm_device *dev = data;
2763 	drm_i915_private_t *dev_priv = dev->dev_private;
2764 
2765 	*val = atomic_read(&dev_priv->gpu_error.reset_counter);
2766 
2767 	return 0;
2768 }
2769 
2770 static int
2771 i915_wedged_set(void *data, u64 val)
2772 {
2773 	struct drm_device *dev = data;
2774 
2775 	DRM_INFO("Manually setting wedged to %llu\n", val);
2776 	i915_handle_error(dev, val);
2777 
2778 	return 0;
2779 }
2780 
2781 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
2782 			i915_wedged_get, i915_wedged_set,
2783 			"%llu\n");
2784 
2785 static int
2786 i915_ring_stop_get(void *data, u64 *val)
2787 {
2788 	struct drm_device *dev = data;
2789 	drm_i915_private_t *dev_priv = dev->dev_private;
2790 
2791 	*val = dev_priv->gpu_error.stop_rings;
2792 
2793 	return 0;
2794 }
2795 
2796 static int
2797 i915_ring_stop_set(void *data, u64 val)
2798 {
2799 	struct drm_device *dev = data;
2800 	struct drm_i915_private *dev_priv = dev->dev_private;
2801 	int ret;
2802 
2803 	DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
2804 
2805 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2806 	if (ret)
2807 		return ret;
2808 
2809 	dev_priv->gpu_error.stop_rings = val;
2810 	mutex_unlock(&dev->struct_mutex);
2811 
2812 	return 0;
2813 }
2814 
2815 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
2816 			i915_ring_stop_get, i915_ring_stop_set,
2817 			"0x%08llx\n");
2818 
2819 static int
2820 i915_ring_missed_irq_get(void *data, u64 *val)
2821 {
2822 	struct drm_device *dev = data;
2823 	struct drm_i915_private *dev_priv = dev->dev_private;
2824 
2825 	*val = dev_priv->gpu_error.missed_irq_rings;
2826 	return 0;
2827 }
2828 
2829 static int
2830 i915_ring_missed_irq_set(void *data, u64 val)
2831 {
2832 	struct drm_device *dev = data;
2833 	struct drm_i915_private *dev_priv = dev->dev_private;
2834 	int ret;
2835 
2836 	/* Lock against concurrent debugfs callers */
2837 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2838 	if (ret)
2839 		return ret;
2840 	dev_priv->gpu_error.missed_irq_rings = val;
2841 	mutex_unlock(&dev->struct_mutex);
2842 
2843 	return 0;
2844 }
2845 
2846 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
2847 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
2848 			"0x%08llx\n");
2849 
2850 static int
2851 i915_ring_test_irq_get(void *data, u64 *val)
2852 {
2853 	struct drm_device *dev = data;
2854 	struct drm_i915_private *dev_priv = dev->dev_private;
2855 
2856 	*val = dev_priv->gpu_error.test_irq_rings;
2857 
2858 	return 0;
2859 }
2860 
2861 static int
2862 i915_ring_test_irq_set(void *data, u64 val)
2863 {
2864 	struct drm_device *dev = data;
2865 	struct drm_i915_private *dev_priv = dev->dev_private;
2866 	int ret;
2867 
2868 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
2869 
2870 	/* Lock against concurrent debugfs callers */
2871 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2872 	if (ret)
2873 		return ret;
2874 
2875 	dev_priv->gpu_error.test_irq_rings = val;
2876 	mutex_unlock(&dev->struct_mutex);
2877 
2878 	return 0;
2879 }
2880 
2881 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
2882 			i915_ring_test_irq_get, i915_ring_test_irq_set,
2883 			"0x%08llx\n");
2884 
2885 #define DROP_UNBOUND 0x1
2886 #define DROP_BOUND 0x2
2887 #define DROP_RETIRE 0x4
2888 #define DROP_ACTIVE 0x8
2889 #define DROP_ALL (DROP_UNBOUND | \
2890 		  DROP_BOUND | \
2891 		  DROP_RETIRE | \
2892 		  DROP_ACTIVE)
2893 static int
2894 i915_drop_caches_get(void *data, u64 *val)
2895 {
2896 	*val = DROP_ALL;
2897 
2898 	return 0;
2899 }
2900 
2901 static int
2902 i915_drop_caches_set(void *data, u64 val)
2903 {
2904 	struct drm_device *dev = data;
2905 	struct drm_i915_private *dev_priv = dev->dev_private;
2906 	struct drm_i915_gem_object *obj, *next;
2907 	struct i915_address_space *vm;
2908 	struct i915_vma *vma, *x;
2909 	int ret;
2910 
2911 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
2912 
2913 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
2914 	 * on ioctls on -EAGAIN. */
2915 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2916 	if (ret)
2917 		return ret;
2918 
