1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/sort.h>
31 #include "intel_drv.h"
32 
33 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
34 {
35 	return to_i915(node->minor->dev);
36 }
37 
38 static __always_inline void seq_print_param(struct seq_file *m,
39 					    const char *name,
40 					    const char *type,
41 					    const void *x)
42 {
43 	if (!__builtin_strcmp(type, "bool"))
44 		seq_printf(m, "i915.%s=%s\n", name, yesno(*(const bool *)x));
45 	else if (!__builtin_strcmp(type, "int"))
46 		seq_printf(m, "i915.%s=%d\n", name, *(const int *)x);
47 	else if (!__builtin_strcmp(type, "unsigned int"))
48 		seq_printf(m, "i915.%s=%u\n", name, *(const unsigned int *)x);
49 	else if (!__builtin_strcmp(type, "char *"))
50 		seq_printf(m, "i915.%s=%s\n", name, *(const char **)x);
51 	else
52 		BUILD_BUG();
53 }
54 
55 static int i915_capabilities(struct seq_file *m, void *data)
56 {
57 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
58 	const struct intel_device_info *info = INTEL_INFO(dev_priv);
59 
60 	seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
61 	seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
62 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
63 
64 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
65 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
66 #undef PRINT_FLAG
67 
68 	kernel_param_lock(THIS_MODULE);
69 #define PRINT_PARAM(T, x) seq_print_param(m, #x, #T, &i915.x);
70 	I915_PARAMS_FOR_EACH(PRINT_PARAM);
71 #undef PRINT_PARAM
72 	kernel_param_unlock(THIS_MODULE);
73 
74 	return 0;
75 }
76 
77 static char get_active_flag(struct drm_i915_gem_object *obj)
78 {
79 	return i915_gem_object_is_active(obj) ? '*' : ' ';
80 }
81 
82 static char get_pin_flag(struct drm_i915_gem_object *obj)
83 {
84 	return obj->pin_display ? 'p' : ' ';
85 }
86 
87 static char get_tiling_flag(struct drm_i915_gem_object *obj)
88 {
89 	switch (i915_gem_object_get_tiling(obj)) {
90 	default:
91 	case I915_TILING_NONE: return ' ';
92 	case I915_TILING_X: return 'X';
93 	case I915_TILING_Y: return 'Y';
94 	}
95 }
96 
97 static char get_global_flag(struct drm_i915_gem_object *obj)
98 {
99 	return !list_empty(&obj->userfault_link) ? 'g' : ' ';
100 }
101 
102 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
103 {
104 	return obj->mm.mapping ? 'M' : ' ';
105 }
106 
107 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
108 {
109 	u64 size = 0;
110 	struct i915_vma *vma;
111 
112 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
113 		if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
114 			size += vma->node.size;
115 	}
116 
117 	return size;
118 }
119 
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
124 	struct intel_engine_cs *engine;
125 	struct i915_vma *vma;
126 	unsigned int frontbuffer_bits;
127 	int pin_count = 0;
128 
129 	lockdep_assert_held(&obj->base.dev->struct_mutex);
130 
131 	seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
132 		   &obj->base,
133 		   get_active_flag(obj),
134 		   get_pin_flag(obj),
135 		   get_tiling_flag(obj),
136 		   get_global_flag(obj),
137 		   get_pin_mapped_flag(obj),
138 		   obj->base.size / 1024,
139 		   obj->base.read_domains,
140 		   obj->base.write_domain,
141 		   i915_cache_level_str(dev_priv, obj->cache_level),
142 		   obj->mm.dirty ? " dirty" : "",
143 		   obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
144 	if (obj->base.name)
145 		seq_printf(m, " (name: %d)", obj->base.name);
146 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
147 		if (i915_vma_is_pinned(vma))
148 			pin_count++;
149 	}
150 	seq_printf(m, " (pinned x %d)", pin_count);
151 	if (obj->pin_display)
152 		seq_printf(m, " (display)");
153 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
154 		if (!drm_mm_node_allocated(&vma->node))
155 			continue;
156 
157 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
158 			   i915_vma_is_ggtt(vma) ? "g" : "pp",
159 			   vma->node.start, vma->node.size);
160 		if (i915_vma_is_ggtt(vma)) {
161 			switch (vma->ggtt_view.type) {
162 			case I915_GGTT_VIEW_NORMAL:
163 				seq_puts(m, ", normal");
164 				break;
165 
166 			case I915_GGTT_VIEW_PARTIAL:
167 				seq_printf(m, ", partial [%08llx+%x]",
168 					   vma->ggtt_view.partial.offset << PAGE_SHIFT,
169 					   vma->ggtt_view.partial.size << PAGE_SHIFT);
170 				break;
171 
172 			case I915_GGTT_VIEW_ROTATED:
173 				seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
174 					   vma->ggtt_view.rotated.plane[0].width,
175 					   vma->ggtt_view.rotated.plane[0].height,
176 					   vma->ggtt_view.rotated.plane[0].stride,
177 					   vma->ggtt_view.rotated.plane[0].offset,
178 					   vma->ggtt_view.rotated.plane[1].width,
179 					   vma->ggtt_view.rotated.plane[1].height,
180 					   vma->ggtt_view.rotated.plane[1].stride,
181 					   vma->ggtt_view.rotated.plane[1].offset);
182 				break;
183 
184 			default:
185 				MISSING_CASE(vma->ggtt_view.type);
186 				break;
187 			}
188 		}
189 		if (vma->fence)
190 			seq_printf(m, " , fence: %d%s",
191 				   vma->fence->id,
192 				   i915_gem_active_isset(&vma->last_fence) ? "*" : "");
193 		seq_puts(m, ")");
194 	}
195 	if (obj->stolen)
196 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
197 
198 	engine = i915_gem_object_last_write_engine(obj);
199 	if (engine)
200 		seq_printf(m, " (%s)", engine->name);
201 
202 	frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
203 	if (frontbuffer_bits)
204 		seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
205 }
206 
207 static int obj_rank_by_stolen(const void *A, const void *B)
208 {
209 	const struct drm_i915_gem_object *a =
210 		*(const struct drm_i915_gem_object **)A;
211 	const struct drm_i915_gem_object *b =
212 		*(const struct drm_i915_gem_object **)B;
213 
214 	if (a->stolen->start < b->stolen->start)
215 		return -1;
216 	if (a->stolen->start > b->stolen->start)
217 		return 1;
218 	return 0;
219 }
220 
221 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
222 {
223 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
224 	struct drm_device *dev = &dev_priv->drm;
225 	struct drm_i915_gem_object **objects;
226 	struct drm_i915_gem_object *obj;
227 	u64 total_obj_size, total_gtt_size;
228 	unsigned long total, count, n;
229 	int ret;
230 
231 	total = READ_ONCE(dev_priv->mm.object_count);
232 	objects = kvmalloc_array(total, sizeof(*objects), GFP_KERNEL);
233 	if (!objects)
234 		return -ENOMEM;
235 
236 	ret = mutex_lock_interruptible(&dev->struct_mutex);
237 	if (ret)
238 		goto out;
239 
240 	total_obj_size = total_gtt_size = count = 0;
241 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
242 		if (count == total)
243 			break;
244 
245 		if (obj->stolen == NULL)
246 			continue;
247 
248 		objects[count++] = obj;
249 		total_obj_size += obj->base.size;
250 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
251 
252 	}
253 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
254 		if (count == total)
255 			break;
256 
257 		if (obj->stolen == NULL)
258 			continue;
259 
260 		objects[count++] = obj;
261 		total_obj_size += obj->base.size;
262 	}
263 
264 	sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
265 
266 	seq_puts(m, "Stolen:\n");
267 	for (n = 0; n < count; n++) {
268 		seq_puts(m, "   ");
269 		describe_obj(m, objects[n]);
270 		seq_putc(m, '\n');
271 	}
272 	seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
273 		   count, total_obj_size, total_gtt_size);
274 
275 	mutex_unlock(&dev->struct_mutex);
276 out:
277 	kvfree(objects);
278 	return ret;
279 }
280 
281 struct file_stats {
282 	struct drm_i915_file_private *file_priv;
283 	unsigned long count;
284 	u64 total, unbound;
285 	u64 global, shared;
286 	u64 active, inactive;
287 };
288 
289 static int per_file_stats(int id, void *ptr, void *data)
290 {
291 	struct drm_i915_gem_object *obj = ptr;
292 	struct file_stats *stats = data;
293 	struct i915_vma *vma;
294 
295 	lockdep_assert_held(&obj->base.dev->struct_mutex);
296 
297 	stats->count++;
298 	stats->total += obj->base.size;
299 	if (!obj->bind_count)
300 		stats->unbound += obj->base.size;
301 	if (obj->base.name || obj->base.dma_buf)
302 		stats->shared += obj->base.size;
303 
304 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
305 		if (!drm_mm_node_allocated(&vma->node))
306 			continue;
307 
308 		if (i915_vma_is_ggtt(vma)) {
309 			stats->global += vma->node.size;
310 		} else {
311 			struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
312 
313 			if (ppgtt->base.file != stats->file_priv)
314 				continue;
315 		}
316 
317 		if (i915_vma_is_active(vma))
318 			stats->active += vma->node.size;
319 		else
320 			stats->inactive += vma->node.size;
321 	}
322 
323 	return 0;
324 }
325 
326 #define print_file_stats(m, name, stats) do { \
327 	if (stats.count) \
328 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
329 			   name, \
330 			   stats.count, \
331 			   stats.total, \
332 			   stats.active, \
333 			   stats.inactive, \
334 			   stats.global, \
335 			   stats.shared, \
336 			   stats.unbound); \
337 } while (0)
338 
339 static void print_batch_pool_stats(struct seq_file *m,
340 				   struct drm_i915_private *dev_priv)
341 {
342 	struct drm_i915_gem_object *obj;
343 	struct file_stats stats;
344 	struct intel_engine_cs *engine;
345 	enum intel_engine_id id;
346 	int j;
347 
348 	memset(&stats, 0, sizeof(stats));
349 
350 	for_each_engine(engine, dev_priv, id) {
351 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
352 			list_for_each_entry(obj,
353 					    &engine->batch_pool.cache_list[j],
354 					    batch_pool_link)
355 				per_file_stats(0, obj, &stats);
356 		}
357 	}
358 
359 	print_file_stats(m, "[k]batch pool", stats);
360 }
361 
362 static int per_file_ctx_stats(int id, void *ptr, void *data)
363 {
364 	struct i915_gem_context *ctx = ptr;
365 	int n;
366 
367 	for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
368 		if (ctx->engine[n].state)
369 			per_file_stats(0, ctx->engine[n].state->obj, data);
370 		if (ctx->engine[n].ring)
371 			per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
372 	}
373 
374 	return 0;
375 }
376 
377 static void print_context_stats(struct seq_file *m,
378 				struct drm_i915_private *dev_priv)
379 {
380 	struct drm_device *dev = &dev_priv->drm;
381 	struct file_stats stats;
382 	struct drm_file *file;
383 
384 	memset(&stats, 0, sizeof(stats));
385 
386 	mutex_lock(&dev->struct_mutex);
387 	if (dev_priv->kernel_context)
388 		per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
389 
390 	list_for_each_entry(file, &dev->filelist, lhead) {
391 		struct drm_i915_file_private *fpriv = file->driver_priv;
392 		idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
393 	}
394 	mutex_unlock(&dev->struct_mutex);
395 
396 	print_file_stats(m, "[k]contexts", stats);
397 }
398 
399 static int i915_gem_object_info(struct seq_file *m, void *data)
400 {
401 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
402 	struct drm_device *dev = &dev_priv->drm;
403 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
404 	u32 count, mapped_count, purgeable_count, dpy_count;
405 	u64 size, mapped_size, purgeable_size, dpy_size;
406 	struct drm_i915_gem_object *obj;
407 	struct drm_file *file;
408 	int ret;
409 
410 	ret = mutex_lock_interruptible(&dev->struct_mutex);
411 	if (ret)
412 		return ret;
413 
414 	seq_printf(m, "%u objects, %llu bytes\n",
415 		   dev_priv->mm.object_count,
416 		   dev_priv->mm.object_memory);
417 
418 	size = count = 0;
419 	mapped_size = mapped_count = 0;
420 	purgeable_size = purgeable_count = 0;
421 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
422 		size += obj->base.size;
423 		++count;
424 
425 		if (obj->mm.madv == I915_MADV_DONTNEED) {
426 			purgeable_size += obj->base.size;
427 			++purgeable_count;
428 		}
429 
430 		if (obj->mm.mapping) {
431 			mapped_count++;
432 			mapped_size += obj->base.size;
433 		}
434 	}
435 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
436 
437 	size = count = dpy_size = dpy_count = 0;
438 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
439 		size += obj->base.size;
440 		++count;
441 
442 		if (obj->pin_display) {
443 			dpy_size += obj->base.size;
444 			++dpy_count;
445 		}
446 
447 		if (obj->mm.madv == I915_MADV_DONTNEED) {
448 			purgeable_size += obj->base.size;
449 			++purgeable_count;
450 		}
451 
452 		if (obj->mm.mapping) {
453 			mapped_count++;
454 			mapped_size += obj->base.size;
455 		}
456 	}
457 	seq_printf(m, "%u bound objects, %llu bytes\n",
458 		   count, size);
459 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
460 		   purgeable_count, purgeable_size);
461 	seq_printf(m, "%u mapped objects, %llu bytes\n",
462 		   mapped_count, mapped_size);
463 	seq_printf(m, "%u display objects (pinned), %llu bytes\n",
464 		   dpy_count, dpy_size);
465 
466 	seq_printf(m, "%llu [%llu] gtt total\n",
467 		   ggtt->base.total, ggtt->mappable_end);
468 
469 	seq_putc(m, '\n');
470 	print_batch_pool_stats(m, dev_priv);
471 	mutex_unlock(&dev->struct_mutex);
472 
473 	mutex_lock(&dev->filelist_mutex);
474 	print_context_stats(m, dev_priv);
475 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
476 		struct file_stats stats;
477 		struct drm_i915_file_private *file_priv = file->driver_priv;
478 		struct drm_i915_gem_request *request;
479 		struct task_struct *task;
480 
481 		mutex_lock(&dev->struct_mutex);
482 
483 		memset(&stats, 0, sizeof(stats));
484 		stats.file_priv = file->driver_priv;
485 		spin_lock(&file->table_lock);
486 		idr_for_each(&file->object_idr, per_file_stats, &stats);
487 		spin_unlock(&file->table_lock);
488 		/*
489 		 * Although we have a valid reference on file->pid, that does
490 		 * not guarantee that the task_struct who called get_pid() is
491 		 * still alive (e.g. get_pid(current) => fork() => exit()).
492 		 * Therefore, we need to protect this ->comm access using RCU.
493 		 */
494 		request = list_first_entry_or_null(&file_priv->mm.request_list,
495 						   struct drm_i915_gem_request,
496 						   client_link);
497 		rcu_read_lock();
498 		task = pid_task(request && request->ctx->pid ?
