1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42 
43 enum {
44 	ACTIVE_LIST,
45 	INACTIVE_LIST,
46 	PINNED_LIST,
47 };
48 
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53 		       struct dentry *ent,
54 		       const void *key)
55 {
56 	struct drm_info_node *node;
57 
58 	node = kmalloc(sizeof(*node), GFP_KERNEL);
59 	if (node == NULL) {
60 		debugfs_remove(ent);
61 		return -ENOMEM;
62 	}
63 
64 	node->minor = minor;
65 	node->dent = ent;
66 	node->info_ent = (void *) key;
67 
68 	mutex_lock(&minor->debugfs_lock);
69 	list_add(&node->list, &minor->debugfs_list);
70 	mutex_unlock(&minor->debugfs_lock);
71 
72 	return 0;
73 }
74 
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77 	struct drm_info_node *node = m->private;
78 	struct drm_device *dev = node->minor->dev;
79 	const struct intel_device_info *info = INTEL_INFO(dev);
80 
81 	seq_printf(m, "gen: %d\n", info->gen);
82 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88 
89 	return 0;
90 }
91 
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94 	if (obj->pin_display)
95 		return "p";
96 	else
97 		return " ";
98 }
99 
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102 	switch (obj->tiling_mode) {
103 	default:
104 	case I915_TILING_NONE: return " ";
105 	case I915_TILING_X: return "X";
106 	case I915_TILING_Y: return "Y";
107 	}
108 }
109 
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112 	return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114 
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117 	u64 size = 0;
118 	struct i915_vma *vma;
119 
120 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
121 		if (i915_is_ggtt(vma->vm) &&
122 		    drm_mm_node_allocated(&vma->node))
123 			size += vma->node.size;
124 	}
125 
126 	return size;
127 }
128 
129 static void
130 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
131 {
132 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
133 	struct intel_engine_cs *ring;
134 	struct i915_vma *vma;
135 	int pin_count = 0;
136 	int i;
137 
138 	seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
139 		   &obj->base,
140 		   obj->active ? "*" : " ",
141 		   get_pin_flag(obj),
142 		   get_tiling_flag(obj),
143 		   get_global_flag(obj),
144 		   obj->base.size / 1024,
145 		   obj->base.read_domains,
146 		   obj->base.write_domain);
147 	for_each_ring(ring, dev_priv, i)
148 		seq_printf(m, "%x ",
149 				i915_gem_request_get_seqno(obj->last_read_req[i]));
150 	seq_printf(m, "] %x %x%s%s%s",
151 		   i915_gem_request_get_seqno(obj->last_write_req),
152 		   i915_gem_request_get_seqno(obj->last_fenced_req),
153 		   i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
154 		   obj->dirty ? " dirty" : "",
155 		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
156 	if (obj->base.name)
157 		seq_printf(m, " (name: %d)", obj->base.name);
158 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
159 		if (vma->pin_count > 0)
160 			pin_count++;
161 	}
162 	seq_printf(m, " (pinned x %d)", pin_count);
163 	if (obj->pin_display)
164 		seq_printf(m, " (display)");
165 	if (obj->fence_reg != I915_FENCE_REG_NONE)
166 		seq_printf(m, " (fence: %d)", obj->fence_reg);
167 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
168 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169 			   i915_is_ggtt(vma->vm) ? "g" : "pp",
170 			   vma->node.start, vma->node.size);
171 		if (i915_is_ggtt(vma->vm))
172 			seq_printf(m, ", type: %u)", vma->ggtt_view.type);
173 		else
174 			seq_puts(m, ")");
175 	}
176 	if (obj->stolen)
177 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
178 	if (obj->pin_display || obj->fault_mappable) {
179 		char s[3], *t = s;
180 		if (obj->pin_display)
181 			*t++ = 'p';
182 		if (obj->fault_mappable)
183 			*t++ = 'f';
184 		*t = '\0';
185 		seq_printf(m, " (%s mappable)", s);
186 	}
187 	if (obj->last_write_req != NULL)
188 		seq_printf(m, " (%s)",
189 			   i915_gem_request_get_ring(obj->last_write_req)->name);
190 	if (obj->frontbuffer_bits)
191 		seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
192 }
193 
194 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
195 {
196 	seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
197 	seq_putc(m, ctx->remap_slice ? 'R' : 'r');
198 	seq_putc(m, ' ');
199 }
200 
201 static int i915_gem_object_list_info(struct seq_file *m, void *data)
202 {
203 	struct drm_info_node *node = m->private;
204 	uintptr_t list = (uintptr_t) node->info_ent->data;
205 	struct list_head *head;
206 	struct drm_device *dev = node->minor->dev;
207 	struct drm_i915_private *dev_priv = dev->dev_private;
208 	struct i915_address_space *vm = &dev_priv->gtt.base;
209 	struct i915_vma *vma;
210 	u64 total_obj_size, total_gtt_size;
211 	int count, ret;
212 
213 	ret = mutex_lock_interruptible(&dev->struct_mutex);
214 	if (ret)
215 		return ret;
216 
217 	/* FIXME: the user of this interface might want more than just GGTT */
218 	switch (list) {
219 	case ACTIVE_LIST:
220 		seq_puts(m, "Active:\n");
221 		head = &vm->active_list;
222 		break;
223 	case INACTIVE_LIST:
224 		seq_puts(m, "Inactive:\n");
225 		head = &vm->inactive_list;
226 		break;
227 	default:
228 		mutex_unlock(&dev->struct_mutex);
229 		return -EINVAL;
230 	}
231 
232 	total_obj_size = total_gtt_size = count = 0;
233 	list_for_each_entry(vma, head, mm_list) {
234 		seq_printf(m, "   ");
235 		describe_obj(m, vma->obj);
236 		seq_printf(m, "\n");
237 		total_obj_size += vma->obj->base.size;
238 		total_gtt_size += vma->node.size;
239 		count++;
240 	}
241 	mutex_unlock(&dev->struct_mutex);
242 
243 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
244 		   count, total_obj_size, total_gtt_size);
245 	return 0;
246 }
247 
248 static int obj_rank_by_stolen(void *priv,
249 			      struct list_head *A, struct list_head *B)
250 {
251 	struct drm_i915_gem_object *a =
252 		container_of(A, struct drm_i915_gem_object, obj_exec_link);
253 	struct drm_i915_gem_object *b =
254 		container_of(B, struct drm_i915_gem_object, obj_exec_link);
255 
256 	if (a->stolen->start < b->stolen->start)
257 		return -1;
258 	if (a->stolen->start > b->stolen->start)
259 		return 1;
260 	return 0;
261 }
262 
263 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
264 {
265 	struct drm_info_node *node = m->private;
266 	struct drm_device *dev = node->minor->dev;
267 	struct drm_i915_private *dev_priv = dev->dev_private;
268 	struct drm_i915_gem_object *obj;
269 	u64 total_obj_size, total_gtt_size;
270 	LIST_HEAD(stolen);
271 	int count, ret;
272 
273 	ret = mutex_lock_interruptible(&dev->struct_mutex);
274 	if (ret)
275 		return ret;
276 
277 	total_obj_size = total_gtt_size = count = 0;
278 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
279 		if (obj->stolen == NULL)
280 			continue;
281 
282 		list_add(&obj->obj_exec_link, &stolen);
283 
284 		total_obj_size += obj->base.size;
285 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286 		count++;
287 	}
288 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
289 		if (obj->stolen == NULL)
290 			continue;
291 
292 		list_add(&obj->obj_exec_link, &stolen);
293 
294 		total_obj_size += obj->base.size;
295 		count++;
296 	}
297 	list_sort(NULL, &stolen, obj_rank_by_stolen);
298 	seq_puts(m, "Stolen:\n");
299 	while (!list_empty(&stolen)) {
300 		obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
301 		seq_puts(m, "   ");
302 		describe_obj(m, obj);
303 		seq_putc(m, '\n');
304 		list_del_init(&obj->obj_exec_link);
305 	}
306 	mutex_unlock(&dev->struct_mutex);
307 
308 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
309 		   count, total_obj_size, total_gtt_size);
310 	return 0;
311 }
312 
313 #define count_objects(list, member) do { \
314 	list_for_each_entry(obj, list, member) { \
315 		size += i915_gem_obj_total_ggtt_size(obj); \
316 		++count; \
317 		if (obj->map_and_fenceable) { \
318 			mappable_size += i915_gem_obj_ggtt_size(obj); \
319 			++mappable_count; \
320 		} \
321 	} \
322 } while (0)
323 
324 struct file_stats {
325 	struct drm_i915_file_private *file_priv;
326 	unsigned long count;
327 	u64 total, unbound;
328 	u64 global, shared;
329 	u64 active, inactive;
330 };
331 
332 static int per_file_stats(int id, void *ptr, void *data)
333 {
334 	struct drm_i915_gem_object *obj = ptr;
335 	struct file_stats *stats = data;
336 	struct i915_vma *vma;
337 
338 	stats->count++;
339 	stats->total += obj->base.size;
340 
341 	if (obj->base.name || obj->base.dma_buf)
342 		stats->shared += obj->base.size;
343 
344 	if (USES_FULL_PPGTT(obj->base.dev)) {
345 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
346 			struct i915_hw_ppgtt *ppgtt;
347 
348 			if (!drm_mm_node_allocated(&vma->node))
349 				continue;
350 
351 			if (i915_is_ggtt(vma->vm)) {
352 				stats->global += obj->base.size;
353 				continue;
354 			}
355 
356 			ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
357 			if (ppgtt->file_priv != stats->file_priv)
358 				continue;
359 
360 			if (obj->active) /* XXX per-vma statistic */
361 				stats->active += obj->base.size;
362 			else
363 				stats->inactive += obj->base.size;
364 
365 			return 0;
366 		}
367 	} else {
368 		if (i915_gem_obj_ggtt_bound(obj)) {
369 			stats->global += obj->base.size;
370 			if (obj->active)
371 				stats->active += obj->base.size;
372 			else
373 				stats->inactive += obj->base.size;
374 			return 0;
375 		}
376 	}
377 
378 	if (!list_empty(&obj->global_list))
379 		stats->unbound += obj->base.size;
380 
381 	return 0;
382 }
383 
384 #define print_file_stats(m, name, stats) do { \
385 	if (stats.count) \
386 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
387 			   name, \
388 			   stats.count, \
389 			   stats.total, \
390 			   stats.active, \
391 			   stats.inactive, \
392 			   stats.global, \
393 			   stats.shared, \
394 			   stats.unbound); \
395 } while (0)
396 
397 static void print_batch_pool_stats(struct seq_file *m,
398 				   struct drm_i915_private *dev_priv)
399 {
400 	struct drm_i915_gem_object *obj;
401 	struct file_stats stats;
402 	struct intel_engine_cs *ring;
403 	int i, j;
404 
405 	memset(&stats, 0, sizeof(stats));
406 
407 	for_each_ring(ring, dev_priv, i) {
408 		for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
409 			list_for_each_entry(obj,
410 					    &ring->batch_pool.cache_list[j],
411 					    batch_pool_link)
412 				per_file_stats(0, obj, &stats);
413 		}
414 	}
415 
416 	print_file_stats(m, "[k]batch pool", stats);
417 }
418 
419 #define count_vmas(list, member) do { \
420 	list_for_each_entry(vma, list, member) { \
421 		size += i915_gem_obj_total_ggtt_size(vma->obj); \
422 		++count; \
423 		if (vma->obj->map_and_fenceable) { \
424 			mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
425 			++mappable_count; \
426 		} \
427 	} \
428 } while (0)
429 
430 static int i915_gem_object_info(struct seq_file *m, void* data)
431 {
432 	struct drm_info_node *node = m->private;
433 	struct drm_device *dev = node->minor->dev;
434 	struct drm_i915_private *dev_priv = dev->dev_private;
435 	u32 count, mappable_count, purgeable_count;
436 	u64 size, mappable_size, purgeable_size;
437 	struct drm_i915_gem_object *obj;
438 	struct i915_address_space *vm = &dev_priv->gtt.base;
439 	struct drm_file *file;
440 	struct i915_vma *vma;
441 	int ret;
442 
443 	ret = mutex_lock_interruptible(&dev->struct_mutex);
444 	if (ret)
445 		return ret;
446 
447 	seq_printf(m, "%u objects, %zu bytes\n",
448 		   dev_priv->mm.object_count,
449 		   dev_priv->mm.object_memory);
450 
451 	size = count = mappable_size = mappable_count = 0;
452 	count_objects(&dev_priv->mm.bound_list, global_list);
453 	seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
454 		   count, mappable_count, size, mappable_size);
455 
456 	size = count = mappable_size = mappable_count = 0;
457 	count_vmas(&vm->active_list, mm_list);
458 	seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
459 		   count, mappable_count, size, mappable_size);
460 
461 	size = count = mappable_size = mappable_count = 0;
462 	count_vmas(&vm->inactive_list, mm_list);
463 	seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
464 		   count, mappable_count, size, mappable_size);
465 
466 	size = count = purgeable_size = purgeable_count = 0;
467 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
468 		size += obj->base.size, ++count;
469 		if (obj->madv == I915_MADV_DONTNEED)
470 			purgeable_size += obj->base.size, ++purgeable_count;
471 	}
472 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
473 
474 	size = count = mappable_size = mappable_count = 0;
475 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
476 		if (obj->fault_mappable) {
477 			size += i915_gem_obj_ggtt_size(obj);
478 			++count;
479 		}
480 		if (obj->pin_display) {
481 			mappable_size += i915_gem_obj_ggtt_size(obj);
482 			++mappable_count;
483 		}
484 		if (obj->madv == I915_MADV_DONTNEED) {
485 			purgeable_size += obj->base.size;
486 			++purgeable_count;
487 		}
488 	}
489 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
490 		   purgeable_count, purgeable_size);
491 	seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
492 		   mappable_count, mappable_size);
493 	seq_printf(m, "%u fault mappable objects, %llu bytes\n",
494 		   count, size);
495 
496 	seq_printf(m, "%llu [%llu] gtt total\n",
497 		   dev_priv->gtt.base.total,
498 		   (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
499 
500 	seq_putc(m, '\n');
501 	print_batch_pool_stats(m, dev_priv);
502 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
503 		struct file_stats stats;
504 		struct task_struct *task;
505 
506 		memset(&stats, 0, sizeof(stats));
507 		stats.file_priv = file->driver_priv;
508 		spin_lock(&file->table_lock);
509 		idr_for_each(&file->object_idr, per_file_stats, &stats);
510 		spin_unlock(&file->table_lock);
511 		/*
512 		 * Although we have a valid reference on file->pid, that does
513 		 * not guarantee that the task_struct who called get_pid() is
514 		 * still alive (e.g. get_pid(current) => fork() => exit()).
515 		 * Therefore, we need to protect this ->comm access using RCU.
516 		 */
517 		rcu_read_lock();
518 		task = pid_task(file->pid, PIDTYPE_PID);
519 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
520 		rcu_read_unlock();
521 	}
522 
523 	mutex_unlock(&dev->struct_mutex);
524 
525 	return 0;
526 }
527 
528 static int i915_gem_gtt_info(struct seq_file *m, void *data)
529 {
530 	struct drm_info_node *node = m->private;
531 	struct drm_device *dev = node->minor->dev;
532 	uintptr_t list = (uintptr_t) node->info_ent->data;
533 	struct drm_i915_private *dev_priv = dev->dev_private;
534 	struct drm_i915_gem_object *obj;
535 	u64 total_obj_size, total_gtt_size;
536 	int count, ret;
537 
538 	ret = mutex_lock_interruptible(&dev->struct_mutex);
539 	if (ret)
540 		return ret;
541 
542 	total_obj_size = total_gtt_size = count = 0;
543 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
544 		if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
545 			continue;
546 
547 		seq_puts(m, "   ");
548 		describe_obj(m, obj);
549 		seq_putc(m, '\n');
550 		total_obj_size += obj->base.size;
551 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
552 		count++;
553 	}
554 
555 	mutex_unlock(&dev->struct_mutex);
556 
557 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
558 		   count, total_obj_size, total_gtt_size);
559 
560 	return 0;
561 }
562 
563 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
564 {
565 	struct drm_info_node *node = m->private;
566 	struct drm_device *dev = node->minor->dev;
567 	struct drm_i915_private *dev_priv = dev->dev_private;
568 	struct intel_crtc *crtc;
569 	int ret;
570 
571 	ret = mutex_lock_interruptible(&dev->struct_mutex);
572 	if (ret)
573 		return ret;
574 
575 	for_each_intel_crtc(dev, crtc) {
576 		const char pipe = pipe_name(crtc->pipe);
577 		const char plane = plane_name(crtc->plane);
578 		struct intel_unpin_work *work;
579 
580 		spin_lock_irq(&dev->event_lock);
581 		work = crtc->unpin_work;
582 		if (work == NULL) {
583 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
584 				   pipe, plane);
585 		} else {
586 			u32 addr;
587 
588 			if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
589 				seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
590 					   pipe, plane);
591 			} else {
592 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
593 					   pipe, plane);
594 			}
595 			if (work->flip_queued_req) {
596 				struct intel_engine_cs *ring =
597 					i915_gem_request_get_ring(work->flip_queued_req);
598 
599 				seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
600 					   ring->name,
601 					   i915_gem_request_get_seqno(work->flip_queued_req),
602 					   dev_priv->next_seqno,
603 					   ring->get_seqno(ring, true),
604 					   i915_gem_request_completed(work->flip_queued_req, true));
605 			} else
606 				seq_printf(m, "Flip not associated with any ring\n");
607 			seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
608 				   work->flip_queued_vblank,
609 				   work->flip_ready_vblank,
610 				   drm_crtc_vblank_count(&crtc->base));
611 			if (work->enable_stall_check)
612 				seq_puts(m, "Stall check enabled, ");
613 			else
614 				seq_puts(m, "Stall check waiting for page flip ioctl, ");
615 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
616 
617 			if (INTEL_INFO(dev)->gen >= 4)
618 				addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
619 			else
620 				addr = I915_READ(DSPADDR(crtc->plane));
621 			seq_printf(m, "Current scanout address 0x%08x\n", addr);
622 
623 			if (work->pending_flip_obj) {
624 				seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
625 				seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
626 			}
627 		}
628 		spin_unlock_irq(&dev->event_lock);
629 	}
630 
631 	mutex_unlock(&dev->struct_mutex);
632 
633 	return 0;
634 }
635 
636 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
637 {
638 	struct drm_info_node *node = m->private;
639 	struct drm_device *dev = node->minor->dev;
640 	struct drm_i915_private *dev_priv = dev->dev_private;
641 	struct drm_i915_gem_object *obj;
642 	struct intel_engine_cs *ring;
643 	int total = 0;
644 	int ret, i, j;
645 
646 	ret = mutex_lock_interruptible(&dev->struct_mutex);
647 	if (ret)
648 		return ret;
649 
650 	for_each_ring(ring, dev_priv, i) {
651 		for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
652 			int count;
653 
654 			count = 0;
655 			list_for_each_entry(obj,
656 					    &ring->batch_pool.cache_list[j],
657 					    batch_pool_link)
658 				count++;
659 			seq_printf(m, "%s cache[%d]: %d objects\n",
660 				   ring->name, j, count);
661 
662 			list_for_each_entry(obj,
663 					    &ring->batch_pool.cache_list[j],
664 					    batch_pool_link) {
665 				seq_puts(m, "   ");
666 				describe_obj(m, obj);
667 				seq_putc(m, '\n');
668 			}
669 
670 			total += count;
671 		}
672 	}
673 
674 	seq_printf(m, "total: %d\n", total);
675 
676 	mutex_unlock(&dev->struct_mutex);
677 
678 	return 0;
679 }
680 
681 static int i915_gem_request_info(struct seq_file *m, void *data)
682 {
683 	struct drm_info_node *node = m->private;
684 	struct drm_device *dev = node->minor->dev;
685 	struct drm_i915_private *dev_priv = dev->dev_private;
686 	struct intel_engine_cs *ring;
687 	struct drm_i915_gem_request *req;
688 	int ret, any, i;
689 
690 	ret = mutex_lock_interruptible(&dev->struct_mutex);
691 	if (ret)
692 		return ret;
693 
694 	any = 0;
695 	for_each_ring(ring, dev_priv, i) {
696 		int count;
697 
698 		count = 0;
699 		list_for_each_entry(req, &ring->request_list, list)
700 			count++;
701 		if (count == 0)
702 			continue;
703 
704 		seq_printf(m, "%s requests: %d\n", ring->name, count);
705 		list_for_each_entry(req, &ring->request_list, list) {
706 			struct task_struct *task;
707 
708 			rcu_read_lock();
709 			task = NULL;
710 			if (req->pid)
711 				task = pid_task(req->pid, PIDTYPE_PID);
712 			seq_printf(m, "    %x @ %d: %s [%d]\n",
713 				   req->seqno,
714 				   (int) (jiffies - req->emitted_jiffies),
715 				   task ? task->comm : "<unknown>",
716 				   task ? task->pid : -1);
717 			rcu_read_unlock();
718 		}
719 
720 		any++;
721 	}
722 	mutex_unlock(&dev->struct_mutex);
723 
724 	if (any == 0)
725 		seq_puts(m, "No requests\n");
726 
727 	return 0;
728 }
729 
730 static void i915_ring_seqno_info(struct seq_file *m,
731 				 struct intel_engine_cs *ring)
732 {
733 	if (ring->get_seqno) {
734 		seq_printf(m, "Current sequence (%s): %x\n",
735 			   ring->name, ring->get_seqno(ring, false));
736 	}
737 }
738 
739 static int i915_gem_seqno_info(struct seq_file *m, void *data)
740 {
741 	struct drm_info_node *node = m->private;
742 	struct drm_device *dev = node->minor->dev;
743 	struct drm_i915_private *dev_priv = dev->dev_private;
744 	struct intel_engine_cs *ring;
745 	int ret, i;
746 
747 	ret = mutex_lock_interruptible(&dev->struct_mutex);
748 	if (ret)
749 		return ret;
750 	intel_runtime_pm_get(dev_priv);
751 
752 	for_each_ring(ring, dev_priv, i)
753 		i915_ring_seqno_info(m, ring);
754 
755 	intel_runtime_pm_put(dev_priv);
756 	mutex_unlock(&dev->struct_mutex);
757 
758 	return 0;
759 }
760 
761 
762 static int i915_interrupt_info(struct seq_file *m, void *data)
763 {
764 	struct drm_info_node *node = m->private;
765 	struct drm_device *dev = node->minor->dev;
766 	struct drm_i915_private *dev_priv = dev->dev_private;
767 	struct intel_engine_cs *ring;
768 	int ret, i, pipe;
769 
770 	ret = mutex_lock_interruptible(&dev->struct_mutex);
771 	if (ret)
772 		return ret;
773 	intel_runtime_pm_get(dev_priv);
774 
775 	if (IS_CHERRYVIEW(dev)) {
776 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
777 			   I915_READ(GEN8_MASTER_IRQ));
778 
779 		seq_printf(m, "Display IER:\t%08x\n",
780 			   I915_READ(VLV_IER));
781 		seq_printf(m, "Display IIR:\t%08x\n",
782 			   I915_READ(VLV_IIR));
783 		seq_printf(m, "Display IIR_RW:\t%08x\n",
784 			   I915_READ(VLV_IIR_RW));
785 		seq_printf(m, "Display IMR:\t%08x\n",
786 			   I915_READ(VLV_IMR));
787 		for_each_pipe(dev_priv, pipe)
788 			seq_printf(m, "Pipe %c stat:\t%08x\n",
789 				   pipe_name(pipe),
790 				   I915_READ(PIPESTAT(pipe)));
791 
792 		seq_printf(m, "Port hotplug:\t%08x\n",
793 			   I915_READ(PORT_HOTPLUG_EN));
794 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
795 			   I915_READ(VLV_DPFLIPSTAT));
