1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42 
43 #if defined(CONFIG_DEBUG_FS)
44 
45 enum {
46 	ACTIVE_LIST,
47 	INACTIVE_LIST,
48 	PINNED_LIST,
49 };
50 
51 static const char *yesno(int v)
52 {
53 	return v ? "yes" : "no";
54 }
55 
56 /* As the drm_debugfs_init() routines are called before dev->dev_private is
57  * allocated we need to hook into the minor for release. */
58 static int
59 drm_add_fake_info_node(struct drm_minor *minor,
60 		       struct dentry *ent,
61 		       const void *key)
62 {
63 	struct drm_info_node *node;
64 
65 	node = kmalloc(sizeof(*node), GFP_KERNEL);
66 	if (node == NULL) {
67 		debugfs_remove(ent);
68 		return -ENOMEM;
69 	}
70 
71 	node->minor = minor;
72 	node->dent = ent;
73 	node->info_ent = (void *) key;
74 
75 	mutex_lock(&minor->debugfs_lock);
76 	list_add(&node->list, &minor->debugfs_list);
77 	mutex_unlock(&minor->debugfs_lock);
78 
79 	return 0;
80 }
81 
82 static int i915_capabilities(struct seq_file *m, void *data)
83 {
84 	struct drm_info_node *node = (struct drm_info_node *) m->private;
85 	struct drm_device *dev = node->minor->dev;
86 	const struct intel_device_info *info = INTEL_INFO(dev);
87 
88 	seq_printf(m, "gen: %d\n", info->gen);
89 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
90 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
91 #define SEP_SEMICOLON ;
92 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
93 #undef PRINT_FLAG
94 #undef SEP_SEMICOLON
95 
96 	return 0;
97 }
98 
99 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
100 {
101 	if (obj->user_pin_count > 0)
102 		return "P";
103 	else if (obj->pin_count > 0)
104 		return "p";
105 	else
106 		return " ";
107 }
108 
109 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
110 {
111 	switch (obj->tiling_mode) {
112 	default:
113 	case I915_TILING_NONE: return " ";
114 	case I915_TILING_X: return "X";
115 	case I915_TILING_Y: return "Y";
116 	}
117 }
118 
119 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
120 {
121 	return obj->has_global_gtt_mapping ? "g" : " ";
122 }
123 
124 static void
125 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
126 {
127 	struct i915_vma *vma;
128 	seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
129 		   &obj->base,
130 		   get_pin_flag(obj),
131 		   get_tiling_flag(obj),
132 		   get_global_flag(obj),
133 		   obj->base.size / 1024,
134 		   obj->base.read_domains,
135 		   obj->base.write_domain,
136 		   obj->last_read_seqno,
137 		   obj->last_write_seqno,
138 		   obj->last_fenced_seqno,
139 		   i915_cache_level_str(obj->cache_level),
140 		   obj->dirty ? " dirty" : "",
141 		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
142 	if (obj->base.name)
143 		seq_printf(m, " (name: %d)", obj->base.name);
144 	if (obj->pin_count)
145 		seq_printf(m, " (pinned x %d)", obj->pin_count);
146 	if (obj->pin_display)
147 		seq_printf(m, " (display)");
148 	if (obj->fence_reg != I915_FENCE_REG_NONE)
149 		seq_printf(m, " (fence: %d)", obj->fence_reg);
150 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
151 		if (!i915_is_ggtt(vma->vm))
152 			seq_puts(m, " (pp");
153 		else
154 			seq_puts(m, " (g");
155 		seq_printf(m, "gtt offset: %08lx, size: %08lx)",
156 			   vma->node.start, vma->node.size);
157 	}
158 	if (obj->stolen)
159 		seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
160 	if (obj->pin_mappable || obj->fault_mappable) {
161 		char s[3], *t = s;
162 		if (obj->pin_mappable)
163 			*t++ = 'p';
164 		if (obj->fault_mappable)
165 			*t++ = 'f';
166 		*t = '\0';
167 		seq_printf(m, " (%s mappable)", s);
168 	}
169 	if (obj->ring != NULL)
170 		seq_printf(m, " (%s)", obj->ring->name);
171 }
172 
173 static void describe_ctx(struct seq_file *m, struct i915_hw_context *ctx)
174 {
175 	seq_putc(m, ctx->is_initialized ? 'I' : 'i');
176 	seq_putc(m, ctx->remap_slice ? 'R' : 'r');
177 	seq_putc(m, ' ');
178 }
179 
180 static int i915_gem_object_list_info(struct seq_file *m, void *data)
181 {
182 	struct drm_info_node *node = (struct drm_info_node *) m->private;
183 	uintptr_t list = (uintptr_t) node->info_ent->data;
184 	struct list_head *head;
185 	struct drm_device *dev = node->minor->dev;
186 	struct drm_i915_private *dev_priv = dev->dev_private;
187 	struct i915_address_space *vm = &dev_priv->gtt.base;
188 	struct i915_vma *vma;
189 	size_t total_obj_size, total_gtt_size;
190 	int count, ret;
191 
192 	ret = mutex_lock_interruptible(&dev->struct_mutex);
193 	if (ret)
194 		return ret;
195 
196 	/* FIXME: the user of this interface might want more than just GGTT */
197 	switch (list) {
198 	case ACTIVE_LIST:
199 		seq_puts(m, "Active:\n");
200 		head = &vm->active_list;
201 		break;
202 	case INACTIVE_LIST:
203 		seq_puts(m, "Inactive:\n");
204 		head = &vm->inactive_list;
205 		break;
206 	default:
207 		mutex_unlock(&dev->struct_mutex);
208 		return -EINVAL;
209 	}
210 
211 	total_obj_size = total_gtt_size = count = 0;
212 	list_for_each_entry(vma, head, mm_list) {
213 		seq_printf(m, "   ");
214 		describe_obj(m, vma->obj);
215 		seq_printf(m, "\n");
216 		total_obj_size += vma->obj->base.size;
217 		total_gtt_size += vma->node.size;
218 		count++;
219 	}
220 	mutex_unlock(&dev->struct_mutex);
221 
222 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
223 		   count, total_obj_size, total_gtt_size);
224 	return 0;
225 }
226 
227 static int obj_rank_by_stolen(void *priv,
228 			      struct list_head *A, struct list_head *B)
229 {
230 	struct drm_i915_gem_object *a =
231 		container_of(A, struct drm_i915_gem_object, obj_exec_link);
232 	struct drm_i915_gem_object *b =
233 		container_of(B, struct drm_i915_gem_object, obj_exec_link);
234 
235 	return a->stolen->start - b->stolen->start;
236 }
237 
238 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
239 {
240 	struct drm_info_node *node = (struct drm_info_node *) m->private;
241 	struct drm_device *dev = node->minor->dev;
242 	struct drm_i915_private *dev_priv = dev->dev_private;
243 	struct drm_i915_gem_object *obj;
244 	size_t total_obj_size, total_gtt_size;
245 	LIST_HEAD(stolen);
246 	int count, ret;
247 
248 	ret = mutex_lock_interruptible(&dev->struct_mutex);
249 	if (ret)
250 		return ret;
251 
252 	total_obj_size = total_gtt_size = count = 0;
253 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
254 		if (obj->stolen == NULL)
255 			continue;
256 
257 		list_add(&obj->obj_exec_link, &stolen);
258 
259 		total_obj_size += obj->base.size;
260 		total_gtt_size += i915_gem_obj_ggtt_size(obj);
261 		count++;
262 	}
263 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
264 		if (obj->stolen == NULL)
265 			continue;
266 
267 		list_add(&obj->obj_exec_link, &stolen);
268 
269 		total_obj_size += obj->base.size;
270 		count++;
271 	}
272 	list_sort(NULL, &stolen, obj_rank_by_stolen);
273 	seq_puts(m, "Stolen:\n");
274 	while (!list_empty(&stolen)) {
275 		obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
276 		seq_puts(m, "   ");
277 		describe_obj(m, obj);
278 		seq_putc(m, '\n');
279 		list_del_init(&obj->obj_exec_link);
280 	}
281 	mutex_unlock(&dev->struct_mutex);
282 
283 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
284 		   count, total_obj_size, total_gtt_size);
285 	return 0;
286 }
287 
288 #define count_objects(list, member) do { \
289 	list_for_each_entry(obj, list, member) { \
290 		size += i915_gem_obj_ggtt_size(obj); \
291 		++count; \
292 		if (obj->map_and_fenceable) { \
293 			mappable_size += i915_gem_obj_ggtt_size(obj); \
294 			++mappable_count; \
295 		} \
296 	} \
297 } while (0)
298 
299 struct file_stats {
300 	int count;
301 	size_t total, active, inactive, unbound;
302 };
303 
304 static int per_file_stats(int id, void *ptr, void *data)
305 {
306 	struct drm_i915_gem_object *obj = ptr;
307 	struct file_stats *stats = data;
308 
309 	stats->count++;
310 	stats->total += obj->base.size;
311 
312 	if (i915_gem_obj_ggtt_bound(obj)) {
313 		if (!list_empty(&obj->ring_list))
314 			stats->active += obj->base.size;
315 		else
316 			stats->inactive += obj->base.size;
317 	} else {
318 		if (!list_empty(&obj->global_list))
319 			stats->unbound += obj->base.size;
320 	}
321 
322 	return 0;
323 }
324 
325 #define count_vmas(list, member) do { \
326 	list_for_each_entry(vma, list, member) { \
327 		size += i915_gem_obj_ggtt_size(vma->obj); \
328 		++count; \
329 		if (vma->obj->map_and_fenceable) { \
330 			mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
331 			++mappable_count; \
332 		} \
333 	} \
334 } while (0)
335 
336 static int i915_gem_object_info(struct seq_file *m, void* data)
337 {
338 	struct drm_info_node *node = (struct drm_info_node *) m->private;
339 	struct drm_device *dev = node->minor->dev;
340 	struct drm_i915_private *dev_priv = dev->dev_private;
341 	u32 count, mappable_count, purgeable_count;
342 	size_t size, mappable_size, purgeable_size;
343 	struct drm_i915_gem_object *obj;
344 	struct i915_address_space *vm = &dev_priv->gtt.base;
345 	struct drm_file *file;
346 	struct i915_vma *vma;
347 	int ret;
348 
349 	ret = mutex_lock_interruptible(&dev->struct_mutex);
350 	if (ret)
351 		return ret;
352 
353 	seq_printf(m, "%u objects, %zu bytes\n",
354 		   dev_priv->mm.object_count,
355 		   dev_priv->mm.object_memory);
356 
357 	size = count = mappable_size = mappable_count = 0;
358 	count_objects(&dev_priv->mm.bound_list, global_list);
359 	seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
360 		   count, mappable_count, size, mappable_size);
361 
362 	size = count = mappable_size = mappable_count = 0;
363 	count_vmas(&vm->active_list, mm_list);
364 	seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
365 		   count, mappable_count, size, mappable_size);
366 
367 	size = count = mappable_size = mappable_count = 0;
368 	count_vmas(&vm->inactive_list, mm_list);
369 	seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
370 		   count, mappable_count, size, mappable_size);
371 
372 	size = count = purgeable_size = purgeable_count = 0;
373 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
374 		size += obj->base.size, ++count;
375 		if (obj->madv == I915_MADV_DONTNEED)
376 			purgeable_size += obj->base.size, ++purgeable_count;
377 	}
378 	seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
379 
380 	size = count = mappable_size = mappable_count = 0;
381 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
382 		if (obj->fault_mappable) {
383 			size += i915_gem_obj_ggtt_size(obj);
384 			++count;
385 		}
386 		if (obj->pin_mappable) {
387 			mappable_size += i915_gem_obj_ggtt_size(obj);
388 			++mappable_count;
389 		}
390 		if (obj->madv == I915_MADV_DONTNEED) {
391 			purgeable_size += obj->base.size;
392 			++purgeable_count;
393 		}
394 	}
395 	seq_printf(m, "%u purgeable objects, %zu bytes\n",
396 		   purgeable_count, purgeable_size);
397 	seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
398 		   mappable_count, mappable_size);
399 	seq_printf(m, "%u fault mappable objects, %zu bytes\n",
400 		   count, size);
401 
402 	seq_printf(m, "%zu [%lu] gtt total\n",
403 		   dev_priv->gtt.base.total,
404 		   dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
405 
406 	seq_putc(m, '\n');
407 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
408 		struct file_stats stats;
409 
410 		memset(&stats, 0, sizeof(stats));
411 		idr_for_each(&file->object_idr, per_file_stats, &stats);
412 		seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu unbound)\n",
413 			   get_pid_task(file->pid, PIDTYPE_PID)->comm,
414 			   stats.count,
415 			   stats.total,
416 			   stats.active,
417 			   stats.inactive,
418 			   stats.unbound);
419 	}
420 
421 	mutex_unlock(&dev->struct_mutex);
422 
423 	return 0;
424 }
425 
426 static int i915_gem_gtt_info(struct seq_file *m, void *data)
427 {
428 	struct drm_info_node *node = (struct drm_info_node *) m->private;
429 	struct drm_device *dev = node->minor->dev;
430 	uintptr_t list = (uintptr_t) node->info_ent->data;