499 				request->ctx->pid : file->pid,
500 				PIDTYPE_PID);
501 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
502 		rcu_read_unlock();
503 
504 		mutex_unlock(&dev->struct_mutex);
505 	}
506 	mutex_unlock(&dev->filelist_mutex);
507 
508 	return 0;
509 }
510 
511 static int i915_gem_gtt_info(struct seq_file *m, void *data)
512 {
513 	struct drm_info_node *node = m->private;
514 	struct drm_i915_private *dev_priv = node_to_i915(node);
515 	struct drm_device *dev = &dev_priv->drm;
516 	bool show_pin_display_only = !!node->info_ent->data;
517 	struct drm_i915_gem_object *obj;
518 	u64 total_obj_size, total_gtt_size;
519 	int count, ret;
520 
521 	ret = mutex_lock_interruptible(&dev->struct_mutex);
522 	if (ret)
523 		return ret;
524 
525 	total_obj_size = total_gtt_size = count = 0;
526 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
527 		if (show_pin_display_only && !obj->pin_display)
528 			continue;
529 
530 		seq_puts(m, "   ");
531 		describe_obj(m, obj);
532 		seq_putc(m, '\n');
533 		total_obj_size += obj->base.size;
534 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
535 		count++;
536 	}
537 
538 	mutex_unlock(&dev->struct_mutex);
539 
540 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
541 		   count, total_obj_size, total_gtt_size);
542 
543 	return 0;
544 }
545 
546 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
547 {
548 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
549 	struct drm_device *dev = &dev_priv->drm;
550 	struct drm_i915_gem_object *obj;
551 	struct intel_engine_cs *engine;
552 	enum intel_engine_id id;
553 	int total = 0;
554 	int ret, j;
555 
556 	ret = mutex_lock_interruptible(&dev->struct_mutex);
557 	if (ret)
558 		return ret;
559 
560 	for_each_engine(engine, dev_priv, id) {
561 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
562 			int count;
563 
564 			count = 0;
565 			list_for_each_entry(obj,
566 					    &engine->batch_pool.cache_list[j],
567 					    batch_pool_link)
568 				count++;
569 			seq_printf(m, "%s cache[%d]: %d objects\n",
570 				   engine->name, j, count);
571 
572 			list_for_each_entry(obj,
573 					    &engine->batch_pool.cache_list[j],
574 					    batch_pool_link) {
575 				seq_puts(m, "   ");
576 				describe_obj(m, obj);
577 				seq_putc(m, '\n');
578 			}
579 
580 			total += count;
581 		}
582 	}
583 
584 	seq_printf(m, "total: %d\n", total);
585 
586 	mutex_unlock(&dev->struct_mutex);
587 
588 	return 0;
589 }
590 
591 static void print_request(struct seq_file *m,
592 			  struct drm_i915_gem_request *rq,
593 			  const char *prefix)
594 {
595 	seq_printf(m, "%s%x [%x:%x] prio=%d @ %dms: %s\n", prefix,
596 		   rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
597 		   rq->priotree.priority,
598 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
599 		   rq->timeline->common->name);
600 }
601 
602 static int i915_gem_request_info(struct seq_file *m, void *data)
603 {
604 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
605 	struct drm_device *dev = &dev_priv->drm;
606 	struct drm_i915_gem_request *req;
607 	struct intel_engine_cs *engine;
608 	enum intel_engine_id id;
609 	int ret, any;
610 
611 	ret = mutex_lock_interruptible(&dev->struct_mutex);
612 	if (ret)
613 		return ret;
614 
615 	any = 0;
616 	for_each_engine(engine, dev_priv, id) {
617 		int count;
618 
619 		count = 0;
620 		list_for_each_entry(req, &engine->timeline->requests, link)
621 			count++;
622 		if (count == 0)
623 			continue;
624 
625 		seq_printf(m, "%s requests: %d\n", engine->name, count);
626 		list_for_each_entry(req, &engine->timeline->requests, link)
627 			print_request(m, req, "    ");
628 
629 		any++;
630 	}
631 	mutex_unlock(&dev->struct_mutex);
632 
633 	if (any == 0)
634 		seq_puts(m, "No requests\n");
635 
636 	return 0;
637 }
638 
639 static void i915_ring_seqno_info(struct seq_file *m,
640 				 struct intel_engine_cs *engine)
641 {
642 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
643 	struct rb_node *rb;
644 
645 	seq_printf(m, "Current sequence (%s): %x\n",
646 		   engine->name, intel_engine_get_seqno(engine));
647 
648 	spin_lock_irq(&b->rb_lock);
649 	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
650 		struct intel_wait *w = rb_entry(rb, typeof(*w), node);
651 
652 		seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
653 			   engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
654 	}
655 	spin_unlock_irq(&b->rb_lock);
656 }
657 
658 static int i915_gem_seqno_info(struct seq_file *m, void *data)
659 {
660 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
661 	struct intel_engine_cs *engine;
662 	enum intel_engine_id id;
663 
664 	for_each_engine(engine, dev_priv, id)
665 		i915_ring_seqno_info(m, engine);
666 
667 	return 0;
668 }
669 
670 
671 static int i915_interrupt_info(struct seq_file *m, void *data)
672 {
673 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
674 	struct intel_engine_cs *engine;
675 	enum intel_engine_id id;
676 	int i, pipe;
677 
678 	intel_runtime_pm_get(dev_priv);
679 
680 	if (IS_CHERRYVIEW(dev_priv)) {
681 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
682 			   I915_READ(GEN8_MASTER_IRQ));
683 
684 		seq_printf(m, "Display IER:\t%08x\n",
685 			   I915_READ(VLV_IER));
686 		seq_printf(m, "Display IIR:\t%08x\n",
687 			   I915_READ(VLV_IIR));
688 		seq_printf(m, "Display IIR_RW:\t%08x\n",
689 			   I915_READ(VLV_IIR_RW));
690 		seq_printf(m, "Display IMR:\t%08x\n",
691 			   I915_READ(VLV_IMR));
692 		for_each_pipe(dev_priv, pipe) {
693 			enum intel_display_power_domain power_domain;
694 
695 			power_domain = POWER_DOMAIN_PIPE(pipe);
696 			if (!intel_display_power_get_if_enabled(dev_priv,
697 								power_domain)) {
698 				seq_printf(m, "Pipe %c power disabled\n",
699 					   pipe_name(pipe));
700 				continue;
701 			}
702 
703 			seq_printf(m, "Pipe %c stat:\t%08x\n",
704 				   pipe_name(pipe),
705 				   I915_READ(PIPESTAT(pipe)));
706 
707 			intel_display_power_put(dev_priv, power_domain);
708 		}
709 
710 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
711 		seq_printf(m, "Port hotplug:\t%08x\n",
712 			   I915_READ(PORT_HOTPLUG_EN));
713 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
714 			   I915_READ(VLV_DPFLIPSTAT));
715 		seq_printf(m, "DPINVGTT:\t%08x\n",
716 			   I915_READ(DPINVGTT));
717 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
718 
719 		for (i = 0; i < 4; i++) {
720 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
721 				   i, I915_READ(GEN8_GT_IMR(i)));
722 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
723 				   i, I915_READ(GEN8_GT_IIR(i)));
724 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
725 				   i, I915_READ(GEN8_GT_IER(i)));
726 		}
727 
728 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
729 			   I915_READ(GEN8_PCU_IMR));
730 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
731 			   I915_READ(GEN8_PCU_IIR));
732 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
733 			   I915_READ(GEN8_PCU_IER));
734 	} else if (INTEL_GEN(dev_priv) >= 8) {
735 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
736 			   I915_READ(GEN8_MASTER_IRQ));
737 
738 		for (i = 0; i < 4; i++) {
739 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
740 				   i, I915_READ(GEN8_GT_IMR(i)));
741 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
742 				   i, I915_READ(GEN8_GT_IIR(i)));
743 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
744 				   i, I915_READ(GEN8_GT_IER(i)));
745 		}
746 
747 		for_each_pipe(dev_priv, pipe) {
748 			enum intel_display_power_domain power_domain;
749 
750 			power_domain = POWER_DOMAIN_PIPE(pipe);
751 			if (!intel_display_power_get_if_enabled(dev_priv,
752 								power_domain)) {
753 				seq_printf(m, "Pipe %c power disabled\n",
754 					   pipe_name(pipe));
755 				continue;
756 			}
757 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
758 				   pipe_name(pipe),
759 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
760 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
761 				   pipe_name(pipe),
762 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
763 			seq_printf(m, "Pipe %c IER:\t%08x\n",
764 				   pipe_name(pipe),
765 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
766 
767 			intel_display_power_put(dev_priv, power_domain);
768 		}
769 
770 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
771 			   I915_READ(GEN8_DE_PORT_IMR));
772 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
773 			   I915_READ(GEN8_DE_PORT_IIR));
774 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
775 			   I915_READ(GEN8_DE_PORT_IER));
776 
777 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
778 			   I915_READ(GEN8_DE_MISC_IMR));
779 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
780 			   I915_READ(GEN8_DE_MISC_IIR));
781 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
782 			   I915_READ(GEN8_DE_MISC_IER));
783 
784 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
785 			   I915_READ(GEN8_PCU_IMR));
786 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
787 			   I915_READ(GEN8_PCU_IIR));
788 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
789 			   I915_READ(GEN8_PCU_IER));
790 	} else if (IS_VALLEYVIEW(dev_priv)) {
791 		seq_printf(m, "Display IER:\t%08x\n",
792 			   I915_READ(VLV_IER));
793 		seq_printf(m, "Display IIR:\t%08x\n",
794 			   I915_READ(VLV_IIR));
795 		seq_printf(m, "Display IIR_RW:\t%08x\n",
796 			   I915_READ(VLV_IIR_RW));
797 		seq_printf(m, "Display IMR:\t%08x\n",
798 			   I915_READ(VLV_IMR));
799 		for_each_pipe(dev_priv, pipe) {
800 			enum intel_display_power_domain power_domain;
801 
802 			power_domain = POWER_DOMAIN_PIPE(pipe);
803 			if (!intel_display_power_get_if_enabled(dev_priv,
804 								power_domain)) {
805 				seq_printf(m, "Pipe %c power disabled\n",
806 					   pipe_name(pipe));
807 				continue;
808 			}
809 
810 			seq_printf(m, "Pipe %c stat:\t%08x\n",
811 				   pipe_name(pipe),
812 				   I915_READ(PIPESTAT(pipe)));
813 			intel_display_power_put(dev_priv, power_domain);
814 		}
815 
816 		seq_printf(m, "Master IER:\t%08x\n",
817 			   I915_READ(VLV_MASTER_IER));
818 
819 		seq_printf(m, "Render IER:\t%08x\n",
820 			   I915_READ(GTIER));
821 		seq_printf(m, "Render IIR:\t%08x\n",
822 			   I915_READ(GTIIR));
823 		seq_printf(m, "Render IMR:\t%08x\n",
824 			   I915_READ(GTIMR));
825 
826 		seq_printf(m, "PM IER:\t\t%08x\n",
827 			   I915_READ(GEN6_PMIER));
828 		seq_printf(m, "PM IIR:\t\t%08x\n",
829 			   I915_READ(GEN6_PMIIR));
830 		seq_printf(m, "PM IMR:\t\t%08x\n",
831 			   I915_READ(GEN6_PMIMR));
832 
833 		seq_printf(m, "Port hotplug:\t%08x\n",
834 			   I915_READ(PORT_HOTPLUG_EN));
835 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
836 			   I915_READ(VLV_DPFLIPSTAT));
837 		seq_printf(m, "DPINVGTT:\t%08x\n",
838 			   I915_READ(DPINVGTT));
839 
840 	} else if (!HAS_PCH_SPLIT(dev_priv)) {
841 		seq_printf(m, "Interrupt enable:    %08x\n",
842 			   I915_READ(IER));
843 		seq_printf(m, "Interrupt identity:  %08x\n",
844 			   I915_READ(IIR));
845 		seq_printf(m, "Interrupt mask:      %08x\n",
846 			   I915_READ(IMR));
847 		for_each_pipe(dev_priv, pipe)
848 			seq_printf(m, "Pipe %c stat:         %08x\n",
849 				   pipe_name(pipe),
850 				   I915_READ(PIPESTAT(pipe)));
851 	} else {
852 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
853 			   I915_READ(DEIER));
854 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
855 			   I915_READ(DEIIR));
856 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
857 			   I915_READ(DEIMR));
858 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
859 			   I915_READ(SDEIER));
860 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
861 			   I915_READ(SDEIIR));
862 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
863 			   I915_READ(SDEIMR));
864 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
865 			   I915_READ(GTIER));
866 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
867 			   I915_READ(GTIIR));
868 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
869 			   I915_READ(GTIMR));
870 	}
871 	for_each_engine(engine, dev_priv, id) {
872 		if (INTEL_GEN(dev_priv) >= 6) {
873 			seq_printf(m,
874 				   "Graphics Interrupt mask (%s):	%08x\n",
875 				   engine->name, I915_READ_IMR(engine));
876 		}
877 		i915_ring_seqno_info(m, engine);
878 	}
879 	intel_runtime_pm_put(dev_priv);
880 
881 	return 0;
882 }
883 
884 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
885 {
886 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
887 	struct drm_device *dev = &dev_priv->drm;
888 	int i, ret;
889 
890 	ret = mutex_lock_interruptible(&dev->struct_mutex);
891 	if (ret)
892 		return ret;
893 
894 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
895 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
896 		struct i915_vma *vma = dev_priv->fence_regs[i].vma;
897 
898 		seq_printf(m, "Fence %d, pin count = %d, object = ",
899 			   i, dev_priv->fence_regs[i].pin_count);
900 		if (!vma)
901 			seq_puts(m, "unused");
902 		else
903 			describe_obj(m, vma->obj);
904 		seq_putc(m, '\n');
905 	}
906 
907 	mutex_unlock(&dev->struct_mutex);
908 	return 0;
909 }
910 
911 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
912 static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
913 			      size_t count, loff_t *pos)
914 {
915 	struct i915_gpu_state *error = file->private_data;
916 	struct drm_i915_error_state_buf str;
917 	ssize_t ret;
918 	loff_t tmp;
919 
920 	if (!error)
921 		return 0;
922 
923 	ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
924 	if (ret)
925 		return ret;
926 
927 	ret = i915_error_state_to_str(&str, error);
928 	if (ret)
929 		goto out;
930 
931 	tmp = 0;
932 	ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
933 	if (ret < 0)
934 		goto out;
935 
936 	*pos = str.start + ret;
937 out:
938 	i915_error_state_buf_release(&str);
939 	return ret;
940 }
941 
942 static int gpu_state_release(struct inode *inode, struct file *file)
943 {
944 	i915_gpu_state_put(file->private_data);
945 	return 0;
946 }
947 
948 static int i915_gpu_info_open(struct inode *inode, struct file *file)
949 {
950 	struct drm_i915_private *i915 = inode->i_private;
951 	struct i915_gpu_state *gpu;
952 
953 	intel_runtime_pm_get(i915);
954 	gpu = i915_capture_gpu_state(i915);
955 	intel_runtime_pm_put(i915);
956 	if (!gpu)
957 		return -ENOMEM;
958 
959 	file->private_data = gpu;
960 	return 0;
961 }
962 
963 static const struct file_operations i915_gpu_info_fops = {
964 	.owner = THIS_MODULE,
965 	.open = i915_gpu_info_open,
966 	.read = gpu_state_read,
967 	.llseek = default_llseek,
968 	.release = gpu_state_release,
969 };
970 
971 static ssize_t
972 i915_error_state_write(struct file *filp,
973 		       const char __user *ubuf,
974 		       size_t cnt,
975 		       loff_t *ppos)
976 {
977 	struct i915_gpu_state *error = filp->private_data;
978 
979 	if (!error)
980 		return 0;
981 
982 	DRM_DEBUG_DRIVER("Resetting error state\n");
983 	i915_reset_error_state(error->i915);
984 
985 	return cnt;
986 }
987 
988 static int i915_error_state_open(struct inode *inode, struct file *file)
989 {
990 	file->private_data = i915_first_error_state(inode->i_private);
991 	return 0;
992 }
993 
994 static const struct file_operations i915_error_state_fops = {
995 	.owner = THIS_MODULE,
996 	.open = i915_error_state_open,
997 	.read = gpu_state_read,
998 	.write = i915_error_state_write,
999 	.llseek = default_llseek,
1000 	.release = gpu_state_release,
1001 };
1002 #endif
1003 
1004 static int
1005 i915_next_seqno_set(void *data, u64 val)
1006 {
1007 	struct drm_i915_private *dev_priv = data;
1008 	struct drm_device *dev = &dev_priv->drm;
1009 	int ret;
1010 
1011 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1012 	if (ret)
1013 		return ret;
1014 
1015 	ret = i915_gem_set_global_seqno(dev, val);
1016 	mutex_unlock(&dev->struct_mutex);
1017 
1018 	return ret;
1019 }
1020 
1021 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1022 			NULL, i915_next_seqno_set,
1023 			"0x%llx\n");
1024 
1025 static int i915_frequency_info(struct seq_file *m, void *unused)
1026 {
1027 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1028 	int ret = 0;
1029 
1030 	intel_runtime_pm_get(dev_priv);
1031 
1032 	if (IS_GEN5(dev_priv)) {
1033 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1034 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1035 
1036 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1037 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1038 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1039 			   MEMSTAT_VID_SHIFT);
1040 		seq_printf(m, "Current P-state: %d\n",
1041 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1042 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1043 		u32 freq_sts;
1044 
1045 		mutex_lock(&dev_priv->rps.hw_lock);
1046 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1047 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1048 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1049 
1050 		seq_printf(m, "actual GPU freq: %d MHz\n",
1051 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1052 
1053 		seq_printf(m, "current GPU freq: %d MHz\n",
1054 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1055 
1056 		seq_printf(m, "max GPU freq: %d MHz\n",
1057 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1058 
1059 		seq_printf(m, "min GPU freq: %d MHz\n",
1060 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1061 
1062 		seq_printf(m, "idle GPU freq: %d MHz\n",
1063 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1064 
1065 		seq_printf(m,
1066 			   "efficient (RPe) frequency: %d MHz\n",
1067 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1068 		mutex_unlock(&dev_priv->rps.hw_lock);
1069 	} else if (INTEL_GEN(dev_priv) >= 6) {
1070 		u32 rp_state_limits;
1071 		u32 gt_perf_status;
1072 		u32 rp_state_cap;
1073 		u32 rpmodectl, rpinclimit, rpdeclimit;
1074 		u32 rpstat, cagf, reqf;
1075 		u32 rpupei, rpcurup, rpprevup;
1076 		u32 rpdownei, rpcurdown, rpprevdown;
1077 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1078 		int max_freq;
1079 
1080 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1081 		if (IS_GEN9_LP(dev_priv)) {
1082 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1083 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1084 		} else {
1085 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1086 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1087 		}
1088 
1089 		/* RPSTAT1 is in the GT power well */
1090 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1091 
1092 		reqf = I915_READ(GEN6_RPNSWREQ);
1093 		if (INTEL_GEN(dev_priv) >= 9)
1094 			reqf >>= 23;
1095 		else {
1096 			reqf &= ~GEN6_TURBO_DISABLE;
1097 			if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1098 				reqf >>= 24;
1099 			else
1100 				reqf >>= 25;
1101 		}
1102 		reqf = intel_gpu_freq(dev_priv, reqf);
1103 
1104 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1105 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1106 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1107 
1108 		rpstat = I915_READ(GEN6_RPSTAT1);
1109 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1110 		rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1111 		rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1112 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1113 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1114 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1115 		if (INTEL_GEN(dev_priv) >= 9)
1116 			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1117 		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1118 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1119 		else
1120 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1121 		cagf = intel_gpu_freq(dev_priv, cagf);
1122 
1123 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1124 
1125 		if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1126 			pm_ier = I915_READ(GEN6_PMIER);
1127 			pm_imr = I915_READ(GEN6_PMIMR);
1128 			pm_isr = I915_READ(GEN6_PMISR);
1129 			pm_iir = I915_READ(GEN6_PMIIR);
1130 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1131 		} else {
1132 			pm_ier = I915_READ(GEN8_GT_IER(2));
1133 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1134 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1135 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1136 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1137 		}
1138 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1139 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1140 		seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
1141 			   dev_priv->rps.pm_intrmsk_mbz);
1142 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1143 		seq_printf(m, "Render p-state ratio: %d\n",
1144 			   (gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
1145 		seq_printf(m, "Render p-state VID: %d\n",
1146 			   gt_perf_status & 0xff);
1147 		seq_printf(m, "Render p-state limit: %d\n",
1148 			   rp_state_limits & 0xff);
1149 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1150 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1151 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1152 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1153 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1154 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1155 		seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1156 			   rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1157 		seq_printf(m, "RP CUR UP: %d (%dus)\n",
1158 			   rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1159 		seq_printf(m, "RP PREV UP: %d (%dus)\n",
1160 			   rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1161 		seq_printf(m, "Up threshold: %d%%\n",
1162 			   dev_priv->rps.up_threshold);
1163 
1164 		seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1165 			   rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1166 		seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1167 			   rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1168 		seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1169 			   rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1170 		seq_printf(m, "Down threshold: %d%%\n",
