xref: /openbmc/linux/drivers/gpu/drm/i915/i915_debugfs.c (revision 7eec52db361a6ae6fbbd86c2299718586866b664)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42 
43 enum {
44 	ACTIVE_LIST,
45 	INACTIVE_LIST,
46 	PINNED_LIST,
47 };
48 
49 static const char *yesno(int v)
50 {
51 	return v ? "yes" : "no";
52 }
53 
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58 		       struct dentry *ent,
59 		       const void *key)
60 {
61 	struct drm_info_node *node;
62 
63 	node = kmalloc(sizeof(*node), GFP_KERNEL);
64 	if (node == NULL) {
65 		debugfs_remove(ent);
66 		return -ENOMEM;
67 	}
68 
69 	node->minor = minor;
70 	node->dent = ent;
71 	node->info_ent = (void *) key;
72 
73 	mutex_lock(&minor->debugfs_lock);
74 	list_add(&node->list, &minor->debugfs_list);
75 	mutex_unlock(&minor->debugfs_lock);
76 
77 	return 0;
78 }
79 
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82 	struct drm_info_node *node = m->private;
83 	struct drm_device *dev = node->minor->dev;
84 	const struct intel_device_info *info = INTEL_INFO(dev);
85 
86 	seq_printf(m, "gen: %d\n", info->gen);
87 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93 
94 	return 0;
95 }
96 
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 	if (i915_gem_obj_is_pinned(obj))
100 		return "p";
101 	else
102 		return " ";
103 }
104 
105 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
106 {
107 	switch (obj->tiling_mode) {
108 	default:
109 	case I915_TILING_NONE: return " ";
110 	case I915_TILING_X: return "X";
111 	case I915_TILING_Y: return "Y";
112 	}
113 }
114 
115 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
116 {
117 	return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
118 }
119 
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123 	struct i915_vma *vma;
124 	int pin_count = 0;
125 
126 	seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %x %x %x%s%s%s",
127 		   &obj->base,
128 		   get_pin_flag(obj),
129 		   get_tiling_flag(obj),
130 		   get_global_flag(obj),
131 		   obj->base.size / 1024,
132 		   obj->base.read_domains,
133 		   obj->base.write_domain,
134 		   i915_gem_request_get_seqno(obj->last_read_req),
135 		   i915_gem_request_get_seqno(obj->last_write_req),
136 		   i915_gem_request_get_seqno(obj->last_fenced_req),
137 		   i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
138 		   obj->dirty ? " dirty" : "",
139 		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
140 	if (obj->base.name)
141 		seq_printf(m, " (name: %d)", obj->base.name);
142 	list_for_each_entry(vma, &obj->vma_list, vma_link)
143 		if (vma->pin_count > 0)
144 			pin_count++;
145 		seq_printf(m, " (pinned x %d)", pin_count);
146 	if (obj->pin_display)
147 		seq_printf(m, " (display)");
148 	if (obj->fence_reg != I915_FENCE_REG_NONE)
149 		seq_printf(m, " (fence: %d)", obj->fence_reg);
150 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
151 		if (!i915_is_ggtt(vma->vm))
152 			seq_puts(m, " (pp");
153 		else
154 			seq_puts(m, " (g");
155 		seq_printf(m, "gtt offset: %08lx, size: %08lx, type: %u)",
156 			   vma->node.start, vma->node.size,
157 			   vma->ggtt_view.type);
158 	}
159 	if (obj->stolen)
160 		seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
161 	if (obj->pin_mappable || obj->fault_mappable) {
162 		char s[3], *t = s;
163 		if (obj->pin_mappable)
164 			*t++ = 'p';
165 		if (obj->fault_mappable)
166 			*t++ = 'f';
167 		*t = '\0';
168 		seq_printf(m, " (%s mappable)", s);
169 	}
170 	if (obj->last_read_req != NULL)
171 		seq_printf(m, " (%s)",
172 			   i915_gem_request_get_ring(obj->last_read_req)->name);
173 	if (obj->frontbuffer_bits)
174 		seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
175 }
176 
177 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
178 {
179 	seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
180 	seq_putc(m, ctx->remap_slice ? 'R' : 'r');
181 	seq_putc(m, ' ');
182 }
183 
184 static int i915_gem_object_list_info(struct seq_file *m, void *data)
185 {
186 	struct drm_info_node *node = m->private;
187 	uintptr_t list = (uintptr_t) node->info_ent->data;
188 	struct list_head *head;
189 	struct drm_device *dev = node->minor->dev;
190 	struct drm_i915_private *dev_priv = dev->dev_private;
191 	struct i915_address_space *vm = &dev_priv->gtt.base;
192 	struct i915_vma *vma;
193 	size_t total_obj_size, total_gtt_size;
194 	int count, ret;
195 
196 	ret = mutex_lock_interruptible(&dev->struct_mutex);
197 	if (ret)
198 		return ret;
199 
200 	/* FIXME: the user of this interface might want more than just GGTT */
201 	switch (list) {
202 	case ACTIVE_LIST:
203 		seq_puts(m, "Active:\n");
204 		head = &vm->active_list;
205 		break;
206 	case INACTIVE_LIST:
207 		seq_puts(m, "Inactive:\n");
208 		head = &vm->inactive_list;
209 		break;
210 	default:
211 		mutex_unlock(&dev->struct_mutex);
212 		return -EINVAL;
213 	}
214 
215 	total_obj_size = total_gtt_size = count = 0;
216 	list_for_each_entry(vma, head, mm_list) {
217 		seq_printf(m, "   ");
218 		describe_obj(m, vma->obj);
219 		seq_printf(m, "\n");
220 		total_obj_size += vma->obj->base.size;
221 		total_gtt_size += vma->node.size;
222 		count++;
223 	}
224 	mutex_unlock(&dev->struct_mutex);
225 
226 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
227 		   count, total_obj_size, total_gtt_size);
228 	return 0;
229 }
230 
231 static int obj_rank_by_stolen(void *priv,
232 			      struct list_head *A, struct list_head *B)
233 {
234 	struct drm_i915_gem_object *a =
235 		container_of(A, struct drm_i915_gem_object, obj_exec_link);
236 	struct drm_i915_gem_object *b =
237 		container_of(B, struct drm_i915_gem_object, obj_exec_link);
238 
239 	return a->stolen->start - b->stolen->start;
240 }
241 
242 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
243 {
244 	struct drm_info_node *node = m->private;
245 	struct drm_device *dev = node->minor->dev;
246 	struct drm_i915_private *dev_priv = dev->dev_private;
247 	struct drm_i915_gem_object *obj;
248 	size_t total_obj_size, total_gtt_size;
249 	LIST_HEAD(stolen);
250 	int count, ret;
251 
252 	ret = mutex_lock_interruptible(&dev->struct_mutex);
253 	if (ret)
254 		return ret;
255 
256 	total_obj_size = total_gtt_size = count = 0;
257 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
258 		if (obj->stolen == NULL)
259 			continue;
260 
261 		list_add(&obj->obj_exec_link, &stolen);
262 
263 		total_obj_size += obj->base.size;
264 		total_gtt_size += i915_gem_obj_ggtt_size(obj);
265 		count++;
266 	}
267 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
268 		if (obj->stolen == NULL)
269 			continue;
270 
271 		list_add(&obj->obj_exec_link, &stolen);
272 
273 		total_obj_size += obj->base.size;
274 		count++;
275 	}
276 	list_sort(NULL, &stolen, obj_rank_by_stolen);
277 	seq_puts(m, "Stolen:\n");
278 	while (!list_empty(&stolen)) {
279 		obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
280 		seq_puts(m, "   ");
281 		describe_obj(m, obj);
282 		seq_putc(m, '\n');
283 		list_del_init(&obj->obj_exec_link);
284 	}
285 	mutex_unlock(&dev->struct_mutex);
286 
287 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
288 		   count, total_obj_size, total_gtt_size);
289 	return 0;
290 }
291 
292 #define count_objects(list, member) do { \
293 	list_for_each_entry(obj, list, member) { \
294 		size += i915_gem_obj_ggtt_size(obj); \
295 		++count; \
296 		if (obj->map_and_fenceable) { \
297 			mappable_size += i915_gem_obj_ggtt_size(obj); \
298 			++mappable_count; \
299 		} \
300 	} \
301 } while (0)
302 
303 struct file_stats {
304 	struct drm_i915_file_private *file_priv;
305 	int count;
306 	size_t total, unbound;
307 	size_t global, shared;
308 	size_t active, inactive;
309 };
310 
311 static int per_file_stats(int id, void *ptr, void *data)
312 {
313 	struct drm_i915_gem_object *obj = ptr;
314 	struct file_stats *stats = data;
315 	struct i915_vma *vma;
316 
317 	stats->count++;
318 	stats->total += obj->base.size;
319 
320 	if (obj->base.name || obj->base.dma_buf)
321 		stats->shared += obj->base.size;
322 
323 	if (USES_FULL_PPGTT(obj->base.dev)) {
324 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
325 			struct i915_hw_ppgtt *ppgtt;
326 
327 			if (!drm_mm_node_allocated(&vma->node))
328 				continue;
329 
330 			if (i915_is_ggtt(vma->vm)) {
331 				stats->global += obj->base.size;
332 				continue;
333 			}
334 
335 			ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
336 			if (ppgtt->file_priv != stats->file_priv)
337 				continue;
338 
339 			if (obj->active) /* XXX per-vma statistic */
340 				stats->active += obj->base.size;
341 			else
342 				stats->inactive += obj->base.size;
343 
344 			return 0;
345 		}
346 	} else {
347 		if (i915_gem_obj_ggtt_bound(obj)) {
348 			stats->global += obj->base.size;
349 			if (obj->active)
350 				stats->active += obj->base.size;
351 			else
352 				stats->inactive += obj->base.size;
353 			return 0;
354 		}
355 	}
356 
357 	if (!list_empty(&obj->global_list))
358 		stats->unbound += obj->base.size;
359 
360 	return 0;
361 }
362 
363 #define print_file_stats(m, name, stats) \
364 	seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n", \
365 		   name, \
366 		   stats.count, \
367 		   stats.total, \
368 		   stats.active, \
369 		   stats.inactive, \
370 		   stats.global, \
371 		   stats.shared, \
372 		   stats.unbound)
373 
374 static void print_batch_pool_stats(struct seq_file *m,
375 				   struct drm_i915_private *dev_priv)
376 {
377 	struct drm_i915_gem_object *obj;
378 	struct file_stats stats;
379 
380 	memset(&stats, 0, sizeof(stats));
381 
382 	list_for_each_entry(obj,
383 			    &dev_priv->mm.batch_pool.cache_list,
384 			    batch_pool_list)
385 		per_file_stats(0, obj, &stats);
386 
387 	print_file_stats(m, "batch pool", stats);
388 }
389 
390 #define count_vmas(list, member) do { \
391 	list_for_each_entry(vma, list, member) { \
392 		size += i915_gem_obj_ggtt_size(vma->obj); \
393 		++count; \
394 		if (vma->obj->map_and_fenceable) { \
395 			mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
396 			++mappable_count; \
397 		} \
398 	} \
399 } while (0)
400 
401 static int i915_gem_object_info(struct seq_file *m, void* data)
402 {
403 	struct drm_info_node *node = m->private;
404 	struct drm_device *dev = node->minor->dev;
405 	struct drm_i915_private *dev_priv = dev->dev_private;
406 	u32 count, mappable_count, purgeable_count;
407 	size_t size, mappable_size, purgeable_size;
408 	struct drm_i915_gem_object *obj;
409 	struct i915_address_space *vm = &dev_priv->gtt.base;
410 	struct drm_file *file;
411 	struct i915_vma *vma;
412 	int ret;
413 
414 	ret = mutex_lock_interruptible(&dev->struct_mutex);
415 	if (ret)
416 		return ret;
417 
418 	seq_printf(m, "%u objects, %zu bytes\n",
419 		   dev_priv->mm.object_count,
420 		   dev_priv->mm.object_memory);
421 
422 	size = count = mappable_size = mappable_count = 0;
423 	count_objects(&dev_priv->mm.bound_list, global_list);
424 	seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
425 		   count, mappable_count, size, mappable_size);
426 
427 	size = count = mappable_size = mappable_count = 0;
428 	count_vmas(&vm->active_list, mm_list);
429 	seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
430 		   count, mappable_count, size, mappable_size);
431 
432 	size = count = mappable_size = mappable_count = 0;
433 	count_vmas(&vm->inactive_list, mm_list);
434 	seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
435 		   count, mappable_count, size, mappable_size);
436 
437 	size = count = purgeable_size = purgeable_count = 0;
438 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
439 		size += obj->base.size, ++count;
440 		if (obj->madv == I915_MADV_DONTNEED)
441 			purgeable_size += obj->base.size, ++purgeable_count;
442 	}
443 	seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
444 
445 	size = count = mappable_size = mappable_count = 0;
446 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
447 		if (obj->fault_mappable) {
448 			size += i915_gem_obj_ggtt_size(obj);
449 			++count;
450 		}
451 		if (obj->pin_mappable) {
452 			mappable_size += i915_gem_obj_ggtt_size(obj);
453 			++mappable_count;
454 		}
455 		if (obj->madv == I915_MADV_DONTNEED) {
456 			purgeable_size += obj->base.size;
457 			++purgeable_count;
458 		}
459 	}
460 	seq_printf(m, "%u purgeable objects, %zu bytes\n",
461 		   purgeable_count, purgeable_size);
462 	seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
463 		   mappable_count, mappable_size);
464 	seq_printf(m, "%u fault mappable objects, %zu bytes\n",
465 		   count, size);
466 
467 	seq_printf(m, "%zu [%lu] gtt total\n",
468 		   dev_priv->gtt.base.total,
469 		   dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
470 
471 	seq_putc(m, '\n');
472 	print_batch_pool_stats(m, dev_priv);
473 
474 	seq_putc(m, '\n');
475 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
476 		struct file_stats stats;
477 		struct task_struct *task;
478 
479 		memset(&stats, 0, sizeof(stats));
480 		stats.file_priv = file->driver_priv;
481 		spin_lock(&file->table_lock);
482 		idr_for_each(&file->object_idr, per_file_stats, &stats);
483 		spin_unlock(&file->table_lock);
484 		/*
485 		 * Although we have a valid reference on file->pid, that does
486 		 * not guarantee that the task_struct who called get_pid() is
487 		 * still alive (e.g. get_pid(current) => fork() => exit()).
488 		 * Therefore, we need to protect this ->comm access using RCU.