431 	struct drm_i915_private *dev_priv = dev->dev_private;
432 	struct drm_i915_gem_object *obj;
433 	size_t total_obj_size, total_gtt_size;
434 	int count, ret;
435 
436 	ret = mutex_lock_interruptible(&dev->struct_mutex);
437 	if (ret)
438 		return ret;
439 
440 	total_obj_size = total_gtt_size = count = 0;
441 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
442 		if (list == PINNED_LIST && obj->pin_count == 0)
443 			continue;
444 
445 		seq_puts(m, "   ");
446 		describe_obj(m, obj);
447 		seq_putc(m, '\n');
448 		total_obj_size += obj->base.size;
449 		total_gtt_size += i915_gem_obj_ggtt_size(obj);
450 		count++;
451 	}
452 
453 	mutex_unlock(&dev->struct_mutex);
454 
455 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
456 		   count, total_obj_size, total_gtt_size);
457 
458 	return 0;
459 }
460 
461 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
462 {
463 	struct drm_info_node *node = (struct drm_info_node *) m->private;
464 	struct drm_device *dev = node->minor->dev;
465 	unsigned long flags;
466 	struct intel_crtc *crtc;
467 
468 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
469 		const char pipe = pipe_name(crtc->pipe);
470 		const char plane = plane_name(crtc->plane);
471 		struct intel_unpin_work *work;
472 
473 		spin_lock_irqsave(&dev->event_lock, flags);
474 		work = crtc->unpin_work;
475 		if (work == NULL) {
476 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
477 				   pipe, plane);
478 		} else {
479 			if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
480 				seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
481 					   pipe, plane);
482 			} else {
483 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
484 					   pipe, plane);
485 			}
486 			if (work->enable_stall_check)
487 				seq_puts(m, "Stall check enabled, ");
488 			else
489 				seq_puts(m, "Stall check waiting for page flip ioctl, ");
490 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
491 
492 			if (work->old_fb_obj) {
493 				struct drm_i915_gem_object *obj = work->old_fb_obj;
494 				if (obj)
495 					seq_printf(m, "Old framebuffer gtt_offset 0x%08lx\n",
496 						   i915_gem_obj_ggtt_offset(obj));
497 			}
498 			if (work->pending_flip_obj) {
499 				struct drm_i915_gem_object *obj = work->pending_flip_obj;
500 				if (obj)
501 					seq_printf(m, "New framebuffer gtt_offset 0x%08lx\n",
502 						   i915_gem_obj_ggtt_offset(obj));
503 			}
504 		}
505 		spin_unlock_irqrestore(&dev->event_lock, flags);
506 	}
507 
508 	return 0;
509 }
510 
511 static int i915_gem_request_info(struct seq_file *m, void *data)
512 {
513 	struct drm_info_node *node = (struct drm_info_node *) m->private;
514 	struct drm_device *dev = node->minor->dev;
515 	drm_i915_private_t *dev_priv = dev->dev_private;
516 	struct intel_ring_buffer *ring;
517 	struct drm_i915_gem_request *gem_request;
518 	int ret, count, i;
519 
520 	ret = mutex_lock_interruptible(&dev->struct_mutex);
521 	if (ret)
522 		return ret;
523 
524 	count = 0;
525 	for_each_ring(ring, dev_priv, i) {
526 		if (list_empty(&ring->request_list))
527 			continue;
528 
529 		seq_printf(m, "%s requests:\n", ring->name);
530 		list_for_each_entry(gem_request,
531 				    &ring->request_list,
532 				    list) {
533 			seq_printf(m, "    %d @ %d\n",
534 				   gem_request->seqno,
535 				   (int) (jiffies - gem_request->emitted_jiffies));
536 		}
537 		count++;
538 	}
539 	mutex_unlock(&dev->struct_mutex);
540 
541 	if (count == 0)
542 		seq_puts(m, "No requests\n");
543 
544 	return 0;
545 }
546 
547 static void i915_ring_seqno_info(struct seq_file *m,
548 				 struct intel_ring_buffer *ring)
549 {
550 	if (ring->get_seqno) {
551 		seq_printf(m, "Current sequence (%s): %u\n",
552 			   ring->name, ring->get_seqno(ring, false));
553 	}
554 }
555 
556 static int i915_gem_seqno_info(struct seq_file *m, void *data)
557 {
558 	struct drm_info_node *node = (struct drm_info_node *) m->private;
559 	struct drm_device *dev = node->minor->dev;
560 	drm_i915_private_t *dev_priv = dev->dev_private;
561 	struct intel_ring_buffer *ring;
562 	int ret, i;
563 
564 	ret = mutex_lock_interruptible(&dev->struct_mutex);
565 	if (ret)
566 		return ret;
567 
568 	for_each_ring(ring, dev_priv, i)
569 		i915_ring_seqno_info(m, ring);
570 
571 	mutex_unlock(&dev->struct_mutex);
572 
573 	return 0;
574 }
575 
576 
577 static int i915_interrupt_info(struct seq_file *m, void *data)
578 {
579 	struct drm_info_node *node = (struct drm_info_node *) m->private;
580 	struct drm_device *dev = node->minor->dev;
581 	drm_i915_private_t *dev_priv = dev->dev_private;
582 	struct intel_ring_buffer *ring;
583 	int ret, i, pipe;
584 
585 	ret = mutex_lock_interruptible(&dev->struct_mutex);
586 	if (ret)
587 		return ret;
588 
589 	if (INTEL_INFO(dev)->gen >= 8) {
590 		int i;
591 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
592 			   I915_READ(GEN8_MASTER_IRQ));
593 
594 		for (i = 0; i < 4; i++) {
595 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
596 				   i, I915_READ(GEN8_GT_IMR(i)));
597 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
598 				   i, I915_READ(GEN8_GT_IIR(i)));
599 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
600 				   i, I915_READ(GEN8_GT_IER(i)));
601 		}
602 
603 		for_each_pipe(i) {
604 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
605 				   pipe_name(i),
606 				   I915_READ(GEN8_DE_PIPE_IMR(i)));
607 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
608 				   pipe_name(i),
609 				   I915_READ(GEN8_DE_PIPE_IIR(i)));
610 			seq_printf(m, "Pipe %c IER:\t%08x\n",
611 				   pipe_name(i),
612 				   I915_READ(GEN8_DE_PIPE_IER(i)));
613 		}
614 
615 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
616 			   I915_READ(GEN8_DE_PORT_IMR));
617 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
618 			   I915_READ(GEN8_DE_PORT_IIR));
619 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
620 			   I915_READ(GEN8_DE_PORT_IER));
621 
622 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
623 			   I915_READ(GEN8_DE_MISC_IMR));
624 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
625 			   I915_READ(GEN8_DE_MISC_IIR));
626 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
627 			   I915_READ(GEN8_DE_MISC_IER));
628 
629 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
630 			   I915_READ(GEN8_PCU_IMR));
631 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
632 			   I915_READ(GEN8_PCU_IIR));
633 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
634 			   I915_READ(GEN8_PCU_IER));
635 	} else if (IS_VALLEYVIEW(dev)) {
636 		seq_printf(m, "Display IER:\t%08x\n",
637 			   I915_READ(VLV_IER));
638 		seq_printf(m, "Display IIR:\t%08x\n",
639 			   I915_READ(VLV_IIR));
640 		seq_printf(m, "Display IIR_RW:\t%08x\n",
641 			   I915_READ(VLV_IIR_RW));
642 		seq_printf(m, "Display IMR:\t%08x\n",
643 			   I915_READ(VLV_IMR));
644 		for_each_pipe(pipe)
645 			seq_printf(m, "Pipe %c stat:\t%08x\n",
646 				   pipe_name(pipe),
647 				   I915_READ(PIPESTAT(pipe)));
648 
649 		seq_printf(m, "Master IER:\t%08x\n",
650 			   I915_READ(VLV_MASTER_IER));
651 
652 		seq_printf(m, "Render IER:\t%08x\n",
653 			   I915_READ(GTIER));
654 		seq_printf(m, "Render IIR:\t%08x\n",
655 			   I915_READ(GTIIR));
656 		seq_printf(m, "Render IMR:\t%08x\n",
657 			   I915_READ(GTIMR));
658 
659 		seq_printf(m, "PM IER:\t\t%08x\n",
660 			   I915_READ(GEN6_PMIER));
661 		seq_printf(m, "PM IIR:\t\t%08x\n",
662 			   I915_READ(GEN6_PMIIR));
663 		seq_printf(m, "PM IMR:\t\t%08x\n",
664 			   I915_READ(GEN6_PMIMR));
665 
666 		seq_printf(m, "Port hotplug:\t%08x\n",
667 			   I915_READ(PORT_HOTPLUG_EN));
668 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
669 			   I915_READ(VLV_DPFLIPSTAT));
670 		seq_printf(m, "DPINVGTT:\t%08x\n",
671 			   I915_READ(DPINVGTT));
672 
673 	} else if (!HAS_PCH_SPLIT(dev)) {
674 		seq_printf(m, "Interrupt enable:    %08x\n",
675 			   I915_READ(IER));
676 		seq_printf(m, "Interrupt identity:  %08x\n",
677 			   I915_READ(IIR));
678 		seq_printf(m, "Interrupt mask:      %08x\n",
679 			   I915_READ(IMR));
680 		for_each_pipe(pipe)
681 			seq_printf(m, "Pipe %c stat:         %08x\n",
682 				   pipe_name(pipe),
683 				   I915_READ(PIPESTAT(pipe)));
684 	} else {
685 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
686 			   I915_READ(DEIER));
687 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
688 			   I915_READ(DEIIR));
689 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
690 			   I915_READ(DEIMR));
691 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
692 			   I915_READ(SDEIER));
693 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
694 			   I915_READ(SDEIIR));
695 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
696 			   I915_READ(SDEIMR));
697 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
698 			   I915_READ(GTIER));
699 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
700 			   I915_READ(GTIIR));
701 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
702 			   I915_READ(GTIMR));
703 	}
704 	seq_printf(m, "Interrupts received: %d\n",
705 		   atomic_read(&dev_priv->irq_received));
706 	for_each_ring(ring, dev_priv, i) {
707 		if (INTEL_INFO(dev)->gen >= 6) {
708 			seq_printf(m,
709 				   "Graphics Interrupt mask (%s):	%08x\n",
710 				   ring->name, I915_READ_IMR(ring));
711 		}
712 		i915_ring_seqno_info(m, ring);
713 	}
714 	mutex_unlock(&dev->struct_mutex);
715 
716 	return 0;
717 }
718 
719 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
720 {
721 	struct drm_info_node *node = (struct drm_info_node *) m->private;
722 	struct drm_device *dev = node->minor->dev;
723 	drm_i915_private_t *dev_priv = dev->dev_private;
724 	int i, ret;
725 
726 	ret = mutex_lock_interruptible(&dev->struct_mutex);
727 	if (ret)
728 		return ret;
729 
730 	seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
731 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
732 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
733 		struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
734 
735 		seq_printf(m, "Fence %d, pin count = %d, object = ",
736 			   i, dev_priv->fence_regs[i].pin_count);
737 		if (obj == NULL)
738 			seq_puts(m, "unused");
739 		else
740 			describe_obj(m, obj);
741 		seq_putc(m, '\n');
742 	}
743 
744 	mutex_unlock(&dev->struct_mutex);
745 	return 0;
746 }
747 
748 static int i915_hws_info(struct seq_file *m, void *data)
749 {
750 	struct drm_info_node *node = (struct drm_info_node *) m->private;
751 	struct drm_device *dev = node->minor->dev;
752 	drm_i915_private_t *dev_priv = dev->dev_private;
753 	struct intel_ring_buffer *ring;
754 	const u32 *hws;
755 	int i;
756 
757 	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
758 	hws = ring->status_page.page_addr;
759 	if (hws == NULL)
760 		return 0;
761 
762 	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
763 		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
764 			   i * 4,
765 			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
766 	}
767 	return 0;
768 }
769 
770 static ssize_t
771 i915_error_state_write(struct file *filp,
772 		       const char __user *ubuf,
773 		       size_t cnt,
774 		       loff_t *ppos)
775 {
776 	struct i915_error_state_file_priv *error_priv = filp->private_data;
777 	struct drm_device *dev = error_priv->dev;
778 	int ret;
779 
780 	DRM_DEBUG_DRIVER("Resetting error state\n");
781 
782 	ret = mutex_lock_interruptible(&dev->struct_mutex);
783 	if (ret)
784 		return ret;
785 
786 	i915_destroy_error_state(dev);
787 	mutex_unlock(&dev->struct_mutex);
788 
789 	return cnt;
790 }
791 
792 static int i915_error_state_open(struct inode *inode, struct file *file)
793 {
794 	struct drm_device *dev = inode->i_private;
795 	struct i915_error_state_file_priv *error_priv;
796 
797 	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
798 	if (!error_priv)
799 		return -ENOMEM;
800 