796 		seq_printf(m, "DPINVGTT:\t%08x\n",
797 			   I915_READ(DPINVGTT));
798 
799 		for (i = 0; i < 4; i++) {
800 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
801 				   i, I915_READ(GEN8_GT_IMR(i)));
802 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
803 				   i, I915_READ(GEN8_GT_IIR(i)));
804 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
805 				   i, I915_READ(GEN8_GT_IER(i)));
806 		}
807 
808 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
809 			   I915_READ(GEN8_PCU_IMR));
810 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
811 			   I915_READ(GEN8_PCU_IIR));
812 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
813 			   I915_READ(GEN8_PCU_IER));
814 	} else if (INTEL_INFO(dev)->gen >= 8) {
815 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
816 			   I915_READ(GEN8_MASTER_IRQ));
817 
818 		for (i = 0; i < 4; i++) {
819 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
820 				   i, I915_READ(GEN8_GT_IMR(i)));
821 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
822 				   i, I915_READ(GEN8_GT_IIR(i)));
823 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
824 				   i, I915_READ(GEN8_GT_IER(i)));
825 		}
826 
827 		for_each_pipe(dev_priv, pipe) {
828 			if (!intel_display_power_is_enabled(dev_priv,
829 						POWER_DOMAIN_PIPE(pipe))) {
830 				seq_printf(m, "Pipe %c power disabled\n",
831 					   pipe_name(pipe));
832 				continue;
833 			}
834 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
835 				   pipe_name(pipe),
836 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
837 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
838 				   pipe_name(pipe),
839 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
840 			seq_printf(m, "Pipe %c IER:\t%08x\n",
841 				   pipe_name(pipe),
842 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
843 		}
844 
845 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
846 			   I915_READ(GEN8_DE_PORT_IMR));
847 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
848 			   I915_READ(GEN8_DE_PORT_IIR));
849 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
850 			   I915_READ(GEN8_DE_PORT_IER));
851 
852 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
853 			   I915_READ(GEN8_DE_MISC_IMR));
854 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
855 			   I915_READ(GEN8_DE_MISC_IIR));
856 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
857 			   I915_READ(GEN8_DE_MISC_IER));
858 
859 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
860 			   I915_READ(GEN8_PCU_IMR));
861 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
862 			   I915_READ(GEN8_PCU_IIR));
863 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
864 			   I915_READ(GEN8_PCU_IER));
865 	} else if (IS_VALLEYVIEW(dev)) {
866 		seq_printf(m, "Display IER:\t%08x\n",
867 			   I915_READ(VLV_IER));
868 		seq_printf(m, "Display IIR:\t%08x\n",
869 			   I915_READ(VLV_IIR));
870 		seq_printf(m, "Display IIR_RW:\t%08x\n",
871 			   I915_READ(VLV_IIR_RW));
872 		seq_printf(m, "Display IMR:\t%08x\n",
873 			   I915_READ(VLV_IMR));
874 		for_each_pipe(dev_priv, pipe)
875 			seq_printf(m, "Pipe %c stat:\t%08x\n",
876 				   pipe_name(pipe),
877 				   I915_READ(PIPESTAT(pipe)));
878 
879 		seq_printf(m, "Master IER:\t%08x\n",
880 			   I915_READ(VLV_MASTER_IER));
881 
882 		seq_printf(m, "Render IER:\t%08x\n",
883 			   I915_READ(GTIER));
884 		seq_printf(m, "Render IIR:\t%08x\n",
885 			   I915_READ(GTIIR));
886 		seq_printf(m, "Render IMR:\t%08x\n",
887 			   I915_READ(GTIMR));
888 
889 		seq_printf(m, "PM IER:\t\t%08x\n",
890 			   I915_READ(GEN6_PMIER));
891 		seq_printf(m, "PM IIR:\t\t%08x\n",
892 			   I915_READ(GEN6_PMIIR));
893 		seq_printf(m, "PM IMR:\t\t%08x\n",
894 			   I915_READ(GEN6_PMIMR));
895 
896 		seq_printf(m, "Port hotplug:\t%08x\n",
897 			   I915_READ(PORT_HOTPLUG_EN));
898 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
899 			   I915_READ(VLV_DPFLIPSTAT));
900 		seq_printf(m, "DPINVGTT:\t%08x\n",
901 			   I915_READ(DPINVGTT));
902 
903 	} else if (!HAS_PCH_SPLIT(dev)) {
904 		seq_printf(m, "Interrupt enable:    %08x\n",
905 			   I915_READ(IER));
906 		seq_printf(m, "Interrupt identity:  %08x\n",
907 			   I915_READ(IIR));
908 		seq_printf(m, "Interrupt mask:      %08x\n",
909 			   I915_READ(IMR));
910 		for_each_pipe(dev_priv, pipe)
911 			seq_printf(m, "Pipe %c stat:         %08x\n",
912 				   pipe_name(pipe),
913 				   I915_READ(PIPESTAT(pipe)));
914 	} else {
915 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
916 			   I915_READ(DEIER));
917 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
918 			   I915_READ(DEIIR));
919 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
920 			   I915_READ(DEIMR));
921 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
922 			   I915_READ(SDEIER));
923 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
924 			   I915_READ(SDEIIR));
925 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
926 			   I915_READ(SDEIMR));
927 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
928 			   I915_READ(GTIER));
929 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
930 			   I915_READ(GTIIR));
931 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
932 			   I915_READ(GTIMR));
933 	}
934 	for_each_ring(ring, dev_priv, i) {
935 		if (INTEL_INFO(dev)->gen >= 6) {
936 			seq_printf(m,
937 				   "Graphics Interrupt mask (%s):	%08x\n",
938 				   ring->name, I915_READ_IMR(ring));
939 		}
940 		i915_ring_seqno_info(m, ring);
941 	}
942 	intel_runtime_pm_put(dev_priv);
943 	mutex_unlock(&dev->struct_mutex);
944 
945 	return 0;
946 }
947 
948 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
949 {
950 	struct drm_info_node *node = m->private;
951 	struct drm_device *dev = node->minor->dev;
952 	struct drm_i915_private *dev_priv = dev->dev_private;
953 	int i, ret;
954 
955 	ret = mutex_lock_interruptible(&dev->struct_mutex);
956 	if (ret)
957 		return ret;
958 
959 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
960 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
961 		struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
962 
963 		seq_printf(m, "Fence %d, pin count = %d, object = ",
964 			   i, dev_priv->fence_regs[i].pin_count);
965 		if (obj == NULL)
966 			seq_puts(m, "unused");
967 		else
968 			describe_obj(m, obj);
969 		seq_putc(m, '\n');
970 	}
971 
972 	mutex_unlock(&dev->struct_mutex);
973 	return 0;
974 }
975 
976 static int i915_hws_info(struct seq_file *m, void *data)
977 {
978 	struct drm_info_node *node = m->private;
979 	struct drm_device *dev = node->minor->dev;
980 	struct drm_i915_private *dev_priv = dev->dev_private;
981 	struct intel_engine_cs *ring;
982 	const u32 *hws;
983 	int i;
984 
985 	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
986 	hws = ring->status_page.page_addr;
987 	if (hws == NULL)
988 		return 0;
989 
990 	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
991 		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
992 			   i * 4,
993 			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
994 	}
995 	return 0;
996 }
997 
998 static ssize_t
999 i915_error_state_write(struct file *filp,
1000 		       const char __user *ubuf,
1001 		       size_t cnt,
1002 		       loff_t *ppos)
1003 {
1004 	struct i915_error_state_file_priv *error_priv = filp->private_data;
1005 	struct drm_device *dev = error_priv->dev;
1006 	int ret;
1007 
1008 	DRM_DEBUG_DRIVER("Resetting error state\n");
1009 
1010 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1011 	if (ret)
1012 		return ret;
1013 
1014 	i915_destroy_error_state(dev);
1015 	mutex_unlock(&dev->struct_mutex);
1016 
1017 	return cnt;
1018 }
1019 
1020 static int i915_error_state_open(struct inode *inode, struct file *file)
1021 {
1022 	struct drm_device *dev = inode->i_private;
1023 	struct i915_error_state_file_priv *error_priv;
1024 
1025 	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1026 	if (!error_priv)
1027 		return -ENOMEM;
1028 
1029 	error_priv->dev = dev;
1030 
1031 	i915_error_state_get(dev, error_priv);
1032 
1033 	file->private_data = error_priv;
1034 
1035 	return 0;
1036 }
1037 
1038 static int i915_error_state_release(struct inode *inode, struct file *file)
1039 {
1040 	struct i915_error_state_file_priv *error_priv = file->private_data;
1041 
1042 	i915_error_state_put(error_priv);
1043 	kfree(error_priv);
1044 
1045 	return 0;
1046 }
1047 
1048 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1049 				     size_t count, loff_t *pos)
1050 {
1051 	struct i915_error_state_file_priv *error_priv = file->private_data;
1052 	struct drm_i915_error_state_buf error_str;
1053 	loff_t tmp_pos = 0;
1054 	ssize_t ret_count = 0;
1055 	int ret;
1056 
1057 	ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1058 	if (ret)
1059 		return ret;
1060 
1061 	ret = i915_error_state_to_str(&error_str, error_priv);
1062 	if (ret)
1063 		goto out;
1064 
1065 	ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1066 					    error_str.buf,
1067 					    error_str.bytes);
1068 
1069 	if (ret_count < 0)
1070 		ret = ret_count;
1071 	else
1072 		*pos = error_str.start + ret_count;
1073 out:
1074 	i915_error_state_buf_release(&error_str);
1075 	return ret ?: ret_count;
1076 }
1077 
1078 static const struct file_operations i915_error_state_fops = {
1079 	.owner = THIS_MODULE,
1080 	.open = i915_error_state_open,
1081 	.read = i915_error_state_read,
1082 	.write = i915_error_state_write,
1083 	.llseek = default_llseek,
1084 	.release = i915_error_state_release,
1085 };
1086 
1087 static int
1088 i915_next_seqno_get(void *data, u64 *val)
1089 {
1090 	struct drm_device *dev = data;
1091 	struct drm_i915_private *dev_priv = dev->dev_private;
1092 	int ret;
1093 
1094 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1095 	if (ret)
1096 		return ret;
1097 
1098 	*val = dev_priv->next_seqno;
1099 	mutex_unlock(&dev->struct_mutex);
1100 
1101 	return 0;
1102 }
1103 
1104 static int
1105 i915_next_seqno_set(void *data, u64 val)
1106 {
1107 	struct drm_device *dev = data;
1108 	int ret;
1109 
1110 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1111 	if (ret)
1112 		return ret;
1113 
1114 	ret = i915_gem_set_seqno(dev, val);
1115 	mutex_unlock(&dev->struct_mutex);
1116 
1117 	return ret;
1118 }
1119 
1120 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1121 			i915_next_seqno_get, i915_next_seqno_set,
1122 			"0x%llx\n");
1123 
1124 static int i915_frequency_info(struct seq_file *m, void *unused)
1125 {
1126 	struct drm_info_node *node = m->private;
1127 	struct drm_device *dev = node->minor->dev;
1128 	struct drm_i915_private *dev_priv = dev->dev_private;
1129 	int ret = 0;
1130 
1131 	intel_runtime_pm_get(dev_priv);
1132 
1133 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1134 
1135 	if (IS_GEN5(dev)) {
1136 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1137 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1138 
1139 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1140 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1141 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1142 			   MEMSTAT_VID_SHIFT);
1143 		seq_printf(m, "Current P-state: %d\n",
1144 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1145 	} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1146 		u32 freq_sts;
1147 
1148 		mutex_lock(&dev_priv->rps.hw_lock);
1149 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1150 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1151 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1152 
1153 		seq_printf(m, "actual GPU freq: %d MHz\n",
1154 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1155 
1156 		seq_printf(m, "current GPU freq: %d MHz\n",
1157 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1158 
1159 		seq_printf(m, "max GPU freq: %d MHz\n",
1160 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1161 
1162 		seq_printf(m, "min GPU freq: %d MHz\n",
1163 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1164 
1165 		seq_printf(m, "idle GPU freq: %d MHz\n",
1166 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1167 
1168 		seq_printf(m,
1169 			   "efficient (RPe) frequency: %d MHz\n",
1170 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1171 		mutex_unlock(&dev_priv->rps.hw_lock);
1172 	} else if (INTEL_INFO(dev)->gen >= 6) {
1173 		u32 rp_state_limits;
1174 		u32 gt_perf_status;
1175 		u32 rp_state_cap;
1176 		u32 rpmodectl, rpinclimit, rpdeclimit;
1177 		u32 rpstat, cagf, reqf;
1178 		u32 rpupei, rpcurup, rpprevup;
1179 		u32 rpdownei, rpcurdown, rpprevdown;
1180 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1181 		int max_freq;
1182 
1183 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1184 		if (IS_BROXTON(dev)) {
1185 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1186 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1187 		} else {
1188 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1189 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1190 		}
1191 
1192 		/* RPSTAT1 is in the GT power well */
1193 		ret = mutex_lock_interruptible(&dev->struct_mutex);
1194 		if (ret)
1195 			goto out;
1196 
1197 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1198 
1199 		reqf = I915_READ(GEN6_RPNSWREQ);
1200 		if (IS_GEN9(dev))
1201 			reqf >>= 23;
1202 		else {
1203 			reqf &= ~GEN6_TURBO_DISABLE;
1204 			if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1205 				reqf >>= 24;
1206 			else
1207 				reqf >>= 25;
1208 		}
1209 		reqf = intel_gpu_freq(dev_priv, reqf);
1210 
1211 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1212 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1213 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1214 
1215 		rpstat = I915_READ(GEN6_RPSTAT1);
1216 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1217 		rpcurup = I915_READ(GEN6_RP_CUR_UP);
1218 		rpprevup = I915_READ(GEN6_RP_PREV_UP);
1219 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1220 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1221 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1222 		if (IS_GEN9(dev))
1223 			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1224 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1225 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1226 		else
1227 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1228 		cagf = intel_gpu_freq(dev_priv, cagf);
1229 
1230 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1231 		mutex_unlock(&dev->struct_mutex);
1232 
1233 		if (IS_GEN6(dev) || IS_GEN7(dev)) {
1234 			pm_ier = I915_READ(GEN6_PMIER);
1235 			pm_imr = I915_READ(GEN6_PMIMR);
1236 			pm_isr = I915_READ(GEN6_PMISR);
1237 			pm_iir = I915_READ(GEN6_PMIIR);
1238 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1239 		} else {
1240 			pm_ier = I915_READ(GEN8_GT_IER(2));
1241 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1242 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1243 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1244 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1245 		}
1246 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1247 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1248 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1249 		seq_printf(m, "Render p-state ratio: %d\n",
1250 			   (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1251 		seq_printf(m, "Render p-state VID: %d\n",
1252 			   gt_perf_status & 0xff);
1253 		seq_printf(m, "Render p-state limit: %d\n",
1254 			   rp_state_limits & 0xff);
1255 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1256 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1257 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1258 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1259 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1260 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1261 		seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1262 			   GEN6_CURICONT_MASK);
1263 		seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1264 			   GEN6_CURBSYTAVG_MASK);
1265 		seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1266 			   GEN6_CURBSYTAVG_MASK);
1267 		seq_printf(m, "Up threshold: %d%%\n",
1268 			   dev_priv->rps.up_threshold);
1269 
1270 		seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1271 			   GEN6_CURIAVG_MASK);
1272 		seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1273 			   GEN6_CURBSYTAVG_MASK);
1274 		seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1275 			   GEN6_CURBSYTAVG_MASK);
1276 		seq_printf(m, "Down threshold: %d%%\n",
1277 			   dev_priv->rps.down_threshold);
1278 
1279 		max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1280 			    rp_state_cap >> 16) & 0xff;
1281 		max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1282 			     GEN9_FREQ_SCALER : 1);
1283 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1284 			   intel_gpu_freq(dev_priv, max_freq));
1285 
1286 		max_freq = (rp_state_cap & 0xff00) >> 8;
1287 		max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1288 			     GEN9_FREQ_SCALER : 1);
1289 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1290 			   intel_gpu_freq(dev_priv, max_freq));
1291 
1292 		max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1293 			    rp_state_cap >> 0) & 0xff;
1294 		max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1295 			     GEN9_FREQ_SCALER : 1);
1296 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1297 			   intel_gpu_freq(dev_priv, max_freq));
1298 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1299 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1300 
1301 		seq_printf(m, "Current freq: %d MHz\n",
1302 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1303 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1304 		seq_printf(m, "Idle freq: %d MHz\n",
1305 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1306 		seq_printf(m, "Min freq: %d MHz\n",
1307 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1308 		seq_printf(m, "Max freq: %d MHz\n",
1309 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1310 		seq_printf(m,
1311 			   "efficient (RPe) frequency: %d MHz\n",
1312 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1313 	} else {
1314 		seq_puts(m, "no P-state info available\n");
1315 	}
1316 
1317 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1318 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1319 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1320 
1321 out:
1322 	intel_runtime_pm_put(dev_priv);
1323 	return ret;
1324 }
1325 
1326 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1327 {
1328 	struct drm_info_node *node = m->private;
1329 	struct drm_device *dev = node->minor->dev;
1330 	struct drm_i915_private *dev_priv = dev->dev_private;
1331 	struct intel_engine_cs *ring;
1332 	u64 acthd[I915_NUM_RINGS];
1333 	u32 seqno[I915_NUM_RINGS];
1334 	int i;
1335 
1336 	if (!i915.enable_hangcheck) {
1337 		seq_printf(m, "Hangcheck disabled\n");
1338 		return 0;
1339 	}
1340 
1341 	intel_runtime_pm_get(dev_priv);
1342 
1343 	for_each_ring(ring, dev_priv, i) {
1344 		seqno[i] = ring->get_seqno(ring, false);
1345 		acthd[i] = intel_ring_get_active_head(ring);
1346 	}
1347 
1348 	intel_runtime_pm_put(dev_priv);
1349 
1350 	if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1351 		seq_printf(m, "Hangcheck active, fires in %dms\n",
1352 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1353 					    jiffies));
1354 	} else
1355 		seq_printf(m, "Hangcheck inactive\n");
1356 
1357 	for_each_ring(ring, dev_priv, i) {
1358 		seq_printf(m, "%s:\n", ring->name);
1359 		seq_printf(m, "\tseqno = %x [current %x]\n",
1360 			   ring->hangcheck.seqno, seqno[i]);
1361 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1362 			   (long long)ring->hangcheck.acthd,
1363 			   (long long)acthd[i]);
1364 		seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1365 			   (long long)ring->hangcheck.max_acthd);
1366 		seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1367 		seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1368 	}
1369 
1370 	return 0;
1371 }
1372 
1373 static int ironlake_drpc_info(struct seq_file *m)
1374 {
1375 	struct drm_info_node *node = m->private;
1376 	struct drm_device *dev = node->minor->dev;
1377 	struct drm_i915_private *dev_priv = dev->dev_private;
1378 	u32 rgvmodectl, rstdbyctl;
1379 	u16 crstandvid;
1380 	int ret;
1381 
1382 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1383 	if (ret)
1384 		return ret;
1385 	intel_runtime_pm_get(dev_priv);
1386 
1387 	rgvmodectl = I915_READ(MEMMODECTL);
1388 	rstdbyctl = I915_READ(RSTDBYCTL);
1389 	crstandvid = I915_READ16(CRSTANDVID);
1390 
1391 	intel_runtime_pm_put(dev_priv);
1392 	mutex_unlock(&dev->struct_mutex);
1393 
1394 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1395 	seq_printf(m, "Boost freq: %d\n",
1396 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1397 		   MEMMODE_BOOST_FREQ_SHIFT);
1398 	seq_printf(m, "HW control enabled: %s\n",
1399 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1400 	seq_printf(m, "SW control enabled: %s\n",
1401 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1402 	seq_printf(m, "Gated voltage change: %s\n",
1403 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1404 	seq_printf(m, "Starting frequency: P%d\n",
1405 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1406 	seq_printf(m, "Max P-state: P%d\n",
1407 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1408 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1409 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1410 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1411 	seq_printf(m, "Render standby enabled: %s\n",
1412 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1413 	seq_puts(m, "Current RS state: ");
1414 	switch (rstdbyctl & RSX_STATUS_MASK) {
1415 	case RSX_STATUS_ON:
1416 		seq_puts(m, "on\n");
1417 		break;
1418 	case RSX_STATUS_RC1:
1419 		seq_puts(m, "RC1\n");
1420 		break;
1421 	case RSX_STATUS_RC1E:
1422 		seq_puts(m, "RC1E\n");
1423 		break;
1424 	case RSX_STATUS_RS1:
1425 		seq_puts(m, "RS1\n");
1426 		break;
1427 	case RSX_STATUS_RS2:
1428 		seq_puts(m, "RS2 (RC6)\n");
1429 		break;
1430 	case RSX_STATUS_RS3:
1431 		seq_puts(m, "RC3 (RC6+)\n");
1432 		break;
1433 	default:
1434 		seq_puts(m, "unknown\n");