489 		 */
490 		rcu_read_lock();
491 		task = pid_task(file->pid, PIDTYPE_PID);
492 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
493 		rcu_read_unlock();
494 	}
495 
496 	mutex_unlock(&dev->struct_mutex);
497 
498 	return 0;
499 }
500 
501 static int i915_gem_gtt_info(struct seq_file *m, void *data)
502 {
503 	struct drm_info_node *node = m->private;
504 	struct drm_device *dev = node->minor->dev;
505 	uintptr_t list = (uintptr_t) node->info_ent->data;
506 	struct drm_i915_private *dev_priv = dev->dev_private;
507 	struct drm_i915_gem_object *obj;
508 	size_t total_obj_size, total_gtt_size;
509 	int count, ret;
510 
511 	ret = mutex_lock_interruptible(&dev->struct_mutex);
512 	if (ret)
513 		return ret;
514 
515 	total_obj_size = total_gtt_size = count = 0;
516 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
517 		if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
518 			continue;
519 
520 		seq_puts(m, "   ");
521 		describe_obj(m, obj);
522 		seq_putc(m, '\n');
523 		total_obj_size += obj->base.size;
524 		total_gtt_size += i915_gem_obj_ggtt_size(obj);
525 		count++;
526 	}
527 
528 	mutex_unlock(&dev->struct_mutex);
529 
530 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
531 		   count, total_obj_size, total_gtt_size);
532 
533 	return 0;
534 }
535 
536 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
537 {
538 	struct drm_info_node *node = m->private;
539 	struct drm_device *dev = node->minor->dev;
540 	struct drm_i915_private *dev_priv = dev->dev_private;
541 	struct intel_crtc *crtc;
542 	int ret;
543 
544 	ret = mutex_lock_interruptible(&dev->struct_mutex);
545 	if (ret)
546 		return ret;
547 
548 	for_each_intel_crtc(dev, crtc) {
549 		const char pipe = pipe_name(crtc->pipe);
550 		const char plane = plane_name(crtc->plane);
551 		struct intel_unpin_work *work;
552 
553 		spin_lock_irq(&dev->event_lock);
554 		work = crtc->unpin_work;
555 		if (work == NULL) {
556 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
557 				   pipe, plane);
558 		} else {
559 			u32 addr;
560 
561 			if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
562 				seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
563 					   pipe, plane);
564 			} else {
565 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
566 					   pipe, plane);
567 			}
568 			if (work->flip_queued_req) {
569 				struct intel_engine_cs *ring =
570 					i915_gem_request_get_ring(work->flip_queued_req);
571 
572 				seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
573 					   ring->name,
574 					   i915_gem_request_get_seqno(work->flip_queued_req),
575 					   dev_priv->next_seqno,
576 					   ring->get_seqno(ring, true),
577 					   i915_gem_request_completed(work->flip_queued_req, true));
578 			} else
579 				seq_printf(m, "Flip not associated with any ring\n");
580 			seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
581 				   work->flip_queued_vblank,
582 				   work->flip_ready_vblank,
583 				   drm_vblank_count(dev, crtc->pipe));
584 			if (work->enable_stall_check)
585 				seq_puts(m, "Stall check enabled, ");
586 			else
587 				seq_puts(m, "Stall check waiting for page flip ioctl, ");
588 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
589 
590 			if (INTEL_INFO(dev)->gen >= 4)
591 				addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
592 			else
593 				addr = I915_READ(DSPADDR(crtc->plane));
594 			seq_printf(m, "Current scanout address 0x%08x\n", addr);
595 
596 			if (work->pending_flip_obj) {
597 				seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
598 				seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
599 			}
600 		}
601 		spin_unlock_irq(&dev->event_lock);
602 	}
603 
604 	mutex_unlock(&dev->struct_mutex);
605 
606 	return 0;
607 }
608 
609 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
610 {
611 	struct drm_info_node *node = m->private;
612 	struct drm_device *dev = node->minor->dev;
613 	struct drm_i915_private *dev_priv = dev->dev_private;
614 	struct drm_i915_gem_object *obj;
615 	int count = 0;
616 	int ret;
617 
618 	ret = mutex_lock_interruptible(&dev->struct_mutex);
619 	if (ret)
620 		return ret;
621 
622 	seq_puts(m, "cache:\n");
623 	list_for_each_entry(obj,
624 			    &dev_priv->mm.batch_pool.cache_list,
625 			    batch_pool_list) {
626 		seq_puts(m, "   ");
627 		describe_obj(m, obj);
628 		seq_putc(m, '\n');
629 		count++;
630 	}
631 
632 	seq_printf(m, "total: %d\n", count);
633 
634 	mutex_unlock(&dev->struct_mutex);
635 
636 	return 0;
637 }
638 
639 static int i915_gem_request_info(struct seq_file *m, void *data)
640 {
641 	struct drm_info_node *node = m->private;
642 	struct drm_device *dev = node->minor->dev;
643 	struct drm_i915_private *dev_priv = dev->dev_private;
644 	struct intel_engine_cs *ring;
645 	struct drm_i915_gem_request *gem_request;
646 	int ret, count, i;
647 
648 	ret = mutex_lock_interruptible(&dev->struct_mutex);
649 	if (ret)
650 		return ret;
651 
652 	count = 0;
653 	for_each_ring(ring, dev_priv, i) {
654 		if (list_empty(&ring->request_list))
655 			continue;
656 
657 		seq_printf(m, "%s requests:\n", ring->name);
658 		list_for_each_entry(gem_request,
659 				    &ring->request_list,
660 				    list) {
661 			seq_printf(m, "    %x @ %d\n",
662 				   gem_request->seqno,
663 				   (int) (jiffies - gem_request->emitted_jiffies));
664 		}
665 		count++;
666 	}
667 	mutex_unlock(&dev->struct_mutex);
668 
669 	if (count == 0)
670 		seq_puts(m, "No requests\n");
671 
672 	return 0;
673 }
674 
675 static void i915_ring_seqno_info(struct seq_file *m,
676 				 struct intel_engine_cs *ring)
677 {
678 	if (ring->get_seqno) {
679 		seq_printf(m, "Current sequence (%s): %x\n",
680 			   ring->name, ring->get_seqno(ring, false));
681 	}
682 }
683 
684 static int i915_gem_seqno_info(struct seq_file *m, void *data)
685 {
686 	struct drm_info_node *node = m->private;
687 	struct drm_device *dev = node->minor->dev;
688 	struct drm_i915_private *dev_priv = dev->dev_private;
689 	struct intel_engine_cs *ring;
690 	int ret, i;
691 
692 	ret = mutex_lock_interruptible(&dev->struct_mutex);
693 	if (ret)
694 		return ret;
695 	intel_runtime_pm_get(dev_priv);
696 
697 	for_each_ring(ring, dev_priv, i)
698 		i915_ring_seqno_info(m, ring);
699 
700 	intel_runtime_pm_put(dev_priv);
701 	mutex_unlock(&dev->struct_mutex);
702 
703 	return 0;
704 }
705 
706 
707 static int i915_interrupt_info(struct seq_file *m, void *data)
708 {
709 	struct drm_info_node *node = m->private;
710 	struct drm_device *dev = node->minor->dev;
711 	struct drm_i915_private *dev_priv = dev->dev_private;
712 	struct intel_engine_cs *ring;
713 	int ret, i, pipe;
714 
715 	ret = mutex_lock_interruptible(&dev->struct_mutex);
716 	if (ret)
717 		return ret;
718 	intel_runtime_pm_get(dev_priv);
719 
720 	if (IS_CHERRYVIEW(dev)) {
721 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
722 			   I915_READ(GEN8_MASTER_IRQ));
723 
724 		seq_printf(m, "Display IER:\t%08x\n",
725 			   I915_READ(VLV_IER));
726 		seq_printf(m, "Display IIR:\t%08x\n",
727 			   I915_READ(VLV_IIR));
728 		seq_printf(m, "Display IIR_RW:\t%08x\n",
729 			   I915_READ(VLV_IIR_RW));
730 		seq_printf(m, "Display IMR:\t%08x\n",
731 			   I915_READ(VLV_IMR));
732 		for_each_pipe(dev_priv, pipe)
733 			seq_printf(m, "Pipe %c stat:\t%08x\n",
734 				   pipe_name(pipe),
735 				   I915_READ(PIPESTAT(pipe)));
736 
737 		seq_printf(m, "Port hotplug:\t%08x\n",
738 			   I915_READ(PORT_HOTPLUG_EN));
739 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
740 			   I915_READ(VLV_DPFLIPSTAT));
741 		seq_printf(m, "DPINVGTT:\t%08x\n",
742 			   I915_READ(DPINVGTT));
743 
744 		for (i = 0; i < 4; i++) {
745 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
746 				   i, I915_READ(GEN8_GT_IMR(i)));
747 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
748 				   i, I915_READ(GEN8_GT_IIR(i)));
749 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
750 				   i, I915_READ(GEN8_GT_IER(i)));
751 		}
752 
753 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
754 			   I915_READ(GEN8_PCU_IMR));
755 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
756 			   I915_READ(GEN8_PCU_IIR));
757 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
758 			   I915_READ(GEN8_PCU_IER));
759 	} else if (INTEL_INFO(dev)->gen >= 8) {
760 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
761 			   I915_READ(GEN8_MASTER_IRQ));
762 
763 		for (i = 0; i < 4; i++) {
764 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
765 				   i, I915_READ(GEN8_GT_IMR(i)));
766 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
767 				   i, I915_READ(GEN8_GT_IIR(i)));
768 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
769 				   i, I915_READ(GEN8_GT_IER(i)));
770 		}
771 
772 		for_each_pipe(dev_priv, pipe) {
773 			if (!intel_display_power_is_enabled(dev_priv,
774 						POWER_DOMAIN_PIPE(pipe))) {
775 				seq_printf(m, "Pipe %c power disabled\n",
776 					   pipe_name(pipe));
777 				continue;
778 			}
779 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
780 				   pipe_name(pipe),
781 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
782 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
783 				   pipe_name(pipe),
784 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
785 			seq_printf(m, "Pipe %c IER:\t%08x\n",
786 				   pipe_name(pipe),
787 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
788 		}
789 
790 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
791 			   I915_READ(GEN8_DE_PORT_IMR));
792 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
793 			   I915_READ(GEN8_DE_PORT_IIR));
794 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
795 			   I915_READ(GEN8_DE_PORT_IER));
796 
797 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
798 			   I915_READ(GEN8_DE_MISC_IMR));
799 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
800 			   I915_READ(GEN8_DE_MISC_IIR));
801 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
802 			   I915_READ(GEN8_DE_MISC_IER));
803 
804 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
805 			   I915_READ(GEN8_PCU_IMR));
806 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
807 			   I915_READ(GEN8_PCU_IIR));
808 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
809 			   I915_READ(GEN8_PCU_IER));
810 	} else if (IS_VALLEYVIEW(dev)) {
811 		seq_printf(m, "Display IER:\t%08x\n",
812 			   I915_READ(VLV_IER));
813 		seq_printf(m, "Display IIR:\t%08x\n",
814 			   I915_READ(VLV_IIR));
815 		seq_printf(m, "Display IIR_RW:\t%08x\n",
816 			   I915_READ(VLV_IIR_RW));
817 		seq_printf(m, "Display IMR:\t%08x\n",
818 			   I915_READ(VLV_IMR));
819 		for_each_pipe(dev_priv, pipe)
820 			seq_printf(m, "Pipe %c stat:\t%08x\n",
821 				   pipe_name(pipe),
822 				   I915_READ(PIPESTAT(pipe)));
823 
824 		seq_printf(m, "Master IER:\t%08x\n",
825 			   I915_READ(VLV_MASTER_IER));
826 
827 		seq_printf(m, "Render IER:\t%08x\n",
828 			   I915_READ(GTIER));
829 		seq_printf(m, "Render IIR:\t%08x\n",
830 			   I915_READ(GTIIR));
831 		seq_printf(m, "Render IMR:\t%08x\n",
832 			   I915_READ(GTIMR));
833 
834 		seq_printf(m, "PM IER:\t\t%08x\n",
835 			   I915_READ(GEN6_PMIER));
836 		seq_printf(m, "PM IIR:\t\t%08x\n",
837 			   I915_READ(GEN6_PMIIR));
838 		seq_printf(m, "PM IMR:\t\t%08x\n",
839 			   I915_READ(GEN6_PMIMR));
840 
841 		seq_printf(m, "Port hotplug:\t%08x\n",
842 			   I915_READ(PORT_HOTPLUG_EN));
843 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
844 			   I915_READ(VLV_DPFLIPSTAT));
845 		seq_printf(m, "DPINVGTT:\t%08x\n",
846 			   I915_READ(DPINVGTT));
847 
848 	} else if (!HAS_PCH_SPLIT(dev)) {
849 		seq_printf(m, "Interrupt enable:    %08x\n",
850 			   I915_READ(IER));
851 		seq_printf(m, "Interrupt identity:  %08x\n",
852 			   I915_READ(IIR));
853 		seq_printf(m, "Interrupt mask:      %08x\n",
854 			   I915_READ(IMR));
855 		for_each_pipe(dev_priv, pipe)
856 			seq_printf(m, "Pipe %c stat:         %08x\n",
857 				   pipe_name(pipe),
858 				   I915_READ(PIPESTAT(pipe)));
859 	} else {
860 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
861 			   I915_READ(DEIER));
862 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
863 			   I915_READ(DEIIR));
864 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
865 			   I915_READ(DEIMR));
866 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
867 			   I915_READ(SDEIER));
868 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
869 			   I915_READ(SDEIIR));
870 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
871 			   I915_READ(SDEIMR));
872 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
873 			   I915_READ(GTIER));
874 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
875 			   I915_READ(GTIIR));
876 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
877 			   I915_READ(GTIMR));
878 	}
879 	for_each_ring(ring, dev_priv, i) {
880 		if (INTEL_INFO(dev)->gen >= 6) {
881 			seq_printf(m,
882 				   "Graphics Interrupt mask (%s):	%08x\n",
883 				   ring->name, I915_READ_IMR(ring));
884 		}
885 		i915_ring_seqno_info(m, ring);
886 	}
887 	intel_runtime_pm_put(dev_priv);
888 	mutex_unlock(&dev->struct_mutex);
889 
890 	return 0;
891 }
892 
893 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
894 {
895 	struct drm_info_node *node = m->private;
896 	struct drm_device *dev = node->minor->dev;
897 	struct drm_i915_private *dev_priv = dev->dev_private;
898 	int i, ret;
899 
900 	ret = mutex_lock_interruptible(&dev->struct_mutex);
901 	if (ret)
902 		return ret;
903 
904 	seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
905 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
906 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
907 		struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
908 
909 		seq_printf(m, "Fence %d, pin count = %d, object = ",
910 			   i, dev_priv->fence_regs[i].pin_count);
911 		if (obj == NULL)
912 			seq_puts(m, "unused");
913 		else
914 			describe_obj(m, obj);
915 		seq_putc(m, '\n');
916 	}
917 
918 	mutex_unlock(&dev->struct_mutex);
919 	return 0;
920 }
921 
922 static int i915_hws_info(struct seq_file *m, void *data)
923 {
924 	struct drm_info_node *node = m->private;
925 	struct drm_device *dev = node->minor->dev;
926 	struct drm_i915_private *dev_priv = dev->dev_private;
927 	struct intel_engine_cs *ring;
928 	const u32 *hws;
929 	int i;
930 
931 	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
932 	hws = ring->status_page.page_addr;
933 	if (hws == NULL)
934 		return 0;
935 
936 	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
937 		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
938 			   i * 4,
939 			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
940 	}
941 	return 0;
942 }
943 
944 static ssize_t
945 i915_error_state_write(struct file *filp,
946 		       const char __user *ubuf,
947 		       size_t cnt,
948 		       loff_t *ppos)
949 {
950 	struct i915_error_state_file_priv *error_priv = filp->private_data;
951 	struct drm_device *dev = error_priv->dev;
952 	int ret;
953 
954 	DRM_DEBUG_DRIVER("Resetting error state\n");
955 
956 	ret = mutex_lock_interruptible(&dev->struct_mutex);
957 	if (ret)
958 		return ret;
959 
960 	i915_destroy_error_state(dev);
961 	mutex_unlock(&dev->struct_mutex);
962 
963 	return cnt;
964 }
965 
966 static int i915_error_state_open(struct inode *inode, struct file *file)
967 {
968 	struct drm_device *dev = inode->i_private;
969 	struct i915_error_state_file_priv *error_priv;
970 
971 	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
972 	if (!error_priv)
973 		return -ENOMEM;
974 
975 	error_priv->dev = dev;
976 
977 	i915_error_state_get(dev, error_priv);
978 
979 	file->private_data = error_priv;
980 
981 	return 0;
982 }
983 
984 static int i915_error_state_release(struct inode *inode, struct file *file)
985 {
986 	struct i915_error_state_file_priv *error_priv = file->private_data;
987 
988 	i915_error_state_put(error_priv);
989 	kfree(error_priv);
990 
991 	return 0;
992 }
993 
994 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
995 				     size_t count, loff_t *pos)
996 {
997 	struct i915_error_state_file_priv *error_priv = file->private_data;
998 	struct drm_i915_error_state_buf error_str;
999 	loff_t tmp_pos = 0;
1000 	ssize_t ret_count = 0;
1001 	int ret;
1002 
1003 	ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1004 	if (ret)
1005 		return ret;
1006 
1007 	ret = i915_error_state_to_str(&error_str, error_priv);
1008 	if (ret)
1009 		goto out;
1010 
1011 	ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1012 					    error_str.buf,
1013 					    error_str.bytes);
1014 
1015 	if (ret_count < 0)
1016 		ret = ret_count;
1017 	else
1018 		*pos = error_str.start + ret_count;
1019 out:
1020 	i915_error_state_buf_release(&error_str);
1021 	return ret ?: ret_count;
1022 }
1023 
1024 static const struct file_operations i915_error_state_fops = {
1025 	.owner = THIS_MODULE,
1026 	.open = i915_error_state_open,
1027 	.read = i915_error_state_read,
1028 	.write = i915_error_state_write,
1029 	.llseek = default_llseek,
1030 	.release = i915_error_state_release,
1031 };
1032 
1033 static int
1034 i915_next_seqno_get(void *data, u64 *val)
1035 {
1036 	struct drm_device *dev = data;
1037 	struct drm_i915_private *dev_priv = dev->dev_private;
1038 	int ret;
1039 
1040 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1041 	if (ret)
1042 		return ret;
1043 
1044 	*val = dev_priv->next_seqno;
1045 	mutex_unlock(&dev->struct_mutex);
1046 
1047 	return 0;
1048 }
1049 
1050 static int
1051 i915_next_seqno_set(void *data, u64 val)
1052 {
1053 	struct drm_device *dev = data;
1054 	int ret;
1055 
1056 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1057 	if (ret)
1058 		return ret;
1059 
1060 	ret = i915_gem_set_seqno(dev, val);
1061 	mutex_unlock(&dev->struct_mutex);
1062 
1063 	return ret;
1064 }
1065 
1066 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1067 			i915_next_seqno_get, i915_next_seqno_set,
1068 			"0x%llx\n");
1069 
1070 static int i915_frequency_info(struct seq_file *m, void *unused)
1071 {
1072 	struct drm_info_node *node = m->private;
1073 	struct drm_device *dev = node->minor->dev;
1074 	struct drm_i915_private *dev_priv = dev->dev_private;
1075 	int ret = 0;
1076 
1077 	intel_runtime_pm_get(dev_priv);
1078 
1079 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1080 
1081 	if (IS_GEN5(dev)) {
1082 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1083 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1084 
1085 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1086 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1087 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1088 			   MEMSTAT_VID_SHIFT);