2919 	if (val & DROP_ACTIVE) {
2920 		ret = i915_gpu_idle(dev);
2921 		if (ret)
2922 			goto unlock;
2923 	}
2924 
2925 	if (val & (DROP_RETIRE | DROP_ACTIVE))
2926 		i915_gem_retire_requests(dev);
2927 
2928 	if (val & DROP_BOUND) {
2929 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2930 			list_for_each_entry_safe(vma, x, &vm->inactive_list,
2931 						 mm_list) {
2932 				if (vma->obj->pin_count)
2933 					continue;
2934 
2935 				ret = i915_vma_unbind(vma);
2936 				if (ret)
2937 					goto unlock;
2938 			}
2939 		}
2940 	}
2941 
2942 	if (val & DROP_UNBOUND) {
2943 		list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
2944 					 global_list)
2945 			if (obj->pages_pin_count == 0) {
2946 				ret = i915_gem_object_put_pages(obj);
2947 				if (ret)
2948 					goto unlock;
2949 			}
2950 	}
2951 
2952 unlock:
2953 	mutex_unlock(&dev->struct_mutex);
2954 
2955 	return ret;
2956 }
2957 
2958 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
2959 			i915_drop_caches_get, i915_drop_caches_set,
2960 			"0x%08llx\n");
2961 
2962 static int
2963 i915_max_freq_get(void *data, u64 *val)
2964 {
2965 	struct drm_device *dev = data;
2966 	drm_i915_private_t *dev_priv = dev->dev_private;
2967 	int ret;
2968 
2969 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
2970 		return -ENODEV;
2971 
2972 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
2973 
2974 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
2975 	if (ret)
2976 		return ret;
2977 
2978 	if (IS_VALLEYVIEW(dev))
2979 		*val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay);
2980 	else
2981 		*val = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER;
2982 	mutex_unlock(&dev_priv->rps.hw_lock);
2983 
2984 	return 0;
2985 }
2986 
2987 static int
2988 i915_max_freq_set(void *data, u64 val)
2989 {
2990 	struct drm_device *dev = data;
2991 	struct drm_i915_private *dev_priv = dev->dev_private;
2992 	int ret;
2993 
2994 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
2995 		return -ENODEV;
2996 
2997 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
2998 
2999 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
3000 
3001 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3002 	if (ret)
3003 		return ret;
3004 
3005 	/*
3006 	 * Turbo will still be enabled, but won't go above the set value.
3007 	 */
3008 	if (IS_VALLEYVIEW(dev)) {
3009 		val = vlv_freq_opcode(dev_priv, val);
3010 		dev_priv->rps.max_delay = val;
3011 		valleyview_set_rps(dev, val);
3012 	} else {
3013 		do_div(val, GT_FREQUENCY_MULTIPLIER);
3014 		dev_priv->rps.max_delay = val;
3015 		gen6_set_rps(dev, val);
3016 	}
3017 
3018 	mutex_unlock(&dev_priv->rps.hw_lock);
3019 
3020 	return 0;
3021 }
3022 
3023 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
3024 			i915_max_freq_get, i915_max_freq_set,
3025 			"%llu\n");
3026 
3027 static int
3028 i915_min_freq_get(void *data, u64 *val)
3029 {
3030 	struct drm_device *dev = data;
3031 	drm_i915_private_t *dev_priv = dev->dev_private;
3032 	int ret;
3033 
3034 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3035 		return -ENODEV;
3036 
3037 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3038 
3039 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3040 	if (ret)
3041 		return ret;
3042 
3043 	if (IS_VALLEYVIEW(dev))
3044 		*val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay);
3045 	else
3046 		*val = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER;
3047 	mutex_unlock(&dev_priv->rps.hw_lock);
3048 
3049 	return 0;
3050 }
3051 
3052 static int
3053 i915_min_freq_set(void *data, u64 val)
3054 {
3055 	struct drm_device *dev = data;
3056 	struct drm_i915_private *dev_priv = dev->dev_private;
3057 	int ret;
3058 
3059 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3060 		return -ENODEV;
3061 
3062 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3063 
3064 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
3065 
3066 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3067 	if (ret)
3068 		return ret;
3069 
3070 	/*
3071 	 * Turbo will still be enabled, but won't go below the set value.
