1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42 
43 enum {
44 	ACTIVE_LIST,
45 	INACTIVE_LIST,
46 	PINNED_LIST,
47 };
48 
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53 		       struct dentry *ent,
54 		       const void *key)
55 {
56 	struct drm_info_node *node;
57 
58 	node = kmalloc(sizeof(*node), GFP_KERNEL);
59 	if (node == NULL) {
60 		debugfs_remove(ent);
61 		return -ENOMEM;
62 	}
63 
64 	node->minor = minor;
65 	node->dent = ent;
66 	node->info_ent = (void *) key;
67 
68 	mutex_lock(&minor->debugfs_lock);
69 	list_add(&node->list, &minor->debugfs_list);
70 	mutex_unlock(&minor->debugfs_lock);
71 
72 	return 0;
73 }
74 
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77 	struct drm_info_node *node = m->private;
78 	struct drm_device *dev = node->minor->dev;
79 	const struct intel_device_info *info = INTEL_INFO(dev);
80 
81 	seq_printf(m, "gen: %d\n", info->gen);
82 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88 
89 	return 0;
90 }
91 
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94 	if (obj->pin_display)
95 		return "p";
96 	else
97 		return " ";
98 }
99 
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102 	switch (obj->tiling_mode) {
103 	default:
104 	case I915_TILING_NONE: return " ";
105 	case I915_TILING_X: return "X";
106 	case I915_TILING_Y: return "Y";
107 	}
108 }
109 
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112 	return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114 
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117 	u64 size = 0;
118 	struct i915_vma *vma;
119 
120 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
121 		if (i915_is_ggtt(vma->vm) &&
122 		    drm_mm_node_allocated(&vma->node))
123 			size += vma->node.size;
124 	}
125 
126 	return size;
127 }
128 
129 static void
130 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
131 {
132 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
133 	struct intel_engine_cs *ring;
134 	struct i915_vma *vma;
135 	int pin_count = 0;
136 	int i;
137 
138 	seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
139 		   &obj->base,
140 		   obj->active ? "*" : " ",
141 		   get_pin_flag(obj),
142 		   get_tiling_flag(obj),
143 		   get_global_flag(obj),
144 		   obj->base.size / 1024,
145 		   obj->base.read_domains,
146 		   obj->base.write_domain);
147 	for_each_ring(ring, dev_priv, i)
148 		seq_printf(m, "%x ",
149 				i915_gem_request_get_seqno(obj->last_read_req[i]));
150 	seq_printf(m, "] %x %x%s%s%s",
151 		   i915_gem_request_get_seqno(obj->last_write_req),
152 		   i915_gem_request_get_seqno(obj->last_fenced_req),
153 		   i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
154 		   obj->dirty ? " dirty" : "",
155 		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
156 	if (obj->base.name)
157 		seq_printf(m, " (name: %d)", obj->base.name);
158 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
159 		if (vma->pin_count > 0)
160 			pin_count++;
161 	}
162 	seq_printf(m, " (pinned x %d)", pin_count);
163 	if (obj->pin_display)
164 		seq_printf(m, " (display)");
165 	if (obj->fence_reg != I915_FENCE_REG_NONE)
166 		seq_printf(m, " (fence: %d)", obj->fence_reg);
167 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
168 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169 			   i915_is_ggtt(vma->vm) ? "g" : "pp",
170 			   vma->node.start, vma->node.size);
171 		if (i915_is_ggtt(vma->vm))
172 			seq_printf(m, ", type: %u)", vma->ggtt_view.type);
173 		else
174 			seq_puts(m, ")");
175 	}
176 	if (obj->stolen)
177 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
178 	if (obj->pin_display || obj->fault_mappable) {
179 		char s[3], *t = s;
180 		if (obj->pin_display)
181 			*t++ = 'p';
182 		if (obj->fault_mappable)
183 			*t++ = 'f';
184 		*t = '\0';
185 		seq_printf(m, " (%s mappable)", s);
186 	}
187 	if (obj->last_write_req != NULL)
188 		seq_printf(m, " (%s)",
189 			   i915_gem_request_get_ring(obj->last_write_req)->name);
190 	if (obj->frontbuffer_bits)
191 		seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
192 }
193 
194 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
195 {
196 	seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
197 	seq_putc(m, ctx->remap_slice ? 'R' : 'r');
198 	seq_putc(m, ' ');
199 }
200 
201 static int i915_gem_object_list_info(struct seq_file *m, void *data)
202 {
203 	struct drm_info_node *node = m->private;
204 	uintptr_t list = (uintptr_t) node->info_ent->data;
205 	struct list_head *head;
206 	struct drm_device *dev = node->minor->dev;
207 	struct drm_i915_private *dev_priv = dev->dev_private;
208 	struct i915_address_space *vm = &dev_priv->gtt.base;
209 	struct i915_vma *vma;
210 	u64 total_obj_size, total_gtt_size;
211 	int count, ret;
212 
213 	ret = mutex_lock_interruptible(&dev->struct_mutex);
214 	if (ret)
215 		return ret;
216 
217 	/* FIXME: the user of this interface might want more than just GGTT */
218 	switch (list) {
219 	case ACTIVE_LIST:
220 		seq_puts(m, "Active:\n");
221 		head = &vm->active_list;
222 		break;
223 	case INACTIVE_LIST:
224 		seq_puts(m, "Inactive:\n");
225 		head = &vm->inactive_list;
226 		break;
227 	default:
228 		mutex_unlock(&dev->struct_mutex);
229 		return -EINVAL;
230 	}
231 
232 	total_obj_size = total_gtt_size = count = 0;
233 	list_for_each_entry(vma, head, mm_list) {
234 		seq_printf(m, "   ");
235 		describe_obj(m, vma->obj);
236 		seq_printf(m, "\n");
237 		total_obj_size += vma->obj->base.size;
238 		total_gtt_size += vma->node.size;
239 		count++;
240 	}
241 	mutex_unlock(&dev->struct_mutex);
242 
243 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
244 		   count, total_obj_size, total_gtt_size);
245 	return 0;
246 }
247 
248 static int obj_rank_by_stolen(void *priv,
249 			      struct list_head *A, struct list_head *B)
250 {
251 	struct drm_i915_gem_object *a =
252 		container_of(A, struct drm_i915_gem_object, obj_exec_link);
253 	struct drm_i915_gem_object *b =
254 		container_of(B, struct drm_i915_gem_object, obj_exec_link);
255 
256 	if (a->stolen->start < b->stolen->start)
257 		return -1;
258 	if (a->stolen->start > b->stolen->start)
259 		return 1;
260 	return 0;
261 }
262 
263 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
264 {
265 	struct drm_info_node *node = m->private;
266 	struct drm_device *dev = node->minor->dev;
267 	struct drm_i915_private *dev_priv = dev->dev_private;
268 	struct drm_i915_gem_object *obj;
269 	u64 total_obj_size, total_gtt_size;
270 	LIST_HEAD(stolen);
271 	int count, ret;
272 
273 	ret = mutex_lock_interruptible(&dev->struct_mutex);
274 	if (ret)
275 		return ret;
276 
277 	total_obj_size = total_gtt_size = count = 0;
278 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
279 		if (obj->stolen == NULL)
280 			continue;
281 
282 		list_add(&obj->obj_exec_link, &stolen);
283 
284 		total_obj_size += obj->base.size;
285 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286 		count++;
287 	}
288 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
289 		if (obj->stolen == NULL)
290 			continue;
291 
292 		list_add(&obj->obj_exec_link, &stolen);
293 
294 		total_obj_size += obj->base.size;
295 		count++;
296 	}
297 	list_sort(NULL, &stolen, obj_rank_by_stolen);
298 	seq_puts(m, "Stolen:\n");
299 	while (!list_empty(&stolen)) {
300 		obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
301 		seq_puts(m, "   ");
302 		describe_obj(m, obj);
303 		seq_putc(m, '\n');
304 		list_del_init(&obj->obj_exec_link);
305 	}
306 	mutex_unlock(&dev->struct_mutex);
307 
308 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
309 		   count, total_obj_size, total_gtt_size);
310 	return 0;
311 }
312 
313 #define count_objects(list, member) do { \
314 	list_for_each_entry(obj, list, member) { \
315 		size += i915_gem_obj_total_ggtt_size(obj); \
316 		++count; \
317 		if (obj->map_and_fenceable) { \
318 			mappable_size += i915_gem_obj_ggtt_size(obj); \
319 			++mappable_count; \
320 		} \
321 	} \
322 } while (0)
323 
324 struct file_stats {
325 	struct drm_i915_file_private *file_priv;
326 	unsigned long count;
327 	u64 total, unbound;
328 	u64 global, shared;
329 	u64 active, inactive;
330 };
331 
332 static int per_file_stats(int id, void *ptr, void *data)
333 {
334 	struct drm_i915_gem_object *obj = ptr;
335 	struct file_stats *stats = data;
336 	struct i915_vma *vma;
337 
338 	stats->count++;
339 	stats->total += obj->base.size;
340 
341 	if (obj->base.name || obj->base.dma_buf)
342 		stats->shared += obj->base.size;
343 
344 	if (USES_FULL_PPGTT(obj->base.dev)) {
345 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
346 			struct i915_hw_ppgtt *ppgtt;
347 
348 			if (!drm_mm_node_allocated(&vma->node))
349 				continue;
350 
351 			if (i915_is_ggtt(vma->vm)) {
352 				stats->global += obj->base.size;
353 				continue;
354 			}
355 
356 			ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
357 			if (ppgtt->file_priv != stats->file_priv)
358 				continue;
359 
360 			if (obj->active) /* XXX per-vma statistic */
361 				stats->active += obj->base.size;
362 			else
363 				stats->inactive += obj->base.size;
364 
365 			return 0;
366 		}
367 	} else {
368 		if (i915_gem_obj_ggtt_bound(obj)) {
369 			stats->global += obj->base.size;
370 			if (obj->active)
371 				stats->active += obj->base.size;
372 			else
373 				stats->inactive += obj->base.size;
374 			return 0;
375 		}
376 	}
377 
378 	if (!list_empty(&obj->global_list))
379 		stats->unbound += obj->base.size;
380 
381 	return 0;
382 }
383 
384 #define print_file_stats(m, name, stats) do { \
385 	if (stats.count) \
386 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
387 			   name, \
388 			   stats.count, \
389 			   stats.total, \
390 			   stats.active, \
391 			   stats.inactive, \
392 			   stats.global, \
393 			   stats.shared, \
394 			   stats.unbound); \
395 } while (0)
396 
397 static void print_batch_pool_stats(struct seq_file *m,
398 				   struct drm_i915_private *dev_priv)
399 {
400 	struct drm_i915_gem_object *obj;
401 	struct file_stats stats;
402 	struct intel_engine_cs *ring;
403 	int i, j;
404 
405 	memset(&stats, 0, sizeof(stats));
406 
407 	for_each_ring(ring, dev_priv, i) {
408 		for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
409 			list_for_each_entry(obj,
410 					    &ring->batch_pool.cache_list[j],
411 					    batch_pool_link)
412 				per_file_stats(0, obj, &stats);
413 		}
414 	}
415 
416 	print_file_stats(m, "[k]batch pool", stats);
417 }
418 
419 #define count_vmas(list, member) do { \
420 	list_for_each_entry(vma, list, member) { \
421 		size += i915_gem_obj_total_ggtt_size(vma->obj); \
422 		++count; \
423 		if (vma->obj->map_and_fenceable) { \
424 			mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
425 			++mappable_count; \
426 		} \
427 	} \
428 } while (0)
429 
430 static int i915_gem_object_info(struct seq_file *m, void* data)
431 {
432 	struct drm_info_node *node = m->private;
433 	struct drm_device *dev = node->minor->dev;
434 	struct drm_i915_private *dev_priv = dev->dev_private;
435 	u32 count, mappable_count, purgeable_count;
436 	u64 size, mappable_size, purgeable_size;
437 	struct drm_i915_gem_object *obj;
438 	struct i915_address_space *vm = &dev_priv->gtt.base;
439 	struct drm_file *file;
440 	struct i915_vma *vma;
441 	int ret;
442 
443 	ret = mutex_lock_interruptible(&dev->struct_mutex);
444 	if (ret)
445 		return ret;
446 
447 	seq_printf(m, "%u objects, %zu bytes\n",
448 		   dev_priv->mm.object_count,
449 		   dev_priv->mm.object_memory);
450 
451 	size = count = mappable_size = mappable_count = 0;
452 	count_objects(&dev_priv->mm.bound_list, global_list);
453 	seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
454 		   count, mappable_count, size, mappable_size);
455 
456 	size = count = mappable_size = mappable_count = 0;
457 	count_vmas(&vm->active_list, mm_list);
458 	seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
459 		   count, mappable_count, size, mappable_size);
460 
461 	size = count = mappable_size = mappable_count = 0;
462 	count_vmas(&vm->inactive_list, mm_list);
463 	seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
464 		   count, mappable_count, size, mappable_size);
465 
466 	size = count = purgeable_size = purgeable_count = 0;
467 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
468 		size += obj->base.size, ++count;
469 		if (obj->madv == I915_MADV_DONTNEED)
470 			purgeable_size += obj->base.size, ++purgeable_count;
471 	}
472 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
473 
474 	size = count = mappable_size = mappable_count = 0;
475 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
476 		if (obj->fault_mappable) {
477 			size += i915_gem_obj_ggtt_size(obj);
478 			++count;
479 		}
480 		if (obj->pin_display) {
481 			mappable_size += i915_gem_obj_ggtt_size(obj);
482 			++mappable_count;
483 		}
484 		if (obj->madv == I915_MADV_DONTNEED) {
485 			purgeable_size += obj->base.size;
486 			++purgeable_count;
487 		}
488 	}
489 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
490 		   purgeable_count, purgeable_size);
491 	seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
492 		   mappable_count, mappable_size);
493 	seq_printf(m, "%u fault mappable objects, %llu bytes\n",
494 		   count, size);
495 
496 	seq_printf(m, "%llu [%llu] gtt total\n",
497 		   dev_priv->gtt.base.total,
498 		   (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
499 
500 	seq_putc(m, '\n');
501 	print_batch_pool_stats(m, dev_priv);
502 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
503 		struct file_stats stats;
504 		struct task_struct *task;
505 
506 		memset(&stats, 0, sizeof(stats));
507 		stats.file_priv = file->driver_priv;
508 		spin_lock(&file->table_lock);
509 		idr_for_each(&file->object_idr, per_file_stats, &stats);
510 		spin_unlock(&file->table_lock);
511 		/*
512 		 * Although we have a valid reference on file->pid, that does
513 		 * not guarantee that the task_struct who called get_pid() is
514 		 * still alive (e.g. get_pid(current) => fork() => exit()).
515 		 * Therefore, we need to protect this ->comm access using RCU.
516 		 */
517 		rcu_read_lock();
518 		task = pid_task(file->pid, PIDTYPE_PID);
519 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
520 		rcu_read_unlock();
521 	}
522 
523 	mutex_unlock(&dev->struct_mutex);
524 
525 	return 0;
526 }
527 
528 static int i915_gem_gtt_info(struct seq_file *m, void *data)
529 {
530 	struct drm_info_node *node = m->private;
531 	struct drm_device *dev = node->minor->dev;
532 	uintptr_t list = (uintptr_t) node->info_ent->data;
533 	struct drm_i915_private *dev_priv = dev->dev_private;
534 	struct drm_i915_gem_object *obj;
535 	u64 total_obj_size, total_gtt_size;
536 	int count, ret;
537 
538 	ret = mutex_lock_interruptible(&dev->struct_mutex);
539 	if (ret)
540 		return ret;
541 
542 	total_obj_size = total_gtt_size = count = 0;
543 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
544 		if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
545 			continue;
546 
547 		seq_puts(m, "   ");
548 		describe_obj(m, obj);
549 		seq_putc(m, '\n');
550 		total_obj_size += obj->base.size;
551 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
552 		count++;
553 	}
554 
555 	mutex_unlock(&dev->struct_mutex);
556 
557 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
558 		   count, total_obj_size, total_gtt_size);
559 
560 	return 0;
561 }
562 
563 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
564 {
565 	struct drm_info_node *node = m->private;
566 	struct drm_device *dev = node->minor->dev;
567 	struct drm_i915_private *dev_priv = dev->dev_private;
568 	struct intel_crtc *crtc;
569 	int ret;
570 
571 	ret = mutex_lock_interruptible(&dev->struct_mutex);
572 	if (ret)
573 		return ret;
574 
575 	for_each_intel_crtc(dev, crtc) {
576 		const char pipe = pipe_name(crtc->pipe);
577 		const char plane = plane_name(crtc->plane);
578 		struct intel_unpin_work *work;
579 
580 		spin_lock_irq(&dev->event_lock);
581 		work = crtc->unpin_work;
582 		if (work == NULL) {
583 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
584 				   pipe, plane);
585 		} else {
586 			u32 addr;
587 
588 			if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
589 				seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
590 					   pipe, plane);
591 			} else {
592 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
593 					   pipe, plane);
594 			}
595 			if (work->flip_queued_req) {
596 				struct intel_engine_cs *ring =
597 					i915_gem_request_get_ring(work->flip_queued_req);
598 
599 				seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
600 					   ring->name,
601 					   i915_gem_request_get_seqno(work->flip_queued_req),
602 					   dev_priv->next_seqno,
603 					   ring->get_seqno(ring, true),
604 					   i915_gem_request_completed(work->flip_queued_req, true));
605 			} else
606 				seq_printf(m, "Flip not associated with any ring\n");
607 			seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
608 				   work->flip_queued_vblank,
609 				   work->flip_ready_vblank,
610 				   drm_crtc_vblank_count(&crtc->base));
611 			if (work->enable_stall_check)
612 				seq_puts(m, "Stall check enabled, ");
613 			else
614 				seq_puts(m, "Stall check waiting for page flip ioctl, ");
615 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
616 
617 			if (INTEL_INFO(dev)->gen >= 4)
618 				addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
619 			else
620 				addr = I915_READ(DSPADDR(crtc->plane));
621 			seq_printf(m, "Current scanout address 0x%08x\n", addr);
622 
623 			if (work->pending_flip_obj) {
624 				seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
625 				seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
626 			}
627 		}
628 		spin_unlock_irq(&dev->event_lock);
629 	}
630 
631 	mutex_unlock(&dev->struct_mutex);
632 
633 	return 0;
634 }
635 
636 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
637 {
638 	struct drm_info_node *node = m->private;
639 	struct drm_device *dev = node->minor->dev;
640 	struct drm_i915_private *dev_priv = dev->dev_private;
641 	struct drm_i915_gem_object *obj;
642 	struct intel_engine_cs *ring;
643 	int total = 0;
644 	int ret, i, j;
645 
646 	ret = mutex_lock_interruptible(&dev->struct_mutex);
647 	if (ret)
648 		return ret;
649 
650 	for_each_ring(ring, dev_priv, i) {
651 		for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
652 			int count;
653 
654 			count = 0;
655 			list_for_each_entry(obj,
656 					    &ring->batch_pool.cache_list[j],
657 					    batch_pool_link)
658 				count++;
659 			seq_printf(m, "%s cache[%d]: %d objects\n",
660 				   ring->name, j, count);
661 
662 			list_for_each_entry(obj,
663 					    &ring->batch_pool.cache_list[j],
664 					    batch_pool_link) {
665 				seq_puts(m, "   ");
666 				describe_obj(m, obj);
667 				seq_putc(m, '\n');
668 			}
669 
670 			total += count;
671 		}
672 	}
673 
674 	seq_printf(m, "total: %d\n", total);
675 
676 	mutex_unlock(&dev->struct_mutex);
677 
678 	return 0;
679 }
680 
681 static int i915_gem_request_info(struct seq_file *m, void *data)
682 {
683 	struct drm_info_node *node = m->private;
684 	struct drm_device *dev = node->minor->dev;
685 	struct drm_i915_private *dev_priv = dev->dev_private;
686 	struct intel_engine_cs *ring;
687 	struct drm_i915_gem_request *req;
688 	int ret, any, i;
689 
690 	ret = mutex_lock_interruptible(&dev->struct_mutex);
691 	if (ret)
692 		return ret;
693 
694 	any = 0;
695 	for_each_ring(ring, dev_priv, i) {
696 		int count;
697 
698 		count = 0;
699 		list_for_each_entry(req, &ring->request_list, list)
700 			count++;
701 		if (count == 0)
702 			continue;
703 
704 		seq_printf(m, "%s requests: %d\n", ring->name, count);
705 		list_for_each_entry(req, &ring->request_list, list) {
706 			struct task_struct *task;
707 
708 			rcu_read_lock();
709 			task = NULL;
710 			if (req->pid)
711 				task = pid_task(req->pid, PIDTYPE_PID);
712 			seq_printf(m, "    %x @ %d: %s [%d]\n",
713 				   req->seqno,
714 				   (int) (jiffies - req->emitted_jiffies),
715 				   task ? task->comm : "<unknown>",
716 				   task ? task->pid : -1);
717 			rcu_read_unlock();
718 		}
719 
720 		any++;
721 	}
722 	mutex_unlock(&dev->struct_mutex);
723 
724 	if (any == 0)
725 		seq_puts(m, "No requests\n");
726 
727 	return 0;
728 }
729 
730 static void i915_ring_seqno_info(struct seq_file *m,
731 				 struct intel_engine_cs *ring)
732 {
733 	if (ring->get_seqno) {
734 		seq_printf(m, "Current sequence (%s): %x\n",
735 			   ring->name, ring->get_seqno(ring, false));
736 	}
737 }
738 
739 static int i915_gem_seqno_info(struct seq_file *m, void *data)
740 {
741 	struct drm_info_node *node = m->private;
742 	struct drm_device *dev = node->minor->dev;
743 	struct drm_i915_private *dev_priv = dev->dev_private;
744 	struct intel_engine_cs *ring;
745 	int ret, i;
746 
747 	ret = mutex_lock_interruptible(&dev->struct_mutex);
748 	if (ret)
749 		return ret;
750 	intel_runtime_pm_get(dev_priv);
751 
752 	for_each_ring(ring, dev_priv, i)
753 		i915_ring_seqno_info(m, ring);
754 
755 	intel_runtime_pm_put(dev_priv);
756 	mutex_unlock(&dev->struct_mutex);
757 
758 	return 0;
759 }
760 
761 
762 static int i915_interrupt_info(struct seq_file *m, void *data)
763 {
764 	struct drm_info_node *node = m->private;
765 	struct drm_device *dev = node->minor->dev;
766 	struct drm_i915_private *dev_priv = dev->dev_private;
767 	struct intel_engine_cs *ring;
768 	int ret, i, pipe;
769 
770 	ret = mutex_lock_interruptible(&dev->struct_mutex);
771 	if (ret)
772 		return ret;
773 	intel_runtime_pm_get(dev_priv);
774 
775 	if (IS_CHERRYVIEW(dev)) {
776 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
777 			   I915_READ(GEN8_MASTER_IRQ));
778 
779 		seq_printf(m, "Display IER:\t%08x\n",
780 			   I915_READ(VLV_IER));
781 		seq_printf(m, "Display IIR:\t%08x\n",
782 			   I915_READ(VLV_IIR));
783 		seq_printf(m, "Display IIR_RW:\t%08x\n",
784 			   I915_READ(VLV_IIR_RW));
785 		seq_printf(m, "Display IMR:\t%08x\n",
786 			   I915_READ(VLV_IMR));
787 		for_each_pipe(dev_priv, pipe)
788 			seq_printf(m, "Pipe %c stat:\t%08x\n",
789 				   pipe_name(pipe),
790 				   I915_READ(PIPESTAT(pipe)));
791 
792 		seq_printf(m, "Port hotplug:\t%08x\n",
793 			   I915_READ(PORT_HOTPLUG_EN));
794 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
795 			   I915_READ(VLV_DPFLIPSTAT));
796 		seq_printf(m, "DPINVGTT:\t%08x\n",
797 			   I915_READ(DPINVGTT));
798 