1435 		break;
1436 	}
1437 
1438 	return 0;
1439 }
1440 
1441 static int i915_forcewake_domains(struct seq_file *m, void *data)
1442 {
1443 	struct drm_info_node *node = m->private;
1444 	struct drm_device *dev = node->minor->dev;
1445 	struct drm_i915_private *dev_priv = dev->dev_private;
1446 	struct intel_uncore_forcewake_domain *fw_domain;
1447 	int i;
1448 
1449 	spin_lock_irq(&dev_priv->uncore.lock);
1450 	for_each_fw_domain(fw_domain, dev_priv, i) {
1451 		seq_printf(m, "%s.wake_count = %u\n",
1452 			   intel_uncore_forcewake_domain_to_str(i),
1453 			   fw_domain->wake_count);
1454 	}
1455 	spin_unlock_irq(&dev_priv->uncore.lock);
1456 
1457 	return 0;
1458 }
1459 
1460 static int vlv_drpc_info(struct seq_file *m)
1461 {
1462 	struct drm_info_node *node = m->private;
1463 	struct drm_device *dev = node->minor->dev;
1464 	struct drm_i915_private *dev_priv = dev->dev_private;
1465 	u32 rpmodectl1, rcctl1, pw_status;
1466 
1467 	intel_runtime_pm_get(dev_priv);
1468 
1469 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1470 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1471 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1472 
1473 	intel_runtime_pm_put(dev_priv);
1474 
1475 	seq_printf(m, "Video Turbo Mode: %s\n",
1476 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1477 	seq_printf(m, "Turbo enabled: %s\n",
1478 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1479 	seq_printf(m, "HW control enabled: %s\n",
1480 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1481 	seq_printf(m, "SW control enabled: %s\n",
1482 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1483 			  GEN6_RP_MEDIA_SW_MODE));
1484 	seq_printf(m, "RC6 Enabled: %s\n",
1485 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1486 					GEN6_RC_CTL_EI_MODE(1))));
1487 	seq_printf(m, "Render Power Well: %s\n",
1488 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1489 	seq_printf(m, "Media Power Well: %s\n",
1490 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1491 
1492 	seq_printf(m, "Render RC6 residency since boot: %u\n",
1493 		   I915_READ(VLV_GT_RENDER_RC6));
1494 	seq_printf(m, "Media RC6 residency since boot: %u\n",
1495 		   I915_READ(VLV_GT_MEDIA_RC6));
1496 
1497 	return i915_forcewake_domains(m, NULL);
1498 }
1499 
1500 static int gen6_drpc_info(struct seq_file *m)
1501 {
1502 	struct drm_info_node *node = m->private;
1503 	struct drm_device *dev = node->minor->dev;
1504 	struct drm_i915_private *dev_priv = dev->dev_private;
1505 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1506 	unsigned forcewake_count;
1507 	int count = 0, ret;
1508 
1509 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1510 	if (ret)
1511 		return ret;
1512 	intel_runtime_pm_get(dev_priv);
1513 
1514 	spin_lock_irq(&dev_priv->uncore.lock);
1515 	forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1516 	spin_unlock_irq(&dev_priv->uncore.lock);
1517 
1518 	if (forcewake_count) {
1519 		seq_puts(m, "RC information inaccurate because somebody "
1520 			    "holds a forcewake reference \n");
1521 	} else {
1522 		/* NB: we cannot use forcewake, else we read the wrong values */
1523 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1524 			udelay(10);
1525 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1526 	}
1527 
1528 	gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1529 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1530 
1531 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1532 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1533 	mutex_unlock(&dev->struct_mutex);
1534 	mutex_lock(&dev_priv->rps.hw_lock);
1535 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1536 	mutex_unlock(&dev_priv->rps.hw_lock);
1537 
1538 	intel_runtime_pm_put(dev_priv);
1539 
1540 	seq_printf(m, "Video Turbo Mode: %s\n",
1541 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1542 	seq_printf(m, "HW control enabled: %s\n",
1543 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1544 	seq_printf(m, "SW control enabled: %s\n",
1545 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1546 			  GEN6_RP_MEDIA_SW_MODE));
1547 	seq_printf(m, "RC1e Enabled: %s\n",
1548 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1549 	seq_printf(m, "RC6 Enabled: %s\n",
1550 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1551 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1552 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1553 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1554 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1555 	seq_puts(m, "Current RC state: ");
1556 	switch (gt_core_status & GEN6_RCn_MASK) {
1557 	case GEN6_RC0:
1558 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1559 			seq_puts(m, "Core Power Down\n");
1560 		else
1561 			seq_puts(m, "on\n");
1562 		break;
1563 	case GEN6_RC3:
1564 		seq_puts(m, "RC3\n");
1565 		break;
1566 	case GEN6_RC6:
1567 		seq_puts(m, "RC6\n");
1568 		break;
1569 	case GEN6_RC7:
1570 		seq_puts(m, "RC7\n");
1571 		break;
1572 	default:
1573 		seq_puts(m, "Unknown\n");
1574 		break;
1575 	}
1576 
1577 	seq_printf(m, "Core Power Down: %s\n",
1578 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1579 
1580 	/* Not exactly sure what this is */
1581 	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1582 		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1583 	seq_printf(m, "RC6 residency since boot: %u\n",
1584 		   I915_READ(GEN6_GT_GFX_RC6));
1585 	seq_printf(m, "RC6+ residency since boot: %u\n",
1586 		   I915_READ(GEN6_GT_GFX_RC6p));
1587 	seq_printf(m, "RC6++ residency since boot: %u\n",
1588 		   I915_READ(GEN6_GT_GFX_RC6pp));
1589 
1590 	seq_printf(m, "RC6   voltage: %dmV\n",
1591 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1592 	seq_printf(m, "RC6+  voltage: %dmV\n",
1593 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1594 	seq_printf(m, "RC6++ voltage: %dmV\n",
1595 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1596 	return 0;
1597 }
1598 
1599 static int i915_drpc_info(struct seq_file *m, void *unused)
1600 {
1601 	struct drm_info_node *node = m->private;
1602 	struct drm_device *dev = node->minor->dev;
1603 
1604 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1605 		return vlv_drpc_info(m);
1606 	else if (INTEL_INFO(dev)->gen >= 6)
1607 		return gen6_drpc_info(m);
1608 	else
1609 		return ironlake_drpc_info(m);
1610 }
1611 
1612 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1613 {
1614 	struct drm_info_node *node = m->private;
1615 	struct drm_device *dev = node->minor->dev;
1616 	struct drm_i915_private *dev_priv = dev->dev_private;
1617 
1618 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1619 		   dev_priv->fb_tracking.busy_bits);
1620 
1621 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1622 		   dev_priv->fb_tracking.flip_bits);
1623 
1624 	return 0;
1625 }
1626 
1627 static int i915_fbc_status(struct seq_file *m, void *unused)
1628 {
1629 	struct drm_info_node *node = m->private;
1630 	struct drm_device *dev = node->minor->dev;
1631 	struct drm_i915_private *dev_priv = dev->dev_private;
1632 
1633 	if (!HAS_FBC(dev)) {
1634 		seq_puts(m, "FBC unsupported on this chipset\n");
1635 		return 0;
1636 	}
1637 
1638 	intel_runtime_pm_get(dev_priv);
1639 	mutex_lock(&dev_priv->fbc.lock);
1640 
1641 	if (intel_fbc_is_active(dev_priv))
1642 		seq_puts(m, "FBC enabled\n");
1643 	else
1644 		seq_printf(m, "FBC disabled: %s\n",
1645 			   dev_priv->fbc.no_fbc_reason);
1646 
1647 	if (INTEL_INFO(dev_priv)->gen >= 7)
1648 		seq_printf(m, "Compressing: %s\n",
1649 			   yesno(I915_READ(FBC_STATUS2) &
1650 				 FBC_COMPRESSION_MASK));
1651 
1652 	mutex_unlock(&dev_priv->fbc.lock);
1653 	intel_runtime_pm_put(dev_priv);
1654 
1655 	return 0;
1656 }
1657 
1658 static int i915_fbc_fc_get(void *data, u64 *val)
1659 {
1660 	struct drm_device *dev = data;
1661 	struct drm_i915_private *dev_priv = dev->dev_private;
1662 
1663 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1664 		return -ENODEV;
1665 
1666 	*val = dev_priv->fbc.false_color;
1667 
1668 	return 0;
1669 }
1670 
1671 static int i915_fbc_fc_set(void *data, u64 val)
1672 {
1673 	struct drm_device *dev = data;
1674 	struct drm_i915_private *dev_priv = dev->dev_private;
1675 	u32 reg;
1676 
1677 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1678 		return -ENODEV;
1679 
1680 	mutex_lock(&dev_priv->fbc.lock);
1681 
1682 	reg = I915_READ(ILK_DPFC_CONTROL);
1683 	dev_priv->fbc.false_color = val;
1684 
1685 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1686 		   (reg | FBC_CTL_FALSE_COLOR) :
1687 		   (reg & ~FBC_CTL_FALSE_COLOR));
1688 
1689 	mutex_unlock(&dev_priv->fbc.lock);
1690 	return 0;
1691 }
1692 
1693 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1694 			i915_fbc_fc_get, i915_fbc_fc_set,
1695 			"%llu\n");
1696 
1697 static int i915_ips_status(struct seq_file *m, void *unused)
1698 {
1699 	struct drm_info_node *node = m->private;
1700 	struct drm_device *dev = node->minor->dev;
1701 	struct drm_i915_private *dev_priv = dev->dev_private;
1702 
1703 	if (!HAS_IPS(dev)) {
1704 		seq_puts(m, "not supported\n");
1705 		return 0;
1706 	}
1707 
1708 	intel_runtime_pm_get(dev_priv);
1709 
1710 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1711 		   yesno(i915.enable_ips));
1712 
1713 	if (INTEL_INFO(dev)->gen >= 8) {
1714 		seq_puts(m, "Currently: unknown\n");
1715 	} else {
1716 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1717 			seq_puts(m, "Currently: enabled\n");
1718 		else
1719 			seq_puts(m, "Currently: disabled\n");
1720 	}
1721 
1722 	intel_runtime_pm_put(dev_priv);
1723 
1724 	return 0;
1725 }
1726 
1727 static int i915_sr_status(struct seq_file *m, void *unused)
1728 {
1729 	struct drm_info_node *node = m->private;
1730 	struct drm_device *dev = node->minor->dev;
1731 	struct drm_i915_private *dev_priv = dev->dev_private;
1732 	bool sr_enabled = false;
1733 
1734 	intel_runtime_pm_get(dev_priv);
1735 
1736 	if (HAS_PCH_SPLIT(dev))
1737 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1738 	else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1739 		 IS_I945G(dev) || IS_I945GM(dev))
1740 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1741 	else if (IS_I915GM(dev))
1742 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1743 	else if (IS_PINEVIEW(dev))
1744 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1745 	else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1746 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1747 
1748 	intel_runtime_pm_put(dev_priv);
1749 
1750 	seq_printf(m, "self-refresh: %s\n",
1751 		   sr_enabled ? "enabled" : "disabled");
1752 
1753 	return 0;
1754 }
1755 
1756 static int i915_emon_status(struct seq_file *m, void *unused)
1757 {
1758 	struct drm_info_node *node = m->private;
1759 	struct drm_device *dev = node->minor->dev;
1760 	struct drm_i915_private *dev_priv = dev->dev_private;
1761 	unsigned long temp, chipset, gfx;
1762 	int ret;
1763 
1764 	if (!IS_GEN5(dev))
1765 		return -ENODEV;
1766 
1767 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1768 	if (ret)
1769 		return ret;
1770 
1771 	temp = i915_mch_val(dev_priv);
1772 	chipset = i915_chipset_val(dev_priv);
1773 	gfx = i915_gfx_val(dev_priv);
1774 	mutex_unlock(&dev->struct_mutex);
1775 
1776 	seq_printf(m, "GMCH temp: %ld\n", temp);
1777 	seq_printf(m, "Chipset power: %ld\n", chipset);
1778 	seq_printf(m, "GFX power: %ld\n", gfx);
1779 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1780 
1781 	return 0;
1782 }
1783 
1784 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1785 {
1786 	struct drm_info_node *node = m->private;
1787 	struct drm_device *dev = node->minor->dev;
1788 	struct drm_i915_private *dev_priv = dev->dev_private;
1789 	int ret = 0;
1790 	int gpu_freq, ia_freq;
1791 	unsigned int max_gpu_freq, min_gpu_freq;
1792 
1793 	if (!HAS_CORE_RING_FREQ(dev)) {
1794 		seq_puts(m, "unsupported on this chipset\n");
1795 		return 0;
1796 	}
1797 
1798 	intel_runtime_pm_get(dev_priv);
1799 
1800 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1801 
1802 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1803 	if (ret)
1804 		goto out;
1805 
1806 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1807 		/* Convert GT frequency to 50 HZ units */
1808 		min_gpu_freq =
1809 			dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1810 		max_gpu_freq =
1811 			dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1812 	} else {
1813 		min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1814 		max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1815 	}
1816 
1817 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1818 
1819 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1820 		ia_freq = gpu_freq;
1821 		sandybridge_pcode_read(dev_priv,
1822 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1823 				       &ia_freq);
1824 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1825 			   intel_gpu_freq(dev_priv, (gpu_freq *
1826 				(IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1827 				 GEN9_FREQ_SCALER : 1))),
1828 			   ((ia_freq >> 0) & 0xff) * 100,
1829 			   ((ia_freq >> 8) & 0xff) * 100);
1830 	}
1831 
1832 	mutex_unlock(&dev_priv->rps.hw_lock);
1833 
1834 out:
1835 	intel_runtime_pm_put(dev_priv);
1836 	return ret;
1837 }
1838 
1839 static int i915_opregion(struct seq_file *m, void *unused)
1840 {
1841 	struct drm_info_node *node = m->private;
1842 	struct drm_device *dev = node->minor->dev;
1843 	struct drm_i915_private *dev_priv = dev->dev_private;
1844 	struct intel_opregion *opregion = &dev_priv->opregion;
1845 	int ret;
1846 
1847 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1848 	if (ret)
1849 		goto out;
1850 
1851 	if (opregion->header)
1852 		seq_write(m, opregion->header, OPREGION_SIZE);
1853 
1854 	mutex_unlock(&dev->struct_mutex);
1855 
1856 out:
1857 	return 0;
1858 }
1859 
1860 static int i915_vbt(struct seq_file *m, void *unused)
1861 {
1862 	struct drm_info_node *node = m->private;
1863 	struct drm_device *dev = node->minor->dev;
1864 	struct drm_i915_private *dev_priv = dev->dev_private;
1865 	struct intel_opregion *opregion = &dev_priv->opregion;
1866 
1867 	if (opregion->vbt)
1868 		seq_write(m, opregion->vbt, opregion->vbt_size);
1869 
1870 	return 0;
1871 }
1872 
1873 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1874 {
1875 	struct drm_info_node *node = m->private;
1876 	struct drm_device *dev = node->minor->dev;
1877 	struct intel_framebuffer *fbdev_fb = NULL;
1878 	struct drm_framebuffer *drm_fb;
1879 
1880 #ifdef CONFIG_DRM_FBDEV_EMULATION
1881        if (to_i915(dev)->fbdev) {
1882                fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1883 
1884                seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1885                          fbdev_fb->base.width,
1886                          fbdev_fb->base.height,
1887                          fbdev_fb->base.depth,
1888                          fbdev_fb->base.bits_per_pixel,
1889                          fbdev_fb->base.modifier[0],
1890                          atomic_read(&fbdev_fb->base.refcount.refcount));
1891                describe_obj(m, fbdev_fb->obj);
1892                seq_putc(m, '\n');
1893        }
1894 #endif
1895 
1896 	mutex_lock(&dev->mode_config.fb_lock);
1897 	drm_for_each_fb(drm_fb, dev) {
1898 		struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1899 		if (fb == fbdev_fb)
1900 			continue;
1901 
1902 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1903 			   fb->base.width,
1904 			   fb->base.height,
1905 			   fb->base.depth,
1906 			   fb->base.bits_per_pixel,
1907 			   fb->base.modifier[0],
1908 			   atomic_read(&fb->base.refcount.refcount));
1909 		describe_obj(m, fb->obj);
1910 		seq_putc(m, '\n');
1911 	}
1912 	mutex_unlock(&dev->mode_config.fb_lock);
1913 
1914 	return 0;
1915 }
1916 
1917 static void describe_ctx_ringbuf(struct seq_file *m,
1918 				 struct intel_ringbuffer *ringbuf)
1919 {
1920 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1921 		   ringbuf->space, ringbuf->head, ringbuf->tail,
1922 		   ringbuf->last_retired_head);
1923 }
1924 
1925 static int i915_context_status(struct seq_file *m, void *unused)
1926 {
1927 	struct drm_info_node *node = m->private;
1928 	struct drm_device *dev = node->minor->dev;
1929 	struct drm_i915_private *dev_priv = dev->dev_private;
1930 	struct intel_engine_cs *ring;
1931 	struct intel_context *ctx;
1932 	int ret, i;
1933 
1934 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1935 	if (ret)
1936 		return ret;
1937 
1938 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1939 		if (!i915.enable_execlists &&
1940 		    ctx->legacy_hw_ctx.rcs_state == NULL)
1941 			continue;
1942 
1943 		seq_puts(m, "HW context ");
1944 		describe_ctx(m, ctx);
1945 		for_each_ring(ring, dev_priv, i) {
1946 			if (ring->default_context == ctx)
1947 				seq_printf(m, "(default context %s) ",
1948 					   ring->name);
1949 		}
1950 
1951 		if (i915.enable_execlists) {
1952 			seq_putc(m, '\n');
1953 			for_each_ring(ring, dev_priv, i) {
1954 				struct drm_i915_gem_object *ctx_obj =
1955 					ctx->engine[i].state;
1956 				struct intel_ringbuffer *ringbuf =
1957 					ctx->engine[i].ringbuf;
1958 
1959 				seq_printf(m, "%s: ", ring->name);
1960 				if (ctx_obj)
1961 					describe_obj(m, ctx_obj);
1962 				if (ringbuf)
1963 					describe_ctx_ringbuf(m, ringbuf);
1964 				seq_putc(m, '\n');
1965 			}
1966 		} else {
1967 			describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1968 		}
1969 
1970 		seq_putc(m, '\n');
1971 	}
1972 
1973 	mutex_unlock(&dev->struct_mutex);
1974 
1975 	return 0;
1976 }
1977 
1978 static void i915_dump_lrc_obj(struct seq_file *m,
1979 			      struct intel_engine_cs *ring,
1980 			      struct drm_i915_gem_object *ctx_obj)
1981 {
1982 	struct page *page;
1983 	uint32_t *reg_state;
1984 	int j;
1985 	unsigned long ggtt_offset = 0;
1986 
1987 	if (ctx_obj == NULL) {
1988 		seq_printf(m, "Context on %s with no gem object\n",
1989 			   ring->name);
1990 		return;
1991 	}
1992 
1993 	seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1994 		   intel_execlists_ctx_id(ctx_obj));
1995 
1996 	if (!i915_gem_obj_ggtt_bound(ctx_obj))
1997 		seq_puts(m, "\tNot bound in GGTT\n");
1998 	else
1999 		ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2000 
2001 	if (i915_gem_object_get_pages(ctx_obj)) {
2002 		seq_puts(m, "\tFailed to get pages for context object\n");
2003 		return;
2004 	}
2005 
2006 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2007 	if (!WARN_ON(page == NULL)) {
2008 		reg_state = kmap_atomic(page);
2009 
2010 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2011 			seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2012 				   ggtt_offset + 4096 + (j * 4),
2013 				   reg_state[j], reg_state[j + 1],
2014 				   reg_state[j + 2], reg_state[j + 3]);
2015 		}
2016 		kunmap_atomic(reg_state);
2017 	}
2018 
2019 	seq_putc(m, '\n');
2020 }
2021 
2022 static int i915_dump_lrc(struct seq_file *m, void *unused)
2023 {
2024 	struct drm_info_node *node = (struct drm_info_node *) m->private;
2025 	struct drm_device *dev = node->minor->dev;
2026 	struct drm_i915_private *dev_priv = dev->dev_private;
2027 	struct intel_engine_cs *ring;
2028 	struct intel_context *ctx;
2029 	int ret, i;
2030 
2031 	if (!i915.enable_execlists) {
2032 		seq_printf(m, "Logical Ring Contexts are disabled\n");
2033 		return 0;
2034 	}
2035 
2036 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2037 	if (ret)
2038 		return ret;
2039 
2040 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2041 		for_each_ring(ring, dev_priv, i) {
2042 			if (ring->default_context != ctx)
2043 				i915_dump_lrc_obj(m, ring,
2044 						  ctx->engine[i].state);
2045 		}
2046 	}
2047 
2048 	mutex_unlock(&dev->struct_mutex);
2049 
2050 	return 0;
2051 }
2052 
2053 static int i915_execlists(struct seq_file *m, void *data)
2054 {
2055 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2056 	struct drm_device *dev = node->minor->dev;
2057 	struct drm_i915_private *dev_priv = dev->dev_private;
2058 	struct intel_engine_cs *ring;
2059 	u32 status_pointer;
2060 	u8 read_pointer;
2061 	u8 write_pointer;
2062 	u32 status;
2063 	u32 ctx_id;
2064 	struct list_head *cursor;
2065 	int ring_id, i;
2066 	int ret;
2067 
2068 	if (!i915.enable_execlists) {
2069 		seq_puts(m, "Logical Ring Contexts are disabled\n");
2070 		return 0;
2071 	}
2072 
2073 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2074 	if (ret)
2075 		return ret;
2076 
2077 	intel_runtime_pm_get(dev_priv);
2078 
2079 	for_each_ring(ring, dev_priv, ring_id) {
2080 		struct drm_i915_gem_request *head_req = NULL;
2081 		int count = 0;
2082 		unsigned long flags;
2083 
2084 		seq_printf(m, "%s\n", ring->name);
2085 
2086 		status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
2087 		ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
2088 		seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2089 			   status, ctx_id);
2090 
2091 		status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2092 		seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2093 
2094 		read_pointer = ring->next_context_status_buffer;
2095 		write_pointer = status_pointer & 0x07;
2096 		if (read_pointer > write_pointer)
2097 			write_pointer += 6;
2098 		seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2099 			   read_pointer, write_pointer);
2100 
2101 		for (i = 0; i < 6; i++) {
2102 			status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
2103 			ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
2104 
2105 			seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2106 				   i, status, ctx_id);
2107 		}
2108 
2109 		spin_lock_irqsave(&ring->execlist_lock, flags);
2110 		list_for_each(cursor, &ring->execlist_queue)
2111 			count++;
2112 		head_req = list_first_entry_or_null(&ring->execlist_queue,
2113 				struct drm_i915_gem_request, execlist_link);
2114 		spin_unlock_irqrestore(&ring->execlist_lock, flags);
2115 
2116 		seq_printf(m, "\t%d requests in queue\n", count);
2117 		if (head_req) {
2118 			struct drm_i915_gem_object *ctx_obj;
2119 
2120 			ctx_obj = head_req->ctx->engine[ring_id].state;
2121 			seq_printf(m, "\tHead request id: %u\n",
2122 				   intel_execlists_ctx_id(ctx_obj));
2123 			seq_printf(m, "\tHead request tail: %u\n",
2124 				   head_req->tail);
2125 		}