801 	error_priv->dev = dev;
802 
803 	i915_error_state_get(dev, error_priv);
804 
805 	file->private_data = error_priv;
806 
807 	return 0;
808 }
809 
810 static int i915_error_state_release(struct inode *inode, struct file *file)
811 {
812 	struct i915_error_state_file_priv *error_priv = file->private_data;
813 
814 	i915_error_state_put(error_priv);
815 	kfree(error_priv);
816 
817 	return 0;
818 }
819 
820 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
821 				     size_t count, loff_t *pos)
822 {
823 	struct i915_error_state_file_priv *error_priv = file->private_data;
824 	struct drm_i915_error_state_buf error_str;
825 	loff_t tmp_pos = 0;
826 	ssize_t ret_count = 0;
827 	int ret;
828 
829 	ret = i915_error_state_buf_init(&error_str, count, *pos);
830 	if (ret)
831 		return ret;
832 
833 	ret = i915_error_state_to_str(&error_str, error_priv);
834 	if (ret)
835 		goto out;
836 
837 	ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
838 					    error_str.buf,
839 					    error_str.bytes);
840 
841 	if (ret_count < 0)
842 		ret = ret_count;
843 	else
844 		*pos = error_str.start + ret_count;
845 out:
846 	i915_error_state_buf_release(&error_str);
847 	return ret ?: ret_count;
848 }
849 
850 static const struct file_operations i915_error_state_fops = {
851 	.owner = THIS_MODULE,
852 	.open = i915_error_state_open,
853 	.read = i915_error_state_read,
854 	.write = i915_error_state_write,
855 	.llseek = default_llseek,
856 	.release = i915_error_state_release,
857 };
858 
859 static int
860 i915_next_seqno_get(void *data, u64 *val)
861 {
862 	struct drm_device *dev = data;
863 	drm_i915_private_t *dev_priv = dev->dev_private;
864 	int ret;
865 
866 	ret = mutex_lock_interruptible(&dev->struct_mutex);
867 	if (ret)
868 		return ret;
869 
870 	*val = dev_priv->next_seqno;
871 	mutex_unlock(&dev->struct_mutex);
872 
873 	return 0;
874 }
875 
876 static int
877 i915_next_seqno_set(void *data, u64 val)
878 {
879 	struct drm_device *dev = data;
880 	int ret;
881 
882 	ret = mutex_lock_interruptible(&dev->struct_mutex);
883 	if (ret)
884 		return ret;
885 
886 	ret = i915_gem_set_seqno(dev, val);
887 	mutex_unlock(&dev->struct_mutex);
888 
889 	return ret;
890 }
891 
892 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
893 			i915_next_seqno_get, i915_next_seqno_set,
894 			"0x%llx\n");
895 
896 static int i915_rstdby_delays(struct seq_file *m, void *unused)
897 {
898 	struct drm_info_node *node = (struct drm_info_node *) m->private;
899 	struct drm_device *dev = node->minor->dev;
900 	drm_i915_private_t *dev_priv = dev->dev_private;
901 	u16 crstanddelay;
902 	int ret;
903 
904 	ret = mutex_lock_interruptible(&dev->struct_mutex);
905 	if (ret)
906 		return ret;
907 
908 	crstanddelay = I915_READ16(CRSTANDVID);
909 
910 	mutex_unlock(&dev->struct_mutex);
911 
912 	seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
913 
914 	return 0;
915 }
916 
917 static int i915_cur_delayinfo(struct seq_file *m, void *unused)
918 {
919 	struct drm_info_node *node = (struct drm_info_node *) m->private;
920 	struct drm_device *dev = node->minor->dev;
921 	drm_i915_private_t *dev_priv = dev->dev_private;
922 	int ret;
923 
924 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
925 
926 	if (IS_GEN5(dev)) {
927 		u16 rgvswctl = I915_READ16(MEMSWCTL);
928 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
929 
930 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
931 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
932 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
933 			   MEMSTAT_VID_SHIFT);
934 		seq_printf(m, "Current P-state: %d\n",
935 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
936 	} else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
937 		u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
938 		u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
939 		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
940 		u32 rpstat, cagf, reqf;
941 		u32 rpupei, rpcurup, rpprevup;
942 		u32 rpdownei, rpcurdown, rpprevdown;
943 		int max_freq;
944 
945 		/* RPSTAT1 is in the GT power well */
946 		ret = mutex_lock_interruptible(&dev->struct_mutex);
947 		if (ret)
948 			return ret;
949 
950 		gen6_gt_force_wake_get(dev_priv);
951 
952 		reqf = I915_READ(GEN6_RPNSWREQ);
953 		reqf &= ~GEN6_TURBO_DISABLE;
954 		if (IS_HASWELL(dev))
955 			reqf >>= 24;
956 		else
957 			reqf >>= 25;
958 		reqf *= GT_FREQUENCY_MULTIPLIER;
959 
960 		rpstat = I915_READ(GEN6_RPSTAT1);
961 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
962 		rpcurup = I915_READ(GEN6_RP_CUR_UP);
963 		rpprevup = I915_READ(GEN6_RP_PREV_UP);
964 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
965 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
966 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
967 		if (IS_HASWELL(dev))
968 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
969 		else
970 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
971 		cagf *= GT_FREQUENCY_MULTIPLIER;
972 
973 		gen6_gt_force_wake_put(dev_priv);
974 		mutex_unlock(&dev->struct_mutex);
975 
976 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
977 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
978 		seq_printf(m, "Render p-state ratio: %d\n",
979 			   (gt_perf_status & 0xff00) >> 8);
980 		seq_printf(m, "Render p-state VID: %d\n",
981 			   gt_perf_status & 0xff);
982 		seq_printf(m, "Render p-state limit: %d\n",
983 			   rp_state_limits & 0xff);
984 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
985 		seq_printf(m, "CAGF: %dMHz\n", cagf);
986 		seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
987 			   GEN6_CURICONT_MASK);
988 		seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
989 			   GEN6_CURBSYTAVG_MASK);
990 		seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
991 			   GEN6_CURBSYTAVG_MASK);
992 		seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
993 			   GEN6_CURIAVG_MASK);
994 		seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
995 			   GEN6_CURBSYTAVG_MASK);
996 		seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
997 			   GEN6_CURBSYTAVG_MASK);
998 
999 		max_freq = (rp_state_cap & 0xff0000) >> 16;
1000 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1001 			   max_freq * GT_FREQUENCY_MULTIPLIER);
1002 
1003 		max_freq = (rp_state_cap & 0xff00) >> 8;
1004 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1005 			   max_freq * GT_FREQUENCY_MULTIPLIER);
1006 
1007 		max_freq = rp_state_cap & 0xff;
1008 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1009 			   max_freq * GT_FREQUENCY_MULTIPLIER);
1010 
1011 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1012 			   dev_priv->rps.hw_max * GT_FREQUENCY_MULTIPLIER);
1013 	} else if (IS_VALLEYVIEW(dev)) {
1014 		u32 freq_sts, val;
1015 
1016 		mutex_lock(&dev_priv->rps.hw_lock);
1017 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1018 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1019 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1020 
1021 		val = vlv_punit_read(dev_priv, PUNIT_FUSE_BUS1);
1022 		seq_printf(m, "max GPU freq: %d MHz\n",
1023 			   vlv_gpu_freq(dev_priv->mem_freq, val));
1024 
1025 		val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM);
1026 		seq_printf(m, "min GPU freq: %d MHz\n",
1027 			   vlv_gpu_freq(dev_priv->mem_freq, val));
1028 
1029 		seq_printf(m, "current GPU freq: %d MHz\n",
1030 			   vlv_gpu_freq(dev_priv->mem_freq,
1031 					(freq_sts >> 8) & 0xff));
1032 		mutex_unlock(&dev_priv->rps.hw_lock);
1033 	} else {
1034 		seq_puts(m, "no P-state info available\n");
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 static int i915_delayfreq_table(struct seq_file *m, void *unused)
1041 {
1042 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1043 	struct drm_device *dev = node->minor->dev;
1044 	drm_i915_private_t *dev_priv = dev->dev_private;
1045 	u32 delayfreq;
1046 	int ret, i;
1047 
1048 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1049 	if (ret)
1050 		return ret;
1051 
1052 	for (i = 0; i < 16; i++) {
1053 		delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
1054 		seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
1055 			   (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
1056 	}
1057 
1058 	mutex_unlock(&dev->struct_mutex);
1059 
1060 	return 0;
1061 }
1062 
1063 static inline int MAP_TO_MV(int map)
1064 {
1065 	return 1250 - (map * 25);
1066 }
1067 
1068 static int i915_inttoext_table(struct seq_file *m, void *unused)
1069 {
1070 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1071 	struct drm_device *dev = node->minor->dev;
1072 	drm_i915_private_t *dev_priv = dev->dev_private;
1073 	u32 inttoext;
1074 	int ret, i;
1075 
1076 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1077 	if (ret)
1078 		return ret;
1079 
1080 	for (i = 1; i <= 32; i++) {
1081 		inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
1082 		seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
1083 	}
1084 
1085 	mutex_unlock(&dev->struct_mutex);
1086 
1087 	return 0;
1088 }
1089 
1090 static int ironlake_drpc_info(struct seq_file *m)
1091 {
1092 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1093 	struct drm_device *dev = node->minor->dev;
1094 	drm_i915_private_t *dev_priv = dev->dev_private;
1095 	u32 rgvmodectl, rstdbyctl;
1096 	u16 crstandvid;
1097 	int ret;
1098 
1099 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1100 	if (ret)
1101 		return ret;
1102 
1103 	rgvmodectl = I915_READ(MEMMODECTL);
1104 	rstdbyctl = I915_READ(RSTDBYCTL);
1105 	crstandvid = I915_READ16(CRSTANDVID);
1106 
1107 	mutex_unlock(&dev->struct_mutex);
1108 
1109 	seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1110 		   "yes" : "no");
1111 	seq_printf(m, "Boost freq: %d\n",
1112 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1113 		   MEMMODE_BOOST_FREQ_SHIFT);
1114 	seq_printf(m, "HW control enabled: %s\n",
1115 		   rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1116 	seq_printf(m, "SW control enabled: %s\n",
1117 		   rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1118 	seq_printf(m, "Gated voltage change: %s\n",
1119 		   rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1120 	seq_printf(m, "Starting frequency: P%d\n",
1121 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1122 	seq_printf(m, "Max P-state: P%d\n",
1123 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1124 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1125 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1126 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1127 	seq_printf(m, "Render standby enabled: %s\n",
1128 		   (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1129 	seq_puts(m, "Current RS state: ");
1130 	switch (rstdbyctl & RSX_STATUS_MASK) {
1131 	case RSX_STATUS_ON:
1132 		seq_puts(m, "on\n");
1133 		break;
1134 	case RSX_STATUS_RC1:
1135 		seq_puts(m, "RC1\n");
1136 		break;
1137 	case RSX_STATUS_RC1E:
1138 		seq_puts(m, "RC1E\n");
1139 		break;
1140 	case RSX_STATUS_RS1:
1141 		seq_puts(m, "RS1\n");
1142 		break;
1143 	case RSX_STATUS_RS2:
1144 		seq_puts(m, "RS2 (RC6)\n");
1145 		break;
1146 	case RSX_STATUS_RS3:
1147 		seq_puts(m, "RC3 (RC6+)\n");
1148 		break;
1149 	default:
1150 		seq_puts(m, "unknown\n");
1151 		break;
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 static int gen6_drpc_info(struct seq_file *m)
1158 {
1159 
1160 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1161 	struct drm_device *dev = node->minor->dev;
1162 	struct drm_i915_private *dev_priv = dev->dev_private;
1163 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1164 	unsigned forcewake_count;
1165 	int count = 0, ret;
1166 
1167 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1168 	if (ret)
1169 		return ret;
1170 
1171 	spin_lock_irq(&dev_priv->uncore.lock);
1172 	forcewake_count = dev_priv->uncore.forcewake_count;
1173 	spin_unlock_irq(&dev_priv->uncore.lock);