1089 		seq_printf(m, "Current P-state: %d\n",
1090 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1091 	} else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1092 		   IS_BROADWELL(dev)) {
1093 		u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1094 		u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1095 		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1096 		u32 rpmodectl, rpinclimit, rpdeclimit;
1097 		u32 rpstat, cagf, reqf;
1098 		u32 rpupei, rpcurup, rpprevup;
1099 		u32 rpdownei, rpcurdown, rpprevdown;
1100 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1101 		int max_freq;
1102 
1103 		/* RPSTAT1 is in the GT power well */
1104 		ret = mutex_lock_interruptible(&dev->struct_mutex);
1105 		if (ret)
1106 			goto out;
1107 
1108 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1109 
1110 		reqf = I915_READ(GEN6_RPNSWREQ);
1111 		reqf &= ~GEN6_TURBO_DISABLE;
1112 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1113 			reqf >>= 24;
1114 		else
1115 			reqf >>= 25;
1116 		reqf = intel_gpu_freq(dev_priv, reqf);
1117 
1118 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1119 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1120 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1121 
1122 		rpstat = I915_READ(GEN6_RPSTAT1);
1123 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1124 		rpcurup = I915_READ(GEN6_RP_CUR_UP);
1125 		rpprevup = I915_READ(GEN6_RP_PREV_UP);
1126 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1127 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1128 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1129 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1130 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1131 		else
1132 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1133 		cagf = intel_gpu_freq(dev_priv, cagf);
1134 
1135 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1136 		mutex_unlock(&dev->struct_mutex);
1137 
1138 		if (IS_GEN6(dev) || IS_GEN7(dev)) {
1139 			pm_ier = I915_READ(GEN6_PMIER);
1140 			pm_imr = I915_READ(GEN6_PMIMR);
1141 			pm_isr = I915_READ(GEN6_PMISR);
1142 			pm_iir = I915_READ(GEN6_PMIIR);
1143 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1144 		} else {
1145 			pm_ier = I915_READ(GEN8_GT_IER(2));
1146 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1147 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1148 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1149 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1150 		}
1151 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1152 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1153 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1154 		seq_printf(m, "Render p-state ratio: %d\n",
1155 			   (gt_perf_status & 0xff00) >> 8);
1156 		seq_printf(m, "Render p-state VID: %d\n",
1157 			   gt_perf_status & 0xff);
1158 		seq_printf(m, "Render p-state limit: %d\n",
1159 			   rp_state_limits & 0xff);
1160 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1161 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1162 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1163 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1164 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1165 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1166 		seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1167 			   GEN6_CURICONT_MASK);
1168 		seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1169 			   GEN6_CURBSYTAVG_MASK);
1170 		seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1171 			   GEN6_CURBSYTAVG_MASK);
1172 		seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1173 			   GEN6_CURIAVG_MASK);
1174 		seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1175 			   GEN6_CURBSYTAVG_MASK);
1176 		seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1177 			   GEN6_CURBSYTAVG_MASK);
1178 
1179 		max_freq = (rp_state_cap & 0xff0000) >> 16;
1180 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1181 			   intel_gpu_freq(dev_priv, max_freq));
1182 
1183 		max_freq = (rp_state_cap & 0xff00) >> 8;
1184 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1185 			   intel_gpu_freq(dev_priv, max_freq));
1186 
1187 		max_freq = rp_state_cap & 0xff;
1188 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1189 			   intel_gpu_freq(dev_priv, max_freq));
1190 
1191 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1192 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1193 	} else if (IS_VALLEYVIEW(dev)) {
1194 		u32 freq_sts;
1195 
1196 		mutex_lock(&dev_priv->rps.hw_lock);
1197 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1198 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1199 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1200 
1201 		seq_printf(m, "max GPU freq: %d MHz\n",
1202 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1203 
1204 		seq_printf(m, "min GPU freq: %d MHz\n",
1205 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1206 
1207 		seq_printf(m,
1208 			   "efficient (RPe) frequency: %d MHz\n",
1209 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1210 
1211 		seq_printf(m, "current GPU freq: %d MHz\n",
1212 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1213 		mutex_unlock(&dev_priv->rps.hw_lock);
1214 	} else {
1215 		seq_puts(m, "no P-state info available\n");
1216 	}
1217 
1218 out:
1219 	intel_runtime_pm_put(dev_priv);
1220 	return ret;
1221 }
1222 
1223 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1224 {
1225 	struct drm_info_node *node = m->private;
1226 	struct drm_device *dev = node->minor->dev;
1227 	struct drm_i915_private *dev_priv = dev->dev_private;
1228 	struct intel_engine_cs *ring;
1229 	u64 acthd[I915_NUM_RINGS];
1230 	u32 seqno[I915_NUM_RINGS];
1231 	int i;
1232 
1233 	if (!i915.enable_hangcheck) {
1234 		seq_printf(m, "Hangcheck disabled\n");
1235 		return 0;
1236 	}
1237 
1238 	intel_runtime_pm_get(dev_priv);
1239 
1240 	for_each_ring(ring, dev_priv, i) {
1241 		seqno[i] = ring->get_seqno(ring, false);
1242 		acthd[i] = intel_ring_get_active_head(ring);
1243 	}
1244 
1245 	intel_runtime_pm_put(dev_priv);
1246 
1247 	if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1248 		seq_printf(m, "Hangcheck active, fires in %dms\n",
1249 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1250 					    jiffies));
1251 	} else
1252 		seq_printf(m, "Hangcheck inactive\n");
1253 
1254 	for_each_ring(ring, dev_priv, i) {
1255 		seq_printf(m, "%s:\n", ring->name);
1256 		seq_printf(m, "\tseqno = %x [current %x]\n",
1257 			   ring->hangcheck.seqno, seqno[i]);
1258 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1259 			   (long long)ring->hangcheck.acthd,
1260 			   (long long)acthd[i]);
1261 		seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1262 			   (long long)ring->hangcheck.max_acthd);
1263 		seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1264 		seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1265 	}
1266 
1267 	return 0;
1268 }
1269 
1270 static int ironlake_drpc_info(struct seq_file *m)
1271 {
1272 	struct drm_info_node *node = m->private;
1273 	struct drm_device *dev = node->minor->dev;
1274 	struct drm_i915_private *dev_priv = dev->dev_private;
1275 	u32 rgvmodectl, rstdbyctl;
1276 	u16 crstandvid;
1277 	int ret;
1278 
1279 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1280 	if (ret)
1281 		return ret;
1282 	intel_runtime_pm_get(dev_priv);
1283 
1284 	rgvmodectl = I915_READ(MEMMODECTL);
1285 	rstdbyctl = I915_READ(RSTDBYCTL);
1286 	crstandvid = I915_READ16(CRSTANDVID);
1287 
1288 	intel_runtime_pm_put(dev_priv);
1289 	mutex_unlock(&dev->struct_mutex);
1290 
1291 	seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1292 		   "yes" : "no");
1293 	seq_printf(m, "Boost freq: %d\n",
1294 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1295 		   MEMMODE_BOOST_FREQ_SHIFT);
1296 	seq_printf(m, "HW control enabled: %s\n",
1297 		   rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1298 	seq_printf(m, "SW control enabled: %s\n",
1299 		   rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1300 	seq_printf(m, "Gated voltage change: %s\n",
1301 		   rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1302 	seq_printf(m, "Starting frequency: P%d\n",
1303 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1304 	seq_printf(m, "Max P-state: P%d\n",
1305 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1306 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1307 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1308 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1309 	seq_printf(m, "Render standby enabled: %s\n",
1310 		   (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1311 	seq_puts(m, "Current RS state: ");
1312 	switch (rstdbyctl & RSX_STATUS_MASK) {
1313 	case RSX_STATUS_ON:
1314 		seq_puts(m, "on\n");
1315 		break;
1316 	case RSX_STATUS_RC1:
1317 		seq_puts(m, "RC1\n");
1318 		break;
1319 	case RSX_STATUS_RC1E:
1320 		seq_puts(m, "RC1E\n");
1321 		break;
1322 	case RSX_STATUS_RS1:
1323 		seq_puts(m, "RS1\n");
1324 		break;
1325 	case RSX_STATUS_RS2:
1326 		seq_puts(m, "RS2 (RC6)\n");
1327 		break;
1328 	case RSX_STATUS_RS3:
1329 		seq_puts(m, "RC3 (RC6+)\n");
1330 		break;
1331 	default:
1332 		seq_puts(m, "unknown\n");
1333 		break;
1334 	}
1335 
1336 	return 0;
1337 }
1338 
1339 static int i915_forcewake_domains(struct seq_file *m, void *data)
1340 {
1341 	struct drm_info_node *node = m->private;
1342 	struct drm_device *dev = node->minor->dev;
1343 	struct drm_i915_private *dev_priv = dev->dev_private;
1344 	struct intel_uncore_forcewake_domain *fw_domain;
1345 	int i;
1346 
1347 	spin_lock_irq(&dev_priv->uncore.lock);
1348 	for_each_fw_domain(fw_domain, dev_priv, i) {
1349 		seq_printf(m, "%s.wake_count = %u\n",
1350 			   intel_uncore_forcewake_domain_to_str(i),
1351 			   fw_domain->wake_count);
1352 	}
1353 	spin_unlock_irq(&dev_priv->uncore.lock);
1354 
1355 	return 0;
1356 }
1357 
1358 static int vlv_drpc_info(struct seq_file *m)
1359 {
1360 	struct drm_info_node *node = m->private;
1361 	struct drm_device *dev = node->minor->dev;
1362 	struct drm_i915_private *dev_priv = dev->dev_private;
1363 	u32 rpmodectl1, rcctl1, pw_status;
1364 
1365 	intel_runtime_pm_get(dev_priv);
1366 
1367 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1368 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1369 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1370 
1371 	intel_runtime_pm_put(dev_priv);
1372 
1373 	seq_printf(m, "Video Turbo Mode: %s\n",
1374 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1375 	seq_printf(m, "Turbo enabled: %s\n",
1376 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1377 	seq_printf(m, "HW control enabled: %s\n",
1378 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1379 	seq_printf(m, "SW control enabled: %s\n",
1380 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1381 			  GEN6_RP_MEDIA_SW_MODE));
1382 	seq_printf(m, "RC6 Enabled: %s\n",
1383 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1384 					GEN6_RC_CTL_EI_MODE(1))));
1385 	seq_printf(m, "Render Power Well: %s\n",
1386 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1387 	seq_printf(m, "Media Power Well: %s\n",
1388 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1389 
1390 	seq_printf(m, "Render RC6 residency since boot: %u\n",
1391 		   I915_READ(VLV_GT_RENDER_RC6));
1392 	seq_printf(m, "Media RC6 residency since boot: %u\n",
1393 		   I915_READ(VLV_GT_MEDIA_RC6));
1394 
1395 	return i915_forcewake_domains(m, NULL);
1396 }
1397 
1398 static int gen6_drpc_info(struct seq_file *m)
1399 {
1400 	struct drm_info_node *node = m->private;
1401 	struct drm_device *dev = node->minor->dev;
1402 	struct drm_i915_private *dev_priv = dev->dev_private;
1403 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1404 	unsigned forcewake_count;
1405 	int count = 0, ret;
1406 
1407 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1408 	if (ret)
1409 		return ret;
1410 	intel_runtime_pm_get(dev_priv);
1411 
1412 	spin_lock_irq(&dev_priv->uncore.lock);
1413 	forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1414 	spin_unlock_irq(&dev_priv->uncore.lock);
1415 
1416 	if (forcewake_count) {
1417 		seq_puts(m, "RC information inaccurate because somebody "
1418 			    "holds a forcewake reference \n");
1419 	} else {
1420 		/* NB: we cannot use forcewake, else we read the wrong values */
1421 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1422 			udelay(10);
1423 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1424 	}
1425 
1426 	gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1427 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1428 
1429 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1430 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1431 	mutex_unlock(&dev->struct_mutex);
1432 	mutex_lock(&dev_priv->rps.hw_lock);
1433 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1434 	mutex_unlock(&dev_priv->rps.hw_lock);
1435 
1436 	intel_runtime_pm_put(dev_priv);
1437 
1438 	seq_printf(m, "Video Turbo Mode: %s\n",
1439 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1440 	seq_printf(m, "HW control enabled: %s\n",
1441 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1442 	seq_printf(m, "SW control enabled: %s\n",
1443 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1444 			  GEN6_RP_MEDIA_SW_MODE));
1445 	seq_printf(m, "RC1e Enabled: %s\n",
1446 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1447 	seq_printf(m, "RC6 Enabled: %s\n",
1448 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1449 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1450 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1451 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1452 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1453 	seq_puts(m, "Current RC state: ");
1454 	switch (gt_core_status & GEN6_RCn_MASK) {
1455 	case GEN6_RC0:
1456 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1457 			seq_puts(m, "Core Power Down\n");
1458 		else
1459 			seq_puts(m, "on\n");
1460 		break;
1461 	case GEN6_RC3:
1462 		seq_puts(m, "RC3\n");
1463 		break;
1464 	case GEN6_RC6:
1465 		seq_puts(m, "RC6\n");
1466 		break;
1467 	case GEN6_RC7:
1468 		seq_puts(m, "RC7\n");
1469 		break;
1470 	default:
1471 		seq_puts(m, "Unknown\n");
1472 		break;
1473 	}
1474 
1475 	seq_printf(m, "Core Power Down: %s\n",
1476 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1477 
1478 	/* Not exactly sure what this is */
1479 	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1480 		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1481 	seq_printf(m, "RC6 residency since boot: %u\n",
1482 		   I915_READ(GEN6_GT_GFX_RC6));
1483 	seq_printf(m, "RC6+ residency since boot: %u\n",
1484 		   I915_READ(GEN6_GT_GFX_RC6p));
1485 	seq_printf(m, "RC6++ residency since boot: %u\n",
1486 		   I915_READ(GEN6_GT_GFX_RC6pp));
1487 
1488 	seq_printf(m, "RC6   voltage: %dmV\n",
1489 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1490 	seq_printf(m, "RC6+  voltage: %dmV\n",
1491 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1492 	seq_printf(m, "RC6++ voltage: %dmV\n",
1493 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1494 	return 0;
1495 }
1496 
1497 static int i915_drpc_info(struct seq_file *m, void *unused)
1498 {
1499 	struct drm_info_node *node = m->private;
1500 	struct drm_device *dev = node->minor->dev;
1501 
1502 	if (IS_VALLEYVIEW(dev))
1503 		return vlv_drpc_info(m);
1504 	else if (INTEL_INFO(dev)->gen >= 6)
1505 		return gen6_drpc_info(m);
1506 	else
1507 		return ironlake_drpc_info(m);
1508 }
1509 
1510 static int i915_fbc_status(struct seq_file *m, void *unused)
1511 {
1512 	struct drm_info_node *node = m->private;
1513 	struct drm_device *dev = node->minor->dev;
1514 	struct drm_i915_private *dev_priv = dev->dev_private;
1515 
1516 	if (!HAS_FBC(dev)) {
1517 		seq_puts(m, "FBC unsupported on this chipset\n");
1518 		return 0;
1519 	}
1520 
1521 	intel_runtime_pm_get(dev_priv);
1522 
1523 	if (intel_fbc_enabled(dev)) {
1524 		seq_puts(m, "FBC enabled\n");
1525 	} else {
1526 		seq_puts(m, "FBC disabled: ");
1527 		switch (dev_priv->fbc.no_fbc_reason) {
1528 		case FBC_OK:
1529 			seq_puts(m, "FBC actived, but currently disabled in hardware");
1530 			break;
1531 		case FBC_UNSUPPORTED:
1532 			seq_puts(m, "unsupported by this chipset");
1533 			break;
1534 		case FBC_NO_OUTPUT:
1535 			seq_puts(m, "no outputs");
1536 			break;
1537 		case FBC_STOLEN_TOO_SMALL:
1538 			seq_puts(m, "not enough stolen memory");
1539 			break;
1540 		case FBC_UNSUPPORTED_MODE:
1541 			seq_puts(m, "mode not supported");
1542 			break;
1543 		case FBC_MODE_TOO_LARGE:
1544 			seq_puts(m, "mode too large");
1545 			break;
1546 		case FBC_BAD_PLANE:
1547 			seq_puts(m, "FBC unsupported on plane");
1548 			break;
1549 		case FBC_NOT_TILED:
1550 			seq_puts(m, "scanout buffer not tiled");
1551 			break;
1552 		case FBC_MULTIPLE_PIPES:
1553 			seq_puts(m, "multiple pipes are enabled");
1554 			break;
1555 		case FBC_MODULE_PARAM:
1556 			seq_puts(m, "disabled per module param (default off)");
1557 			break;
1558 		case FBC_CHIP_DEFAULT:
1559 			seq_puts(m, "disabled per chip default");
1560 			break;
1561 		default:
1562 			seq_puts(m, "unknown reason");
1563 		}
1564 		seq_putc(m, '\n');
1565 	}
1566 
1567 	intel_runtime_pm_put(dev_priv);
1568 
1569 	return 0;
1570 }
1571 
1572 static int i915_fbc_fc_get(void *data, u64 *val)
1573 {
1574 	struct drm_device *dev = data;
1575 	struct drm_i915_private *dev_priv = dev->dev_private;
1576 
1577 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1578 		return -ENODEV;
1579 
1580 	drm_modeset_lock_all(dev);
1581 	*val = dev_priv->fbc.false_color;
1582 	drm_modeset_unlock_all(dev);
1583 
1584 	return 0;
1585 }
1586 
1587 static int i915_fbc_fc_set(void *data, u64 val)
1588 {
1589 	struct drm_device *dev = data;
1590 	struct drm_i915_private *dev_priv = dev->dev_private;
1591 	u32 reg;
1592 
1593 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1594 		return -ENODEV;
1595 
1596 	drm_modeset_lock_all(dev);
1597 
1598 	reg = I915_READ(ILK_DPFC_CONTROL);
1599 	dev_priv->fbc.false_color = val;
1600 
1601 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1602 		   (reg | FBC_CTL_FALSE_COLOR) :
1603 		   (reg & ~FBC_CTL_FALSE_COLOR));
1604 
1605 	drm_modeset_unlock_all(dev);
1606 	return 0;
1607 }
1608 
1609 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1610 			i915_fbc_fc_get, i915_fbc_fc_set,
1611 			"%llu\n");
1612 