2126 
2127 		seq_putc(m, '\n');
2128 	}
2129 
2130 	intel_runtime_pm_put(dev_priv);
2131 	mutex_unlock(&dev->struct_mutex);
2132 
2133 	return 0;
2134 }
2135 
2136 static const char *swizzle_string(unsigned swizzle)
2137 {
2138 	switch (swizzle) {
2139 	case I915_BIT_6_SWIZZLE_NONE:
2140 		return "none";
2141 	case I915_BIT_6_SWIZZLE_9:
2142 		return "bit9";
2143 	case I915_BIT_6_SWIZZLE_9_10:
2144 		return "bit9/bit10";
2145 	case I915_BIT_6_SWIZZLE_9_11:
2146 		return "bit9/bit11";
2147 	case I915_BIT_6_SWIZZLE_9_10_11:
2148 		return "bit9/bit10/bit11";
2149 	case I915_BIT_6_SWIZZLE_9_17:
2150 		return "bit9/bit17";
2151 	case I915_BIT_6_SWIZZLE_9_10_17:
2152 		return "bit9/bit10/bit17";
2153 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2154 		return "unknown";
2155 	}
2156 
2157 	return "bug";
2158 }
2159 
2160 static int i915_swizzle_info(struct seq_file *m, void *data)
2161 {
2162 	struct drm_info_node *node = m->private;
2163 	struct drm_device *dev = node->minor->dev;
2164 	struct drm_i915_private *dev_priv = dev->dev_private;
2165 	int ret;
2166 
2167 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2168 	if (ret)
2169 		return ret;
2170 	intel_runtime_pm_get(dev_priv);
2171 
2172 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2173 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2174 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2175 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2176 
2177 	if (IS_GEN3(dev) || IS_GEN4(dev)) {
2178 		seq_printf(m, "DDC = 0x%08x\n",
2179 			   I915_READ(DCC));
2180 		seq_printf(m, "DDC2 = 0x%08x\n",
2181 			   I915_READ(DCC2));
2182 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2183 			   I915_READ16(C0DRB3));
2184 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2185 			   I915_READ16(C1DRB3));
2186 	} else if (INTEL_INFO(dev)->gen >= 6) {
2187 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2188 			   I915_READ(MAD_DIMM_C0));
2189 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2190 			   I915_READ(MAD_DIMM_C1));
2191 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2192 			   I915_READ(MAD_DIMM_C2));
2193 		seq_printf(m, "TILECTL = 0x%08x\n",
2194 			   I915_READ(TILECTL));
2195 		if (INTEL_INFO(dev)->gen >= 8)
2196 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2197 				   I915_READ(GAMTARBMODE));
2198 		else
2199 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2200 				   I915_READ(ARB_MODE));
2201 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2202 			   I915_READ(DISP_ARB_CTL));
2203 	}
2204 
2205 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2206 		seq_puts(m, "L-shaped memory detected\n");
2207 
2208 	intel_runtime_pm_put(dev_priv);
2209 	mutex_unlock(&dev->struct_mutex);
2210 
2211 	return 0;
2212 }
2213 
2214 static int per_file_ctx(int id, void *ptr, void *data)
2215 {
2216 	struct intel_context *ctx = ptr;
2217 	struct seq_file *m = data;
2218 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2219 
2220 	if (!ppgtt) {
2221 		seq_printf(m, "  no ppgtt for context %d\n",
2222 			   ctx->user_handle);
2223 		return 0;
2224 	}
2225 
2226 	if (i915_gem_context_is_default(ctx))
2227 		seq_puts(m, "  default context:\n");
2228 	else
2229 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2230 	ppgtt->debug_dump(ppgtt, m);
2231 
2232 	return 0;
2233 }
2234 
2235 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2236 {
2237 	struct drm_i915_private *dev_priv = dev->dev_private;
2238 	struct intel_engine_cs *ring;
2239 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2240 	int unused, i;
2241 
2242 	if (!ppgtt)
2243 		return;
2244 
2245 	for_each_ring(ring, dev_priv, unused) {
2246 		seq_printf(m, "%s\n", ring->name);
2247 		for (i = 0; i < 4; i++) {
2248 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
2249 			pdp <<= 32;
2250 			pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
2251 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2252 		}
2253 	}
2254 }
2255 
2256 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2257 {
2258 	struct drm_i915_private *dev_priv = dev->dev_private;
2259 	struct intel_engine_cs *ring;
2260 	int i;
2261 
2262 	if (INTEL_INFO(dev)->gen == 6)
2263 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2264 
2265 	for_each_ring(ring, dev_priv, i) {
2266 		seq_printf(m, "%s\n", ring->name);
2267 		if (INTEL_INFO(dev)->gen == 7)
2268 			seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2269 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2270 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2271 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2272 	}
2273 	if (dev_priv->mm.aliasing_ppgtt) {
2274 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2275 
2276 		seq_puts(m, "aliasing PPGTT:\n");
2277 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2278 
2279 		ppgtt->debug_dump(ppgtt, m);
2280 	}
2281 
2282 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2283 }
2284 
2285 static int i915_ppgtt_info(struct seq_file *m, void *data)
2286 {
2287 	struct drm_info_node *node = m->private;
2288 	struct drm_device *dev = node->minor->dev;
2289 	struct drm_i915_private *dev_priv = dev->dev_private;
2290 	struct drm_file *file;
2291 
2292 	int ret = mutex_lock_interruptible(&dev->struct_mutex);
2293 	if (ret)
2294 		return ret;
2295 	intel_runtime_pm_get(dev_priv);
2296 
2297 	if (INTEL_INFO(dev)->gen >= 8)
2298 		gen8_ppgtt_info(m, dev);
2299 	else if (INTEL_INFO(dev)->gen >= 6)
2300 		gen6_ppgtt_info(m, dev);
2301 
2302 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2303 		struct drm_i915_file_private *file_priv = file->driver_priv;
2304 		struct task_struct *task;
2305 
2306 		task = get_pid_task(file->pid, PIDTYPE_PID);
2307 		if (!task) {
2308 			ret = -ESRCH;
2309 			goto out_put;
2310 		}
2311 		seq_printf(m, "\nproc: %s\n", task->comm);
2312 		put_task_struct(task);
2313 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2314 			     (void *)(unsigned long)m);
2315 	}
2316 
2317 out_put:
2318 	intel_runtime_pm_put(dev_priv);
2319 	mutex_unlock(&dev->struct_mutex);
2320 
2321 	return ret;
2322 }
2323 
2324 static int count_irq_waiters(struct drm_i915_private *i915)
2325 {
2326 	struct intel_engine_cs *ring;
2327 	int count = 0;
2328 	int i;
2329 
2330 	for_each_ring(ring, i915, i)
2331 		count += ring->irq_refcount;
2332 
2333 	return count;
2334 }
2335 
2336 static int i915_rps_boost_info(struct seq_file *m, void *data)
2337 {
2338 	struct drm_info_node *node = m->private;
2339 	struct drm_device *dev = node->minor->dev;
2340 	struct drm_i915_private *dev_priv = dev->dev_private;
2341 	struct drm_file *file;
2342 
2343 	seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2344 	seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2345 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2346 	seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2347 		   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2348 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2349 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2350 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2351 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2352 	spin_lock(&dev_priv->rps.client_lock);
2353 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2354 		struct drm_i915_file_private *file_priv = file->driver_priv;
2355 		struct task_struct *task;
2356 
2357 		rcu_read_lock();
2358 		task = pid_task(file->pid, PIDTYPE_PID);
2359 		seq_printf(m, "%s [%d]: %d boosts%s\n",
2360 			   task ? task->comm : "<unknown>",
2361 			   task ? task->pid : -1,
2362 			   file_priv->rps.boosts,
2363 			   list_empty(&file_priv->rps.link) ? "" : ", active");
2364 		rcu_read_unlock();
2365 	}
2366 	seq_printf(m, "Semaphore boosts: %d%s\n",
2367 		   dev_priv->rps.semaphores.boosts,
2368 		   list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2369 	seq_printf(m, "MMIO flip boosts: %d%s\n",
2370 		   dev_priv->rps.mmioflips.boosts,
2371 		   list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2372 	seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2373 	spin_unlock(&dev_priv->rps.client_lock);
2374 
2375 	return 0;
2376 }
2377 
2378 static int i915_llc(struct seq_file *m, void *data)
2379 {
2380 	struct drm_info_node *node = m->private;
2381 	struct drm_device *dev = node->minor->dev;
2382 	struct drm_i915_private *dev_priv = dev->dev_private;
2383 
2384 	/* Size calculation for LLC is a bit of a pain. Ignore for now. */
2385 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2386 	seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2387 
2388 	return 0;
2389 }
2390 
2391 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2392 {
2393 	struct drm_info_node *node = m->private;
2394 	struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2395 	struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2396 	u32 tmp, i;
2397 
2398 	if (!HAS_GUC_UCODE(dev_priv->dev))
2399 		return 0;
2400 
2401 	seq_printf(m, "GuC firmware status:\n");
2402 	seq_printf(m, "\tpath: %s\n",
2403 		guc_fw->guc_fw_path);
2404 	seq_printf(m, "\tfetch: %s\n",
2405 		intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2406 	seq_printf(m, "\tload: %s\n",
2407 		intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2408 	seq_printf(m, "\tversion wanted: %d.%d\n",
2409 		guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2410 	seq_printf(m, "\tversion found: %d.%d\n",
2411 		guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2412 	seq_printf(m, "\theader: offset is %d; size = %d\n",
2413 		guc_fw->header_offset, guc_fw->header_size);
2414 	seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2415 		guc_fw->ucode_offset, guc_fw->ucode_size);
2416 	seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2417 		guc_fw->rsa_offset, guc_fw->rsa_size);
2418 
2419 	tmp = I915_READ(GUC_STATUS);
2420 
2421 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2422 	seq_printf(m, "\tBootrom status = 0x%x\n",
2423 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2424 	seq_printf(m, "\tuKernel status = 0x%x\n",
2425 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2426 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2427 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2428 	seq_puts(m, "\nScratch registers:\n");
2429 	for (i = 0; i < 16; i++)
2430 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2431 
2432 	return 0;
2433 }
2434 
2435 static void i915_guc_client_info(struct seq_file *m,
2436 				 struct drm_i915_private *dev_priv,
2437 				 struct i915_guc_client *client)
2438 {
2439 	struct intel_engine_cs *ring;
2440 	uint64_t tot = 0;
2441 	uint32_t i;
2442 
2443 	seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2444 		client->priority, client->ctx_index, client->proc_desc_offset);
2445 	seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2446 		client->doorbell_id, client->doorbell_offset, client->cookie);
2447 	seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2448 		client->wq_size, client->wq_offset, client->wq_tail);
2449 
2450 	seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2451 	seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2452 	seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2453 
2454 	for_each_ring(ring, dev_priv, i) {
2455 		seq_printf(m, "\tSubmissions: %llu %s\n",
2456 				client->submissions[i],
2457 				ring->name);
2458 		tot += client->submissions[i];
2459 	}
2460 	seq_printf(m, "\tTotal: %llu\n", tot);
2461 }
2462 
2463 static int i915_guc_info(struct seq_file *m, void *data)
2464 {
2465 	struct drm_info_node *node = m->private;
2466 	struct drm_device *dev = node->minor->dev;
2467 	struct drm_i915_private *dev_priv = dev->dev_private;
2468 	struct intel_guc guc;
2469 	struct i915_guc_client client = {};
2470 	struct intel_engine_cs *ring;
2471 	enum intel_ring_id i;
2472 	u64 total = 0;
2473 
2474 	if (!HAS_GUC_SCHED(dev_priv->dev))
2475 		return 0;
2476 
2477 	if (mutex_lock_interruptible(&dev->struct_mutex))
2478 		return 0;
2479 
2480 	/* Take a local copy of the GuC data, so we can dump it at leisure */
2481 	guc = dev_priv->guc;
2482 	if (guc.execbuf_client)
2483 		client = *guc.execbuf_client;
2484 
2485 	mutex_unlock(&dev->struct_mutex);
2486 
2487 	seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2488 	seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2489 	seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2490 	seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2491 	seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2492 
2493 	seq_printf(m, "\nGuC submissions:\n");
2494 	for_each_ring(ring, dev_priv, i) {
2495 		seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x %9d\n",
2496 			ring->name, guc.submissions[i],
2497 			guc.last_seqno[i], guc.last_seqno[i]);
2498 		total += guc.submissions[i];
2499 	}
2500 	seq_printf(m, "\t%s: %llu\n", "Total", total);
2501 
2502 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2503 	i915_guc_client_info(m, dev_priv, &client);
2504 
2505 	/* Add more as required ... */
2506 
2507 	return 0;
2508 }
2509 
2510 static int i915_guc_log_dump(struct seq_file *m, void *data)
2511 {
2512 	struct drm_info_node *node = m->private;
2513 	struct drm_device *dev = node->minor->dev;
2514 	struct drm_i915_private *dev_priv = dev->dev_private;
2515 	struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2516 	u32 *log;
2517 	int i = 0, pg;
2518 
2519 	if (!log_obj)
2520 		return 0;
2521 
2522 	for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2523 		log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2524 
2525 		for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2526 			seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2527 				   *(log + i), *(log + i + 1),
2528 				   *(log + i + 2), *(log + i + 3));
2529 
2530 		kunmap_atomic(log);
2531 	}
2532 
2533 	seq_putc(m, '\n');
2534 
2535 	return 0;
2536 }
2537 
2538 static int i915_edp_psr_status(struct seq_file *m, void *data)
2539 {
2540 	struct drm_info_node *node = m->private;
2541 	struct drm_device *dev = node->minor->dev;
2542 	struct drm_i915_private *dev_priv = dev->dev_private;
2543 	u32 psrperf = 0;
2544 	u32 stat[3];
2545 	enum pipe pipe;
2546 	bool enabled = false;
2547 
2548 	if (!HAS_PSR(dev)) {
2549 		seq_puts(m, "PSR not supported\n");
2550 		return 0;
2551 	}
2552 
2553 	intel_runtime_pm_get(dev_priv);
2554 
2555 	mutex_lock(&dev_priv->psr.lock);
2556 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2557 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2558 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2559 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2560 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2561 		   dev_priv->psr.busy_frontbuffer_bits);
2562 	seq_printf(m, "Re-enable work scheduled: %s\n",
2563 		   yesno(work_busy(&dev_priv->psr.work.work)));
2564 
2565 	if (HAS_DDI(dev))
2566 		enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2567 	else {
2568 		for_each_pipe(dev_priv, pipe) {
2569 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2570 				VLV_EDP_PSR_CURR_STATE_MASK;
2571 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2572 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2573 				enabled = true;
2574 		}
2575 	}
2576 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2577 
2578 	if (!HAS_DDI(dev))
2579 		for_each_pipe(dev_priv, pipe) {
2580 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2581 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2582 				seq_printf(m, " pipe %c", pipe_name(pipe));
2583 		}
2584 	seq_puts(m, "\n");
2585 
2586 	/*
2587 	 * VLV/CHV PSR has no kind of performance counter
2588 	 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2589 	 */
2590 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2591 		psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2592 			EDP_PSR_PERF_CNT_MASK;
2593 
2594 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2595 	}
2596 	mutex_unlock(&dev_priv->psr.lock);
2597 
2598 	intel_runtime_pm_put(dev_priv);
2599 	return 0;
2600 }
2601 
2602 static int i915_sink_crc(struct seq_file *m, void *data)
2603 {
2604 	struct drm_info_node *node = m->private;
2605 	struct drm_device *dev = node->minor->dev;
2606 	struct intel_encoder *encoder;
2607 	struct intel_connector *connector;
2608 	struct intel_dp *intel_dp = NULL;
2609 	int ret;
2610 	u8 crc[6];
2611 
2612 	drm_modeset_lock_all(dev);
2613 	for_each_intel_connector(dev, connector) {
2614 
2615 		if (connector->base.dpms != DRM_MODE_DPMS_ON)
2616 			continue;
2617 
2618 		if (!connector->base.encoder)
2619 			continue;
2620 
2621 		encoder = to_intel_encoder(connector->base.encoder);
2622 		if (encoder->type != INTEL_OUTPUT_EDP)
2623 			continue;
2624 
2625 		intel_dp = enc_to_intel_dp(&encoder->base);
2626 
2627 		ret = intel_dp_sink_crc(intel_dp, crc);
2628 		if (ret)
2629 			goto out;
2630 
2631 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2632 			   crc[0], crc[1], crc[2],
2633 			   crc[3], crc[4], crc[5]);
2634 		goto out;
2635 	}
2636 	ret = -ENODEV;
2637 out:
2638 	drm_modeset_unlock_all(dev);
2639 	return ret;
2640 }
2641 
2642 static int i915_energy_uJ(struct seq_file *m, void *data)
2643 {
2644 	struct drm_info_node *node = m->private;
2645 	struct drm_device *dev = node->minor->dev;
2646 	struct drm_i915_private *dev_priv = dev->dev_private;
2647 	u64 power;
2648 	u32 units;
2649 
2650 	if (INTEL_INFO(dev)->gen < 6)
2651 		return -ENODEV;
2652 
2653 	intel_runtime_pm_get(dev_priv);
2654 
2655 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2656 	power = (power & 0x1f00) >> 8;
2657 	units = 1000000 / (1 << power); /* convert to uJ */
2658 	power = I915_READ(MCH_SECP_NRG_STTS);
2659 	power *= units;
2660 
2661 	intel_runtime_pm_put(dev_priv);
2662 
2663 	seq_printf(m, "%llu", (long long unsigned)power);
2664 
2665 	return 0;
2666 }
2667 
2668 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2669 {
2670 	struct drm_info_node *node = m->private;
2671 	struct drm_device *dev = node->minor->dev;
2672 	struct drm_i915_private *dev_priv = dev->dev_private;
2673 
2674 	if (!HAS_RUNTIME_PM(dev)) {
2675 		seq_puts(m, "not supported\n");
2676 		return 0;
2677 	}
2678 
2679 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2680 	seq_printf(m, "IRQs disabled: %s\n",
2681 		   yesno(!intel_irqs_enabled(dev_priv)));
2682 #ifdef CONFIG_PM
2683 	seq_printf(m, "Usage count: %d\n",
2684 		   atomic_read(&dev->dev->power.usage_count));
2685 #else
2686 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2687 #endif
2688 
2689 	return 0;
2690 }
2691 
2692 static int i915_power_domain_info(struct seq_file *m, void *unused)
2693 {
2694 	struct drm_info_node *node = m->private;
2695 	struct drm_device *dev = node->minor->dev;
2696 	struct drm_i915_private *dev_priv = dev->dev_private;
2697 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2698 	int i;
2699 
2700 	mutex_lock(&power_domains->lock);
2701 
2702 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2703 	for (i = 0; i < power_domains->power_well_count; i++) {
2704 		struct i915_power_well *power_well;
2705 		enum intel_display_power_domain power_domain;
2706 
2707 		power_well = &power_domains->power_wells[i];
2708 		seq_printf(m, "%-25s %d\n", power_well->name,
2709 			   power_well->count);
2710 
2711 		for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2712 		     power_domain++) {
2713 			if (!(BIT(power_domain) & power_well->domains))
2714 				continue;
2715 
2716 			seq_printf(m, "  %-23s %d\n",
2717 				 intel_display_power_domain_str(power_domain),
2718 				 power_domains->domain_use_count[power_domain]);
2719 		}
2720 	}
2721 
2722 	mutex_unlock(&power_domains->lock);
2723 
2724 	return 0;
2725 }
2726 
2727 static int i915_dmc_info(struct seq_file *m, void *unused)
2728 {
2729 	struct drm_info_node *node = m->private;
2730 	struct drm_device *dev = node->minor->dev;
2731 	struct drm_i915_private *dev_priv = dev->dev_private;
2732 	struct intel_csr *csr;
2733 
2734 	if (!HAS_CSR(dev)) {
2735 		seq_puts(m, "not supported\n");
2736 		return 0;
2737 	}
2738 
2739 	csr = &dev_priv->csr;
2740 
2741 	intel_runtime_pm_get(dev_priv);
2742 
2743 	seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2744 	seq_printf(m, "path: %s\n", csr->fw_path);
2745 
2746 	if (!csr->dmc_payload)
2747 		goto out;
2748 
2749 	seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2750 		   CSR_VERSION_MINOR(csr->version));
2751 
2752 	if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2753 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2754 			   I915_READ(SKL_CSR_DC3_DC5_COUNT));
2755 		seq_printf(m, "DC5 -> DC6 count: %d\n",
2756 			   I915_READ(SKL_CSR_DC5_DC6_COUNT));
2757 	} else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2758 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2759 			   I915_READ(BXT_CSR_DC3_DC5_COUNT));
2760 	}
2761 
2762 out:
2763 	seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2764 	seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2765 	seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2766 
2767 	intel_runtime_pm_put(dev_priv);
2768 
2769 	return 0;
2770 }
2771 
2772 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2773 				 struct drm_display_mode *mode)
2774 {
2775 	int i;
2776 
2777 	for (i = 0; i < tabs; i++)
2778 		seq_putc(m, '\t');
2779 
2780 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2781 		   mode->base.id, mode->name,
2782 		   mode->vrefresh, mode->clock,
2783 		   mode->hdisplay, mode->hsync_start,
2784 		   mode->hsync_end, mode->htotal,
2785 		   mode->vdisplay, mode->vsync_start,
2786 		   mode->vsync_end, mode->vtotal,
2787 		   mode->type, mode->flags);
2788 }
2789 
2790 static void intel_encoder_info(struct seq_file *m,
2791 			       struct intel_crtc *intel_crtc,
2792 			       struct intel_encoder *intel_encoder)
2793 {
2794 	struct drm_info_node *node = m->private;
2795 	struct drm_device *dev = node->minor->dev;
2796 	struct drm_crtc *crtc = &intel_crtc->base;
2797 	struct intel_connector *intel_connector;
2798 	struct drm_encoder *encoder;
2799 
2800 	encoder = &intel_encoder->base;
2801 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2802 		   encoder->base.id, encoder->name);
2803 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2804 		struct drm_connector *connector = &intel_connector->base;