3072 	 */
3073 	if (IS_VALLEYVIEW(dev)) {
3074 		val = vlv_freq_opcode(dev_priv, val);
3075 		dev_priv->rps.min_delay = val;
3076 		valleyview_set_rps(dev, val);
3077 	} else {
3078 		do_div(val, GT_FREQUENCY_MULTIPLIER);
3079 		dev_priv->rps.min_delay = val;
3080 		gen6_set_rps(dev, val);
3081 	}
3082 	mutex_unlock(&dev_priv->rps.hw_lock);
3083 
3084 	return 0;
3085 }
3086 
3087 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
3088 			i915_min_freq_get, i915_min_freq_set,
3089 			"%llu\n");
3090 
3091 static int
3092 i915_cache_sharing_get(void *data, u64 *val)
3093 {
3094 	struct drm_device *dev = data;
3095 	drm_i915_private_t *dev_priv = dev->dev_private;
3096 	u32 snpcr;
3097 	int ret;
3098 
3099 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3100 		return -ENODEV;
3101 
3102 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3103 	if (ret)
3104 		return ret;
3105 	intel_runtime_pm_get(dev_priv);
3106 
3107 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3108 
3109 	intel_runtime_pm_put(dev_priv);
3110 	mutex_unlock(&dev_priv->dev->struct_mutex);
3111 
3112 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
3113 
3114 	return 0;
3115 }
3116 
3117 static int
3118 i915_cache_sharing_set(void *data, u64 val)
3119 {
3120 	struct drm_device *dev = data;
3121 	struct drm_i915_private *dev_priv = dev->dev_private;
3122 	u32 snpcr;
3123 
3124 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3125 		return -ENODEV;
3126 
3127 	if (val > 3)
3128 		return -EINVAL;
3129 
3130 	intel_runtime_pm_get(dev_priv);
3131 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
3132 
3133 	/* Update the cache sharing policy here as well */
3134 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3135 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
3136 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
3137 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3138 
3139 	intel_runtime_pm_put(dev_priv);
3140 	return 0;
3141 }
3142 
3143 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
3144 			i915_cache_sharing_get, i915_cache_sharing_set,
3145 			"%llu\n");
3146 
3147 static int i915_forcewake_open(struct inode *inode, struct file *file)
3148 {
3149 	struct drm_device *dev = inode->i_private;
3150 	struct drm_i915_private *dev_priv = dev->dev_private;
3151 
3152 	if (INTEL_INFO(dev)->gen < 6)
3153 		return 0;
3154 
3155 	intel_runtime_pm_get(dev_priv);
3156 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3157 
3158 	return 0;
3159 }
3160 
3161 static int i915_forcewake_release(struct inode *inode, struct file *file)
3162 {
3163 	struct drm_device *dev = inode->i_private;
3164 	struct drm_i915_private *dev_priv = dev->dev_private;
3165 
3166 	if (INTEL_INFO(dev)->gen < 6)
3167 		return 0;
3168 
3169 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3170 	intel_runtime_pm_put(dev_priv);
3171 
3172 	return 0;
3173 }
3174 
3175 static const struct file_operations i915_forcewake_fops = {
3176 	.owner = THIS_MODULE,
3177 	.open = i915_forcewake_open,
3178 	.release = i915_forcewake_release,
3179 };
3180 
3181 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
3182 {
3183 	struct drm_device *dev = minor->dev;
3184 	struct dentry *ent;
3185 
3186 	ent = debugfs_create_file("i915_forcewake_user",
3187 				  S_IRUSR,
3188 				  root, dev,
3189 				  &i915_forcewake_fops);
3190 	if (!ent)
3191 		return -ENOMEM;
3192 
3193 	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
3194 }
3195 
3196 static int i915_debugfs_create(struct dentry *root,
3197 			       struct drm_minor *minor,
3198 			       const char *name,
3199 			       const struct file_operations *fops)
3200 {
3201 	struct drm_device *dev = minor->dev;
3202 	struct dentry *ent;
3203 
3204 	ent = debugfs_create_file(name,
3205 				  S_IRUGO | S_IWUSR,
3206 				  root, dev,
3207 				  fops);
3208 	if (!ent)
3209 		return -ENOMEM;
3210 
3211 	return drm_add_fake_info_node(minor, ent, fops);
3212 }
3213 
3214 static const struct drm_info_list i915_debugfs_list[] = {
3215 	{"i915_capabilities", i915_capabilities, 0},
3216 	{"i915_gem_objects", i915_gem_object_info, 0},
3217 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
3218 	{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
3219 	{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
3220 	{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