1613 static int i915_ips_status(struct seq_file *m, void *unused)
1614 {
1615 	struct drm_info_node *node = m->private;
1616 	struct drm_device *dev = node->minor->dev;
1617 	struct drm_i915_private *dev_priv = dev->dev_private;
1618 
1619 	if (!HAS_IPS(dev)) {
1620 		seq_puts(m, "not supported\n");
1621 		return 0;
1622 	}
1623 
1624 	intel_runtime_pm_get(dev_priv);
1625 
1626 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1627 		   yesno(i915.enable_ips));
1628 
1629 	if (INTEL_INFO(dev)->gen >= 8) {
1630 		seq_puts(m, "Currently: unknown\n");
1631 	} else {
1632 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1633 			seq_puts(m, "Currently: enabled\n");
1634 		else
1635 			seq_puts(m, "Currently: disabled\n");
1636 	}
1637 
1638 	intel_runtime_pm_put(dev_priv);
1639 
1640 	return 0;
1641 }
1642 
1643 static int i915_sr_status(struct seq_file *m, void *unused)
1644 {
1645 	struct drm_info_node *node = m->private;
1646 	struct drm_device *dev = node->minor->dev;
1647 	struct drm_i915_private *dev_priv = dev->dev_private;
1648 	bool sr_enabled = false;
1649 
1650 	intel_runtime_pm_get(dev_priv);
1651 
1652 	if (HAS_PCH_SPLIT(dev))
1653 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1654 	else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1655 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1656 	else if (IS_I915GM(dev))
1657 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1658 	else if (IS_PINEVIEW(dev))
1659 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1660 
1661 	intel_runtime_pm_put(dev_priv);
1662 
1663 	seq_printf(m, "self-refresh: %s\n",
1664 		   sr_enabled ? "enabled" : "disabled");
1665 
1666 	return 0;
1667 }
1668 
1669 static int i915_emon_status(struct seq_file *m, void *unused)
1670 {
1671 	struct drm_info_node *node = m->private;
1672 	struct drm_device *dev = node->minor->dev;
1673 	struct drm_i915_private *dev_priv = dev->dev_private;
1674 	unsigned long temp, chipset, gfx;
1675 	int ret;
1676 
1677 	if (!IS_GEN5(dev))
1678 		return -ENODEV;
1679 
1680 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1681 	if (ret)
1682 		return ret;
1683 
1684 	temp = i915_mch_val(dev_priv);
1685 	chipset = i915_chipset_val(dev_priv);
1686 	gfx = i915_gfx_val(dev_priv);
1687 	mutex_unlock(&dev->struct_mutex);
1688 
1689 	seq_printf(m, "GMCH temp: %ld\n", temp);
1690 	seq_printf(m, "Chipset power: %ld\n", chipset);
1691 	seq_printf(m, "GFX power: %ld\n", gfx);
1692 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1693 
1694 	return 0;
1695 }
1696 
1697 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1698 {
1699 	struct drm_info_node *node = m->private;
1700 	struct drm_device *dev = node->minor->dev;
1701 	struct drm_i915_private *dev_priv = dev->dev_private;
1702 	int ret = 0;
1703 	int gpu_freq, ia_freq;
1704 
1705 	if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1706 		seq_puts(m, "unsupported on this chipset\n");
1707 		return 0;
1708 	}
1709 
1710 	intel_runtime_pm_get(dev_priv);
1711 
1712 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1713 
1714 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1715 	if (ret)
1716 		goto out;
1717 
1718 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1719 
1720 	for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1721 	     gpu_freq <= dev_priv->rps.max_freq_softlimit;
1722 	     gpu_freq++) {
1723 		ia_freq = gpu_freq;
1724 		sandybridge_pcode_read(dev_priv,
1725 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1726 				       &ia_freq);
1727 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1728 			   intel_gpu_freq(dev_priv, gpu_freq),
1729 			   ((ia_freq >> 0) & 0xff) * 100,
1730 			   ((ia_freq >> 8) & 0xff) * 100);
1731 	}
1732 
1733 	mutex_unlock(&dev_priv->rps.hw_lock);
1734 
1735 out:
1736 	intel_runtime_pm_put(dev_priv);
1737 	return ret;
1738 }
1739 
1740 static int i915_opregion(struct seq_file *m, void *unused)
1741 {
1742 	struct drm_info_node *node = m->private;
1743 	struct drm_device *dev = node->minor->dev;
1744 	struct drm_i915_private *dev_priv = dev->dev_private;
1745 	struct intel_opregion *opregion = &dev_priv->opregion;
1746 	void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1747 	int ret;
1748 
1749 	if (data == NULL)
1750 		return -ENOMEM;
1751 
1752 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1753 	if (ret)
1754 		goto out;
1755 
1756 	if (opregion->header) {
1757 		memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1758 		seq_write(m, data, OPREGION_SIZE);
1759 	}
1760 
1761 	mutex_unlock(&dev->struct_mutex);
1762 
1763 out:
1764 	kfree(data);
1765 	return 0;
1766 }
1767 
1768 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1769 {
1770 	struct drm_info_node *node = m->private;
1771 	struct drm_device *dev = node->minor->dev;
1772 	struct intel_fbdev *ifbdev = NULL;
1773 	struct intel_framebuffer *fb;
1774 
1775 #ifdef CONFIG_DRM_I915_FBDEV
1776 	struct drm_i915_private *dev_priv = dev->dev_private;
1777 
1778 	ifbdev = dev_priv->fbdev;
1779 	fb = to_intel_framebuffer(ifbdev->helper.fb);
1780 
1781 	seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1782 		   fb->base.width,
1783 		   fb->base.height,
1784 		   fb->base.depth,
1785 		   fb->base.bits_per_pixel,
1786 		   atomic_read(&fb->base.refcount.refcount));
1787 	describe_obj(m, fb->obj);
1788 	seq_putc(m, '\n');
1789 #endif
1790 
1791 	mutex_lock(&dev->mode_config.fb_lock);
1792 	list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1793 		if (ifbdev && &fb->base == ifbdev->helper.fb)
1794 			continue;
1795 
1796 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1797 			   fb->base.width,
1798 			   fb->base.height,
1799 			   fb->base.depth,
1800 			   fb->base.bits_per_pixel,
1801 			   atomic_read(&fb->base.refcount.refcount));
1802 		describe_obj(m, fb->obj);
1803 		seq_putc(m, '\n');
1804 	}
1805 	mutex_unlock(&dev->mode_config.fb_lock);
1806 
1807 	return 0;
1808 }
1809 
1810 static void describe_ctx_ringbuf(struct seq_file *m,
1811 				 struct intel_ringbuffer *ringbuf)
1812 {
1813 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1814 		   ringbuf->space, ringbuf->head, ringbuf->tail,
1815 		   ringbuf->last_retired_head);
1816 }
1817 
1818 static int i915_context_status(struct seq_file *m, void *unused)
1819 {
1820 	struct drm_info_node *node = m->private;
1821 	struct drm_device *dev = node->minor->dev;
1822 	struct drm_i915_private *dev_priv = dev->dev_private;
1823 	struct intel_engine_cs *ring;
1824 	struct intel_context *ctx;
1825 	int ret, i;
1826 
1827 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1828 	if (ret)
1829 		return ret;
1830 
1831 	if (dev_priv->ips.pwrctx) {
1832 		seq_puts(m, "power context ");
1833 		describe_obj(m, dev_priv->ips.pwrctx);
1834 		seq_putc(m, '\n');
1835 	}
1836 
1837 	if (dev_priv->ips.renderctx) {
1838 		seq_puts(m, "render context ");
1839 		describe_obj(m, dev_priv->ips.renderctx);
1840 		seq_putc(m, '\n');
1841 	}
1842 
1843 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1844 		if (!i915.enable_execlists &&
1845 		    ctx->legacy_hw_ctx.rcs_state == NULL)
1846 			continue;
1847 
1848 		seq_puts(m, "HW context ");
1849 		describe_ctx(m, ctx);
1850 		for_each_ring(ring, dev_priv, i) {
1851 			if (ring->default_context == ctx)
1852 				seq_printf(m, "(default context %s) ",
1853 					   ring->name);
1854 		}
1855 
1856 		if (i915.enable_execlists) {
1857 			seq_putc(m, '\n');
1858 			for_each_ring(ring, dev_priv, i) {
1859 				struct drm_i915_gem_object *ctx_obj =
1860 					ctx->engine[i].state;
1861 				struct intel_ringbuffer *ringbuf =
1862 					ctx->engine[i].ringbuf;
1863 
1864 				seq_printf(m, "%s: ", ring->name);
1865 				if (ctx_obj)
1866 					describe_obj(m, ctx_obj);
1867 				if (ringbuf)
1868 					describe_ctx_ringbuf(m, ringbuf);
1869 				seq_putc(m, '\n');
1870 			}
1871 		} else {
1872 			describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1873 		}
1874 
1875 		seq_putc(m, '\n');
1876 	}
1877 
1878 	mutex_unlock(&dev->struct_mutex);
1879 
1880 	return 0;
1881 }
1882 
1883 static void i915_dump_lrc_obj(struct seq_file *m,
1884 			      struct intel_engine_cs *ring,
1885 			      struct drm_i915_gem_object *ctx_obj)
1886 {
1887 	struct page *page;
1888 	uint32_t *reg_state;
1889 	int j;
1890 	unsigned long ggtt_offset = 0;
1891 
1892 	if (ctx_obj == NULL) {
1893 		seq_printf(m, "Context on %s with no gem object\n",
1894 			   ring->name);
1895 		return;
1896 	}
1897 
1898 	seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1899 		   intel_execlists_ctx_id(ctx_obj));
1900 
1901 	if (!i915_gem_obj_ggtt_bound(ctx_obj))
1902 		seq_puts(m, "\tNot bound in GGTT\n");
1903 	else
1904 		ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1905 
1906 	if (i915_gem_object_get_pages(ctx_obj)) {
1907 		seq_puts(m, "\tFailed to get pages for context object\n");
1908 		return;
1909 	}
1910 
1911 	page = i915_gem_object_get_page(ctx_obj, 1);
1912 	if (!WARN_ON(page == NULL)) {
1913 		reg_state = kmap_atomic(page);
1914 
1915 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1916 			seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1917 				   ggtt_offset + 4096 + (j * 4),
1918 				   reg_state[j], reg_state[j + 1],
1919 				   reg_state[j + 2], reg_state[j + 3]);
1920 		}
1921 		kunmap_atomic(reg_state);
1922 	}
1923 
1924 	seq_putc(m, '\n');
1925 }
1926 
1927 static int i915_dump_lrc(struct seq_file *m, void *unused)
1928 {
1929 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1930 	struct drm_device *dev = node->minor->dev;
1931 	struct drm_i915_private *dev_priv = dev->dev_private;
1932 	struct intel_engine_cs *ring;
1933 	struct intel_context *ctx;
1934 	int ret, i;
1935 
1936 	if (!i915.enable_execlists) {
1937 		seq_printf(m, "Logical Ring Contexts are disabled\n");
1938 		return 0;
1939 	}
1940 
1941 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1942 	if (ret)
1943 		return ret;
1944 
1945 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1946 		for_each_ring(ring, dev_priv, i) {
1947 			if (ring->default_context != ctx)
1948 				i915_dump_lrc_obj(m, ring,
1949 						  ctx->engine[i].state);
1950 		}
1951 	}
1952 
1953 	mutex_unlock(&dev->struct_mutex);
1954 
1955 	return 0;
1956 }
1957 
1958 static int i915_execlists(struct seq_file *m, void *data)
1959 {
1960 	struct drm_info_node *node = (struct drm_info_node *)m->private;
1961 	struct drm_device *dev = node->minor->dev;
1962 	struct drm_i915_private *dev_priv = dev->dev_private;
1963 	struct intel_engine_cs *ring;
1964 	u32 status_pointer;
1965 	u8 read_pointer;
1966 	u8 write_pointer;
1967 	u32 status;
1968 	u32 ctx_id;
1969 	struct list_head *cursor;
1970 	int ring_id, i;
1971 	int ret;
1972 
1973 	if (!i915.enable_execlists) {
1974 		seq_puts(m, "Logical Ring Contexts are disabled\n");
1975 		return 0;
1976 	}
1977 
1978 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1979 	if (ret)
1980 		return ret;
1981 
1982 	intel_runtime_pm_get(dev_priv);
1983 
1984 	for_each_ring(ring, dev_priv, ring_id) {
1985 		struct drm_i915_gem_request *head_req = NULL;
1986 		int count = 0;
1987 		unsigned long flags;
1988 
1989 		seq_printf(m, "%s\n", ring->name);
1990 
1991 		status = I915_READ(RING_EXECLIST_STATUS(ring));
1992 		ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
1993 		seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
1994 			   status, ctx_id);
1995 
1996 		status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
1997 		seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
1998 
1999 		read_pointer = ring->next_context_status_buffer;
2000 		write_pointer = status_pointer & 0x07;
2001 		if (read_pointer > write_pointer)
2002 			write_pointer += 6;
2003 		seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2004 			   read_pointer, write_pointer);
2005 
2006 		for (i = 0; i < 6; i++) {
2007 			status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
2008 			ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
2009 
2010 			seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2011 				   i, status, ctx_id);
2012 		}
2013 
2014 		spin_lock_irqsave(&ring->execlist_lock, flags);
2015 		list_for_each(cursor, &ring->execlist_queue)
2016 			count++;
2017 		head_req = list_first_entry_or_null(&ring->execlist_queue,
2018 				struct drm_i915_gem_request, execlist_link);
2019 		spin_unlock_irqrestore(&ring->execlist_lock, flags);
2020 
2021 		seq_printf(m, "\t%d requests in queue\n", count);
2022 		if (head_req) {
2023 			struct drm_i915_gem_object *ctx_obj;
2024 
2025 			ctx_obj = head_req->ctx->engine[ring_id].state;
2026 			seq_printf(m, "\tHead request id: %u\n",
2027 				   intel_execlists_ctx_id(ctx_obj));
2028 			seq_printf(m, "\tHead request tail: %u\n",
2029 				   head_req->tail);
2030 		}
2031 
2032 		seq_putc(m, '\n');
2033 	}
2034 
2035 	intel_runtime_pm_put(dev_priv);
2036 	mutex_unlock(&dev->struct_mutex);
2037 
2038 	return 0;
2039 }
2040 
2041 static const char *swizzle_string(unsigned swizzle)
2042 {
2043 	switch (swizzle) {
2044 	case I915_BIT_6_SWIZZLE_NONE:
2045 		return "none";
2046 	case I915_BIT_6_SWIZZLE_9:
2047 		return "bit9";
2048 	case I915_BIT_6_SWIZZLE_9_10:
2049 		return "bit9/bit10";
2050 	case I915_BIT_6_SWIZZLE_9_11:
2051 		return "bit9/bit11";
2052 	case I915_BIT_6_SWIZZLE_9_10_11:
2053 		return "bit9/bit10/bit11";
2054 	case I915_BIT_6_SWIZZLE_9_17:
2055 		return "bit9/bit17";
2056 	case I915_BIT_6_SWIZZLE_9_10_17:
2057 		return "bit9/bit10/bit17";
2058 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2059 		return "unknown";
2060 	}
2061 
2062 	return "bug";
2063 }
2064 
2065 static int i915_swizzle_info(struct seq_file *m, void *data)
2066 {
2067 	struct drm_info_node *node = m->private;
2068 	struct drm_device *dev = node->minor->dev;
2069 	struct drm_i915_private *dev_priv = dev->dev_private;
2070 	int ret;
2071 
2072 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2073 	if (ret)
2074 		return ret;
2075 	intel_runtime_pm_get(dev_priv);
2076 
2077 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2078 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2079 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2080 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2081 
2082 	if (IS_GEN3(dev) || IS_GEN4(dev)) {
2083 		seq_printf(m, "DDC = 0x%08x\n",
2084 			   I915_READ(DCC));
2085 		seq_printf(m, "DDC2 = 0x%08x\n",
2086 			   I915_READ(DCC2));
2087 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2088 			   I915_READ16(C0DRB3));
2089 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2090 			   I915_READ16(C1DRB3));
2091 	} else if (INTEL_INFO(dev)->gen >= 6) {
2092 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2093 			   I915_READ(MAD_DIMM_C0));
2094 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2095 			   I915_READ(MAD_DIMM_C1));
2096 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2097 			   I915_READ(MAD_DIMM_C2));
2098 		seq_printf(m, "TILECTL = 0x%08x\n",
2099 			   I915_READ(TILECTL));
2100 		if (INTEL_INFO(dev)->gen >= 8)
2101 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2102 				   I915_READ(GAMTARBMODE));
2103 		else
2104 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2105 				   I915_READ(ARB_MODE));
2106 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2107 			   I915_READ(DISP_ARB_CTL));
2108 	}
2109 
2110 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2111 		seq_puts(m, "L-shaped memory detected\n");
2112 
2113 	intel_runtime_pm_put(dev_priv);
2114 	mutex_unlock(&dev->struct_mutex);
2115 
2116 	return 0;
2117 }
2118 
2119 static int per_file_ctx(int id, void *ptr, void *data)
2120 {
2121 	struct intel_context *ctx = ptr;
2122 	struct seq_file *m = data;
2123 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2124 
2125 	if (!ppgtt) {
2126 		seq_printf(m, "  no ppgtt for context %d\n",
2127 			   ctx->user_handle);
2128 		return 0;
2129 	}
2130 
2131 	if (i915_gem_context_is_default(ctx))
2132 		seq_puts(m, "  default context:\n");
2133 	else
2134 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2135 	ppgtt->debug_dump(ppgtt, m);
2136 
2137 	return 0;
2138 }
2139 
2140 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2141 {
2142 	struct drm_i915_private *dev_priv = dev->dev_private;
2143 	struct intel_engine_cs *ring;
2144 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2145 	int unused, i;
2146 
2147 	if (!ppgtt)
2148 		return;
2149 
2150 	seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
2151 	seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
2152 	for_each_ring(ring, dev_priv, unused) {
2153 		seq_printf(m, "%s\n", ring->name);
2154 		for (i = 0; i < 4; i++) {
2155 			u32 offset = 0x270 + i * 8;
2156 			u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2157 			pdp <<= 32;
2158 			pdp |= I915_READ(ring->mmio_base + offset);
2159 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2160 		}
2161 	}
2162 }
2163 
2164 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2165 {
2166 	struct drm_i915_private *dev_priv = dev->dev_private;
2167 	struct intel_engine_cs *ring;
2168 	struct drm_file *file;
2169 	int i;
2170 
2171 	if (INTEL_INFO(dev)->gen == 6)
2172 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2173 
2174 	for_each_ring(ring, dev_priv, i) {
2175 		seq_printf(m, "%s\n", ring->name);
2176 		if (INTEL_INFO(dev)->gen == 7)
2177 			seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2178 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2179 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2180 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2181 	}
2182 	if (dev_priv->mm.aliasing_ppgtt) {
2183 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2184 
2185 		seq_puts(m, "aliasing PPGTT:\n");
2186 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
2187 
2188 		ppgtt->debug_dump(ppgtt, m);
2189 	}
2190 
2191 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2192 		struct drm_i915_file_private *file_priv = file->driver_priv;
2193 
2194 		seq_printf(m, "proc: %s\n",
2195 			   get_pid_task(file->pid, PIDTYPE_PID)->comm);
2196 		idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2197 	}
2198 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2199 }
2200 
2201 static int i915_ppgtt_info(struct seq_file *m, void *data)
2202 {
2203 	struct drm_info_node *node = m->private;
2204 	struct drm_device *dev = node->minor->dev;
2205 	struct drm_i915_private *dev_priv = dev->dev_private;
2206 
2207 	int ret = mutex_lock_interruptible(&dev->struct_mutex);
2208 	if (ret)
2209 		return ret;
2210 	intel_runtime_pm_get(dev_priv);
2211 
2212 	if (INTEL_INFO(dev)->gen >= 8)