2805 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2806 			   connector->base.id,
2807 			   connector->name,
2808 			   drm_get_connector_status_name(connector->status));
2809 		if (connector->status == connector_status_connected) {
2810 			struct drm_display_mode *mode = &crtc->mode;
2811 			seq_printf(m, ", mode:\n");
2812 			intel_seq_print_mode(m, 2, mode);
2813 		} else {
2814 			seq_putc(m, '\n');
2815 		}
2816 	}
2817 }
2818 
2819 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2820 {
2821 	struct drm_info_node *node = m->private;
2822 	struct drm_device *dev = node->minor->dev;
2823 	struct drm_crtc *crtc = &intel_crtc->base;
2824 	struct intel_encoder *intel_encoder;
2825 	struct drm_plane_state *plane_state = crtc->primary->state;
2826 	struct drm_framebuffer *fb = plane_state->fb;
2827 
2828 	if (fb)
2829 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2830 			   fb->base.id, plane_state->src_x >> 16,
2831 			   plane_state->src_y >> 16, fb->width, fb->height);
2832 	else
2833 		seq_puts(m, "\tprimary plane disabled\n");
2834 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2835 		intel_encoder_info(m, intel_crtc, intel_encoder);
2836 }
2837 
2838 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2839 {
2840 	struct drm_display_mode *mode = panel->fixed_mode;
2841 
2842 	seq_printf(m, "\tfixed mode:\n");
2843 	intel_seq_print_mode(m, 2, mode);
2844 }
2845 
2846 static void intel_dp_info(struct seq_file *m,
2847 			  struct intel_connector *intel_connector)
2848 {
2849 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2850 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2851 
2852 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2853 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2854 	if (intel_encoder->type == INTEL_OUTPUT_EDP)
2855 		intel_panel_info(m, &intel_connector->panel);
2856 }
2857 
2858 static void intel_dp_mst_info(struct seq_file *m,
2859 			  struct intel_connector *intel_connector)
2860 {
2861 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2862 	struct intel_dp_mst_encoder *intel_mst =
2863 		enc_to_mst(&intel_encoder->base);
2864 	struct intel_digital_port *intel_dig_port = intel_mst->primary;
2865 	struct intel_dp *intel_dp = &intel_dig_port->dp;
2866 	bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2867 					intel_connector->port);
2868 
2869 	seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2870 }
2871 
2872 static void intel_hdmi_info(struct seq_file *m,
2873 			    struct intel_connector *intel_connector)
2874 {
2875 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2876 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2877 
2878 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2879 }
2880 
2881 static void intel_lvds_info(struct seq_file *m,
2882 			    struct intel_connector *intel_connector)
2883 {
2884 	intel_panel_info(m, &intel_connector->panel);
2885 }
2886 
2887 static void intel_connector_info(struct seq_file *m,
2888 				 struct drm_connector *connector)
2889 {
2890 	struct intel_connector *intel_connector = to_intel_connector(connector);
2891 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2892 	struct drm_display_mode *mode;
2893 
2894 	seq_printf(m, "connector %d: type %s, status: %s\n",
2895 		   connector->base.id, connector->name,
2896 		   drm_get_connector_status_name(connector->status));
2897 	if (connector->status == connector_status_connected) {
2898 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
2899 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2900 			   connector->display_info.width_mm,
2901 			   connector->display_info.height_mm);
2902 		seq_printf(m, "\tsubpixel order: %s\n",
2903 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2904 		seq_printf(m, "\tCEA rev: %d\n",
2905 			   connector->display_info.cea_rev);
2906 	}
2907 	if (intel_encoder) {
2908 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2909 		    intel_encoder->type == INTEL_OUTPUT_EDP)
2910 			intel_dp_info(m, intel_connector);
2911 		else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2912 			intel_hdmi_info(m, intel_connector);
2913 		else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2914 			intel_lvds_info(m, intel_connector);
2915 		else if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
2916 			intel_dp_mst_info(m, intel_connector);
2917 	}
2918 
2919 	seq_printf(m, "\tmodes:\n");
2920 	list_for_each_entry(mode, &connector->modes, head)
2921 		intel_seq_print_mode(m, 2, mode);
2922 }
2923 
2924 static bool cursor_active(struct drm_device *dev, int pipe)
2925 {
2926 	struct drm_i915_private *dev_priv = dev->dev_private;
2927 	u32 state;
2928 
2929 	if (IS_845G(dev) || IS_I865G(dev))
2930 		state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2931 	else
2932 		state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2933 
2934 	return state;
2935 }
2936 
2937 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2938 {
2939 	struct drm_i915_private *dev_priv = dev->dev_private;
2940 	u32 pos;
2941 
2942 	pos = I915_READ(CURPOS(pipe));
2943 
2944 	*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2945 	if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2946 		*x = -*x;
2947 
2948 	*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2949 	if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2950 		*y = -*y;
2951 
2952 	return cursor_active(dev, pipe);
2953 }
2954 
2955 static const char *plane_type(enum drm_plane_type type)
2956 {
2957 	switch (type) {
2958 	case DRM_PLANE_TYPE_OVERLAY:
2959 		return "OVL";
2960 	case DRM_PLANE_TYPE_PRIMARY:
2961 		return "PRI";
2962 	case DRM_PLANE_TYPE_CURSOR:
2963 		return "CUR";
2964 	/*
2965 	 * Deliberately omitting default: to generate compiler warnings
2966 	 * when a new drm_plane_type gets added.
2967 	 */
2968 	}
2969 
2970 	return "unknown";
2971 }
2972 
2973 static const char *plane_rotation(unsigned int rotation)
2974 {
2975 	static char buf[48];
2976 	/*
2977 	 * According to doc only one DRM_ROTATE_ is allowed but this
2978 	 * will print them all to visualize if the values are misused
2979 	 */
2980 	snprintf(buf, sizeof(buf),
2981 		 "%s%s%s%s%s%s(0x%08x)",
2982 		 (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
2983 		 (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
2984 		 (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
2985 		 (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
2986 		 (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
2987 		 (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
2988 		 rotation);
2989 
2990 	return buf;
2991 }
2992 
2993 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2994 {
2995 	struct drm_info_node *node = m->private;
2996 	struct drm_device *dev = node->minor->dev;
2997 	struct intel_plane *intel_plane;
2998 
2999 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3000 		struct drm_plane_state *state;
3001 		struct drm_plane *plane = &intel_plane->base;
3002 
3003 		if (!plane->state) {
3004 			seq_puts(m, "plane->state is NULL!\n");
3005 			continue;
3006 		}
3007 
3008 		state = plane->state;
3009 
3010 		seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3011 			   plane->base.id,
3012 			   plane_type(intel_plane->base.type),
3013 			   state->crtc_x, state->crtc_y,
3014 			   state->crtc_w, state->crtc_h,
3015 			   (state->src_x >> 16),
3016 			   ((state->src_x & 0xffff) * 15625) >> 10,
3017 			   (state->src_y >> 16),
3018 			   ((state->src_y & 0xffff) * 15625) >> 10,
3019 			   (state->src_w >> 16),
3020 			   ((state->src_w & 0xffff) * 15625) >> 10,
3021 			   (state->src_h >> 16),
3022 			   ((state->src_h & 0xffff) * 15625) >> 10,
3023 			   state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3024 			   plane_rotation(state->rotation));
3025 	}
3026 }
3027 
3028 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3029 {
3030 	struct intel_crtc_state *pipe_config;
3031 	int num_scalers = intel_crtc->num_scalers;
3032 	int i;
3033 
3034 	pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3035 
3036 	/* Not all platformas have a scaler */
3037 	if (num_scalers) {
3038 		seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3039 			   num_scalers,
3040 			   pipe_config->scaler_state.scaler_users,
3041 			   pipe_config->scaler_state.scaler_id);
3042 
3043 		for (i = 0; i < SKL_NUM_SCALERS; i++) {
3044 			struct intel_scaler *sc =
3045 					&pipe_config->scaler_state.scalers[i];
3046 
3047 			seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3048 				   i, yesno(sc->in_use), sc->mode);
3049 		}
3050 		seq_puts(m, "\n");
3051 	} else {
3052 		seq_puts(m, "\tNo scalers available on this platform\n");
3053 	}
3054 }
3055 
3056 static int i915_display_info(struct seq_file *m, void *unused)
3057 {
3058 	struct drm_info_node *node = m->private;
3059 	struct drm_device *dev = node->minor->dev;
3060 	struct drm_i915_private *dev_priv = dev->dev_private;
3061 	struct intel_crtc *crtc;
3062 	struct drm_connector *connector;
3063 
3064 	intel_runtime_pm_get(dev_priv);
3065 	drm_modeset_lock_all(dev);
3066 	seq_printf(m, "CRTC info\n");
3067 	seq_printf(m, "---------\n");
3068 	for_each_intel_crtc(dev, crtc) {
3069 		bool active;
3070 		struct intel_crtc_state *pipe_config;
3071 		int x, y;
3072 
3073 		pipe_config = to_intel_crtc_state(crtc->base.state);
3074 
3075 		seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3076 			   crtc->base.base.id, pipe_name(crtc->pipe),
3077 			   yesno(pipe_config->base.active),
3078 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3079 			   yesno(pipe_config->dither), pipe_config->pipe_bpp);
3080 
3081 		if (pipe_config->base.active) {
3082 			intel_crtc_info(m, crtc);
3083 
3084 			active = cursor_position(dev, crtc->pipe, &x, &y);
3085 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3086 				   yesno(crtc->cursor_base),
3087 				   x, y, crtc->base.cursor->state->crtc_w,
3088 				   crtc->base.cursor->state->crtc_h,
3089 				   crtc->cursor_addr, yesno(active));
3090 			intel_scaler_info(m, crtc);
3091 			intel_plane_info(m, crtc);
3092 		}
3093 
3094 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3095 			   yesno(!crtc->cpu_fifo_underrun_disabled),
3096 			   yesno(!crtc->pch_fifo_underrun_disabled));
3097 	}
3098 
3099 	seq_printf(m, "\n");
3100 	seq_printf(m, "Connector info\n");
3101 	seq_printf(m, "--------------\n");
3102 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3103 		intel_connector_info(m, connector);
3104 	}
3105 	drm_modeset_unlock_all(dev);
3106 	intel_runtime_pm_put(dev_priv);
3107 
3108 	return 0;
3109 }
3110 
3111 static int i915_semaphore_status(struct seq_file *m, void *unused)
3112 {
3113 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3114 	struct drm_device *dev = node->minor->dev;
3115 	struct drm_i915_private *dev_priv = dev->dev_private;
3116 	struct intel_engine_cs *ring;
3117 	int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3118 	int i, j, ret;
3119 
3120 	if (!i915_semaphore_is_enabled(dev)) {
3121 		seq_puts(m, "Semaphores are disabled\n");
3122 		return 0;
3123 	}
3124 
3125 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3126 	if (ret)
3127 		return ret;
3128 	intel_runtime_pm_get(dev_priv);
3129 
3130 	if (IS_BROADWELL(dev)) {
3131 		struct page *page;
3132 		uint64_t *seqno;
3133 
3134 		page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3135 
3136 		seqno = (uint64_t *)kmap_atomic(page);
3137 		for_each_ring(ring, dev_priv, i) {
3138 			uint64_t offset;
3139 
3140 			seq_printf(m, "%s\n", ring->name);
3141 
3142 			seq_puts(m, "  Last signal:");
3143 			for (j = 0; j < num_rings; j++) {
3144 				offset = i * I915_NUM_RINGS + j;
3145 				seq_printf(m, "0x%08llx (0x%02llx) ",
3146 					   seqno[offset], offset * 8);
3147 			}
3148 			seq_putc(m, '\n');
3149 
3150 			seq_puts(m, "  Last wait:  ");
3151 			for (j = 0; j < num_rings; j++) {
3152 				offset = i + (j * I915_NUM_RINGS);
3153 				seq_printf(m, "0x%08llx (0x%02llx) ",
3154 					   seqno[offset], offset * 8);
3155 			}
3156 			seq_putc(m, '\n');
3157 
3158 		}
3159 		kunmap_atomic(seqno);
3160 	} else {
3161 		seq_puts(m, "  Last signal:");
3162 		for_each_ring(ring, dev_priv, i)
3163 			for (j = 0; j < num_rings; j++)
3164 				seq_printf(m, "0x%08x\n",
3165 					   I915_READ(ring->semaphore.mbox.signal[j]));
3166 		seq_putc(m, '\n');
3167 	}
3168 
3169 	seq_puts(m, "\nSync seqno:\n");
3170 	for_each_ring(ring, dev_priv, i) {
3171 		for (j = 0; j < num_rings; j++) {
3172 			seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
3173 		}
3174 		seq_putc(m, '\n');
3175 	}
3176 	seq_putc(m, '\n');
3177 
3178 	intel_runtime_pm_put(dev_priv);
3179 	mutex_unlock(&dev->struct_mutex);
3180 	return 0;
3181 }
3182 
3183 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3184 {
3185 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3186 	struct drm_device *dev = node->minor->dev;
3187 	struct drm_i915_private *dev_priv = dev->dev_private;
3188 	int i;
3189 
3190 	drm_modeset_lock_all(dev);
3191 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3192 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3193 
3194 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3195 		seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
3196 			   pll->config.crtc_mask, pll->active, yesno(pll->on));
3197 		seq_printf(m, " tracked hardware state:\n");
3198 		seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3199 		seq_printf(m, " dpll_md: 0x%08x\n",
3200 			   pll->config.hw_state.dpll_md);
3201 		seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3202 		seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3203 		seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3204 	}
3205 	drm_modeset_unlock_all(dev);
3206 
3207 	return 0;
3208 }
3209 
3210 static int i915_wa_registers(struct seq_file *m, void *unused)
3211 {
3212 	int i;
3213 	int ret;
3214 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3215 	struct drm_device *dev = node->minor->dev;
3216 	struct drm_i915_private *dev_priv = dev->dev_private;
3217 
3218 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3219 	if (ret)
3220 		return ret;
3221 
3222 	intel_runtime_pm_get(dev_priv);
3223 
3224 	seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
3225 	for (i = 0; i < dev_priv->workarounds.count; ++i) {
3226 		i915_reg_t addr;
3227 		u32 mask, value, read;
3228 		bool ok;
3229 
3230 		addr = dev_priv->workarounds.reg[i].addr;
3231 		mask = dev_priv->workarounds.reg[i].mask;
3232 		value = dev_priv->workarounds.reg[i].value;
3233 		read = I915_READ(addr);
3234 		ok = (value & mask) == (read & mask);
3235 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3236 			   i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3237 	}
3238 
3239 	intel_runtime_pm_put(dev_priv);
3240 	mutex_unlock(&dev->struct_mutex);
3241 
3242 	return 0;
3243 }
3244 
3245 static int i915_ddb_info(struct seq_file *m, void *unused)
3246 {
3247 	struct drm_info_node *node = m->private;
3248 	struct drm_device *dev = node->minor->dev;
3249 	struct drm_i915_private *dev_priv = dev->dev_private;
3250 	struct skl_ddb_allocation *ddb;
3251 	struct skl_ddb_entry *entry;
3252 	enum pipe pipe;
3253 	int plane;
3254 
3255 	if (INTEL_INFO(dev)->gen < 9)
3256 		return 0;
3257 
3258 	drm_modeset_lock_all(dev);
3259 
3260 	ddb = &dev_priv->wm.skl_hw.ddb;
3261 
3262 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3263 
3264 	for_each_pipe(dev_priv, pipe) {
3265 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3266 
3267 		for_each_plane(dev_priv, pipe, plane) {
3268 			entry = &ddb->plane[pipe][plane];
3269 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3270 				   entry->start, entry->end,
3271 				   skl_ddb_entry_size(entry));
3272 		}
3273 
3274 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3275 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3276 			   entry->end, skl_ddb_entry_size(entry));
3277 	}
3278 
3279 	drm_modeset_unlock_all(dev);
3280 
3281 	return 0;
3282 }
3283 
3284 static void drrs_status_per_crtc(struct seq_file *m,
3285 		struct drm_device *dev, struct intel_crtc *intel_crtc)
3286 {
3287 	struct intel_encoder *intel_encoder;
3288 	struct drm_i915_private *dev_priv = dev->dev_private;
3289 	struct i915_drrs *drrs = &dev_priv->drrs;
3290 	int vrefresh = 0;
3291 
3292 	for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3293 		/* Encoder connected on this CRTC */
3294 		switch (intel_encoder->type) {
3295 		case INTEL_OUTPUT_EDP:
3296 			seq_puts(m, "eDP:\n");
3297 			break;
3298 		case INTEL_OUTPUT_DSI:
3299 			seq_puts(m, "DSI:\n");
3300 			break;
3301 		case INTEL_OUTPUT_HDMI:
3302 			seq_puts(m, "HDMI:\n");
3303 			break;
3304 		case INTEL_OUTPUT_DISPLAYPORT:
3305 			seq_puts(m, "DP:\n");
3306 			break;
3307 		default:
3308 			seq_printf(m, "Other encoder (id=%d).\n",
3309 						intel_encoder->type);
3310 			return;
3311 		}
3312 	}
3313 
3314 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3315 		seq_puts(m, "\tVBT: DRRS_type: Static");
3316 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3317 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3318 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3319 		seq_puts(m, "\tVBT: DRRS_type: None");
3320 	else
3321 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3322 
3323 	seq_puts(m, "\n\n");
3324 
3325 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3326 		struct intel_panel *panel;
3327 
3328 		mutex_lock(&drrs->mutex);
3329 		/* DRRS Supported */
3330 		seq_puts(m, "\tDRRS Supported: Yes\n");
3331 
3332 		/* disable_drrs() will make drrs->dp NULL */
3333 		if (!drrs->dp) {
3334 			seq_puts(m, "Idleness DRRS: Disabled");
3335 			mutex_unlock(&drrs->mutex);
3336 			return;
3337 		}
3338 
3339 		panel = &drrs->dp->attached_connector->panel;
3340 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3341 					drrs->busy_frontbuffer_bits);
3342 
3343 		seq_puts(m, "\n\t\t");
3344 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3345 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3346 			vrefresh = panel->fixed_mode->vrefresh;
3347 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3348 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3349 			vrefresh = panel->downclock_mode->vrefresh;
3350 		} else {
3351 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3352 						drrs->refresh_rate_type);
3353 			mutex_unlock(&drrs->mutex);
3354 			return;
3355 		}
3356 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3357 
3358 		seq_puts(m, "\n\t\t");
3359 		mutex_unlock(&drrs->mutex);
3360 	} else {
3361 		/* DRRS not supported. Print the VBT parameter*/
3362 		seq_puts(m, "\tDRRS Supported : No");
3363 	}
3364 	seq_puts(m, "\n");
3365 }
3366 
3367 static int i915_drrs_status(struct seq_file *m, void *unused)
3368 {
3369 	struct drm_info_node *node = m->private;
3370 	struct drm_device *dev = node->minor->dev;
3371 	struct intel_crtc *intel_crtc;
3372 	int active_crtc_cnt = 0;
3373 
3374 	for_each_intel_crtc(dev, intel_crtc) {
3375 		drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3376 
3377 		if (intel_crtc->base.state->active) {
3378 			active_crtc_cnt++;
3379 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3380 
3381 			drrs_status_per_crtc(m, dev, intel_crtc);
3382 		}
3383 
3384 		drm_modeset_unlock(&intel_crtc->base.mutex);
3385 	}
3386 
3387 	if (!active_crtc_cnt)
3388 		seq_puts(m, "No active crtc found\n");
3389 
3390 	return 0;
3391 }
3392 
3393 struct pipe_crc_info {
3394 	const char *name;
3395 	struct drm_device *dev;
3396 	enum pipe pipe;
3397 };
3398 
3399 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3400 {
3401 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3402 	struct drm_device *dev = node->minor->dev;
3403 	struct drm_encoder *encoder;
3404 	struct intel_encoder *intel_encoder;
3405 	struct intel_digital_port *intel_dig_port;
3406 	drm_modeset_lock_all(dev);
3407 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3408 		intel_encoder = to_intel_encoder(encoder);
3409 		if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3410 			continue;
3411 		intel_dig_port = enc_to_dig_port(encoder);
3412 		if (!intel_dig_port->dp.can_mst)
3413 			continue;
3414 
3415 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3416 	}
3417 	drm_modeset_unlock_all(dev);
3418 	return 0;
3419 }
3420 
3421 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3422 {
3423 	struct pipe_crc_info *info = inode->i_private;
3424 	struct drm_i915_private *dev_priv = info->dev->dev_private;
3425 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3426 
3427 	if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3428 		return -ENODEV;
3429 
3430 	spin_lock_irq(&pipe_crc->lock);
3431 
3432 	if (pipe_crc->opened) {
3433 		spin_unlock_irq(&pipe_crc->lock);
3434 		return -EBUSY; /* already open */
3435 	}
3436 
3437 	pipe_crc->opened = true;
3438 	filep->private_data = inode->i_private;
3439 
3440 	spin_unlock_irq(&pipe_crc->lock);
3441 
3442 	return 0;
3443 }
3444 
3445 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3446 {
3447 	struct pipe_crc_info *info = inode->i_private;
3448 	struct drm_i915_private *dev_priv = info->dev->dev_private;
3449 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3450 
3451 	spin_lock_irq(&pipe_crc->lock);
3452 	pipe_crc->opened = false;
3453 	spin_unlock_irq(&pipe_crc->lock);
3454 
3455 	return 0;
3456 }
3457 
3458 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3459 #define PIPE_CRC_LINE_LEN	(6 * 8 + 5 + 1)
3460 /* account for \'0' */
3461 #define PIPE_CRC_BUFFER_LEN	(PIPE_CRC_LINE_LEN + 1)
3462 
3463 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3464 {
3465 	assert_spin_locked(&pipe_crc->lock);
3466 	return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3467 			INTEL_PIPE_CRC_ENTRIES_NR);
3468 }
3469 
3470 static ssize_t
3471 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3472 		   loff_t *pos)
3473 {
3474 	struct pipe_crc_info *info = filep->private_data;
3475 	struct drm_device *dev = info->dev;
3476 	struct drm_i915_private *dev_priv = dev->dev_private;
3477 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3478 	char buf[PIPE_CRC_BUFFER_LEN];
3479 	int n_entries;
3480 	ssize_t bytes_read;
3481 
3482 	/*
3483 	 * Don't allow user space to provide buffers not big enough to hold
3484 	 * a line of data.