799 		for (i = 0; i < 4; i++) {
800 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
801 				   i, I915_READ(GEN8_GT_IMR(i)));
802 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
803 				   i, I915_READ(GEN8_GT_IIR(i)));
804 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
805 				   i, I915_READ(GEN8_GT_IER(i)));
806 		}
807 
808 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
809 			   I915_READ(GEN8_PCU_IMR));
810 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
811 			   I915_READ(GEN8_PCU_IIR));
812 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
813 			   I915_READ(GEN8_PCU_IER));
814 	} else if (INTEL_INFO(dev)->gen >= 8) {
815 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
816 			   I915_READ(GEN8_MASTER_IRQ));
817 
818 		for (i = 0; i < 4; i++) {
819 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
820 				   i, I915_READ(GEN8_GT_IMR(i)));
821 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
822 				   i, I915_READ(GEN8_GT_IIR(i)));
823 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
824 				   i, I915_READ(GEN8_GT_IER(i)));
825 		}
826 
827 		for_each_pipe(dev_priv, pipe) {
828 			if (!intel_display_power_is_enabled(dev_priv,
829 						POWER_DOMAIN_PIPE(pipe))) {
830 				seq_printf(m, "Pipe %c power disabled\n",
831 					   pipe_name(pipe));
832 				continue;
833 			}
834 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
835 				   pipe_name(pipe),
836 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
837 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
838 				   pipe_name(pipe),
839 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
840 			seq_printf(m, "Pipe %c IER:\t%08x\n",
841 				   pipe_name(pipe),
842 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
843 		}
844 
845 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
846 			   I915_READ(GEN8_DE_PORT_IMR));
847 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
848 			   I915_READ(GEN8_DE_PORT_IIR));
849 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
850 			   I915_READ(GEN8_DE_PORT_IER));
851 
852 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
853 			   I915_READ(GEN8_DE_MISC_IMR));
854 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
855 			   I915_READ(GEN8_DE_MISC_IIR));
856 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
857 			   I915_READ(GEN8_DE_MISC_IER));
858 
859 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
860 			   I915_READ(GEN8_PCU_IMR));
861 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
862 			   I915_READ(GEN8_PCU_IIR));
863 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
864 			   I915_READ(GEN8_PCU_IER));
865 	} else if (IS_VALLEYVIEW(dev)) {
866 		seq_printf(m, "Display IER:\t%08x\n",
867 			   I915_READ(VLV_IER));
868 		seq_printf(m, "Display IIR:\t%08x\n",
869 			   I915_READ(VLV_IIR));
870 		seq_printf(m, "Display IIR_RW:\t%08x\n",
871 			   I915_READ(VLV_IIR_RW));
872 		seq_printf(m, "Display IMR:\t%08x\n",
873 			   I915_READ(VLV_IMR));
874 		for_each_pipe(dev_priv, pipe)
875 			seq_printf(m, "Pipe %c stat:\t%08x\n",
876 				   pipe_name(pipe),
877 				   I915_READ(PIPESTAT(pipe)));
878 
879 		seq_printf(m, "Master IER:\t%08x\n",
880 			   I915_READ(VLV_MASTER_IER));
881 
882 		seq_printf(m, "Render IER:\t%08x\n",
883 			   I915_READ(GTIER));
884 		seq_printf(m, "Render IIR:\t%08x\n",
885 			   I915_READ(GTIIR));
886 		seq_printf(m, "Render IMR:\t%08x\n",
887 			   I915_READ(GTIMR));
888 
889 		seq_printf(m, "PM IER:\t\t%08x\n",
890 			   I915_READ(GEN6_PMIER));
891 		seq_printf(m, "PM IIR:\t\t%08x\n",
892 			   I915_READ(GEN6_PMIIR));
893 		seq_printf(m, "PM IMR:\t\t%08x\n",
894 			   I915_READ(GEN6_PMIMR));
895 
896 		seq_printf(m, "Port hotplug:\t%08x\n",
897 			   I915_READ(PORT_HOTPLUG_EN));
898 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
899 			   I915_READ(VLV_DPFLIPSTAT));
900 		seq_printf(m, "DPINVGTT:\t%08x\n",
901 			   I915_READ(DPINVGTT));
902 
903 	} else if (!HAS_PCH_SPLIT(dev)) {
904 		seq_printf(m, "Interrupt enable:    %08x\n",
905 			   I915_READ(IER));
906 		seq_printf(m, "Interrupt identity:  %08x\n",
907 			   I915_READ(IIR));
908 		seq_printf(m, "Interrupt mask:      %08x\n",
909 			   I915_READ(IMR));
910 		for_each_pipe(dev_priv, pipe)
911 			seq_printf(m, "Pipe %c stat:         %08x\n",
912 				   pipe_name(pipe),
913 				   I915_READ(PIPESTAT(pipe)));
914 	} else {
915 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
916 			   I915_READ(DEIER));
917 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
918 			   I915_READ(DEIIR));
919 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
920 			   I915_READ(DEIMR));
921 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
922 			   I915_READ(SDEIER));
923 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
924 			   I915_READ(SDEIIR));
925 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
926 			   I915_READ(SDEIMR));
927 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
928 			   I915_READ(GTIER));
929 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
930 			   I915_READ(GTIIR));
931 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
932 			   I915_READ(GTIMR));
933 	}
934 	for_each_ring(ring, dev_priv, i) {
935 		if (INTEL_INFO(dev)->gen >= 6) {
936 			seq_printf(m,
937 				   "Graphics Interrupt mask (%s):	%08x\n",
938 				   ring->name, I915_READ_IMR(ring));
939 		}
940 		i915_ring_seqno_info(m, ring);
941 	}
942 	intel_runtime_pm_put(dev_priv);
943 	mutex_unlock(&dev->struct_mutex);
944 
945 	return 0;
946 }
947 
948 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
949 {
950 	struct drm_info_node *node = m->private;
951 	struct drm_device *dev = node->minor->dev;
952 	struct drm_i915_private *dev_priv = dev->dev_private;
953 	int i, ret;
954 
955 	ret = mutex_lock_interruptible(&dev->struct_mutex);
956 	if (ret)
957 		return ret;
958 
959 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
960 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
961 		struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
962 
963 		seq_printf(m, "Fence %d, pin count = %d, object = ",
964 			   i, dev_priv->fence_regs[i].pin_count);
965 		if (obj == NULL)
966 			seq_puts(m, "unused");
967 		else
968 			describe_obj(m, obj);
969 		seq_putc(m, '\n');
970 	}
971 
972 	mutex_unlock(&dev->struct_mutex);
973 	return 0;
974 }
975 
976 static int i915_hws_info(struct seq_file *m, void *data)
977 {
978 	struct drm_info_node *node = m->private;
979 	struct drm_device *dev = node->minor->dev;
980 	struct drm_i915_private *dev_priv = dev->dev_private;
981 	struct intel_engine_cs *ring;
982 	const u32 *hws;
983 	int i;
984 
985 	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
986 	hws = ring->status_page.page_addr;
987 	if (hws == NULL)
988 		return 0;
989 
990 	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
991 		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
992 			   i * 4,
993 			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
994 	}
995 	return 0;
996 }
997 
998 static ssize_t
999 i915_error_state_write(struct file *filp,
1000 		       const char __user *ubuf,
1001 		       size_t cnt,
1002 		       loff_t *ppos)
1003 {
1004 	struct i915_error_state_file_priv *error_priv = filp->private_data;
1005 	struct drm_device *dev = error_priv->dev;
1006 	int ret;
1007 
1008 	DRM_DEBUG_DRIVER("Resetting error state\n");
1009 
1010 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1011 	if (ret)
1012 		return ret;
1013 
1014 	i915_destroy_error_state(dev);
1015 	mutex_unlock(&dev->struct_mutex);
1016 
1017 	return cnt;
1018 }
1019 
1020 static int i915_error_state_open(struct inode *inode, struct file *file)
1021 {
1022 	struct drm_device *dev = inode->i_private;
1023 	struct i915_error_state_file_priv *error_priv;
1024 
1025 	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1026 	if (!error_priv)
1027 		return -ENOMEM;
1028 
1029 	error_priv->dev = dev;
1030 
1031 	i915_error_state_get(dev, error_priv);
1032 
1033 	file->private_data = error_priv;
1034 
1035 	return 0;
1036 }
1037 
1038 static int i915_error_state_release(struct inode *inode, struct file *file)
1039 {
1040 	struct i915_error_state_file_priv *error_priv = file->private_data;
1041 
1042 	i915_error_state_put(error_priv);
1043 	kfree(error_priv);
1044 
1045 	return 0;
1046 }
1047 
1048 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1049 				     size_t count, loff_t *pos)
1050 {
1051 	struct i915_error_state_file_priv *error_priv = file->private_data;
1052 	struct drm_i915_error_state_buf error_str;
1053 	loff_t tmp_pos = 0;
1054 	ssize_t ret_count = 0;
1055 	int ret;
1056 
1057 	ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1058 	if (ret)
1059 		return ret;
1060 
1061 	ret = i915_error_state_to_str(&error_str, error_priv);
1062 	if (ret)
1063 		goto out;
1064 
1065 	ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1066 					    error_str.buf,
1067 					    error_str.bytes);
1068 
1069 	if (ret_count < 0)
1070 		ret = ret_count;
1071 	else
1072 		*pos = error_str.start + ret_count;
1073 out:
1074 	i915_error_state_buf_release(&error_str);
1075 	return ret ?: ret_count;
1076 }
1077 
1078 static const struct file_operations i915_error_state_fops = {
1079 	.owner = THIS_MODULE,
1080 	.open = i915_error_state_open,
1081 	.read = i915_error_state_read,
1082 	.write = i915_error_state_write,
1083 	.llseek = default_llseek,
1084 	.release = i915_error_state_release,
1085 };
1086 
1087 static int
1088 i915_next_seqno_get(void *data, u64 *val)
1089 {
1090 	struct drm_device *dev = data;
1091 	struct drm_i915_private *dev_priv = dev->dev_private;
1092 	int ret;
1093 
1094 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1095 	if (ret)
1096 		return ret;
1097 
1098 	*val = dev_priv->next_seqno;
1099 	mutex_unlock(&dev->struct_mutex);
1100 
1101 	return 0;
1102 }
1103 
1104 static int
1105 i915_next_seqno_set(void *data, u64 val)
1106 {
1107 	struct drm_device *dev = data;
1108 	int ret;
1109 
1110 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1111 	if (ret)
1112 		return ret;
1113 
1114 	ret = i915_gem_set_seqno(dev, val);
1115 	mutex_unlock(&dev->struct_mutex);
1116 
1117 	return ret;
1118 }
1119 
1120 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1121 			i915_next_seqno_get, i915_next_seqno_set,
1122 			"0x%llx\n");
1123 
1124 static int i915_frequency_info(struct seq_file *m, void *unused)
1125 {
1126 	struct drm_info_node *node = m->private;
1127 	struct drm_device *dev = node->minor->dev;
1128 	struct drm_i915_private *dev_priv = dev->dev_private;
1129 	int ret = 0;
1130 
1131 	intel_runtime_pm_get(dev_priv);
1132 
1133 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1134 
1135 	if (IS_GEN5(dev)) {
1136 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1137 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1138 
1139 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1140 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1141 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1142 			   MEMSTAT_VID_SHIFT);
1143 		seq_printf(m, "Current P-state: %d\n",
1144 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1145 	} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1146 		u32 freq_sts;
1147 
1148 		mutex_lock(&dev_priv->rps.hw_lock);
1149 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1150 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1151 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1152 
1153 		seq_printf(m, "actual GPU freq: %d MHz\n",
1154 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1155 
1156 		seq_printf(m, "current GPU freq: %d MHz\n",
1157 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1158 
1159 		seq_printf(m, "max GPU freq: %d MHz\n",
1160 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1161 
1162 		seq_printf(m, "min GPU freq: %d MHz\n",
1163 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1164 
1165 		seq_printf(m, "idle GPU freq: %d MHz\n",
1166 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1167 
1168 		seq_printf(m,
1169 			   "efficient (RPe) frequency: %d MHz\n",
1170 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1171 		mutex_unlock(&dev_priv->rps.hw_lock);
1172 	} else if (INTEL_INFO(dev)->gen >= 6) {
1173 		u32 rp_state_limits;
1174 		u32 gt_perf_status;
1175 		u32 rp_state_cap;
1176 		u32 rpmodectl, rpinclimit, rpdeclimit;
1177 		u32 rpstat, cagf, reqf;
1178 		u32 rpupei, rpcurup, rpprevup;
1179 		u32 rpdownei, rpcurdown, rpprevdown;
1180 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1181 		int max_freq;
1182 
1183 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1184 		if (IS_BROXTON(dev)) {
1185 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1186 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1187 		} else {
1188 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1189 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1190 		}
1191 
1192 		/* RPSTAT1 is in the GT power well */
1193 		ret = mutex_lock_interruptible(&dev->struct_mutex);
1194 		if (ret)
1195 			goto out;
1196 
1197 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1198 
1199 		reqf = I915_READ(GEN6_RPNSWREQ);
1200 		if (IS_GEN9(dev))
1201 			reqf >>= 23;
1202 		else {
1203 			reqf &= ~GEN6_TURBO_DISABLE;
1204 			if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1205 				reqf >>= 24;
1206 			else
1207 				reqf >>= 25;
1208 		}
1209 		reqf = intel_gpu_freq(dev_priv, reqf);
1210 
1211 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1212 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1213 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1214 
1215 		rpstat = I915_READ(GEN6_RPSTAT1);
1216 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1217 		rpcurup = I915_READ(GEN6_RP_CUR_UP);
1218 		rpprevup = I915_READ(GEN6_RP_PREV_UP);
1219 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1220 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1221 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1222 		if (IS_GEN9(dev))
1223 			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1224 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1225 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1226 		else
1227 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1228 		cagf = intel_gpu_freq(dev_priv, cagf);
1229 
1230 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1231 		mutex_unlock(&dev->struct_mutex);
1232 
1233 		if (IS_GEN6(dev) || IS_GEN7(dev)) {
1234 			pm_ier = I915_READ(GEN6_PMIER);
1235 			pm_imr = I915_READ(GEN6_PMIMR);
1236 			pm_isr = I915_READ(GEN6_PMISR);
1237 			pm_iir = I915_READ(GEN6_PMIIR);
1238 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1239 		} else {
1240 			pm_ier = I915_READ(GEN8_GT_IER(2));
1241 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1242 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1243 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1244 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1245 		}
1246 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1247 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1248 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1249 		seq_printf(m, "Render p-state ratio: %d\n",
1250 			   (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1251 		seq_printf(m, "Render p-state VID: %d\n",
1252 			   gt_perf_status & 0xff);
1253 		seq_printf(m, "Render p-state limit: %d\n",
1254 			   rp_state_limits & 0xff);
1255 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1256 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1257 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1258 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1259 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1260 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1261 		seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1262 			   GEN6_CURICONT_MASK);
1263 		seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1264 			   GEN6_CURBSYTAVG_MASK);
1265 		seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1266 			   GEN6_CURBSYTAVG_MASK);
1267 		seq_printf(m, "Up threshold: %d%%\n",
1268 			   dev_priv->rps.up_threshold);
1269 
1270 		seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1271 			   GEN6_CURIAVG_MASK);
1272 		seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1273 			   GEN6_CURBSYTAVG_MASK);
1274 		seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1275 			   GEN6_CURBSYTAVG_MASK);
1276 		seq_printf(m, "Down threshold: %d%%\n",
1277 			   dev_priv->rps.down_threshold);
1278 
1279 		max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1280 			    rp_state_cap >> 16) & 0xff;
1281 		max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1282 			     GEN9_FREQ_SCALER : 1);
1283 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1284 			   intel_gpu_freq(dev_priv, max_freq));
1285 
1286 		max_freq = (rp_state_cap & 0xff00) >> 8;
1287 		max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1288 			     GEN9_FREQ_SCALER : 1);
1289 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1290 			   intel_gpu_freq(dev_priv, max_freq));
1291 
1292 		max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1293 			    rp_state_cap >> 0) & 0xff;
1294 		max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1295 			     GEN9_FREQ_SCALER : 1);
1296 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1297 			   intel_gpu_freq(dev_priv, max_freq));
1298 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1299 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1300 
1301 		seq_printf(m, "Current freq: %d MHz\n",
1302 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1303 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1304 		seq_printf(m, "Idle freq: %d MHz\n",
1305 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1306 		seq_printf(m, "Min freq: %d MHz\n",
1307 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1308 		seq_printf(m, "Max freq: %d MHz\n",
1309 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1310 		seq_printf(m,
1311 			   "efficient (RPe) frequency: %d MHz\n",
1312 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1313 	} else {
1314 		seq_puts(m, "no P-state info available\n");
1315 	}
1316 
1317 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1318 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1319 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1320 
1321 out:
1322 	intel_runtime_pm_put(dev_priv);
1323 	return ret;
1324 }
1325 
1326 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1327 {
1328 	struct drm_info_node *node = m->private;
1329 	struct drm_device *dev = node->minor->dev;
1330 	struct drm_i915_private *dev_priv = dev->dev_private;
1331 	struct intel_engine_cs *ring;
1332 	u64 acthd[I915_NUM_RINGS];
1333 	u32 seqno[I915_NUM_RINGS];
1334 	u32 instdone[I915_NUM_INSTDONE_REG];
1335 	int i, j;
1336 
1337 	if (!i915.enable_hangcheck) {
1338 		seq_printf(m, "Hangcheck disabled\n");
1339 		return 0;
1340 	}
1341 
1342 	intel_runtime_pm_get(dev_priv);
1343 
1344 	for_each_ring(ring, dev_priv, i) {
1345 		seqno[i] = ring->get_seqno(ring, false);
1346 		acthd[i] = intel_ring_get_active_head(ring);
1347 	}
1348 
1349 	i915_get_extra_instdone(dev, instdone);
1350 
1351 	intel_runtime_pm_put(dev_priv);
1352 
1353 	if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1354 		seq_printf(m, "Hangcheck active, fires in %dms\n",
1355 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1356 					    jiffies));
1357 	} else
1358 		seq_printf(m, "Hangcheck inactive\n");
1359 
1360 	for_each_ring(ring, dev_priv, i) {
1361 		seq_printf(m, "%s:\n", ring->name);
1362 		seq_printf(m, "\tseqno = %x [current %x]\n",
1363 			   ring->hangcheck.seqno, seqno[i]);
1364 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1365 			   (long long)ring->hangcheck.acthd,
1366 			   (long long)acthd[i]);
1367 		seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1368 			   (long long)ring->hangcheck.max_acthd);
1369 		seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1370 		seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1371 
1372 		if (ring->id == RCS) {
1373 			seq_puts(m, "\tinstdone read =");
1374 
1375 			for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1376 				seq_printf(m, " 0x%08x", instdone[j]);
1377 
1378 			seq_puts(m, "\n\tinstdone accu =");
1379 
1380 			for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1381 				seq_printf(m, " 0x%08x",
1382 					   ring->hangcheck.instdone[j]);
1383 
1384 			seq_puts(m, "\n");
1385 		}
1386 	}
1387 
1388 	return 0;
1389 }
1390 
1391 static int ironlake_drpc_info(struct seq_file *m)
1392 {
1393 	struct drm_info_node *node = m->private;
1394 	struct drm_device *dev = node->minor->dev;
1395 	struct drm_i915_private *dev_priv = dev->dev_private;
1396 	u32 rgvmodectl, rstdbyctl;
1397 	u16 crstandvid;
1398 	int ret;
1399 
1400 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1401 	if (ret)
1402 		return ret;
1403 	intel_runtime_pm_get(dev_priv);
1404 
1405 	rgvmodectl = I915_READ(MEMMODECTL);
1406 	rstdbyctl = I915_READ(RSTDBYCTL);
1407 	crstandvid = I915_READ16(CRSTANDVID);
1408 
1409 	intel_runtime_pm_put(dev_priv);
1410 	mutex_unlock(&dev->struct_mutex);
1411 
1412 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1413 	seq_printf(m, "Boost freq: %d\n",
1414 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1415 		   MEMMODE_BOOST_FREQ_SHIFT);
1416 	seq_printf(m, "HW control enabled: %s\n",
1417 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1418 	seq_printf(m, "SW control enabled: %s\n",
1419 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1420 	seq_printf(m, "Gated voltage change: %s\n",
1421 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1422 	seq_printf(m, "Starting frequency: P%d\n",
1423 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1424 	seq_printf(m, "Max P-state: P%d\n",
1425 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1426 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1427 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1428 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1429 	seq_printf(m, "Render standby enabled: %s\n",
1430 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1431 	seq_puts(m, "Current RS state: ");
1432 	switch (rstdbyctl & RSX_STATUS_MASK) {
1433 	case RSX_STATUS_ON:
1434 		seq_puts(m, "on\n");
1435 		break;
1436 	case RSX_STATUS_RC1:
1437 		seq_puts(m, "RC1\n");