1171 			   dev_priv->rps.down_threshold);
1172 
1173 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
1174 			    rp_state_cap >> 16) & 0xff;
1175 		max_freq *= (IS_GEN9_BC(dev_priv) ||
1176 			     IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1177 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1178 			   intel_gpu_freq(dev_priv, max_freq));
1179 
1180 		max_freq = (rp_state_cap & 0xff00) >> 8;
1181 		max_freq *= (IS_GEN9_BC(dev_priv) ||
1182 			     IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1183 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1184 			   intel_gpu_freq(dev_priv, max_freq));
1185 
1186 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
1187 			    rp_state_cap >> 0) & 0xff;
1188 		max_freq *= (IS_GEN9_BC(dev_priv) ||
1189 			     IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1190 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1191 			   intel_gpu_freq(dev_priv, max_freq));
1192 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1193 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1194 
1195 		seq_printf(m, "Current freq: %d MHz\n",
1196 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1197 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1198 		seq_printf(m, "Idle freq: %d MHz\n",
1199 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1200 		seq_printf(m, "Min freq: %d MHz\n",
1201 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1202 		seq_printf(m, "Boost freq: %d MHz\n",
1203 			   intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1204 		seq_printf(m, "Max freq: %d MHz\n",
1205 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1206 		seq_printf(m,
1207 			   "efficient (RPe) frequency: %d MHz\n",
1208 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1209 	} else {
1210 		seq_puts(m, "no P-state info available\n");
1211 	}
1212 
1213 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
1214 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1215 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1216 
1217 	intel_runtime_pm_put(dev_priv);
1218 	return ret;
1219 }
1220 
1221 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1222 			       struct seq_file *m,
1223 			       struct intel_instdone *instdone)
1224 {
1225 	int slice;
1226 	int subslice;
1227 
1228 	seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1229 		   instdone->instdone);
1230 
1231 	if (INTEL_GEN(dev_priv) <= 3)
1232 		return;
1233 
1234 	seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1235 		   instdone->slice_common);
1236 
1237 	if (INTEL_GEN(dev_priv) <= 6)
1238 		return;
1239 
1240 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1241 		seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1242 			   slice, subslice, instdone->sampler[slice][subslice]);
1243 
1244 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1245 		seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1246 			   slice, subslice, instdone->row[slice][subslice]);
1247 }
1248 
1249 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1250 {
1251 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1252 	struct intel_engine_cs *engine;
1253 	u64 acthd[I915_NUM_ENGINES];
1254 	u32 seqno[I915_NUM_ENGINES];
1255 	struct intel_instdone instdone;
1256 	enum intel_engine_id id;
1257 
1258 	if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1259 		seq_puts(m, "Wedged\n");
1260 	if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
1261 		seq_puts(m, "Reset in progress: struct_mutex backoff\n");
1262 	if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
1263 		seq_puts(m, "Reset in progress: reset handoff to waiter\n");
1264 	if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1265 		seq_puts(m, "Waiter holding struct mutex\n");
1266 	if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1267 		seq_puts(m, "struct_mutex blocked for reset\n");
1268 
1269 	if (!i915.enable_hangcheck) {
1270 		seq_puts(m, "Hangcheck disabled\n");
1271 		return 0;
1272 	}
1273 
1274 	intel_runtime_pm_get(dev_priv);
1275 
1276 	for_each_engine(engine, dev_priv, id) {
1277 		acthd[id] = intel_engine_get_active_head(engine);
1278 		seqno[id] = intel_engine_get_seqno(engine);
1279 	}
1280 
1281 	intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1282 
1283 	intel_runtime_pm_put(dev_priv);
1284 
1285 	if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
1286 		seq_printf(m, "Hangcheck active, timer fires in %dms\n",
1287 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1288 					    jiffies));
1289 	else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
1290 		seq_puts(m, "Hangcheck active, work pending\n");
1291 	else
1292 		seq_puts(m, "Hangcheck inactive\n");
1293 
1294 	seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
1295 
1296 	for_each_engine(engine, dev_priv, id) {
1297 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
1298 		struct rb_node *rb;
1299 
1300 		seq_printf(m, "%s:\n", engine->name);
1301 		seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
1302 			   engine->hangcheck.seqno, seqno[id],
1303 			   intel_engine_last_submit(engine),
1304 			   engine->timeline->inflight_seqnos);
1305 		seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
1306 			   yesno(intel_engine_has_waiter(engine)),
1307 			   yesno(test_bit(engine->id,
1308 					  &dev_priv->gpu_error.missed_irq_rings)),
1309 			   yesno(engine->hangcheck.stalled));
1310 
1311 		spin_lock_irq(&b->rb_lock);
1312 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1313 			struct intel_wait *w = rb_entry(rb, typeof(*w), node);
1314 
1315 			seq_printf(m, "\t%s [%d] waiting for %x\n",
1316 				   w->tsk->comm, w->tsk->pid, w->seqno);
1317 		}
1318 		spin_unlock_irq(&b->rb_lock);
1319 
1320 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1321 			   (long long)engine->hangcheck.acthd,
1322 			   (long long)acthd[id]);
1323 		seq_printf(m, "\taction = %s(%d) %d ms ago\n",
1324 			   hangcheck_action_to_str(engine->hangcheck.action),
1325 			   engine->hangcheck.action,
1326 			   jiffies_to_msecs(jiffies -
1327 					    engine->hangcheck.action_timestamp));
1328 
1329 		if (engine->id == RCS) {
1330 			seq_puts(m, "\tinstdone read =\n");
1331 
1332 			i915_instdone_info(dev_priv, m, &instdone);
1333 
1334 			seq_puts(m, "\tinstdone accu =\n");
1335 
1336 			i915_instdone_info(dev_priv, m,
1337 					   &engine->hangcheck.instdone);
1338 		}
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 static int i915_reset_info(struct seq_file *m, void *unused)
1345 {
1346 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1347 	struct i915_gpu_error *error = &dev_priv->gpu_error;
1348 	struct intel_engine_cs *engine;
1349 	enum intel_engine_id id;
1350 
1351 	seq_printf(m, "full gpu reset = %u\n", i915_reset_count(error));
1352 
1353 	for_each_engine(engine, dev_priv, id) {
1354 		seq_printf(m, "%s = %u\n", engine->name,
1355 			   i915_reset_engine_count(error, engine));
1356 	}
1357 
1358 	return 0;
1359 }
1360 
1361 static int ironlake_drpc_info(struct seq_file *m)
1362 {
1363 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1364 	u32 rgvmodectl, rstdbyctl;
1365 	u16 crstandvid;
1366 
1367 	rgvmodectl = I915_READ(MEMMODECTL);
1368 	rstdbyctl = I915_READ(RSTDBYCTL);
1369 	crstandvid = I915_READ16(CRSTANDVID);
1370 
1371 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1372 	seq_printf(m, "Boost freq: %d\n",
1373 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1374 		   MEMMODE_BOOST_FREQ_SHIFT);
1375 	seq_printf(m, "HW control enabled: %s\n",
1376 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1377 	seq_printf(m, "SW control enabled: %s\n",
1378 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1379 	seq_printf(m, "Gated voltage change: %s\n",
1380 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1381 	seq_printf(m, "Starting frequency: P%d\n",
1382 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1383 	seq_printf(m, "Max P-state: P%d\n",
1384 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1385 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1386 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1387 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1388 	seq_printf(m, "Render standby enabled: %s\n",
1389 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1390 	seq_puts(m, "Current RS state: ");
1391 	switch (rstdbyctl & RSX_STATUS_MASK) {
1392 	case RSX_STATUS_ON:
1393 		seq_puts(m, "on\n");
1394 		break;
1395 	case RSX_STATUS_RC1:
1396 		seq_puts(m, "RC1\n");
1397 		break;
1398 	case RSX_STATUS_RC1E:
1399 		seq_puts(m, "RC1E\n");
1400 		break;
1401 	case RSX_STATUS_RS1:
1402 		seq_puts(m, "RS1\n");
1403 		break;
1404 	case RSX_STATUS_RS2:
1405 		seq_puts(m, "RS2 (RC6)\n");
1406 		break;
1407 	case RSX_STATUS_RS3:
1408 		seq_puts(m, "RC3 (RC6+)\n");
1409 		break;
1410 	default:
1411 		seq_puts(m, "unknown\n");
1412 		break;
1413 	}
1414 
1415 	return 0;
1416 }
1417 
1418 static int i915_forcewake_domains(struct seq_file *m, void *data)
1419 {
1420 	struct drm_i915_private *i915 = node_to_i915(m->private);
1421 	struct intel_uncore_forcewake_domain *fw_domain;
1422 	unsigned int tmp;
1423 
1424 	for_each_fw_domain(fw_domain, i915, tmp)
1425 		seq_printf(m, "%s.wake_count = %u\n",
1426 			   intel_uncore_forcewake_domain_to_str(fw_domain->id),
1427 			   READ_ONCE(fw_domain->wake_count));
1428 
1429 	return 0;
1430 }
1431 
1432 static void print_rc6_res(struct seq_file *m,
1433 			  const char *title,
1434 			  const i915_reg_t reg)
1435 {
1436 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1437 
1438 	seq_printf(m, "%s %u (%llu us)\n",
1439 		   title, I915_READ(reg),
1440 		   intel_rc6_residency_us(dev_priv, reg));
1441 }
1442 
1443 static int vlv_drpc_info(struct seq_file *m)
1444 {
1445 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1446 	u32 rpmodectl1, rcctl1, pw_status;
1447 
1448 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1449 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1450 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1451 
1452 	seq_printf(m, "Video Turbo Mode: %s\n",
1453 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1454 	seq_printf(m, "Turbo enabled: %s\n",
1455 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1456 	seq_printf(m, "HW control enabled: %s\n",
1457 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1458 	seq_printf(m, "SW control enabled: %s\n",
1459 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1460 			  GEN6_RP_MEDIA_SW_MODE));
1461 	seq_printf(m, "RC6 Enabled: %s\n",
1462 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1463 					GEN6_RC_CTL_EI_MODE(1))));
1464 	seq_printf(m, "Render Power Well: %s\n",
1465 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1466 	seq_printf(m, "Media Power Well: %s\n",
1467 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1468 
1469 	print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
1470 	print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
1471 
1472 	return i915_forcewake_domains(m, NULL);
1473 }
1474 
1475 static int gen6_drpc_info(struct seq_file *m)
1476 {
1477 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1478 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1479 	u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1480 	unsigned forcewake_count;
1481 	int count = 0;
1482 
1483 	forcewake_count = READ_ONCE(dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count);
1484 	if (forcewake_count) {
1485 		seq_puts(m, "RC information inaccurate because somebody "
1486 			    "holds a forcewake reference \n");
1487 	} else {
1488 		/* NB: we cannot use forcewake, else we read the wrong values */
1489 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1490 			udelay(10);
1491 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1492 	}
1493 
1494 	gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1495 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1496 
1497 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1498 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1499 	if (INTEL_GEN(dev_priv) >= 9) {
1500 		gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1501 		gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1502 	}
1503 
1504 	mutex_lock(&dev_priv->rps.hw_lock);
1505 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1506 	mutex_unlock(&dev_priv->rps.hw_lock);
1507 
1508 	seq_printf(m, "Video Turbo Mode: %s\n",
1509 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1510 	seq_printf(m, "HW control enabled: %s\n",
1511 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1512 	seq_printf(m, "SW control enabled: %s\n",
1513 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1514 			  GEN6_RP_MEDIA_SW_MODE));
1515 	seq_printf(m, "RC1e Enabled: %s\n",
1516 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1517 	seq_printf(m, "RC6 Enabled: %s\n",
1518 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1519 	if (INTEL_GEN(dev_priv) >= 9) {
1520 		seq_printf(m, "Render Well Gating Enabled: %s\n",
1521 			yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1522 		seq_printf(m, "Media Well Gating Enabled: %s\n",
1523 			yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1524 	}
1525 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1526 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1527 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1528 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1529 	seq_puts(m, "Current RC state: ");
1530 	switch (gt_core_status & GEN6_RCn_MASK) {
1531 	case GEN6_RC0:
1532 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1533 			seq_puts(m, "Core Power Down\n");
1534 		else
1535 			seq_puts(m, "on\n");
1536 		break;
1537 	case GEN6_RC3:
1538 		seq_puts(m, "RC3\n");
1539 		break;
1540 	case GEN6_RC6:
1541 		seq_puts(m, "RC6\n");
1542 		break;
1543 	case GEN6_RC7:
1544 		seq_puts(m, "RC7\n");
1545 		break;
1546 	default:
1547 		seq_puts(m, "Unknown\n");
1548 		break;
1549 	}
1550 
1551 	seq_printf(m, "Core Power Down: %s\n",
1552 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1553 	if (INTEL_GEN(dev_priv) >= 9) {
1554 		seq_printf(m, "Render Power Well: %s\n",
1555 			(gen9_powergate_status &
1556 			 GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1557 		seq_printf(m, "Media Power Well: %s\n",
1558 			(gen9_powergate_status &
1559 			 GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1560 	}
1561 
1562 	/* Not exactly sure what this is */
1563 	print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
1564 		      GEN6_GT_GFX_RC6_LOCKED);
1565 	print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
1566 	print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
1567 	print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
1568 
1569 	seq_printf(m, "RC6   voltage: %dmV\n",
1570 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1571 	seq_printf(m, "RC6+  voltage: %dmV\n",
1572 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1573 	seq_printf(m, "RC6++ voltage: %dmV\n",
1574 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1575 	return i915_forcewake_domains(m, NULL);
1576 }
1577 
1578 static int i915_drpc_info(struct seq_file *m, void *unused)
1579 {
1580 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1581 	int err;
1582 
1583 	intel_runtime_pm_get(dev_priv);
1584 
1585 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1586 		err = vlv_drpc_info(m);
1587 	else if (INTEL_GEN(dev_priv) >= 6)
1588 		err = gen6_drpc_info(m);
1589 	else
1590 		err = ironlake_drpc_info(m);
1591 
1592 	intel_runtime_pm_put(dev_priv);
1593 
1594 	return err;
1595 }
1596 
1597 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1598 {
1599 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1600 
1601 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1602 		   dev_priv->fb_tracking.busy_bits);
1603 
1604 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1605 		   dev_priv->fb_tracking.flip_bits);
1606 
1607 	return 0;
1608 }
1609 
1610 static int i915_fbc_status(struct seq_file *m, void *unused)
1611 {
1612 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1613 
1614 	if (!HAS_FBC(dev_priv)) {
1615 		seq_puts(m, "FBC unsupported on this chipset\n");
1616 		return 0;
1617 	}
1618 
1619 	intel_runtime_pm_get(dev_priv);
1620 	mutex_lock(&dev_priv->fbc.lock);
1621 
1622 	if (intel_fbc_is_active(dev_priv))
1623 		seq_puts(m, "FBC enabled\n");
1624 	else
1625 		seq_printf(m, "FBC disabled: %s\n",
1626 			   dev_priv->fbc.no_fbc_reason);
1627 
1628 	if (intel_fbc_is_active(dev_priv)) {
1629 		u32 mask;
1630 
1631 		if (INTEL_GEN(dev_priv) >= 8)
1632 			mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK;
1633 		else if (INTEL_GEN(dev_priv) >= 7)
1634 			mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK;
1635 		else if (INTEL_GEN(dev_priv) >= 5)
1636 			mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK;
1637 		else if (IS_G4X(dev_priv))
1638 			mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK;
1639 		else
1640 			mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING |
1641 							FBC_STAT_COMPRESSED);
1642 
1643 		seq_printf(m, "Compressing: %s\n", yesno(mask));
1644 	}
1645 
1646 	mutex_unlock(&dev_priv->fbc.lock);
1647 	intel_runtime_pm_put(dev_priv);
1648 
1649 	return 0;
1650 }
1651 
1652 static int i915_fbc_false_color_get(void *data, u64 *val)
1653 {
1654 	struct drm_i915_private *dev_priv = data;
1655 
1656 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1657 		return -ENODEV;
1658 
1659 	*val = dev_priv->fbc.false_color;
1660 
1661 	return 0;
1662 }
1663 
1664 static int i915_fbc_false_color_set(void *data, u64 val)
1665 {
1666 	struct drm_i915_private *dev_priv = data;
1667 	u32 reg;
1668 
1669 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1670 		return -ENODEV;
1671 
1672 	mutex_lock(&dev_priv->fbc.lock);
1673 
1674 	reg = I915_READ(ILK_DPFC_CONTROL);
1675 	dev_priv->fbc.false_color = val;
1676 
1677 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1678 		   (reg | FBC_CTL_FALSE_COLOR) :
1679 		   (reg & ~FBC_CTL_FALSE_COLOR));
1680 
1681 	mutex_unlock(&dev_priv->fbc.lock);
1682 	return 0;
1683 }
1684 
1685 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops,
1686 			i915_fbc_false_color_get, i915_fbc_false_color_set,
1687 			"%llu\n");
1688 
1689 static int i915_ips_status(struct seq_file *m, void *unused)
1690 {
1691 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1692 
1693 	if (!HAS_IPS(dev_priv)) {
1694 		seq_puts(m, "not supported\n");
1695 		return 0;
1696 	}
1697 
1698 	intel_runtime_pm_get(dev_priv);
1699 
1700 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1701 		   yesno(i915.enable_ips));
1702 
1703 	if (INTEL_GEN(dev_priv) >= 8) {
1704 		seq_puts(m, "Currently: unknown\n");
1705 	} else {
1706 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1707 			seq_puts(m, "Currently: enabled\n");
1708 		else
1709 			seq_puts(m, "Currently: disabled\n");
1710 	}
1711 
1712 	intel_runtime_pm_put(dev_priv);
1713 
1714 	return 0;
1715 }
1716 
1717 static int i915_sr_status(struct seq_file *m, void *unused)
1718 {
1719 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1720 	bool sr_enabled = false;
1721 
1722 	intel_runtime_pm_get(dev_priv);
1723 	intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1724 
1725 	if (INTEL_GEN(dev_priv) >= 9)
1726 		/* no global SR status; inspect per-plane WM */;
1727 	else if (HAS_PCH_SPLIT(dev_priv))
1728 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1729 	else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
1730 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1731 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1732 	else if (IS_I915GM(dev_priv))
1733 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1734 	else if (IS_PINEVIEW(dev_priv))
1735 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1736 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1737 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1738 
1739 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1740 	intel_runtime_pm_put(dev_priv);
1741 
1742 	seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
1743 
1744 	return 0;
1745 }
1746 
1747 static int i915_emon_status(struct seq_file *m, void *unused)
1748 {
1749 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1750 	struct drm_device *dev = &dev_priv->drm;
1751 	unsigned long temp, chipset, gfx;
1752 	int ret;
1753 
1754 	if (!IS_GEN5(dev_priv))
1755 		return -ENODEV;
1756 
1757 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1758 	if (ret)
1759 		return ret;
1760 
1761 	temp = i915_mch_val(dev_priv);
1762 	chipset = i915_chipset_val(dev_priv);
1763 	gfx = i915_gfx_val(dev_priv);
1764 	mutex_unlock(&dev->struct_mutex);
1765 
1766 	seq_printf(m, "GMCH temp: %ld\n", temp);
1767 	seq_printf(m, "Chipset power: %ld\n", chipset);
1768 	seq_printf(m, "GFX power: %ld\n", gfx);
1769 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1770 
1771 	return 0;
1772 }
1773 
1774 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1775 {
1776 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1777 	int ret = 0;
1778 	int gpu_freq, ia_freq;
1779 	unsigned int max_gpu_freq, min_gpu_freq;
1780 
1781 	if (!HAS_LLC(dev_priv)) {
1782 		seq_puts(m, "unsupported on this chipset\n");
1783 		return 0;
1784 	}
1785 
1786 	intel_runtime_pm_get(dev_priv);
1787 
1788 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1789 	if (ret)
1790 		goto out;
1791 
1792 	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
1793 		/* Convert GT frequency to 50 HZ units */
1794 		min_gpu_freq =
1795 			dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1796 		max_gpu_freq =
1797 			dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1798 	} else {
1799 		min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1800 		max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1801 	}
1802 
1803 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1804 
1805 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1806 		ia_freq = gpu_freq;
1807 		sandybridge_pcode_read(dev_priv,
1808 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1809 				       &ia_freq);
1810 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1811 			   intel_gpu_freq(dev_priv, (gpu_freq *