3485 	 */
3486 	if (count < PIPE_CRC_LINE_LEN)
3487 		return -EINVAL;
3488 
3489 	if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3490 		return 0;
3491 
3492 	/* nothing to read */
3493 	spin_lock_irq(&pipe_crc->lock);
3494 	while (pipe_crc_data_count(pipe_crc) == 0) {
3495 		int ret;
3496 
3497 		if (filep->f_flags & O_NONBLOCK) {
3498 			spin_unlock_irq(&pipe_crc->lock);
3499 			return -EAGAIN;
3500 		}
3501 
3502 		ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3503 				pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3504 		if (ret) {
3505 			spin_unlock_irq(&pipe_crc->lock);
3506 			return ret;
3507 		}
3508 	}
3509 
3510 	/* We now have one or more entries to read */
3511 	n_entries = count / PIPE_CRC_LINE_LEN;
3512 
3513 	bytes_read = 0;
3514 	while (n_entries > 0) {
3515 		struct intel_pipe_crc_entry *entry =
3516 			&pipe_crc->entries[pipe_crc->tail];
3517 		int ret;
3518 
3519 		if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3520 			     INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3521 			break;
3522 
3523 		BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3524 		pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3525 
3526 		bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3527 				       "%8u %8x %8x %8x %8x %8x\n",
3528 				       entry->frame, entry->crc[0],
3529 				       entry->crc[1], entry->crc[2],
3530 				       entry->crc[3], entry->crc[4]);
3531 
3532 		spin_unlock_irq(&pipe_crc->lock);
3533 
3534 		ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3535 		if (ret == PIPE_CRC_LINE_LEN)
3536 			return -EFAULT;
3537 
3538 		user_buf += PIPE_CRC_LINE_LEN;
3539 		n_entries--;
3540 
3541 		spin_lock_irq(&pipe_crc->lock);
3542 	}
3543 
3544 	spin_unlock_irq(&pipe_crc->lock);
3545 
3546 	return bytes_read;
3547 }
3548 
3549 static const struct file_operations i915_pipe_crc_fops = {
3550 	.owner = THIS_MODULE,
3551 	.open = i915_pipe_crc_open,
3552 	.read = i915_pipe_crc_read,
3553 	.release = i915_pipe_crc_release,
3554 };
3555 
3556 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3557 	{
3558 		.name = "i915_pipe_A_crc",
3559 		.pipe = PIPE_A,
3560 	},
3561 	{
3562 		.name = "i915_pipe_B_crc",
3563 		.pipe = PIPE_B,
3564 	},
3565 	{
3566 		.name = "i915_pipe_C_crc",
3567 		.pipe = PIPE_C,
3568 	},
3569 };
3570 
3571 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3572 				enum pipe pipe)
3573 {
3574 	struct drm_device *dev = minor->dev;
3575 	struct dentry *ent;
3576 	struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3577 
3578 	info->dev = dev;
3579 	ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3580 				  &i915_pipe_crc_fops);
3581 	if (!ent)
3582 		return -ENOMEM;
3583 
3584 	return drm_add_fake_info_node(minor, ent, info);
3585 }
3586 
3587 static const char * const pipe_crc_sources[] = {
3588 	"none",
3589 	"plane1",
3590 	"plane2",
3591 	"pf",
3592 	"pipe",
3593 	"TV",
3594 	"DP-B",
3595 	"DP-C",
3596 	"DP-D",
3597 	"auto",
3598 };
3599 
3600 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3601 {
3602 	BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3603 	return pipe_crc_sources[source];
3604 }
3605 
3606 static int display_crc_ctl_show(struct seq_file *m, void *data)
3607 {
3608 	struct drm_device *dev = m->private;
3609 	struct drm_i915_private *dev_priv = dev->dev_private;
3610 	int i;
3611 
3612 	for (i = 0; i < I915_MAX_PIPES; i++)
3613 		seq_printf(m, "%c %s\n", pipe_name(i),
3614 			   pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3615 
3616 	return 0;
3617 }
3618 
3619 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3620 {
3621 	struct drm_device *dev = inode->i_private;
3622 
3623 	return single_open(file, display_crc_ctl_show, dev);
3624 }
3625 
3626 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3627 				 uint32_t *val)
3628 {
3629 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3630 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3631 
3632 	switch (*source) {
3633 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3634 		*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3635 		break;
3636 	case INTEL_PIPE_CRC_SOURCE_NONE:
3637 		*val = 0;
3638 		break;
3639 	default:
3640 		return -EINVAL;
3641 	}
3642 
3643 	return 0;
3644 }
3645 
3646 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3647 				     enum intel_pipe_crc_source *source)
3648 {
3649 	struct intel_encoder *encoder;
3650 	struct intel_crtc *crtc;
3651 	struct intel_digital_port *dig_port;
3652 	int ret = 0;
3653 
3654 	*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3655 
3656 	drm_modeset_lock_all(dev);
3657 	for_each_intel_encoder(dev, encoder) {
3658 		if (!encoder->base.crtc)
3659 			continue;
3660 
3661 		crtc = to_intel_crtc(encoder->base.crtc);
3662 
3663 		if (crtc->pipe != pipe)
3664 			continue;
3665 
3666 		switch (encoder->type) {
3667 		case INTEL_OUTPUT_TVOUT:
3668 			*source = INTEL_PIPE_CRC_SOURCE_TV;
3669 			break;
3670 		case INTEL_OUTPUT_DISPLAYPORT:
3671 		case INTEL_OUTPUT_EDP:
3672 			dig_port = enc_to_dig_port(&encoder->base);
3673 			switch (dig_port->port) {
3674 			case PORT_B:
3675 				*source = INTEL_PIPE_CRC_SOURCE_DP_B;
3676 				break;
3677 			case PORT_C:
3678 				*source = INTEL_PIPE_CRC_SOURCE_DP_C;
3679 				break;
3680 			case PORT_D:
3681 				*source = INTEL_PIPE_CRC_SOURCE_DP_D;
3682 				break;
3683 			default:
3684 				WARN(1, "nonexisting DP port %c\n",
3685 				     port_name(dig_port->port));
3686 				break;
3687 			}
3688 			break;
3689 		default:
3690 			break;
3691 		}
3692 	}
3693 	drm_modeset_unlock_all(dev);
3694 
3695 	return ret;
3696 }
3697 
3698 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3699 				enum pipe pipe,
3700 				enum intel_pipe_crc_source *source,
3701 				uint32_t *val)
3702 {
3703 	struct drm_i915_private *dev_priv = dev->dev_private;
3704 	bool need_stable_symbols = false;
3705 
3706 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3707 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3708 		if (ret)
3709 			return ret;
3710 	}
3711 
3712 	switch (*source) {
3713 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3714 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3715 		break;
3716 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3717 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3718 		need_stable_symbols = true;
3719 		break;
3720 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3721 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3722 		need_stable_symbols = true;
3723 		break;
3724 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3725 		if (!IS_CHERRYVIEW(dev))
3726 			return -EINVAL;
3727 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3728 		need_stable_symbols = true;
3729 		break;
3730 	case INTEL_PIPE_CRC_SOURCE_NONE:
3731 		*val = 0;
3732 		break;
3733 	default:
3734 		return -EINVAL;
3735 	}
3736 
3737 	/*
3738 	 * When the pipe CRC tap point is after the transcoders we need
3739 	 * to tweak symbol-level features to produce a deterministic series of
3740 	 * symbols for a given frame. We need to reset those features only once
3741 	 * a frame (instead of every nth symbol):
3742 	 *   - DC-balance: used to ensure a better clock recovery from the data
3743 	 *     link (SDVO)
3744 	 *   - DisplayPort scrambling: used for EMI reduction
3745 	 */
3746 	if (need_stable_symbols) {
3747 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3748 
3749 		tmp |= DC_BALANCE_RESET_VLV;
3750 		switch (pipe) {
3751 		case PIPE_A:
3752 			tmp |= PIPE_A_SCRAMBLE_RESET;
3753 			break;
3754 		case PIPE_B:
3755 			tmp |= PIPE_B_SCRAMBLE_RESET;
3756 			break;
3757 		case PIPE_C:
3758 			tmp |= PIPE_C_SCRAMBLE_RESET;
3759 			break;
3760 		default:
3761 			return -EINVAL;
3762 		}
3763 		I915_WRITE(PORT_DFT2_G4X, tmp);
3764 	}
3765 
3766 	return 0;
3767 }
3768 
3769 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3770 				 enum pipe pipe,
3771 				 enum intel_pipe_crc_source *source,
3772 				 uint32_t *val)
3773 {
3774 	struct drm_i915_private *dev_priv = dev->dev_private;
3775 	bool need_stable_symbols = false;
3776 
3777 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3778 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3779 		if (ret)
3780 			return ret;
3781 	}
3782 
3783 	switch (*source) {
3784 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3785 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3786 		break;
3787 	case INTEL_PIPE_CRC_SOURCE_TV:
3788 		if (!SUPPORTS_TV(dev))
3789 			return -EINVAL;
3790 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3791 		break;
3792 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3793 		if (!IS_G4X(dev))
3794 			return -EINVAL;
3795 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3796 		need_stable_symbols = true;
3797 		break;
3798 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3799 		if (!IS_G4X(dev))
3800 			return -EINVAL;
3801 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3802 		need_stable_symbols = true;
3803 		break;
3804 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3805 		if (!IS_G4X(dev))
3806 			return -EINVAL;
3807 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3808 		need_stable_symbols = true;
3809 		break;
3810 	case INTEL_PIPE_CRC_SOURCE_NONE:
3811 		*val = 0;
3812 		break;
3813 	default:
3814 		return -EINVAL;
3815 	}
3816 
3817 	/*
3818 	 * When the pipe CRC tap point is after the transcoders we need
3819 	 * to tweak symbol-level features to produce a deterministic series of
3820 	 * symbols for a given frame. We need to reset those features only once
3821 	 * a frame (instead of every nth symbol):
3822 	 *   - DC-balance: used to ensure a better clock recovery from the data
3823 	 *     link (SDVO)
3824 	 *   - DisplayPort scrambling: used for EMI reduction
3825 	 */
3826 	if (need_stable_symbols) {
3827 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3828 
3829 		WARN_ON(!IS_G4X(dev));
3830 
3831 		I915_WRITE(PORT_DFT_I9XX,
3832 			   I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3833 
3834 		if (pipe == PIPE_A)
3835 			tmp |= PIPE_A_SCRAMBLE_RESET;
3836 		else
3837 			tmp |= PIPE_B_SCRAMBLE_RESET;
3838 
3839 		I915_WRITE(PORT_DFT2_G4X, tmp);
3840 	}
3841 
3842 	return 0;
3843 }
3844 
3845 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3846 					 enum pipe pipe)
3847 {
3848 	struct drm_i915_private *dev_priv = dev->dev_private;
3849 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3850 
3851 	switch (pipe) {
3852 	case PIPE_A:
3853 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3854 		break;
3855 	case PIPE_B:
3856 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3857 		break;
3858 	case PIPE_C:
3859 		tmp &= ~PIPE_C_SCRAMBLE_RESET;
3860 		break;
3861 	default:
3862 		return;
3863 	}
3864 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3865 		tmp &= ~DC_BALANCE_RESET_VLV;
3866 	I915_WRITE(PORT_DFT2_G4X, tmp);
3867 
3868 }
3869 
3870 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3871 					 enum pipe pipe)
3872 {
3873 	struct drm_i915_private *dev_priv = dev->dev_private;
3874 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3875 
3876 	if (pipe == PIPE_A)
3877 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3878 	else
3879 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3880 	I915_WRITE(PORT_DFT2_G4X, tmp);
3881 
3882 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3883 		I915_WRITE(PORT_DFT_I9XX,
3884 			   I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3885 	}
3886 }
3887 
3888 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3889 				uint32_t *val)
3890 {
3891 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3892 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3893 
3894 	switch (*source) {
3895 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3896 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3897 		break;
3898 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3899 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3900 		break;
3901 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3902 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3903 		break;
3904 	case INTEL_PIPE_CRC_SOURCE_NONE:
3905 		*val = 0;
3906 		break;
3907 	default:
3908 		return -EINVAL;
3909 	}
3910 
3911 	return 0;
3912 }
3913 
3914 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3915 {
3916 	struct drm_i915_private *dev_priv = dev->dev_private;
3917 	struct intel_crtc *crtc =
3918 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3919 	struct intel_crtc_state *pipe_config;
3920 	struct drm_atomic_state *state;
3921 	int ret = 0;
3922 
3923 	drm_modeset_lock_all(dev);
3924 	state = drm_atomic_state_alloc(dev);
3925 	if (!state) {
3926 		ret = -ENOMEM;
3927 		goto out;
3928 	}
3929 
3930 	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3931 	pipe_config = intel_atomic_get_crtc_state(state, crtc);
3932 	if (IS_ERR(pipe_config)) {
3933 		ret = PTR_ERR(pipe_config);
3934 		goto out;
3935 	}
3936 
3937 	pipe_config->pch_pfit.force_thru = enable;
3938 	if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3939 	    pipe_config->pch_pfit.enabled != enable)
3940 		pipe_config->base.connectors_changed = true;
3941 
3942 	ret = drm_atomic_commit(state);
3943 out:
3944 	drm_modeset_unlock_all(dev);
3945 	WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3946 	if (ret)
3947 		drm_atomic_state_free(state);
3948 }
3949 
3950 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3951 				enum pipe pipe,
3952 				enum intel_pipe_crc_source *source,
3953 				uint32_t *val)
3954 {
3955 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3956 		*source = INTEL_PIPE_CRC_SOURCE_PF;
3957 
3958 	switch (*source) {
3959 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3960 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3961 		break;
3962 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3963 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3964 		break;
3965 	case INTEL_PIPE_CRC_SOURCE_PF:
3966 		if (IS_HASWELL(dev) && pipe == PIPE_A)
3967 			hsw_trans_edp_pipe_A_crc_wa(dev, true);
3968 
3969 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3970 		break;
3971 	case INTEL_PIPE_CRC_SOURCE_NONE:
3972 		*val = 0;
3973 		break;
3974 	default:
3975 		return -EINVAL;
3976 	}
3977 
3978 	return 0;
3979 }
3980 
3981 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3982 			       enum intel_pipe_crc_source source)
3983 {
3984 	struct drm_i915_private *dev_priv = dev->dev_private;
3985 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3986 	struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3987 									pipe));
3988 	u32 val = 0; /* shut up gcc */
3989 	int ret;
3990 
3991 	if (pipe_crc->source == source)
3992 		return 0;
3993 
3994 	/* forbid changing the source without going back to 'none' */
3995 	if (pipe_crc->source && source)
3996 		return -EINVAL;
3997 
3998 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3999 		DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4000 		return -EIO;
4001 	}
4002 
4003 	if (IS_GEN2(dev))
4004 		ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4005 	else if (INTEL_INFO(dev)->gen < 5)
4006 		ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4007 	else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4008 		ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4009 	else if (IS_GEN5(dev) || IS_GEN6(dev))
4010 		ret = ilk_pipe_crc_ctl_reg(&source, &val);
4011 	else
4012 		ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4013 
4014 	if (ret != 0)
4015 		return ret;
4016 
4017 	/* none -> real source transition */
4018 	if (source) {
4019 		struct intel_pipe_crc_entry *entries;
4020 
4021 		DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4022 				 pipe_name(pipe), pipe_crc_source_name(source));
4023 
4024 		entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4025 				  sizeof(pipe_crc->entries[0]),
4026 				  GFP_KERNEL);
4027 		if (!entries)
4028 			return -ENOMEM;
4029 
4030 		/*
4031 		 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4032 		 * enabled and disabled dynamically based on package C states,
4033 		 * user space can't make reliable use of the CRCs, so let's just
4034 		 * completely disable it.