1174 
1175 	if (forcewake_count) {
1176 		seq_puts(m, "RC information inaccurate because somebody "
1177 			    "holds a forcewake reference \n");
1178 	} else {
1179 		/* NB: we cannot use forcewake, else we read the wrong values */
1180 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1181 			udelay(10);
1182 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1183 	}
1184 
1185 	gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1186 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1187 
1188 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1189 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1190 	mutex_unlock(&dev->struct_mutex);
1191 	mutex_lock(&dev_priv->rps.hw_lock);
1192 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1193 	mutex_unlock(&dev_priv->rps.hw_lock);
1194 
1195 	seq_printf(m, "Video Turbo Mode: %s\n",
1196 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1197 	seq_printf(m, "HW control enabled: %s\n",
1198 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1199 	seq_printf(m, "SW control enabled: %s\n",
1200 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1201 			  GEN6_RP_MEDIA_SW_MODE));
1202 	seq_printf(m, "RC1e Enabled: %s\n",
1203 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1204 	seq_printf(m, "RC6 Enabled: %s\n",
1205 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1206 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1207 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1208 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1209 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1210 	seq_puts(m, "Current RC state: ");
1211 	switch (gt_core_status & GEN6_RCn_MASK) {
1212 	case GEN6_RC0:
1213 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1214 			seq_puts(m, "Core Power Down\n");
1215 		else
1216 			seq_puts(m, "on\n");
1217 		break;
1218 	case GEN6_RC3:
1219 		seq_puts(m, "RC3\n");
1220 		break;
1221 	case GEN6_RC6:
1222 		seq_puts(m, "RC6\n");
1223 		break;
1224 	case GEN6_RC7:
1225 		seq_puts(m, "RC7\n");
1226 		break;
1227 	default:
1228 		seq_puts(m, "Unknown\n");
1229 		break;
1230 	}
1231 
1232 	seq_printf(m, "Core Power Down: %s\n",
1233 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1234 
1235 	/* Not exactly sure what this is */
1236 	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1237 		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1238 	seq_printf(m, "RC6 residency since boot: %u\n",
1239 		   I915_READ(GEN6_GT_GFX_RC6));
1240 	seq_printf(m, "RC6+ residency since boot: %u\n",
1241 		   I915_READ(GEN6_GT_GFX_RC6p));
1242 	seq_printf(m, "RC6++ residency since boot: %u\n",
1243 		   I915_READ(GEN6_GT_GFX_RC6pp));
1244 
1245 	seq_printf(m, "RC6   voltage: %dmV\n",
1246 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1247 	seq_printf(m, "RC6+  voltage: %dmV\n",
1248 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1249 	seq_printf(m, "RC6++ voltage: %dmV\n",
1250 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1251 	return 0;
1252 }
1253 
1254 static int i915_drpc_info(struct seq_file *m, void *unused)
1255 {
1256 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1257 	struct drm_device *dev = node->minor->dev;
1258 
1259 	if (IS_GEN6(dev) || IS_GEN7(dev))
1260 		return gen6_drpc_info(m);
1261 	else
1262 		return ironlake_drpc_info(m);
1263 }
1264 
1265 static int i915_fbc_status(struct seq_file *m, void *unused)
1266 {
1267 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1268 	struct drm_device *dev = node->minor->dev;
1269 	drm_i915_private_t *dev_priv = dev->dev_private;
1270 
1271 	if (!I915_HAS_FBC(dev)) {
1272 		seq_puts(m, "FBC unsupported on this chipset\n");
1273 		return 0;
1274 	}
1275 
1276 	if (intel_fbc_enabled(dev)) {
1277 		seq_puts(m, "FBC enabled\n");
1278 	} else {
1279 		seq_puts(m, "FBC disabled: ");
1280 		switch (dev_priv->fbc.no_fbc_reason) {
1281 		case FBC_OK:
1282 			seq_puts(m, "FBC actived, but currently disabled in hardware");
1283 			break;
1284 		case FBC_UNSUPPORTED:
1285 			seq_puts(m, "unsupported by this chipset");
1286 			break;
1287 		case FBC_NO_OUTPUT:
1288 			seq_puts(m, "no outputs");
1289 			break;
1290 		case FBC_STOLEN_TOO_SMALL:
1291 			seq_puts(m, "not enough stolen memory");
1292 			break;
1293 		case FBC_UNSUPPORTED_MODE:
1294 			seq_puts(m, "mode not supported");
1295 			break;
1296 		case FBC_MODE_TOO_LARGE:
1297 			seq_puts(m, "mode too large");
1298 			break;
1299 		case FBC_BAD_PLANE:
1300 			seq_puts(m, "FBC unsupported on plane");
1301 			break;
1302 		case FBC_NOT_TILED:
1303 			seq_puts(m, "scanout buffer not tiled");
1304 			break;
1305 		case FBC_MULTIPLE_PIPES:
1306 			seq_puts(m, "multiple pipes are enabled");
1307 			break;
1308 		case FBC_MODULE_PARAM:
1309 			seq_puts(m, "disabled per module param (default off)");
1310 			break;
1311 		case FBC_CHIP_DEFAULT:
1312 			seq_puts(m, "disabled per chip default");
1313 			break;
1314 		default:
1315 			seq_puts(m, "unknown reason");
1316 		}
1317 		seq_putc(m, '\n');
1318 	}
1319 	return 0;
1320 }
1321 
1322 static int i915_ips_status(struct seq_file *m, void *unused)
1323 {
1324 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1325 	struct drm_device *dev = node->minor->dev;
1326 	struct drm_i915_private *dev_priv = dev->dev_private;
1327 
1328 	if (!HAS_IPS(dev)) {
1329 		seq_puts(m, "not supported\n");
1330 		return 0;
1331 	}
1332 
1333 	if (I915_READ(IPS_CTL) & IPS_ENABLE)
1334 		seq_puts(m, "enabled\n");
1335 	else
1336 		seq_puts(m, "disabled\n");
1337 
1338 	return 0;
1339 }
1340 
1341 static int i915_sr_status(struct seq_file *m, void *unused)
1342 {
1343 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1344 	struct drm_device *dev = node->minor->dev;
1345 	drm_i915_private_t *dev_priv = dev->dev_private;
1346 	bool sr_enabled = false;
1347 
1348 	if (HAS_PCH_SPLIT(dev))
1349 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1350 	else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1351 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1352 	else if (IS_I915GM(dev))
1353 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1354 	else if (IS_PINEVIEW(dev))
1355 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1356 
1357 	seq_printf(m, "self-refresh: %s\n",
1358 		   sr_enabled ? "enabled" : "disabled");
1359 
1360 	return 0;
1361 }
1362 
1363 static int i915_emon_status(struct seq_file *m, void *unused)
1364 {
1365 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1366 	struct drm_device *dev = node->minor->dev;
1367 	drm_i915_private_t *dev_priv = dev->dev_private;
1368 	unsigned long temp, chipset, gfx;
1369 	int ret;
1370 
1371 	if (!IS_GEN5(dev))
1372 		return -ENODEV;
1373 
1374 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1375 	if (ret)
1376 		return ret;
1377 
1378 	temp = i915_mch_val(dev_priv);
1379 	chipset = i915_chipset_val(dev_priv);
1380 	gfx = i915_gfx_val(dev_priv);
1381 	mutex_unlock(&dev->struct_mutex);
1382 
1383 	seq_printf(m, "GMCH temp: %ld\n", temp);
1384 	seq_printf(m, "Chipset power: %ld\n", chipset);
1385 	seq_printf(m, "GFX power: %ld\n", gfx);
1386 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1387 
1388 	return 0;
1389 }
1390 
1391 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1392 {
1393 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1394 	struct drm_device *dev = node->minor->dev;
1395 	drm_i915_private_t *dev_priv = dev->dev_private;
1396 	int ret;
1397 	int gpu_freq, ia_freq;
1398 
1399 	if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1400 		seq_puts(m, "unsupported on this chipset\n");
1401 		return 0;
1402 	}
1403 
1404 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1405 
1406 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1407 	if (ret)
1408 		return ret;
1409 
1410 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1411 
1412 	for (gpu_freq = dev_priv->rps.min_delay;
1413 	     gpu_freq <= dev_priv->rps.max_delay;
1414 	     gpu_freq++) {
1415 		ia_freq = gpu_freq;
1416 		sandybridge_pcode_read(dev_priv,
1417 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1418 				       &ia_freq);
1419 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1420 			   gpu_freq * GT_FREQUENCY_MULTIPLIER,
1421 			   ((ia_freq >> 0) & 0xff) * 100,
1422 			   ((ia_freq >> 8) & 0xff) * 100);
1423 	}
1424 
1425 	mutex_unlock(&dev_priv->rps.hw_lock);
1426 
1427 	return 0;
1428 }
1429 
1430 static int i915_gfxec(struct seq_file *m, void *unused)
1431 {
1432 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1433 	struct drm_device *dev = node->minor->dev;
1434 	drm_i915_private_t *dev_priv = dev->dev_private;
1435 	int ret;
1436 
1437 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1438 	if (ret)
1439 		return ret;
1440 
1441 	seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
1442 
1443 	mutex_unlock(&dev->struct_mutex);
1444 
1445 	return 0;
1446 }
1447 
1448 static int i915_opregion(struct seq_file *m, void *unused)
1449 {
1450 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1451 	struct drm_device *dev = node->minor->dev;
1452 	drm_i915_private_t *dev_priv = dev->dev_private;
1453 	struct intel_opregion *opregion = &dev_priv->opregion;
1454 	void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1455 	int ret;
1456 
1457 	if (data == NULL)
1458 		return -ENOMEM;
1459 
1460 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1461 	if (ret)
1462 		goto out;
1463 
1464 	if (opregion->header) {
1465 		memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1466 		seq_write(m, data, OPREGION_SIZE);
1467 	}
1468 
1469 	mutex_unlock(&dev->struct_mutex);
1470 
1471 out:
1472 	kfree(data);
1473 	return 0;
1474 }
1475 
1476 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1477 {
1478 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1479 	struct drm_device *dev = node->minor->dev;
1480 	struct intel_fbdev *ifbdev = NULL;
1481 	struct intel_framebuffer *fb;
1482 
1483 #ifdef CONFIG_DRM_I915_FBDEV
1484 	struct drm_i915_private *dev_priv = dev->dev_private;
1485 	int ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1486 	if (ret)
1487 		return ret;
1488 
1489 	ifbdev = dev_priv->fbdev;
1490 	fb = to_intel_framebuffer(ifbdev->helper.fb);
1491 
1492 	seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1493 		   fb->base.width,
1494 		   fb->base.height,
1495 		   fb->base.depth,
1496 		   fb->base.bits_per_pixel,
1497 		   atomic_read(&fb->base.refcount.refcount));
1498 	describe_obj(m, fb->obj);
1499 	seq_putc(m, '\n');
1500 	mutex_unlock(&dev->mode_config.mutex);
1501 #endif
1502 
1503 	mutex_lock(&dev->mode_config.fb_lock);
1504 	list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1505 		if (ifbdev && &fb->base == ifbdev->helper.fb)
1506 			continue;
1507 
1508 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1509 			   fb->base.width,
1510 			   fb->base.height,
1511 			   fb->base.depth,
1512 			   fb->base.bits_per_pixel,
1513 			   atomic_read(&fb->base.refcount.refcount));
1514 		describe_obj(m, fb->obj);
1515 		seq_putc(m, '\n');
1516 	}
1517 	mutex_unlock(&dev->mode_config.fb_lock);
1518 
1519 	return 0;
1520 }
1521 
1522 static int i915_context_status(struct seq_file *m, void *unused)
1523 {
1524 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1525 	struct drm_device *dev = node->minor->dev;
1526 	drm_i915_private_t *dev_priv = dev->dev_private;
1527 	struct intel_ring_buffer *ring;
1528 	struct i915_hw_context *ctx;
1529 	int ret, i;
1530 
1531 	ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1532 	if (ret)
1533 		return ret;
1534 
1535 	if (dev_priv->ips.pwrctx) {
1536 		seq_puts(m, "power context ");
1537 		describe_obj(m, dev_priv->ips.pwrctx);
1538 		seq_putc(m, '\n');
1539 	}
1540 
1541 	if (dev_priv->ips.renderctx) {
1542 		seq_puts(m, "render context ");
1543 		describe_obj(m, dev_priv->ips.renderctx);
1544 		seq_putc(m, '\n');
1545 	}
1546 