1438 		break;
1439 	case RSX_STATUS_RC1E:
1440 		seq_puts(m, "RC1E\n");
1441 		break;
1442 	case RSX_STATUS_RS1:
1443 		seq_puts(m, "RS1\n");
1444 		break;
1445 	case RSX_STATUS_RS2:
1446 		seq_puts(m, "RS2 (RC6)\n");
1447 		break;
1448 	case RSX_STATUS_RS3:
1449 		seq_puts(m, "RC3 (RC6+)\n");
1450 		break;
1451 	default:
1452 		seq_puts(m, "unknown\n");
1453 		break;
1454 	}
1455 
1456 	return 0;
1457 }
1458 
1459 static int i915_forcewake_domains(struct seq_file *m, void *data)
1460 {
1461 	struct drm_info_node *node = m->private;
1462 	struct drm_device *dev = node->minor->dev;
1463 	struct drm_i915_private *dev_priv = dev->dev_private;
1464 	struct intel_uncore_forcewake_domain *fw_domain;
1465 	int i;
1466 
1467 	spin_lock_irq(&dev_priv->uncore.lock);
1468 	for_each_fw_domain(fw_domain, dev_priv, i) {
1469 		seq_printf(m, "%s.wake_count = %u\n",
1470 			   intel_uncore_forcewake_domain_to_str(i),
1471 			   fw_domain->wake_count);
1472 	}
1473 	spin_unlock_irq(&dev_priv->uncore.lock);
1474 
1475 	return 0;
1476 }
1477 
1478 static int vlv_drpc_info(struct seq_file *m)
1479 {
1480 	struct drm_info_node *node = m->private;
1481 	struct drm_device *dev = node->minor->dev;
1482 	struct drm_i915_private *dev_priv = dev->dev_private;
1483 	u32 rpmodectl1, rcctl1, pw_status;
1484 
1485 	intel_runtime_pm_get(dev_priv);
1486 
1487 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1488 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1489 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1490 
1491 	intel_runtime_pm_put(dev_priv);
1492 
1493 	seq_printf(m, "Video Turbo Mode: %s\n",
1494 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1495 	seq_printf(m, "Turbo enabled: %s\n",
1496 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1497 	seq_printf(m, "HW control enabled: %s\n",
1498 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1499 	seq_printf(m, "SW control enabled: %s\n",
1500 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1501 			  GEN6_RP_MEDIA_SW_MODE));
1502 	seq_printf(m, "RC6 Enabled: %s\n",
1503 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1504 					GEN6_RC_CTL_EI_MODE(1))));
1505 	seq_printf(m, "Render Power Well: %s\n",
1506 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1507 	seq_printf(m, "Media Power Well: %s\n",
1508 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1509 
1510 	seq_printf(m, "Render RC6 residency since boot: %u\n",
1511 		   I915_READ(VLV_GT_RENDER_RC6));
1512 	seq_printf(m, "Media RC6 residency since boot: %u\n",
1513 		   I915_READ(VLV_GT_MEDIA_RC6));
1514 
1515 	return i915_forcewake_domains(m, NULL);
1516 }
1517 
1518 static int gen6_drpc_info(struct seq_file *m)
1519 {
1520 	struct drm_info_node *node = m->private;
1521 	struct drm_device *dev = node->minor->dev;
1522 	struct drm_i915_private *dev_priv = dev->dev_private;
1523 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1524 	unsigned forcewake_count;
1525 	int count = 0, ret;
1526 
1527 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1528 	if (ret)
1529 		return ret;
1530 	intel_runtime_pm_get(dev_priv);
1531 
1532 	spin_lock_irq(&dev_priv->uncore.lock);
1533 	forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1534 	spin_unlock_irq(&dev_priv->uncore.lock);
1535 
1536 	if (forcewake_count) {
1537 		seq_puts(m, "RC information inaccurate because somebody "
1538 			    "holds a forcewake reference \n");
1539 	} else {
1540 		/* NB: we cannot use forcewake, else we read the wrong values */
1541 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1542 			udelay(10);
1543 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1544 	}
1545 
1546 	gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1547 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1548 
1549 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1550 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1551 	mutex_unlock(&dev->struct_mutex);
1552 	mutex_lock(&dev_priv->rps.hw_lock);
1553 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1554 	mutex_unlock(&dev_priv->rps.hw_lock);
1555 
1556 	intel_runtime_pm_put(dev_priv);
1557 
1558 	seq_printf(m, "Video Turbo Mode: %s\n",
1559 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1560 	seq_printf(m, "HW control enabled: %s\n",
1561 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1562 	seq_printf(m, "SW control enabled: %s\n",
1563 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1564 			  GEN6_RP_MEDIA_SW_MODE));
1565 	seq_printf(m, "RC1e Enabled: %s\n",
1566 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1567 	seq_printf(m, "RC6 Enabled: %s\n",
1568 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1569 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1570 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1571 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1572 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1573 	seq_puts(m, "Current RC state: ");
1574 	switch (gt_core_status & GEN6_RCn_MASK) {
1575 	case GEN6_RC0:
1576 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1577 			seq_puts(m, "Core Power Down\n");
1578 		else
1579 			seq_puts(m, "on\n");
1580 		break;
1581 	case GEN6_RC3:
1582 		seq_puts(m, "RC3\n");
1583 		break;
1584 	case GEN6_RC6:
1585 		seq_puts(m, "RC6\n");
1586 		break;
1587 	case GEN6_RC7:
1588 		seq_puts(m, "RC7\n");
1589 		break;
1590 	default:
1591 		seq_puts(m, "Unknown\n");
1592 		break;
1593 	}
1594 
1595 	seq_printf(m, "Core Power Down: %s\n",
1596 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1597 
1598 	/* Not exactly sure what this is */
1599 	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1600 		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1601 	seq_printf(m, "RC6 residency since boot: %u\n",
1602 		   I915_READ(GEN6_GT_GFX_RC6));
1603 	seq_printf(m, "RC6+ residency since boot: %u\n",
1604 		   I915_READ(GEN6_GT_GFX_RC6p));
1605 	seq_printf(m, "RC6++ residency since boot: %u\n",
1606 		   I915_READ(GEN6_GT_GFX_RC6pp));
1607 
1608 	seq_printf(m, "RC6   voltage: %dmV\n",
1609 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1610 	seq_printf(m, "RC6+  voltage: %dmV\n",
1611 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1612 	seq_printf(m, "RC6++ voltage: %dmV\n",
1613 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1614 	return 0;
1615 }
1616 
1617 static int i915_drpc_info(struct seq_file *m, void *unused)
1618 {
1619 	struct drm_info_node *node = m->private;
1620 	struct drm_device *dev = node->minor->dev;
1621 
1622 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1623 		return vlv_drpc_info(m);
1624 	else if (INTEL_INFO(dev)->gen >= 6)
1625 		return gen6_drpc_info(m);
1626 	else
1627 		return ironlake_drpc_info(m);
1628 }
1629 
1630 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1631 {
1632 	struct drm_info_node *node = m->private;
1633 	struct drm_device *dev = node->minor->dev;
1634 	struct drm_i915_private *dev_priv = dev->dev_private;
1635 
1636 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1637 		   dev_priv->fb_tracking.busy_bits);
1638 
1639 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1640 		   dev_priv->fb_tracking.flip_bits);
1641 
1642 	return 0;
1643 }
1644 
1645 static int i915_fbc_status(struct seq_file *m, void *unused)
1646 {
1647 	struct drm_info_node *node = m->private;
1648 	struct drm_device *dev = node->minor->dev;
1649 	struct drm_i915_private *dev_priv = dev->dev_private;
1650 
1651 	if (!HAS_FBC(dev)) {
1652 		seq_puts(m, "FBC unsupported on this chipset\n");
1653 		return 0;
1654 	}
1655 
1656 	intel_runtime_pm_get(dev_priv);
1657 	mutex_lock(&dev_priv->fbc.lock);
1658 
1659 	if (intel_fbc_is_active(dev_priv))
1660 		seq_puts(m, "FBC enabled\n");
1661 	else
1662 		seq_printf(m, "FBC disabled: %s\n",
1663 			   dev_priv->fbc.no_fbc_reason);
1664 
1665 	if (INTEL_INFO(dev_priv)->gen >= 7)
1666 		seq_printf(m, "Compressing: %s\n",
1667 			   yesno(I915_READ(FBC_STATUS2) &
1668 				 FBC_COMPRESSION_MASK));
1669 
1670 	mutex_unlock(&dev_priv->fbc.lock);
1671 	intel_runtime_pm_put(dev_priv);
1672 
1673 	return 0;
1674 }
1675 
1676 static int i915_fbc_fc_get(void *data, u64 *val)
1677 {
1678 	struct drm_device *dev = data;
1679 	struct drm_i915_private *dev_priv = dev->dev_private;
1680 
1681 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1682 		return -ENODEV;
1683 
1684 	*val = dev_priv->fbc.false_color;
1685 
1686 	return 0;
1687 }
1688 
1689 static int i915_fbc_fc_set(void *data, u64 val)
1690 {
1691 	struct drm_device *dev = data;
1692 	struct drm_i915_private *dev_priv = dev->dev_private;
1693 	u32 reg;
1694 
1695 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1696 		return -ENODEV;
1697 
1698 	mutex_lock(&dev_priv->fbc.lock);
1699 
1700 	reg = I915_READ(ILK_DPFC_CONTROL);
1701 	dev_priv->fbc.false_color = val;
1702 
1703 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1704 		   (reg | FBC_CTL_FALSE_COLOR) :
1705 		   (reg & ~FBC_CTL_FALSE_COLOR));
1706 
1707 	mutex_unlock(&dev_priv->fbc.lock);
1708 	return 0;
1709 }
1710 
1711 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1712 			i915_fbc_fc_get, i915_fbc_fc_set,
1713 			"%llu\n");
1714 
1715 static int i915_ips_status(struct seq_file *m, void *unused)
1716 {
1717 	struct drm_info_node *node = m->private;
1718 	struct drm_device *dev = node->minor->dev;
1719 	struct drm_i915_private *dev_priv = dev->dev_private;
1720 
1721 	if (!HAS_IPS(dev)) {
1722 		seq_puts(m, "not supported\n");
1723 		return 0;
1724 	}
1725 
1726 	intel_runtime_pm_get(dev_priv);
1727 
1728 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1729 		   yesno(i915.enable_ips));
1730 
1731 	if (INTEL_INFO(dev)->gen >= 8) {
1732 		seq_puts(m, "Currently: unknown\n");
1733 	} else {
1734 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1735 			seq_puts(m, "Currently: enabled\n");
1736 		else
1737 			seq_puts(m, "Currently: disabled\n");
1738 	}
1739 
1740 	intel_runtime_pm_put(dev_priv);
1741 
1742 	return 0;
1743 }
1744 
1745 static int i915_sr_status(struct seq_file *m, void *unused)
1746 {
1747 	struct drm_info_node *node = m->private;
1748 	struct drm_device *dev = node->minor->dev;
1749 	struct drm_i915_private *dev_priv = dev->dev_private;
1750 	bool sr_enabled = false;
1751 
1752 	intel_runtime_pm_get(dev_priv);
1753 
1754 	if (HAS_PCH_SPLIT(dev))
1755 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1756 	else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1757 		 IS_I945G(dev) || IS_I945GM(dev))
1758 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1759 	else if (IS_I915GM(dev))
1760 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1761 	else if (IS_PINEVIEW(dev))
1762 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1763 	else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1764 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1765 
1766 	intel_runtime_pm_put(dev_priv);
1767 
1768 	seq_printf(m, "self-refresh: %s\n",
1769 		   sr_enabled ? "enabled" : "disabled");
1770 
1771 	return 0;
1772 }
1773 
1774 static int i915_emon_status(struct seq_file *m, void *unused)
1775 {
1776 	struct drm_info_node *node = m->private;
1777 	struct drm_device *dev = node->minor->dev;
1778 	struct drm_i915_private *dev_priv = dev->dev_private;
1779 	unsigned long temp, chipset, gfx;
1780 	int ret;
1781 
1782 	if (!IS_GEN5(dev))
1783 		return -ENODEV;
1784 
1785 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1786 	if (ret)
1787 		return ret;
1788 
1789 	temp = i915_mch_val(dev_priv);
1790 	chipset = i915_chipset_val(dev_priv);
1791 	gfx = i915_gfx_val(dev_priv);
1792 	mutex_unlock(&dev->struct_mutex);
1793 
1794 	seq_printf(m, "GMCH temp: %ld\n", temp);
1795 	seq_printf(m, "Chipset power: %ld\n", chipset);
1796 	seq_printf(m, "GFX power: %ld\n", gfx);
1797 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1798 
1799 	return 0;
1800 }
1801 
1802 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1803 {
1804 	struct drm_info_node *node = m->private;
1805 	struct drm_device *dev = node->minor->dev;
1806 	struct drm_i915_private *dev_priv = dev->dev_private;
1807 	int ret = 0;
1808 	int gpu_freq, ia_freq;
1809 	unsigned int max_gpu_freq, min_gpu_freq;
1810 
1811 	if (!HAS_CORE_RING_FREQ(dev)) {
1812 		seq_puts(m, "unsupported on this chipset\n");
1813 		return 0;
1814 	}
1815 
1816 	intel_runtime_pm_get(dev_priv);
1817 
1818 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1819 
1820 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1821 	if (ret)
1822 		goto out;
1823 
1824 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1825 		/* Convert GT frequency to 50 HZ units */
1826 		min_gpu_freq =
1827 			dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1828 		max_gpu_freq =
1829 			dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1830 	} else {
1831 		min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1832 		max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1833 	}
1834 
1835 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1836 
1837 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1838 		ia_freq = gpu_freq;
1839 		sandybridge_pcode_read(dev_priv,
1840 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1841 				       &ia_freq);
1842 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1843 			   intel_gpu_freq(dev_priv, (gpu_freq *
1844 				(IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1845 				 GEN9_FREQ_SCALER : 1))),
1846 			   ((ia_freq >> 0) & 0xff) * 100,
1847 			   ((ia_freq >> 8) & 0xff) * 100);
1848 	}
1849 
1850 	mutex_unlock(&dev_priv->rps.hw_lock);
1851 
1852 out:
1853 	intel_runtime_pm_put(dev_priv);
1854 	return ret;
1855 }
1856 
1857 static int i915_opregion(struct seq_file *m, void *unused)
1858 {
1859 	struct drm_info_node *node = m->private;
1860 	struct drm_device *dev = node->minor->dev;
1861 	struct drm_i915_private *dev_priv = dev->dev_private;
1862 	struct intel_opregion *opregion = &dev_priv->opregion;
1863 	int ret;
1864 
1865 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1866 	if (ret)
1867 		goto out;
1868 
1869 	if (opregion->header)
1870 		seq_write(m, opregion->header, OPREGION_SIZE);
1871 
1872 	mutex_unlock(&dev->struct_mutex);
1873 
1874 out:
1875 	return 0;
1876 }
1877 
1878 static int i915_vbt(struct seq_file *m, void *unused)
1879 {
1880 	struct drm_info_node *node = m->private;
1881 	struct drm_device *dev = node->minor->dev;
1882 	struct drm_i915_private *dev_priv = dev->dev_private;
1883 	struct intel_opregion *opregion = &dev_priv->opregion;
1884 
1885 	if (opregion->vbt)
1886 		seq_write(m, opregion->vbt, opregion->vbt_size);
1887 
1888 	return 0;
1889 }
1890 
1891 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1892 {
1893 	struct drm_info_node *node = m->private;
1894 	struct drm_device *dev = node->minor->dev;
1895 	struct intel_framebuffer *fbdev_fb = NULL;
1896 	struct drm_framebuffer *drm_fb;
1897 
1898 #ifdef CONFIG_DRM_FBDEV_EMULATION
1899        if (to_i915(dev)->fbdev) {
1900                fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1901 
1902                seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1903                          fbdev_fb->base.width,
1904                          fbdev_fb->base.height,
1905                          fbdev_fb->base.depth,
1906                          fbdev_fb->base.bits_per_pixel,
1907                          fbdev_fb->base.modifier[0],
1908                          atomic_read(&fbdev_fb->base.refcount.refcount));
1909                describe_obj(m, fbdev_fb->obj);
1910                seq_putc(m, '\n');
1911        }
1912 #endif
1913 
1914 	mutex_lock(&dev->mode_config.fb_lock);
1915 	drm_for_each_fb(drm_fb, dev) {
1916 		struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1917 		if (fb == fbdev_fb)
1918 			continue;
1919 
1920 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1921 			   fb->base.width,
1922 			   fb->base.height,
1923 			   fb->base.depth,
1924 			   fb->base.bits_per_pixel,
1925 			   fb->base.modifier[0],
1926 			   atomic_read(&fb->base.refcount.refcount));
1927 		describe_obj(m, fb->obj);
1928 		seq_putc(m, '\n');
1929 	}
1930 	mutex_unlock(&dev->mode_config.fb_lock);
1931 
1932 	return 0;
1933 }
1934 
1935 static void describe_ctx_ringbuf(struct seq_file *m,
1936 				 struct intel_ringbuffer *ringbuf)
1937 {
1938 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1939 		   ringbuf->space, ringbuf->head, ringbuf->tail,
1940 		   ringbuf->last_retired_head);
1941 }
1942 
1943 static int i915_context_status(struct seq_file *m, void *unused)
1944 {
1945 	struct drm_info_node *node = m->private;
1946 	struct drm_device *dev = node->minor->dev;
1947 	struct drm_i915_private *dev_priv = dev->dev_private;
1948 	struct intel_engine_cs *ring;
1949 	struct intel_context *ctx;
1950 	int ret, i;
1951 
1952 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1953 	if (ret)
1954 		return ret;
1955 
1956 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1957 		if (!i915.enable_execlists &&
1958 		    ctx->legacy_hw_ctx.rcs_state == NULL)
1959 			continue;
1960 
1961 		seq_puts(m, "HW context ");
1962 		describe_ctx(m, ctx);
1963 		if (ctx == dev_priv->kernel_context)
1964 			seq_printf(m, "(kernel context) ");
1965 
1966 		if (i915.enable_execlists) {
1967 			seq_putc(m, '\n');
1968 			for_each_ring(ring, dev_priv, i) {
1969 				struct drm_i915_gem_object *ctx_obj =
1970 					ctx->engine[i].state;
1971 				struct intel_ringbuffer *ringbuf =
1972 					ctx->engine[i].ringbuf;
1973 
1974 				seq_printf(m, "%s: ", ring->name);
1975 				if (ctx_obj)
1976 					describe_obj(m, ctx_obj);
1977 				if (ringbuf)
1978 					describe_ctx_ringbuf(m, ringbuf);
1979 				seq_putc(m, '\n');
1980 			}
1981 		} else {
1982 			describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1983 		}
1984 
1985 		seq_putc(m, '\n');
1986 	}
1987 
1988 	mutex_unlock(&dev->struct_mutex);
1989 
1990 	return 0;
1991 }
1992 
1993 static void i915_dump_lrc_obj(struct seq_file *m,
1994 			      struct intel_context *ctx,
1995 			      struct intel_engine_cs *ring)
1996 {
1997 	struct page *page;
1998 	uint32_t *reg_state;
1999 	int j;
2000 	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
2001 	unsigned long ggtt_offset = 0;
2002 
2003 	if (ctx_obj == NULL) {
2004 		seq_printf(m, "Context on %s with no gem object\n",
2005 			   ring->name);
2006 		return;
2007 	}
2008 
2009 	seq_printf(m, "CONTEXT: %s %u\n", ring->name,
2010 		   intel_execlists_ctx_id(ctx, ring));
2011 
2012 	if (!i915_gem_obj_ggtt_bound(ctx_obj))
2013 		seq_puts(m, "\tNot bound in GGTT\n");
2014 	else
2015 		ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2016 
2017 	if (i915_gem_object_get_pages(ctx_obj)) {
2018 		seq_puts(m, "\tFailed to get pages for context object\n");
2019 		return;
2020 	}
2021 
2022 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2023 	if (!WARN_ON(page == NULL)) {
2024 		reg_state = kmap_atomic(page);
2025 
2026 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2027 			seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2028 				   ggtt_offset + 4096 + (j * 4),
2029 				   reg_state[j], reg_state[j + 1],
2030 				   reg_state[j + 2], reg_state[j + 3]);
2031 		}
2032 		kunmap_atomic(reg_state);
2033 	}
2034 
2035 	seq_putc(m, '\n');
2036 }
2037 
2038 static int i915_dump_lrc(struct seq_file *m, void *unused)
2039 {
2040 	struct drm_info_node *node = (struct drm_info_node *) m->private;
2041 	struct drm_device *dev = node->minor->dev;
2042 	struct drm_i915_private *dev_priv = dev->dev_private;
2043 	struct intel_engine_cs *ring;
2044 	struct intel_context *ctx;
2045 	int ret, i;
2046 
2047 	if (!i915.enable_execlists) {
2048 		seq_printf(m, "Logical Ring Contexts are disabled\n");
2049 		return 0;
2050 	}
2051 
2052 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2053 	if (ret)
2054 		return ret;
2055 
2056 	list_for_each_entry(ctx, &dev_priv->context_list, link)
2057 		if (ctx != dev_priv->kernel_context)
2058 			for_each_ring(ring, dev_priv, i)
2059 				i915_dump_lrc_obj(m, ctx, ring);
2060 
2061 	mutex_unlock(&dev->struct_mutex);
2062 
2063 	return 0;
2064 }
2065 
2066 static int i915_execlists(struct seq_file *m, void *data)
2067 {
2068 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2069 	struct drm_device *dev = node->minor->dev;
2070 	struct drm_i915_private *dev_priv = dev->dev_private;
2071 	struct intel_engine_cs *ring;
2072 	u32 status_pointer;
2073 	u8 read_pointer;
2074 	u8 write_pointer;
2075 	u32 status;
2076 	u32 ctx_id;
2077 	struct list_head *cursor;
2078 	int ring_id, i;
2079 	int ret;
2080 
2081 	if (!i915.enable_execlists) {
2082 		seq_puts(m, "Logical Ring Contexts are disabled\n");
2083 		return 0;
2084 	}
2085 
2086 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2087 	if (ret)
2088 		return ret;
2089 
2090 	intel_runtime_pm_get(dev_priv);
2091 
2092 	for_each_ring(ring, dev_priv, ring_id) {
2093 		struct drm_i915_gem_request *head_req = NULL;
2094 		int count = 0;
2095 		unsigned long flags;
2096 
2097 		seq_printf(m, "%s\n", ring->name);
2098 
2099 		status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
2100 		ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
2101 		seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2102 			   status, ctx_id);
2103 
2104 		status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2105 		seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2106 
2107 		read_pointer = ring->next_context_status_buffer;
2108 		write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2109 		if (read_pointer > write_pointer)
2110 			write_pointer += GEN8_CSB_ENTRIES;
2111 		seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2112 			   read_pointer, write_pointer);
2113 
2114 		for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2115 			status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
2116 			ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
2117 
2118 			seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2119 				   i, status, ctx_id);
2120 		}
2121 
2122 		spin_lock_irqsave(&ring->execlist_lock, flags);
2123 		list_for_each(cursor, &ring->execlist_queue)
2124 			count++;
2125 		head_req = list_first_entry_or_null(&ring->execlist_queue,
2126 				struct drm_i915_gem_request, execlist_link);
2127 		spin_unlock_irqrestore(&ring->execlist_lock, flags);
2128 
2129 		seq_printf(m, "\t%d requests in queue\n", count);
2130 		if (head_req) {
2131 			seq_printf(m, "\tHead request id: %u\n",