4035 		 */
4036 		hsw_disable_ips(crtc);
4037 
4038 		spin_lock_irq(&pipe_crc->lock);
4039 		kfree(pipe_crc->entries);
4040 		pipe_crc->entries = entries;
4041 		pipe_crc->head = 0;
4042 		pipe_crc->tail = 0;
4043 		spin_unlock_irq(&pipe_crc->lock);
4044 	}
4045 
4046 	pipe_crc->source = source;
4047 
4048 	I915_WRITE(PIPE_CRC_CTL(pipe), val);
4049 	POSTING_READ(PIPE_CRC_CTL(pipe));
4050 
4051 	/* real source -> none transition */
4052 	if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4053 		struct intel_pipe_crc_entry *entries;
4054 		struct intel_crtc *crtc =
4055 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4056 
4057 		DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4058 				 pipe_name(pipe));
4059 
4060 		drm_modeset_lock(&crtc->base.mutex, NULL);
4061 		if (crtc->base.state->active)
4062 			intel_wait_for_vblank(dev, pipe);
4063 		drm_modeset_unlock(&crtc->base.mutex);
4064 
4065 		spin_lock_irq(&pipe_crc->lock);
4066 		entries = pipe_crc->entries;
4067 		pipe_crc->entries = NULL;
4068 		pipe_crc->head = 0;
4069 		pipe_crc->tail = 0;
4070 		spin_unlock_irq(&pipe_crc->lock);
4071 
4072 		kfree(entries);
4073 
4074 		if (IS_G4X(dev))
4075 			g4x_undo_pipe_scramble_reset(dev, pipe);
4076 		else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4077 			vlv_undo_pipe_scramble_reset(dev, pipe);
4078 		else if (IS_HASWELL(dev) && pipe == PIPE_A)
4079 			hsw_trans_edp_pipe_A_crc_wa(dev, false);
4080 
4081 		hsw_enable_ips(crtc);
4082 	}
4083 
4084 	return 0;
4085 }
4086 
4087 /*
4088  * Parse pipe CRC command strings:
4089  *   command: wsp* object wsp+ name wsp+ source wsp*
4090  *   object: 'pipe'
4091  *   name: (A | B | C)
4092  *   source: (none | plane1 | plane2 | pf)
4093  *   wsp: (#0x20 | #0x9 | #0xA)+
4094  *
4095  * eg.:
4096  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4097  *  "pipe A none"    ->  Stop CRC
4098  */
4099 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4100 {
4101 	int n_words = 0;
4102 
4103 	while (*buf) {
4104 		char *end;
4105 
4106 		/* skip leading white space */
4107 		buf = skip_spaces(buf);
4108 		if (!*buf)
4109 			break;	/* end of buffer */
4110 
4111 		/* find end of word */
4112 		for (end = buf; *end && !isspace(*end); end++)
4113 			;
4114 
4115 		if (n_words == max_words) {
4116 			DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4117 					 max_words);
4118 			return -EINVAL;	/* ran out of words[] before bytes */
4119 		}
4120 
4121 		if (*end)
4122 			*end++ = '\0';
4123 		words[n_words++] = buf;
4124 		buf = end;
4125 	}
4126 
4127 	return n_words;
4128 }
4129 
4130 enum intel_pipe_crc_object {
4131 	PIPE_CRC_OBJECT_PIPE,
4132 };
4133 
4134 static const char * const pipe_crc_objects[] = {
4135 	"pipe",
4136 };
4137 
4138 static int
4139 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4140 {
4141 	int i;
4142 
4143 	for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4144 		if (!strcmp(buf, pipe_crc_objects[i])) {
4145 			*o = i;
4146 			return 0;
4147 		    }
4148 
4149 	return -EINVAL;
4150 }
4151 
4152 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4153 {
4154 	const char name = buf[0];
4155 
4156 	if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4157 		return -EINVAL;
4158 
4159 	*pipe = name - 'A';
4160 
4161 	return 0;
4162 }
4163 
4164 static int
4165 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4166 {
4167 	int i;
4168 
4169 	for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4170 		if (!strcmp(buf, pipe_crc_sources[i])) {
4171 			*s = i;
4172 			return 0;
4173 		    }
4174 
4175 	return -EINVAL;
4176 }
4177 
4178 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4179 {
4180 #define N_WORDS 3
4181 	int n_words;
4182 	char *words[N_WORDS];
4183 	enum pipe pipe;
4184 	enum intel_pipe_crc_object object;
4185 	enum intel_pipe_crc_source source;
4186 
4187 	n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4188 	if (n_words != N_WORDS) {
4189 		DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4190 				 N_WORDS);
4191 		return -EINVAL;
4192 	}
4193 
4194 	if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4195 		DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4196 		return -EINVAL;
4197 	}
4198 
4199 	if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4200 		DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4201 		return -EINVAL;
4202 	}
4203 
4204 	if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4205 		DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4206 		return -EINVAL;
4207 	}
4208 
4209 	return pipe_crc_set_source(dev, pipe, source);
4210 }
4211 
4212 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4213 				     size_t len, loff_t *offp)
4214 {
4215 	struct seq_file *m = file->private_data;
4216 	struct drm_device *dev = m->private;
4217 	char *tmpbuf;
4218 	int ret;
4219 
4220 	if (len == 0)
4221 		return 0;
4222 
4223 	if (len > PAGE_SIZE - 1) {
4224 		DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4225 				 PAGE_SIZE);
4226 		return -E2BIG;
4227 	}
4228 
4229 	tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4230 	if (!tmpbuf)
4231 		return -ENOMEM;
4232 
4233 	if (copy_from_user(tmpbuf, ubuf, len)) {
4234 		ret = -EFAULT;
4235 		goto out;
4236 	}
4237 	tmpbuf[len] = '\0';
4238 
4239 	ret = display_crc_ctl_parse(dev, tmpbuf, len);
4240 
4241 out:
4242 	kfree(tmpbuf);
4243 	if (ret < 0)
4244 		return ret;
4245 
4246 	*offp += len;
4247 	return len;
4248 }
4249 
4250 static const struct file_operations i915_display_crc_ctl_fops = {
4251 	.owner = THIS_MODULE,
4252 	.open = display_crc_ctl_open,
4253 	.read = seq_read,
4254 	.llseek = seq_lseek,
4255 	.release = single_release,
4256 	.write = display_crc_ctl_write
4257 };
4258 
4259 static ssize_t i915_displayport_test_active_write(struct file *file,
4260 					    const char __user *ubuf,
4261 					    size_t len, loff_t *offp)
4262 {
4263 	char *input_buffer;
4264 	int status = 0;
4265 	struct drm_device *dev;
4266 	struct drm_connector *connector;
4267 	struct list_head *connector_list;
4268 	struct intel_dp *intel_dp;
4269 	int val = 0;
4270 
4271 	dev = ((struct seq_file *)file->private_data)->private;
4272 
4273 	connector_list = &dev->mode_config.connector_list;
4274 
4275 	if (len == 0)
4276 		return 0;
4277 
4278 	input_buffer = kmalloc(len + 1, GFP_KERNEL);
4279 	if (!input_buffer)
4280 		return -ENOMEM;
4281 
4282 	if (copy_from_user(input_buffer, ubuf, len)) {
4283 		status = -EFAULT;
4284 		goto out;
4285 	}
4286 
4287 	input_buffer[len] = '\0';
4288 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4289 
4290 	list_for_each_entry(connector, connector_list, head) {
4291 
4292 		if (connector->connector_type !=
4293 		    DRM_MODE_CONNECTOR_DisplayPort)
4294 			continue;
4295 
4296 		if (connector->status == connector_status_connected &&
4297 		    connector->encoder != NULL) {
4298 			intel_dp = enc_to_intel_dp(connector->encoder);
4299 			status = kstrtoint(input_buffer, 10, &val);
4300 			if (status < 0)
4301 				goto out;
4302 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4303 			/* To prevent erroneous activation of the compliance
4304 			 * testing code, only accept an actual value of 1 here
4305 			 */
4306 			if (val == 1)
4307 				intel_dp->compliance_test_active = 1;
4308 			else
4309 				intel_dp->compliance_test_active = 0;
4310 		}
4311 	}
4312 out:
4313 	kfree(input_buffer);
4314 	if (status < 0)
4315 		return status;
4316 
4317 	*offp += len;
4318 	return len;
4319 }
4320 
4321 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4322 {
4323 	struct drm_device *dev = m->private;
4324 	struct drm_connector *connector;
4325 	struct list_head *connector_list = &dev->mode_config.connector_list;
4326 	struct intel_dp *intel_dp;
4327 
4328 	list_for_each_entry(connector, connector_list, head) {
4329 
4330 		if (connector->connector_type !=
4331 		    DRM_MODE_CONNECTOR_DisplayPort)
4332 			continue;
4333 
4334 		if (connector->status == connector_status_connected &&
4335 		    connector->encoder != NULL) {
4336 			intel_dp = enc_to_intel_dp(connector->encoder);
4337 			if (intel_dp->compliance_test_active)
4338 				seq_puts(m, "1");
4339 			else
4340 				seq_puts(m, "0");
4341 		} else
4342 			seq_puts(m, "0");
4343 	}
4344 
4345 	return 0;
4346 }
4347 
4348 static int i915_displayport_test_active_open(struct inode *inode,
4349 				       struct file *file)
4350 {
4351 	struct drm_device *dev = inode->i_private;
4352 
4353 	return single_open(file, i915_displayport_test_active_show, dev);
4354 }
4355 
4356 static const struct file_operations i915_displayport_test_active_fops = {
4357 	.owner = THIS_MODULE,
4358 	.open = i915_displayport_test_active_open,
4359 	.read = seq_read,
4360 	.llseek = seq_lseek,
4361 	.release = single_release,
4362 	.write = i915_displayport_test_active_write
4363 };
4364 
4365 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4366 {
4367 	struct drm_device *dev = m->private;
4368 	struct drm_connector *connector;
4369 	struct list_head *connector_list = &dev->mode_config.connector_list;
4370 	struct intel_dp *intel_dp;
4371 
4372 	list_for_each_entry(connector, connector_list, head) {
4373 
4374 		if (connector->connector_type !=
4375 		    DRM_MODE_CONNECTOR_DisplayPort)
4376 			continue;
4377 
4378 		if (connector->status == connector_status_connected &&
4379 		    connector->encoder != NULL) {
4380 			intel_dp = enc_to_intel_dp(connector->encoder);
4381 			seq_printf(m, "%lx", intel_dp->compliance_test_data);
4382 		} else
4383 			seq_puts(m, "0");
4384 	}
4385 
4386 	return 0;
4387 }
4388 static int i915_displayport_test_data_open(struct inode *inode,
4389 				       struct file *file)
4390 {
4391 	struct drm_device *dev = inode->i_private;
4392 
4393 	return single_open(file, i915_displayport_test_data_show, dev);
4394 }
4395 
4396 static const struct file_operations i915_displayport_test_data_fops = {
4397 	.owner = THIS_MODULE,
4398 	.open = i915_displayport_test_data_open,
4399 	.read = seq_read,
4400 	.llseek = seq_lseek,
4401 	.release = single_release
4402 };
4403 
4404 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4405 {
4406 	struct drm_device *dev = m->private;
4407 	struct drm_connector *connector;
4408 	struct list_head *connector_list = &dev->mode_config.connector_list;
4409 	struct intel_dp *intel_dp;
4410 
4411 	list_for_each_entry(connector, connector_list, head) {
4412 
4413 		if (connector->connector_type !=
4414 		    DRM_MODE_CONNECTOR_DisplayPort)
4415 			continue;
4416 
4417 		if (connector->status == connector_status_connected &&
4418 		    connector->encoder != NULL) {
4419 			intel_dp = enc_to_intel_dp(connector->encoder);
4420 			seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4421 		} else
4422 			seq_puts(m, "0");
4423 	}
4424 
4425 	return 0;
4426 }
4427 
4428 static int i915_displayport_test_type_open(struct inode *inode,
4429 				       struct file *file)
4430 {
4431 	struct drm_device *dev = inode->i_private;
4432 
4433 	return single_open(file, i915_displayport_test_type_show, dev);
4434 }
4435 
4436 static const struct file_operations i915_displayport_test_type_fops = {
4437 	.owner = THIS_MODULE,
4438 	.open = i915_displayport_test_type_open,
4439 	.read = seq_read,
4440 	.llseek = seq_lseek,
4441 	.release = single_release
4442 };
4443 
4444 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4445 {
4446 	struct drm_device *dev = m->private;
4447 	int level;
4448 	int num_levels;
4449 
4450 	if (IS_CHERRYVIEW(dev))
4451 		num_levels = 3;
4452 	else if (IS_VALLEYVIEW(dev))
4453 		num_levels = 1;
4454 	else
4455 		num_levels = ilk_wm_max_level(dev) + 1;
4456 
4457 	drm_modeset_lock_all(dev);
4458 
4459 	for (level = 0; level < num_levels; level++) {
4460 		unsigned int latency = wm[level];
4461 
4462 		/*
4463 		 * - WM1+ latency values in 0.5us units
4464 		 * - latencies are in us on gen9/vlv/chv
4465 		 */
4466 		if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4467 		    IS_CHERRYVIEW(dev))
4468 			latency *= 10;
4469 		else if (level > 0)
4470 			latency *= 5;
4471 
4472 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
4473 			   level, wm[level], latency / 10, latency % 10);
4474 	}
4475 
4476 	drm_modeset_unlock_all(dev);
4477 }
4478 
4479 static int pri_wm_latency_show(struct seq_file *m, void *data)
4480 {
4481 	struct drm_device *dev = m->private;
4482 	struct drm_i915_private *dev_priv = dev->dev_private;
4483 	const uint16_t *latencies;
4484 
4485 	if (INTEL_INFO(dev)->gen >= 9)
4486 		latencies = dev_priv->wm.skl_latency;
4487 	else
4488 		latencies = to_i915(dev)->wm.pri_latency;
4489 
4490 	wm_latency_show(m, latencies);
4491 
4492 	return 0;
4493 }
4494 
4495 static int spr_wm_latency_show(struct seq_file *m, void *data)
4496 {
4497 	struct drm_device *dev = m->private;
4498 	struct drm_i915_private *dev_priv = dev->dev_private;
4499 	const uint16_t *latencies;
4500 
4501 	if (INTEL_INFO(dev)->gen >= 9)
4502 		latencies = dev_priv->wm.skl_latency;
4503 	else
4504 		latencies = to_i915(dev)->wm.spr_latency;
4505 
4506 	wm_latency_show(m, latencies);
4507 
4508 	return 0;
4509 }
4510 
4511 static int cur_wm_latency_show(struct seq_file *m, void *data)
4512 {
4513 	struct drm_device *dev = m->private;
4514 	struct drm_i915_private *dev_priv = dev->dev_private;
4515 	const uint16_t *latencies;
4516 
4517 	if (INTEL_INFO(dev)->gen >= 9)
4518 		latencies = dev_priv->wm.skl_latency;
4519 	else
4520 		latencies = to_i915(dev)->wm.cur_latency;
4521 
4522 	wm_latency_show(m, latencies);
4523 
4524 	return 0;
4525 }
4526 
4527 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4528 {
4529 	struct drm_device *dev = inode->i_private;
4530 
4531 	if (INTEL_INFO(dev)->gen < 5)
4532 		return -ENODEV;
4533 
4534 	return single_open(file, pri_wm_latency_show, dev);
4535 }
4536 
4537 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4538 {
4539 	struct drm_device *dev = inode->i_private;
4540 
4541 	if (HAS_GMCH_DISPLAY(dev))
4542 		return -ENODEV;
4543 
4544 	return single_open(file, spr_wm_latency_show, dev);
4545 }
4546 
4547 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4548 {
4549 	struct drm_device *dev = inode->i_private;
4550 
4551 	if (HAS_GMCH_DISPLAY(dev))
4552 		return -ENODEV;
4553 
4554 	return single_open(file, cur_wm_latency_show, dev);
4555 }
4556 
4557 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4558 				size_t len, loff_t *offp, uint16_t wm[8])
4559 {
4560 	struct seq_file *m = file->private_data;
4561 	struct drm_device *dev = m->private;
4562 	uint16_t new[8] = { 0 };
4563 	int num_levels;
4564 	int level;
4565 	int ret;
4566 	char tmp[32];
4567 
4568 	if (IS_CHERRYVIEW(dev))
4569 		num_levels = 3;
4570 	else if (IS_VALLEYVIEW(dev))
4571 		num_levels = 1;
4572 	else
4573 		num_levels = ilk_wm_max_level(dev) + 1;
4574 
4575 	if (len >= sizeof(tmp))
4576 		return -EINVAL;
4577 
4578 	if (copy_from_user(tmp, ubuf, len))
4579 		return -EFAULT;
4580 
4581 	tmp[len] = '\0';
4582 
4583 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4584 		     &new[0], &new[1], &new[2], &new[3],
4585 		     &new[4], &new[5], &new[6], &new[7]);
4586 	if (ret != num_levels)
4587 		return -EINVAL;
4588 
4589 	drm_modeset_lock_all(dev);
4590 
4591 	for (level = 0; level < num_levels; level++)
4592 		wm[level] = new[level];
4593 
4594 	drm_modeset_unlock_all(dev);
4595 
4596 	return len;
4597 }
4598 
4599 
4600 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4601 				    size_t len, loff_t *offp)
4602 {
4603 	struct seq_file *m = file->private_data;
4604 	struct drm_device *dev = m->private;
4605 	struct drm_i915_private *dev_priv = dev->dev_private;
4606 	uint16_t *latencies;
4607 
4608 	if (INTEL_INFO(dev)->gen >= 9)
4609 		latencies = dev_priv->wm.skl_latency;
4610 	else
4611 		latencies = to_i915(dev)->wm.pri_latency;
4612 
4613 	return wm_latency_write(file, ubuf, len, offp, latencies);
4614 }
4615 
4616 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4617 				    size_t len, loff_t *offp)
4618 {
4619 	struct seq_file *m = file->private_data;
4620 	struct drm_device *dev = m->private;
4621 	struct drm_i915_private *dev_priv = dev->dev_private;
4622 	uint16_t *latencies;
4623 
4624 	if (INTEL_INFO(dev)->gen >= 9)
4625 		latencies = dev_priv->wm.skl_latency;
4626 	else
4627 		latencies = to_i915(dev)->wm.spr_latency;
4628 
4629 	return wm_latency_write(file, ubuf, len, offp, latencies);
4630 }
4631 
4632 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4633 				    size_t len, loff_t *offp)
4634 {
4635 	struct seq_file *m = file->private_data;
4636 	struct drm_device *dev = m->private;
4637 	struct drm_i915_private *dev_priv = dev->dev_private;
4638 	uint16_t *latencies;
4639 
4640 	if (INTEL_INFO(dev)->gen >= 9)
4641 		latencies = dev_priv->wm.skl_latency;
4642 	else
4643 		latencies = to_i915(dev)->wm.cur_latency;
4644 
4645 	return wm_latency_write(file, ubuf, len, offp, latencies);
4646 }
4647 
4648 static const struct file_operations i915_pri_wm_latency_fops = {
4649 	.owner = THIS_MODULE,
4650 	.open = pri_wm_latency_open,
4651 	.read = seq_read,
4652 	.llseek = seq_lseek,
4653 	.release = single_release,
4654 	.write = pri_wm_latency_write
4655 };
4656 
4657 static const struct file_operations i915_spr_wm_latency_fops = {
4658 	.owner = THIS_MODULE,
4659 	.open = spr_wm_latency_open,
4660 	.read = seq_read,
4661 	.llseek = seq_lseek,
4662 	.release = single_release,
4663 	.write = spr_wm_latency_write
4664 };
4665 
4666 static const struct file_operations i915_cur_wm_latency_fops = {
4667 	.owner = THIS_MODULE,
4668 	.open = cur_wm_latency_open,
4669 	.read = seq_read,
4670 	.llseek = seq_lseek,
4671 	.release = single_release,
4672 	.write = cur_wm_latency_write
4673 };
4674 
4675 static int
4676 i915_wedged_get(void *data, u64 *val)
4677 {
4678 	struct drm_device *dev = data;
4679 	struct drm_i915_private *dev_priv = dev->dev_private;
4680 
4681 	*val = atomic_read(&dev_priv->gpu_error.reset_counter);
4682 
4683 	return 0;
4684 }
4685 
4686 static int
4687 i915_wedged_set(void *data, u64 val)
4688 {
4689 	struct drm_device *dev = data;
4690 	struct drm_i915_private *dev_priv = dev->dev_private;
4691 
4692 	/*
4693 	 * There is no safeguard against this debugfs entry colliding
4694 	 * with the hangcheck calling same i915_handle_error() in
4695 	 * parallel, causing an explosion. For now we assume that the
4696 	 * test harness is responsible enough not to inject gpu hangs
4697 	 * while it is writing to 'i915_wedged'
4698 	 */
4699 
4700 	if (i915_reset_in_progress(&dev_priv->gpu_error))
4701 		return -EAGAIN;
4702 
4703 	intel_runtime_pm_get(dev_priv);
4704 
4705 	i915_handle_error(dev, val,
4706 			  "Manually setting wedged to %llu", val);
4707 
4708 	intel_runtime_pm_put(dev_priv);
4709 
4710 	return 0;
4711 }
4712 
4713 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4714 			i915_wedged_get, i915_wedged_set,
4715 			"%llu\n");
4716 
4717 static int
4718 i915_ring_stop_get(void *data, u64 *val)
4719 {
4720 	struct drm_device *dev = data;
4721 	struct drm_i915_private *dev_priv = dev->dev_private;
4722 
4723 	*val = dev_priv->gpu_error.stop_rings;
4724 
4725 	return 0;
4726 }
4727 
4728 static int
4729 i915_ring_stop_set(void *data, u64 val)
4730 {
4731 	struct drm_device *dev = data;
4732 	struct drm_i915_private *dev_priv = dev->dev_private;
4733 	int ret;
4734 
4735 	DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4736 
4737 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4738 	if (ret)
4739 		return ret;
4740 
4741 	dev_priv->gpu_error.stop_rings = val;
4742 	mutex_unlock(&dev->struct_mutex);
4743 
4744 	return 0;
4745 }
4746 
4747 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4748 			i915_ring_stop_get, i915_ring_stop_set,
4749 			"0x%08llx\n");
4750 
4751 static int
4752 i915_ring_missed_irq_get(void *data, u64 *val)
4753 {
4754 	struct drm_device *dev = data;
4755 	struct drm_i915_private *dev_priv = dev->dev_private;
4756 
4757 	*val = dev_priv->gpu_error.missed_irq_rings;
4758 	return 0;
4759 }
4760 
4761 static int
4762 i915_ring_missed_irq_set(void *data, u64 val)
4763 {
4764 	struct drm_device *dev = data;
4765 	struct drm_i915_private *dev_priv = dev->dev_private;
4766 	int ret;
4767 
4768 	/* Lock against concurrent debugfs callers */
4769 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4770 	if (ret)
4771 		return ret;
4772 	dev_priv->gpu_error.missed_irq_rings = val;
4773 	mutex_unlock(&dev->struct_mutex);
4774 
4775 	return 0;
4776 }
4777 
4778 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4779 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4780 			"0x%08llx\n");
4781 
4782 static int
4783 i915_ring_test_irq_get(void *data, u64 *val)
4784 {
4785 	struct drm_device *dev = data;
4786 	struct drm_i915_private *dev_priv = dev->dev_private;
4787 
4788 	*val = dev_priv->gpu_error.test_irq_rings;
4789 
4790 	return 0;
4791 }
4792 
4793 static int
4794 i915_ring_test_irq_set(void *data, u64 val)
4795 {
4796 	struct drm_device *dev = data;
4797 	struct drm_i915_private *dev_priv = dev->dev_private;
4798 	int ret;
4799 
4800 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4801 
4802 	/* Lock against concurrent debugfs callers */
4803 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4804 	if (ret)
4805 		return ret;
4806 
4807 	dev_priv->gpu_error.test_irq_rings = val;
4808 	mutex_unlock(&dev->struct_mutex);
4809 
4810 	return 0;
4811 }
4812 
4813 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4814 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4815 			"0x%08llx\n");
4816 
4817 #define DROP_UNBOUND 0x1
4818 #define DROP_BOUND 0x2
4819 #define DROP_RETIRE 0x4
4820 #define DROP_ACTIVE 0x8
4821 #define DROP_ALL (DROP_UNBOUND | \
4822 		  DROP_BOUND | \
4823 		  DROP_RETIRE | \
4824 		  DROP_ACTIVE)
4825 static int
4826 i915_drop_caches_get(void *data, u64 *val)
4827 {
4828 	*val = DROP_ALL;
4829 
4830 	return 0;
4831 }
4832 
4833 static int
4834 i915_drop_caches_set(void *data, u64 val)
4835 {
4836 	struct drm_device *dev = data;
4837 	struct drm_i915_private *dev_priv = dev->dev_private;
4838 	int ret;
4839 
4840 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4841 
4842 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4843 	 * on ioctls on -EAGAIN. */
4844 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4845 	if (ret)
4846 		return ret;
4847 
4848 	if (val & DROP_ACTIVE) {
4849 		ret = i915_gpu_idle(dev);
4850 		if (ret)
4851 			goto unlock;
4852 	}
4853 
4854 	if (val & (DROP_RETIRE | DROP_ACTIVE))
4855 		i915_gem_retire_requests(dev);
4856 
4857 	if (val & DROP_BOUND)
4858 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4859 
4860 	if (val & DROP_UNBOUND)
4861 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4862 
4863 unlock:
4864 	mutex_unlock(&dev->struct_mutex);
4865 
4866 	return ret;
4867 }
4868 
4869 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4870 			i915_drop_caches_get, i915_drop_caches_set,
4871 			"0x%08llx\n");
4872 
4873 static int
4874 i915_max_freq_get(void *data, u64 *val)
4875 {
4876 	struct drm_device *dev = data;
4877 	struct drm_i915_private *dev_priv = dev->dev_private;
4878 	int ret;
4879 
4880 	if (INTEL_INFO(dev)->gen < 6)
4881 		return -ENODEV;
4882 
4883 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4884 
4885 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4886 	if (ret)
4887 		return ret;
4888 
4889 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4890 	mutex_unlock(&dev_priv->rps.hw_lock);
4891 
4892 	return 0;
4893 }
4894 
4895 static int
4896 i915_max_freq_set(void *data, u64 val)
4897 {
4898 	struct drm_device *dev = data;
4899 	struct drm_i915_private *dev_priv = dev->dev_private;
4900 	u32 hw_max, hw_min;
4901 	int ret;
4902 
4903 	if (INTEL_INFO(dev)->gen < 6)
4904 		return -ENODEV;
4905 
4906 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4907 
4908 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4909 
4910 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4911 	if (ret)
4912 		return ret;
4913 
4914 	/*
4915 	 * Turbo will still be enabled, but won't go above the set value.