1812 						     (IS_GEN9_BC(dev_priv) ||
1813 						      IS_CANNONLAKE(dev_priv) ?
1814 						      GEN9_FREQ_SCALER : 1))),
1815 			   ((ia_freq >> 0) & 0xff) * 100,
1816 			   ((ia_freq >> 8) & 0xff) * 100);
1817 	}
1818 
1819 	mutex_unlock(&dev_priv->rps.hw_lock);
1820 
1821 out:
1822 	intel_runtime_pm_put(dev_priv);
1823 	return ret;
1824 }
1825 
1826 static int i915_opregion(struct seq_file *m, void *unused)
1827 {
1828 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1829 	struct drm_device *dev = &dev_priv->drm;
1830 	struct intel_opregion *opregion = &dev_priv->opregion;
1831 	int ret;
1832 
1833 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1834 	if (ret)
1835 		goto out;
1836 
1837 	if (opregion->header)
1838 		seq_write(m, opregion->header, OPREGION_SIZE);
1839 
1840 	mutex_unlock(&dev->struct_mutex);
1841 
1842 out:
1843 	return 0;
1844 }
1845 
1846 static int i915_vbt(struct seq_file *m, void *unused)
1847 {
1848 	struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1849 
1850 	if (opregion->vbt)
1851 		seq_write(m, opregion->vbt, opregion->vbt_size);
1852 
1853 	return 0;
1854 }
1855 
1856 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1857 {
1858 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1859 	struct drm_device *dev = &dev_priv->drm;
1860 	struct intel_framebuffer *fbdev_fb = NULL;
1861 	struct drm_framebuffer *drm_fb;
1862 	int ret;
1863 
1864 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1865 	if (ret)
1866 		return ret;
1867 
1868 #ifdef CONFIG_DRM_FBDEV_EMULATION
1869 	if (dev_priv->fbdev && dev_priv->fbdev->helper.fb) {
1870 		fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1871 
1872 		seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1873 			   fbdev_fb->base.width,
1874 			   fbdev_fb->base.height,
1875 			   fbdev_fb->base.format->depth,
1876 			   fbdev_fb->base.format->cpp[0] * 8,
1877 			   fbdev_fb->base.modifier,
1878 			   drm_framebuffer_read_refcount(&fbdev_fb->base));
1879 		describe_obj(m, fbdev_fb->obj);
1880 		seq_putc(m, '\n');
1881 	}
1882 #endif
1883 
1884 	mutex_lock(&dev->mode_config.fb_lock);
1885 	drm_for_each_fb(drm_fb, dev) {
1886 		struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1887 		if (fb == fbdev_fb)
1888 			continue;
1889 
1890 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1891 			   fb->base.width,
1892 			   fb->base.height,
1893 			   fb->base.format->depth,
1894 			   fb->base.format->cpp[0] * 8,
1895 			   fb->base.modifier,
1896 			   drm_framebuffer_read_refcount(&fb->base));
1897 		describe_obj(m, fb->obj);
1898 		seq_putc(m, '\n');
1899 	}
1900 	mutex_unlock(&dev->mode_config.fb_lock);
1901 	mutex_unlock(&dev->struct_mutex);
1902 
1903 	return 0;
1904 }
1905 
1906 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1907 {
1908 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u)",
1909 		   ring->space, ring->head, ring->tail);
1910 }
1911 
1912 static int i915_context_status(struct seq_file *m, void *unused)
1913 {
1914 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1915 	struct drm_device *dev = &dev_priv->drm;
1916 	struct intel_engine_cs *engine;
1917 	struct i915_gem_context *ctx;
1918 	enum intel_engine_id id;
1919 	int ret;
1920 
1921 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1922 	if (ret)
1923 		return ret;
1924 
1925 	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1926 		seq_printf(m, "HW context %u ", ctx->hw_id);
1927 		if (ctx->pid) {
1928 			struct task_struct *task;
1929 
1930 			task = get_pid_task(ctx->pid, PIDTYPE_PID);
1931 			if (task) {
1932 				seq_printf(m, "(%s [%d]) ",
1933 					   task->comm, task->pid);
1934 				put_task_struct(task);
1935 			}
1936 		} else if (IS_ERR(ctx->file_priv)) {
1937 			seq_puts(m, "(deleted) ");
1938 		} else {
1939 			seq_puts(m, "(kernel) ");
1940 		}
1941 
1942 		seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1943 		seq_putc(m, '\n');
1944 
1945 		for_each_engine(engine, dev_priv, id) {
1946 			struct intel_context *ce = &ctx->engine[engine->id];
1947 
1948 			seq_printf(m, "%s: ", engine->name);
1949 			seq_putc(m, ce->initialised ? 'I' : 'i');
1950 			if (ce->state)
1951 				describe_obj(m, ce->state->obj);
1952 			if (ce->ring)
1953 				describe_ctx_ring(m, ce->ring);
1954 			seq_putc(m, '\n');
1955 		}
1956 
1957 		seq_putc(m, '\n');
1958 	}
1959 
1960 	mutex_unlock(&dev->struct_mutex);
1961 
1962 	return 0;
1963 }
1964 
1965 static void i915_dump_lrc_obj(struct seq_file *m,
1966 			      struct i915_gem_context *ctx,
1967 			      struct intel_engine_cs *engine)
1968 {
1969 	struct i915_vma *vma = ctx->engine[engine->id].state;
1970 	struct page *page;
1971 	int j;
1972 
1973 	seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
1974 
1975 	if (!vma) {
1976 		seq_puts(m, "\tFake context\n");
1977 		return;
1978 	}
1979 
1980 	if (vma->flags & I915_VMA_GLOBAL_BIND)
1981 		seq_printf(m, "\tBound in GGTT at 0x%08x\n",
1982 			   i915_ggtt_offset(vma));
1983 
1984 	if (i915_gem_object_pin_pages(vma->obj)) {
1985 		seq_puts(m, "\tFailed to get pages for context object\n\n");
1986 		return;
1987 	}
1988 
1989 	page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
1990 	if (page) {
1991 		u32 *reg_state = kmap_atomic(page);
1992 
1993 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1994 			seq_printf(m,
1995 				   "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1996 				   j * 4,
1997 				   reg_state[j], reg_state[j + 1],
1998 				   reg_state[j + 2], reg_state[j + 3]);
1999 		}
2000 		kunmap_atomic(reg_state);
2001 	}
2002 
2003 	i915_gem_object_unpin_pages(vma->obj);
2004 	seq_putc(m, '\n');
2005 }
2006 
2007 static int i915_dump_lrc(struct seq_file *m, void *unused)
2008 {
2009 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2010 	struct drm_device *dev = &dev_priv->drm;
2011 	struct intel_engine_cs *engine;
2012 	struct i915_gem_context *ctx;
2013 	enum intel_engine_id id;
2014 	int ret;
2015 
2016 	if (!i915.enable_execlists) {
2017 		seq_printf(m, "Logical Ring Contexts are disabled\n");
2018 		return 0;
2019 	}
2020 
2021 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2022 	if (ret)
2023 		return ret;
2024 
2025 	list_for_each_entry(ctx, &dev_priv->contexts.list, link)
2026 		for_each_engine(engine, dev_priv, id)
2027 			i915_dump_lrc_obj(m, ctx, engine);
2028 
2029 	mutex_unlock(&dev->struct_mutex);
2030 
2031 	return 0;
2032 }
2033 
2034 static const char *swizzle_string(unsigned swizzle)
2035 {
2036 	switch (swizzle) {
2037 	case I915_BIT_6_SWIZZLE_NONE:
2038 		return "none";
2039 	case I915_BIT_6_SWIZZLE_9:
2040 		return "bit9";
2041 	case I915_BIT_6_SWIZZLE_9_10:
2042 		return "bit9/bit10";
2043 	case I915_BIT_6_SWIZZLE_9_11:
2044 		return "bit9/bit11";
2045 	case I915_BIT_6_SWIZZLE_9_10_11:
2046 		return "bit9/bit10/bit11";
2047 	case I915_BIT_6_SWIZZLE_9_17:
2048 		return "bit9/bit17";
2049 	case I915_BIT_6_SWIZZLE_9_10_17:
2050 		return "bit9/bit10/bit17";
2051 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2052 		return "unknown";
2053 	}
2054 
2055 	return "bug";
2056 }
2057 
2058 static int i915_swizzle_info(struct seq_file *m, void *data)
2059 {
2060 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2061 
2062 	intel_runtime_pm_get(dev_priv);
2063 
2064 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2065 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2066 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2067 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2068 
2069 	if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2070 		seq_printf(m, "DDC = 0x%08x\n",
2071 			   I915_READ(DCC));
2072 		seq_printf(m, "DDC2 = 0x%08x\n",
2073 			   I915_READ(DCC2));
2074 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2075 			   I915_READ16(C0DRB3));
2076 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2077 			   I915_READ16(C1DRB3));
2078 	} else if (INTEL_GEN(dev_priv) >= 6) {
2079 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2080 			   I915_READ(MAD_DIMM_C0));
2081 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2082 			   I915_READ(MAD_DIMM_C1));
2083 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2084 			   I915_READ(MAD_DIMM_C2));
2085 		seq_printf(m, "TILECTL = 0x%08x\n",
2086 			   I915_READ(TILECTL));
2087 		if (INTEL_GEN(dev_priv) >= 8)
2088 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2089 				   I915_READ(GAMTARBMODE));
2090 		else
2091 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2092 				   I915_READ(ARB_MODE));
2093 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2094 			   I915_READ(DISP_ARB_CTL));
2095 	}
2096 
2097 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2098 		seq_puts(m, "L-shaped memory detected\n");
2099 
2100 	intel_runtime_pm_put(dev_priv);
2101 
2102 	return 0;
2103 }
2104 
2105 static int per_file_ctx(int id, void *ptr, void *data)
2106 {
2107 	struct i915_gem_context *ctx = ptr;
2108 	struct seq_file *m = data;
2109 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2110 
2111 	if (!ppgtt) {
2112 		seq_printf(m, "  no ppgtt for context %d\n",
2113 			   ctx->user_handle);
2114 		return 0;
2115 	}
2116 
2117 	if (i915_gem_context_is_default(ctx))
2118 		seq_puts(m, "  default context:\n");
2119 	else
2120 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2121 	ppgtt->debug_dump(ppgtt, m);
2122 
2123 	return 0;
2124 }
2125 
2126 static void gen8_ppgtt_info(struct seq_file *m,
2127 			    struct drm_i915_private *dev_priv)
2128 {
2129 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2130 	struct intel_engine_cs *engine;
2131 	enum intel_engine_id id;
2132 	int i;
2133 
2134 	if (!ppgtt)
2135 		return;
2136 
2137 	for_each_engine(engine, dev_priv, id) {
2138 		seq_printf(m, "%s\n", engine->name);
2139 		for (i = 0; i < 4; i++) {
2140 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2141 			pdp <<= 32;
2142 			pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2143 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2144 		}
2145 	}
2146 }
2147 
2148 static void gen6_ppgtt_info(struct seq_file *m,
2149 			    struct drm_i915_private *dev_priv)
2150 {
2151 	struct intel_engine_cs *engine;
2152 	enum intel_engine_id id;
2153 
2154 	if (IS_GEN6(dev_priv))
2155 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2156 
2157 	for_each_engine(engine, dev_priv, id) {
2158 		seq_printf(m, "%s\n", engine->name);
2159 		if (IS_GEN7(dev_priv))
2160 			seq_printf(m, "GFX_MODE: 0x%08x\n",
2161 				   I915_READ(RING_MODE_GEN7(engine)));
2162 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2163 			   I915_READ(RING_PP_DIR_BASE(engine)));
2164 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2165 			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
2166 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2167 			   I915_READ(RING_PP_DIR_DCLV(engine)));
2168 	}
2169 	if (dev_priv->mm.aliasing_ppgtt) {
2170 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2171 
2172 		seq_puts(m, "aliasing PPGTT:\n");
2173 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2174 
2175 		ppgtt->debug_dump(ppgtt, m);
2176 	}
2177 
2178 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2179 }
2180 
2181 static int i915_ppgtt_info(struct seq_file *m, void *data)
2182 {
2183 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2184 	struct drm_device *dev = &dev_priv->drm;
2185 	struct drm_file *file;
2186 	int ret;
2187 
2188 	mutex_lock(&dev->filelist_mutex);
2189 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2190 	if (ret)
2191 		goto out_unlock;
2192 
2193 	intel_runtime_pm_get(dev_priv);
2194 
2195 	if (INTEL_GEN(dev_priv) >= 8)
2196 		gen8_ppgtt_info(m, dev_priv);
2197 	else if (INTEL_GEN(dev_priv) >= 6)
2198 		gen6_ppgtt_info(m, dev_priv);
2199 
2200 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2201 		struct drm_i915_file_private *file_priv = file->driver_priv;
2202 		struct task_struct *task;
2203 
2204 		task = get_pid_task(file->pid, PIDTYPE_PID);
2205 		if (!task) {
2206 			ret = -ESRCH;
2207 			goto out_rpm;
2208 		}
2209 		seq_printf(m, "\nproc: %s\n", task->comm);
2210 		put_task_struct(task);
2211 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2212 			     (void *)(unsigned long)m);
2213 	}
2214 
2215 out_rpm:
2216 	intel_runtime_pm_put(dev_priv);
2217 	mutex_unlock(&dev->struct_mutex);
2218 out_unlock:
2219 	mutex_unlock(&dev->filelist_mutex);
2220 	return ret;
2221 }
2222 
2223 static int count_irq_waiters(struct drm_i915_private *i915)
2224 {
2225 	struct intel_engine_cs *engine;
2226 	enum intel_engine_id id;
2227 	int count = 0;
2228 
2229 	for_each_engine(engine, i915, id)
2230 		count += intel_engine_has_waiter(engine);
2231 
2232 	return count;
2233 }
2234 
2235 static const char *rps_power_to_str(unsigned int power)
2236 {
2237 	static const char * const strings[] = {
2238 		[LOW_POWER] = "low power",
2239 		[BETWEEN] = "mixed",
2240 		[HIGH_POWER] = "high power",
2241 	};
2242 
2243 	if (power >= ARRAY_SIZE(strings) || !strings[power])
2244 		return "unknown";
2245 
2246 	return strings[power];
2247 }
2248 
2249 static int i915_rps_boost_info(struct seq_file *m, void *data)
2250 {
2251 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2252 	struct drm_device *dev = &dev_priv->drm;
2253 	struct drm_file *file;
2254 
2255 	seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2256 	seq_printf(m, "GPU busy? %s [%d requests]\n",
2257 		   yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
2258 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2259 	seq_printf(m, "Boosts outstanding? %d\n",
2260 		   atomic_read(&dev_priv->rps.num_waiters));
2261 	seq_printf(m, "Frequency requested %d\n",
2262 		   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
2263 	seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2264 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2265 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2266 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2267 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2268 	seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2269 		   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
2270 		   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2271 		   intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
2272 
2273 	mutex_lock(&dev->filelist_mutex);
2274 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2275 		struct drm_i915_file_private *file_priv = file->driver_priv;
2276 		struct task_struct *task;
2277 
2278 		rcu_read_lock();
2279 		task = pid_task(file->pid, PIDTYPE_PID);
2280 		seq_printf(m, "%s [%d]: %d boosts\n",
2281 			   task ? task->comm : "<unknown>",
2282 			   task ? task->pid : -1,
2283 			   atomic_read(&file_priv->rps.boosts));
2284 		rcu_read_unlock();
2285 	}
2286 	seq_printf(m, "Kernel (anonymous) boosts: %d\n",
2287 		   atomic_read(&dev_priv->rps.boosts));
2288 	mutex_unlock(&dev->filelist_mutex);
2289 
2290 	if (INTEL_GEN(dev_priv) >= 6 &&
2291 	    dev_priv->rps.enabled &&
2292 	    dev_priv->gt.active_requests) {
2293 		u32 rpup, rpupei;
2294 		u32 rpdown, rpdownei;
2295 
2296 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2297 		rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2298 		rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2299 		rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2300 		rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2301 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2302 
2303 		seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2304 			   rps_power_to_str(dev_priv->rps.power));
2305 		seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2306 			   rpup && rpupei ? 100 * rpup / rpupei : 0,
2307 			   dev_priv->rps.up_threshold);
2308 		seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2309 			   rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
2310 			   dev_priv->rps.down_threshold);
2311 	} else {
2312 		seq_puts(m, "\nRPS Autotuning inactive\n");
2313 	}
2314 
2315 	return 0;
2316 }
2317 
2318 static int i915_llc(struct seq_file *m, void *data)
2319 {
2320 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2321 	const bool edram = INTEL_GEN(dev_priv) > 8;
2322 
2323 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2324 	seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2325 		   intel_uncore_edram_size(dev_priv)/1024/1024);
2326 
2327 	return 0;
2328 }
2329 
2330 static int i915_huc_load_status_info(struct seq_file *m, void *data)
2331 {
2332 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2333 	struct intel_uc_fw *huc_fw = &dev_priv->huc.fw;
2334 
2335 	if (!HAS_HUC_UCODE(dev_priv))
2336 		return 0;
2337 
2338 	seq_puts(m, "HuC firmware status:\n");
2339 	seq_printf(m, "\tpath: %s\n", huc_fw->path);
2340 	seq_printf(m, "\tfetch: %s\n",
2341 		intel_uc_fw_status_repr(huc_fw->fetch_status));
2342 	seq_printf(m, "\tload: %s\n",
2343 		intel_uc_fw_status_repr(huc_fw->load_status));
2344 	seq_printf(m, "\tversion wanted: %d.%d\n",
2345 		huc_fw->major_ver_wanted, huc_fw->minor_ver_wanted);
2346 	seq_printf(m, "\tversion found: %d.%d\n",
2347 		huc_fw->major_ver_found, huc_fw->minor_ver_found);
2348 	seq_printf(m, "\theader: offset is %d; size = %d\n",
2349 		huc_fw->header_offset, huc_fw->header_size);
2350 	seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2351 		huc_fw->ucode_offset, huc_fw->ucode_size);
2352 	seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2353 		huc_fw->rsa_offset, huc_fw->rsa_size);
2354 
2355 	intel_runtime_pm_get(dev_priv);
2356 	seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
2357 	intel_runtime_pm_put(dev_priv);
2358 
2359 	return 0;
2360 }
2361 
2362 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2363 {
2364 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2365 	struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
2366 	u32 tmp, i;
2367 
2368 	if (!HAS_GUC_UCODE(dev_priv))
2369 		return 0;
2370 
2371 	seq_printf(m, "GuC firmware status:\n");
2372 	seq_printf(m, "\tpath: %s\n",
2373 		guc_fw->path);
2374 	seq_printf(m, "\tfetch: %s\n",
2375 		intel_uc_fw_status_repr(guc_fw->fetch_status));
2376 	seq_printf(m, "\tload: %s\n",
2377 		intel_uc_fw_status_repr(guc_fw->load_status));
2378 	seq_printf(m, "\tversion wanted: %d.%d\n",
2379 		guc_fw->major_ver_wanted, guc_fw->minor_ver_wanted);
2380 	seq_printf(m, "\tversion found: %d.%d\n",
2381 		guc_fw->major_ver_found, guc_fw->minor_ver_found);
2382 	seq_printf(m, "\theader: offset is %d; size = %d\n",
2383 		guc_fw->header_offset, guc_fw->header_size);
2384 	seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2385 		guc_fw->ucode_offset, guc_fw->ucode_size);
2386 	seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2387 		guc_fw->rsa_offset, guc_fw->rsa_size);
2388 
2389 	intel_runtime_pm_get(dev_priv);
2390 
2391 	tmp = I915_READ(GUC_STATUS);
2392 
2393 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2394 	seq_printf(m, "\tBootrom status = 0x%x\n",
2395 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2396 	seq_printf(m, "\tuKernel status = 0x%x\n",
2397 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2398 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2399 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2400 	seq_puts(m, "\nScratch registers:\n");
2401 	for (i = 0; i < 16; i++)
2402 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2403 
2404 	intel_runtime_pm_put(dev_priv);
2405 
2406 	return 0;
2407 }
2408 
2409 static void i915_guc_log_info(struct seq_file *m,
2410 			      struct drm_i915_private *dev_priv)
2411 {
2412 	struct intel_guc *guc = &dev_priv->guc;
2413 
2414 	seq_puts(m, "\nGuC logging stats:\n");
2415 
2416 	seq_printf(m, "\tISR:   flush count %10u, overflow count %10u\n",
2417 		   guc->log.flush_count[GUC_ISR_LOG_BUFFER],
2418 		   guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
2419 
2420 	seq_printf(m, "\tDPC:   flush count %10u, overflow count %10u\n",
2421 		   guc->log.flush_count[GUC_DPC_LOG_BUFFER],
2422 		   guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
2423 
2424 	seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
2425 		   guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
2426 		   guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
2427 
2428 	seq_printf(m, "\tTotal flush interrupt count: %u\n",
2429 		   guc->log.flush_interrupt_count);
2430 
2431 	seq_printf(m, "\tCapture miss count: %u\n",
2432 		   guc->log.capture_miss_count);
2433 }
2434 
2435 static void i915_guc_client_info(struct seq_file *m,
2436 				 struct drm_i915_private *dev_priv,
2437 				 struct i915_guc_client *client)
2438 {
2439 	struct intel_engine_cs *engine;
2440 	enum intel_engine_id id;
2441 	uint64_t tot = 0;
2442 
2443 	seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
2444 		client->priority, client->stage_id, client->proc_desc_offset);
2445 	seq_printf(m, "\tDoorbell id %d, offset: 0x%lx, cookie 0x%x\n",
2446 		client->doorbell_id, client->doorbell_offset, client->doorbell_cookie);
2447 	seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2448 		client->wq_size, client->wq_offset, client->wq_tail);
2449 
2450 	seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2451 
2452 	for_each_engine(engine, dev_priv, id) {
2453 		u64 submissions = client->submissions[id];
2454 		tot += submissions;
2455 		seq_printf(m, "\tSubmissions: %llu %s\n",
2456 				submissions, engine->name);
2457 	}
2458 	seq_printf(m, "\tTotal: %llu\n", tot);
2459 }
2460 
2461 static bool check_guc_submission(struct seq_file *m)
2462 {
2463 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2464 	const struct intel_guc *guc = &dev_priv->guc;