1547 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1548 		seq_puts(m, "HW context ");
1549 		describe_ctx(m, ctx);
1550 		for_each_ring(ring, dev_priv, i)
1551 			if (ring->default_context == ctx)
1552 				seq_printf(m, "(default context %s) ", ring->name);
1553 
1554 		describe_obj(m, ctx->obj);
1555 		seq_putc(m, '\n');
1556 	}
1557 
1558 	mutex_unlock(&dev->mode_config.mutex);
1559 
1560 	return 0;
1561 }
1562 
1563 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1564 {
1565 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1566 	struct drm_device *dev = node->minor->dev;
1567 	struct drm_i915_private *dev_priv = dev->dev_private;
1568 	unsigned forcewake_count;
1569 
1570 	spin_lock_irq(&dev_priv->uncore.lock);
1571 	forcewake_count = dev_priv->uncore.forcewake_count;
1572 	spin_unlock_irq(&dev_priv->uncore.lock);
1573 
1574 	seq_printf(m, "forcewake count = %u\n", forcewake_count);
1575 
1576 	return 0;
1577 }
1578 
1579 static const char *swizzle_string(unsigned swizzle)
1580 {
1581 	switch (swizzle) {
1582 	case I915_BIT_6_SWIZZLE_NONE:
1583 		return "none";
1584 	case I915_BIT_6_SWIZZLE_9:
1585 		return "bit9";
1586 	case I915_BIT_6_SWIZZLE_9_10:
1587 		return "bit9/bit10";
1588 	case I915_BIT_6_SWIZZLE_9_11:
1589 		return "bit9/bit11";
1590 	case I915_BIT_6_SWIZZLE_9_10_11:
1591 		return "bit9/bit10/bit11";
1592 	case I915_BIT_6_SWIZZLE_9_17:
1593 		return "bit9/bit17";
1594 	case I915_BIT_6_SWIZZLE_9_10_17:
1595 		return "bit9/bit10/bit17";
1596 	case I915_BIT_6_SWIZZLE_UNKNOWN:
1597 		return "unknown";
1598 	}
1599 
1600 	return "bug";
1601 }
1602 
1603 static int i915_swizzle_info(struct seq_file *m, void *data)
1604 {
1605 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1606 	struct drm_device *dev = node->minor->dev;
1607 	struct drm_i915_private *dev_priv = dev->dev_private;
1608 	int ret;
1609 
1610 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1611 	if (ret)
1612 		return ret;
1613 
1614 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1615 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1616 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1617 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1618 
1619 	if (IS_GEN3(dev) || IS_GEN4(dev)) {
1620 		seq_printf(m, "DDC = 0x%08x\n",
1621 			   I915_READ(DCC));
1622 		seq_printf(m, "C0DRB3 = 0x%04x\n",
1623 			   I915_READ16(C0DRB3));
1624 		seq_printf(m, "C1DRB3 = 0x%04x\n",
1625 			   I915_READ16(C1DRB3));
1626 	} else if (INTEL_INFO(dev)->gen >= 6) {
1627 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1628 			   I915_READ(MAD_DIMM_C0));
1629 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1630 			   I915_READ(MAD_DIMM_C1));
1631 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1632 			   I915_READ(MAD_DIMM_C2));
1633 		seq_printf(m, "TILECTL = 0x%08x\n",
1634 			   I915_READ(TILECTL));
1635 		if (IS_GEN8(dev))
1636 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1637 				   I915_READ(GAMTARBMODE));
1638 		else
1639 			seq_printf(m, "ARB_MODE = 0x%08x\n",
1640 				   I915_READ(ARB_MODE));
1641 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1642 			   I915_READ(DISP_ARB_CTL));
1643 	}
1644 	mutex_unlock(&dev->struct_mutex);
1645 
1646 	return 0;
1647 }
1648 
1649 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1650 {
1651 	struct drm_i915_private *dev_priv = dev->dev_private;
1652 	struct intel_ring_buffer *ring;
1653 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1654 	int unused, i;
1655 
1656 	if (!ppgtt)
1657 		return;
1658 
1659 	seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
1660 	seq_printf(m, "Page tables: %d\n", ppgtt->num_pt_pages);
1661 	for_each_ring(ring, dev_priv, unused) {
1662 		seq_printf(m, "%s\n", ring->name);
1663 		for (i = 0; i < 4; i++) {
1664 			u32 offset = 0x270 + i * 8;
1665 			u64 pdp = I915_READ(ring->mmio_base + offset + 4);
1666 			pdp <<= 32;
1667 			pdp |= I915_READ(ring->mmio_base + offset);
1668 			for (i = 0; i < 4; i++)
1669 				seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
1670 		}
1671 	}
1672 }
1673 
1674 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1675 {
1676 	struct drm_i915_private *dev_priv = dev->dev_private;
1677 	struct intel_ring_buffer *ring;
1678 	int i;
1679 
1680 	if (INTEL_INFO(dev)->gen == 6)
1681 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
1682 
1683 	for_each_ring(ring, dev_priv, i) {
1684 		seq_printf(m, "%s\n", ring->name);
1685 		if (INTEL_INFO(dev)->gen == 7)
1686 			seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
1687 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
1688 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
1689 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
1690 	}
1691 	if (dev_priv->mm.aliasing_ppgtt) {
1692 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1693 
1694 		seq_puts(m, "aliasing PPGTT:\n");
1695 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
1696 	}
1697 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
1698 }
1699 
1700 static int i915_ppgtt_info(struct seq_file *m, void *data)
1701 {
1702 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1703 	struct drm_device *dev = node->minor->dev;
1704 
1705 	int ret = mutex_lock_interruptible(&dev->struct_mutex);
1706 	if (ret)
1707 		return ret;
1708 
1709 	if (INTEL_INFO(dev)->gen >= 8)
1710 		gen8_ppgtt_info(m, dev);
1711 	else if (INTEL_INFO(dev)->gen >= 6)
1712 		gen6_ppgtt_info(m, dev);
1713 
1714 	mutex_unlock(&dev->struct_mutex);
1715 
1716 	return 0;
1717 }
1718 
1719 static int i915_dpio_info(struct seq_file *m, void *data)
1720 {
1721 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1722 	struct drm_device *dev = node->minor->dev;
1723 	struct drm_i915_private *dev_priv = dev->dev_private;
1724 	int ret;
1725 
1726 
1727 	if (!IS_VALLEYVIEW(dev)) {
1728 		seq_puts(m, "unsupported\n");
1729 		return 0;
1730 	}
1731 
1732 	ret = mutex_lock_interruptible(&dev_priv->dpio_lock);
1733 	if (ret)
1734 		return ret;
1735 
1736 	seq_printf(m, "DPIO_CTL: 0x%08x\n", I915_READ(DPIO_CTL));
1737 
1738 	seq_printf(m, "DPIO_DIV_A: 0x%08x\n",
1739 		   vlv_dpio_read(dev_priv, PIPE_A, _DPIO_DIV_A));
1740 	seq_printf(m, "DPIO_DIV_B: 0x%08x\n",
1741 		   vlv_dpio_read(dev_priv, PIPE_A, _DPIO_DIV_B));
1742 
1743 	seq_printf(m, "DPIO_REFSFR_A: 0x%08x\n",
1744 		   vlv_dpio_read(dev_priv, PIPE_A, _DPIO_REFSFR_A));
1745 	seq_printf(m, "DPIO_REFSFR_B: 0x%08x\n",
1746 		   vlv_dpio_read(dev_priv, PIPE_A, _DPIO_REFSFR_B));
1747 
1748 	seq_printf(m, "DPIO_CORE_CLK_A: 0x%08x\n",
1749 		   vlv_dpio_read(dev_priv, PIPE_A, _DPIO_CORE_CLK_A));
1750 	seq_printf(m, "DPIO_CORE_CLK_B: 0x%08x\n",
1751 		   vlv_dpio_read(dev_priv, PIPE_A, _DPIO_CORE_CLK_B));
1752 
1753 	seq_printf(m, "DPIO_LPF_COEFF_A: 0x%08x\n",
1754 		   vlv_dpio_read(dev_priv, PIPE_A, _DPIO_LPF_COEFF_A));
1755 	seq_printf(m, "DPIO_LPF_COEFF_B: 0x%08x\n",
1756 		   vlv_dpio_read(dev_priv, PIPE_A, _DPIO_LPF_COEFF_B));
1757 
1758 	seq_printf(m, "DPIO_FASTCLK_DISABLE: 0x%08x\n",
1759 		   vlv_dpio_read(dev_priv, PIPE_A, DPIO_FASTCLK_DISABLE));
1760 
1761 	mutex_unlock(&dev_priv->dpio_lock);
1762 
1763 	return 0;
1764 }
1765 
1766 static int i915_llc(struct seq_file *m, void *data)
1767 {
1768 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1769 	struct drm_device *dev = node->minor->dev;
1770 	struct drm_i915_private *dev_priv = dev->dev_private;
1771 
1772 	/* Size calculation for LLC is a bit of a pain. Ignore for now. */
1773 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
1774 	seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
1775 
1776 	return 0;
1777 }
1778 
1779 static int i915_edp_psr_status(struct seq_file *m, void *data)
1780 {
1781 	struct drm_info_node *node = m->private;
1782 	struct drm_device *dev = node->minor->dev;
1783 	struct drm_i915_private *dev_priv = dev->dev_private;
1784 	u32 psrperf = 0;
1785 	bool enabled = false;
1786 
1787 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
1788 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
1789 
1790 	enabled = HAS_PSR(dev) &&
1791 		I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1792 	seq_printf(m, "Enabled: %s\n", yesno(enabled));
1793 
1794 	if (HAS_PSR(dev))
1795 		psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
1796 			EDP_PSR_PERF_CNT_MASK;
1797 	seq_printf(m, "Performance_Counter: %u\n", psrperf);
1798 
1799 	return 0;
1800 }
1801 
1802 static int i915_energy_uJ(struct seq_file *m, void *data)
1803 {
1804 	struct drm_info_node *node = m->private;
1805 	struct drm_device *dev = node->minor->dev;
1806 	struct drm_i915_private *dev_priv = dev->dev_private;
1807 	u64 power;
1808 	u32 units;
1809 
1810 	if (INTEL_INFO(dev)->gen < 6)
1811 		return -ENODEV;
1812 
1813 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
1814 	power = (power & 0x1f00) >> 8;
1815 	units = 1000000 / (1 << power); /* convert to uJ */
1816 	power = I915_READ(MCH_SECP_NRG_STTS);
1817 	power *= units;
1818 
1819 	seq_printf(m, "%llu", (long long unsigned)power);
1820 
1821 	return 0;
1822 }
1823 
1824 static int i915_pc8_status(struct seq_file *m, void *unused)
1825 {
1826 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1827 	struct drm_device *dev = node->minor->dev;
1828 	struct drm_i915_private *dev_priv = dev->dev_private;
1829 
1830 	if (!IS_HASWELL(dev)) {
1831 		seq_puts(m, "not supported\n");
1832 		return 0;
1833 	}
1834 
1835 	mutex_lock(&dev_priv->pc8.lock);
1836 	seq_printf(m, "Requirements met: %s\n",
1837 		   yesno(dev_priv->pc8.requirements_met));
1838 	seq_printf(m, "GPU idle: %s\n", yesno(dev_priv->pc8.gpu_idle));
1839 	seq_printf(m, "Disable count: %d\n", dev_priv->pc8.disable_count);
1840 	seq_printf(m, "IRQs disabled: %s\n",
1841 		   yesno(dev_priv->pc8.irqs_disabled));
1842 	seq_printf(m, "Enabled: %s\n", yesno(dev_priv->pc8.enabled));
1843 	mutex_unlock(&dev_priv->pc8.lock);
1844 
1845 	return 0;
1846 }
1847 
1848 struct pipe_crc_info {
1849 	const char *name;
1850 	struct drm_device *dev;
1851 	enum pipe pipe;
1852 };
1853 
1854 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
1855 {
1856 	struct pipe_crc_info *info = inode->i_private;
1857 	struct drm_i915_private *dev_priv = info->dev->dev_private;
1858 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
1859 
1860 	spin_lock_irq(&pipe_crc->lock);
1861 
1862 	if (pipe_crc->opened) {
1863 		spin_unlock_irq(&pipe_crc->lock);
1864 		return -EBUSY; /* already open */
1865 	}
1866 
1867 	pipe_crc->opened = true;
1868 	filep->private_data = inode->i_private;
1869 
1870 	spin_unlock_irq(&pipe_crc->lock);
1871 
1872 	return 0;
1873 }
1874 
1875 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
1876 {
1877 	struct pipe_crc_info *info = inode->i_private;
1878 	struct drm_i915_private *dev_priv = info->dev->dev_private;
1879 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
1880 
1881 	spin_lock_irq(&pipe_crc->lock);
1882 	pipe_crc->opened = false;
1883 	spin_unlock_irq(&pipe_crc->lock);
1884 
1885 	return 0;
1886 }
1887 
1888 /* (6 fields, 8 chars each, space separated (5) + '\n') */
1889 #define PIPE_CRC_LINE_LEN	(6 * 8 + 5 + 1)
1890 /* account for \'0' */
1891 #define PIPE_CRC_BUFFER_LEN	(PIPE_CRC_LINE_LEN + 1)
1892 
1893 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
1894 {
1895 	assert_spin_locked(&pipe_crc->lock);
1896 	return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
1897 			INTEL_PIPE_CRC_ENTRIES_NR);
1898 }
1899 
1900 static ssize_t
1901 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
1902 		   loff_t *pos)
1903 {
1904 	struct pipe_crc_info *info = filep->private_data;
1905 	struct drm_device *dev = info->dev;
1906 	struct drm_i915_private *dev_priv = dev->dev_private;
1907 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
1908 	char buf[PIPE_CRC_BUFFER_LEN];
1909 	int head, tail, n_entries, n;
1910 	ssize_t bytes_read;
1911 
1912 	/*
1913 	 * Don't allow user space to provide buffers not big enough to hold
1914 	 * a line of data.