2132 				   intel_execlists_ctx_id(head_req->ctx, ring));
2133 			seq_printf(m, "\tHead request tail: %u\n",
2134 				   head_req->tail);
2135 		}
2136 
2137 		seq_putc(m, '\n');
2138 	}
2139 
2140 	intel_runtime_pm_put(dev_priv);
2141 	mutex_unlock(&dev->struct_mutex);
2142 
2143 	return 0;
2144 }
2145 
2146 static const char *swizzle_string(unsigned swizzle)
2147 {
2148 	switch (swizzle) {
2149 	case I915_BIT_6_SWIZZLE_NONE:
2150 		return "none";
2151 	case I915_BIT_6_SWIZZLE_9:
2152 		return "bit9";
2153 	case I915_BIT_6_SWIZZLE_9_10:
2154 		return "bit9/bit10";
2155 	case I915_BIT_6_SWIZZLE_9_11:
2156 		return "bit9/bit11";
2157 	case I915_BIT_6_SWIZZLE_9_10_11:
2158 		return "bit9/bit10/bit11";
2159 	case I915_BIT_6_SWIZZLE_9_17:
2160 		return "bit9/bit17";
2161 	case I915_BIT_6_SWIZZLE_9_10_17:
2162 		return "bit9/bit10/bit17";
2163 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2164 		return "unknown";
2165 	}
2166 
2167 	return "bug";
2168 }
2169 
2170 static int i915_swizzle_info(struct seq_file *m, void *data)
2171 {
2172 	struct drm_info_node *node = m->private;
2173 	struct drm_device *dev = node->minor->dev;
2174 	struct drm_i915_private *dev_priv = dev->dev_private;
2175 	int ret;
2176 
2177 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2178 	if (ret)
2179 		return ret;
2180 	intel_runtime_pm_get(dev_priv);
2181 
2182 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2183 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2184 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2185 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2186 
2187 	if (IS_GEN3(dev) || IS_GEN4(dev)) {
2188 		seq_printf(m, "DDC = 0x%08x\n",
2189 			   I915_READ(DCC));
2190 		seq_printf(m, "DDC2 = 0x%08x\n",
2191 			   I915_READ(DCC2));
2192 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2193 			   I915_READ16(C0DRB3));
2194 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2195 			   I915_READ16(C1DRB3));
2196 	} else if (INTEL_INFO(dev)->gen >= 6) {
2197 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2198 			   I915_READ(MAD_DIMM_C0));
2199 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2200 			   I915_READ(MAD_DIMM_C1));
2201 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2202 			   I915_READ(MAD_DIMM_C2));
2203 		seq_printf(m, "TILECTL = 0x%08x\n",
2204 			   I915_READ(TILECTL));
2205 		if (INTEL_INFO(dev)->gen >= 8)
2206 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2207 				   I915_READ(GAMTARBMODE));
2208 		else
2209 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2210 				   I915_READ(ARB_MODE));
2211 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2212 			   I915_READ(DISP_ARB_CTL));
2213 	}
2214 
2215 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2216 		seq_puts(m, "L-shaped memory detected\n");
2217 
2218 	intel_runtime_pm_put(dev_priv);
2219 	mutex_unlock(&dev->struct_mutex);
2220 
2221 	return 0;
2222 }
2223 
2224 static int per_file_ctx(int id, void *ptr, void *data)
2225 {
2226 	struct intel_context *ctx = ptr;
2227 	struct seq_file *m = data;
2228 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2229 
2230 	if (!ppgtt) {
2231 		seq_printf(m, "  no ppgtt for context %d\n",
2232 			   ctx->user_handle);
2233 		return 0;
2234 	}
2235 
2236 	if (i915_gem_context_is_default(ctx))
2237 		seq_puts(m, "  default context:\n");
2238 	else
2239 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2240 	ppgtt->debug_dump(ppgtt, m);
2241 
2242 	return 0;
2243 }
2244 
2245 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2246 {
2247 	struct drm_i915_private *dev_priv = dev->dev_private;
2248 	struct intel_engine_cs *ring;
2249 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2250 	int unused, i;
2251 
2252 	if (!ppgtt)
2253 		return;
2254 
2255 	for_each_ring(ring, dev_priv, unused) {
2256 		seq_printf(m, "%s\n", ring->name);
2257 		for (i = 0; i < 4; i++) {
2258 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
2259 			pdp <<= 32;
2260 			pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
2261 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2262 		}
2263 	}
2264 }
2265 
2266 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2267 {
2268 	struct drm_i915_private *dev_priv = dev->dev_private;
2269 	struct intel_engine_cs *ring;
2270 	int i;
2271 
2272 	if (INTEL_INFO(dev)->gen == 6)
2273 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2274 
2275 	for_each_ring(ring, dev_priv, i) {
2276 		seq_printf(m, "%s\n", ring->name);
2277 		if (INTEL_INFO(dev)->gen == 7)
2278 			seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2279 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2280 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2281 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2282 	}
2283 	if (dev_priv->mm.aliasing_ppgtt) {
2284 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2285 
2286 		seq_puts(m, "aliasing PPGTT:\n");
2287 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2288 
2289 		ppgtt->debug_dump(ppgtt, m);
2290 	}
2291 
2292 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2293 }
2294 
2295 static int i915_ppgtt_info(struct seq_file *m, void *data)
2296 {
2297 	struct drm_info_node *node = m->private;
2298 	struct drm_device *dev = node->minor->dev;
2299 	struct drm_i915_private *dev_priv = dev->dev_private;
2300 	struct drm_file *file;
2301 
2302 	int ret = mutex_lock_interruptible(&dev->struct_mutex);
2303 	if (ret)
2304 		return ret;
2305 	intel_runtime_pm_get(dev_priv);
2306 
2307 	if (INTEL_INFO(dev)->gen >= 8)
2308 		gen8_ppgtt_info(m, dev);
2309 	else if (INTEL_INFO(dev)->gen >= 6)
2310 		gen6_ppgtt_info(m, dev);
2311 
2312 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2313 		struct drm_i915_file_private *file_priv = file->driver_priv;
2314 		struct task_struct *task;
2315 
2316 		task = get_pid_task(file->pid, PIDTYPE_PID);
2317 		if (!task) {
2318 			ret = -ESRCH;
2319 			goto out_put;
2320 		}
2321 		seq_printf(m, "\nproc: %s\n", task->comm);
2322 		put_task_struct(task);
2323 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2324 			     (void *)(unsigned long)m);
2325 	}
2326 
2327 out_put:
2328 	intel_runtime_pm_put(dev_priv);
2329 	mutex_unlock(&dev->struct_mutex);
2330 
2331 	return ret;
2332 }
2333 
2334 static int count_irq_waiters(struct drm_i915_private *i915)
2335 {
2336 	struct intel_engine_cs *ring;
2337 	int count = 0;
2338 	int i;
2339 
2340 	for_each_ring(ring, i915, i)
2341 		count += ring->irq_refcount;
2342 
2343 	return count;
2344 }
2345 
2346 static int i915_rps_boost_info(struct seq_file *m, void *data)
2347 {
2348 	struct drm_info_node *node = m->private;
2349 	struct drm_device *dev = node->minor->dev;
2350 	struct drm_i915_private *dev_priv = dev->dev_private;
2351 	struct drm_file *file;
2352 
2353 	seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2354 	seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2355 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2356 	seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2357 		   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2358 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2359 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2360 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2361 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2362 	spin_lock(&dev_priv->rps.client_lock);
2363 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2364 		struct drm_i915_file_private *file_priv = file->driver_priv;
2365 		struct task_struct *task;
2366 
2367 		rcu_read_lock();
2368 		task = pid_task(file->pid, PIDTYPE_PID);
2369 		seq_printf(m, "%s [%d]: %d boosts%s\n",
2370 			   task ? task->comm : "<unknown>",
2371 			   task ? task->pid : -1,
2372 			   file_priv->rps.boosts,
2373 			   list_empty(&file_priv->rps.link) ? "" : ", active");
2374 		rcu_read_unlock();
2375 	}
2376 	seq_printf(m, "Semaphore boosts: %d%s\n",
2377 		   dev_priv->rps.semaphores.boosts,
2378 		   list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2379 	seq_printf(m, "MMIO flip boosts: %d%s\n",
2380 		   dev_priv->rps.mmioflips.boosts,
2381 		   list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2382 	seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2383 	spin_unlock(&dev_priv->rps.client_lock);
2384 
2385 	return 0;
2386 }
2387 
2388 static int i915_llc(struct seq_file *m, void *data)
2389 {
2390 	struct drm_info_node *node = m->private;
2391 	struct drm_device *dev = node->minor->dev;
2392 	struct drm_i915_private *dev_priv = dev->dev_private;
2393 
2394 	/* Size calculation for LLC is a bit of a pain. Ignore for now. */
2395 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2396 	seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2397 
2398 	return 0;
2399 }
2400 
2401 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2402 {
2403 	struct drm_info_node *node = m->private;
2404 	struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2405 	struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2406 	u32 tmp, i;
2407 
2408 	if (!HAS_GUC_UCODE(dev_priv->dev))
2409 		return 0;
2410 
2411 	seq_printf(m, "GuC firmware status:\n");
2412 	seq_printf(m, "\tpath: %s\n",
2413 		guc_fw->guc_fw_path);
2414 	seq_printf(m, "\tfetch: %s\n",
2415 		intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2416 	seq_printf(m, "\tload: %s\n",
2417 		intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2418 	seq_printf(m, "\tversion wanted: %d.%d\n",
2419 		guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2420 	seq_printf(m, "\tversion found: %d.%d\n",
2421 		guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2422 	seq_printf(m, "\theader: offset is %d; size = %d\n",
2423 		guc_fw->header_offset, guc_fw->header_size);
2424 	seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2425 		guc_fw->ucode_offset, guc_fw->ucode_size);
2426 	seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2427 		guc_fw->rsa_offset, guc_fw->rsa_size);
2428 
2429 	tmp = I915_READ(GUC_STATUS);
2430 
2431 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2432 	seq_printf(m, "\tBootrom status = 0x%x\n",
2433 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2434 	seq_printf(m, "\tuKernel status = 0x%x\n",
2435 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2436 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2437 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2438 	seq_puts(m, "\nScratch registers:\n");
2439 	for (i = 0; i < 16; i++)
2440 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2441 
2442 	return 0;
2443 }
2444 
2445 static void i915_guc_client_info(struct seq_file *m,
2446 				 struct drm_i915_private *dev_priv,
2447 				 struct i915_guc_client *client)
2448 {
2449 	struct intel_engine_cs *ring;
2450 	uint64_t tot = 0;
2451 	uint32_t i;
2452 
2453 	seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2454 		client->priority, client->ctx_index, client->proc_desc_offset);
2455 	seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2456 		client->doorbell_id, client->doorbell_offset, client->cookie);
2457 	seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2458 		client->wq_size, client->wq_offset, client->wq_tail);
2459 
2460 	seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2461 	seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2462 	seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2463 
2464 	for_each_ring(ring, dev_priv, i) {
2465 		seq_printf(m, "\tSubmissions: %llu %s\n",
2466 				client->submissions[i],
2467 				ring->name);
2468 		tot += client->submissions[i];
2469 	}
2470 	seq_printf(m, "\tTotal: %llu\n", tot);
2471 }
2472 
2473 static int i915_guc_info(struct seq_file *m, void *data)
2474 {
2475 	struct drm_info_node *node = m->private;
2476 	struct drm_device *dev = node->minor->dev;
2477 	struct drm_i915_private *dev_priv = dev->dev_private;
2478 	struct intel_guc guc;
2479 	struct i915_guc_client client = {};
2480 	struct intel_engine_cs *ring;
2481 	enum intel_ring_id i;
2482 	u64 total = 0;
2483 
2484 	if (!HAS_GUC_SCHED(dev_priv->dev))
2485 		return 0;
2486 
2487 	if (mutex_lock_interruptible(&dev->struct_mutex))
2488 		return 0;
2489 
2490 	/* Take a local copy of the GuC data, so we can dump it at leisure */
2491 	guc = dev_priv->guc;
2492 	if (guc.execbuf_client)
2493 		client = *guc.execbuf_client;
2494 
2495 	mutex_unlock(&dev->struct_mutex);
2496 
2497 	seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2498 	seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2499 	seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2500 	seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2501 	seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2502 
2503 	seq_printf(m, "\nGuC submissions:\n");
2504 	for_each_ring(ring, dev_priv, i) {
2505 		seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x %9d\n",
2506 			ring->name, guc.submissions[i],
2507 			guc.last_seqno[i], guc.last_seqno[i]);
2508 		total += guc.submissions[i];
2509 	}
2510 	seq_printf(m, "\t%s: %llu\n", "Total", total);
2511 
2512 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2513 	i915_guc_client_info(m, dev_priv, &client);
2514 
2515 	/* Add more as required ... */
2516 
2517 	return 0;
2518 }
2519 
2520 static int i915_guc_log_dump(struct seq_file *m, void *data)
2521 {
2522 	struct drm_info_node *node = m->private;
2523 	struct drm_device *dev = node->minor->dev;
2524 	struct drm_i915_private *dev_priv = dev->dev_private;
2525 	struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2526 	u32 *log;
2527 	int i = 0, pg;
2528 
2529 	if (!log_obj)
2530 		return 0;
2531 
2532 	for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2533 		log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2534 
2535 		for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2536 			seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2537 				   *(log + i), *(log + i + 1),
2538 				   *(log + i + 2), *(log + i + 3));
2539 
2540 		kunmap_atomic(log);
2541 	}
2542 
2543 	seq_putc(m, '\n');
2544 
2545 	return 0;
2546 }
2547 
2548 static int i915_edp_psr_status(struct seq_file *m, void *data)
2549 {
2550 	struct drm_info_node *node = m->private;
2551 	struct drm_device *dev = node->minor->dev;
2552 	struct drm_i915_private *dev_priv = dev->dev_private;
2553 	u32 psrperf = 0;
2554 	u32 stat[3];
2555 	enum pipe pipe;
2556 	bool enabled = false;
2557 
2558 	if (!HAS_PSR(dev)) {
2559 		seq_puts(m, "PSR not supported\n");
2560 		return 0;
2561 	}
2562 
2563 	intel_runtime_pm_get(dev_priv);
2564 
2565 	mutex_lock(&dev_priv->psr.lock);
2566 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2567 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2568 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2569 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2570 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2571 		   dev_priv->psr.busy_frontbuffer_bits);
2572 	seq_printf(m, "Re-enable work scheduled: %s\n",
2573 		   yesno(work_busy(&dev_priv->psr.work.work)));
2574 
2575 	if (HAS_DDI(dev))
2576 		enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2577 	else {
2578 		for_each_pipe(dev_priv, pipe) {
2579 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2580 				VLV_EDP_PSR_CURR_STATE_MASK;
2581 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2582 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2583 				enabled = true;
2584 		}
2585 	}
2586 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2587 
2588 	if (!HAS_DDI(dev))
2589 		for_each_pipe(dev_priv, pipe) {
2590 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2591 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2592 				seq_printf(m, " pipe %c", pipe_name(pipe));
2593 		}
2594 	seq_puts(m, "\n");
2595 
2596 	/*
2597 	 * VLV/CHV PSR has no kind of performance counter
2598 	 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2599 	 */
2600 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2601 		psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2602 			EDP_PSR_PERF_CNT_MASK;
2603 
2604 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2605 	}
2606 	mutex_unlock(&dev_priv->psr.lock);
2607 
2608 	intel_runtime_pm_put(dev_priv);
2609 	return 0;
2610 }
2611 
2612 static int i915_sink_crc(struct seq_file *m, void *data)
2613 {
2614 	struct drm_info_node *node = m->private;
2615 	struct drm_device *dev = node->minor->dev;
2616 	struct intel_encoder *encoder;
2617 	struct intel_connector *connector;
2618 	struct intel_dp *intel_dp = NULL;
2619 	int ret;
2620 	u8 crc[6];
2621 
2622 	drm_modeset_lock_all(dev);
2623 	for_each_intel_connector(dev, connector) {
2624 
2625 		if (connector->base.dpms != DRM_MODE_DPMS_ON)
2626 			continue;
2627 
2628 		if (!connector->base.encoder)
2629 			continue;
2630 
2631 		encoder = to_intel_encoder(connector->base.encoder);
2632 		if (encoder->type != INTEL_OUTPUT_EDP)
2633 			continue;
2634 
2635 		intel_dp = enc_to_intel_dp(&encoder->base);
2636 
2637 		ret = intel_dp_sink_crc(intel_dp, crc);
2638 		if (ret)
2639 			goto out;
2640 
2641 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2642 			   crc[0], crc[1], crc[2],
2643 			   crc[3], crc[4], crc[5]);
2644 		goto out;
2645 	}
2646 	ret = -ENODEV;
2647 out:
2648 	drm_modeset_unlock_all(dev);
2649 	return ret;
2650 }
2651 
2652 static int i915_energy_uJ(struct seq_file *m, void *data)
2653 {
2654 	struct drm_info_node *node = m->private;
2655 	struct drm_device *dev = node->minor->dev;
2656 	struct drm_i915_private *dev_priv = dev->dev_private;
2657 	u64 power;
2658 	u32 units;
2659 
2660 	if (INTEL_INFO(dev)->gen < 6)
2661 		return -ENODEV;
2662 
2663 	intel_runtime_pm_get(dev_priv);
2664 
2665 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2666 	power = (power & 0x1f00) >> 8;
2667 	units = 1000000 / (1 << power); /* convert to uJ */
2668 	power = I915_READ(MCH_SECP_NRG_STTS);
2669 	power *= units;
2670 
2671 	intel_runtime_pm_put(dev_priv);
2672 
2673 	seq_printf(m, "%llu", (long long unsigned)power);
2674 
2675 	return 0;
2676 }
2677 
2678 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2679 {
2680 	struct drm_info_node *node = m->private;
2681 	struct drm_device *dev = node->minor->dev;
2682 	struct drm_i915_private *dev_priv = dev->dev_private;
2683 
2684 	if (!HAS_RUNTIME_PM(dev)) {
2685 		seq_puts(m, "not supported\n");
2686 		return 0;
2687 	}
2688 
2689 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2690 	seq_printf(m, "IRQs disabled: %s\n",
2691 		   yesno(!intel_irqs_enabled(dev_priv)));
2692 #ifdef CONFIG_PM
2693 	seq_printf(m, "Usage count: %d\n",
2694 		   atomic_read(&dev->dev->power.usage_count));
2695 #else
2696 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2697 #endif
2698 
2699 	return 0;
2700 }
2701 
2702 static int i915_power_domain_info(struct seq_file *m, void *unused)
2703 {
2704 	struct drm_info_node *node = m->private;
2705 	struct drm_device *dev = node->minor->dev;
2706 	struct drm_i915_private *dev_priv = dev->dev_private;
2707 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2708 	int i;
2709 
2710 	mutex_lock(&power_domains->lock);
2711 
2712 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2713 	for (i = 0; i < power_domains->power_well_count; i++) {
2714 		struct i915_power_well *power_well;
2715 		enum intel_display_power_domain power_domain;
2716 
2717 		power_well = &power_domains->power_wells[i];
2718 		seq_printf(m, "%-25s %d\n", power_well->name,
2719 			   power_well->count);
2720 
2721 		for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2722 		     power_domain++) {
2723 			if (!(BIT(power_domain) & power_well->domains))
2724 				continue;
2725 
2726 			seq_printf(m, "  %-23s %d\n",
2727 				 intel_display_power_domain_str(power_domain),
2728 				 power_domains->domain_use_count[power_domain]);
2729 		}
2730 	}
2731 
2732 	mutex_unlock(&power_domains->lock);
2733 
2734 	return 0;
2735 }
2736 
2737 static int i915_dmc_info(struct seq_file *m, void *unused)
2738 {
2739 	struct drm_info_node *node = m->private;
2740 	struct drm_device *dev = node->minor->dev;
2741 	struct drm_i915_private *dev_priv = dev->dev_private;
2742 	struct intel_csr *csr;
2743 
2744 	if (!HAS_CSR(dev)) {
2745 		seq_puts(m, "not supported\n");
2746 		return 0;
2747 	}
2748 
2749 	csr = &dev_priv->csr;
2750 
2751 	intel_runtime_pm_get(dev_priv);
2752 
2753 	seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2754 	seq_printf(m, "path: %s\n", csr->fw_path);
2755 
2756 	if (!csr->dmc_payload)
2757 		goto out;
2758 
2759 	seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2760 		   CSR_VERSION_MINOR(csr->version));
2761 
2762 	if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2763 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2764 			   I915_READ(SKL_CSR_DC3_DC5_COUNT));
2765 		seq_printf(m, "DC5 -> DC6 count: %d\n",
2766 			   I915_READ(SKL_CSR_DC5_DC6_COUNT));
2767 	} else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2768 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2769 			   I915_READ(BXT_CSR_DC3_DC5_COUNT));
2770 	}
2771 
2772 out:
2773 	seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2774 	seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2775 	seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2776 
2777 	intel_runtime_pm_put(dev_priv);
2778 
2779 	return 0;
2780 }
2781 
2782 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2783 				 struct drm_display_mode *mode)
2784 {
2785 	int i;
2786 
2787 	for (i = 0; i < tabs; i++)
2788 		seq_putc(m, '\t');
2789 
2790 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2791 		   mode->base.id, mode->name,
2792 		   mode->vrefresh, mode->clock,
2793 		   mode->hdisplay, mode->hsync_start,
2794 		   mode->hsync_end, mode->htotal,
2795 		   mode->vdisplay, mode->vsync_start,
2796 		   mode->vsync_end, mode->vtotal,
2797 		   mode->type, mode->flags);
2798 }
2799 
2800 static void intel_encoder_info(struct seq_file *m,
2801 			       struct intel_crtc *intel_crtc,
2802 			       struct intel_encoder *intel_encoder)
2803 {
2804 	struct drm_info_node *node = m->private;
2805 	struct drm_device *dev = node->minor->dev;
2806 	struct drm_crtc *crtc = &intel_crtc->base;
2807 	struct intel_connector *intel_connector;
2808 	struct drm_encoder *encoder;
2809 
2810 	encoder = &intel_encoder->base;
2811 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2812 		   encoder->base.id, encoder->name);