2465 
2466 	if (!guc->execbuf_client) {
2467 		seq_printf(m, "GuC submission %s\n",
2468 			   HAS_GUC_SCHED(dev_priv) ?
2469 			   "disabled" :
2470 			   "not supported");
2471 		return false;
2472 	}
2473 
2474 	return true;
2475 }
2476 
2477 static int i915_guc_info(struct seq_file *m, void *data)
2478 {
2479 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2480 	const struct intel_guc *guc = &dev_priv->guc;
2481 
2482 	if (!check_guc_submission(m))
2483 		return 0;
2484 
2485 	seq_printf(m, "Doorbell map:\n");
2486 	seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
2487 	seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
2488 
2489 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
2490 	i915_guc_client_info(m, dev_priv, guc->execbuf_client);
2491 
2492 	i915_guc_log_info(m, dev_priv);
2493 
2494 	/* Add more as required ... */
2495 
2496 	return 0;
2497 }
2498 
2499 static int i915_guc_stage_pool(struct seq_file *m, void *data)
2500 {
2501 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2502 	const struct intel_guc *guc = &dev_priv->guc;
2503 	struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
2504 	struct i915_guc_client *client = guc->execbuf_client;
2505 	unsigned int tmp;
2506 	int index;
2507 
2508 	if (!check_guc_submission(m))
2509 		return 0;
2510 
2511 	for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
2512 		struct intel_engine_cs *engine;
2513 
2514 		if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
2515 			continue;
2516 
2517 		seq_printf(m, "GuC stage descriptor %u:\n", index);
2518 		seq_printf(m, "\tIndex: %u\n", desc->stage_id);
2519 		seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
2520 		seq_printf(m, "\tPriority: %d\n", desc->priority);
2521 		seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
2522 		seq_printf(m, "\tEngines used: 0x%x\n",
2523 			   desc->engines_used);
2524 		seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
2525 			   desc->db_trigger_phy,
2526 			   desc->db_trigger_cpu,
2527 			   desc->db_trigger_uk);
2528 		seq_printf(m, "\tProcess descriptor: 0x%x\n",
2529 			   desc->process_desc);
2530 		seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
2531 			   desc->wq_addr, desc->wq_size);
2532 		seq_putc(m, '\n');
2533 
2534 		for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
2535 			u32 guc_engine_id = engine->guc_id;
2536 			struct guc_execlist_context *lrc =
2537 						&desc->lrc[guc_engine_id];
2538 
2539 			seq_printf(m, "\t%s LRC:\n", engine->name);
2540 			seq_printf(m, "\t\tContext desc: 0x%x\n",
2541 				   lrc->context_desc);
2542 			seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
2543 			seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
2544 			seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
2545 			seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
2546 			seq_putc(m, '\n');
2547 		}
2548 	}
2549 
2550 	return 0;
2551 }
2552 
2553 static int i915_guc_log_dump(struct seq_file *m, void *data)
2554 {
2555 	struct drm_info_node *node = m->private;
2556 	struct drm_i915_private *dev_priv = node_to_i915(node);
2557 	bool dump_load_err = !!node->info_ent->data;
2558 	struct drm_i915_gem_object *obj = NULL;
2559 	u32 *log;
2560 	int i = 0;
2561 
2562 	if (dump_load_err)
2563 		obj = dev_priv->guc.load_err_log;
2564 	else if (dev_priv->guc.log.vma)
2565 		obj = dev_priv->guc.log.vma->obj;
2566 
2567 	if (!obj)
2568 		return 0;
2569 
2570 	log = i915_gem_object_pin_map(obj, I915_MAP_WC);
2571 	if (IS_ERR(log)) {
2572 		DRM_DEBUG("Failed to pin object\n");
2573 		seq_puts(m, "(log data unaccessible)\n");
2574 		return PTR_ERR(log);
2575 	}
2576 
2577 	for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
2578 		seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2579 			   *(log + i), *(log + i + 1),
2580 			   *(log + i + 2), *(log + i + 3));
2581 
2582 	seq_putc(m, '\n');
2583 
2584 	i915_gem_object_unpin_map(obj);
2585 
2586 	return 0;
2587 }
2588 
2589 static int i915_guc_log_control_get(void *data, u64 *val)
2590 {
2591 	struct drm_i915_private *dev_priv = data;
2592 
2593 	if (!dev_priv->guc.log.vma)
2594 		return -EINVAL;
2595 
2596 	*val = i915.guc_log_level;
2597 
2598 	return 0;
2599 }
2600 
2601 static int i915_guc_log_control_set(void *data, u64 val)
2602 {
2603 	struct drm_i915_private *dev_priv = data;
2604 	int ret;
2605 
2606 	if (!dev_priv->guc.log.vma)
2607 		return -EINVAL;
2608 
2609 	ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
2610 	if (ret)
2611 		return ret;
2612 
2613 	intel_runtime_pm_get(dev_priv);
2614 	ret = i915_guc_log_control(dev_priv, val);
2615 	intel_runtime_pm_put(dev_priv);
2616 
2617 	mutex_unlock(&dev_priv->drm.struct_mutex);
2618 	return ret;
2619 }
2620 
2621 DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
2622 			i915_guc_log_control_get, i915_guc_log_control_set,
2623 			"%lld\n");
2624 
2625 static const char *psr2_live_status(u32 val)
2626 {
2627 	static const char * const live_status[] = {
2628 		"IDLE",
2629 		"CAPTURE",
2630 		"CAPTURE_FS",
2631 		"SLEEP",
2632 		"BUFON_FW",
2633 		"ML_UP",
2634 		"SU_STANDBY",
2635 		"FAST_SLEEP",
2636 		"DEEP_SLEEP",
2637 		"BUF_ON",
2638 		"TG_ON"
2639 	};
2640 
2641 	val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
2642 	if (val < ARRAY_SIZE(live_status))
2643 		return live_status[val];
2644 
2645 	return "unknown";
2646 }
2647 
2648 static int i915_edp_psr_status(struct seq_file *m, void *data)
2649 {
2650 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2651 	u32 psrperf = 0;
2652 	u32 stat[3];
2653 	enum pipe pipe;
2654 	bool enabled = false;
2655 
2656 	if (!HAS_PSR(dev_priv)) {
2657 		seq_puts(m, "PSR not supported\n");
2658 		return 0;
2659 	}
2660 
2661 	intel_runtime_pm_get(dev_priv);
2662 
2663 	mutex_lock(&dev_priv->psr.lock);
2664 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2665 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2666 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2667 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2668 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2669 		   dev_priv->psr.busy_frontbuffer_bits);
2670 	seq_printf(m, "Re-enable work scheduled: %s\n",
2671 		   yesno(work_busy(&dev_priv->psr.work.work)));
2672 
2673 	if (HAS_DDI(dev_priv)) {
2674 		if (dev_priv->psr.psr2_support)
2675 			enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
2676 		else
2677 			enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2678 	} else {
2679 		for_each_pipe(dev_priv, pipe) {
2680 			enum transcoder cpu_transcoder =
2681 				intel_pipe_to_cpu_transcoder(dev_priv, pipe);
2682 			enum intel_display_power_domain power_domain;
2683 
2684 			power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
2685 			if (!intel_display_power_get_if_enabled(dev_priv,
2686 								power_domain))
2687 				continue;
2688 
2689 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2690 				VLV_EDP_PSR_CURR_STATE_MASK;
2691 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2692 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2693 				enabled = true;
2694 
2695 			intel_display_power_put(dev_priv, power_domain);
2696 		}
2697 	}
2698 
2699 	seq_printf(m, "Main link in standby mode: %s\n",
2700 		   yesno(dev_priv->psr.link_standby));
2701 
2702 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2703 
2704 	if (!HAS_DDI(dev_priv))
2705 		for_each_pipe(dev_priv, pipe) {
2706 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2707 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2708 				seq_printf(m, " pipe %c", pipe_name(pipe));
2709 		}
2710 	seq_puts(m, "\n");
2711 
2712 	/*
2713 	 * VLV/CHV PSR has no kind of performance counter
2714 	 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2715 	 */
2716 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2717 		psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2718 			EDP_PSR_PERF_CNT_MASK;
2719 
2720 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2721 	}
2722 	if (dev_priv->psr.psr2_support) {
2723 		u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
2724 
2725 		seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
2726 			   psr2, psr2_live_status(psr2));
2727 	}
2728 	mutex_unlock(&dev_priv->psr.lock);
2729 
2730 	intel_runtime_pm_put(dev_priv);
2731 	return 0;
2732 }
2733 
2734 static int i915_sink_crc(struct seq_file *m, void *data)
2735 {
2736 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2737 	struct drm_device *dev = &dev_priv->drm;
2738 	struct intel_connector *connector;
2739 	struct drm_connector_list_iter conn_iter;
2740 	struct intel_dp *intel_dp = NULL;
2741 	int ret;
2742 	u8 crc[6];
2743 
2744 	drm_modeset_lock_all(dev);
2745 	drm_connector_list_iter_begin(dev, &conn_iter);
2746 	for_each_intel_connector_iter(connector, &conn_iter) {
2747 		struct drm_crtc *crtc;
2748 
2749 		if (!connector->base.state->best_encoder)
2750 			continue;
2751 
2752 		crtc = connector->base.state->crtc;
2753 		if (!crtc->state->active)
2754 			continue;
2755 
2756 		if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2757 			continue;
2758 
2759 		intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2760 
2761 		ret = intel_dp_sink_crc(intel_dp, crc);
2762 		if (ret)
2763 			goto out;
2764 
2765 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2766 			   crc[0], crc[1], crc[2],
2767 			   crc[3], crc[4], crc[5]);
2768 		goto out;
2769 	}
2770 	ret = -ENODEV;
2771 out:
2772 	drm_connector_list_iter_end(&conn_iter);
2773 	drm_modeset_unlock_all(dev);
2774 	return ret;
2775 }
2776 
2777 static int i915_energy_uJ(struct seq_file *m, void *data)
2778 {
2779 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2780 	unsigned long long power;
2781 	u32 units;
2782 
2783 	if (INTEL_GEN(dev_priv) < 6)
2784 		return -ENODEV;
2785 
2786 	intel_runtime_pm_get(dev_priv);
2787 
2788 	if (rdmsrl_safe(MSR_RAPL_POWER_UNIT, &power)) {
2789 		intel_runtime_pm_put(dev_priv);
2790 		return -ENODEV;
2791 	}
2792 
2793 	units = (power & 0x1f00) >> 8;
2794 	power = I915_READ(MCH_SECP_NRG_STTS);
2795 	power = (1000000 * power) >> units; /* convert to uJ */
2796 
2797 	intel_runtime_pm_put(dev_priv);
2798 
2799 	seq_printf(m, "%llu", power);
2800 
2801 	return 0;
2802 }
2803 
2804 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2805 {
2806 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2807 	struct pci_dev *pdev = dev_priv->drm.pdev;
2808 
2809 	if (!HAS_RUNTIME_PM(dev_priv))
2810 		seq_puts(m, "Runtime power management not supported\n");
2811 
2812 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2813 	seq_printf(m, "IRQs disabled: %s\n",
2814 		   yesno(!intel_irqs_enabled(dev_priv)));
2815 #ifdef CONFIG_PM
2816 	seq_printf(m, "Usage count: %d\n",
2817 		   atomic_read(&dev_priv->drm.dev->power.usage_count));
2818 #else
2819 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2820 #endif
2821 	seq_printf(m, "PCI device power state: %s [%d]\n",
2822 		   pci_power_name(pdev->current_state),
2823 		   pdev->current_state);
2824 
2825 	return 0;
2826 }
2827 
2828 static int i915_power_domain_info(struct seq_file *m, void *unused)
2829 {
2830 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2831 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2832 	int i;
2833 
2834 	mutex_lock(&power_domains->lock);
2835 
2836 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2837 	for (i = 0; i < power_domains->power_well_count; i++) {
2838 		struct i915_power_well *power_well;
2839 		enum intel_display_power_domain power_domain;
2840 
2841 		power_well = &power_domains->power_wells[i];
2842 		seq_printf(m, "%-25s %d\n", power_well->name,
2843 			   power_well->count);
2844 
2845 		for_each_power_domain(power_domain, power_well->domains)
2846 			seq_printf(m, "  %-23s %d\n",
2847 				 intel_display_power_domain_str(power_domain),
2848 				 power_domains->domain_use_count[power_domain]);
2849 	}
2850 
2851 	mutex_unlock(&power_domains->lock);
2852 
2853 	return 0;
2854 }
2855 
2856 static int i915_dmc_info(struct seq_file *m, void *unused)
2857 {
2858 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2859 	struct intel_csr *csr;
2860 
2861 	if (!HAS_CSR(dev_priv)) {
2862 		seq_puts(m, "not supported\n");
2863 		return 0;
2864 	}
2865 
2866 	csr = &dev_priv->csr;
2867 
2868 	intel_runtime_pm_get(dev_priv);
2869 
2870 	seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2871 	seq_printf(m, "path: %s\n", csr->fw_path);
2872 
2873 	if (!csr->dmc_payload)
2874 		goto out;
2875 
2876 	seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2877 		   CSR_VERSION_MINOR(csr->version));
2878 
2879 	if (IS_KABYLAKE(dev_priv) ||
2880 	    (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6))) {
2881 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2882 			   I915_READ(SKL_CSR_DC3_DC5_COUNT));
2883 		seq_printf(m, "DC5 -> DC6 count: %d\n",
2884 			   I915_READ(SKL_CSR_DC5_DC6_COUNT));
2885 	} else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2886 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2887 			   I915_READ(BXT_CSR_DC3_DC5_COUNT));
2888 	}
2889 
2890 out:
2891 	seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2892 	seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2893 	seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2894 
2895 	intel_runtime_pm_put(dev_priv);
2896 
2897 	return 0;
2898 }
2899 
2900 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2901 				 struct drm_display_mode *mode)
2902 {
2903 	int i;
2904 
2905 	for (i = 0; i < tabs; i++)
2906 		seq_putc(m, '\t');
2907 
2908 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2909 		   mode->base.id, mode->name,
2910 		   mode->vrefresh, mode->clock,
2911 		   mode->hdisplay, mode->hsync_start,
2912 		   mode->hsync_end, mode->htotal,
2913 		   mode->vdisplay, mode->vsync_start,
2914 		   mode->vsync_end, mode->vtotal,
2915 		   mode->type, mode->flags);
2916 }
2917 
2918 static void intel_encoder_info(struct seq_file *m,
2919 			       struct intel_crtc *intel_crtc,
2920 			       struct intel_encoder *intel_encoder)
2921 {
2922 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2923 	struct drm_device *dev = &dev_priv->drm;
2924 	struct drm_crtc *crtc = &intel_crtc->base;
2925 	struct intel_connector *intel_connector;
2926 	struct drm_encoder *encoder;
2927 
2928 	encoder = &intel_encoder->base;
2929 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2930 		   encoder->base.id, encoder->name);
2931 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2932 		struct drm_connector *connector = &intel_connector->base;
2933 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2934 			   connector->base.id,
2935 			   connector->name,
2936 			   drm_get_connector_status_name(connector->status));
2937 		if (connector->status == connector_status_connected) {
2938 			struct drm_display_mode *mode = &crtc->mode;
2939 			seq_printf(m, ", mode:\n");
2940 			intel_seq_print_mode(m, 2, mode);
2941 		} else {
2942 			seq_putc(m, '\n');
2943 		}
2944 	}
2945 }
2946 
2947 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2948 {
2949 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2950 	struct drm_device *dev = &dev_priv->drm;
2951 	struct drm_crtc *crtc = &intel_crtc->base;
2952 	struct intel_encoder *intel_encoder;
2953 	struct drm_plane_state *plane_state = crtc->primary->state;
2954 	struct drm_framebuffer *fb = plane_state->fb;
2955 
2956 	if (fb)
2957 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2958 			   fb->base.id, plane_state->src_x >> 16,
2959 			   plane_state->src_y >> 16, fb->width, fb->height);
2960 	else
2961 		seq_puts(m, "\tprimary plane disabled\n");
2962 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2963 		intel_encoder_info(m, intel_crtc, intel_encoder);
2964 }
2965 
2966 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2967 {
2968 	struct drm_display_mode *mode = panel->fixed_mode;
2969 
2970 	seq_printf(m, "\tfixed mode:\n");
2971 	intel_seq_print_mode(m, 2, mode);
2972 }
2973 
2974 static void intel_dp_info(struct seq_file *m,
2975 			  struct intel_connector *intel_connector)
2976 {
2977 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2978 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2979 
2980 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2981 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2982 	if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2983 		intel_panel_info(m, &intel_connector->panel);
2984 
2985 	drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2986 				&intel_dp->aux);
2987 }
2988 
2989 static void intel_dp_mst_info(struct seq_file *m,
2990 			  struct intel_connector *intel_connector)
2991 {
2992 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2993 	struct intel_dp_mst_encoder *intel_mst =
2994 		enc_to_mst(&intel_encoder->base);
2995 	struct intel_digital_port *intel_dig_port = intel_mst->primary;
2996 	struct intel_dp *intel_dp = &intel_dig_port->dp;
2997 	bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2998 					intel_connector->port);
2999 
3000 	seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
3001 }
3002 
3003 static void intel_hdmi_info(struct seq_file *m,
3004 			    struct intel_connector *intel_connector)
3005 {
3006 	struct intel_encoder *intel_encoder = intel_connector->encoder;
3007 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
3008 
3009 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
3010 }
3011 
3012 static void intel_lvds_info(struct seq_file *m,
3013 			    struct intel_connector *intel_connector)
3014 {
3015 	intel_panel_info(m, &intel_connector->panel);
3016 }
3017 
3018 static void intel_connector_info(struct seq_file *m,
3019 				 struct drm_connector *connector)
3020 {
3021 	struct intel_connector *intel_connector = to_intel_connector(connector);
3022 	struct intel_encoder *intel_encoder = intel_connector->encoder;
3023 	struct drm_display_mode *mode;
3024 
3025 	seq_printf(m, "connector %d: type %s, status: %s\n",
3026 		   connector->base.id, connector->name,
3027 		   drm_get_connector_status_name(connector->status));
3028 	if (connector->status == connector_status_connected) {
3029 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
3030 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
3031 			   connector->display_info.width_mm,
3032 			   connector->display_info.height_mm);
3033 		seq_printf(m, "\tsubpixel order: %s\n",
3034 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
3035 		seq_printf(m, "\tCEA rev: %d\n",
3036 			   connector->display_info.cea_rev);
3037 	}
3038 
3039 	if (!intel_encoder)
3040 		return;
3041 
3042 	switch (connector->connector_type) {
3043 	case DRM_MODE_CONNECTOR_DisplayPort:
3044 	case DRM_MODE_CONNECTOR_eDP:
3045 		if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
3046 			intel_dp_mst_info(m, intel_connector);
3047 		else
3048 			intel_dp_info(m, intel_connector);
3049 		break;
3050 	case DRM_MODE_CONNECTOR_LVDS:
3051 		if (intel_encoder->type == INTEL_OUTPUT_LVDS)
3052 			intel_lvds_info(m, intel_connector);
3053 		break;
3054 	case DRM_MODE_CONNECTOR_HDMIA:
3055 		if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
3056 		    intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
3057 			intel_hdmi_info(m, intel_connector);
3058 		break;
3059 	default:
3060 		break;
3061 	}
3062 
3063 	seq_printf(m, "\tmodes:\n");
3064 	list_for_each_entry(mode, &connector->modes, head)
3065 		intel_seq_print_mode(m, 2, mode);
3066 }
3067 
3068 static const char *plane_type(enum drm_plane_type type)
3069 {
3070 	switch (type) {
3071 	case DRM_PLANE_TYPE_OVERLAY:
3072 		return "OVL";
3073 	case DRM_PLANE_TYPE_PRIMARY:
3074 		return "PRI";
3075 	case DRM_PLANE_TYPE_CURSOR:
3076 		return "CUR";
3077 	/*
3078 	 * Deliberately omitting default: to generate compiler warnings
3079 	 * when a new drm_plane_type gets added.