1915 	 */
1916 	if (count < PIPE_CRC_LINE_LEN)
1917 		return -EINVAL;
1918 
1919 	if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
1920 		return 0;
1921 
1922 	/* nothing to read */
1923 	spin_lock_irq(&pipe_crc->lock);
1924 	while (pipe_crc_data_count(pipe_crc) == 0) {
1925 		int ret;
1926 
1927 		if (filep->f_flags & O_NONBLOCK) {
1928 			spin_unlock_irq(&pipe_crc->lock);
1929 			return -EAGAIN;
1930 		}
1931 
1932 		ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
1933 				pipe_crc_data_count(pipe_crc), pipe_crc->lock);
1934 		if (ret) {
1935 			spin_unlock_irq(&pipe_crc->lock);
1936 			return ret;
1937 		}
1938 	}
1939 
1940 	/* We now have one or more entries to read */
1941 	head = pipe_crc->head;
1942 	tail = pipe_crc->tail;
1943 	n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
1944 			count / PIPE_CRC_LINE_LEN);
1945 	spin_unlock_irq(&pipe_crc->lock);
1946 
1947 	bytes_read = 0;
1948 	n = 0;
1949 	do {
1950 		struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
1951 		int ret;
1952 
1953 		bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
1954 				       "%8u %8x %8x %8x %8x %8x\n",
1955 				       entry->frame, entry->crc[0],
1956 				       entry->crc[1], entry->crc[2],
1957 				       entry->crc[3], entry->crc[4]);
1958 
1959 		ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
1960 				   buf, PIPE_CRC_LINE_LEN);
1961 		if (ret == PIPE_CRC_LINE_LEN)
1962 			return -EFAULT;
1963 
1964 		BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
1965 		tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1966 		n++;
1967 	} while (--n_entries);
1968 
1969 	spin_lock_irq(&pipe_crc->lock);
1970 	pipe_crc->tail = tail;
1971 	spin_unlock_irq(&pipe_crc->lock);
1972 
1973 	return bytes_read;
1974 }
1975 
1976 static const struct file_operations i915_pipe_crc_fops = {
1977 	.owner = THIS_MODULE,
1978 	.open = i915_pipe_crc_open,
1979 	.read = i915_pipe_crc_read,
1980 	.release = i915_pipe_crc_release,
1981 };
1982 
1983 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
1984 	{
1985 		.name = "i915_pipe_A_crc",
1986 		.pipe = PIPE_A,
1987 	},
1988 	{
1989 		.name = "i915_pipe_B_crc",
1990 		.pipe = PIPE_B,
1991 	},
1992 	{
1993 		.name = "i915_pipe_C_crc",
1994 		.pipe = PIPE_C,
1995 	},
1996 };
1997 
1998 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
1999 				enum pipe pipe)
2000 {
2001 	struct drm_device *dev = minor->dev;
2002 	struct dentry *ent;
2003 	struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2004 
2005 	info->dev = dev;
2006 	ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2007 				  &i915_pipe_crc_fops);
2008 	if (IS_ERR(ent))
2009 		return PTR_ERR(ent);
2010 
2011 	return drm_add_fake_info_node(minor, ent, info);
2012 }
2013 
2014 static const char * const pipe_crc_sources[] = {
2015 	"none",
2016 	"plane1",
2017 	"plane2",
2018 	"pf",
2019 	"pipe",
2020 	"TV",
2021 	"DP-B",
2022 	"DP-C",
2023 	"DP-D",
2024 	"auto",
2025 };
2026 
2027 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2028 {
2029 	BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2030 	return pipe_crc_sources[source];
2031 }
2032 
2033 static int display_crc_ctl_show(struct seq_file *m, void *data)
2034 {
2035 	struct drm_device *dev = m->private;
2036 	struct drm_i915_private *dev_priv = dev->dev_private;
2037 	int i;
2038 
2039 	for (i = 0; i < I915_MAX_PIPES; i++)
2040 		seq_printf(m, "%c %s\n", pipe_name(i),
2041 			   pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2042 
2043 	return 0;
2044 }
2045 
2046 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2047 {
2048 	struct drm_device *dev = inode->i_private;
2049 
2050 	return single_open(file, display_crc_ctl_show, dev);
2051 }
2052 
2053 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2054 				 uint32_t *val)
2055 {
2056 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2057 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
2058 
2059 	switch (*source) {
2060 	case INTEL_PIPE_CRC_SOURCE_PIPE:
2061 		*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2062 		break;
2063 	case INTEL_PIPE_CRC_SOURCE_NONE:
2064 		*val = 0;
2065 		break;
2066 	default:
2067 		return -EINVAL;
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2074 				     enum intel_pipe_crc_source *source)
2075 {
2076 	struct intel_encoder *encoder;
2077 	struct intel_crtc *crtc;
2078 	struct intel_digital_port *dig_port;
2079 	int ret = 0;
2080 
2081 	*source = INTEL_PIPE_CRC_SOURCE_PIPE;
2082 
2083 	mutex_lock(&dev->mode_config.mutex);
2084 	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2085 			    base.head) {
2086 		if (!encoder->base.crtc)
2087 			continue;
2088 
2089 		crtc = to_intel_crtc(encoder->base.crtc);
2090 
2091 		if (crtc->pipe != pipe)
2092 			continue;
2093 
2094 		switch (encoder->type) {
2095 		case INTEL_OUTPUT_TVOUT:
2096 			*source = INTEL_PIPE_CRC_SOURCE_TV;
2097 			break;
2098 		case INTEL_OUTPUT_DISPLAYPORT:
2099 		case INTEL_OUTPUT_EDP:
2100 			dig_port = enc_to_dig_port(&encoder->base);
2101 			switch (dig_port->port) {
2102 			case PORT_B:
2103 				*source = INTEL_PIPE_CRC_SOURCE_DP_B;
2104 				break;
2105 			case PORT_C:
2106 				*source = INTEL_PIPE_CRC_SOURCE_DP_C;
2107 				break;
2108 			case PORT_D:
2109 				*source = INTEL_PIPE_CRC_SOURCE_DP_D;
2110 				break;
2111 			default:
2112 				WARN(1, "nonexisting DP port %c\n",
2113 				     port_name(dig_port->port));
2114 				break;
2115 			}
2116 			break;
2117 		}
2118 	}
2119 	mutex_unlock(&dev->mode_config.mutex);
2120 
2121 	return ret;
2122 }
2123 
2124 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
2125 				enum pipe pipe,
2126 				enum intel_pipe_crc_source *source,
2127 				uint32_t *val)
2128 {
2129 	struct drm_i915_private *dev_priv = dev->dev_private;
2130 	bool need_stable_symbols = false;
2131 
2132 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2133 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2134 		if (ret)
2135 			return ret;
2136 	}
2137 
2138 	switch (*source) {
2139 	case INTEL_PIPE_CRC_SOURCE_PIPE:
2140 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
2141 		break;
2142 	case INTEL_PIPE_CRC_SOURCE_DP_B:
2143 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
2144 		need_stable_symbols = true;
2145 		break;
2146 	case INTEL_PIPE_CRC_SOURCE_DP_C:
2147 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
2148 		need_stable_symbols = true;
2149 		break;
2150 	case INTEL_PIPE_CRC_SOURCE_NONE:
2151 		*val = 0;
2152 		break;
2153 	default:
2154 		return -EINVAL;
2155 	}
2156 
2157 	/*
2158 	 * When the pipe CRC tap point is after the transcoders we need
2159 	 * to tweak symbol-level features to produce a deterministic series of
2160 	 * symbols for a given frame. We need to reset those features only once
2161 	 * a frame (instead of every nth symbol):
2162 	 *   - DC-balance: used to ensure a better clock recovery from the data
2163 	 *     link (SDVO)
2164 	 *   - DisplayPort scrambling: used for EMI reduction
2165 	 */
2166 	if (need_stable_symbols) {
2167 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2168 
2169 		WARN_ON(!IS_G4X(dev));
2170 
2171 		tmp |= DC_BALANCE_RESET_VLV;
2172 		if (pipe == PIPE_A)
2173 			tmp |= PIPE_A_SCRAMBLE_RESET;
2174 		else
2175 			tmp |= PIPE_B_SCRAMBLE_RESET;
2176 
2177 		I915_WRITE(PORT_DFT2_G4X, tmp);
2178 	}
2179 
2180 	return 0;
2181 }
2182 
2183 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
2184 				 enum pipe pipe,
2185 				 enum intel_pipe_crc_source *source,
2186 				 uint32_t *val)
2187 {
2188 	struct drm_i915_private *dev_priv = dev->dev_private;
2189 	bool need_stable_symbols = false;
2190 
2191 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2192 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2193 		if (ret)
2194 			return ret;
2195 	}
2196 
2197 	switch (*source) {
2198 	case INTEL_PIPE_CRC_SOURCE_PIPE:
2199 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
2200 		break;
2201 	case INTEL_PIPE_CRC_SOURCE_TV:
2202 		if (!SUPPORTS_TV(dev))
2203 			return -EINVAL;
2204 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
2205 		break;
2206 	case INTEL_PIPE_CRC_SOURCE_DP_B:
2207 		if (!IS_G4X(dev))
2208 			return -EINVAL;
2209 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
2210 		need_stable_symbols = true;
2211 		break;
2212 	case INTEL_PIPE_CRC_SOURCE_DP_C:
2213 		if (!IS_G4X(dev))
2214 			return -EINVAL;
2215 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
2216 		need_stable_symbols = true;
2217 		break;
2218 	case INTEL_PIPE_CRC_SOURCE_DP_D:
2219 		if (!IS_G4X(dev))
2220 			return -EINVAL;
2221 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
2222 		need_stable_symbols = true;
2223 		break;
2224 	case INTEL_PIPE_CRC_SOURCE_NONE:
2225 		*val = 0;
2226 		break;
2227 	default:
2228 		return -EINVAL;
2229 	}
2230 
2231 	/*
2232 	 * When the pipe CRC tap point is after the transcoders we need
2233 	 * to tweak symbol-level features to produce a deterministic series of
2234 	 * symbols for a given frame. We need to reset those features only once
2235 	 * a frame (instead of every nth symbol):
2236 	 *   - DC-balance: used to ensure a better clock recovery from the data
2237 	 *     link (SDVO)
2238 	 *   - DisplayPort scrambling: used for EMI reduction
2239 	 */
2240 	if (need_stable_symbols) {
2241 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2242 
2243 		WARN_ON(!IS_G4X(dev));
2244 
2245 		I915_WRITE(PORT_DFT_I9XX,
2246 			   I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
2247 
2248 		if (pipe == PIPE_A)
2249 			tmp |= PIPE_A_SCRAMBLE_RESET;
2250 		else
2251 			tmp |= PIPE_B_SCRAMBLE_RESET;
2252 
2253 		I915_WRITE(PORT_DFT2_G4X, tmp);
2254 	}
2255 
2256 	return 0;
2257 }
2258 
2259 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
2260 					 enum pipe pipe)
2261 {
2262 	struct drm_i915_private *dev_priv = dev->dev_private;
2263 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2264 
2265 	if (pipe == PIPE_A)
2266 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
2267 	else
2268 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
2269 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
2270 		tmp &= ~DC_BALANCE_RESET_VLV;
2271 	I915_WRITE(PORT_DFT2_G4X, tmp);
2272 
2273 }
2274 
2275 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
2276 					 enum pipe pipe)
2277 {
2278 	struct drm_i915_private *dev_priv = dev->dev_private;
2279 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2280 
2281 	if (pipe == PIPE_A)
2282 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
2283 	else
2284 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
2285 	I915_WRITE(PORT_DFT2_G4X, tmp);
2286 
2287 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
2288 		I915_WRITE(PORT_DFT_I9XX,
2289 			   I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
2290 	}
2291 }
2292 
2293 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2294 				uint32_t *val)
2295 {
2296 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2297 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
2298 
2299 	switch (*source) {
2300 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
2301 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
2302 		break;
2303 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
2304 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
2305 		break;
2306 	case INTEL_PIPE_CRC_SOURCE_PIPE:
2307 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
2308 		break;
2309 	case INTEL_PIPE_CRC_SOURCE_NONE:
2310 		*val = 0;
2311 		break;
2312 	default:
2313 		return -EINVAL;
2314 	}
2315 
2316 	return 0;
2317 }
2318 
2319 static int ivb_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2320 				uint32_t *val)
2321 {
2322 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2323 		*source = INTEL_PIPE_CRC_SOURCE_PF;
2324 
2325 	switch (*source) {
2326 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
2327 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
2328 		break;
2329 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
2330 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
2331 		break;
2332 	case INTEL_PIPE_CRC_SOURCE_PF:
2333 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
2334 		break;
2335 	case INTEL_PIPE_CRC_SOURCE_NONE:
2336 		*val = 0;
2337 		break;
2338 	default:
2339 		return -EINVAL;
2340 	}
2341 
2342 	return 0;
2343 }
2344 
2345 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
2346 			       enum intel_pipe_crc_source source)
2347 {
2348 	struct drm_i915_private *dev_priv = dev->dev_private;
2349 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
2350 	u32 val;
2351 	int ret;
2352 
2353 	if (pipe_crc->source == source)
2354 		return 0;
2355 