4916 	 */
4917 	val = intel_freq_opcode(dev_priv, val);
4918 
4919 	hw_max = dev_priv->rps.max_freq;
4920 	hw_min = dev_priv->rps.min_freq;
4921 
4922 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4923 		mutex_unlock(&dev_priv->rps.hw_lock);
4924 		return -EINVAL;
4925 	}
4926 
4927 	dev_priv->rps.max_freq_softlimit = val;
4928 
4929 	intel_set_rps(dev, val);
4930 
4931 	mutex_unlock(&dev_priv->rps.hw_lock);
4932 
4933 	return 0;
4934 }
4935 
4936 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4937 			i915_max_freq_get, i915_max_freq_set,
4938 			"%llu\n");
4939 
4940 static int
4941 i915_min_freq_get(void *data, u64 *val)
4942 {
4943 	struct drm_device *dev = data;
4944 	struct drm_i915_private *dev_priv = dev->dev_private;
4945 	int ret;
4946 
4947 	if (INTEL_INFO(dev)->gen < 6)
4948 		return -ENODEV;
4949 
4950 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4951 
4952 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4953 	if (ret)
4954 		return ret;
4955 
4956 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4957 	mutex_unlock(&dev_priv->rps.hw_lock);
4958 
4959 	return 0;
4960 }
4961 
4962 static int
4963 i915_min_freq_set(void *data, u64 val)
4964 {
4965 	struct drm_device *dev = data;
4966 	struct drm_i915_private *dev_priv = dev->dev_private;
4967 	u32 hw_max, hw_min;
4968 	int ret;
4969 
4970 	if (INTEL_INFO(dev)->gen < 6)
4971 		return -ENODEV;
4972 
4973 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4974 
4975 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4976 
4977 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4978 	if (ret)
4979 		return ret;
4980 
4981 	/*
4982 	 * Turbo will still be enabled, but won't go below the set value.
4983 	 */
4984 	val = intel_freq_opcode(dev_priv, val);
4985 
4986 	hw_max = dev_priv->rps.max_freq;
4987 	hw_min = dev_priv->rps.min_freq;
4988 
4989 	if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4990 		mutex_unlock(&dev_priv->rps.hw_lock);
4991 		return -EINVAL;
4992 	}
4993 
4994 	dev_priv->rps.min_freq_softlimit = val;
4995 
4996 	intel_set_rps(dev, val);
4997 
4998 	mutex_unlock(&dev_priv->rps.hw_lock);
4999 
5000 	return 0;
5001 }
5002 
5003 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5004 			i915_min_freq_get, i915_min_freq_set,
5005 			"%llu\n");
5006 
5007 static int
5008 i915_cache_sharing_get(void *data, u64 *val)
5009 {
5010 	struct drm_device *dev = data;
5011 	struct drm_i915_private *dev_priv = dev->dev_private;
5012 	u32 snpcr;
5013 	int ret;
5014 
5015 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5016 		return -ENODEV;
5017 
5018 	ret = mutex_lock_interruptible(&dev->struct_mutex);
5019 	if (ret)
5020 		return ret;
5021 	intel_runtime_pm_get(dev_priv);
5022 
5023 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5024 
5025 	intel_runtime_pm_put(dev_priv);
5026 	mutex_unlock(&dev_priv->dev->struct_mutex);
5027 
5028 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5029 
5030 	return 0;
5031 }
5032 
5033 static int
5034 i915_cache_sharing_set(void *data, u64 val)
5035 {
5036 	struct drm_device *dev = data;
5037 	struct drm_i915_private *dev_priv = dev->dev_private;
5038 	u32 snpcr;
5039 
5040 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5041 		return -ENODEV;
5042 
5043 	if (val > 3)
5044 		return -EINVAL;
5045 
5046 	intel_runtime_pm_get(dev_priv);
5047 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5048 
5049 	/* Update the cache sharing policy here as well */
5050 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5051 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
5052 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5053 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5054 
5055 	intel_runtime_pm_put(dev_priv);
5056 	return 0;
5057 }
5058 
5059 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5060 			i915_cache_sharing_get, i915_cache_sharing_set,
5061 			"%llu\n");
5062 
5063 struct sseu_dev_status {
5064 	unsigned int slice_total;
5065 	unsigned int subslice_total;
5066 	unsigned int subslice_per_slice;
5067 	unsigned int eu_total;
5068 	unsigned int eu_per_subslice;
5069 };
5070 
5071 static void cherryview_sseu_device_status(struct drm_device *dev,
5072 					  struct sseu_dev_status *stat)
5073 {
5074 	struct drm_i915_private *dev_priv = dev->dev_private;
5075 	int ss_max = 2;
5076 	int ss;
5077 	u32 sig1[ss_max], sig2[ss_max];
5078 
5079 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5080 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5081 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5082 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5083 
5084 	for (ss = 0; ss < ss_max; ss++) {
5085 		unsigned int eu_cnt;
5086 
5087 		if (sig1[ss] & CHV_SS_PG_ENABLE)
5088 			/* skip disabled subslice */
5089 			continue;
5090 
5091 		stat->slice_total = 1;
5092 		stat->subslice_per_slice++;
5093 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5094 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5095 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5096 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5097 		stat->eu_total += eu_cnt;
5098 		stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5099 	}
5100 	stat->subslice_total = stat->subslice_per_slice;
5101 }
5102 
5103 static void gen9_sseu_device_status(struct drm_device *dev,
5104 				    struct sseu_dev_status *stat)
5105 {
5106 	struct drm_i915_private *dev_priv = dev->dev_private;
5107 	int s_max = 3, ss_max = 4;
5108 	int s, ss;
5109 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5110 
5111 	/* BXT has a single slice and at most 3 subslices. */
5112 	if (IS_BROXTON(dev)) {
5113 		s_max = 1;
5114 		ss_max = 3;
5115 	}
5116 
5117 	for (s = 0; s < s_max; s++) {
5118 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5119 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5120 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5121 	}
5122 
5123 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5124 		     GEN9_PGCTL_SSA_EU19_ACK |
5125 		     GEN9_PGCTL_SSA_EU210_ACK |
5126 		     GEN9_PGCTL_SSA_EU311_ACK;
5127 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5128 		     GEN9_PGCTL_SSB_EU19_ACK |
5129 		     GEN9_PGCTL_SSB_EU210_ACK |
5130 		     GEN9_PGCTL_SSB_EU311_ACK;
5131 
5132 	for (s = 0; s < s_max; s++) {
5133 		unsigned int ss_cnt = 0;
5134 
5135 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5136 			/* skip disabled slice */
5137 			continue;
5138 
5139 		stat->slice_total++;
5140 
5141 		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5142 			ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5143 
5144 		for (ss = 0; ss < ss_max; ss++) {
5145 			unsigned int eu_cnt;
5146 
5147 			if (IS_BROXTON(dev) &&
5148 			    !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5149 				/* skip disabled subslice */
5150 				continue;
5151 
5152 			if (IS_BROXTON(dev))
5153 				ss_cnt++;
5154 
5155 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5156 					       eu_mask[ss%2]);
5157 			stat->eu_total += eu_cnt;
5158 			stat->eu_per_subslice = max(stat->eu_per_subslice,
5159 						    eu_cnt);
5160 		}
5161 
5162 		stat->subslice_total += ss_cnt;
5163 		stat->subslice_per_slice = max(stat->subslice_per_slice,
5164 					       ss_cnt);
5165 	}
5166 }
5167 
5168 static void broadwell_sseu_device_status(struct drm_device *dev,
5169 					 struct sseu_dev_status *stat)
5170 {
5171 	struct drm_i915_private *dev_priv = dev->dev_private;
5172 	int s;
5173 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5174 
5175 	stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5176 
5177 	if (stat->slice_total) {
5178 		stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5179 		stat->subslice_total = stat->slice_total *
5180 				       stat->subslice_per_slice;
5181 		stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5182 		stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5183 
5184 		/* subtract fused off EU(s) from enabled slice(s) */
5185 		for (s = 0; s < stat->slice_total; s++) {
5186 			u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5187 
5188 			stat->eu_total -= hweight8(subslice_7eu);
5189 		}
5190 	}
5191 }
5192 
5193 static int i915_sseu_status(struct seq_file *m, void *unused)
5194 {
5195 	struct drm_info_node *node = (struct drm_info_node *) m->private;
5196 	struct drm_device *dev = node->minor->dev;
5197 	struct sseu_dev_status stat;
5198 
5199 	if (INTEL_INFO(dev)->gen < 8)
5200 		return -ENODEV;
5201 
5202 	seq_puts(m, "SSEU Device Info\n");
5203 	seq_printf(m, "  Available Slice Total: %u\n",
5204 		   INTEL_INFO(dev)->slice_total);
5205 	seq_printf(m, "  Available Subslice Total: %u\n",
5206 		   INTEL_INFO(dev)->subslice_total);
5207 	seq_printf(m, "  Available Subslice Per Slice: %u\n",
5208 		   INTEL_INFO(dev)->subslice_per_slice);
5209 	seq_printf(m, "  Available EU Total: %u\n",
5210 		   INTEL_INFO(dev)->eu_total);
5211 	seq_printf(m, "  Available EU Per Subslice: %u\n",
5212 		   INTEL_INFO(dev)->eu_per_subslice);
5213 	seq_printf(m, "  Has Slice Power Gating: %s\n",
5214 		   yesno(INTEL_INFO(dev)->has_slice_pg));
5215 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
5216 		   yesno(INTEL_INFO(dev)->has_subslice_pg));
5217 	seq_printf(m, "  Has EU Power Gating: %s\n",
5218 		   yesno(INTEL_INFO(dev)->has_eu_pg));
5219 
5220 	seq_puts(m, "SSEU Device Status\n");
5221 	memset(&stat, 0, sizeof(stat));
5222 	if (IS_CHERRYVIEW(dev)) {
5223 		cherryview_sseu_device_status(dev, &stat);
5224 	} else if (IS_BROADWELL(dev)) {
5225 		broadwell_sseu_device_status(dev, &stat);
5226 	} else if (INTEL_INFO(dev)->gen >= 9) {
5227 		gen9_sseu_device_status(dev, &stat);
5228 	}
5229 	seq_printf(m, "  Enabled Slice Total: %u\n",
5230 		   stat.slice_total);
5231 	seq_printf(m, "  Enabled Subslice Total: %u\n",
5232 		   stat.subslice_total);
5233 	seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5234 		   stat.subslice_per_slice);
5235 	seq_printf(m, "  Enabled EU Total: %u\n",
5236 		   stat.eu_total);
5237 	seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5238 		   stat.eu_per_subslice);
5239 
5240 	return 0;
5241 }
5242 
5243 static int i915_forcewake_open(struct inode *inode, struct file *file)
5244 {
5245 	struct drm_device *dev = inode->i_private;
5246 	struct drm_i915_private *dev_priv = dev->dev_private;
5247 
5248 	if (INTEL_INFO(dev)->gen < 6)
5249 		return 0;
5250 
5251 	intel_runtime_pm_get(dev_priv);
5252 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5253 
5254 	return 0;
5255 }
5256 
5257 static int i915_forcewake_release(struct inode *inode, struct file *file)
5258 {
5259 	struct drm_device *dev = inode->i_private;
5260 	struct drm_i915_private *dev_priv = dev->dev_private;
5261 
5262 	if (INTEL_INFO(dev)->gen < 6)
5263 		return 0;
5264 
5265 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5266 	intel_runtime_pm_put(dev_priv);
5267 
5268 	return 0;
5269 }
5270 
5271 static const struct file_operations i915_forcewake_fops = {
5272 	.owner = THIS_MODULE,
5273 	.open = i915_forcewake_open,
5274 	.release = i915_forcewake_release,
5275 };
5276 
5277 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5278 {
5279 	struct drm_device *dev = minor->dev;
5280 	struct dentry *ent;
5281 
5282 	ent = debugfs_create_file("i915_forcewake_user",
5283 				  S_IRUSR,
5284 				  root, dev,
5285 				  &i915_forcewake_fops);
5286 	if (!ent)
5287 		return -ENOMEM;
5288 
5289 	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5290 }
5291 
5292 static int i915_debugfs_create(struct dentry *root,
5293 			       struct drm_minor *minor,
5294 			       const char *name,
5295 			       const struct file_operations *fops)
5296 {
5297 	struct drm_device *dev = minor->dev;
5298 	struct dentry *ent;
5299 
5300 	ent = debugfs_create_file(name,
5301 				  S_IRUGO | S_IWUSR,
5302 				  root, dev,
5303 				  fops);
5304 	if (!ent)
5305 		return -ENOMEM;
5306 
5307 	return drm_add_fake_info_node(minor, ent, fops);
5308 }
5309 
5310 static const struct drm_info_list i915_debugfs_list[] = {
5311 	{"i915_capabilities", i915_capabilities, 0},
5312 	{"i915_gem_objects", i915_gem_object_info, 0},
5313 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
5314 	{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5315 	{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5316 	{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5317 	{"i915_gem_stolen", i915_gem_stolen_list_info },
5318 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5319 	{"i915_gem_request", i915_gem_request_info, 0},
5320 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
5321 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5322 	{"i915_gem_interrupt", i915_interrupt_info, 0},
5323 	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5324 	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5325 	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5326 	{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5327 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5328 	{"i915_guc_info", i915_guc_info, 0},
5329 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
5330 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
5331 	{"i915_frequency_info", i915_frequency_info, 0},
5332 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
5333 	{"i915_drpc_info", i915_drpc_info, 0},
5334 	{"i915_emon_status", i915_emon_status, 0},
5335 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
5336 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5337 	{"i915_fbc_status", i915_fbc_status, 0},
5338 	{"i915_ips_status", i915_ips_status, 0},
5339 	{"i915_sr_status", i915_sr_status, 0},
5340 	{"i915_opregion", i915_opregion, 0},
5341 	{"i915_vbt", i915_vbt, 0},
5342 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5343 	{"i915_context_status", i915_context_status, 0},
5344 	{"i915_dump_lrc", i915_dump_lrc, 0},
5345 	{"i915_execlists", i915_execlists, 0},
5346 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
5347 	{"i915_swizzle_info", i915_swizzle_info, 0},
5348 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
5349 	{"i915_llc", i915_llc, 0},
5350 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
5351 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
5352 	{"i915_energy_uJ", i915_energy_uJ, 0},
5353 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5354 	{"i915_power_domain_info", i915_power_domain_info, 0},
5355 	{"i915_dmc_info", i915_dmc_info, 0},
5356 	{"i915_display_info", i915_display_info, 0},
5357 	{"i915_semaphore_status", i915_semaphore_status, 0},
5358 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5359 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
5360 	{"i915_wa_registers", i915_wa_registers, 0},
5361 	{"i915_ddb_info", i915_ddb_info, 0},
5362 	{"i915_sseu_status", i915_sseu_status, 0},
5363 	{"i915_drrs_status", i915_drrs_status, 0},
5364 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
5365 };
5366 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5367 
5368 static const struct i915_debugfs_files {
5369 	const char *name;
5370 	const struct file_operations *fops;
5371 } i915_debugfs_files[] = {
5372 	{"i915_wedged", &i915_wedged_fops},
5373 	{"i915_max_freq", &i915_max_freq_fops},
5374 	{"i915_min_freq", &i915_min_freq_fops},
5375 	{"i915_cache_sharing", &i915_cache_sharing_fops},
5376 	{"i915_ring_stop", &i915_ring_stop_fops},
5377 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5378 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
5379 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
5380 	{"i915_error_state", &i915_error_state_fops},
5381 	{"i915_next_seqno", &i915_next_seqno_fops},
5382 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5383 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5384 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5385 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5386 	{"i915_fbc_false_color", &i915_fbc_fc_fops},
5387 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
5388 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
5389 	{"i915_dp_test_active", &i915_displayport_test_active_fops}
5390 };
5391 
5392 void intel_display_crc_init(struct drm_device *dev)
5393 {
5394 	struct drm_i915_private *dev_priv = dev->dev_private;
5395 	enum pipe pipe;
5396 
5397 	for_each_pipe(dev_priv, pipe) {
5398 		struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5399 
5400 		pipe_crc->opened = false;
5401 		spin_lock_init(&pipe_crc->lock);
5402 		init_waitqueue_head(&pipe_crc->wq);
5403 	}
5404 }
5405 
5406 int i915_debugfs_init(struct drm_minor *minor)
5407 {
5408 	int ret, i;
5409 
5410 	ret = i915_forcewake_create(minor->debugfs_root, minor);
5411 	if (ret)
5412 		return ret;
5413 
5414 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5415 		ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5416 		if (ret)
5417 			return ret;
5418 	}
5419 
5420 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5421 		ret = i915_debugfs_create(minor->debugfs_root, minor,
5422 					  i915_debugfs_files[i].name,
5423 					  i915_debugfs_files[i].fops);
5424 		if (ret)
5425 			return ret;
5426 	}
5427 
5428 	return drm_debugfs_create_files(i915_debugfs_list,
5429 					I915_DEBUGFS_ENTRIES,
5430 					minor->debugfs_root, minor);
5431 }
5432 
5433 void i915_debugfs_cleanup(struct drm_minor *minor)
5434 {
5435 	int i;
5436 
5437 	drm_debugfs_remove_files(i915_debugfs_list,
5438 				 I915_DEBUGFS_ENTRIES, minor);
5439 
5440 	drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5441 				 1, minor);
5442 
5443 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5444 		struct drm_info_list *info_list =
5445 			(struct drm_info_list *)&i915_pipe_crc_data[i];
5446 
5447 		drm_debugfs_remove_files(info_list, 1, minor);
5448 	}
5449 
5450 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5451 		struct drm_info_list *info_list =
5452 			(struct drm_info_list *) i915_debugfs_files[i].fops;
5453 
5454 		drm_debugfs_remove_files(info_list, 1, minor);
5455 	}
5456 }
5457 
5458 struct dpcd_block {
5459 	/* DPCD dump start address. */
5460 	unsigned int offset;
5461 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
5462 	unsigned int end;
5463 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5464 	size_t size;
5465 	/* Only valid for eDP. */
5466 	bool edp;
5467 };
5468 
5469 static const struct dpcd_block i915_dpcd_debug[] = {
5470 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5471 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5472 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5473 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5474 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5475 	{ .offset = DP_SET_POWER },
5476 	{ .offset = DP_EDP_DPCD_REV },
5477 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5478 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5479 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5480 };
5481 
5482 static int i915_dpcd_show(struct seq_file *m, void *data)
5483 {
5484 	struct drm_connector *connector = m->private;
5485 	struct intel_dp *intel_dp =
5486 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5487 	uint8_t buf[16];
5488 	ssize_t err;
5489 	int i;
5490 
5491 	if (connector->status != connector_status_connected)
5492 		return -ENODEV;
5493 
5494 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5495 		const struct dpcd_block *b = &i915_dpcd_debug[i];
5496 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5497 
5498 		if (b->edp &&
5499 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5500 			continue;
5501 
5502 		/* low tech for now */
5503 		if (WARN_ON(size > sizeof(buf)))
5504 			continue;
5505 
5506 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5507 		if (err <= 0) {
5508 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5509 				  size, b->offset, err);
5510 			continue;
5511 		}
5512 
5513 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5514 	}
5515 
5516 	return 0;
5517 }
5518 
5519 static int i915_dpcd_open(struct inode *inode, struct file *file)
5520 {
5521 	return single_open(file, i915_dpcd_show, inode->i_private);
5522 }
5523 
5524 static const struct file_operations i915_dpcd_fops = {
5525 	.owner = THIS_MODULE,
5526 	.open = i915_dpcd_open,
5527 	.read = seq_read,
5528 	.llseek = seq_lseek,
5529 	.release = single_release,
5530 };
5531 
5532 /**
5533  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5534  * @connector: pointer to a registered drm_connector
5535  *
5536  * Cleanup will be done by drm_connector_unregister() through a call to
5537  * drm_debugfs_connector_remove().
5538  *
5539  * Returns 0 on success, negative error codes on error.
5540  */
5541 int i915_debugfs_connector_add(struct drm_connector *connector)
5542 {
5543 	struct dentry *root = connector->debugfs_entry;
5544 
5545 	/* The connector must have been registered beforehands. */
5546 	if (!root)
5547 		return -ENODEV;
5548 
5549 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5550 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5551 		debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5552 				    &i915_dpcd_fops);
5553 
5554 	return 0;
5555 }
5556