2213 		gen8_ppgtt_info(m, dev);
2214 	else if (INTEL_INFO(dev)->gen >= 6)
2215 		gen6_ppgtt_info(m, dev);
2216 
2217 	intel_runtime_pm_put(dev_priv);
2218 	mutex_unlock(&dev->struct_mutex);
2219 
2220 	return 0;
2221 }
2222 
2223 static int i915_llc(struct seq_file *m, void *data)
2224 {
2225 	struct drm_info_node *node = m->private;
2226 	struct drm_device *dev = node->minor->dev;
2227 	struct drm_i915_private *dev_priv = dev->dev_private;
2228 
2229 	/* Size calculation for LLC is a bit of a pain. Ignore for now. */
2230 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2231 	seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2232 
2233 	return 0;
2234 }
2235 
2236 static int i915_edp_psr_status(struct seq_file *m, void *data)
2237 {
2238 	struct drm_info_node *node = m->private;
2239 	struct drm_device *dev = node->minor->dev;
2240 	struct drm_i915_private *dev_priv = dev->dev_private;
2241 	u32 psrperf = 0;
2242 	u32 stat[3];
2243 	enum pipe pipe;
2244 	bool enabled = false;
2245 
2246 	intel_runtime_pm_get(dev_priv);
2247 
2248 	mutex_lock(&dev_priv->psr.lock);
2249 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2250 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2251 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2252 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2253 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2254 		   dev_priv->psr.busy_frontbuffer_bits);
2255 	seq_printf(m, "Re-enable work scheduled: %s\n",
2256 		   yesno(work_busy(&dev_priv->psr.work.work)));
2257 
2258 	if (HAS_PSR(dev)) {
2259 		if (HAS_DDI(dev))
2260 			enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2261 		else {
2262 			for_each_pipe(dev_priv, pipe) {
2263 				stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2264 					VLV_EDP_PSR_CURR_STATE_MASK;
2265 				if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2266 				    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2267 					enabled = true;
2268 			}
2269 		}
2270 	}
2271 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2272 
2273 	if (!HAS_DDI(dev))
2274 		for_each_pipe(dev_priv, pipe) {
2275 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2276 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2277 				seq_printf(m, " pipe %c", pipe_name(pipe));
2278 		}
2279 	seq_puts(m, "\n");
2280 
2281 	seq_printf(m, "Link standby: %s\n",
2282 		   yesno((bool)dev_priv->psr.link_standby));
2283 
2284 	/* CHV PSR has no kind of performance counter */
2285 	if (HAS_PSR(dev) && HAS_DDI(dev)) {
2286 		psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2287 			EDP_PSR_PERF_CNT_MASK;
2288 
2289 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2290 	}
2291 	mutex_unlock(&dev_priv->psr.lock);
2292 
2293 	intel_runtime_pm_put(dev_priv);
2294 	return 0;
2295 }
2296 
2297 static int i915_sink_crc(struct seq_file *m, void *data)
2298 {
2299 	struct drm_info_node *node = m->private;
2300 	struct drm_device *dev = node->minor->dev;
2301 	struct intel_encoder *encoder;
2302 	struct intel_connector *connector;
2303 	struct intel_dp *intel_dp = NULL;
2304 	int ret;
2305 	u8 crc[6];
2306 
2307 	drm_modeset_lock_all(dev);
2308 	list_for_each_entry(connector, &dev->mode_config.connector_list,
2309 			    base.head) {
2310 
2311 		if (connector->base.dpms != DRM_MODE_DPMS_ON)
2312 			continue;
2313 
2314 		if (!connector->base.encoder)
2315 			continue;
2316 
2317 		encoder = to_intel_encoder(connector->base.encoder);
2318 		if (encoder->type != INTEL_OUTPUT_EDP)
2319 			continue;
2320 
2321 		intel_dp = enc_to_intel_dp(&encoder->base);
2322 
2323 		ret = intel_dp_sink_crc(intel_dp, crc);
2324 		if (ret)
2325 			goto out;
2326 
2327 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2328 			   crc[0], crc[1], crc[2],
2329 			   crc[3], crc[4], crc[5]);
2330 		goto out;
2331 	}
2332 	ret = -ENODEV;
2333 out:
2334 	drm_modeset_unlock_all(dev);
2335 	return ret;
2336 }
2337 
2338 static int i915_energy_uJ(struct seq_file *m, void *data)
2339 {
2340 	struct drm_info_node *node = m->private;
2341 	struct drm_device *dev = node->minor->dev;
2342 	struct drm_i915_private *dev_priv = dev->dev_private;
2343 	u64 power;
2344 	u32 units;
2345 
2346 	if (INTEL_INFO(dev)->gen < 6)
2347 		return -ENODEV;
2348 
2349 	intel_runtime_pm_get(dev_priv);
2350 
2351 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2352 	power = (power & 0x1f00) >> 8;
2353 	units = 1000000 / (1 << power); /* convert to uJ */
2354 	power = I915_READ(MCH_SECP_NRG_STTS);
2355 	power *= units;
2356 
2357 	intel_runtime_pm_put(dev_priv);
2358 
2359 	seq_printf(m, "%llu", (long long unsigned)power);
2360 
2361 	return 0;
2362 }
2363 
2364 static int i915_pc8_status(struct seq_file *m, void *unused)
2365 {
2366 	struct drm_info_node *node = m->private;
2367 	struct drm_device *dev = node->minor->dev;
2368 	struct drm_i915_private *dev_priv = dev->dev_private;
2369 
2370 	if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2371 		seq_puts(m, "not supported\n");
2372 		return 0;
2373 	}
2374 
2375 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2376 	seq_printf(m, "IRQs disabled: %s\n",
2377 		   yesno(!intel_irqs_enabled(dev_priv)));
2378 
2379 	return 0;
2380 }
2381 
2382 static const char *power_domain_str(enum intel_display_power_domain domain)
2383 {
2384 	switch (domain) {
2385 	case POWER_DOMAIN_PIPE_A:
2386 		return "PIPE_A";
2387 	case POWER_DOMAIN_PIPE_B:
2388 		return "PIPE_B";
2389 	case POWER_DOMAIN_PIPE_C:
2390 		return "PIPE_C";
2391 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2392 		return "PIPE_A_PANEL_FITTER";
2393 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2394 		return "PIPE_B_PANEL_FITTER";
2395 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2396 		return "PIPE_C_PANEL_FITTER";
2397 	case POWER_DOMAIN_TRANSCODER_A:
2398 		return "TRANSCODER_A";
2399 	case POWER_DOMAIN_TRANSCODER_B:
2400 		return "TRANSCODER_B";
2401 	case POWER_DOMAIN_TRANSCODER_C:
2402 		return "TRANSCODER_C";
2403 	case POWER_DOMAIN_TRANSCODER_EDP:
2404 		return "TRANSCODER_EDP";
2405 	case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2406 		return "PORT_DDI_A_2_LANES";
2407 	case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2408 		return "PORT_DDI_A_4_LANES";
2409 	case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2410 		return "PORT_DDI_B_2_LANES";
2411 	case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2412 		return "PORT_DDI_B_4_LANES";
2413 	case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2414 		return "PORT_DDI_C_2_LANES";
2415 	case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2416 		return "PORT_DDI_C_4_LANES";
2417 	case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2418 		return "PORT_DDI_D_2_LANES";
2419 	case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2420 		return "PORT_DDI_D_4_LANES";
2421 	case POWER_DOMAIN_PORT_DSI:
2422 		return "PORT_DSI";
2423 	case POWER_DOMAIN_PORT_CRT:
2424 		return "PORT_CRT";
2425 	case POWER_DOMAIN_PORT_OTHER:
2426 		return "PORT_OTHER";
2427 	case POWER_DOMAIN_VGA:
2428 		return "VGA";
2429 	case POWER_DOMAIN_AUDIO:
2430 		return "AUDIO";
2431 	case POWER_DOMAIN_PLLS:
2432 		return "PLLS";
2433 	case POWER_DOMAIN_AUX_A:
2434 		return "AUX_A";
2435 	case POWER_DOMAIN_AUX_B:
2436 		return "AUX_B";
2437 	case POWER_DOMAIN_AUX_C:
2438 		return "AUX_C";
2439 	case POWER_DOMAIN_AUX_D:
2440 		return "AUX_D";
2441 	case POWER_DOMAIN_INIT:
2442 		return "INIT";
2443 	default:
2444 		MISSING_CASE(domain);
2445 		return "?";
2446 	}
2447 }
2448 
2449 static int i915_power_domain_info(struct seq_file *m, void *unused)
2450 {
2451 	struct drm_info_node *node = m->private;
2452 	struct drm_device *dev = node->minor->dev;
2453 	struct drm_i915_private *dev_priv = dev->dev_private;
2454 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2455 	int i;
2456 
2457 	mutex_lock(&power_domains->lock);
2458 
2459 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2460 	for (i = 0; i < power_domains->power_well_count; i++) {
2461 		struct i915_power_well *power_well;
2462 		enum intel_display_power_domain power_domain;
2463 
2464 		power_well = &power_domains->power_wells[i];
2465 		seq_printf(m, "%-25s %d\n", power_well->name,
2466 			   power_well->count);
2467 
2468 		for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2469 		     power_domain++) {
2470 			if (!(BIT(power_domain) & power_well->domains))
2471 				continue;
2472 
2473 			seq_printf(m, "  %-23s %d\n",
2474 				 power_domain_str(power_domain),
2475 				 power_domains->domain_use_count[power_domain]);
2476 		}
2477 	}
2478 
2479 	mutex_unlock(&power_domains->lock);
2480 
2481 	return 0;
2482 }
2483 
2484 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2485 				 struct drm_display_mode *mode)
2486 {
2487 	int i;
2488 
2489 	for (i = 0; i < tabs; i++)
2490 		seq_putc(m, '\t');
2491 
2492 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2493 		   mode->base.id, mode->name,
2494 		   mode->vrefresh, mode->clock,
2495 		   mode->hdisplay, mode->hsync_start,
2496 		   mode->hsync_end, mode->htotal,
2497 		   mode->vdisplay, mode->vsync_start,
2498 		   mode->vsync_end, mode->vtotal,
2499 		   mode->type, mode->flags);
2500 }
2501 
2502 static void intel_encoder_info(struct seq_file *m,
2503 			       struct intel_crtc *intel_crtc,
2504 			       struct intel_encoder *intel_encoder)
2505 {
2506 	struct drm_info_node *node = m->private;
2507 	struct drm_device *dev = node->minor->dev;
2508 	struct drm_crtc *crtc = &intel_crtc->base;
2509 	struct intel_connector *intel_connector;
2510 	struct drm_encoder *encoder;
2511 
2512 	encoder = &intel_encoder->base;
2513 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2514 		   encoder->base.id, encoder->name);
2515 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2516 		struct drm_connector *connector = &intel_connector->base;
2517 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2518 			   connector->base.id,
2519 			   connector->name,
2520 			   drm_get_connector_status_name(connector->status));
2521 		if (connector->status == connector_status_connected) {
2522 			struct drm_display_mode *mode = &crtc->mode;
2523 			seq_printf(m, ", mode:\n");
2524 			intel_seq_print_mode(m, 2, mode);
2525 		} else {
2526 			seq_putc(m, '\n');
2527 		}
2528 	}
2529 }
2530 
2531 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2532 {
2533 	struct drm_info_node *node = m->private;
2534 	struct drm_device *dev = node->minor->dev;
2535 	struct drm_crtc *crtc = &intel_crtc->base;
2536 	struct intel_encoder *intel_encoder;
2537 
2538 	if (crtc->primary->fb)
2539 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2540 			   crtc->primary->fb->base.id, crtc->x, crtc->y,
2541 			   crtc->primary->fb->width, crtc->primary->fb->height);
2542 	else
2543 		seq_puts(m, "\tprimary plane disabled\n");
2544 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2545 		intel_encoder_info(m, intel_crtc, intel_encoder);
2546 }
2547 
2548 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2549 {
2550 	struct drm_display_mode *mode = panel->fixed_mode;
2551 
2552 	seq_printf(m, "\tfixed mode:\n");
2553 	intel_seq_print_mode(m, 2, mode);
2554 }
2555 
2556 static void intel_dp_info(struct seq_file *m,
2557 			  struct intel_connector *intel_connector)
2558 {
2559 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2560 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2561 
2562 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2563 	seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2564 		   "no");
2565 	if (intel_encoder->type == INTEL_OUTPUT_EDP)
2566 		intel_panel_info(m, &intel_connector->panel);
2567 }
2568 
2569 static void intel_hdmi_info(struct seq_file *m,
2570 			    struct intel_connector *intel_connector)
2571 {
2572 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2573 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2574 
2575 	seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2576 		   "no");
2577 }
2578 
2579 static void intel_lvds_info(struct seq_file *m,
2580 			    struct intel_connector *intel_connector)
2581 {
2582 	intel_panel_info(m, &intel_connector->panel);
2583 }
2584 
2585 static void intel_connector_info(struct seq_file *m,
2586 				 struct drm_connector *connector)
2587 {
2588 	struct intel_connector *intel_connector = to_intel_connector(connector);
2589 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2590 	struct drm_display_mode *mode;
2591 
2592 	seq_printf(m, "connector %d: type %s, status: %s\n",
2593 		   connector->base.id, connector->name,
2594 		   drm_get_connector_status_name(connector->status));
2595 	if (connector->status == connector_status_connected) {
2596 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
2597 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2598 			   connector->display_info.width_mm,
2599 			   connector->display_info.height_mm);
2600 		seq_printf(m, "\tsubpixel order: %s\n",
2601 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2602 		seq_printf(m, "\tCEA rev: %d\n",
2603 			   connector->display_info.cea_rev);
2604 	}
2605 	if (intel_encoder) {
2606 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2607 		    intel_encoder->type == INTEL_OUTPUT_EDP)
2608 			intel_dp_info(m, intel_connector);
2609 		else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2610 			intel_hdmi_info(m, intel_connector);
2611 		else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2612 			intel_lvds_info(m, intel_connector);
2613 	}
2614 
2615 	seq_printf(m, "\tmodes:\n");
2616 	list_for_each_entry(mode, &connector->modes, head)
2617 		intel_seq_print_mode(m, 2, mode);
2618 }
2619 
2620 static bool cursor_active(struct drm_device *dev, int pipe)
2621 {
2622 	struct drm_i915_private *dev_priv = dev->dev_private;
2623 	u32 state;
2624 
2625 	if (IS_845G(dev) || IS_I865G(dev))
2626 		state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2627 	else
2628 		state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2629 
2630 	return state;
2631 }
2632 
2633 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2634 {
2635 	struct drm_i915_private *dev_priv = dev->dev_private;
2636 	u32 pos;
2637 
2638 	pos = I915_READ(CURPOS(pipe));
2639 
2640 	*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2641 	if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2642 		*x = -*x;
2643 
2644 	*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2645 	if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2646 		*y = -*y;
2647 
2648 	return cursor_active(dev, pipe);
2649 }
2650 
2651 static int i915_display_info(struct seq_file *m, void *unused)
2652 {
2653 	struct drm_info_node *node = m->private;
2654 	struct drm_device *dev = node->minor->dev;
2655 	struct drm_i915_private *dev_priv = dev->dev_private;
2656 	struct intel_crtc *crtc;
2657 	struct drm_connector *connector;
2658 
2659 	intel_runtime_pm_get(dev_priv);
2660 	drm_modeset_lock_all(dev);
2661 	seq_printf(m, "CRTC info\n");
2662 	seq_printf(m, "---------\n");
2663 	for_each_intel_crtc(dev, crtc) {
2664 		bool active;
2665 		int x, y;
2666 
2667 		seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2668 			   crtc->base.base.id, pipe_name(crtc->pipe),
2669 			   yesno(crtc->active), crtc->config->pipe_src_w,
2670 			   crtc->config->pipe_src_h);
2671 		if (crtc->active) {
2672 			intel_crtc_info(m, crtc);
2673 
2674 			active = cursor_position(dev, crtc->pipe, &x, &y);
2675 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2676 				   yesno(crtc->cursor_base),
2677 				   x, y, crtc->cursor_width, crtc->cursor_height,
2678 				   crtc->cursor_addr, yesno(active));
2679 		}
2680 
2681 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2682 			   yesno(!crtc->cpu_fifo_underrun_disabled),
2683 			   yesno(!crtc->pch_fifo_underrun_disabled));
2684 	}
2685 
2686 	seq_printf(m, "\n");
2687 	seq_printf(m, "Connector info\n");
2688 	seq_printf(m, "--------------\n");
2689 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2690 		intel_connector_info(m, connector);
2691 	}
2692 	drm_modeset_unlock_all(dev);
2693 	intel_runtime_pm_put(dev_priv);
2694 
2695 	return 0;
2696 }
2697 
2698 static int i915_semaphore_status(struct seq_file *m, void *unused)
2699 {
2700 	struct drm_info_node *node = (struct drm_info_node *) m->private;
2701 	struct drm_device *dev = node->minor->dev;
2702 	struct drm_i915_private *dev_priv = dev->dev_private;
2703 	struct intel_engine_cs *ring;
2704 	int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2705 	int i, j, ret;
2706 
2707 	if (!i915_semaphore_is_enabled(dev)) {
2708 		seq_puts(m, "Semaphores are disabled\n");
2709 		return 0;
2710 	}
2711 
2712 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2713 	if (ret)
2714 		return ret;
2715 	intel_runtime_pm_get(dev_priv);
2716 
2717 	if (IS_BROADWELL(dev)) {
2718 		struct page *page;
2719 		uint64_t *seqno;
2720 
2721 		page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2722 
2723 		seqno = (uint64_t *)kmap_atomic(page);
2724 		for_each_ring(ring, dev_priv, i) {
2725 			uint64_t offset;
2726 
2727 			seq_printf(m, "%s\n", ring->name);
2728 
2729 			seq_puts(m, "  Last signal:");
2730 			for (j = 0; j < num_rings; j++) {
2731 				offset = i * I915_NUM_RINGS + j;
2732 				seq_printf(m, "0x%08llx (0x%02llx) ",
2733 					   seqno[offset], offset * 8);
2734 			}
2735 			seq_putc(m, '\n');
2736 
2737 			seq_puts(m, "  Last wait:  ");
2738 			for (j = 0; j < num_rings; j++) {
2739 				offset = i + (j * I915_NUM_RINGS);
2740 				seq_printf(m, "0x%08llx (0x%02llx) ",
2741 					   seqno[offset], offset * 8);
2742 			}
2743 			seq_putc(m, '\n');
2744 
2745 		}
2746 		kunmap_atomic(seqno);
2747 	} else {
2748 		seq_puts(m, "  Last signal:");
2749 		for_each_ring(ring, dev_priv, i)
2750 			for (j = 0; j < num_rings; j++)
2751 				seq_printf(m, "0x%08x\n",
2752 					   I915_READ(ring->semaphore.mbox.signal[j]));
2753 		seq_putc(m, '\n');
2754 	}
2755 
2756 	seq_puts(m, "\nSync seqno:\n");
2757 	for_each_ring(ring, dev_priv, i) {
2758 		for (j = 0; j < num_rings; j++) {
2759 			seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
2760 		}
2761 		seq_putc(m, '\n');
2762 	}
2763 	seq_putc(m, '\n');
2764 
2765 	intel_runtime_pm_put(dev_priv);
2766 	mutex_unlock(&dev->struct_mutex);
2767 	return 0;
2768 }
2769 
2770 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2771 {
2772 	struct drm_info_node *node = (struct drm_info_node *) m->private;
2773 	struct drm_device *dev = node->minor->dev;
2774 	struct drm_i915_private *dev_priv = dev->dev_private;
2775 	int i;
2776 
2777 	drm_modeset_lock_all(dev);