2813 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2814 		struct drm_connector *connector = &intel_connector->base;
2815 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2816 			   connector->base.id,
2817 			   connector->name,
2818 			   drm_get_connector_status_name(connector->status));
2819 		if (connector->status == connector_status_connected) {
2820 			struct drm_display_mode *mode = &crtc->mode;
2821 			seq_printf(m, ", mode:\n");
2822 			intel_seq_print_mode(m, 2, mode);
2823 		} else {
2824 			seq_putc(m, '\n');
2825 		}
2826 	}
2827 }
2828 
2829 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2830 {
2831 	struct drm_info_node *node = m->private;
2832 	struct drm_device *dev = node->minor->dev;
2833 	struct drm_crtc *crtc = &intel_crtc->base;
2834 	struct intel_encoder *intel_encoder;
2835 	struct drm_plane_state *plane_state = crtc->primary->state;
2836 	struct drm_framebuffer *fb = plane_state->fb;
2837 
2838 	if (fb)
2839 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2840 			   fb->base.id, plane_state->src_x >> 16,
2841 			   plane_state->src_y >> 16, fb->width, fb->height);
2842 	else
2843 		seq_puts(m, "\tprimary plane disabled\n");
2844 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2845 		intel_encoder_info(m, intel_crtc, intel_encoder);
2846 }
2847 
2848 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2849 {
2850 	struct drm_display_mode *mode = panel->fixed_mode;
2851 
2852 	seq_printf(m, "\tfixed mode:\n");
2853 	intel_seq_print_mode(m, 2, mode);
2854 }
2855 
2856 static void intel_dp_info(struct seq_file *m,
2857 			  struct intel_connector *intel_connector)
2858 {
2859 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2860 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2861 
2862 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2863 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2864 	if (intel_encoder->type == INTEL_OUTPUT_EDP)
2865 		intel_panel_info(m, &intel_connector->panel);
2866 }
2867 
2868 static void intel_dp_mst_info(struct seq_file *m,
2869 			  struct intel_connector *intel_connector)
2870 {
2871 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2872 	struct intel_dp_mst_encoder *intel_mst =
2873 		enc_to_mst(&intel_encoder->base);
2874 	struct intel_digital_port *intel_dig_port = intel_mst->primary;
2875 	struct intel_dp *intel_dp = &intel_dig_port->dp;
2876 	bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2877 					intel_connector->port);
2878 
2879 	seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2880 }
2881 
2882 static void intel_hdmi_info(struct seq_file *m,
2883 			    struct intel_connector *intel_connector)
2884 {
2885 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2886 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2887 
2888 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2889 }
2890 
2891 static void intel_lvds_info(struct seq_file *m,
2892 			    struct intel_connector *intel_connector)
2893 {
2894 	intel_panel_info(m, &intel_connector->panel);
2895 }
2896 
2897 static void intel_connector_info(struct seq_file *m,
2898 				 struct drm_connector *connector)
2899 {
2900 	struct intel_connector *intel_connector = to_intel_connector(connector);
2901 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2902 	struct drm_display_mode *mode;
2903 
2904 	seq_printf(m, "connector %d: type %s, status: %s\n",
2905 		   connector->base.id, connector->name,
2906 		   drm_get_connector_status_name(connector->status));
2907 	if (connector->status == connector_status_connected) {
2908 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
2909 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2910 			   connector->display_info.width_mm,
2911 			   connector->display_info.height_mm);
2912 		seq_printf(m, "\tsubpixel order: %s\n",
2913 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2914 		seq_printf(m, "\tCEA rev: %d\n",
2915 			   connector->display_info.cea_rev);
2916 	}
2917 	if (intel_encoder) {
2918 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2919 		    intel_encoder->type == INTEL_OUTPUT_EDP)
2920 			intel_dp_info(m, intel_connector);
2921 		else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2922 			intel_hdmi_info(m, intel_connector);
2923 		else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2924 			intel_lvds_info(m, intel_connector);
2925 		else if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
2926 			intel_dp_mst_info(m, intel_connector);
2927 	}
2928 
2929 	seq_printf(m, "\tmodes:\n");
2930 	list_for_each_entry(mode, &connector->modes, head)
2931 		intel_seq_print_mode(m, 2, mode);
2932 }
2933 
2934 static bool cursor_active(struct drm_device *dev, int pipe)
2935 {
2936 	struct drm_i915_private *dev_priv = dev->dev_private;
2937 	u32 state;
2938 
2939 	if (IS_845G(dev) || IS_I865G(dev))
2940 		state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2941 	else
2942 		state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2943 
2944 	return state;
2945 }
2946 
2947 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2948 {
2949 	struct drm_i915_private *dev_priv = dev->dev_private;
2950 	u32 pos;
2951 
2952 	pos = I915_READ(CURPOS(pipe));
2953 
2954 	*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2955 	if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2956 		*x = -*x;
2957 
2958 	*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2959 	if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2960 		*y = -*y;
2961 
2962 	return cursor_active(dev, pipe);
2963 }
2964 
2965 static const char *plane_type(enum drm_plane_type type)
2966 {
2967 	switch (type) {
2968 	case DRM_PLANE_TYPE_OVERLAY:
2969 		return "OVL";
2970 	case DRM_PLANE_TYPE_PRIMARY:
2971 		return "PRI";
2972 	case DRM_PLANE_TYPE_CURSOR:
2973 		return "CUR";
2974 	/*
2975 	 * Deliberately omitting default: to generate compiler warnings
2976 	 * when a new drm_plane_type gets added.
2977 	 */
2978 	}
2979 
2980 	return "unknown";
2981 }
2982 
2983 static const char *plane_rotation(unsigned int rotation)
2984 {
2985 	static char buf[48];
2986 	/*
2987 	 * According to doc only one DRM_ROTATE_ is allowed but this
2988 	 * will print them all to visualize if the values are misused
2989 	 */
2990 	snprintf(buf, sizeof(buf),
2991 		 "%s%s%s%s%s%s(0x%08x)",
2992 		 (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
2993 		 (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
2994 		 (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
2995 		 (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
2996 		 (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
2997 		 (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
2998 		 rotation);
2999 
3000 	return buf;
3001 }
3002 
3003 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3004 {
3005 	struct drm_info_node *node = m->private;
3006 	struct drm_device *dev = node->minor->dev;
3007 	struct intel_plane *intel_plane;
3008 
3009 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3010 		struct drm_plane_state *state;
3011 		struct drm_plane *plane = &intel_plane->base;
3012 
3013 		if (!plane->state) {
3014 			seq_puts(m, "plane->state is NULL!\n");
3015 			continue;
3016 		}
3017 
3018 		state = plane->state;
3019 
3020 		seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3021 			   plane->base.id,
3022 			   plane_type(intel_plane->base.type),
3023 			   state->crtc_x, state->crtc_y,
3024 			   state->crtc_w, state->crtc_h,
3025 			   (state->src_x >> 16),
3026 			   ((state->src_x & 0xffff) * 15625) >> 10,
3027 			   (state->src_y >> 16),
3028 			   ((state->src_y & 0xffff) * 15625) >> 10,
3029 			   (state->src_w >> 16),
3030 			   ((state->src_w & 0xffff) * 15625) >> 10,
3031 			   (state->src_h >> 16),
3032 			   ((state->src_h & 0xffff) * 15625) >> 10,
3033 			   state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3034 			   plane_rotation(state->rotation));
3035 	}
3036 }
3037 
3038 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3039 {
3040 	struct intel_crtc_state *pipe_config;
3041 	int num_scalers = intel_crtc->num_scalers;
3042 	int i;
3043 
3044 	pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3045 
3046 	/* Not all platformas have a scaler */
3047 	if (num_scalers) {
3048 		seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3049 			   num_scalers,
3050 			   pipe_config->scaler_state.scaler_users,
3051 			   pipe_config->scaler_state.scaler_id);
3052 
3053 		for (i = 0; i < SKL_NUM_SCALERS; i++) {
3054 			struct intel_scaler *sc =
3055 					&pipe_config->scaler_state.scalers[i];
3056 
3057 			seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3058 				   i, yesno(sc->in_use), sc->mode);
3059 		}
3060 		seq_puts(m, "\n");
3061 	} else {
3062 		seq_puts(m, "\tNo scalers available on this platform\n");
3063 	}
3064 }
3065 
3066 static int i915_display_info(struct seq_file *m, void *unused)
3067 {
3068 	struct drm_info_node *node = m->private;
3069 	struct drm_device *dev = node->minor->dev;
3070 	struct drm_i915_private *dev_priv = dev->dev_private;
3071 	struct intel_crtc *crtc;
3072 	struct drm_connector *connector;
3073 
3074 	intel_runtime_pm_get(dev_priv);
3075 	drm_modeset_lock_all(dev);
3076 	seq_printf(m, "CRTC info\n");
3077 	seq_printf(m, "---------\n");
3078 	for_each_intel_crtc(dev, crtc) {
3079 		bool active;
3080 		struct intel_crtc_state *pipe_config;
3081 		int x, y;
3082 
3083 		pipe_config = to_intel_crtc_state(crtc->base.state);
3084 
3085 		seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3086 			   crtc->base.base.id, pipe_name(crtc->pipe),
3087 			   yesno(pipe_config->base.active),
3088 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3089 			   yesno(pipe_config->dither), pipe_config->pipe_bpp);
3090 
3091 		if (pipe_config->base.active) {
3092 			intel_crtc_info(m, crtc);
3093 
3094 			active = cursor_position(dev, crtc->pipe, &x, &y);
3095 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3096 				   yesno(crtc->cursor_base),
3097 				   x, y, crtc->base.cursor->state->crtc_w,
3098 				   crtc->base.cursor->state->crtc_h,
3099 				   crtc->cursor_addr, yesno(active));
3100 			intel_scaler_info(m, crtc);
3101 			intel_plane_info(m, crtc);
3102 		}
3103 
3104 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3105 			   yesno(!crtc->cpu_fifo_underrun_disabled),
3106 			   yesno(!crtc->pch_fifo_underrun_disabled));
3107 	}
3108 
3109 	seq_printf(m, "\n");
3110 	seq_printf(m, "Connector info\n");
3111 	seq_printf(m, "--------------\n");
3112 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3113 		intel_connector_info(m, connector);
3114 	}
3115 	drm_modeset_unlock_all(dev);
3116 	intel_runtime_pm_put(dev_priv);
3117 
3118 	return 0;
3119 }
3120 
3121 static int i915_semaphore_status(struct seq_file *m, void *unused)
3122 {
3123 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3124 	struct drm_device *dev = node->minor->dev;
3125 	struct drm_i915_private *dev_priv = dev->dev_private;
3126 	struct intel_engine_cs *ring;
3127 	int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3128 	int i, j, ret;
3129 
3130 	if (!i915_semaphore_is_enabled(dev)) {
3131 		seq_puts(m, "Semaphores are disabled\n");
3132 		return 0;
3133 	}
3134 
3135 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3136 	if (ret)
3137 		return ret;
3138 	intel_runtime_pm_get(dev_priv);
3139 
3140 	if (IS_BROADWELL(dev)) {
3141 		struct page *page;
3142 		uint64_t *seqno;
3143 
3144 		page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3145 
3146 		seqno = (uint64_t *)kmap_atomic(page);
3147 		for_each_ring(ring, dev_priv, i) {
3148 			uint64_t offset;
3149 
3150 			seq_printf(m, "%s\n", ring->name);
3151 
3152 			seq_puts(m, "  Last signal:");
3153 			for (j = 0; j < num_rings; j++) {
3154 				offset = i * I915_NUM_RINGS + j;
3155 				seq_printf(m, "0x%08llx (0x%02llx) ",
3156 					   seqno[offset], offset * 8);
3157 			}
3158 			seq_putc(m, '\n');
3159 
3160 			seq_puts(m, "  Last wait:  ");
3161 			for (j = 0; j < num_rings; j++) {
3162 				offset = i + (j * I915_NUM_RINGS);
3163 				seq_printf(m, "0x%08llx (0x%02llx) ",
3164 					   seqno[offset], offset * 8);
3165 			}
3166 			seq_putc(m, '\n');
3167 
3168 		}
3169 		kunmap_atomic(seqno);
3170 	} else {
3171 		seq_puts(m, "  Last signal:");
3172 		for_each_ring(ring, dev_priv, i)
3173 			for (j = 0; j < num_rings; j++)
3174 				seq_printf(m, "0x%08x\n",
3175 					   I915_READ(ring->semaphore.mbox.signal[j]));
3176 		seq_putc(m, '\n');
3177 	}
3178 
3179 	seq_puts(m, "\nSync seqno:\n");
3180 	for_each_ring(ring, dev_priv, i) {
3181 		for (j = 0; j < num_rings; j++) {
3182 			seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
3183 		}
3184 		seq_putc(m, '\n');
3185 	}
3186 	seq_putc(m, '\n');
3187 
3188 	intel_runtime_pm_put(dev_priv);
3189 	mutex_unlock(&dev->struct_mutex);
3190 	return 0;
3191 }
3192 
3193 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3194 {
3195 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3196 	struct drm_device *dev = node->minor->dev;
3197 	struct drm_i915_private *dev_priv = dev->dev_private;
3198 	int i;
3199 
3200 	drm_modeset_lock_all(dev);
3201 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3202 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3203 
3204 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3205 		seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
3206 			   pll->config.crtc_mask, pll->active, yesno(pll->on));
3207 		seq_printf(m, " tracked hardware state:\n");
3208 		seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3209 		seq_printf(m, " dpll_md: 0x%08x\n",
3210 			   pll->config.hw_state.dpll_md);
3211 		seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3212 		seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3213 		seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3214 	}
3215 	drm_modeset_unlock_all(dev);
3216 
3217 	return 0;
3218 }
3219 
3220 static int i915_wa_registers(struct seq_file *m, void *unused)
3221 {
3222 	int i;
3223 	int ret;
3224 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3225 	struct drm_device *dev = node->minor->dev;
3226 	struct drm_i915_private *dev_priv = dev->dev_private;
3227 
3228 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3229 	if (ret)
3230 		return ret;
3231 
3232 	intel_runtime_pm_get(dev_priv);
3233 
3234 	seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
3235 	for (i = 0; i < dev_priv->workarounds.count; ++i) {
3236 		i915_reg_t addr;
3237 		u32 mask, value, read;
3238 		bool ok;
3239 
3240 		addr = dev_priv->workarounds.reg[i].addr;
3241 		mask = dev_priv->workarounds.reg[i].mask;
3242 		value = dev_priv->workarounds.reg[i].value;
3243 		read = I915_READ(addr);
3244 		ok = (value & mask) == (read & mask);
3245 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3246 			   i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3247 	}
3248 
3249 	intel_runtime_pm_put(dev_priv);
3250 	mutex_unlock(&dev->struct_mutex);
3251 
3252 	return 0;
3253 }
3254 
3255 static int i915_ddb_info(struct seq_file *m, void *unused)
3256 {
3257 	struct drm_info_node *node = m->private;
3258 	struct drm_device *dev = node->minor->dev;
3259 	struct drm_i915_private *dev_priv = dev->dev_private;
3260 	struct skl_ddb_allocation *ddb;
3261 	struct skl_ddb_entry *entry;
3262 	enum pipe pipe;
3263 	int plane;
3264 
3265 	if (INTEL_INFO(dev)->gen < 9)
3266 		return 0;
3267 
3268 	drm_modeset_lock_all(dev);
3269 
3270 	ddb = &dev_priv->wm.skl_hw.ddb;
3271 
3272 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3273 
3274 	for_each_pipe(dev_priv, pipe) {
3275 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3276 
3277 		for_each_plane(dev_priv, pipe, plane) {
3278 			entry = &ddb->plane[pipe][plane];
3279 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3280 				   entry->start, entry->end,
3281 				   skl_ddb_entry_size(entry));
3282 		}
3283 
3284 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3285 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3286 			   entry->end, skl_ddb_entry_size(entry));
3287 	}
3288 
3289 	drm_modeset_unlock_all(dev);
3290 
3291 	return 0;
3292 }
3293 
3294 static void drrs_status_per_crtc(struct seq_file *m,
3295 		struct drm_device *dev, struct intel_crtc *intel_crtc)
3296 {
3297 	struct intel_encoder *intel_encoder;
3298 	struct drm_i915_private *dev_priv = dev->dev_private;
3299 	struct i915_drrs *drrs = &dev_priv->drrs;
3300 	int vrefresh = 0;
3301 
3302 	for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3303 		/* Encoder connected on this CRTC */
3304 		switch (intel_encoder->type) {
3305 		case INTEL_OUTPUT_EDP:
3306 			seq_puts(m, "eDP:\n");
3307 			break;
3308 		case INTEL_OUTPUT_DSI:
3309 			seq_puts(m, "DSI:\n");
3310 			break;
3311 		case INTEL_OUTPUT_HDMI:
3312 			seq_puts(m, "HDMI:\n");
3313 			break;
3314 		case INTEL_OUTPUT_DISPLAYPORT:
3315 			seq_puts(m, "DP:\n");
3316 			break;
3317 		default:
3318 			seq_printf(m, "Other encoder (id=%d).\n",
3319 						intel_encoder->type);
3320 			return;
3321 		}
3322 	}
3323 
3324 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3325 		seq_puts(m, "\tVBT: DRRS_type: Static");
3326 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3327 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3328 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3329 		seq_puts(m, "\tVBT: DRRS_type: None");
3330 	else
3331 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3332 
3333 	seq_puts(m, "\n\n");
3334 
3335 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3336 		struct intel_panel *panel;
3337 
3338 		mutex_lock(&drrs->mutex);
3339 		/* DRRS Supported */
3340 		seq_puts(m, "\tDRRS Supported: Yes\n");
3341 
3342 		/* disable_drrs() will make drrs->dp NULL */
3343 		if (!drrs->dp) {
3344 			seq_puts(m, "Idleness DRRS: Disabled");
3345 			mutex_unlock(&drrs->mutex);
3346 			return;
3347 		}
3348 
3349 		panel = &drrs->dp->attached_connector->panel;
3350 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3351 					drrs->busy_frontbuffer_bits);
3352 
3353 		seq_puts(m, "\n\t\t");
3354 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3355 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3356 			vrefresh = panel->fixed_mode->vrefresh;
3357 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3358 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3359 			vrefresh = panel->downclock_mode->vrefresh;
3360 		} else {
3361 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3362 						drrs->refresh_rate_type);
3363 			mutex_unlock(&drrs->mutex);
3364 			return;
3365 		}
3366 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3367 
3368 		seq_puts(m, "\n\t\t");
3369 		mutex_unlock(&drrs->mutex);
3370 	} else {
3371 		/* DRRS not supported. Print the VBT parameter*/
3372 		seq_puts(m, "\tDRRS Supported : No");
3373 	}
3374 	seq_puts(m, "\n");
3375 }
3376 
3377 static int i915_drrs_status(struct seq_file *m, void *unused)
3378 {
3379 	struct drm_info_node *node = m->private;
3380 	struct drm_device *dev = node->minor->dev;
3381 	struct intel_crtc *intel_crtc;
3382 	int active_crtc_cnt = 0;
3383 
3384 	for_each_intel_crtc(dev, intel_crtc) {
3385 		drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3386 
3387 		if (intel_crtc->base.state->active) {
3388 			active_crtc_cnt++;
3389 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3390 
3391 			drrs_status_per_crtc(m, dev, intel_crtc);
3392 		}
3393 
3394 		drm_modeset_unlock(&intel_crtc->base.mutex);
3395 	}
3396 
3397 	if (!active_crtc_cnt)
3398 		seq_puts(m, "No active crtc found\n");
3399 
3400 	return 0;
3401 }
3402 
3403 struct pipe_crc_info {
3404 	const char *name;
3405 	struct drm_device *dev;
3406 	enum pipe pipe;
3407 };
3408 
3409 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3410 {
3411 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3412 	struct drm_device *dev = node->minor->dev;
3413 	struct drm_encoder *encoder;
3414 	struct intel_encoder *intel_encoder;
3415 	struct intel_digital_port *intel_dig_port;
3416 	drm_modeset_lock_all(dev);
3417 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3418 		intel_encoder = to_intel_encoder(encoder);
3419 		if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3420 			continue;
3421 		intel_dig_port = enc_to_dig_port(encoder);
3422 		if (!intel_dig_port->dp.can_mst)
3423 			continue;
3424 
3425 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3426 	}
3427 	drm_modeset_unlock_all(dev);
3428 	return 0;
3429 }
3430 
3431 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3432 {
3433 	struct pipe_crc_info *info = inode->i_private;
3434 	struct drm_i915_private *dev_priv = info->dev->dev_private;
3435 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3436 
3437 	if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3438 		return -ENODEV;
3439 
3440 	spin_lock_irq(&pipe_crc->lock);
3441 
3442 	if (pipe_crc->opened) {
3443 		spin_unlock_irq(&pipe_crc->lock);
3444 		return -EBUSY; /* already open */
3445 	}
3446 
3447 	pipe_crc->opened = true;
3448 	filep->private_data = inode->i_private;
3449 
3450 	spin_unlock_irq(&pipe_crc->lock);
3451 
3452 	return 0;
3453 }
3454 
3455 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3456 {
3457 	struct pipe_crc_info *info = inode->i_private;
3458 	struct drm_i915_private *dev_priv = info->dev->dev_private;
3459 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3460 
3461 	spin_lock_irq(&pipe_crc->lock);
3462 	pipe_crc->opened = false;
3463 	spin_unlock_irq(&pipe_crc->lock);
3464 
3465 	return 0;
3466 }
3467 
3468 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3469 #define PIPE_CRC_LINE_LEN	(6 * 8 + 5 + 1)
3470 /* account for \'0' */
3471 #define PIPE_CRC_BUFFER_LEN	(PIPE_CRC_LINE_LEN + 1)
3472 
3473 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3474 {
3475 	assert_spin_locked(&pipe_crc->lock);
3476 	return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3477 			INTEL_PIPE_CRC_ENTRIES_NR);
3478 }
3479 
3480 static ssize_t
3481 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3482 		   loff_t *pos)
3483 {
3484 	struct pipe_crc_info *info = filep->private_data;
3485 	struct drm_device *dev = info->dev;
3486 	struct drm_i915_private *dev_priv = dev->dev_private;
3487 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3488 	char buf[PIPE_CRC_BUFFER_LEN];
3489 	int n_entries;
3490 	ssize_t bytes_read;
3491 
3492 	/*
3493 	 * Don't allow user space to provide buffers not big enough to hold
3494 	 * a line of data.