3221 	{"i915_gem_stolen", i915_gem_stolen_list_info },
3222 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
3223 	{"i915_gem_request", i915_gem_request_info, 0},
3224 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
3225 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
3226 	{"i915_gem_interrupt", i915_interrupt_info, 0},
3227 	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
3228 	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
3229 	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
3230 	{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
3231 	{"i915_rstdby_delays", i915_rstdby_delays, 0},
3232 	{"i915_cur_delayinfo", i915_cur_delayinfo, 0},
3233 	{"i915_delayfreq_table", i915_delayfreq_table, 0},
3234 	{"i915_inttoext_table", i915_inttoext_table, 0},
3235 	{"i915_drpc_info", i915_drpc_info, 0},
3236 	{"i915_emon_status", i915_emon_status, 0},
3237 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
3238 	{"i915_gfxec", i915_gfxec, 0},
3239 	{"i915_fbc_status", i915_fbc_status, 0},
3240 	{"i915_ips_status", i915_ips_status, 0},
3241 	{"i915_sr_status", i915_sr_status, 0},
3242 	{"i915_opregion", i915_opregion, 0},
3243 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
3244 	{"i915_context_status", i915_context_status, 0},
3245 	{"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
3246 	{"i915_swizzle_info", i915_swizzle_info, 0},
3247 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
3248 	{"i915_dpio", i915_dpio_info, 0},
3249 	{"i915_llc", i915_llc, 0},
3250 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
3251 	{"i915_energy_uJ", i915_energy_uJ, 0},
3252 	{"i915_pc8_status", i915_pc8_status, 0},
3253 	{"i915_power_domain_info", i915_power_domain_info, 0},
3254 };
3255 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
3256 
3257 static const struct i915_debugfs_files {
3258 	const char *name;
3259 	const struct file_operations *fops;
3260 } i915_debugfs_files[] = {
3261 	{"i915_wedged", &i915_wedged_fops},
3262 	{"i915_max_freq", &i915_max_freq_fops},
3263 	{"i915_min_freq", &i915_min_freq_fops},
3264 	{"i915_cache_sharing", &i915_cache_sharing_fops},
3265 	{"i915_ring_stop", &i915_ring_stop_fops},
3266 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
3267 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
3268 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
3269 	{"i915_error_state", &i915_error_state_fops},
3270 	{"i915_next_seqno", &i915_next_seqno_fops},
3271 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
3272 };
3273 
3274 void intel_display_crc_init(struct drm_device *dev)
3275 {
3276 	struct drm_i915_private *dev_priv = dev->dev_private;
3277 	enum pipe pipe;
3278 
3279 	for_each_pipe(pipe) {
3280 		struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3281 
3282 		pipe_crc->opened = false;
3283 		spin_lock_init(&pipe_crc->lock);
3284 		init_waitqueue_head(&pipe_crc->wq);
3285 	}
3286 }
3287 
3288 int i915_debugfs_init(struct drm_minor *minor)
3289 {
3290 	int ret, i;
3291 
3292 	ret = i915_forcewake_create(minor->debugfs_root, minor);
3293 	if (ret)
3294 		return ret;
3295 
3296 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3297 		ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
3298 		if (ret)
3299 			return ret;
3300 	}
3301 
3302 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3303 		ret = i915_debugfs_create(minor->debugfs_root, minor,
3304 					  i915_debugfs_files[i].name,
3305 					  i915_debugfs_files[i].fops);
3306 		if (ret)
3307 			return ret;
3308 	}
3309 
3310 	return drm_debugfs_create_files(i915_debugfs_list,
3311 					I915_DEBUGFS_ENTRIES,
3312 					minor->debugfs_root, minor);
3313 }
3314 
3315 void i915_debugfs_cleanup(struct drm_minor *minor)
3316 {
3317 	int i;
3318 
3319 	drm_debugfs_remove_files(i915_debugfs_list,
3320 				 I915_DEBUGFS_ENTRIES, minor);
3321 
3322 	drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
3323 				 1, minor);
3324 
3325 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3326 		struct drm_info_list *info_list =
3327 			(struct drm_info_list *)&i915_pipe_crc_data[i];
3328 
3329 		drm_debugfs_remove_files(info_list, 1, minor);
3330 	}
3331 
3332 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3333 		struct drm_info_list *info_list =
3334 			(struct drm_info_list *) i915_debugfs_files[i].fops;
3335 
3336 		drm_debugfs_remove_files(info_list, 1, minor);
3337 	}
3338 }
3339