2356 	/* forbid changing the source without going back to 'none' */
2357 	if (pipe_crc->source && source)
2358 		return -EINVAL;
2359 
2360 	if (IS_GEN2(dev))
2361 		ret = i8xx_pipe_crc_ctl_reg(&source, &val);
2362 	else if (INTEL_INFO(dev)->gen < 5)
2363 		ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
2364 	else if (IS_VALLEYVIEW(dev))
2365 		ret = vlv_pipe_crc_ctl_reg(dev,pipe, &source, &val);
2366 	else if (IS_GEN5(dev) || IS_GEN6(dev))
2367 		ret = ilk_pipe_crc_ctl_reg(&source, &val);
2368 	else
2369 		ret = ivb_pipe_crc_ctl_reg(&source, &val);
2370 
2371 	if (ret != 0)
2372 		return ret;
2373 
2374 	/* none -> real source transition */
2375 	if (source) {
2376 		DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
2377 				 pipe_name(pipe), pipe_crc_source_name(source));
2378 
2379 		pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
2380 					    INTEL_PIPE_CRC_ENTRIES_NR,
2381 					    GFP_KERNEL);
2382 		if (!pipe_crc->entries)
2383 			return -ENOMEM;
2384 
2385 		spin_lock_irq(&pipe_crc->lock);
2386 		pipe_crc->head = 0;
2387 		pipe_crc->tail = 0;
2388 		spin_unlock_irq(&pipe_crc->lock);
2389 	}
2390 
2391 	pipe_crc->source = source;
2392 
2393 	I915_WRITE(PIPE_CRC_CTL(pipe), val);
2394 	POSTING_READ(PIPE_CRC_CTL(pipe));
2395 
2396 	/* real source -> none transition */
2397 	if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
2398 		struct intel_pipe_crc_entry *entries;
2399 
2400 		DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
2401 				 pipe_name(pipe));
2402 
2403 		intel_wait_for_vblank(dev, pipe);
2404 
2405 		spin_lock_irq(&pipe_crc->lock);
2406 		entries = pipe_crc->entries;
2407 		pipe_crc->entries = NULL;
2408 		spin_unlock_irq(&pipe_crc->lock);
2409 
2410 		kfree(entries);
2411 
2412 		if (IS_G4X(dev))
2413 			g4x_undo_pipe_scramble_reset(dev, pipe);
2414 		else if (IS_VALLEYVIEW(dev))
2415 			vlv_undo_pipe_scramble_reset(dev, pipe);
2416 	}
2417 
2418 	return 0;
2419 }
2420 
2421 /*
2422  * Parse pipe CRC command strings:
2423  *   command: wsp* object wsp+ name wsp+ source wsp*
2424  *   object: 'pipe'
2425  *   name: (A | B | C)
2426  *   source: (none | plane1 | plane2 | pf)
2427  *   wsp: (#0x20 | #0x9 | #0xA)+
2428  *
2429  * eg.:
2430  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
2431  *  "pipe A none"    ->  Stop CRC
2432  */
2433 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
2434 {
2435 	int n_words = 0;
2436 
2437 	while (*buf) {
2438 		char *end;
2439 
2440 		/* skip leading white space */
2441 		buf = skip_spaces(buf);
2442 		if (!*buf)
2443 			break;	/* end of buffer */
2444 
2445 		/* find end of word */
2446 		for (end = buf; *end && !isspace(*end); end++)
2447 			;
2448 
2449 		if (n_words == max_words) {
2450 			DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
2451 					 max_words);
2452 			return -EINVAL;	/* ran out of words[] before bytes */
2453 		}
2454 
2455 		if (*end)
2456 			*end++ = '\0';
2457 		words[n_words++] = buf;
2458 		buf = end;
2459 	}
2460 
2461 	return n_words;
2462 }
2463 
2464 enum intel_pipe_crc_object {
2465 	PIPE_CRC_OBJECT_PIPE,
2466 };
2467 
2468 static const char * const pipe_crc_objects[] = {
2469 	"pipe",
2470 };
2471 
2472 static int
2473 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
2474 {
2475 	int i;
2476 
2477 	for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
2478 		if (!strcmp(buf, pipe_crc_objects[i])) {
2479 			*o = i;
2480 			return 0;
2481 		    }
2482 
2483 	return -EINVAL;
2484 }
2485 
2486 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
2487 {
2488 	const char name = buf[0];
2489 
2490 	if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
2491 		return -EINVAL;
2492 
2493 	*pipe = name - 'A';
2494 
2495 	return 0;
2496 }
2497 
2498 static int
2499 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
2500 {
2501 	int i;
2502 
2503 	for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
2504 		if (!strcmp(buf, pipe_crc_sources[i])) {
2505 			*s = i;
2506 			return 0;
2507 		    }
2508 
2509 	return -EINVAL;
2510 }
2511 
2512 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
2513 {
2514 #define N_WORDS 3
2515 	int n_words;
2516 	char *words[N_WORDS];
2517 	enum pipe pipe;
2518 	enum intel_pipe_crc_object object;
2519 	enum intel_pipe_crc_source source;
2520 
2521 	n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
2522 	if (n_words != N_WORDS) {
2523 		DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
2524 				 N_WORDS);
2525 		return -EINVAL;
2526 	}
2527 
2528 	if (display_crc_ctl_parse_object(words[0], &object) < 0) {
2529 		DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
2530 		return -EINVAL;
2531 	}
2532 
2533 	if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
2534 		DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
2535 		return -EINVAL;
2536 	}
2537 
2538 	if (display_crc_ctl_parse_source(words[2], &source) < 0) {
2539 		DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
2540 		return -EINVAL;
2541 	}
2542 
2543 	return pipe_crc_set_source(dev, pipe, source);
2544 }
2545 
2546 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
2547 				     size_t len, loff_t *offp)
2548 {
2549 	struct seq_file *m = file->private_data;
2550 	struct drm_device *dev = m->private;
2551 	char *tmpbuf;
2552 	int ret;
2553 
2554 	if (len == 0)
2555 		return 0;
2556 
2557 	if (len > PAGE_SIZE - 1) {
2558 		DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
2559 				 PAGE_SIZE);
2560 		return -E2BIG;
2561 	}
2562 
2563 	tmpbuf = kmalloc(len + 1, GFP_KERNEL);
2564 	if (!tmpbuf)
2565 		return -ENOMEM;
2566 
2567 	if (copy_from_user(tmpbuf, ubuf, len)) {
2568 		ret = -EFAULT;
2569 		goto out;
2570 	}
2571 	tmpbuf[len] = '\0';
2572 
2573 	ret = display_crc_ctl_parse(dev, tmpbuf, len);
2574 
2575 out:
2576 	kfree(tmpbuf);
2577 	if (ret < 0)
2578 		return ret;
2579 
2580 	*offp += len;
2581 	return len;
2582 }
2583 
2584 static const struct file_operations i915_display_crc_ctl_fops = {
2585 	.owner = THIS_MODULE,
2586 	.open = display_crc_ctl_open,
2587 	.read = seq_read,
2588 	.llseek = seq_lseek,
2589 	.release = single_release,
2590 	.write = display_crc_ctl_write
2591 };
2592 
2593 static int
2594 i915_wedged_get(void *data, u64 *val)
2595 {
2596 	struct drm_device *dev = data;
2597 	drm_i915_private_t *dev_priv = dev->dev_private;
2598 
2599 	*val = atomic_read(&dev_priv->gpu_error.reset_counter);
2600 
2601 	return 0;
2602 }
2603 
2604 static int
2605 i915_wedged_set(void *data, u64 val)
2606 {
2607 	struct drm_device *dev = data;
2608 
2609 	DRM_INFO("Manually setting wedged to %llu\n", val);
2610 	i915_handle_error(dev, val);
2611 
2612 	return 0;
2613 }
2614 
2615 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
2616 			i915_wedged_get, i915_wedged_set,
2617 			"%llu\n");
2618 
2619 static int
2620 i915_ring_stop_get(void *data, u64 *val)
2621 {
2622 	struct drm_device *dev = data;
2623 	drm_i915_private_t *dev_priv = dev->dev_private;
2624 
2625 	*val = dev_priv->gpu_error.stop_rings;
2626 
2627 	return 0;
2628 }
2629 
2630 static int
2631 i915_ring_stop_set(void *data, u64 val)
2632 {
2633 	struct drm_device *dev = data;
2634 	struct drm_i915_private *dev_priv = dev->dev_private;
2635 	int ret;
2636 
2637 	DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
2638 
2639 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2640 	if (ret)
2641 		return ret;
2642 
2643 	dev_priv->gpu_error.stop_rings = val;
2644 	mutex_unlock(&dev->struct_mutex);
2645 
2646 	return 0;
2647 }
2648 
2649 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
2650 			i915_ring_stop_get, i915_ring_stop_set,
2651 			"0x%08llx\n");
2652 
2653 static int
2654 i915_ring_missed_irq_get(void *data, u64 *val)
2655 {
2656 	struct drm_device *dev = data;
2657 	struct drm_i915_private *dev_priv = dev->dev_private;
2658 
2659 	*val = dev_priv->gpu_error.missed_irq_rings;
2660 	return 0;
2661 }
2662 
2663 static int
2664 i915_ring_missed_irq_set(void *data, u64 val)
2665 {
2666 	struct drm_device *dev = data;
2667 	struct drm_i915_private *dev_priv = dev->dev_private;
2668 	int ret;
2669 
2670 	/* Lock against concurrent debugfs callers */
2671 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2672 	if (ret)
2673 		return ret;
2674 	dev_priv->gpu_error.missed_irq_rings = val;
2675 	mutex_unlock(&dev->struct_mutex);
2676 
2677 	return 0;
2678 }
2679 
2680 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
2681 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
2682 			"0x%08llx\n");
2683 
2684 static int
2685 i915_ring_test_irq_get(void *data, u64 *val)
2686 {
2687 	struct drm_device *dev = data;
2688 	struct drm_i915_private *dev_priv = dev->dev_private;
2689 
2690 	*val = dev_priv->gpu_error.test_irq_rings;
2691 
2692 	return 0;
2693 }
2694 
2695 static int
2696 i915_ring_test_irq_set(void *data, u64 val)
2697 {
2698 	struct drm_device *dev = data;
2699 	struct drm_i915_private *dev_priv = dev->dev_private;
2700 	int ret;
2701 
2702 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
2703 
2704 	/* Lock against concurrent debugfs callers */
2705 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2706 	if (ret)
2707 		return ret;
2708 
2709 	dev_priv->gpu_error.test_irq_rings = val;
2710 	mutex_unlock(&dev->struct_mutex);
2711 
2712 	return 0;
2713 }
2714 
2715 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
2716 			i915_ring_test_irq_get, i915_ring_test_irq_set,
2717 			"0x%08llx\n");
2718 
2719 #define DROP_UNBOUND 0x1
2720 #define DROP_BOUND 0x2
2721 #define DROP_RETIRE 0x4
2722 #define DROP_ACTIVE 0x8
2723 #define DROP_ALL (DROP_UNBOUND | \
2724 		  DROP_BOUND | \
2725 		  DROP_RETIRE | \
2726 		  DROP_ACTIVE)
2727 static int
2728 i915_drop_caches_get(void *data, u64 *val)
2729 {
2730 	*val = DROP_ALL;
2731 
2732 	return 0;
2733 }
2734 
2735 static int
2736 i915_drop_caches_set(void *data, u64 val)
2737 {
2738 	struct drm_device *dev = data;
2739 	struct drm_i915_private *dev_priv = dev->dev_private;
2740 	struct drm_i915_gem_object *obj, *next;
2741 	struct i915_address_space *vm;
2742 	struct i915_vma *vma, *x;
2743 	int ret;
2744 
2745 	DRM_DEBUG_DRIVER("Dropping caches: 0x%08llx\n", val);
2746 
2747 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
2748 	 * on ioctls on -EAGAIN. */
2749 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2750 	if (ret)
2751 		return ret;
2752 
2753 	if (val & DROP_ACTIVE) {
2754 		ret = i915_gpu_idle(dev);
2755 		if (ret)
2756 			goto unlock;
2757 	}
2758 
2759 	if (val & (DROP_RETIRE | DROP_ACTIVE))
2760 		i915_gem_retire_requests(dev);
2761 
2762 	if (val & DROP_BOUND) {
2763 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2764 			list_for_each_entry_safe(vma, x, &vm->inactive_list,
2765 						 mm_list) {
2766 				if (vma->obj->pin_count)
2767 					continue;
2768 
2769 				ret = i915_vma_unbind(vma);
2770 				if (ret)
2771 					goto unlock;
2772 			}
2773 		}
2774 	}
2775 
2776 	if (val & DROP_UNBOUND) {
2777 		list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
2778 					 global_list)
2779 			if (obj->pages_pin_count == 0) {
2780 				ret = i915_gem_object_put_pages(obj);
2781 				if (ret)
2782 					goto unlock;
2783 			}
2784 	}
2785 
2786 unlock:
2787 	mutex_unlock(&dev->struct_mutex);
2788 
2789 	return ret;
2790 }
2791 
2792 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
2793 			i915_drop_caches_get, i915_drop_caches_set,
2794 			"0x%08llx\n");
2795 
2796 static int
2797 i915_max_freq_get(void *data, u64 *val)
2798 {
2799 	struct drm_device *dev = data;
2800 	drm_i915_private_t *dev_priv = dev->dev_private;
2801 	int ret;
2802 
2803 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
2804 		return -ENODEV;
2805 
2806 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
2807 
2808 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
2809 	if (ret)
2810 		return ret;
2811 
2812 	if (IS_VALLEYVIEW(dev))
2813 		*val = vlv_gpu_freq(dev_priv->mem_freq,
2814 				    dev_priv->rps.max_delay);
2815 	else
2816 		*val = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER;
2817 	mutex_unlock(&dev_priv->rps.hw_lock);
2818 
2819 	return 0;
2820 }
2821 
2822 static int
2823 i915_max_freq_set(void *data, u64 val)
2824 {
2825 	struct drm_device *dev = data;
2826 	struct drm_i915_private *dev_priv = dev->dev_private;
2827 	int ret;
2828 
2829 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
2830 		return -ENODEV;
2831 
2832 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
2833 
2834 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
2835 
2836 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
2837 	if (ret)
2838 		return ret;
2839 
2840 	/*
2841 	 * Turbo will still be enabled, but won't go above the set value.