3495 	 */
3496 	if (count < PIPE_CRC_LINE_LEN)
3497 		return -EINVAL;
3498 
3499 	if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3500 		return 0;
3501 
3502 	/* nothing to read */
3503 	spin_lock_irq(&pipe_crc->lock);
3504 	while (pipe_crc_data_count(pipe_crc) == 0) {
3505 		int ret;
3506 
3507 		if (filep->f_flags & O_NONBLOCK) {
3508 			spin_unlock_irq(&pipe_crc->lock);
3509 			return -EAGAIN;
3510 		}
3511 
3512 		ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3513 				pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3514 		if (ret) {
3515 			spin_unlock_irq(&pipe_crc->lock);
3516 			return ret;
3517 		}
3518 	}
3519 
3520 	/* We now have one or more entries to read */
3521 	n_entries = count / PIPE_CRC_LINE_LEN;
3522 
3523 	bytes_read = 0;
3524 	while (n_entries > 0) {
3525 		struct intel_pipe_crc_entry *entry =
3526 			&pipe_crc->entries[pipe_crc->tail];
3527 		int ret;
3528 
3529 		if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3530 			     INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3531 			break;
3532 
3533 		BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3534 		pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3535 
3536 		bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3537 				       "%8u %8x %8x %8x %8x %8x\n",
3538 				       entry->frame, entry->crc[0],
3539 				       entry->crc[1], entry->crc[2],
3540 				       entry->crc[3], entry->crc[4]);
3541 
3542 		spin_unlock_irq(&pipe_crc->lock);
3543 
3544 		ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3545 		if (ret == PIPE_CRC_LINE_LEN)
3546 			return -EFAULT;
3547 
3548 		user_buf += PIPE_CRC_LINE_LEN;
3549 		n_entries--;
3550 
3551 		spin_lock_irq(&pipe_crc->lock);
3552 	}
3553 
3554 	spin_unlock_irq(&pipe_crc->lock);
3555 
3556 	return bytes_read;
3557 }
3558 
3559 static const struct file_operations i915_pipe_crc_fops = {
3560 	.owner = THIS_MODULE,
3561 	.open = i915_pipe_crc_open,
3562 	.read = i915_pipe_crc_read,
3563 	.release = i915_pipe_crc_release,
3564 };
3565 
3566 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3567 	{
3568 		.name = "i915_pipe_A_crc",
3569 		.pipe = PIPE_A,
3570 	},
3571 	{
3572 		.name = "i915_pipe_B_crc",
3573 		.pipe = PIPE_B,
3574 	},
3575 	{
3576 		.name = "i915_pipe_C_crc",
3577 		.pipe = PIPE_C,
3578 	},
3579 };
3580 
3581 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3582 				enum pipe pipe)
3583 {
3584 	struct drm_device *dev = minor->dev;
3585 	struct dentry *ent;
3586 	struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3587 
3588 	info->dev = dev;
3589 	ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3590 				  &i915_pipe_crc_fops);
3591 	if (!ent)
3592 		return -ENOMEM;
3593 
3594 	return drm_add_fake_info_node(minor, ent, info);
3595 }
3596 
3597 static const char * const pipe_crc_sources[] = {
3598 	"none",
3599 	"plane1",
3600 	"plane2",
3601 	"pf",
3602 	"pipe",
3603 	"TV",
3604 	"DP-B",
3605 	"DP-C",
3606 	"DP-D",
3607 	"auto",
3608 };
3609 
3610 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3611 {
3612 	BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3613 	return pipe_crc_sources[source];
3614 }
3615 
3616 static int display_crc_ctl_show(struct seq_file *m, void *data)
3617 {
3618 	struct drm_device *dev = m->private;
3619 	struct drm_i915_private *dev_priv = dev->dev_private;
3620 	int i;
3621 
3622 	for (i = 0; i < I915_MAX_PIPES; i++)
3623 		seq_printf(m, "%c %s\n", pipe_name(i),
3624 			   pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3625 
3626 	return 0;
3627 }
3628 
3629 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3630 {
3631 	struct drm_device *dev = inode->i_private;
3632 
3633 	return single_open(file, display_crc_ctl_show, dev);
3634 }
3635 
3636 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3637 				 uint32_t *val)
3638 {
3639 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3640 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3641 
3642 	switch (*source) {
3643 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3644 		*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3645 		break;
3646 	case INTEL_PIPE_CRC_SOURCE_NONE:
3647 		*val = 0;
3648 		break;
3649 	default:
3650 		return -EINVAL;
3651 	}
3652 
3653 	return 0;
3654 }
3655 
3656 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3657 				     enum intel_pipe_crc_source *source)
3658 {
3659 	struct intel_encoder *encoder;
3660 	struct intel_crtc *crtc;
3661 	struct intel_digital_port *dig_port;
3662 	int ret = 0;
3663 
3664 	*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3665 
3666 	drm_modeset_lock_all(dev);
3667 	for_each_intel_encoder(dev, encoder) {
3668 		if (!encoder->base.crtc)
3669 			continue;
3670 
3671 		crtc = to_intel_crtc(encoder->base.crtc);
3672 
3673 		if (crtc->pipe != pipe)
3674 			continue;
3675 
3676 		switch (encoder->type) {
3677 		case INTEL_OUTPUT_TVOUT:
3678 			*source = INTEL_PIPE_CRC_SOURCE_TV;
3679 			break;
3680 		case INTEL_OUTPUT_DISPLAYPORT:
3681 		case INTEL_OUTPUT_EDP:
3682 			dig_port = enc_to_dig_port(&encoder->base);
3683 			switch (dig_port->port) {
3684 			case PORT_B:
3685 				*source = INTEL_PIPE_CRC_SOURCE_DP_B;
3686 				break;
3687 			case PORT_C:
3688 				*source = INTEL_PIPE_CRC_SOURCE_DP_C;
3689 				break;
3690 			case PORT_D:
3691 				*source = INTEL_PIPE_CRC_SOURCE_DP_D;
3692 				break;
3693 			default:
3694 				WARN(1, "nonexisting DP port %c\n",
3695 				     port_name(dig_port->port));
3696 				break;
3697 			}
3698 			break;
3699 		default:
3700 			break;
3701 		}
3702 	}
3703 	drm_modeset_unlock_all(dev);
3704 
3705 	return ret;
3706 }
3707 
3708 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3709 				enum pipe pipe,
3710 				enum intel_pipe_crc_source *source,
3711 				uint32_t *val)
3712 {
3713 	struct drm_i915_private *dev_priv = dev->dev_private;
3714 	bool need_stable_symbols = false;
3715 
3716 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3717 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3718 		if (ret)
3719 			return ret;
3720 	}
3721 
3722 	switch (*source) {
3723 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3724 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3725 		break;
3726 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3727 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3728 		need_stable_symbols = true;
3729 		break;
3730 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3731 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3732 		need_stable_symbols = true;
3733 		break;
3734 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3735 		if (!IS_CHERRYVIEW(dev))
3736 			return -EINVAL;
3737 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3738 		need_stable_symbols = true;
3739 		break;
3740 	case INTEL_PIPE_CRC_SOURCE_NONE:
3741 		*val = 0;
3742 		break;
3743 	default:
3744 		return -EINVAL;
3745 	}
3746 
3747 	/*
3748 	 * When the pipe CRC tap point is after the transcoders we need
3749 	 * to tweak symbol-level features to produce a deterministic series of
3750 	 * symbols for a given frame. We need to reset those features only once
3751 	 * a frame (instead of every nth symbol):
3752 	 *   - DC-balance: used to ensure a better clock recovery from the data
3753 	 *     link (SDVO)
3754 	 *   - DisplayPort scrambling: used for EMI reduction
3755 	 */
3756 	if (need_stable_symbols) {
3757 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3758 
3759 		tmp |= DC_BALANCE_RESET_VLV;
3760 		switch (pipe) {
3761 		case PIPE_A:
3762 			tmp |= PIPE_A_SCRAMBLE_RESET;
3763 			break;
3764 		case PIPE_B:
3765 			tmp |= PIPE_B_SCRAMBLE_RESET;
3766 			break;
3767 		case PIPE_C:
3768 			tmp |= PIPE_C_SCRAMBLE_RESET;
3769 			break;
3770 		default:
3771 			return -EINVAL;
3772 		}
3773 		I915_WRITE(PORT_DFT2_G4X, tmp);
3774 	}
3775 
3776 	return 0;
3777 }
3778 
3779 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3780 				 enum pipe pipe,
3781 				 enum intel_pipe_crc_source *source,
3782 				 uint32_t *val)
3783 {
3784 	struct drm_i915_private *dev_priv = dev->dev_private;
3785 	bool need_stable_symbols = false;
3786 
3787 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3788 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3789 		if (ret)
3790 			return ret;
3791 	}
3792 
3793 	switch (*source) {
3794 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3795 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3796 		break;
3797 	case INTEL_PIPE_CRC_SOURCE_TV:
3798 		if (!SUPPORTS_TV(dev))
3799 			return -EINVAL;
3800 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3801 		break;
3802 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3803 		if (!IS_G4X(dev))
3804 			return -EINVAL;
3805 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3806 		need_stable_symbols = true;
3807 		break;
3808 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3809 		if (!IS_G4X(dev))
3810 			return -EINVAL;
3811 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3812 		need_stable_symbols = true;
3813 		break;
3814 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3815 		if (!IS_G4X(dev))
3816 			return -EINVAL;
3817 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3818 		need_stable_symbols = true;
3819 		break;
3820 	case INTEL_PIPE_CRC_SOURCE_NONE:
3821 		*val = 0;
3822 		break;
3823 	default:
3824 		return -EINVAL;
3825 	}
3826 
3827 	/*
3828 	 * When the pipe CRC tap point is after the transcoders we need
3829 	 * to tweak symbol-level features to produce a deterministic series of
3830 	 * symbols for a given frame. We need to reset those features only once
3831 	 * a frame (instead of every nth symbol):
3832 	 *   - DC-balance: used to ensure a better clock recovery from the data
3833 	 *     link (SDVO)
3834 	 *   - DisplayPort scrambling: used for EMI reduction
3835 	 */
3836 	if (need_stable_symbols) {
3837 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3838 
3839 		WARN_ON(!IS_G4X(dev));
3840 
3841 		I915_WRITE(PORT_DFT_I9XX,
3842 			   I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3843 
3844 		if (pipe == PIPE_A)
3845 			tmp |= PIPE_A_SCRAMBLE_RESET;
3846 		else
3847 			tmp |= PIPE_B_SCRAMBLE_RESET;
3848 
3849 		I915_WRITE(PORT_DFT2_G4X, tmp);
3850 	}
3851 
3852 	return 0;
3853 }
3854 
3855 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3856 					 enum pipe pipe)
3857 {
3858 	struct drm_i915_private *dev_priv = dev->dev_private;
3859 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3860 
3861 	switch (pipe) {
3862 	case PIPE_A:
3863 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3864 		break;
3865 	case PIPE_B:
3866 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3867 		break;
3868 	case PIPE_C:
3869 		tmp &= ~PIPE_C_SCRAMBLE_RESET;
3870 		break;
3871 	default:
3872 		return;
3873 	}
3874 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3875 		tmp &= ~DC_BALANCE_RESET_VLV;
3876 	I915_WRITE(PORT_DFT2_G4X, tmp);
3877 
3878 }
3879 
3880 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3881 					 enum pipe pipe)
3882 {
3883 	struct drm_i915_private *dev_priv = dev->dev_private;
3884 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3885 
3886 	if (pipe == PIPE_A)
3887 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3888 	else
3889 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3890 	I915_WRITE(PORT_DFT2_G4X, tmp);
3891 
3892 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3893 		I915_WRITE(PORT_DFT_I9XX,
3894 			   I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3895 	}
3896 }
3897 
3898 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3899 				uint32_t *val)
3900 {
3901 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3902 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3903 
3904 	switch (*source) {
3905 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3906 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3907 		break;
3908 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3909 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3910 		break;
3911 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3912 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3913 		break;
3914 	case INTEL_PIPE_CRC_SOURCE_NONE:
3915 		*val = 0;
3916 		break;
3917 	default:
3918 		return -EINVAL;
3919 	}
3920 
3921 	return 0;
3922 }
3923 
3924 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3925 {
3926 	struct drm_i915_private *dev_priv = dev->dev_private;
3927 	struct intel_crtc *crtc =
3928 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3929 	struct intel_crtc_state *pipe_config;
3930 	struct drm_atomic_state *state;
3931 	int ret = 0;
3932 
3933 	drm_modeset_lock_all(dev);
3934 	state = drm_atomic_state_alloc(dev);
3935 	if (!state) {
3936 		ret = -ENOMEM;
3937 		goto out;
3938 	}
3939 
3940 	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3941 	pipe_config = intel_atomic_get_crtc_state(state, crtc);
3942 	if (IS_ERR(pipe_config)) {
3943 		ret = PTR_ERR(pipe_config);
3944 		goto out;
3945 	}
3946 
3947 	pipe_config->pch_pfit.force_thru = enable;
3948 	if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3949 	    pipe_config->pch_pfit.enabled != enable)
3950 		pipe_config->base.connectors_changed = true;
3951 
3952 	ret = drm_atomic_commit(state);
3953 out:
3954 	drm_modeset_unlock_all(dev);
3955 	WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3956 	if (ret)
3957 		drm_atomic_state_free(state);
3958 }
3959 
3960 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3961 				enum pipe pipe,
3962 				enum intel_pipe_crc_source *source,
3963 				uint32_t *val)
3964 {
3965 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3966 		*source = INTEL_PIPE_CRC_SOURCE_PF;
3967 
3968 	switch (*source) {
3969 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3970 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3971 		break;
3972 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3973 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3974 		break;
3975 	case INTEL_PIPE_CRC_SOURCE_PF:
3976 		if (IS_HASWELL(dev) && pipe == PIPE_A)
3977 			hsw_trans_edp_pipe_A_crc_wa(dev, true);
3978 
3979 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3980 		break;
3981 	case INTEL_PIPE_CRC_SOURCE_NONE:
3982 		*val = 0;
3983 		break;
3984 	default:
3985 		return -EINVAL;
3986 	}
3987 
3988 	return 0;
3989 }
3990 
3991 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3992 			       enum intel_pipe_crc_source source)
3993 {
3994 	struct drm_i915_private *dev_priv = dev->dev_private;
3995 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3996 	struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3997 									pipe));
3998 	u32 val = 0; /* shut up gcc */
3999 	int ret;
4000 
4001 	if (pipe_crc->source == source)
4002 		return 0;
4003 
4004 	/* forbid changing the source without going back to 'none' */
4005 	if (pipe_crc->source && source)
4006 		return -EINVAL;
4007 
4008 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
4009 		DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4010 		return -EIO;
4011 	}
4012 
4013 	if (IS_GEN2(dev))
4014 		ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4015 	else if (INTEL_INFO(dev)->gen < 5)
4016 		ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4017 	else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4018 		ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4019 	else if (IS_GEN5(dev) || IS_GEN6(dev))
4020 		ret = ilk_pipe_crc_ctl_reg(&source, &val);
4021 	else
4022 		ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4023 
4024 	if (ret != 0)
4025 		return ret;
4026 
4027 	/* none -> real source transition */
4028 	if (source) {
4029 		struct intel_pipe_crc_entry *entries;
4030 
4031 		DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4032 				 pipe_name(pipe), pipe_crc_source_name(source));
4033 
4034 		entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4035 				  sizeof(pipe_crc->entries[0]),
4036 				  GFP_KERNEL);
4037 		if (!entries)
4038 			return -ENOMEM;
4039 
4040 		/*
4041 		 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4042 		 * enabled and disabled dynamically based on package C states,
4043 		 * user space can't make reliable use of the CRCs, so let's just
4044 		 * completely disable it.