3080 	 */
3081 	}
3082 
3083 	return "unknown";
3084 }
3085 
3086 static const char *plane_rotation(unsigned int rotation)
3087 {
3088 	static char buf[48];
3089 	/*
3090 	 * According to doc only one DRM_MODE_ROTATE_ is allowed but this
3091 	 * will print them all to visualize if the values are misused
3092 	 */
3093 	snprintf(buf, sizeof(buf),
3094 		 "%s%s%s%s%s%s(0x%08x)",
3095 		 (rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
3096 		 (rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
3097 		 (rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
3098 		 (rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
3099 		 (rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
3100 		 (rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
3101 		 rotation);
3102 
3103 	return buf;
3104 }
3105 
3106 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3107 {
3108 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3109 	struct drm_device *dev = &dev_priv->drm;
3110 	struct intel_plane *intel_plane;
3111 
3112 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3113 		struct drm_plane_state *state;
3114 		struct drm_plane *plane = &intel_plane->base;
3115 		struct drm_format_name_buf format_name;
3116 
3117 		if (!plane->state) {
3118 			seq_puts(m, "plane->state is NULL!\n");
3119 			continue;
3120 		}
3121 
3122 		state = plane->state;
3123 
3124 		if (state->fb) {
3125 			drm_get_format_name(state->fb->format->format,
3126 					    &format_name);
3127 		} else {
3128 			sprintf(format_name.str, "N/A");
3129 		}
3130 
3131 		seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3132 			   plane->base.id,
3133 			   plane_type(intel_plane->base.type),
3134 			   state->crtc_x, state->crtc_y,
3135 			   state->crtc_w, state->crtc_h,
3136 			   (state->src_x >> 16),
3137 			   ((state->src_x & 0xffff) * 15625) >> 10,
3138 			   (state->src_y >> 16),
3139 			   ((state->src_y & 0xffff) * 15625) >> 10,
3140 			   (state->src_w >> 16),
3141 			   ((state->src_w & 0xffff) * 15625) >> 10,
3142 			   (state->src_h >> 16),
3143 			   ((state->src_h & 0xffff) * 15625) >> 10,
3144 			   format_name.str,
3145 			   plane_rotation(state->rotation));
3146 	}
3147 }
3148 
3149 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3150 {
3151 	struct intel_crtc_state *pipe_config;
3152 	int num_scalers = intel_crtc->num_scalers;
3153 	int i;
3154 
3155 	pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3156 
3157 	/* Not all platformas have a scaler */
3158 	if (num_scalers) {
3159 		seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3160 			   num_scalers,
3161 			   pipe_config->scaler_state.scaler_users,
3162 			   pipe_config->scaler_state.scaler_id);
3163 
3164 		for (i = 0; i < num_scalers; i++) {
3165 			struct intel_scaler *sc =
3166 					&pipe_config->scaler_state.scalers[i];
3167 
3168 			seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3169 				   i, yesno(sc->in_use), sc->mode);
3170 		}
3171 		seq_puts(m, "\n");
3172 	} else {
3173 		seq_puts(m, "\tNo scalers available on this platform\n");
3174 	}
3175 }
3176 
3177 static int i915_display_info(struct seq_file *m, void *unused)
3178 {
3179 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3180 	struct drm_device *dev = &dev_priv->drm;
3181 	struct intel_crtc *crtc;
3182 	struct drm_connector *connector;
3183 	struct drm_connector_list_iter conn_iter;
3184 
3185 	intel_runtime_pm_get(dev_priv);
3186 	seq_printf(m, "CRTC info\n");
3187 	seq_printf(m, "---------\n");
3188 	for_each_intel_crtc(dev, crtc) {
3189 		struct intel_crtc_state *pipe_config;
3190 
3191 		drm_modeset_lock(&crtc->base.mutex, NULL);
3192 		pipe_config = to_intel_crtc_state(crtc->base.state);
3193 
3194 		seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3195 			   crtc->base.base.id, pipe_name(crtc->pipe),
3196 			   yesno(pipe_config->base.active),
3197 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3198 			   yesno(pipe_config->dither), pipe_config->pipe_bpp);
3199 
3200 		if (pipe_config->base.active) {
3201 			struct intel_plane *cursor =
3202 				to_intel_plane(crtc->base.cursor);
3203 
3204 			intel_crtc_info(m, crtc);
3205 
3206 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
3207 				   yesno(cursor->base.state->visible),
3208 				   cursor->base.state->crtc_x,
3209 				   cursor->base.state->crtc_y,
3210 				   cursor->base.state->crtc_w,
3211 				   cursor->base.state->crtc_h,
3212 				   cursor->cursor.base);
3213 			intel_scaler_info(m, crtc);
3214 			intel_plane_info(m, crtc);
3215 		}
3216 
3217 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3218 			   yesno(!crtc->cpu_fifo_underrun_disabled),
3219 			   yesno(!crtc->pch_fifo_underrun_disabled));
3220 		drm_modeset_unlock(&crtc->base.mutex);
3221 	}
3222 
3223 	seq_printf(m, "\n");
3224 	seq_printf(m, "Connector info\n");
3225 	seq_printf(m, "--------------\n");
3226 	mutex_lock(&dev->mode_config.mutex);
3227 	drm_connector_list_iter_begin(dev, &conn_iter);
3228 	drm_for_each_connector_iter(connector, &conn_iter)
3229 		intel_connector_info(m, connector);
3230 	drm_connector_list_iter_end(&conn_iter);
3231 	mutex_unlock(&dev->mode_config.mutex);
3232 
3233 	intel_runtime_pm_put(dev_priv);
3234 
3235 	return 0;
3236 }
3237 
3238 static int i915_engine_info(struct seq_file *m, void *unused)
3239 {
3240 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3241 	struct i915_gpu_error *error = &dev_priv->gpu_error;
3242 	struct intel_engine_cs *engine;
3243 	enum intel_engine_id id;
3244 
3245 	intel_runtime_pm_get(dev_priv);
3246 
3247 	seq_printf(m, "GT awake? %s\n",
3248 		   yesno(dev_priv->gt.awake));
3249 	seq_printf(m, "Global active requests: %d\n",
3250 		   dev_priv->gt.active_requests);
3251 
3252 	for_each_engine(engine, dev_priv, id) {
3253 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
3254 		struct drm_i915_gem_request *rq;
3255 		struct rb_node *rb;
3256 		u64 addr;
3257 
3258 		seq_printf(m, "%s\n", engine->name);
3259 		seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms], inflight %d\n",
3260 			   intel_engine_get_seqno(engine),
3261 			   intel_engine_last_submit(engine),
3262 			   engine->hangcheck.seqno,
3263 			   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp),
3264 			   engine->timeline->inflight_seqnos);
3265 		seq_printf(m, "\tReset count: %d\n",
3266 			   i915_reset_engine_count(error, engine));
3267 
3268 		rcu_read_lock();
3269 
3270 		seq_printf(m, "\tRequests:\n");
3271 
3272 		rq = list_first_entry(&engine->timeline->requests,
3273 				      struct drm_i915_gem_request, link);
3274 		if (&rq->link != &engine->timeline->requests)
3275 			print_request(m, rq, "\t\tfirst  ");
3276 
3277 		rq = list_last_entry(&engine->timeline->requests,
3278 				     struct drm_i915_gem_request, link);
3279 		if (&rq->link != &engine->timeline->requests)
3280 			print_request(m, rq, "\t\tlast   ");
3281 
3282 		rq = i915_gem_find_active_request(engine);
3283 		if (rq) {
3284 			print_request(m, rq, "\t\tactive ");
3285 			seq_printf(m,
3286 				   "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
3287 				   rq->head, rq->postfix, rq->tail,
3288 				   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
3289 				   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
3290 		}
3291 
3292 		seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
3293 			   I915_READ(RING_START(engine->mmio_base)),
3294 			   rq ? i915_ggtt_offset(rq->ring->vma) : 0);
3295 		seq_printf(m, "\tRING_HEAD:  0x%08x [0x%08x]\n",
3296 			   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
3297 			   rq ? rq->ring->head : 0);
3298 		seq_printf(m, "\tRING_TAIL:  0x%08x [0x%08x]\n",
3299 			   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
3300 			   rq ? rq->ring->tail : 0);
3301 		seq_printf(m, "\tRING_CTL:   0x%08x [%s]\n",
3302 			   I915_READ(RING_CTL(engine->mmio_base)),
3303 			   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
3304 
3305 		rcu_read_unlock();
3306 
3307 		addr = intel_engine_get_active_head(engine);
3308 		seq_printf(m, "\tACTHD:  0x%08x_%08x\n",
3309 			   upper_32_bits(addr), lower_32_bits(addr));
3310 		addr = intel_engine_get_last_batch_head(engine);
3311 		seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
3312 			   upper_32_bits(addr), lower_32_bits(addr));
3313 
3314 		if (i915.enable_execlists) {
3315 			u32 ptr, read, write;
3316 			unsigned int idx;
3317 
3318 			seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
3319 				   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
3320 				   I915_READ(RING_EXECLIST_STATUS_HI(engine)));
3321 
3322 			ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
3323 			read = GEN8_CSB_READ_PTR(ptr);
3324 			write = GEN8_CSB_WRITE_PTR(ptr);
3325 			seq_printf(m, "\tExeclist CSB read %d, write %d, interrupt posted? %s\n",
3326 				   read, write,
3327 				   yesno(test_bit(ENGINE_IRQ_EXECLIST,
3328 						  &engine->irq_posted)));
3329 			if (read >= GEN8_CSB_ENTRIES)
3330 				read = 0;
3331 			if (write >= GEN8_CSB_ENTRIES)
3332 				write = 0;
3333 			if (read > write)
3334 				write += GEN8_CSB_ENTRIES;
3335 			while (read < write) {
3336 				idx = ++read % GEN8_CSB_ENTRIES;
3337 				seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
3338 					   idx,
3339 					   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
3340 					   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
3341 			}
3342 
3343 			rcu_read_lock();
3344 			for (idx = 0; idx < ARRAY_SIZE(engine->execlist_port); idx++) {
3345 				unsigned int count;
3346 
3347 				rq = port_unpack(&engine->execlist_port[idx],
3348 						 &count);
3349 				if (rq) {
3350 					seq_printf(m, "\t\tELSP[%d] count=%d, ",
3351 						   idx, count);
3352 					print_request(m, rq, "rq: ");
3353 				} else {
3354 					seq_printf(m, "\t\tELSP[%d] idle\n",
3355 						   idx);
3356 				}
3357 			}
3358 			rcu_read_unlock();
3359 
3360 			spin_lock_irq(&engine->timeline->lock);
3361 			for (rb = engine->execlist_first; rb; rb = rb_next(rb)){
3362 				struct i915_priolist *p =
3363 					rb_entry(rb, typeof(*p), node);
3364 
3365 				list_for_each_entry(rq, &p->requests,
3366 						    priotree.link)
3367 					print_request(m, rq, "\t\tQ ");
3368 			}
3369 			spin_unlock_irq(&engine->timeline->lock);
3370 		} else if (INTEL_GEN(dev_priv) > 6) {
3371 			seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
3372 				   I915_READ(RING_PP_DIR_BASE(engine)));
3373 			seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
3374 				   I915_READ(RING_PP_DIR_BASE_READ(engine)));
3375 			seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
3376 				   I915_READ(RING_PP_DIR_DCLV(engine)));
3377 		}
3378 
3379 		spin_lock_irq(&b->rb_lock);
3380 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
3381 			struct intel_wait *w = rb_entry(rb, typeof(*w), node);
3382 
3383 			seq_printf(m, "\t%s [%d] waiting for %x\n",
3384 				   w->tsk->comm, w->tsk->pid, w->seqno);
3385 		}
3386 		spin_unlock_irq(&b->rb_lock);
3387 
3388 		seq_puts(m, "\n");
3389 	}
3390 
3391 	intel_runtime_pm_put(dev_priv);
3392 
3393 	return 0;
3394 }
3395 
3396 static int i915_semaphore_status(struct seq_file *m, void *unused)
3397 {
3398 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3399 	struct drm_device *dev = &dev_priv->drm;
3400 	struct intel_engine_cs *engine;
3401 	int num_rings = INTEL_INFO(dev_priv)->num_rings;
3402 	enum intel_engine_id id;
3403 	int j, ret;
3404 
3405 	if (!i915.semaphores) {
3406 		seq_puts(m, "Semaphores are disabled\n");
3407 		return 0;
3408 	}
3409 
3410 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3411 	if (ret)
3412 		return ret;
3413 	intel_runtime_pm_get(dev_priv);
3414 
3415 	if (IS_BROADWELL(dev_priv)) {
3416 		struct page *page;
3417 		uint64_t *seqno;
3418 
3419 		page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3420 
3421 		seqno = (uint64_t *)kmap_atomic(page);
3422 		for_each_engine(engine, dev_priv, id) {
3423 			uint64_t offset;
3424 
3425 			seq_printf(m, "%s\n", engine->name);
3426 
3427 			seq_puts(m, "  Last signal:");
3428 			for (j = 0; j < num_rings; j++) {
3429 				offset = id * I915_NUM_ENGINES + j;
3430 				seq_printf(m, "0x%08llx (0x%02llx) ",
3431 					   seqno[offset], offset * 8);
3432 			}
3433 			seq_putc(m, '\n');
3434 
3435 			seq_puts(m, "  Last wait:  ");
3436 			for (j = 0; j < num_rings; j++) {
3437 				offset = id + (j * I915_NUM_ENGINES);
3438 				seq_printf(m, "0x%08llx (0x%02llx) ",
3439 					   seqno[offset], offset * 8);
3440 			}
3441 			seq_putc(m, '\n');
3442 
3443 		}
3444 		kunmap_atomic(seqno);
3445 	} else {
3446 		seq_puts(m, "  Last signal:");
3447 		for_each_engine(engine, dev_priv, id)
3448 			for (j = 0; j < num_rings; j++)
3449 				seq_printf(m, "0x%08x\n",
3450 					   I915_READ(engine->semaphore.mbox.signal[j]));
3451 		seq_putc(m, '\n');
3452 	}
3453 
3454 	intel_runtime_pm_put(dev_priv);
3455 	mutex_unlock(&dev->struct_mutex);
3456 	return 0;
3457 }
3458 
3459 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3460 {
3461 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3462 	struct drm_device *dev = &dev_priv->drm;
3463 	int i;
3464 
3465 	drm_modeset_lock_all(dev);
3466 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3467 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3468 
3469 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3470 		seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3471 			   pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
3472 		seq_printf(m, " tracked hardware state:\n");
3473 		seq_printf(m, " dpll:    0x%08x\n", pll->state.hw_state.dpll);
3474 		seq_printf(m, " dpll_md: 0x%08x\n",
3475 			   pll->state.hw_state.dpll_md);
3476 		seq_printf(m, " fp0:     0x%08x\n", pll->state.hw_state.fp0);
3477 		seq_printf(m, " fp1:     0x%08x\n", pll->state.hw_state.fp1);
3478 		seq_printf(m, " wrpll:   0x%08x\n", pll->state.hw_state.wrpll);
3479 	}
3480 	drm_modeset_unlock_all(dev);
3481 
3482 	return 0;
3483 }
3484 
3485 static int i915_wa_registers(struct seq_file *m, void *unused)
3486 {
3487 	int i;
3488 	int ret;
3489 	struct intel_engine_cs *engine;
3490 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3491 	struct drm_device *dev = &dev_priv->drm;
3492 	struct i915_workarounds *workarounds = &dev_priv->workarounds;
3493 	enum intel_engine_id id;
3494 
3495 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3496 	if (ret)
3497 		return ret;
3498 
3499 	intel_runtime_pm_get(dev_priv);
3500 
3501 	seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3502 	for_each_engine(engine, dev_priv, id)
3503 		seq_printf(m, "HW whitelist count for %s: %d\n",
3504 			   engine->name, workarounds->hw_whitelist_count[id]);
3505 	for (i = 0; i < workarounds->count; ++i) {
3506 		i915_reg_t addr;
3507 		u32 mask, value, read;
3508 		bool ok;
3509 
3510 		addr = workarounds->reg[i].addr;
3511 		mask = workarounds->reg[i].mask;
3512 		value = workarounds->reg[i].value;
3513 		read = I915_READ(addr);
3514 		ok = (value & mask) == (read & mask);
3515 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3516 			   i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3517 	}
3518 
3519 	intel_runtime_pm_put(dev_priv);
3520 	mutex_unlock(&dev->struct_mutex);
3521 
3522 	return 0;
3523 }
3524 
3525 static int i915_ddb_info(struct seq_file *m, void *unused)
3526 {
3527 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3528 	struct drm_device *dev = &dev_priv->drm;
3529 	struct skl_ddb_allocation *ddb;
3530 	struct skl_ddb_entry *entry;
3531 	enum pipe pipe;
3532 	int plane;
3533 
3534 	if (INTEL_GEN(dev_priv) < 9)
3535 		return 0;
3536 
3537 	drm_modeset_lock_all(dev);
3538 
3539 	ddb = &dev_priv->wm.skl_hw.ddb;
3540 
3541 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3542 
3543 	for_each_pipe(dev_priv, pipe) {
3544 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3545 
3546 		for_each_universal_plane(dev_priv, pipe, plane) {
3547 			entry = &ddb->plane[pipe][plane];
3548 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3549 				   entry->start, entry->end,
3550 				   skl_ddb_entry_size(entry));
3551 		}
3552 
3553 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3554 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3555 			   entry->end, skl_ddb_entry_size(entry));
3556 	}
3557 
3558 	drm_modeset_unlock_all(dev);
3559 
3560 	return 0;
3561 }
3562 
3563 static void drrs_status_per_crtc(struct seq_file *m,
3564 				 struct drm_device *dev,
3565 				 struct intel_crtc *intel_crtc)
3566 {
3567 	struct drm_i915_private *dev_priv = to_i915(dev);
3568 	struct i915_drrs *drrs = &dev_priv->drrs;
3569 	int vrefresh = 0;
3570 	struct drm_connector *connector;
3571 	struct drm_connector_list_iter conn_iter;
3572 
3573 	drm_connector_list_iter_begin(dev, &conn_iter);
3574 	drm_for_each_connector_iter(connector, &conn_iter) {
3575 		if (connector->state->crtc != &intel_crtc->base)
3576 			continue;
3577 
3578 		seq_printf(m, "%s:\n", connector->name);
3579 	}
3580 	drm_connector_list_iter_end(&conn_iter);
3581 
3582 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3583 		seq_puts(m, "\tVBT: DRRS_type: Static");
3584 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3585 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3586 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3587 		seq_puts(m, "\tVBT: DRRS_type: None");
3588 	else
3589 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3590 
3591 	seq_puts(m, "\n\n");
3592 
3593 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3594 		struct intel_panel *panel;
3595 
3596 		mutex_lock(&drrs->mutex);
3597 		/* DRRS Supported */
3598 		seq_puts(m, "\tDRRS Supported: Yes\n");
3599 
3600 		/* disable_drrs() will make drrs->dp NULL */
3601 		if (!drrs->dp) {
3602 			seq_puts(m, "Idleness DRRS: Disabled");
3603 			mutex_unlock(&drrs->mutex);
3604 			return;
3605 		}
3606 
3607 		panel = &drrs->dp->attached_connector->panel;
3608 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3609 					drrs->busy_frontbuffer_bits);
3610 
3611 		seq_puts(m, "\n\t\t");
3612 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3613 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3614 			vrefresh = panel->fixed_mode->vrefresh;
3615 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3616 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3617 			vrefresh = panel->downclock_mode->vrefresh;
3618 		} else {
3619 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3620 						drrs->refresh_rate_type);
3621 			mutex_unlock(&drrs->mutex);
3622 			return;
3623 		}
3624 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3625 
3626 		seq_puts(m, "\n\t\t");
3627 		mutex_unlock(&drrs->mutex);
3628 	} else {
3629 		/* DRRS not supported. Print the VBT parameter*/
3630 		seq_puts(m, "\tDRRS Supported : No");
3631 	}
3632 	seq_puts(m, "\n");
3633 }
3634 
3635 static int i915_drrs_status(struct seq_file *m, void *unused)
3636 {
3637 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3638 	struct drm_device *dev = &dev_priv->drm;
3639 	struct intel_crtc *intel_crtc;
3640 	int active_crtc_cnt = 0;
3641 
3642 	drm_modeset_lock_all(dev);
3643 	for_each_intel_crtc(dev, intel_crtc) {
3644 		if (intel_crtc->base.state->active) {
3645 			active_crtc_cnt++;
3646 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3647 
3648 			drrs_status_per_crtc(m, dev, intel_crtc);
3649 		}
3650 	}
3651 	drm_modeset_unlock_all(dev);
3652 
3653 	if (!active_crtc_cnt)
3654 		seq_puts(m, "No active crtc found\n");
3655 
3656 	return 0;
3657 }
3658 
3659 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3660 {
3661 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3662 	struct drm_device *dev = &dev_priv->drm;
3663 	struct intel_encoder *intel_encoder;
3664 	struct intel_digital_port *intel_dig_port;
3665 	struct drm_connector *connector;
3666 	struct drm_connector_list_iter conn_iter;
3667 
3668 	drm_connector_list_iter_begin(dev, &conn_iter);
3669 	drm_for_each_connector_iter(connector, &conn_iter) {
3670 		if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3671 			continue;
3672 
3673 		intel_encoder = intel_attached_encoder(connector);
3674 		if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3675 			continue;
3676 
3677 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3678 		if (!intel_dig_port->dp.can_mst)
3679 			continue;
3680 
3681 		seq_printf(m, "MST Source Port %c\n",
3682 			   port_name(intel_dig_port->port));
3683 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3684 	}
3685 	drm_connector_list_iter_end(&conn_iter);
3686 
3687 	return 0;
3688 }
3689 