2778 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2779 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2780 
2781 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2782 		seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
2783 			   pll->config.crtc_mask, pll->active, yesno(pll->on));
2784 		seq_printf(m, " tracked hardware state:\n");
2785 		seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
2786 		seq_printf(m, " dpll_md: 0x%08x\n",
2787 			   pll->config.hw_state.dpll_md);
2788 		seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
2789 		seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
2790 		seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
2791 	}
2792 	drm_modeset_unlock_all(dev);
2793 
2794 	return 0;
2795 }
2796 
2797 static int i915_wa_registers(struct seq_file *m, void *unused)
2798 {
2799 	int i;
2800 	int ret;
2801 	struct drm_info_node *node = (struct drm_info_node *) m->private;
2802 	struct drm_device *dev = node->minor->dev;
2803 	struct drm_i915_private *dev_priv = dev->dev_private;
2804 
2805 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2806 	if (ret)
2807 		return ret;
2808 
2809 	intel_runtime_pm_get(dev_priv);
2810 
2811 	seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2812 	for (i = 0; i < dev_priv->workarounds.count; ++i) {
2813 		u32 addr, mask, value, read;
2814 		bool ok;
2815 
2816 		addr = dev_priv->workarounds.reg[i].addr;
2817 		mask = dev_priv->workarounds.reg[i].mask;
2818 		value = dev_priv->workarounds.reg[i].value;
2819 		read = I915_READ(addr);
2820 		ok = (value & mask) == (read & mask);
2821 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2822 			   addr, value, mask, read, ok ? "OK" : "FAIL");
2823 	}
2824 
2825 	intel_runtime_pm_put(dev_priv);
2826 	mutex_unlock(&dev->struct_mutex);
2827 
2828 	return 0;
2829 }
2830 
2831 static int i915_ddb_info(struct seq_file *m, void *unused)
2832 {
2833 	struct drm_info_node *node = m->private;
2834 	struct drm_device *dev = node->minor->dev;
2835 	struct drm_i915_private *dev_priv = dev->dev_private;
2836 	struct skl_ddb_allocation *ddb;
2837 	struct skl_ddb_entry *entry;
2838 	enum pipe pipe;
2839 	int plane;
2840 
2841 	if (INTEL_INFO(dev)->gen < 9)
2842 		return 0;
2843 
2844 	drm_modeset_lock_all(dev);
2845 
2846 	ddb = &dev_priv->wm.skl_hw.ddb;
2847 
2848 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
2849 
2850 	for_each_pipe(dev_priv, pipe) {
2851 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
2852 
2853 		for_each_plane(pipe, plane) {
2854 			entry = &ddb->plane[pipe][plane];
2855 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
2856 				   entry->start, entry->end,
2857 				   skl_ddb_entry_size(entry));
2858 		}
2859 
2860 		entry = &ddb->cursor[pipe];
2861 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
2862 			   entry->end, skl_ddb_entry_size(entry));
2863 	}
2864 
2865 	drm_modeset_unlock_all(dev);
2866 
2867 	return 0;
2868 }
2869 
2870 struct pipe_crc_info {
2871 	const char *name;
2872 	struct drm_device *dev;
2873 	enum pipe pipe;
2874 };
2875 
2876 static int i915_dp_mst_info(struct seq_file *m, void *unused)
2877 {
2878 	struct drm_info_node *node = (struct drm_info_node *) m->private;
2879 	struct drm_device *dev = node->minor->dev;
2880 	struct drm_encoder *encoder;
2881 	struct intel_encoder *intel_encoder;
2882 	struct intel_digital_port *intel_dig_port;
2883 	drm_modeset_lock_all(dev);
2884 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2885 		intel_encoder = to_intel_encoder(encoder);
2886 		if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
2887 			continue;
2888 		intel_dig_port = enc_to_dig_port(encoder);
2889 		if (!intel_dig_port->dp.can_mst)
2890 			continue;
2891 
2892 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
2893 	}
2894 	drm_modeset_unlock_all(dev);
2895 	return 0;
2896 }
2897 
2898 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2899 {
2900 	struct pipe_crc_info *info = inode->i_private;
2901 	struct drm_i915_private *dev_priv = info->dev->dev_private;
2902 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2903 
2904 	if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2905 		return -ENODEV;
2906 
2907 	spin_lock_irq(&pipe_crc->lock);
2908 
2909 	if (pipe_crc->opened) {
2910 		spin_unlock_irq(&pipe_crc->lock);
2911 		return -EBUSY; /* already open */
2912 	}
2913 
2914 	pipe_crc->opened = true;
2915 	filep->private_data = inode->i_private;
2916 
2917 	spin_unlock_irq(&pipe_crc->lock);
2918 
2919 	return 0;
2920 }
2921 
2922 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2923 {
2924 	struct pipe_crc_info *info = inode->i_private;
2925 	struct drm_i915_private *dev_priv = info->dev->dev_private;
2926 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2927 
2928 	spin_lock_irq(&pipe_crc->lock);
2929 	pipe_crc->opened = false;
2930 	spin_unlock_irq(&pipe_crc->lock);
2931 
2932 	return 0;
2933 }
2934 
2935 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2936 #define PIPE_CRC_LINE_LEN	(6 * 8 + 5 + 1)
2937 /* account for \'0' */
2938 #define PIPE_CRC_BUFFER_LEN	(PIPE_CRC_LINE_LEN + 1)
2939 
2940 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2941 {
2942 	assert_spin_locked(&pipe_crc->lock);
2943 	return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2944 			INTEL_PIPE_CRC_ENTRIES_NR);
2945 }
2946 
2947 static ssize_t
2948 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2949 		   loff_t *pos)
2950 {
2951 	struct pipe_crc_info *info = filep->private_data;
2952 	struct drm_device *dev = info->dev;
2953 	struct drm_i915_private *dev_priv = dev->dev_private;
2954 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2955 	char buf[PIPE_CRC_BUFFER_LEN];
2956 	int n_entries;
2957 	ssize_t bytes_read;
2958 
2959 	/*
2960 	 * Don't allow user space to provide buffers not big enough to hold
2961 	 * a line of data.
2962 	 */
2963 	if (count < PIPE_CRC_LINE_LEN)
2964 		return -EINVAL;
2965 
2966 	if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2967 		return 0;
2968 
2969 	/* nothing to read */
2970 	spin_lock_irq(&pipe_crc->lock);
2971 	while (pipe_crc_data_count(pipe_crc) == 0) {
2972 		int ret;
2973 
2974 		if (filep->f_flags & O_NONBLOCK) {
2975 			spin_unlock_irq(&pipe_crc->lock);
2976 			return -EAGAIN;
2977 		}
2978 
2979 		ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2980 				pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2981 		if (ret) {
2982 			spin_unlock_irq(&pipe_crc->lock);
2983 			return ret;
2984 		}
2985 	}
2986 
2987 	/* We now have one or more entries to read */
2988 	n_entries = count / PIPE_CRC_LINE_LEN;
2989 
2990 	bytes_read = 0;
2991 	while (n_entries > 0) {
2992 		struct intel_pipe_crc_entry *entry =
2993 			&pipe_crc->entries[pipe_crc->tail];
2994 		int ret;
2995 
2996 		if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2997 			     INTEL_PIPE_CRC_ENTRIES_NR) < 1)
2998 			break;
2999 
3000 		BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3001 		pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3002 
3003 		bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3004 				       "%8u %8x %8x %8x %8x %8x\n",
3005 				       entry->frame, entry->crc[0],
3006 				       entry->crc[1], entry->crc[2],
3007 				       entry->crc[3], entry->crc[4]);
3008 
3009 		spin_unlock_irq(&pipe_crc->lock);
3010 
3011 		ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3012 		if (ret == PIPE_CRC_LINE_LEN)
3013 			return -EFAULT;
3014 
3015 		user_buf += PIPE_CRC_LINE_LEN;
3016 		n_entries--;
3017 
3018 		spin_lock_irq(&pipe_crc->lock);
3019 	}
3020 
3021 	spin_unlock_irq(&pipe_crc->lock);
3022 
3023 	return bytes_read;
3024 }
3025 
3026 static const struct file_operations i915_pipe_crc_fops = {
3027 	.owner = THIS_MODULE,
3028 	.open = i915_pipe_crc_open,
3029 	.read = i915_pipe_crc_read,
3030 	.release = i915_pipe_crc_release,
3031 };
3032 
3033 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3034 	{
3035 		.name = "i915_pipe_A_crc",
3036 		.pipe = PIPE_A,
3037 	},
3038 	{
3039 		.name = "i915_pipe_B_crc",
3040 		.pipe = PIPE_B,
3041 	},
3042 	{
3043 		.name = "i915_pipe_C_crc",
3044 		.pipe = PIPE_C,
3045 	},
3046 };
3047 
3048 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3049 				enum pipe pipe)
3050 {
3051 	struct drm_device *dev = minor->dev;
3052 	struct dentry *ent;
3053 	struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3054 
3055 	info->dev = dev;
3056 	ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3057 				  &i915_pipe_crc_fops);
3058 	if (!ent)
3059 		return -ENOMEM;
3060 
3061 	return drm_add_fake_info_node(minor, ent, info);
3062 }
3063 
3064 static const char * const pipe_crc_sources[] = {
3065 	"none",
3066 	"plane1",
3067 	"plane2",
3068 	"pf",
3069 	"pipe",
3070 	"TV",
3071 	"DP-B",
3072 	"DP-C",
3073 	"DP-D",
3074 	"auto",
3075 };
3076 
3077 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3078 {
3079 	BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3080 	return pipe_crc_sources[source];
3081 }
3082 
3083 static int display_crc_ctl_show(struct seq_file *m, void *data)
3084 {
3085 	struct drm_device *dev = m->private;
3086 	struct drm_i915_private *dev_priv = dev->dev_private;
3087 	int i;
3088 
3089 	for (i = 0; i < I915_MAX_PIPES; i++)
3090 		seq_printf(m, "%c %s\n", pipe_name(i),
3091 			   pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3092 
3093 	return 0;
3094 }
3095 
3096 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3097 {
3098 	struct drm_device *dev = inode->i_private;
3099 
3100 	return single_open(file, display_crc_ctl_show, dev);
3101 }
3102 
3103 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3104 				 uint32_t *val)
3105 {
3106 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3107 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3108 
3109 	switch (*source) {
3110 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3111 		*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3112 		break;
3113 	case INTEL_PIPE_CRC_SOURCE_NONE:
3114 		*val = 0;
3115 		break;
3116 	default:
3117 		return -EINVAL;
3118 	}
3119 
3120 	return 0;
3121 }
3122 
3123 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3124 				     enum intel_pipe_crc_source *source)
3125 {
3126 	struct intel_encoder *encoder;
3127 	struct intel_crtc *crtc;
3128 	struct intel_digital_port *dig_port;
3129 	int ret = 0;
3130 
3131 	*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3132 
3133 	drm_modeset_lock_all(dev);
3134 	for_each_intel_encoder(dev, encoder) {
3135 		if (!encoder->base.crtc)
3136 			continue;
3137 
3138 		crtc = to_intel_crtc(encoder->base.crtc);
3139 
3140 		if (crtc->pipe != pipe)
3141 			continue;
3142 
3143 		switch (encoder->type) {
3144 		case INTEL_OUTPUT_TVOUT:
3145 			*source = INTEL_PIPE_CRC_SOURCE_TV;
3146 			break;
3147 		case INTEL_OUTPUT_DISPLAYPORT:
3148 		case INTEL_OUTPUT_EDP:
3149 			dig_port = enc_to_dig_port(&encoder->base);
3150 			switch (dig_port->port) {
3151 			case PORT_B:
3152 				*source = INTEL_PIPE_CRC_SOURCE_DP_B;
3153 				break;
3154 			case PORT_C:
3155 				*source = INTEL_PIPE_CRC_SOURCE_DP_C;
3156 				break;
3157 			case PORT_D:
3158 				*source = INTEL_PIPE_CRC_SOURCE_DP_D;
3159 				break;
3160 			default:
3161 				WARN(1, "nonexisting DP port %c\n",
3162 				     port_name(dig_port->port));
3163 				break;
3164 			}
3165 			break;
3166 		default:
3167 			break;
3168 		}
3169 	}
3170 	drm_modeset_unlock_all(dev);
3171 
3172 	return ret;
3173 }
3174 
3175 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3176 				enum pipe pipe,
3177 				enum intel_pipe_crc_source *source,
3178 				uint32_t *val)
3179 {
3180 	struct drm_i915_private *dev_priv = dev->dev_private;
3181 	bool need_stable_symbols = false;
3182 
3183 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3184 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3185 		if (ret)
3186 			return ret;
3187 	}
3188 
3189 	switch (*source) {
3190 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3191 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3192 		break;
3193 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3194 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3195 		need_stable_symbols = true;
3196 		break;
3197 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3198 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3199 		need_stable_symbols = true;
3200 		break;
3201 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3202 		if (!IS_CHERRYVIEW(dev))
3203 			return -EINVAL;
3204 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3205 		need_stable_symbols = true;
3206 		break;
3207 	case INTEL_PIPE_CRC_SOURCE_NONE:
3208 		*val = 0;
3209 		break;
3210 	default:
3211 		return -EINVAL;
3212 	}
3213 
3214 	/*
3215 	 * When the pipe CRC tap point is after the transcoders we need
3216 	 * to tweak symbol-level features to produce a deterministic series of
3217 	 * symbols for a given frame. We need to reset those features only once
3218 	 * a frame (instead of every nth symbol):
3219 	 *   - DC-balance: used to ensure a better clock recovery from the data
3220 	 *     link (SDVO)
3221 	 *   - DisplayPort scrambling: used for EMI reduction
3222 	 */
3223 	if (need_stable_symbols) {
3224 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3225 
3226 		tmp |= DC_BALANCE_RESET_VLV;
3227 		switch (pipe) {
3228 		case PIPE_A:
3229 			tmp |= PIPE_A_SCRAMBLE_RESET;
3230 			break;
3231 		case PIPE_B:
3232 			tmp |= PIPE_B_SCRAMBLE_RESET;
3233 			break;
3234 		case PIPE_C:
3235 			tmp |= PIPE_C_SCRAMBLE_RESET;
3236 			break;
3237 		default:
3238 			return -EINVAL;
3239 		}
3240 		I915_WRITE(PORT_DFT2_G4X, tmp);
3241 	}
3242 
3243 	return 0;
3244 }
3245 
3246 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3247 				 enum pipe pipe,
3248 				 enum intel_pipe_crc_source *source,
3249 				 uint32_t *val)
3250 {
3251 	struct drm_i915_private *dev_priv = dev->dev_private;
3252 	bool need_stable_symbols = false;
3253 
3254 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3255 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3256 		if (ret)
3257 			return ret;
3258 	}
3259 
3260 	switch (*source) {
3261 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3262 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3263 		break;
3264 	case INTEL_PIPE_CRC_SOURCE_TV:
3265 		if (!SUPPORTS_TV(dev))
3266 			return -EINVAL;
3267 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3268 		break;
3269 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3270 		if (!IS_G4X(dev))
3271 			return -EINVAL;
3272 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3273 		need_stable_symbols = true;
3274 		break;
3275 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3276 		if (!IS_G4X(dev))
3277 			return -EINVAL;
3278 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3279 		need_stable_symbols = true;
3280 		break;
3281 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3282 		if (!IS_G4X(dev))
3283 			return -EINVAL;
3284 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3285 		need_stable_symbols = true;
3286 		break;
3287 	case INTEL_PIPE_CRC_SOURCE_NONE:
3288 		*val = 0;
3289 		break;
3290 	default:
3291 		return -EINVAL;
3292 	}
3293 
3294 	/*
3295 	 * When the pipe CRC tap point is after the transcoders we need
3296 	 * to tweak symbol-level features to produce a deterministic series of
3297 	 * symbols for a given frame. We need to reset those features only once
3298 	 * a frame (instead of every nth symbol):
3299 	 *   - DC-balance: used to ensure a better clock recovery from the data
3300 	 *     link (SDVO)
3301 	 *   - DisplayPort scrambling: used for EMI reduction
3302 	 */
3303 	if (need_stable_symbols) {
3304 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3305 
3306 		WARN_ON(!IS_G4X(dev));
3307 
3308 		I915_WRITE(PORT_DFT_I9XX,
3309 			   I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3310 
3311 		if (pipe == PIPE_A)
3312 			tmp |= PIPE_A_SCRAMBLE_RESET;
3313 		else
3314 			tmp |= PIPE_B_SCRAMBLE_RESET;
3315 
3316 		I915_WRITE(PORT_DFT2_G4X, tmp);
3317 	}
3318 
3319 	return 0;
3320 }
3321 
3322 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3323 					 enum pipe pipe)
3324 {
3325 	struct drm_i915_private *dev_priv = dev->dev_private;
3326 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3327 
3328 	switch (pipe) {
3329 	case PIPE_A:
3330 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3331 		break;
3332 	case PIPE_B:
3333 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3334 		break;
3335 	case PIPE_C:
3336 		tmp &= ~PIPE_C_SCRAMBLE_RESET;
3337 		break;
3338 	default:
3339 		return;
3340 	}
3341 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3342 		tmp &= ~DC_BALANCE_RESET_VLV;
3343 	I915_WRITE(PORT_DFT2_G4X, tmp);
3344 
3345 }
3346 
3347 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3348 					 enum pipe pipe)
3349 {
3350 	struct drm_i915_private *dev_priv = dev->dev_private;
3351 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3352 
3353 	if (pipe == PIPE_A)
3354 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3355 	else
3356 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3357 	I915_WRITE(PORT_DFT2_G4X, tmp);
3358 
3359 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3360 		I915_WRITE(PORT_DFT_I9XX,
3361 			   I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3362 	}
3363 }
3364 
3365 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3366 				uint32_t *val)
3367 {
3368 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3369 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3370 
3371 	switch (*source) {
3372 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3373 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3374 		break;
3375 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3376 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3377 		break;
3378 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3379 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3380 		break;
3381 	case INTEL_PIPE_CRC_SOURCE_NONE:
3382 		*val = 0;
3383 		break;
3384 	default:
3385 		return -EINVAL;
3386 	}
3387 
3388 	return 0;
3389 }
3390 
3391 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3392 {
3393 	struct drm_i915_private *dev_priv = dev->dev_private;
3394 	struct intel_crtc *crtc =
3395 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3396 
3397 	drm_modeset_lock_all(dev);
3398 	/*
3399 	 * If we use the eDP transcoder we need to make sure that we don't
3400 	 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3401 	 * relevant on hsw with pipe A when using the always-on power well
3402 	 * routing.