4045 		 */
4046 		hsw_disable_ips(crtc);
4047 
4048 		spin_lock_irq(&pipe_crc->lock);
4049 		kfree(pipe_crc->entries);
4050 		pipe_crc->entries = entries;
4051 		pipe_crc->head = 0;
4052 		pipe_crc->tail = 0;
4053 		spin_unlock_irq(&pipe_crc->lock);
4054 	}
4055 
4056 	pipe_crc->source = source;
4057 
4058 	I915_WRITE(PIPE_CRC_CTL(pipe), val);
4059 	POSTING_READ(PIPE_CRC_CTL(pipe));
4060 
4061 	/* real source -> none transition */
4062 	if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4063 		struct intel_pipe_crc_entry *entries;
4064 		struct intel_crtc *crtc =
4065 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4066 
4067 		DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4068 				 pipe_name(pipe));
4069 
4070 		drm_modeset_lock(&crtc->base.mutex, NULL);
4071 		if (crtc->base.state->active)
4072 			intel_wait_for_vblank(dev, pipe);
4073 		drm_modeset_unlock(&crtc->base.mutex);
4074 
4075 		spin_lock_irq(&pipe_crc->lock);
4076 		entries = pipe_crc->entries;
4077 		pipe_crc->entries = NULL;
4078 		pipe_crc->head = 0;
4079 		pipe_crc->tail = 0;
4080 		spin_unlock_irq(&pipe_crc->lock);
4081 
4082 		kfree(entries);
4083 
4084 		if (IS_G4X(dev))
4085 			g4x_undo_pipe_scramble_reset(dev, pipe);
4086 		else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4087 			vlv_undo_pipe_scramble_reset(dev, pipe);
4088 		else if (IS_HASWELL(dev) && pipe == PIPE_A)
4089 			hsw_trans_edp_pipe_A_crc_wa(dev, false);
4090 
4091 		hsw_enable_ips(crtc);
4092 	}
4093 
4094 	return 0;
4095 }
4096 
4097 /*
4098  * Parse pipe CRC command strings:
4099  *   command: wsp* object wsp+ name wsp+ source wsp*
4100  *   object: 'pipe'
4101  *   name: (A | B | C)
4102  *   source: (none | plane1 | plane2 | pf)
4103  *   wsp: (#0x20 | #0x9 | #0xA)+
4104  *
4105  * eg.:
4106  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4107  *  "pipe A none"    ->  Stop CRC
4108  */
4109 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4110 {
4111 	int n_words = 0;
4112 
4113 	while (*buf) {
4114 		char *end;
4115 
4116 		/* skip leading white space */
4117 		buf = skip_spaces(buf);
4118 		if (!*buf)
4119 			break;	/* end of buffer */
4120 
4121 		/* find end of word */
4122 		for (end = buf; *end && !isspace(*end); end++)
4123 			;
4124 
4125 		if (n_words == max_words) {
4126 			DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4127 					 max_words);
4128 			return -EINVAL;	/* ran out of words[] before bytes */
4129 		}
4130 
4131 		if (*end)
4132 			*end++ = '\0';
4133 		words[n_words++] = buf;
4134 		buf = end;
4135 	}
4136 
4137 	return n_words;
4138 }
4139 
4140 enum intel_pipe_crc_object {
4141 	PIPE_CRC_OBJECT_PIPE,
4142 };
4143 
4144 static const char * const pipe_crc_objects[] = {
4145 	"pipe",
4146 };
4147 
4148 static int
4149 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4150 {
4151 	int i;
4152 
4153 	for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4154 		if (!strcmp(buf, pipe_crc_objects[i])) {
4155 			*o = i;
4156 			return 0;
4157 		    }
4158 
4159 	return -EINVAL;
4160 }
4161 
4162 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4163 {
4164 	const char name = buf[0];
4165 
4166 	if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4167 		return -EINVAL;
4168 
4169 	*pipe = name - 'A';
4170 
4171 	return 0;
4172 }
4173 
4174 static int
4175 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4176 {
4177 	int i;
4178 
4179 	for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4180 		if (!strcmp(buf, pipe_crc_sources[i])) {
4181 			*s = i;
4182 			return 0;
4183 		    }
4184 
4185 	return -EINVAL;
4186 }
4187 
4188 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4189 {
4190 #define N_WORDS 3
4191 	int n_words;
4192 	char *words[N_WORDS];
4193 	enum pipe pipe;
4194 	enum intel_pipe_crc_object object;
4195 	enum intel_pipe_crc_source source;
4196 
4197 	n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4198 	if (n_words != N_WORDS) {
4199 		DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4200 				 N_WORDS);
4201 		return -EINVAL;
4202 	}
4203 
4204 	if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4205 		DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4206 		return -EINVAL;
4207 	}
4208 
4209 	if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4210 		DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4211 		return -EINVAL;
4212 	}
4213 
4214 	if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4215 		DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4216 		return -EINVAL;
4217 	}
4218 
4219 	return pipe_crc_set_source(dev, pipe, source);
4220 }
4221 
4222 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4223 				     size_t len, loff_t *offp)
4224 {
4225 	struct seq_file *m = file->private_data;
4226 	struct drm_device *dev = m->private;
4227 	char *tmpbuf;
4228 	int ret;
4229 
4230 	if (len == 0)
4231 		return 0;
4232 
4233 	if (len > PAGE_SIZE - 1) {
4234 		DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4235 				 PAGE_SIZE);
4236 		return -E2BIG;
4237 	}
4238 
4239 	tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4240 	if (!tmpbuf)
4241 		return -ENOMEM;
4242 
4243 	if (copy_from_user(tmpbuf, ubuf, len)) {
4244 		ret = -EFAULT;
4245 		goto out;
4246 	}
4247 	tmpbuf[len] = '\0';
4248 
4249 	ret = display_crc_ctl_parse(dev, tmpbuf, len);
4250 
4251 out:
4252 	kfree(tmpbuf);
4253 	if (ret < 0)
4254 		return ret;
4255 
4256 	*offp += len;
4257 	return len;
4258 }
4259 
4260 static const struct file_operations i915_display_crc_ctl_fops = {
4261 	.owner = THIS_MODULE,
4262 	.open = display_crc_ctl_open,
4263 	.read = seq_read,
4264 	.llseek = seq_lseek,
4265 	.release = single_release,
4266 	.write = display_crc_ctl_write
4267 };
4268 
4269 static ssize_t i915_displayport_test_active_write(struct file *file,
4270 					    const char __user *ubuf,
4271 					    size_t len, loff_t *offp)
4272 {
4273 	char *input_buffer;
4274 	int status = 0;
4275 	struct drm_device *dev;
4276 	struct drm_connector *connector;
4277 	struct list_head *connector_list;
4278 	struct intel_dp *intel_dp;
4279 	int val = 0;
4280 
4281 	dev = ((struct seq_file *)file->private_data)->private;
4282 
4283 	connector_list = &dev->mode_config.connector_list;
4284 
4285 	if (len == 0)
4286 		return 0;
4287 
4288 	input_buffer = kmalloc(len + 1, GFP_KERNEL);
4289 	if (!input_buffer)
4290 		return -ENOMEM;
4291 
4292 	if (copy_from_user(input_buffer, ubuf, len)) {
4293 		status = -EFAULT;
4294 		goto out;
4295 	}
4296 
4297 	input_buffer[len] = '\0';
4298 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4299 
4300 	list_for_each_entry(connector, connector_list, head) {
4301 
4302 		if (connector->connector_type !=
4303 		    DRM_MODE_CONNECTOR_DisplayPort)
4304 			continue;
4305 
4306 		if (connector->status == connector_status_connected &&
4307 		    connector->encoder != NULL) {
4308 			intel_dp = enc_to_intel_dp(connector->encoder);
4309 			status = kstrtoint(input_buffer, 10, &val);
4310 			if (status < 0)
4311 				goto out;
4312 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4313 			/* To prevent erroneous activation of the compliance
4314 			 * testing code, only accept an actual value of 1 here
4315 			 */
4316 			if (val == 1)
4317 				intel_dp->compliance_test_active = 1;
4318 			else
4319 				intel_dp->compliance_test_active = 0;
4320 		}
4321 	}
4322 out:
4323 	kfree(input_buffer);
4324 	if (status < 0)
4325 		return status;
4326 
4327 	*offp += len;
4328 	return len;
4329 }
4330 
4331 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4332 {
4333 	struct drm_device *dev = m->private;
4334 	struct drm_connector *connector;
4335 	struct list_head *connector_list = &dev->mode_config.connector_list;
4336 	struct intel_dp *intel_dp;
4337 
4338 	list_for_each_entry(connector, connector_list, head) {
4339 
4340 		if (connector->connector_type !=
4341 		    DRM_MODE_CONNECTOR_DisplayPort)
4342 			continue;
4343 
4344 		if (connector->status == connector_status_connected &&
4345 		    connector->encoder != NULL) {
4346 			intel_dp = enc_to_intel_dp(connector->encoder);
4347 			if (intel_dp->compliance_test_active)
4348 				seq_puts(m, "1");
4349 			else
4350 				seq_puts(m, "0");
4351 		} else
4352 			seq_puts(m, "0");
4353 	}
4354 
4355 	return 0;
4356 }
4357 
4358 static int i915_displayport_test_active_open(struct inode *inode,
4359 				       struct file *file)
4360 {
4361 	struct drm_device *dev = inode->i_private;
4362 
4363 	return single_open(file, i915_displayport_test_active_show, dev);
4364 }
4365 
4366 static const struct file_operations i915_displayport_test_active_fops = {
4367 	.owner = THIS_MODULE,
4368 	.open = i915_displayport_test_active_open,
4369 	.read = seq_read,
4370 	.llseek = seq_lseek,
4371 	.release = single_release,
4372 	.write = i915_displayport_test_active_write
4373 };
4374 
4375 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4376 {
4377 	struct drm_device *dev = m->private;
4378 	struct drm_connector *connector;
4379 	struct list_head *connector_list = &dev->mode_config.connector_list;
4380 	struct intel_dp *intel_dp;
4381 
4382 	list_for_each_entry(connector, connector_list, head) {
4383 
4384 		if (connector->connector_type !=
4385 		    DRM_MODE_CONNECTOR_DisplayPort)
4386 			continue;
4387 
4388 		if (connector->status == connector_status_connected &&
4389 		    connector->encoder != NULL) {
4390 			intel_dp = enc_to_intel_dp(connector->encoder);
4391 			seq_printf(m, "%lx", intel_dp->compliance_test_data);
4392 		} else
4393 			seq_puts(m, "0");
4394 	}
4395 
4396 	return 0;
4397 }
4398 static int i915_displayport_test_data_open(struct inode *inode,
4399 				       struct file *file)
4400 {
4401 	struct drm_device *dev = inode->i_private;
4402 
4403 	return single_open(file, i915_displayport_test_data_show, dev);
4404 }
4405 
4406 static const struct file_operations i915_displayport_test_data_fops = {
4407 	.owner = THIS_MODULE,
4408 	.open = i915_displayport_test_data_open,
4409 	.read = seq_read,
4410 	.llseek = seq_lseek,
4411 	.release = single_release
4412 };
4413 
4414 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4415 {
4416 	struct drm_device *dev = m->private;
4417 	struct drm_connector *connector;
4418 	struct list_head *connector_list = &dev->mode_config.connector_list;
4419 	struct intel_dp *intel_dp;
4420 
4421 	list_for_each_entry(connector, connector_list, head) {
4422 
4423 		if (connector->connector_type !=
4424 		    DRM_MODE_CONNECTOR_DisplayPort)
4425 			continue;
4426 
4427 		if (connector->status == connector_status_connected &&
4428 		    connector->encoder != NULL) {
4429 			intel_dp = enc_to_intel_dp(connector->encoder);
4430 			seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4431 		} else
4432 			seq_puts(m, "0");
4433 	}
4434 
4435 	return 0;
4436 }
4437 
4438 static int i915_displayport_test_type_open(struct inode *inode,
4439 				       struct file *file)
4440 {
4441 	struct drm_device *dev = inode->i_private;
4442 
4443 	return single_open(file, i915_displayport_test_type_show, dev);
4444 }
4445 
4446 static const struct file_operations i915_displayport_test_type_fops = {
4447 	.owner = THIS_MODULE,
4448 	.open = i915_displayport_test_type_open,
4449 	.read = seq_read,
4450 	.llseek = seq_lseek,
4451 	.release = single_release
4452 };
4453 
4454 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4455 {
4456 	struct drm_device *dev = m->private;
4457 	int level;
4458 	int num_levels;
4459 
4460 	if (IS_CHERRYVIEW(dev))
4461 		num_levels = 3;
4462 	else if (IS_VALLEYVIEW(dev))
4463 		num_levels = 1;
4464 	else
4465 		num_levels = ilk_wm_max_level(dev) + 1;
4466 
4467 	drm_modeset_lock_all(dev);
4468 
4469 	for (level = 0; level < num_levels; level++) {
4470 		unsigned int latency = wm[level];
4471 
4472 		/*
4473 		 * - WM1+ latency values in 0.5us units
4474 		 * - latencies are in us on gen9/vlv/chv
4475 		 */
4476 		if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4477 		    IS_CHERRYVIEW(dev))
4478 			latency *= 10;
4479 		else if (level > 0)
4480 			latency *= 5;
4481 
4482 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
4483 			   level, wm[level], latency / 10, latency % 10);
4484 	}
4485 
4486 	drm_modeset_unlock_all(dev);
4487 }
4488 
4489 static int pri_wm_latency_show(struct seq_file *m, void *data)
4490 {
4491 	struct drm_device *dev = m->private;
4492 	struct drm_i915_private *dev_priv = dev->dev_private;
4493 	const uint16_t *latencies;
4494 
4495 	if (INTEL_INFO(dev)->gen >= 9)
4496 		latencies = dev_priv->wm.skl_latency;
4497 	else
4498 		latencies = to_i915(dev)->wm.pri_latency;
4499 
4500 	wm_latency_show(m, latencies);
4501 
4502 	return 0;
4503 }
4504 
4505 static int spr_wm_latency_show(struct seq_file *m, void *data)
4506 {
4507 	struct drm_device *dev = m->private;
4508 	struct drm_i915_private *dev_priv = dev->dev_private;
4509 	const uint16_t *latencies;
4510 
4511 	if (INTEL_INFO(dev)->gen >= 9)
4512 		latencies = dev_priv->wm.skl_latency;
4513 	else
4514 		latencies = to_i915(dev)->wm.spr_latency;
4515 
4516 	wm_latency_show(m, latencies);
4517 
4518 	return 0;
4519 }
4520 
4521 static int cur_wm_latency_show(struct seq_file *m, void *data)
4522 {
4523 	struct drm_device *dev = m->private;
4524 	struct drm_i915_private *dev_priv = dev->dev_private;
4525 	const uint16_t *latencies;
4526 
4527 	if (INTEL_INFO(dev)->gen >= 9)
4528 		latencies = dev_priv->wm.skl_latency;
4529 	else
4530 		latencies = to_i915(dev)->wm.cur_latency;
4531 
4532 	wm_latency_show(m, latencies);
4533 
4534 	return 0;
4535 }
4536 
4537 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4538 {
4539 	struct drm_device *dev = inode->i_private;
4540 
4541 	if (INTEL_INFO(dev)->gen < 5)
4542 		return -ENODEV;
4543 
4544 	return single_open(file, pri_wm_latency_show, dev);
4545 }
4546 
4547 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4548 {
4549 	struct drm_device *dev = inode->i_private;
4550 
4551 	if (HAS_GMCH_DISPLAY(dev))
4552 		return -ENODEV;
4553 
4554 	return single_open(file, spr_wm_latency_show, dev);
4555 }
4556 
4557 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4558 {
4559 	struct drm_device *dev = inode->i_private;
4560 
4561 	if (HAS_GMCH_DISPLAY(dev))
4562 		return -ENODEV;
4563 
4564 	return single_open(file, cur_wm_latency_show, dev);
4565 }
4566 
4567 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4568 				size_t len, loff_t *offp, uint16_t wm[8])
4569 {
4570 	struct seq_file *m = file->private_data;
4571 	struct drm_device *dev = m->private;
4572 	uint16_t new[8] = { 0 };
4573 	int num_levels;
4574 	int level;
4575 	int ret;
4576 	char tmp[32];
4577 
4578 	if (IS_CHERRYVIEW(dev))
4579 		num_levels = 3;
4580 	else if (IS_VALLEYVIEW(dev))
4581 		num_levels = 1;
4582 	else
4583 		num_levels = ilk_wm_max_level(dev) + 1;
4584 
4585 	if (len >= sizeof(tmp))
4586 		return -EINVAL;
4587 
4588 	if (copy_from_user(tmp, ubuf, len))
4589 		return -EFAULT;
4590 
4591 	tmp[len] = '\0';
4592 
4593 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4594 		     &new[0], &new[1], &new[2], &new[3],
4595 		     &new[4], &new[5], &new[6], &new[7]);
4596 	if (ret != num_levels)
4597 		return -EINVAL;
4598 
4599 	drm_modeset_lock_all(dev);
4600 
4601 	for (level = 0; level < num_levels; level++)
4602 		wm[level] = new[level];
4603 
4604 	drm_modeset_unlock_all(dev);
4605 
4606 	return len;
4607 }
4608 
4609 
4610 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4611 				    size_t len, loff_t *offp)
4612 {
4613 	struct seq_file *m = file->private_data;
4614 	struct drm_device *dev = m->private;
4615 	struct drm_i915_private *dev_priv = dev->dev_private;
4616 	uint16_t *latencies;
4617 
4618 	if (INTEL_INFO(dev)->gen >= 9)
4619 		latencies = dev_priv->wm.skl_latency;
4620 	else
4621 		latencies = to_i915(dev)->wm.pri_latency;
4622 
4623 	return wm_latency_write(file, ubuf, len, offp, latencies);
4624 }
4625 
4626 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4627 				    size_t len, loff_t *offp)
4628 {
4629 	struct seq_file *m = file->private_data;
4630 	struct drm_device *dev = m->private;
4631 	struct drm_i915_private *dev_priv = dev->dev_private;
4632 	uint16_t *latencies;
4633 
4634 	if (INTEL_INFO(dev)->gen >= 9)
4635 		latencies = dev_priv->wm.skl_latency;
4636 	else
4637 		latencies = to_i915(dev)->wm.spr_latency;
4638 
4639 	return wm_latency_write(file, ubuf, len, offp, latencies);
4640 }
4641 
4642 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4643 				    size_t len, loff_t *offp)
4644 {
4645 	struct seq_file *m = file->private_data;
4646 	struct drm_device *dev = m->private;
4647 	struct drm_i915_private *dev_priv = dev->dev_private;
4648 	uint16_t *latencies;
4649 
4650 	if (INTEL_INFO(dev)->gen >= 9)
4651 		latencies = dev_priv->wm.skl_latency;
4652 	else
4653 		latencies = to_i915(dev)->wm.cur_latency;
4654 
4655 	return wm_latency_write(file, ubuf, len, offp, latencies);
4656 }
4657 
4658 static const struct file_operations i915_pri_wm_latency_fops = {
4659 	.owner = THIS_MODULE,
4660 	.open = pri_wm_latency_open,
4661 	.read = seq_read,
4662 	.llseek = seq_lseek,
4663 	.release = single_release,
4664 	.write = pri_wm_latency_write
4665 };
4666 
4667 static const struct file_operations i915_spr_wm_latency_fops = {
4668 	.owner = THIS_MODULE,
4669 	.open = spr_wm_latency_open,
4670 	.read = seq_read,
4671 	.llseek = seq_lseek,
4672 	.release = single_release,
4673 	.write = spr_wm_latency_write
4674 };
4675 
4676 static const struct file_operations i915_cur_wm_latency_fops = {
4677 	.owner = THIS_MODULE,
4678 	.open = cur_wm_latency_open,
4679 	.read = seq_read,
4680 	.llseek = seq_lseek,
4681 	.release = single_release,
4682 	.write = cur_wm_latency_write
4683 };
4684 
4685 static int
4686 i915_wedged_get(void *data, u64 *val)
4687 {
4688 	struct drm_device *dev = data;
4689 	struct drm_i915_private *dev_priv = dev->dev_private;
4690 
4691 	*val = atomic_read(&dev_priv->gpu_error.reset_counter);
4692 
4693 	return 0;
4694 }
4695 
4696 static int
4697 i915_wedged_set(void *data, u64 val)
4698 {
4699 	struct drm_device *dev = data;
4700 	struct drm_i915_private *dev_priv = dev->dev_private;
4701 
4702 	/*
4703 	 * There is no safeguard against this debugfs entry colliding
4704 	 * with the hangcheck calling same i915_handle_error() in
4705 	 * parallel, causing an explosion. For now we assume that the
4706 	 * test harness is responsible enough not to inject gpu hangs
4707 	 * while it is writing to 'i915_wedged'
4708 	 */
4709 
4710 	if (i915_reset_in_progress(&dev_priv->gpu_error))
4711 		return -EAGAIN;
4712 
4713 	intel_runtime_pm_get(dev_priv);
4714 
4715 	i915_handle_error(dev, val,
4716 			  "Manually setting wedged to %llu", val);
4717 
4718 	intel_runtime_pm_put(dev_priv);
4719 
4720 	return 0;
4721 }
4722 
4723 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4724 			i915_wedged_get, i915_wedged_set,
4725 			"%llu\n");
4726 
4727 static int
4728 i915_ring_stop_get(void *data, u64 *val)
4729 {
4730 	struct drm_device *dev = data;
4731 	struct drm_i915_private *dev_priv = dev->dev_private;
4732 
4733 	*val = dev_priv->gpu_error.stop_rings;
4734 
4735 	return 0;
4736 }
4737 
4738 static int
4739 i915_ring_stop_set(void *data, u64 val)
4740 {
4741 	struct drm_device *dev = data;
4742 	struct drm_i915_private *dev_priv = dev->dev_private;
4743 	int ret;
4744 
4745 	DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4746 
4747 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4748 	if (ret)
4749 		return ret;
4750 
4751 	dev_priv->gpu_error.stop_rings = val;
4752 	mutex_unlock(&dev->struct_mutex);
4753 
4754 	return 0;
4755 }
4756 
4757 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4758 			i915_ring_stop_get, i915_ring_stop_set,
4759 			"0x%08llx\n");
4760 
4761 static int
4762 i915_ring_missed_irq_get(void *data, u64 *val)
4763 {
4764 	struct drm_device *dev = data;
4765 	struct drm_i915_private *dev_priv = dev->dev_private;
4766 
4767 	*val = dev_priv->gpu_error.missed_irq_rings;
4768 	return 0;
4769 }
4770 
4771 static int
4772 i915_ring_missed_irq_set(void *data, u64 val)
4773 {
4774 	struct drm_device *dev = data;
4775 	struct drm_i915_private *dev_priv = dev->dev_private;
4776 	int ret;
4777 
4778 	/* Lock against concurrent debugfs callers */
4779 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4780 	if (ret)
4781 		return ret;
4782 	dev_priv->gpu_error.missed_irq_rings = val;
4783 	mutex_unlock(&dev->struct_mutex);
4784 
4785 	return 0;
4786 }
4787 
4788 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4789 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4790 			"0x%08llx\n");
4791 
4792 static int
4793 i915_ring_test_irq_get(void *data, u64 *val)
4794 {
4795 	struct drm_device *dev = data;
4796 	struct drm_i915_private *dev_priv = dev->dev_private;
4797 
4798 	*val = dev_priv->gpu_error.test_irq_rings;
4799 
4800 	return 0;
4801 }
4802 
4803 static int
4804 i915_ring_test_irq_set(void *data, u64 val)
4805 {
4806 	struct drm_device *dev = data;
4807 	struct drm_i915_private *dev_priv = dev->dev_private;
4808 	int ret;
4809 
4810 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4811 
4812 	/* Lock against concurrent debugfs callers */
4813 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4814 	if (ret)
4815 		return ret;
4816 
4817 	dev_priv->gpu_error.test_irq_rings = val;
4818 	mutex_unlock(&dev->struct_mutex);
4819 
4820 	return 0;
4821 }
4822 
4823 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4824 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4825 			"0x%08llx\n");
4826 
4827 #define DROP_UNBOUND 0x1
4828 #define DROP_BOUND 0x2
4829 #define DROP_RETIRE 0x4
4830 #define DROP_ACTIVE 0x8
4831 #define DROP_ALL (DROP_UNBOUND | \
4832 		  DROP_BOUND | \
4833 		  DROP_RETIRE | \
4834 		  DROP_ACTIVE)
4835 static int
4836 i915_drop_caches_get(void *data, u64 *val)
4837 {
4838 	*val = DROP_ALL;
4839 
4840 	return 0;
4841 }
4842 
4843 static int
4844 i915_drop_caches_set(void *data, u64 val)
4845 {
4846 	struct drm_device *dev = data;
4847 	struct drm_i915_private *dev_priv = dev->dev_private;
4848 	int ret;
4849 
4850 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4851 
4852 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4853 	 * on ioctls on -EAGAIN. */
4854 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4855 	if (ret)
4856 		return ret;
4857 
4858 	if (val & DROP_ACTIVE) {
4859 		ret = i915_gpu_idle(dev);
4860 		if (ret)
4861 			goto unlock;
4862 	}
4863 
4864 	if (val & (DROP_RETIRE | DROP_ACTIVE))
4865 		i915_gem_retire_requests(dev);
4866 
4867 	if (val & DROP_BOUND)
4868 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4869 
4870 	if (val & DROP_UNBOUND)
4871 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4872 
4873 unlock:
4874 	mutex_unlock(&dev->struct_mutex);
4875 
4876 	return ret;
4877 }
4878 
4879 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4880 			i915_drop_caches_get, i915_drop_caches_set,
4881 			"0x%08llx\n");
4882 
4883 static int
4884 i915_max_freq_get(void *data, u64 *val)
4885 {
4886 	struct drm_device *dev = data;
4887 	struct drm_i915_private *dev_priv = dev->dev_private;
4888 	int ret;
4889 
4890 	if (INTEL_INFO(dev)->gen < 6)
4891 		return -ENODEV;
4892 
4893 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4894 
4895 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4896 	if (ret)
4897 		return ret;
4898 
4899 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4900 	mutex_unlock(&dev_priv->rps.hw_lock);
4901 
4902 	return 0;
4903 }
4904 
4905 static int
4906 i915_max_freq_set(void *data, u64 val)
4907 {
4908 	struct drm_device *dev = data;
4909 	struct drm_i915_private *dev_priv = dev->dev_private;
4910 	u32 hw_max, hw_min;
4911 	int ret;
4912 
4913 	if (INTEL_INFO(dev)->gen < 6)
4914 		return -ENODEV;
4915 
4916 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4917 
4918 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4919 
4920 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4921 	if (ret)
4922 		return ret;
4923 
4924 	/*
4925 	 * Turbo will still be enabled, but won't go above the set value.