3690 static ssize_t i915_displayport_test_active_write(struct file *file,
3691 						  const char __user *ubuf,
3692 						  size_t len, loff_t *offp)
3693 {
3694 	char *input_buffer;
3695 	int status = 0;
3696 	struct drm_device *dev;
3697 	struct drm_connector *connector;
3698 	struct drm_connector_list_iter conn_iter;
3699 	struct intel_dp *intel_dp;
3700 	int val = 0;
3701 
3702 	dev = ((struct seq_file *)file->private_data)->private;
3703 
3704 	if (len == 0)
3705 		return 0;
3706 
3707 	input_buffer = memdup_user_nul(ubuf, len);
3708 	if (IS_ERR(input_buffer))
3709 		return PTR_ERR(input_buffer);
3710 
3711 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
3712 
3713 	drm_connector_list_iter_begin(dev, &conn_iter);
3714 	drm_for_each_connector_iter(connector, &conn_iter) {
3715 		struct intel_encoder *encoder;
3716 
3717 		if (connector->connector_type !=
3718 		    DRM_MODE_CONNECTOR_DisplayPort)
3719 			continue;
3720 
3721 		encoder = to_intel_encoder(connector->encoder);
3722 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3723 			continue;
3724 
3725 		if (encoder && connector->status == connector_status_connected) {
3726 			intel_dp = enc_to_intel_dp(&encoder->base);
3727 			status = kstrtoint(input_buffer, 10, &val);
3728 			if (status < 0)
3729 				break;
3730 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
3731 			/* To prevent erroneous activation of the compliance
3732 			 * testing code, only accept an actual value of 1 here
3733 			 */
3734 			if (val == 1)
3735 				intel_dp->compliance.test_active = 1;
3736 			else
3737 				intel_dp->compliance.test_active = 0;
3738 		}
3739 	}
3740 	drm_connector_list_iter_end(&conn_iter);
3741 	kfree(input_buffer);
3742 	if (status < 0)
3743 		return status;
3744 
3745 	*offp += len;
3746 	return len;
3747 }
3748 
3749 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
3750 {
3751 	struct drm_device *dev = m->private;
3752 	struct drm_connector *connector;
3753 	struct drm_connector_list_iter conn_iter;
3754 	struct intel_dp *intel_dp;
3755 
3756 	drm_connector_list_iter_begin(dev, &conn_iter);
3757 	drm_for_each_connector_iter(connector, &conn_iter) {
3758 		struct intel_encoder *encoder;
3759 
3760 		if (connector->connector_type !=
3761 		    DRM_MODE_CONNECTOR_DisplayPort)
3762 			continue;
3763 
3764 		encoder = to_intel_encoder(connector->encoder);
3765 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3766 			continue;
3767 
3768 		if (encoder && connector->status == connector_status_connected) {
3769 			intel_dp = enc_to_intel_dp(&encoder->base);
3770 			if (intel_dp->compliance.test_active)
3771 				seq_puts(m, "1");
3772 			else
3773 				seq_puts(m, "0");
3774 		} else
3775 			seq_puts(m, "0");
3776 	}
3777 	drm_connector_list_iter_end(&conn_iter);
3778 
3779 	return 0;
3780 }
3781 
3782 static int i915_displayport_test_active_open(struct inode *inode,
3783 					     struct file *file)
3784 {
3785 	struct drm_i915_private *dev_priv = inode->i_private;
3786 
3787 	return single_open(file, i915_displayport_test_active_show,
3788 			   &dev_priv->drm);
3789 }
3790 
3791 static const struct file_operations i915_displayport_test_active_fops = {
3792 	.owner = THIS_MODULE,
3793 	.open = i915_displayport_test_active_open,
3794 	.read = seq_read,
3795 	.llseek = seq_lseek,
3796 	.release = single_release,
3797 	.write = i915_displayport_test_active_write
3798 };
3799 
3800 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
3801 {
3802 	struct drm_device *dev = m->private;
3803 	struct drm_connector *connector;
3804 	struct drm_connector_list_iter conn_iter;
3805 	struct intel_dp *intel_dp;
3806 
3807 	drm_connector_list_iter_begin(dev, &conn_iter);
3808 	drm_for_each_connector_iter(connector, &conn_iter) {
3809 		struct intel_encoder *encoder;
3810 
3811 		if (connector->connector_type !=
3812 		    DRM_MODE_CONNECTOR_DisplayPort)
3813 			continue;
3814 
3815 		encoder = to_intel_encoder(connector->encoder);
3816 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3817 			continue;
3818 
3819 		if (encoder && connector->status == connector_status_connected) {
3820 			intel_dp = enc_to_intel_dp(&encoder->base);
3821 			if (intel_dp->compliance.test_type ==
3822 			    DP_TEST_LINK_EDID_READ)
3823 				seq_printf(m, "%lx",
3824 					   intel_dp->compliance.test_data.edid);
3825 			else if (intel_dp->compliance.test_type ==
3826 				 DP_TEST_LINK_VIDEO_PATTERN) {
3827 				seq_printf(m, "hdisplay: %d\n",
3828 					   intel_dp->compliance.test_data.hdisplay);
3829 				seq_printf(m, "vdisplay: %d\n",
3830 					   intel_dp->compliance.test_data.vdisplay);
3831 				seq_printf(m, "bpc: %u\n",
3832 					   intel_dp->compliance.test_data.bpc);
3833 			}
3834 		} else
3835 			seq_puts(m, "0");
3836 	}
3837 	drm_connector_list_iter_end(&conn_iter);
3838 
3839 	return 0;
3840 }
3841 static int i915_displayport_test_data_open(struct inode *inode,
3842 					   struct file *file)
3843 {
3844 	struct drm_i915_private *dev_priv = inode->i_private;
3845 
3846 	return single_open(file, i915_displayport_test_data_show,
3847 			   &dev_priv->drm);
3848 }
3849 
3850 static const struct file_operations i915_displayport_test_data_fops = {
3851 	.owner = THIS_MODULE,
3852 	.open = i915_displayport_test_data_open,
3853 	.read = seq_read,
3854 	.llseek = seq_lseek,
3855 	.release = single_release
3856 };
3857 
3858 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
3859 {
3860 	struct drm_device *dev = m->private;
3861 	struct drm_connector *connector;
3862 	struct drm_connector_list_iter conn_iter;
3863 	struct intel_dp *intel_dp;
3864 
3865 	drm_connector_list_iter_begin(dev, &conn_iter);
3866 	drm_for_each_connector_iter(connector, &conn_iter) {
3867 		struct intel_encoder *encoder;
3868 
3869 		if (connector->connector_type !=
3870 		    DRM_MODE_CONNECTOR_DisplayPort)
3871 			continue;
3872 
3873 		encoder = to_intel_encoder(connector->encoder);
3874 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3875 			continue;
3876 
3877 		if (encoder && connector->status == connector_status_connected) {
3878 			intel_dp = enc_to_intel_dp(&encoder->base);
3879 			seq_printf(m, "%02lx", intel_dp->compliance.test_type);
3880 		} else
3881 			seq_puts(m, "0");
3882 	}
3883 	drm_connector_list_iter_end(&conn_iter);
3884 
3885 	return 0;
3886 }
3887 
3888 static int i915_displayport_test_type_open(struct inode *inode,
3889 				       struct file *file)
3890 {
3891 	struct drm_i915_private *dev_priv = inode->i_private;
3892 
3893 	return single_open(file, i915_displayport_test_type_show,
3894 			   &dev_priv->drm);
3895 }
3896 
3897 static const struct file_operations i915_displayport_test_type_fops = {
3898 	.owner = THIS_MODULE,
3899 	.open = i915_displayport_test_type_open,
3900 	.read = seq_read,
3901 	.llseek = seq_lseek,
3902 	.release = single_release
3903 };
3904 
3905 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3906 {
3907 	struct drm_i915_private *dev_priv = m->private;
3908 	struct drm_device *dev = &dev_priv->drm;
3909 	int level;
3910 	int num_levels;
3911 
3912 	if (IS_CHERRYVIEW(dev_priv))
3913 		num_levels = 3;
3914 	else if (IS_VALLEYVIEW(dev_priv))
3915 		num_levels = 1;
3916 	else if (IS_G4X(dev_priv))
3917 		num_levels = 3;
3918 	else
3919 		num_levels = ilk_wm_max_level(dev_priv) + 1;
3920 
3921 	drm_modeset_lock_all(dev);
3922 
3923 	for (level = 0; level < num_levels; level++) {
3924 		unsigned int latency = wm[level];
3925 
3926 		/*
3927 		 * - WM1+ latency values in 0.5us units
3928 		 * - latencies are in us on gen9/vlv/chv
3929 		 */
3930 		if (INTEL_GEN(dev_priv) >= 9 ||
3931 		    IS_VALLEYVIEW(dev_priv) ||
3932 		    IS_CHERRYVIEW(dev_priv) ||
3933 		    IS_G4X(dev_priv))
3934 			latency *= 10;
3935 		else if (level > 0)
3936 			latency *= 5;
3937 
3938 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
3939 			   level, wm[level], latency / 10, latency % 10);
3940 	}
3941 
3942 	drm_modeset_unlock_all(dev);
3943 }
3944 
3945 static int pri_wm_latency_show(struct seq_file *m, void *data)
3946 {
3947 	struct drm_i915_private *dev_priv = m->private;
3948 	const uint16_t *latencies;
3949 
3950 	if (INTEL_GEN(dev_priv) >= 9)
3951 		latencies = dev_priv->wm.skl_latency;
3952 	else
3953 		latencies = dev_priv->wm.pri_latency;
3954 
3955 	wm_latency_show(m, latencies);
3956 
3957 	return 0;
3958 }
3959 
3960 static int spr_wm_latency_show(struct seq_file *m, void *data)
3961 {
3962 	struct drm_i915_private *dev_priv = m->private;
3963 	const uint16_t *latencies;
3964 
3965 	if (INTEL_GEN(dev_priv) >= 9)
3966 		latencies = dev_priv->wm.skl_latency;
3967 	else
3968 		latencies = dev_priv->wm.spr_latency;
3969 
3970 	wm_latency_show(m, latencies);
3971 
3972 	return 0;
3973 }
3974 
3975 static int cur_wm_latency_show(struct seq_file *m, void *data)
3976 {
3977 	struct drm_i915_private *dev_priv = m->private;
3978 	const uint16_t *latencies;
3979 
3980 	if (INTEL_GEN(dev_priv) >= 9)
3981 		latencies = dev_priv->wm.skl_latency;
3982 	else
3983 		latencies = dev_priv->wm.cur_latency;
3984 
3985 	wm_latency_show(m, latencies);
3986 
3987 	return 0;
3988 }
3989 
3990 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3991 {
3992 	struct drm_i915_private *dev_priv = inode->i_private;
3993 
3994 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
3995 		return -ENODEV;
3996 
3997 	return single_open(file, pri_wm_latency_show, dev_priv);
3998 }
3999 
4000 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4001 {
4002 	struct drm_i915_private *dev_priv = inode->i_private;
4003 
4004 	if (HAS_GMCH_DISPLAY(dev_priv))
4005 		return -ENODEV;
4006 
4007 	return single_open(file, spr_wm_latency_show, dev_priv);
4008 }
4009 
4010 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4011 {
4012 	struct drm_i915_private *dev_priv = inode->i_private;
4013 
4014 	if (HAS_GMCH_DISPLAY(dev_priv))
4015 		return -ENODEV;
4016 
4017 	return single_open(file, cur_wm_latency_show, dev_priv);
4018 }
4019 
4020 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4021 				size_t len, loff_t *offp, uint16_t wm[8])
4022 {
4023 	struct seq_file *m = file->private_data;
4024 	struct drm_i915_private *dev_priv = m->private;
4025 	struct drm_device *dev = &dev_priv->drm;
4026 	uint16_t new[8] = { 0 };
4027 	int num_levels;
4028 	int level;
4029 	int ret;
4030 	char tmp[32];
4031 
4032 	if (IS_CHERRYVIEW(dev_priv))
4033 		num_levels = 3;
4034 	else if (IS_VALLEYVIEW(dev_priv))
4035 		num_levels = 1;
4036 	else if (IS_G4X(dev_priv))
4037 		num_levels = 3;
4038 	else
4039 		num_levels = ilk_wm_max_level(dev_priv) + 1;
4040 
4041 	if (len >= sizeof(tmp))
4042 		return -EINVAL;
4043 
4044 	if (copy_from_user(tmp, ubuf, len))
4045 		return -EFAULT;
4046 
4047 	tmp[len] = '\0';
4048 
4049 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4050 		     &new[0], &new[1], &new[2], &new[3],
4051 		     &new[4], &new[5], &new[6], &new[7]);
4052 	if (ret != num_levels)
4053 		return -EINVAL;
4054 
4055 	drm_modeset_lock_all(dev);
4056 
4057 	for (level = 0; level < num_levels; level++)
4058 		wm[level] = new[level];
4059 
4060 	drm_modeset_unlock_all(dev);
4061 
4062 	return len;
4063 }
4064 
4065 
4066 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4067 				    size_t len, loff_t *offp)
4068 {
4069 	struct seq_file *m = file->private_data;
4070 	struct drm_i915_private *dev_priv = m->private;
4071 	uint16_t *latencies;
4072 
4073 	if (INTEL_GEN(dev_priv) >= 9)
4074 		latencies = dev_priv->wm.skl_latency;
4075 	else
4076 		latencies = dev_priv->wm.pri_latency;
4077 
4078 	return wm_latency_write(file, ubuf, len, offp, latencies);
4079 }
4080 
4081 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4082 				    size_t len, loff_t *offp)
4083 {
4084 	struct seq_file *m = file->private_data;
4085 	struct drm_i915_private *dev_priv = m->private;
4086 	uint16_t *latencies;
4087 
4088 	if (INTEL_GEN(dev_priv) >= 9)
4089 		latencies = dev_priv->wm.skl_latency;
4090 	else
4091 		latencies = dev_priv->wm.spr_latency;
4092 
4093 	return wm_latency_write(file, ubuf, len, offp, latencies);
4094 }
4095 
4096 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4097 				    size_t len, loff_t *offp)
4098 {
4099 	struct seq_file *m = file->private_data;
4100 	struct drm_i915_private *dev_priv = m->private;
4101 	uint16_t *latencies;
4102 
4103 	if (INTEL_GEN(dev_priv) >= 9)
4104 		latencies = dev_priv->wm.skl_latency;
4105 	else
4106 		latencies = dev_priv->wm.cur_latency;
4107 
4108 	return wm_latency_write(file, ubuf, len, offp, latencies);
4109 }
4110 
4111 static const struct file_operations i915_pri_wm_latency_fops = {
4112 	.owner = THIS_MODULE,
4113 	.open = pri_wm_latency_open,
4114 	.read = seq_read,
4115 	.llseek = seq_lseek,
4116 	.release = single_release,
4117 	.write = pri_wm_latency_write
4118 };
4119 
4120 static const struct file_operations i915_spr_wm_latency_fops = {
4121 	.owner = THIS_MODULE,
4122 	.open = spr_wm_latency_open,
4123 	.read = seq_read,
4124 	.llseek = seq_lseek,
4125 	.release = single_release,
4126 	.write = spr_wm_latency_write
4127 };
4128 
4129 static const struct file_operations i915_cur_wm_latency_fops = {
4130 	.owner = THIS_MODULE,
4131 	.open = cur_wm_latency_open,
4132 	.read = seq_read,
4133 	.llseek = seq_lseek,
4134 	.release = single_release,
4135 	.write = cur_wm_latency_write
4136 };
4137 
4138 static int
4139 i915_wedged_get(void *data, u64 *val)
4140 {
4141 	struct drm_i915_private *dev_priv = data;
4142 
4143 	*val = i915_terminally_wedged(&dev_priv->gpu_error);
4144 
4145 	return 0;
4146 }
4147 
4148 static int
4149 i915_wedged_set(void *data, u64 val)
4150 {
4151 	struct drm_i915_private *i915 = data;
4152 	struct intel_engine_cs *engine;
4153 	unsigned int tmp;
4154 
4155 	/*
4156 	 * There is no safeguard against this debugfs entry colliding
4157 	 * with the hangcheck calling same i915_handle_error() in
4158 	 * parallel, causing an explosion. For now we assume that the
4159 	 * test harness is responsible enough not to inject gpu hangs
4160 	 * while it is writing to 'i915_wedged'
4161 	 */
4162 
4163 	if (i915_reset_backoff(&i915->gpu_error))
4164 		return -EAGAIN;
4165 
4166 	for_each_engine_masked(engine, i915, val, tmp) {
4167 		engine->hangcheck.seqno = intel_engine_get_seqno(engine);
4168 		engine->hangcheck.stalled = true;
4169 	}
4170 
4171 	i915_handle_error(i915, val, "Manually setting wedged to %llu", val);
4172 
4173 	wait_on_bit(&i915->gpu_error.flags,
4174 		    I915_RESET_HANDOFF,
4175 		    TASK_UNINTERRUPTIBLE);
4176 
4177 	return 0;
4178 }
4179 
4180 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4181 			i915_wedged_get, i915_wedged_set,
4182 			"%llu\n");
4183 
4184 static int
4185 fault_irq_set(struct drm_i915_private *i915,
4186 	      unsigned long *irq,
4187 	      unsigned long val)
4188 {
4189 	int err;
4190 
4191 	err = mutex_lock_interruptible(&i915->drm.struct_mutex);
4192 	if (err)
4193 		return err;
4194 
4195 	err = i915_gem_wait_for_idle(i915,
4196 				     I915_WAIT_LOCKED |
4197 				     I915_WAIT_INTERRUPTIBLE);
4198 	if (err)
4199 		goto err_unlock;
4200 
4201 	*irq = val;
4202 	mutex_unlock(&i915->drm.struct_mutex);
4203 
4204 	/* Flush idle worker to disarm irq */
4205 	while (flush_delayed_work(&i915->gt.idle_work))
4206 		;
4207 
4208 	return 0;
4209 
4210 err_unlock:
4211 	mutex_unlock(&i915->drm.struct_mutex);
4212 	return err;
4213 }
4214 
4215 static int
4216 i915_ring_missed_irq_get(void *data, u64 *val)
4217 {
4218 	struct drm_i915_private *dev_priv = data;
4219 
4220 	*val = dev_priv->gpu_error.missed_irq_rings;
4221 	return 0;
4222 }
4223 
4224 static int
4225 i915_ring_missed_irq_set(void *data, u64 val)
4226 {
4227 	struct drm_i915_private *i915 = data;
4228 
4229 	return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
4230 }
4231 
4232 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4233 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4234 			"0x%08llx\n");
4235 
4236 static int
4237 i915_ring_test_irq_get(void *data, u64 *val)
4238 {
4239 	struct drm_i915_private *dev_priv = data;
4240 
4241 	*val = dev_priv->gpu_error.test_irq_rings;
4242 
4243 	return 0;
4244 }
4245 
4246 static int
4247 i915_ring_test_irq_set(void *data, u64 val)
4248 {
4249 	struct drm_i915_private *i915 = data;
4250 
4251 	val &= INTEL_INFO(i915)->ring_mask;
4252 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4253 
4254 	return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
4255 }
4256 
4257 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4258 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4259 			"0x%08llx\n");
4260 
4261 #define DROP_UNBOUND 0x1
4262 #define DROP_BOUND 0x2
4263 #define DROP_RETIRE 0x4
4264 #define DROP_ACTIVE 0x8
4265 #define DROP_FREED 0x10
4266 #define DROP_SHRINK_ALL 0x20
4267 #define DROP_ALL (DROP_UNBOUND	| \
4268 		  DROP_BOUND	| \
4269 		  DROP_RETIRE	| \
4270 		  DROP_ACTIVE	| \
4271 		  DROP_FREED	| \
4272 		  DROP_SHRINK_ALL)
4273 static int
4274 i915_drop_caches_get(void *data, u64 *val)
4275 {
4276 	*val = DROP_ALL;
4277 
4278 	return 0;
4279 }
4280 
4281 static int
4282 i915_drop_caches_set(void *data, u64 val)
4283 {
4284 	struct drm_i915_private *dev_priv = data;
4285 	struct drm_device *dev = &dev_priv->drm;
4286 	int ret = 0;
4287 
4288 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4289 
4290 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4291 	 * on ioctls on -EAGAIN. */
4292 	if (val & (DROP_ACTIVE | DROP_RETIRE)) {
4293 		ret = mutex_lock_interruptible(&dev->struct_mutex);
4294 		if (ret)
4295 			return ret;
4296 
4297 		if (val & DROP_ACTIVE)
4298 			ret = i915_gem_wait_for_idle(dev_priv,
4299 						     I915_WAIT_INTERRUPTIBLE |
4300 						     I915_WAIT_LOCKED);
4301 
4302 		if (val & DROP_RETIRE)
4303 			i915_gem_retire_requests(dev_priv);
4304 
4305 		mutex_unlock(&dev->struct_mutex);
4306 	}
4307 
4308 	lockdep_set_current_reclaim_state(GFP_KERNEL);
4309 	if (val & DROP_BOUND)
4310 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4311 
4312 	if (val & DROP_UNBOUND)
4313 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4314 
4315 	if (val & DROP_SHRINK_ALL)
4316 		i915_gem_shrink_all(dev_priv);
4317 	lockdep_clear_current_reclaim_state();
4318 
4319 	if (val & DROP_FREED) {
4320 		synchronize_rcu();
4321 		i915_gem_drain_freed_objects(dev_priv);
4322 	}
4323 
4324 	return ret;
4325 }
4326 
4327 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4328 			i915_drop_caches_get, i915_drop_caches_set,
4329 			"0x%08llx\n");
4330 
4331 static int
4332 i915_max_freq_get(void *data, u64 *val)
4333 {
4334 	struct drm_i915_private *dev_priv = data;
4335 
4336 	if (INTEL_GEN(dev_priv) < 6)
4337 		return -ENODEV;
4338 
4339 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4340 	return 0;
4341 }
4342 
4343 static int
4344 i915_max_freq_set(void *data, u64 val)
4345 {
4346 	struct drm_i915_private *dev_priv = data;
4347 	u32 hw_max, hw_min;
4348 	int ret;
4349 
4350 	if (INTEL_GEN(dev_priv) < 6)
4351 		return -ENODEV;
4352 
4353 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4354 
4355 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4356 	if (ret)
4357 		return ret;
4358 
4359 	/*
4360 	 * Turbo will still be enabled, but won't go above the set value.
4361 	 */
4362 	val = intel_freq_opcode(dev_priv, val);
4363 
4364 	hw_max = dev_priv->rps.max_freq;
4365 	hw_min = dev_priv->rps.min_freq;
4366 
4367 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4368 		mutex_unlock(&dev_priv->rps.hw_lock);
4369 		return -EINVAL;
4370 	}
4371 
4372 	dev_priv->rps.max_freq_softlimit = val;
4373 
4374 	if (intel_set_rps(dev_priv, val))
4375 		DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4376 
4377 	mutex_unlock(&dev_priv->rps.hw_lock);
4378 
4379 	return 0;
4380 }
4381 
4382 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4383 			i915_max_freq_get, i915_max_freq_set,
4384 			"%llu\n");
4385 
4386 static int
4387 i915_min_freq_get(void *data, u64 *val)
4388 {
4389 	struct drm_i915_private *dev_priv = data;
4390 
4391 	if (INTEL_GEN(dev_priv) < 6)
4392 		return -ENODEV;
4393 
4394 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4395 	return 0;
4396 }
4397 
4398 static int
4399 i915_min_freq_set(void *data, u64 val)
4400 {
4401 	struct drm_i915_private *dev_priv = data;
4402 	u32 hw_max, hw_min;
4403 	int ret;
4404 
4405 	if (INTEL_GEN(dev_priv) < 6)
4406 		return -ENODEV;
4407 
4408 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4409 
4410 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4411 	if (ret)
4412 		return ret;
4413 
4414 	/*
4415 	 * Turbo will still be enabled, but won't go below the set value.