3403 	 */
3404 	if (crtc->config->cpu_transcoder == TRANSCODER_EDP &&
3405 	    !crtc->config->pch_pfit.enabled) {
3406 		crtc->config->pch_pfit.force_thru = true;
3407 
3408 		intel_display_power_get(dev_priv,
3409 					POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3410 
3411 		dev_priv->display.crtc_disable(&crtc->base);
3412 		dev_priv->display.crtc_enable(&crtc->base);
3413 	}
3414 	drm_modeset_unlock_all(dev);
3415 }
3416 
3417 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3418 {
3419 	struct drm_i915_private *dev_priv = dev->dev_private;
3420 	struct intel_crtc *crtc =
3421 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3422 
3423 	drm_modeset_lock_all(dev);
3424 	/*
3425 	 * If we use the eDP transcoder we need to make sure that we don't
3426 	 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3427 	 * relevant on hsw with pipe A when using the always-on power well
3428 	 * routing.
3429 	 */
3430 	if (crtc->config->pch_pfit.force_thru) {
3431 		crtc->config->pch_pfit.force_thru = false;
3432 
3433 		dev_priv->display.crtc_disable(&crtc->base);
3434 		dev_priv->display.crtc_enable(&crtc->base);
3435 
3436 		intel_display_power_put(dev_priv,
3437 					POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3438 	}
3439 	drm_modeset_unlock_all(dev);
3440 }
3441 
3442 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3443 				enum pipe pipe,
3444 				enum intel_pipe_crc_source *source,
3445 				uint32_t *val)
3446 {
3447 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3448 		*source = INTEL_PIPE_CRC_SOURCE_PF;
3449 
3450 	switch (*source) {
3451 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3452 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3453 		break;
3454 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3455 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3456 		break;
3457 	case INTEL_PIPE_CRC_SOURCE_PF:
3458 		if (IS_HASWELL(dev) && pipe == PIPE_A)
3459 			hsw_trans_edp_pipe_A_crc_wa(dev);
3460 
3461 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3462 		break;
3463 	case INTEL_PIPE_CRC_SOURCE_NONE:
3464 		*val = 0;
3465 		break;
3466 	default:
3467 		return -EINVAL;
3468 	}
3469 
3470 	return 0;
3471 }
3472 
3473 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3474 			       enum intel_pipe_crc_source source)
3475 {
3476 	struct drm_i915_private *dev_priv = dev->dev_private;
3477 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3478 	struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3479 									pipe));
3480 	u32 val = 0; /* shut up gcc */
3481 	int ret;
3482 
3483 	if (pipe_crc->source == source)
3484 		return 0;
3485 
3486 	/* forbid changing the source without going back to 'none' */
3487 	if (pipe_crc->source && source)
3488 		return -EINVAL;
3489 
3490 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3491 		DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3492 		return -EIO;
3493 	}
3494 
3495 	if (IS_GEN2(dev))
3496 		ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3497 	else if (INTEL_INFO(dev)->gen < 5)
3498 		ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3499 	else if (IS_VALLEYVIEW(dev))
3500 		ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3501 	else if (IS_GEN5(dev) || IS_GEN6(dev))
3502 		ret = ilk_pipe_crc_ctl_reg(&source, &val);
3503 	else
3504 		ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3505 
3506 	if (ret != 0)
3507 		return ret;
3508 
3509 	/* none -> real source transition */
3510 	if (source) {
3511 		struct intel_pipe_crc_entry *entries;
3512 
3513 		DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3514 				 pipe_name(pipe), pipe_crc_source_name(source));
3515 
3516 		entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3517 				  sizeof(pipe_crc->entries[0]),
3518 				  GFP_KERNEL);
3519 		if (!entries)
3520 			return -ENOMEM;
3521 
3522 		/*
3523 		 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3524 		 * enabled and disabled dynamically based on package C states,
3525 		 * user space can't make reliable use of the CRCs, so let's just
3526 		 * completely disable it.
3527 		 */
3528 		hsw_disable_ips(crtc);
3529 
3530 		spin_lock_irq(&pipe_crc->lock);
3531 		kfree(pipe_crc->entries);
3532 		pipe_crc->entries = entries;
3533 		pipe_crc->head = 0;
3534 		pipe_crc->tail = 0;
3535 		spin_unlock_irq(&pipe_crc->lock);
3536 	}
3537 
3538 	pipe_crc->source = source;
3539 
3540 	I915_WRITE(PIPE_CRC_CTL(pipe), val);
3541 	POSTING_READ(PIPE_CRC_CTL(pipe));
3542 
3543 	/* real source -> none transition */
3544 	if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3545 		struct intel_pipe_crc_entry *entries;
3546 		struct intel_crtc *crtc =
3547 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3548 
3549 		DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3550 				 pipe_name(pipe));
3551 
3552 		drm_modeset_lock(&crtc->base.mutex, NULL);
3553 		if (crtc->active)
3554 			intel_wait_for_vblank(dev, pipe);
3555 		drm_modeset_unlock(&crtc->base.mutex);
3556 
3557 		spin_lock_irq(&pipe_crc->lock);
3558 		entries = pipe_crc->entries;
3559 		pipe_crc->entries = NULL;
3560 		pipe_crc->head = 0;
3561 		pipe_crc->tail = 0;
3562 		spin_unlock_irq(&pipe_crc->lock);
3563 
3564 		kfree(entries);
3565 
3566 		if (IS_G4X(dev))
3567 			g4x_undo_pipe_scramble_reset(dev, pipe);
3568 		else if (IS_VALLEYVIEW(dev))
3569 			vlv_undo_pipe_scramble_reset(dev, pipe);
3570 		else if (IS_HASWELL(dev) && pipe == PIPE_A)
3571 			hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3572 
3573 		hsw_enable_ips(crtc);
3574 	}
3575 
3576 	return 0;
3577 }
3578 
3579 /*
3580  * Parse pipe CRC command strings:
3581  *   command: wsp* object wsp+ name wsp+ source wsp*
3582  *   object: 'pipe'
3583  *   name: (A | B | C)
3584  *   source: (none | plane1 | plane2 | pf)
3585  *   wsp: (#0x20 | #0x9 | #0xA)+
3586  *
3587  * eg.:
3588  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3589  *  "pipe A none"    ->  Stop CRC
3590  */
3591 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3592 {
3593 	int n_words = 0;
3594 
3595 	while (*buf) {
3596 		char *end;
3597 
3598 		/* skip leading white space */
3599 		buf = skip_spaces(buf);
3600 		if (!*buf)
3601 			break;	/* end of buffer */
3602 
3603 		/* find end of word */
3604 		for (end = buf; *end && !isspace(*end); end++)
3605 			;
3606 
3607 		if (n_words == max_words) {
3608 			DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3609 					 max_words);
3610 			return -EINVAL;	/* ran out of words[] before bytes */
3611 		}
3612 
3613 		if (*end)
3614 			*end++ = '\0';
3615 		words[n_words++] = buf;
3616 		buf = end;
3617 	}
3618 
3619 	return n_words;
3620 }
3621 
3622 enum intel_pipe_crc_object {
3623 	PIPE_CRC_OBJECT_PIPE,
3624 };
3625 
3626 static const char * const pipe_crc_objects[] = {
3627 	"pipe",
3628 };
3629 
3630 static int
3631 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3632 {
3633 	int i;
3634 
3635 	for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3636 		if (!strcmp(buf, pipe_crc_objects[i])) {
3637 			*o = i;
3638 			return 0;
3639 		    }
3640 
3641 	return -EINVAL;
3642 }
3643 
3644 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3645 {
3646 	const char name = buf[0];
3647 
3648 	if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3649 		return -EINVAL;
3650 
3651 	*pipe = name - 'A';
3652 
3653 	return 0;
3654 }
3655 
3656 static int
3657 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3658 {
3659 	int i;
3660 
3661 	for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3662 		if (!strcmp(buf, pipe_crc_sources[i])) {
3663 			*s = i;
3664 			return 0;
3665 		    }
3666 
3667 	return -EINVAL;
3668 }
3669 
3670 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3671 {
3672 #define N_WORDS 3
3673 	int n_words;
3674 	char *words[N_WORDS];
3675 	enum pipe pipe;
3676 	enum intel_pipe_crc_object object;
3677 	enum intel_pipe_crc_source source;
3678 
3679 	n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3680 	if (n_words != N_WORDS) {
3681 		DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3682 				 N_WORDS);
3683 		return -EINVAL;
3684 	}
3685 
3686 	if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3687 		DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3688 		return -EINVAL;
3689 	}
3690 
3691 	if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3692 		DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3693 		return -EINVAL;
3694 	}
3695 
3696 	if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3697 		DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3698 		return -EINVAL;
3699 	}
3700 
3701 	return pipe_crc_set_source(dev, pipe, source);
3702 }
3703 
3704 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3705 				     size_t len, loff_t *offp)
3706 {
3707 	struct seq_file *m = file->private_data;
3708 	struct drm_device *dev = m->private;
3709 	char *tmpbuf;
3710 	int ret;
3711 
3712 	if (len == 0)
3713 		return 0;
3714 
3715 	if (len > PAGE_SIZE - 1) {
3716 		DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3717 				 PAGE_SIZE);
3718 		return -E2BIG;
3719 	}
3720 
3721 	tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3722 	if (!tmpbuf)
3723 		return -ENOMEM;
3724 
3725 	if (copy_from_user(tmpbuf, ubuf, len)) {
3726 		ret = -EFAULT;
3727 		goto out;
3728 	}
3729 	tmpbuf[len] = '\0';
3730 
3731 	ret = display_crc_ctl_parse(dev, tmpbuf, len);
3732 
3733 out:
3734 	kfree(tmpbuf);
3735 	if (ret < 0)
3736 		return ret;
3737 
3738 	*offp += len;
3739 	return len;
3740 }
3741 
3742 static const struct file_operations i915_display_crc_ctl_fops = {
3743 	.owner = THIS_MODULE,
3744 	.open = display_crc_ctl_open,
3745 	.read = seq_read,
3746 	.llseek = seq_lseek,
3747 	.release = single_release,
3748 	.write = display_crc_ctl_write
3749 };
3750 
3751 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3752 {
3753 	struct drm_device *dev = m->private;
3754 	int num_levels = ilk_wm_max_level(dev) + 1;
3755 	int level;
3756 
3757 	drm_modeset_lock_all(dev);
3758 
3759 	for (level = 0; level < num_levels; level++) {
3760 		unsigned int latency = wm[level];
3761 
3762 		/*
3763 		 * - WM1+ latency values in 0.5us units
3764 		 * - latencies are in us on gen9
3765 		 */
3766 		if (INTEL_INFO(dev)->gen >= 9)
3767 			latency *= 10;
3768 		else if (level > 0)
3769 			latency *= 5;
3770 
3771 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
3772 			   level, wm[level], latency / 10, latency % 10);
3773 	}
3774 
3775 	drm_modeset_unlock_all(dev);
3776 }
3777 
3778 static int pri_wm_latency_show(struct seq_file *m, void *data)
3779 {
3780 	struct drm_device *dev = m->private;
3781 	struct drm_i915_private *dev_priv = dev->dev_private;
3782 	const uint16_t *latencies;
3783 
3784 	if (INTEL_INFO(dev)->gen >= 9)
3785 		latencies = dev_priv->wm.skl_latency;
3786 	else
3787 		latencies = to_i915(dev)->wm.pri_latency;
3788 
3789 	wm_latency_show(m, latencies);
3790 
3791 	return 0;
3792 }
3793 
3794 static int spr_wm_latency_show(struct seq_file *m, void *data)
3795 {
3796 	struct drm_device *dev = m->private;
3797 	struct drm_i915_private *dev_priv = dev->dev_private;
3798 	const uint16_t *latencies;
3799 
3800 	if (INTEL_INFO(dev)->gen >= 9)
3801 		latencies = dev_priv->wm.skl_latency;
3802 	else
3803 		latencies = to_i915(dev)->wm.spr_latency;
3804 
3805 	wm_latency_show(m, latencies);
3806 
3807 	return 0;
3808 }
3809 
3810 static int cur_wm_latency_show(struct seq_file *m, void *data)
3811 {
3812 	struct drm_device *dev = m->private;
3813 	struct drm_i915_private *dev_priv = dev->dev_private;
3814 	const uint16_t *latencies;
3815 
3816 	if (INTEL_INFO(dev)->gen >= 9)
3817 		latencies = dev_priv->wm.skl_latency;
3818 	else
3819 		latencies = to_i915(dev)->wm.cur_latency;
3820 
3821 	wm_latency_show(m, latencies);
3822 
3823 	return 0;
3824 }
3825 
3826 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3827 {
3828 	struct drm_device *dev = inode->i_private;
3829 
3830 	if (HAS_GMCH_DISPLAY(dev))
3831 		return -ENODEV;
3832 
3833 	return single_open(file, pri_wm_latency_show, dev);
3834 }
3835 
3836 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3837 {
3838 	struct drm_device *dev = inode->i_private;
3839 
3840 	if (HAS_GMCH_DISPLAY(dev))
3841 		return -ENODEV;
3842 
3843 	return single_open(file, spr_wm_latency_show, dev);
3844 }
3845 
3846 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3847 {
3848 	struct drm_device *dev = inode->i_private;
3849 
3850 	if (HAS_GMCH_DISPLAY(dev))
3851 		return -ENODEV;
3852 
3853 	return single_open(file, cur_wm_latency_show, dev);
3854 }
3855 
3856 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3857 				size_t len, loff_t *offp, uint16_t wm[8])
3858 {
3859 	struct seq_file *m = file->private_data;
3860 	struct drm_device *dev = m->private;
3861 	uint16_t new[8] = { 0 };
3862 	int num_levels = ilk_wm_max_level(dev) + 1;
3863 	int level;
3864 	int ret;
3865 	char tmp[32];
3866 
3867 	if (len >= sizeof(tmp))
3868 		return -EINVAL;
3869 
3870 	if (copy_from_user(tmp, ubuf, len))
3871 		return -EFAULT;
3872 
3873 	tmp[len] = '\0';
3874 
3875 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
3876 		     &new[0], &new[1], &new[2], &new[3],
3877 		     &new[4], &new[5], &new[6], &new[7]);
3878 	if (ret != num_levels)
3879 		return -EINVAL;
3880 
3881 	drm_modeset_lock_all(dev);
3882 
3883 	for (level = 0; level < num_levels; level++)
3884 		wm[level] = new[level];
3885 
3886 	drm_modeset_unlock_all(dev);
3887 
3888 	return len;
3889 }
3890 
3891 
3892 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3893 				    size_t len, loff_t *offp)
3894 {
3895 	struct seq_file *m = file->private_data;
3896 	struct drm_device *dev = m->private;
3897 	struct drm_i915_private *dev_priv = dev->dev_private;
3898 	uint16_t *latencies;
3899 
3900 	if (INTEL_INFO(dev)->gen >= 9)
3901 		latencies = dev_priv->wm.skl_latency;
3902 	else
3903 		latencies = to_i915(dev)->wm.pri_latency;
3904 
3905 	return wm_latency_write(file, ubuf, len, offp, latencies);
3906 }
3907 
3908 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3909 				    size_t len, loff_t *offp)
3910 {
3911 	struct seq_file *m = file->private_data;
3912 	struct drm_device *dev = m->private;
3913 	struct drm_i915_private *dev_priv = dev->dev_private;
3914 	uint16_t *latencies;
3915 
3916 	if (INTEL_INFO(dev)->gen >= 9)
3917 		latencies = dev_priv->wm.skl_latency;
3918 	else
3919 		latencies = to_i915(dev)->wm.spr_latency;
3920 
3921 	return wm_latency_write(file, ubuf, len, offp, latencies);
3922 }
3923 
3924 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3925 				    size_t len, loff_t *offp)
3926 {
3927 	struct seq_file *m = file->private_data;
3928 	struct drm_device *dev = m->private;
3929 	struct drm_i915_private *dev_priv = dev->dev_private;
3930 	uint16_t *latencies;
3931 
3932 	if (INTEL_INFO(dev)->gen >= 9)
3933 		latencies = dev_priv->wm.skl_latency;
3934 	else
3935 		latencies = to_i915(dev)->wm.cur_latency;
3936 
3937 	return wm_latency_write(file, ubuf, len, offp, latencies);
3938 }
3939 
3940 static const struct file_operations i915_pri_wm_latency_fops = {
3941 	.owner = THIS_MODULE,
3942 	.open = pri_wm_latency_open,
3943 	.read = seq_read,
3944 	.llseek = seq_lseek,
3945 	.release = single_release,
3946 	.write = pri_wm_latency_write
3947 };
3948 
3949 static const struct file_operations i915_spr_wm_latency_fops = {
3950 	.owner = THIS_MODULE,
3951 	.open = spr_wm_latency_open,
3952 	.read = seq_read,
3953 	.llseek = seq_lseek,
3954 	.release = single_release,
3955 	.write = spr_wm_latency_write
3956 };
3957 
3958 static const struct file_operations i915_cur_wm_latency_fops = {
3959 	.owner = THIS_MODULE,
3960 	.open = cur_wm_latency_open,
3961 	.read = seq_read,
3962 	.llseek = seq_lseek,
3963 	.release = single_release,
3964 	.write = cur_wm_latency_write
3965 };
3966 
3967 static int
3968 i915_wedged_get(void *data, u64 *val)
3969 {
3970 	struct drm_device *dev = data;
3971 	struct drm_i915_private *dev_priv = dev->dev_private;
3972 
3973 	*val = atomic_read(&dev_priv->gpu_error.reset_counter);
3974 
3975 	return 0;
3976 }
3977 
3978 static int
3979 i915_wedged_set(void *data, u64 val)
3980 {
3981 	struct drm_device *dev = data;
3982 	struct drm_i915_private *dev_priv = dev->dev_private;
3983 
3984 	/*
3985 	 * There is no safeguard against this debugfs entry colliding
3986 	 * with the hangcheck calling same i915_handle_error() in
3987 	 * parallel, causing an explosion. For now we assume that the
3988 	 * test harness is responsible enough not to inject gpu hangs
3989 	 * while it is writing to 'i915_wedged'
3990 	 */
3991 
3992 	if (i915_reset_in_progress(&dev_priv->gpu_error))
3993 		return -EAGAIN;
3994 
3995 	intel_runtime_pm_get(dev_priv);
3996 
3997 	i915_handle_error(dev, val,
3998 			  "Manually setting wedged to %llu", val);
3999 
4000 	intel_runtime_pm_put(dev_priv);
4001 
4002 	return 0;
4003 }
4004 
4005 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4006 			i915_wedged_get, i915_wedged_set,
4007 			"%llu\n");
4008 