2842 	 */
2843 	if (IS_VALLEYVIEW(dev)) {
2844 		val = vlv_freq_opcode(dev_priv->mem_freq, val);
2845 		dev_priv->rps.max_delay = val;
2846 		gen6_set_rps(dev, val);
2847 	} else {
2848 		do_div(val, GT_FREQUENCY_MULTIPLIER);
2849 		dev_priv->rps.max_delay = val;
2850 		gen6_set_rps(dev, val);
2851 	}
2852 
2853 	mutex_unlock(&dev_priv->rps.hw_lock);
2854 
2855 	return 0;
2856 }
2857 
2858 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
2859 			i915_max_freq_get, i915_max_freq_set,
2860 			"%llu\n");
2861 
2862 static int
2863 i915_min_freq_get(void *data, u64 *val)
2864 {
2865 	struct drm_device *dev = data;
2866 	drm_i915_private_t *dev_priv = dev->dev_private;
2867 	int ret;
2868 
2869 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
2870 		return -ENODEV;
2871 
2872 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
2873 
2874 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
2875 	if (ret)
2876 		return ret;
2877 
2878 	if (IS_VALLEYVIEW(dev))
2879 		*val = vlv_gpu_freq(dev_priv->mem_freq,
2880 				    dev_priv->rps.min_delay);
2881 	else
2882 		*val = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER;
2883 	mutex_unlock(&dev_priv->rps.hw_lock);
2884 
2885 	return 0;
2886 }
2887 
2888 static int
2889 i915_min_freq_set(void *data, u64 val)
2890 {
2891 	struct drm_device *dev = data;
2892 	struct drm_i915_private *dev_priv = dev->dev_private;
2893 	int ret;
2894 
2895 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
2896 		return -ENODEV;
2897 
2898 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
2899 
2900 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
2901 
2902 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
2903 	if (ret)
2904 		return ret;
2905 
2906 	/*
2907 	 * Turbo will still be enabled, but won't go below the set value.
2908 	 */
2909 	if (IS_VALLEYVIEW(dev)) {
2910 		val = vlv_freq_opcode(dev_priv->mem_freq, val);
2911 		dev_priv->rps.min_delay = val;
2912 		valleyview_set_rps(dev, val);
2913 	} else {
2914 		do_div(val, GT_FREQUENCY_MULTIPLIER);
2915 		dev_priv->rps.min_delay = val;
2916 		gen6_set_rps(dev, val);
2917 	}
2918 	mutex_unlock(&dev_priv->rps.hw_lock);
2919 
2920 	return 0;
2921 }
2922 
2923 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
2924 			i915_min_freq_get, i915_min_freq_set,
2925 			"%llu\n");
2926 
2927 static int
2928 i915_cache_sharing_get(void *data, u64 *val)
2929 {
2930 	struct drm_device *dev = data;
2931 	drm_i915_private_t *dev_priv = dev->dev_private;
2932 	u32 snpcr;
2933 	int ret;
2934 
2935 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
2936 		return -ENODEV;
2937 
2938 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2939 	if (ret)
2940 		return ret;
2941 
2942 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
2943 	mutex_unlock(&dev_priv->dev->struct_mutex);
2944 
2945 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
2946 
2947 	return 0;
2948 }
2949 
2950 static int
2951 i915_cache_sharing_set(void *data, u64 val)
2952 {
2953 	struct drm_device *dev = data;
2954 	struct drm_i915_private *dev_priv = dev->dev_private;
2955 	u32 snpcr;
2956 
2957 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
2958 		return -ENODEV;
2959 
2960 	if (val > 3)
2961 		return -EINVAL;
2962 
2963 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
2964 
2965 	/* Update the cache sharing policy here as well */
2966 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
2967 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
2968 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
2969 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
2970 
2971 	return 0;
2972 }
2973 
2974 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
2975 			i915_cache_sharing_get, i915_cache_sharing_set,
2976 			"%llu\n");
2977 
2978 static int i915_forcewake_open(struct inode *inode, struct file *file)
2979 {
2980 	struct drm_device *dev = inode->i_private;
2981 	struct drm_i915_private *dev_priv = dev->dev_private;
2982 
2983 	if (INTEL_INFO(dev)->gen < 6)
2984 		return 0;
2985 
2986 	gen6_gt_force_wake_get(dev_priv);
2987 
2988 	return 0;
2989 }
2990 
2991 static int i915_forcewake_release(struct inode *inode, struct file *file)
2992 {
2993 	struct drm_device *dev = inode->i_private;
2994 	struct drm_i915_private *dev_priv = dev->dev_private;
2995 
2996 	if (INTEL_INFO(dev)->gen < 6)
2997 		return 0;
2998 
2999 	gen6_gt_force_wake_put(dev_priv);
3000 
3001 	return 0;
3002 }
3003 
3004 static const struct file_operations i915_forcewake_fops = {
3005 	.owner = THIS_MODULE,
3006 	.open = i915_forcewake_open,
3007 	.release = i915_forcewake_release,
3008 };
3009 
3010 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
3011 {
3012 	struct drm_device *dev = minor->dev;
3013 	struct dentry *ent;
3014 
3015 	ent = debugfs_create_file("i915_forcewake_user",
3016 				  S_IRUSR,
3017 				  root, dev,
3018 				  &i915_forcewake_fops);
3019 	if (IS_ERR(ent))
3020 		return PTR_ERR(ent);
3021 
3022 	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
3023 }
3024 
3025 static int i915_debugfs_create(struct dentry *root,
3026 			       struct drm_minor *minor,
3027 			       const char *name,
3028 			       const struct file_operations *fops)
3029 {
3030 	struct drm_device *dev = minor->dev;
3031 	struct dentry *ent;
3032 
3033 	ent = debugfs_create_file(name,
3034 				  S_IRUGO | S_IWUSR,
3035 				  root, dev,
3036 				  fops);
3037 	if (IS_ERR(ent))
3038 		return PTR_ERR(ent);
3039 
3040 	return drm_add_fake_info_node(minor, ent, fops);
3041 }
3042 
3043 static const struct drm_info_list i915_debugfs_list[] = {
3044 	{"i915_capabilities", i915_capabilities, 0},
3045 	{"i915_gem_objects", i915_gem_object_info, 0},
3046 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
3047 	{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
3048 	{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
3049 	{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
3050 	{"i915_gem_stolen", i915_gem_stolen_list_info },
3051 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
3052 	{"i915_gem_request", i915_gem_request_info, 0},
3053 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
3054 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
3055 	{"i915_gem_interrupt", i915_interrupt_info, 0},
3056 	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
3057 	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
3058 	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
3059 	{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
3060 	{"i915_rstdby_delays", i915_rstdby_delays, 0},
3061 	{"i915_cur_delayinfo", i915_cur_delayinfo, 0},
3062 	{"i915_delayfreq_table", i915_delayfreq_table, 0},
3063 	{"i915_inttoext_table", i915_inttoext_table, 0},
3064 	{"i915_drpc_info", i915_drpc_info, 0},
3065 	{"i915_emon_status", i915_emon_status, 0},
3066 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
3067 	{"i915_gfxec", i915_gfxec, 0},
3068 	{"i915_fbc_status", i915_fbc_status, 0},
3069 	{"i915_ips_status", i915_ips_status, 0},
3070 	{"i915_sr_status", i915_sr_status, 0},
3071 	{"i915_opregion", i915_opregion, 0},
3072 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
3073 	{"i915_context_status", i915_context_status, 0},
3074 	{"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
3075 	{"i915_swizzle_info", i915_swizzle_info, 0},
3076 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
3077 	{"i915_dpio", i915_dpio_info, 0},
3078 	{"i915_llc", i915_llc, 0},
3079 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
3080 	{"i915_energy_uJ", i915_energy_uJ, 0},
3081 	{"i915_pc8_status", i915_pc8_status, 0},
3082 };
3083 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
3084 
3085 static const struct i915_debugfs_files {
3086 	const char *name;
3087 	const struct file_operations *fops;
3088 } i915_debugfs_files[] = {
3089 	{"i915_wedged", &i915_wedged_fops},
3090 	{"i915_max_freq", &i915_max_freq_fops},
3091 	{"i915_min_freq", &i915_min_freq_fops},
3092 	{"i915_cache_sharing", &i915_cache_sharing_fops},
3093 	{"i915_ring_stop", &i915_ring_stop_fops},
3094 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
3095 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
3096 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
3097 	{"i915_error_state", &i915_error_state_fops},
3098 	{"i915_next_seqno", &i915_next_seqno_fops},
3099 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
3100 };
3101 
3102 void intel_display_crc_init(struct drm_device *dev)
3103 {
3104 	struct drm_i915_private *dev_priv = dev->dev_private;
3105 	int i;
3106 
3107 	for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
3108 		struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[i];
3109 
3110 		pipe_crc->opened = false;
3111 		spin_lock_init(&pipe_crc->lock);
3112 		init_waitqueue_head(&pipe_crc->wq);
3113 	}
3114 }
3115 
3116 int i915_debugfs_init(struct drm_minor *minor)
3117 {
3118 	int ret, i;
3119 
3120 	ret = i915_forcewake_create(minor->debugfs_root, minor);
3121 	if (ret)
3122 		return ret;
3123 
3124 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3125 		ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
3126 		if (ret)
3127 			return ret;
3128 	}
3129 
3130 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3131 		ret = i915_debugfs_create(minor->debugfs_root, minor,
3132 					  i915_debugfs_files[i].name,
3133 					  i915_debugfs_files[i].fops);
3134 		if (ret)
3135 			return ret;
3136 	}
3137 
3138 	return drm_debugfs_create_files(i915_debugfs_list,
3139 					I915_DEBUGFS_ENTRIES,
3140 					minor->debugfs_root, minor);
3141 }
3142 
3143 void i915_debugfs_cleanup(struct drm_minor *minor)
3144 {
3145 	int i;
3146 
3147 	drm_debugfs_remove_files(i915_debugfs_list,
3148 				 I915_DEBUGFS_ENTRIES, minor);
3149 
3150 	drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
3151 				 1, minor);
3152 
3153 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3154 		struct drm_info_list *info_list =
3155 			(struct drm_info_list *)&i915_pipe_crc_data[i];
3156 
3157 		drm_debugfs_remove_files(info_list, 1, minor);
3158 	}
3159 
3160 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3161 		struct drm_info_list *info_list =
3162 			(struct drm_info_list *) i915_debugfs_files[i].fops;
3163 
3164 		drm_debugfs_remove_files(info_list, 1, minor);
3165 	}
3166 }
3167 
3168 #endif /* CONFIG_DEBUG_FS */
3169