4416 	 */
4417 	val = intel_freq_opcode(dev_priv, val);
4418 
4419 	hw_max = dev_priv->rps.max_freq;
4420 	hw_min = dev_priv->rps.min_freq;
4421 
4422 	if (val < hw_min ||
4423 	    val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4424 		mutex_unlock(&dev_priv->rps.hw_lock);
4425 		return -EINVAL;
4426 	}
4427 
4428 	dev_priv->rps.min_freq_softlimit = val;
4429 
4430 	if (intel_set_rps(dev_priv, val))
4431 		DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4432 
4433 	mutex_unlock(&dev_priv->rps.hw_lock);
4434 
4435 	return 0;
4436 }
4437 
4438 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4439 			i915_min_freq_get, i915_min_freq_set,
4440 			"%llu\n");
4441 
4442 static int
4443 i915_cache_sharing_get(void *data, u64 *val)
4444 {
4445 	struct drm_i915_private *dev_priv = data;
4446 	u32 snpcr;
4447 
4448 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4449 		return -ENODEV;
4450 
4451 	intel_runtime_pm_get(dev_priv);
4452 
4453 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4454 
4455 	intel_runtime_pm_put(dev_priv);
4456 
4457 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4458 
4459 	return 0;
4460 }
4461 
4462 static int
4463 i915_cache_sharing_set(void *data, u64 val)
4464 {
4465 	struct drm_i915_private *dev_priv = data;
4466 	u32 snpcr;
4467 
4468 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4469 		return -ENODEV;
4470 
4471 	if (val > 3)
4472 		return -EINVAL;
4473 
4474 	intel_runtime_pm_get(dev_priv);
4475 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4476 
4477 	/* Update the cache sharing policy here as well */
4478 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4479 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
4480 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4481 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4482 
4483 	intel_runtime_pm_put(dev_priv);
4484 	return 0;
4485 }
4486 
4487 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4488 			i915_cache_sharing_get, i915_cache_sharing_set,
4489 			"%llu\n");
4490 
4491 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
4492 					  struct sseu_dev_info *sseu)
4493 {
4494 	int ss_max = 2;
4495 	int ss;
4496 	u32 sig1[ss_max], sig2[ss_max];
4497 
4498 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4499 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4500 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4501 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4502 
4503 	for (ss = 0; ss < ss_max; ss++) {
4504 		unsigned int eu_cnt;
4505 
4506 		if (sig1[ss] & CHV_SS_PG_ENABLE)
4507 			/* skip disabled subslice */
4508 			continue;
4509 
4510 		sseu->slice_mask = BIT(0);
4511 		sseu->subslice_mask |= BIT(ss);
4512 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4513 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4514 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4515 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4516 		sseu->eu_total += eu_cnt;
4517 		sseu->eu_per_subslice = max_t(unsigned int,
4518 					      sseu->eu_per_subslice, eu_cnt);
4519 	}
4520 }
4521 
4522 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
4523 				    struct sseu_dev_info *sseu)
4524 {
4525 	int s_max = 3, ss_max = 4;
4526 	int s, ss;
4527 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4528 
4529 	/* BXT has a single slice and at most 3 subslices. */
4530 	if (IS_GEN9_LP(dev_priv)) {
4531 		s_max = 1;
4532 		ss_max = 3;
4533 	}
4534 
4535 	for (s = 0; s < s_max; s++) {
4536 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4537 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4538 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4539 	}
4540 
4541 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4542 		     GEN9_PGCTL_SSA_EU19_ACK |
4543 		     GEN9_PGCTL_SSA_EU210_ACK |
4544 		     GEN9_PGCTL_SSA_EU311_ACK;
4545 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4546 		     GEN9_PGCTL_SSB_EU19_ACK |
4547 		     GEN9_PGCTL_SSB_EU210_ACK |
4548 		     GEN9_PGCTL_SSB_EU311_ACK;
4549 
4550 	for (s = 0; s < s_max; s++) {
4551 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4552 			/* skip disabled slice */
4553 			continue;
4554 
4555 		sseu->slice_mask |= BIT(s);
4556 
4557 		if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv))
4558 			sseu->subslice_mask =
4559 				INTEL_INFO(dev_priv)->sseu.subslice_mask;
4560 
4561 		for (ss = 0; ss < ss_max; ss++) {
4562 			unsigned int eu_cnt;
4563 
4564 			if (IS_GEN9_LP(dev_priv)) {
4565 				if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4566 					/* skip disabled subslice */
4567 					continue;
4568 
4569 				sseu->subslice_mask |= BIT(ss);
4570 			}
4571 
4572 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4573 					       eu_mask[ss%2]);
4574 			sseu->eu_total += eu_cnt;
4575 			sseu->eu_per_subslice = max_t(unsigned int,
4576 						      sseu->eu_per_subslice,
4577 						      eu_cnt);
4578 		}
4579 	}
4580 }
4581 
4582 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
4583 					 struct sseu_dev_info *sseu)
4584 {
4585 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
4586 	int s;
4587 
4588 	sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
4589 
4590 	if (sseu->slice_mask) {
4591 		sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
4592 		sseu->eu_per_subslice =
4593 				INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
4594 		sseu->eu_total = sseu->eu_per_subslice *
4595 				 sseu_subslice_total(sseu);
4596 
4597 		/* subtract fused off EU(s) from enabled slice(s) */
4598 		for (s = 0; s < fls(sseu->slice_mask); s++) {
4599 			u8 subslice_7eu =
4600 				INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
4601 
4602 			sseu->eu_total -= hweight8(subslice_7eu);
4603 		}
4604 	}
4605 }
4606 
4607 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
4608 				 const struct sseu_dev_info *sseu)
4609 {
4610 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4611 	const char *type = is_available_info ? "Available" : "Enabled";
4612 
4613 	seq_printf(m, "  %s Slice Mask: %04x\n", type,
4614 		   sseu->slice_mask);
4615 	seq_printf(m, "  %s Slice Total: %u\n", type,
4616 		   hweight8(sseu->slice_mask));
4617 	seq_printf(m, "  %s Subslice Total: %u\n", type,
4618 		   sseu_subslice_total(sseu));
4619 	seq_printf(m, "  %s Subslice Mask: %04x\n", type,
4620 		   sseu->subslice_mask);
4621 	seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
4622 		   hweight8(sseu->subslice_mask));
4623 	seq_printf(m, "  %s EU Total: %u\n", type,
4624 		   sseu->eu_total);
4625 	seq_printf(m, "  %s EU Per Subslice: %u\n", type,
4626 		   sseu->eu_per_subslice);
4627 
4628 	if (!is_available_info)
4629 		return;
4630 
4631 	seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
4632 	if (HAS_POOLED_EU(dev_priv))
4633 		seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
4634 
4635 	seq_printf(m, "  Has Slice Power Gating: %s\n",
4636 		   yesno(sseu->has_slice_pg));
4637 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
4638 		   yesno(sseu->has_subslice_pg));
4639 	seq_printf(m, "  Has EU Power Gating: %s\n",
4640 		   yesno(sseu->has_eu_pg));
4641 }
4642 
4643 static int i915_sseu_status(struct seq_file *m, void *unused)
4644 {
4645 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4646 	struct sseu_dev_info sseu;
4647 
4648 	if (INTEL_GEN(dev_priv) < 8)
4649 		return -ENODEV;
4650 
4651 	seq_puts(m, "SSEU Device Info\n");
4652 	i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
4653 
4654 	seq_puts(m, "SSEU Device Status\n");
4655 	memset(&sseu, 0, sizeof(sseu));
4656 
4657 	intel_runtime_pm_get(dev_priv);
4658 
4659 	if (IS_CHERRYVIEW(dev_priv)) {
4660 		cherryview_sseu_device_status(dev_priv, &sseu);
4661 	} else if (IS_BROADWELL(dev_priv)) {
4662 		broadwell_sseu_device_status(dev_priv, &sseu);
4663 	} else if (INTEL_GEN(dev_priv) >= 9) {
4664 		gen9_sseu_device_status(dev_priv, &sseu);
4665 	}
4666 
4667 	intel_runtime_pm_put(dev_priv);
4668 
4669 	i915_print_sseu_info(m, false, &sseu);
4670 
4671 	return 0;
4672 }
4673 
4674 static int i915_forcewake_open(struct inode *inode, struct file *file)
4675 {
4676 	struct drm_i915_private *dev_priv = inode->i_private;
4677 
4678 	if (INTEL_GEN(dev_priv) < 6)
4679 		return 0;
4680 
4681 	intel_runtime_pm_get(dev_priv);
4682 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4683 
4684 	return 0;
4685 }
4686 
4687 static int i915_forcewake_release(struct inode *inode, struct file *file)
4688 {
4689 	struct drm_i915_private *dev_priv = inode->i_private;
4690 
4691 	if (INTEL_GEN(dev_priv) < 6)
4692 		return 0;
4693 
4694 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4695 	intel_runtime_pm_put(dev_priv);
4696 
4697 	return 0;
4698 }
4699 
4700 static const struct file_operations i915_forcewake_fops = {
4701 	.owner = THIS_MODULE,
4702 	.open = i915_forcewake_open,
4703 	.release = i915_forcewake_release,
4704 };
4705 
4706 static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
4707 {
4708 	struct drm_i915_private *dev_priv = m->private;
4709 	struct i915_hotplug *hotplug = &dev_priv->hotplug;
4710 
4711 	seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
4712 	seq_printf(m, "Detected: %s\n",
4713 		   yesno(delayed_work_pending(&hotplug->reenable_work)));
4714 
4715 	return 0;
4716 }
4717 
4718 static ssize_t i915_hpd_storm_ctl_write(struct file *file,
4719 					const char __user *ubuf, size_t len,
4720 					loff_t *offp)
4721 {
4722 	struct seq_file *m = file->private_data;
4723 	struct drm_i915_private *dev_priv = m->private;
4724 	struct i915_hotplug *hotplug = &dev_priv->hotplug;
4725 	unsigned int new_threshold;
4726 	int i;
4727 	char *newline;
4728 	char tmp[16];
4729 
4730 	if (len >= sizeof(tmp))
4731 		return -EINVAL;
4732 
4733 	if (copy_from_user(tmp, ubuf, len))
4734 		return -EFAULT;
4735 
4736 	tmp[len] = '\0';
4737 
4738 	/* Strip newline, if any */
4739 	newline = strchr(tmp, '\n');
4740 	if (newline)
4741 		*newline = '\0';
4742 
4743 	if (strcmp(tmp, "reset") == 0)
4744 		new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4745 	else if (kstrtouint(tmp, 10, &new_threshold) != 0)
4746 		return -EINVAL;
4747 
4748 	if (new_threshold > 0)
4749 		DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
4750 			      new_threshold);
4751 	else
4752 		DRM_DEBUG_KMS("Disabling HPD storm detection\n");
4753 
4754 	spin_lock_irq(&dev_priv->irq_lock);
4755 	hotplug->hpd_storm_threshold = new_threshold;
4756 	/* Reset the HPD storm stats so we don't accidentally trigger a storm */
4757 	for_each_hpd_pin(i)
4758 		hotplug->stats[i].count = 0;
4759 	spin_unlock_irq(&dev_priv->irq_lock);
4760 
4761 	/* Re-enable hpd immediately if we were in an irq storm */
4762 	flush_delayed_work(&dev_priv->hotplug.reenable_work);
4763 
4764 	return len;
4765 }
4766 
4767 static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
4768 {
4769 	return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
4770 }
4771 
4772 static const struct file_operations i915_hpd_storm_ctl_fops = {
4773 	.owner = THIS_MODULE,
4774 	.open = i915_hpd_storm_ctl_open,
4775 	.read = seq_read,
4776 	.llseek = seq_lseek,
4777 	.release = single_release,
4778 	.write = i915_hpd_storm_ctl_write
4779 };
4780 
4781 static const struct drm_info_list i915_debugfs_list[] = {
4782 	{"i915_capabilities", i915_capabilities, 0},
4783 	{"i915_gem_objects", i915_gem_object_info, 0},
4784 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
4785 	{"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
4786 	{"i915_gem_stolen", i915_gem_stolen_list_info },
4787 	{"i915_gem_request", i915_gem_request_info, 0},
4788 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
4789 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4790 	{"i915_gem_interrupt", i915_interrupt_info, 0},
4791 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4792 	{"i915_guc_info", i915_guc_info, 0},
4793 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
4794 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
4795 	{"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
4796 	{"i915_guc_stage_pool", i915_guc_stage_pool, 0},
4797 	{"i915_huc_load_status", i915_huc_load_status_info, 0},
4798 	{"i915_frequency_info", i915_frequency_info, 0},
4799 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
4800 	{"i915_reset_info", i915_reset_info, 0},
4801 	{"i915_drpc_info", i915_drpc_info, 0},
4802 	{"i915_emon_status", i915_emon_status, 0},
4803 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
4804 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
4805 	{"i915_fbc_status", i915_fbc_status, 0},
4806 	{"i915_ips_status", i915_ips_status, 0},
4807 	{"i915_sr_status", i915_sr_status, 0},
4808 	{"i915_opregion", i915_opregion, 0},
4809 	{"i915_vbt", i915_vbt, 0},
4810 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4811 	{"i915_context_status", i915_context_status, 0},
4812 	{"i915_dump_lrc", i915_dump_lrc, 0},
4813 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
4814 	{"i915_swizzle_info", i915_swizzle_info, 0},
4815 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
4816 	{"i915_llc", i915_llc, 0},
4817 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
4818 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
4819 	{"i915_energy_uJ", i915_energy_uJ, 0},
4820 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
4821 	{"i915_power_domain_info", i915_power_domain_info, 0},
4822 	{"i915_dmc_info", i915_dmc_info, 0},
4823 	{"i915_display_info", i915_display_info, 0},
4824 	{"i915_engine_info", i915_engine_info, 0},
4825 	{"i915_semaphore_status", i915_semaphore_status, 0},
4826 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4827 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
4828 	{"i915_wa_registers", i915_wa_registers, 0},
4829 	{"i915_ddb_info", i915_ddb_info, 0},
4830 	{"i915_sseu_status", i915_sseu_status, 0},
4831 	{"i915_drrs_status", i915_drrs_status, 0},
4832 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
4833 };
4834 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4835 
4836 static const struct i915_debugfs_files {
4837 	const char *name;
4838 	const struct file_operations *fops;
4839 } i915_debugfs_files[] = {
4840 	{"i915_wedged", &i915_wedged_fops},
4841 	{"i915_max_freq", &i915_max_freq_fops},
4842 	{"i915_min_freq", &i915_min_freq_fops},
4843 	{"i915_cache_sharing", &i915_cache_sharing_fops},
4844 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4845 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
4846 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
4847 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
4848 	{"i915_error_state", &i915_error_state_fops},
4849 	{"i915_gpu_info", &i915_gpu_info_fops},
4850 #endif
4851 	{"i915_next_seqno", &i915_next_seqno_fops},
4852 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4853 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4854 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4855 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4856 	{"i915_fbc_false_color", &i915_fbc_false_color_fops},
4857 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
4858 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
4859 	{"i915_dp_test_active", &i915_displayport_test_active_fops},
4860 	{"i915_guc_log_control", &i915_guc_log_control_fops},
4861 	{"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops}
4862 };
4863 
4864 int i915_debugfs_register(struct drm_i915_private *dev_priv)
4865 {
4866 	struct drm_minor *minor = dev_priv->drm.primary;
4867 	struct dentry *ent;
4868 	int ret, i;
4869 
4870 	ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
4871 				  minor->debugfs_root, to_i915(minor->dev),
4872 				  &i915_forcewake_fops);
4873 	if (!ent)
4874 		return -ENOMEM;
4875 
4876 	ret = intel_pipe_crc_create(minor);
4877 	if (ret)
4878 		return ret;
4879 
4880 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4881 		ent = debugfs_create_file(i915_debugfs_files[i].name,
4882 					  S_IRUGO | S_IWUSR,
4883 					  minor->debugfs_root,
4884 					  to_i915(minor->dev),
4885 					  i915_debugfs_files[i].fops);
4886 		if (!ent)
4887 			return -ENOMEM;
4888 	}
4889 
4890 	return drm_debugfs_create_files(i915_debugfs_list,
4891 					I915_DEBUGFS_ENTRIES,
4892 					minor->debugfs_root, minor);
4893 }
4894 
4895 struct dpcd_block {
4896 	/* DPCD dump start address. */
4897 	unsigned int offset;
4898 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
4899 	unsigned int end;
4900 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
4901 	size_t size;
4902 	/* Only valid for eDP. */
4903 	bool edp;
4904 };
4905 
4906 static const struct dpcd_block i915_dpcd_debug[] = {
4907 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
4908 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
4909 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
4910 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
4911 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
4912 	{ .offset = DP_SET_POWER },
4913 	{ .offset = DP_EDP_DPCD_REV },
4914 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
4915 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
4916 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
4917 };
4918 
4919 static int i915_dpcd_show(struct seq_file *m, void *data)
4920 {
4921 	struct drm_connector *connector = m->private;
4922 	struct intel_dp *intel_dp =
4923 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4924 	uint8_t buf[16];
4925 	ssize_t err;
4926 	int i;
4927 
4928 	if (connector->status != connector_status_connected)
4929 		return -ENODEV;
4930 
4931 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
4932 		const struct dpcd_block *b = &i915_dpcd_debug[i];
4933 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
4934 
4935 		if (b->edp &&
4936 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
4937 			continue;
4938 
4939 		/* low tech for now */
4940 		if (WARN_ON(size > sizeof(buf)))
4941 			continue;
4942 
4943 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
4944 		if (err <= 0) {
4945 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
4946 				  size, b->offset, err);
4947 			continue;
4948 		}
4949 
4950 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
4951 	}
4952 
4953 	return 0;
4954 }
4955 
4956 static int i915_dpcd_open(struct inode *inode, struct file *file)
4957 {
4958 	return single_open(file, i915_dpcd_show, inode->i_private);
4959 }
4960 
4961 static const struct file_operations i915_dpcd_fops = {
4962 	.owner = THIS_MODULE,
4963 	.open = i915_dpcd_open,
4964 	.read = seq_read,
4965 	.llseek = seq_lseek,
4966 	.release = single_release,
4967 };
4968 
4969 static int i915_panel_show(struct seq_file *m, void *data)
4970 {
4971 	struct drm_connector *connector = m->private;
4972 	struct intel_dp *intel_dp =
4973 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4974 
4975 	if (connector->status != connector_status_connected)
4976 		return -ENODEV;
4977 
4978 	seq_printf(m, "Panel power up delay: %d\n",
4979 		   intel_dp->panel_power_up_delay);
4980 	seq_printf(m, "Panel power down delay: %d\n",
4981 		   intel_dp->panel_power_down_delay);
4982 	seq_printf(m, "Backlight on delay: %d\n",
4983 		   intel_dp->backlight_on_delay);
4984 	seq_printf(m, "Backlight off delay: %d\n",
4985 		   intel_dp->backlight_off_delay);
4986 
4987 	return 0;
4988 }
4989 
4990 static int i915_panel_open(struct inode *inode, struct file *file)
4991 {
4992 	return single_open(file, i915_panel_show, inode->i_private);
4993 }
4994 
4995 static const struct file_operations i915_panel_fops = {
4996 	.owner = THIS_MODULE,
4997 	.open = i915_panel_open,
4998 	.read = seq_read,
4999 	.llseek = seq_lseek,
5000 	.release = single_release,
5001 };
5002 
5003 /**
5004  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5005  * @connector: pointer to a registered drm_connector
5006  *
5007  * Cleanup will be done by drm_connector_unregister() through a call to
5008  * drm_debugfs_connector_remove().
5009  *
5010  * Returns 0 on success, negative error codes on error.
5011  */
5012 int i915_debugfs_connector_add(struct drm_connector *connector)
5013 {
5014 	struct dentry *root = connector->debugfs_entry;
5015 
5016 	/* The connector must have been registered beforehands. */
5017 	if (!root)
5018 		return -ENODEV;
5019 
5020 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5021 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5022 		debugfs_create_file("i915_dpcd", S_IRUGO, root,
5023 				    connector, &i915_dpcd_fops);
5024 
5025 	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5026 		debugfs_create_file("i915_panel_timings", S_IRUGO, root,
5027 				    connector, &i915_panel_fops);
5028 
5029 	return 0;
5030 }
5031