4009 static int
4010 i915_ring_stop_get(void *data, u64 *val)
4011 {
4012 	struct drm_device *dev = data;
4013 	struct drm_i915_private *dev_priv = dev->dev_private;
4014 
4015 	*val = dev_priv->gpu_error.stop_rings;
4016 
4017 	return 0;
4018 }
4019 
4020 static int
4021 i915_ring_stop_set(void *data, u64 val)
4022 {
4023 	struct drm_device *dev = data;
4024 	struct drm_i915_private *dev_priv = dev->dev_private;
4025 	int ret;
4026 
4027 	DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4028 
4029 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4030 	if (ret)
4031 		return ret;
4032 
4033 	dev_priv->gpu_error.stop_rings = val;
4034 	mutex_unlock(&dev->struct_mutex);
4035 
4036 	return 0;
4037 }
4038 
4039 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4040 			i915_ring_stop_get, i915_ring_stop_set,
4041 			"0x%08llx\n");
4042 
4043 static int
4044 i915_ring_missed_irq_get(void *data, u64 *val)
4045 {
4046 	struct drm_device *dev = data;
4047 	struct drm_i915_private *dev_priv = dev->dev_private;
4048 
4049 	*val = dev_priv->gpu_error.missed_irq_rings;
4050 	return 0;
4051 }
4052 
4053 static int
4054 i915_ring_missed_irq_set(void *data, u64 val)
4055 {
4056 	struct drm_device *dev = data;
4057 	struct drm_i915_private *dev_priv = dev->dev_private;
4058 	int ret;
4059 
4060 	/* Lock against concurrent debugfs callers */
4061 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4062 	if (ret)
4063 		return ret;
4064 	dev_priv->gpu_error.missed_irq_rings = val;
4065 	mutex_unlock(&dev->struct_mutex);
4066 
4067 	return 0;
4068 }
4069 
4070 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4071 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4072 			"0x%08llx\n");
4073 
4074 static int
4075 i915_ring_test_irq_get(void *data, u64 *val)
4076 {
4077 	struct drm_device *dev = data;
4078 	struct drm_i915_private *dev_priv = dev->dev_private;
4079 
4080 	*val = dev_priv->gpu_error.test_irq_rings;
4081 
4082 	return 0;
4083 }
4084 
4085 static int
4086 i915_ring_test_irq_set(void *data, u64 val)
4087 {
4088 	struct drm_device *dev = data;
4089 	struct drm_i915_private *dev_priv = dev->dev_private;
4090 	int ret;
4091 
4092 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4093 
4094 	/* Lock against concurrent debugfs callers */
4095 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4096 	if (ret)
4097 		return ret;
4098 
4099 	dev_priv->gpu_error.test_irq_rings = val;
4100 	mutex_unlock(&dev->struct_mutex);
4101 
4102 	return 0;
4103 }
4104 
4105 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4106 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4107 			"0x%08llx\n");
4108 
4109 #define DROP_UNBOUND 0x1
4110 #define DROP_BOUND 0x2
4111 #define DROP_RETIRE 0x4
4112 #define DROP_ACTIVE 0x8
4113 #define DROP_ALL (DROP_UNBOUND | \
4114 		  DROP_BOUND | \
4115 		  DROP_RETIRE | \
4116 		  DROP_ACTIVE)
4117 static int
4118 i915_drop_caches_get(void *data, u64 *val)
4119 {
4120 	*val = DROP_ALL;
4121 
4122 	return 0;
4123 }
4124 
4125 static int
4126 i915_drop_caches_set(void *data, u64 val)
4127 {
4128 	struct drm_device *dev = data;
4129 	struct drm_i915_private *dev_priv = dev->dev_private;
4130 	int ret;
4131 
4132 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4133 
4134 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4135 	 * on ioctls on -EAGAIN. */
4136 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4137 	if (ret)
4138 		return ret;
4139 
4140 	if (val & DROP_ACTIVE) {
4141 		ret = i915_gpu_idle(dev);
4142 		if (ret)
4143 			goto unlock;
4144 	}
4145 
4146 	if (val & (DROP_RETIRE | DROP_ACTIVE))
4147 		i915_gem_retire_requests(dev);
4148 
4149 	if (val & DROP_BOUND)
4150 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4151 
4152 	if (val & DROP_UNBOUND)
4153 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4154 
4155 unlock:
4156 	mutex_unlock(&dev->struct_mutex);
4157 
4158 	return ret;
4159 }
4160 
4161 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4162 			i915_drop_caches_get, i915_drop_caches_set,
4163 			"0x%08llx\n");
4164 
4165 static int
4166 i915_max_freq_get(void *data, u64 *val)
4167 {
4168 	struct drm_device *dev = data;
4169 	struct drm_i915_private *dev_priv = dev->dev_private;
4170 	int ret;
4171 
4172 	if (INTEL_INFO(dev)->gen < 6)
4173 		return -ENODEV;
4174 
4175 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4176 
4177 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4178 	if (ret)
4179 		return ret;
4180 
4181 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4182 	mutex_unlock(&dev_priv->rps.hw_lock);
4183 
4184 	return 0;
4185 }
4186 
4187 static int
4188 i915_max_freq_set(void *data, u64 val)
4189 {
4190 	struct drm_device *dev = data;
4191 	struct drm_i915_private *dev_priv = dev->dev_private;
4192 	u32 rp_state_cap, hw_max, hw_min;
4193 	int ret;
4194 
4195 	if (INTEL_INFO(dev)->gen < 6)
4196 		return -ENODEV;
4197 
4198 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4199 
4200 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4201 
4202 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4203 	if (ret)
4204 		return ret;
4205 
4206 	/*
4207 	 * Turbo will still be enabled, but won't go above the set value.
4208 	 */
4209 	if (IS_VALLEYVIEW(dev)) {
4210 		val = intel_freq_opcode(dev_priv, val);
4211 
4212 		hw_max = dev_priv->rps.max_freq;
4213 		hw_min = dev_priv->rps.min_freq;
4214 	} else {
4215 		val = intel_freq_opcode(dev_priv, val);
4216 
4217 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4218 		hw_max = dev_priv->rps.max_freq;
4219 		hw_min = (rp_state_cap >> 16) & 0xff;
4220 	}
4221 
4222 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4223 		mutex_unlock(&dev_priv->rps.hw_lock);
4224 		return -EINVAL;
4225 	}
4226 
4227 	dev_priv->rps.max_freq_softlimit = val;
4228 
4229 	if (IS_VALLEYVIEW(dev))
4230 		valleyview_set_rps(dev, val);
4231 	else
4232 		gen6_set_rps(dev, val);
4233 
4234 	mutex_unlock(&dev_priv->rps.hw_lock);
4235 
4236 	return 0;
4237 }
4238 
4239 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4240 			i915_max_freq_get, i915_max_freq_set,
4241 			"%llu\n");
4242 
4243 static int
4244 i915_min_freq_get(void *data, u64 *val)
4245 {
4246 	struct drm_device *dev = data;
4247 	struct drm_i915_private *dev_priv = dev->dev_private;
4248 	int ret;
4249 
4250 	if (INTEL_INFO(dev)->gen < 6)
4251 		return -ENODEV;
4252 
4253 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4254 
4255 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4256 	if (ret)
4257 		return ret;
4258 
4259 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4260 	mutex_unlock(&dev_priv->rps.hw_lock);
4261 
4262 	return 0;
4263 }
4264 
4265 static int
4266 i915_min_freq_set(void *data, u64 val)
4267 {
4268 	struct drm_device *dev = data;
4269 	struct drm_i915_private *dev_priv = dev->dev_private;
4270 	u32 rp_state_cap, hw_max, hw_min;
4271 	int ret;
4272 
4273 	if (INTEL_INFO(dev)->gen < 6)
4274 		return -ENODEV;
4275 
4276 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4277 
4278 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4279 
4280 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4281 	if (ret)
4282 		return ret;
4283 
4284 	/*
4285 	 * Turbo will still be enabled, but won't go below the set value.
4286 	 */
4287 	if (IS_VALLEYVIEW(dev)) {
4288 		val = intel_freq_opcode(dev_priv, val);
4289 
4290 		hw_max = dev_priv->rps.max_freq;
4291 		hw_min = dev_priv->rps.min_freq;
4292 	} else {
4293 		val = intel_freq_opcode(dev_priv, val);
4294 
4295 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4296 		hw_max = dev_priv->rps.max_freq;
4297 		hw_min = (rp_state_cap >> 16) & 0xff;
4298 	}
4299 
4300 	if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4301 		mutex_unlock(&dev_priv->rps.hw_lock);
4302 		return -EINVAL;
4303 	}
4304 
4305 	dev_priv->rps.min_freq_softlimit = val;
4306 
4307 	if (IS_VALLEYVIEW(dev))
4308 		valleyview_set_rps(dev, val);
4309 	else
4310 		gen6_set_rps(dev, val);
4311 
4312 	mutex_unlock(&dev_priv->rps.hw_lock);
4313 
4314 	return 0;
4315 }
4316 
4317 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4318 			i915_min_freq_get, i915_min_freq_set,
4319 			"%llu\n");
4320 
4321 static int
4322 i915_cache_sharing_get(void *data, u64 *val)
4323 {
4324 	struct drm_device *dev = data;
4325 	struct drm_i915_private *dev_priv = dev->dev_private;
4326 	u32 snpcr;
4327 	int ret;
4328 
4329 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4330 		return -ENODEV;
4331 
4332 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4333 	if (ret)
4334 		return ret;
4335 	intel_runtime_pm_get(dev_priv);
4336 
4337 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4338 
4339 	intel_runtime_pm_put(dev_priv);
4340 	mutex_unlock(&dev_priv->dev->struct_mutex);
4341 
4342 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4343 
4344 	return 0;
4345 }
4346 
4347 static int
4348 i915_cache_sharing_set(void *data, u64 val)
4349 {
4350 	struct drm_device *dev = data;
4351 	struct drm_i915_private *dev_priv = dev->dev_private;
4352 	u32 snpcr;
4353 
4354 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4355 		return -ENODEV;
4356 
4357 	if (val > 3)
4358 		return -EINVAL;
4359 
4360 	intel_runtime_pm_get(dev_priv);
4361 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4362 
4363 	/* Update the cache sharing policy here as well */
4364 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4365 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
4366 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4367 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4368 
4369 	intel_runtime_pm_put(dev_priv);
4370 	return 0;
4371 }
4372 
4373 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4374 			i915_cache_sharing_get, i915_cache_sharing_set,
4375 			"%llu\n");
4376 
4377 static int i915_forcewake_open(struct inode *inode, struct file *file)
4378 {
4379 	struct drm_device *dev = inode->i_private;
4380 	struct drm_i915_private *dev_priv = dev->dev_private;
4381 
4382 	if (INTEL_INFO(dev)->gen < 6)
4383 		return 0;
4384 
4385 	intel_runtime_pm_get(dev_priv);
4386 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4387 
4388 	return 0;
4389 }
4390 
4391 static int i915_forcewake_release(struct inode *inode, struct file *file)
4392 {
4393 	struct drm_device *dev = inode->i_private;
4394 	struct drm_i915_private *dev_priv = dev->dev_private;
4395 
4396 	if (INTEL_INFO(dev)->gen < 6)
4397 		return 0;
4398 
4399 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4400 	intel_runtime_pm_put(dev_priv);
4401 
4402 	return 0;
4403 }
4404 
4405 static const struct file_operations i915_forcewake_fops = {
4406 	.owner = THIS_MODULE,
4407 	.open = i915_forcewake_open,
4408 	.release = i915_forcewake_release,
4409 };
4410 
4411 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4412 {
4413 	struct drm_device *dev = minor->dev;
4414 	struct dentry *ent;
4415 
4416 	ent = debugfs_create_file("i915_forcewake_user",
4417 				  S_IRUSR,
4418 				  root, dev,
4419 				  &i915_forcewake_fops);
4420 	if (!ent)
4421 		return -ENOMEM;
4422 
4423 	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4424 }
4425 
4426 static int i915_debugfs_create(struct dentry *root,
4427 			       struct drm_minor *minor,
4428 			       const char *name,
4429 			       const struct file_operations *fops)
4430 {
4431 	struct drm_device *dev = minor->dev;
4432 	struct dentry *ent;
4433 
4434 	ent = debugfs_create_file(name,
4435 				  S_IRUGO | S_IWUSR,
4436 				  root, dev,
4437 				  fops);
4438 	if (!ent)
4439 		return -ENOMEM;
4440 
4441 	return drm_add_fake_info_node(minor, ent, fops);
4442 }
4443 
4444 static const struct drm_info_list i915_debugfs_list[] = {
4445 	{"i915_capabilities", i915_capabilities, 0},
4446 	{"i915_gem_objects", i915_gem_object_info, 0},
4447 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
4448 	{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
4449 	{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
4450 	{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
4451 	{"i915_gem_stolen", i915_gem_stolen_list_info },
4452 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4453 	{"i915_gem_request", i915_gem_request_info, 0},
4454 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
4455 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4456 	{"i915_gem_interrupt", i915_interrupt_info, 0},
4457 	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
4458 	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
4459 	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
4460 	{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
4461 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4462 	{"i915_frequency_info", i915_frequency_info, 0},
4463 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
4464 	{"i915_drpc_info", i915_drpc_info, 0},
4465 	{"i915_emon_status", i915_emon_status, 0},
4466 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
4467 	{"i915_fbc_status", i915_fbc_status, 0},
4468 	{"i915_ips_status", i915_ips_status, 0},
4469 	{"i915_sr_status", i915_sr_status, 0},
4470 	{"i915_opregion", i915_opregion, 0},
4471 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4472 	{"i915_context_status", i915_context_status, 0},
4473 	{"i915_dump_lrc", i915_dump_lrc, 0},
4474 	{"i915_execlists", i915_execlists, 0},
4475 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
4476 	{"i915_swizzle_info", i915_swizzle_info, 0},
4477 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
4478 	{"i915_llc", i915_llc, 0},
4479 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
4480 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
4481 	{"i915_energy_uJ", i915_energy_uJ, 0},
4482 	{"i915_pc8_status", i915_pc8_status, 0},
4483 	{"i915_power_domain_info", i915_power_domain_info, 0},
4484 	{"i915_display_info", i915_display_info, 0},
4485 	{"i915_semaphore_status", i915_semaphore_status, 0},
4486 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4487 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
4488 	{"i915_wa_registers", i915_wa_registers, 0},
4489 	{"i915_ddb_info", i915_ddb_info, 0},
4490 };
4491 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4492 
4493 static const struct i915_debugfs_files {
4494 	const char *name;
4495 	const struct file_operations *fops;
4496 } i915_debugfs_files[] = {
4497 	{"i915_wedged", &i915_wedged_fops},
4498 	{"i915_max_freq", &i915_max_freq_fops},
4499 	{"i915_min_freq", &i915_min_freq_fops},
4500 	{"i915_cache_sharing", &i915_cache_sharing_fops},
4501 	{"i915_ring_stop", &i915_ring_stop_fops},
4502 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4503 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
4504 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
4505 	{"i915_error_state", &i915_error_state_fops},
4506 	{"i915_next_seqno", &i915_next_seqno_fops},
4507 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4508 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4509 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4510 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4511 	{"i915_fbc_false_color", &i915_fbc_fc_fops},
4512 };
4513 
4514 void intel_display_crc_init(struct drm_device *dev)
4515 {
4516 	struct drm_i915_private *dev_priv = dev->dev_private;
4517 	enum pipe pipe;
4518 
4519 	for_each_pipe(dev_priv, pipe) {
4520 		struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4521 
4522 		pipe_crc->opened = false;
4523 		spin_lock_init(&pipe_crc->lock);
4524 		init_waitqueue_head(&pipe_crc->wq);
4525 	}
4526 }
4527 
4528 int i915_debugfs_init(struct drm_minor *minor)
4529 {
4530 	int ret, i;
4531 
4532 	ret = i915_forcewake_create(minor->debugfs_root, minor);
4533 	if (ret)
4534 		return ret;
4535 
4536 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4537 		ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
4538 		if (ret)
4539 			return ret;
4540 	}
4541 
4542 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4543 		ret = i915_debugfs_create(minor->debugfs_root, minor,
4544 					  i915_debugfs_files[i].name,
4545 					  i915_debugfs_files[i].fops);
4546 		if (ret)
4547 			return ret;
4548 	}
4549 
4550 	return drm_debugfs_create_files(i915_debugfs_list,
4551 					I915_DEBUGFS_ENTRIES,
4552 					minor->debugfs_root, minor);
4553 }
4554 
4555 void i915_debugfs_cleanup(struct drm_minor *minor)
4556 {
4557 	int i;
4558 
4559 	drm_debugfs_remove_files(i915_debugfs_list,
4560 				 I915_DEBUGFS_ENTRIES, minor);
4561 
4562 	drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4563 				 1, minor);
4564 
4565 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4566 		struct drm_info_list *info_list =
4567 			(struct drm_info_list *)&i915_pipe_crc_data[i];
4568 
4569 		drm_debugfs_remove_files(info_list, 1, minor);
4570 	}
4571 
4572 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4573 		struct drm_info_list *info_list =
4574 			(struct drm_info_list *) i915_debugfs_files[i].fops;
4575 
4576 		drm_debugfs_remove_files(info_list, 1, minor);
4577 	}
4578 }
4579