4926 	 */
4927 	val = intel_freq_opcode(dev_priv, val);
4928 
4929 	hw_max = dev_priv->rps.max_freq;
4930 	hw_min = dev_priv->rps.min_freq;
4931 
4932 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4933 		mutex_unlock(&dev_priv->rps.hw_lock);
4934 		return -EINVAL;
4935 	}
4936 
4937 	dev_priv->rps.max_freq_softlimit = val;
4938 
4939 	intel_set_rps(dev, val);
4940 
4941 	mutex_unlock(&dev_priv->rps.hw_lock);
4942 
4943 	return 0;
4944 }
4945 
4946 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4947 			i915_max_freq_get, i915_max_freq_set,
4948 			"%llu\n");
4949 
4950 static int
4951 i915_min_freq_get(void *data, u64 *val)
4952 {
4953 	struct drm_device *dev = data;
4954 	struct drm_i915_private *dev_priv = dev->dev_private;
4955 	int ret;
4956 
4957 	if (INTEL_INFO(dev)->gen < 6)
4958 		return -ENODEV;
4959 
4960 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4961 
4962 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4963 	if (ret)
4964 		return ret;
4965 
4966 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4967 	mutex_unlock(&dev_priv->rps.hw_lock);
4968 
4969 	return 0;
4970 }
4971 
4972 static int
4973 i915_min_freq_set(void *data, u64 val)
4974 {
4975 	struct drm_device *dev = data;
4976 	struct drm_i915_private *dev_priv = dev->dev_private;
4977 	u32 hw_max, hw_min;
4978 	int ret;
4979 
4980 	if (INTEL_INFO(dev)->gen < 6)
4981 		return -ENODEV;
4982 
4983 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4984 
4985 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4986 
4987 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4988 	if (ret)
4989 		return ret;
4990 
4991 	/*
4992 	 * Turbo will still be enabled, but won't go below the set value.
4993 	 */
4994 	val = intel_freq_opcode(dev_priv, val);
4995 
4996 	hw_max = dev_priv->rps.max_freq;
4997 	hw_min = dev_priv->rps.min_freq;
4998 
4999 	if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5000 		mutex_unlock(&dev_priv->rps.hw_lock);
5001 		return -EINVAL;
5002 	}
5003 
5004 	dev_priv->rps.min_freq_softlimit = val;
5005 
5006 	intel_set_rps(dev, val);
5007 
5008 	mutex_unlock(&dev_priv->rps.hw_lock);
5009 
5010 	return 0;
5011 }
5012 
5013 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5014 			i915_min_freq_get, i915_min_freq_set,
5015 			"%llu\n");
5016 
5017 static int
5018 i915_cache_sharing_get(void *data, u64 *val)
5019 {
5020 	struct drm_device *dev = data;
5021 	struct drm_i915_private *dev_priv = dev->dev_private;
5022 	u32 snpcr;
5023 	int ret;
5024 
5025 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5026 		return -ENODEV;
5027 
5028 	ret = mutex_lock_interruptible(&dev->struct_mutex);
5029 	if (ret)
5030 		return ret;
5031 	intel_runtime_pm_get(dev_priv);
5032 
5033 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5034 
5035 	intel_runtime_pm_put(dev_priv);
5036 	mutex_unlock(&dev_priv->dev->struct_mutex);
5037 
5038 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5039 
5040 	return 0;
5041 }
5042 
5043 static int
5044 i915_cache_sharing_set(void *data, u64 val)
5045 {
5046 	struct drm_device *dev = data;
5047 	struct drm_i915_private *dev_priv = dev->dev_private;
5048 	u32 snpcr;
5049 
5050 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5051 		return -ENODEV;
5052 
5053 	if (val > 3)
5054 		return -EINVAL;
5055 
5056 	intel_runtime_pm_get(dev_priv);
5057 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5058 
5059 	/* Update the cache sharing policy here as well */
5060 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5061 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
5062 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5063 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5064 
5065 	intel_runtime_pm_put(dev_priv);
5066 	return 0;
5067 }
5068 
5069 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5070 			i915_cache_sharing_get, i915_cache_sharing_set,
5071 			"%llu\n");
5072 
5073 struct sseu_dev_status {
5074 	unsigned int slice_total;
5075 	unsigned int subslice_total;
5076 	unsigned int subslice_per_slice;
5077 	unsigned int eu_total;
5078 	unsigned int eu_per_subslice;
5079 };
5080 
5081 static void cherryview_sseu_device_status(struct drm_device *dev,
5082 					  struct sseu_dev_status *stat)
5083 {
5084 	struct drm_i915_private *dev_priv = dev->dev_private;
5085 	int ss_max = 2;
5086 	int ss;
5087 	u32 sig1[ss_max], sig2[ss_max];
5088 
5089 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5090 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5091 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5092 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5093 
5094 	for (ss = 0; ss < ss_max; ss++) {
5095 		unsigned int eu_cnt;
5096 
5097 		if (sig1[ss] & CHV_SS_PG_ENABLE)
5098 			/* skip disabled subslice */
5099 			continue;
5100 
5101 		stat->slice_total = 1;
5102 		stat->subslice_per_slice++;
5103 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5104 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5105 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5106 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5107 		stat->eu_total += eu_cnt;
5108 		stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5109 	}
5110 	stat->subslice_total = stat->subslice_per_slice;
5111 }
5112 
5113 static void gen9_sseu_device_status(struct drm_device *dev,
5114 				    struct sseu_dev_status *stat)
5115 {
5116 	struct drm_i915_private *dev_priv = dev->dev_private;
5117 	int s_max = 3, ss_max = 4;
5118 	int s, ss;
5119 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5120 
5121 	/* BXT has a single slice and at most 3 subslices. */
5122 	if (IS_BROXTON(dev)) {
5123 		s_max = 1;
5124 		ss_max = 3;
5125 	}
5126 
5127 	for (s = 0; s < s_max; s++) {
5128 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5129 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5130 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5131 	}
5132 
5133 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5134 		     GEN9_PGCTL_SSA_EU19_ACK |
5135 		     GEN9_PGCTL_SSA_EU210_ACK |
5136 		     GEN9_PGCTL_SSA_EU311_ACK;
5137 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5138 		     GEN9_PGCTL_SSB_EU19_ACK |
5139 		     GEN9_PGCTL_SSB_EU210_ACK |
5140 		     GEN9_PGCTL_SSB_EU311_ACK;
5141 
5142 	for (s = 0; s < s_max; s++) {
5143 		unsigned int ss_cnt = 0;
5144 
5145 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5146 			/* skip disabled slice */
5147 			continue;
5148 
5149 		stat->slice_total++;
5150 
5151 		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5152 			ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5153 
5154 		for (ss = 0; ss < ss_max; ss++) {
5155 			unsigned int eu_cnt;
5156 
5157 			if (IS_BROXTON(dev) &&
5158 			    !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5159 				/* skip disabled subslice */
5160 				continue;
5161 
5162 			if (IS_BROXTON(dev))
5163 				ss_cnt++;
5164 
5165 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5166 					       eu_mask[ss%2]);
5167 			stat->eu_total += eu_cnt;
5168 			stat->eu_per_subslice = max(stat->eu_per_subslice,
5169 						    eu_cnt);
5170 		}
5171 
5172 		stat->subslice_total += ss_cnt;
5173 		stat->subslice_per_slice = max(stat->subslice_per_slice,
5174 					       ss_cnt);
5175 	}
5176 }
5177 
5178 static void broadwell_sseu_device_status(struct drm_device *dev,
5179 					 struct sseu_dev_status *stat)
5180 {
5181 	struct drm_i915_private *dev_priv = dev->dev_private;
5182 	int s;
5183 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5184 
5185 	stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5186 
5187 	if (stat->slice_total) {
5188 		stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5189 		stat->subslice_total = stat->slice_total *
5190 				       stat->subslice_per_slice;
5191 		stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5192 		stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5193 
5194 		/* subtract fused off EU(s) from enabled slice(s) */
5195 		for (s = 0; s < stat->slice_total; s++) {
5196 			u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5197 
5198 			stat->eu_total -= hweight8(subslice_7eu);
5199 		}
5200 	}
5201 }
5202 
5203 static int i915_sseu_status(struct seq_file *m, void *unused)
5204 {
5205 	struct drm_info_node *node = (struct drm_info_node *) m->private;
5206 	struct drm_device *dev = node->minor->dev;
5207 	struct sseu_dev_status stat;
5208 
5209 	if (INTEL_INFO(dev)->gen < 8)
5210 		return -ENODEV;
5211 
5212 	seq_puts(m, "SSEU Device Info\n");
5213 	seq_printf(m, "  Available Slice Total: %u\n",
5214 		   INTEL_INFO(dev)->slice_total);
5215 	seq_printf(m, "  Available Subslice Total: %u\n",
5216 		   INTEL_INFO(dev)->subslice_total);
5217 	seq_printf(m, "  Available Subslice Per Slice: %u\n",
5218 		   INTEL_INFO(dev)->subslice_per_slice);
5219 	seq_printf(m, "  Available EU Total: %u\n",
5220 		   INTEL_INFO(dev)->eu_total);
5221 	seq_printf(m, "  Available EU Per Subslice: %u\n",
5222 		   INTEL_INFO(dev)->eu_per_subslice);
5223 	seq_printf(m, "  Has Slice Power Gating: %s\n",
5224 		   yesno(INTEL_INFO(dev)->has_slice_pg));
5225 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
5226 		   yesno(INTEL_INFO(dev)->has_subslice_pg));
5227 	seq_printf(m, "  Has EU Power Gating: %s\n",
5228 		   yesno(INTEL_INFO(dev)->has_eu_pg));
5229 
5230 	seq_puts(m, "SSEU Device Status\n");
5231 	memset(&stat, 0, sizeof(stat));
5232 	if (IS_CHERRYVIEW(dev)) {
5233 		cherryview_sseu_device_status(dev, &stat);
5234 	} else if (IS_BROADWELL(dev)) {
5235 		broadwell_sseu_device_status(dev, &stat);
5236 	} else if (INTEL_INFO(dev)->gen >= 9) {
5237 		gen9_sseu_device_status(dev, &stat);
5238 	}
5239 	seq_printf(m, "  Enabled Slice Total: %u\n",
5240 		   stat.slice_total);
5241 	seq_printf(m, "  Enabled Subslice Total: %u\n",
5242 		   stat.subslice_total);
5243 	seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5244 		   stat.subslice_per_slice);
5245 	seq_printf(m, "  Enabled EU Total: %u\n",
5246 		   stat.eu_total);
5247 	seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5248 		   stat.eu_per_subslice);
5249 
5250 	return 0;
5251 }
5252 
5253 static int i915_forcewake_open(struct inode *inode, struct file *file)
5254 {
5255 	struct drm_device *dev = inode->i_private;
5256 	struct drm_i915_private *dev_priv = dev->dev_private;
5257 
5258 	if (INTEL_INFO(dev)->gen < 6)
5259 		return 0;
5260 
5261 	intel_runtime_pm_get(dev_priv);
5262 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5263 
5264 	return 0;
5265 }
5266 
5267 static int i915_forcewake_release(struct inode *inode, struct file *file)
5268 {
5269 	struct drm_device *dev = inode->i_private;
5270 	struct drm_i915_private *dev_priv = dev->dev_private;
5271 
5272 	if (INTEL_INFO(dev)->gen < 6)
5273 		return 0;
5274 
5275 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5276 	intel_runtime_pm_put(dev_priv);
5277 
5278 	return 0;
5279 }
5280 
5281 static const struct file_operations i915_forcewake_fops = {
5282 	.owner = THIS_MODULE,
5283 	.open = i915_forcewake_open,
5284 	.release = i915_forcewake_release,
5285 };
5286 
5287 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5288 {
5289 	struct drm_device *dev = minor->dev;
5290 	struct dentry *ent;
5291 
5292 	ent = debugfs_create_file("i915_forcewake_user",
5293 				  S_IRUSR,
5294 				  root, dev,
5295 				  &i915_forcewake_fops);
5296 	if (!ent)
5297 		return -ENOMEM;
5298 
5299 	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5300 }
5301 
5302 static int i915_debugfs_create(struct dentry *root,
5303 			       struct drm_minor *minor,
5304 			       const char *name,
5305 			       const struct file_operations *fops)
5306 {
5307 	struct drm_device *dev = minor->dev;
5308 	struct dentry *ent;
5309 
5310 	ent = debugfs_create_file(name,
5311 				  S_IRUGO | S_IWUSR,
5312 				  root, dev,
5313 				  fops);
5314 	if (!ent)
5315 		return -ENOMEM;
5316 
5317 	return drm_add_fake_info_node(minor, ent, fops);
5318 }
5319 
5320 static const struct drm_info_list i915_debugfs_list[] = {
5321 	{"i915_capabilities", i915_capabilities, 0},
5322 	{"i915_gem_objects", i915_gem_object_info, 0},
5323 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
5324 	{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5325 	{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5326 	{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5327 	{"i915_gem_stolen", i915_gem_stolen_list_info },
5328 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5329 	{"i915_gem_request", i915_gem_request_info, 0},
5330 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
5331 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5332 	{"i915_gem_interrupt", i915_interrupt_info, 0},
5333 	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5334 	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5335 	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5336 	{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5337 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5338 	{"i915_guc_info", i915_guc_info, 0},
5339 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
5340 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
5341 	{"i915_frequency_info", i915_frequency_info, 0},
5342 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
5343 	{"i915_drpc_info", i915_drpc_info, 0},
5344 	{"i915_emon_status", i915_emon_status, 0},
5345 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
5346 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5347 	{"i915_fbc_status", i915_fbc_status, 0},
5348 	{"i915_ips_status", i915_ips_status, 0},
5349 	{"i915_sr_status", i915_sr_status, 0},
5350 	{"i915_opregion", i915_opregion, 0},
5351 	{"i915_vbt", i915_vbt, 0},
5352 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5353 	{"i915_context_status", i915_context_status, 0},
5354 	{"i915_dump_lrc", i915_dump_lrc, 0},
5355 	{"i915_execlists", i915_execlists, 0},
5356 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
5357 	{"i915_swizzle_info", i915_swizzle_info, 0},
5358 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
5359 	{"i915_llc", i915_llc, 0},
5360 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
5361 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
5362 	{"i915_energy_uJ", i915_energy_uJ, 0},
5363 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5364 	{"i915_power_domain_info", i915_power_domain_info, 0},
5365 	{"i915_dmc_info", i915_dmc_info, 0},
5366 	{"i915_display_info", i915_display_info, 0},
5367 	{"i915_semaphore_status", i915_semaphore_status, 0},
5368 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5369 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
5370 	{"i915_wa_registers", i915_wa_registers, 0},
5371 	{"i915_ddb_info", i915_ddb_info, 0},
5372 	{"i915_sseu_status", i915_sseu_status, 0},
5373 	{"i915_drrs_status", i915_drrs_status, 0},
5374 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
5375 };
5376 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5377 
5378 static const struct i915_debugfs_files {
5379 	const char *name;
5380 	const struct file_operations *fops;
5381 } i915_debugfs_files[] = {
5382 	{"i915_wedged", &i915_wedged_fops},
5383 	{"i915_max_freq", &i915_max_freq_fops},
5384 	{"i915_min_freq", &i915_min_freq_fops},
5385 	{"i915_cache_sharing", &i915_cache_sharing_fops},
5386 	{"i915_ring_stop", &i915_ring_stop_fops},
5387 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5388 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
5389 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
5390 	{"i915_error_state", &i915_error_state_fops},
5391 	{"i915_next_seqno", &i915_next_seqno_fops},
5392 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5393 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5394 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5395 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5396 	{"i915_fbc_false_color", &i915_fbc_fc_fops},
5397 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
5398 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
5399 	{"i915_dp_test_active", &i915_displayport_test_active_fops}
5400 };
5401 
5402 void intel_display_crc_init(struct drm_device *dev)
5403 {
5404 	struct drm_i915_private *dev_priv = dev->dev_private;
5405 	enum pipe pipe;
5406 
5407 	for_each_pipe(dev_priv, pipe) {
5408 		struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5409 
5410 		pipe_crc->opened = false;
5411 		spin_lock_init(&pipe_crc->lock);
5412 		init_waitqueue_head(&pipe_crc->wq);
5413 	}
5414 }
5415 
5416 int i915_debugfs_init(struct drm_minor *minor)
5417 {
5418 	int ret, i;
5419 
5420 	ret = i915_forcewake_create(minor->debugfs_root, minor);
5421 	if (ret)
5422 		return ret;
5423 
5424 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5425 		ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5426 		if (ret)
5427 			return ret;
5428 	}
5429 
5430 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5431 		ret = i915_debugfs_create(minor->debugfs_root, minor,
5432 					  i915_debugfs_files[i].name,
5433 					  i915_debugfs_files[i].fops);
5434 		if (ret)
5435 			return ret;
5436 	}
5437 
5438 	return drm_debugfs_create_files(i915_debugfs_list,
5439 					I915_DEBUGFS_ENTRIES,
5440 					minor->debugfs_root, minor);
5441 }
5442 
5443 void i915_debugfs_cleanup(struct drm_minor *minor)
5444 {
5445 	int i;
5446 
5447 	drm_debugfs_remove_files(i915_debugfs_list,
5448 				 I915_DEBUGFS_ENTRIES, minor);
5449 
5450 	drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5451 				 1, minor);
5452 
5453 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5454 		struct drm_info_list *info_list =
5455 			(struct drm_info_list *)&i915_pipe_crc_data[i];
5456 
5457 		drm_debugfs_remove_files(info_list, 1, minor);
5458 	}
5459 
5460 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5461 		struct drm_info_list *info_list =
5462 			(struct drm_info_list *) i915_debugfs_files[i].fops;
5463 
5464 		drm_debugfs_remove_files(info_list, 1, minor);
5465 	}
5466 }
5467 
5468 struct dpcd_block {
5469 	/* DPCD dump start address. */
5470 	unsigned int offset;
5471 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
5472 	unsigned int end;
5473 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5474 	size_t size;
5475 	/* Only valid for eDP. */
5476 	bool edp;
5477 };
5478 
5479 static const struct dpcd_block i915_dpcd_debug[] = {
5480 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5481 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5482 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5483 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5484 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5485 	{ .offset = DP_SET_POWER },
5486 	{ .offset = DP_EDP_DPCD_REV },
5487 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5488 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5489 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5490 };
5491 
5492 static int i915_dpcd_show(struct seq_file *m, void *data)
5493 {
5494 	struct drm_connector *connector = m->private;
5495 	struct intel_dp *intel_dp =
5496 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5497 	uint8_t buf[16];
5498 	ssize_t err;
5499 	int i;
5500 
5501 	if (connector->status != connector_status_connected)
5502 		return -ENODEV;
5503 
5504 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5505 		const struct dpcd_block *b = &i915_dpcd_debug[i];
5506 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5507 
5508 		if (b->edp &&
5509 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5510 			continue;
5511 
5512 		/* low tech for now */
5513 		if (WARN_ON(size > sizeof(buf)))
5514 			continue;
5515 
5516 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5517 		if (err <= 0) {
5518 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5519 				  size, b->offset, err);
5520 			continue;
5521 		}
5522 
5523 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5524 	}
5525 
5526 	return 0;
5527 }
5528 
5529 static int i915_dpcd_open(struct inode *inode, struct file *file)
5530 {
5531 	return single_open(file, i915_dpcd_show, inode->i_private);
5532 }
5533 
5534 static const struct file_operations i915_dpcd_fops = {
5535 	.owner = THIS_MODULE,
5536 	.open = i915_dpcd_open,
5537 	.read = seq_read,
5538 	.llseek = seq_lseek,
5539 	.release = single_release,
5540 };
5541 
5542 /**
5543  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5544  * @connector: pointer to a registered drm_connector
5545  *
5546  * Cleanup will be done by drm_connector_unregister() through a call to
5547  * drm_debugfs_connector_remove().
5548  *
5549  * Returns 0 on success, negative error codes on error.
5550  */
5551 int i915_debugfs_connector_add(struct drm_connector *connector)
5552 {
5553 	struct dentry *root = connector->debugfs_entry;
5554 
5555 	/* The connector must have been registered beforehands. */
5556 	if (!root)
5557 		return -ENODEV;
5558 
5559 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5560 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5561 		debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5562 				    &i915_dpcd_fops);
5563 
5564 	return 0;
5565 }
5566