1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/sort.h>
31 #include "intel_drv.h"
32 
33 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
34 {
35 	return to_i915(node->minor->dev);
36 }
37 
38 static __always_inline void seq_print_param(struct seq_file *m,
39 					    const char *name,
40 					    const char *type,
41 					    const void *x)
42 {
43 	if (!__builtin_strcmp(type, "bool"))
44 		seq_printf(m, "i915.%s=%s\n", name, yesno(*(const bool *)x));
45 	else if (!__builtin_strcmp(type, "int"))
46 		seq_printf(m, "i915.%s=%d\n", name, *(const int *)x);
47 	else if (!__builtin_strcmp(type, "unsigned int"))
48 		seq_printf(m, "i915.%s=%u\n", name, *(const unsigned int *)x);
49 	else if (!__builtin_strcmp(type, "char *"))
50 		seq_printf(m, "i915.%s=%s\n", name, *(const char **)x);
51 	else
52 		BUILD_BUG();
53 }
54 
55 static int i915_capabilities(struct seq_file *m, void *data)
56 {
57 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
58 	const struct intel_device_info *info = INTEL_INFO(dev_priv);
59 
60 	seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
61 	seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
62 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
63 
64 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
65 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
66 #undef PRINT_FLAG
67 
68 	kernel_param_lock(THIS_MODULE);
69 #define PRINT_PARAM(T, x) seq_print_param(m, #x, #T, &i915.x);
70 	I915_PARAMS_FOR_EACH(PRINT_PARAM);
71 #undef PRINT_PARAM
72 	kernel_param_unlock(THIS_MODULE);
73 
74 	return 0;
75 }
76 
77 static char get_active_flag(struct drm_i915_gem_object *obj)
78 {
79 	return i915_gem_object_is_active(obj) ? '*' : ' ';
80 }
81 
82 static char get_pin_flag(struct drm_i915_gem_object *obj)
83 {
84 	return obj->pin_display ? 'p' : ' ';
85 }
86 
87 static char get_tiling_flag(struct drm_i915_gem_object *obj)
88 {
89 	switch (i915_gem_object_get_tiling(obj)) {
90 	default:
91 	case I915_TILING_NONE: return ' ';
92 	case I915_TILING_X: return 'X';
93 	case I915_TILING_Y: return 'Y';
94 	}
95 }
96 
97 static char get_global_flag(struct drm_i915_gem_object *obj)
98 {
99 	return !list_empty(&obj->userfault_link) ? 'g' : ' ';
100 }
101 
102 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
103 {
104 	return obj->mm.mapping ? 'M' : ' ';
105 }
106 
107 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
108 {
109 	u64 size = 0;
110 	struct i915_vma *vma;
111 
112 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
113 		if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
114 			size += vma->node.size;
115 	}
116 
117 	return size;
118 }
119 
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
124 	struct intel_engine_cs *engine;
125 	struct i915_vma *vma;
126 	unsigned int frontbuffer_bits;
127 	int pin_count = 0;
128 
129 	lockdep_assert_held(&obj->base.dev->struct_mutex);
130 
131 	seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
132 		   &obj->base,
133 		   get_active_flag(obj),
134 		   get_pin_flag(obj),
135 		   get_tiling_flag(obj),
136 		   get_global_flag(obj),
137 		   get_pin_mapped_flag(obj),
138 		   obj->base.size / 1024,
139 		   obj->base.read_domains,
140 		   obj->base.write_domain,
141 		   i915_cache_level_str(dev_priv, obj->cache_level),
142 		   obj->mm.dirty ? " dirty" : "",
143 		   obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
144 	if (obj->base.name)
145 		seq_printf(m, " (name: %d)", obj->base.name);
146 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
147 		if (i915_vma_is_pinned(vma))
148 			pin_count++;
149 	}
150 	seq_printf(m, " (pinned x %d)", pin_count);
151 	if (obj->pin_display)
152 		seq_printf(m, " (display)");
153 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
154 		if (!drm_mm_node_allocated(&vma->node))
155 			continue;
156 
157 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
158 			   i915_vma_is_ggtt(vma) ? "g" : "pp",
159 			   vma->node.start, vma->node.size);
160 		if (i915_vma_is_ggtt(vma)) {
161 			switch (vma->ggtt_view.type) {
162 			case I915_GGTT_VIEW_NORMAL:
163 				seq_puts(m, ", normal");
164 				break;
165 
166 			case I915_GGTT_VIEW_PARTIAL:
167 				seq_printf(m, ", partial [%08llx+%x]",
168 					   vma->ggtt_view.partial.offset << PAGE_SHIFT,
169 					   vma->ggtt_view.partial.size << PAGE_SHIFT);
170 				break;
171 
172 			case I915_GGTT_VIEW_ROTATED:
173 				seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
174 					   vma->ggtt_view.rotated.plane[0].width,
175 					   vma->ggtt_view.rotated.plane[0].height,
176 					   vma->ggtt_view.rotated.plane[0].stride,
177 					   vma->ggtt_view.rotated.plane[0].offset,
178 					   vma->ggtt_view.rotated.plane[1].width,
179 					   vma->ggtt_view.rotated.plane[1].height,
180 					   vma->ggtt_view.rotated.plane[1].stride,
181 					   vma->ggtt_view.rotated.plane[1].offset);
182 				break;
183 
184 			default:
185 				MISSING_CASE(vma->ggtt_view.type);
186 				break;
187 			}
188 		}
189 		if (vma->fence)
190 			seq_printf(m, " , fence: %d%s",
191 				   vma->fence->id,
192 				   i915_gem_active_isset(&vma->last_fence) ? "*" : "");
193 		seq_puts(m, ")");
194 	}
195 	if (obj->stolen)
196 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
197 
198 	engine = i915_gem_object_last_write_engine(obj);
199 	if (engine)
200 		seq_printf(m, " (%s)", engine->name);
201 
202 	frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
203 	if (frontbuffer_bits)
204 		seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
205 }
206 
207 static int obj_rank_by_stolen(const void *A, const void *B)
208 {
209 	const struct drm_i915_gem_object *a =
210 		*(const struct drm_i915_gem_object **)A;
211 	const struct drm_i915_gem_object *b =
212 		*(const struct drm_i915_gem_object **)B;
213 
214 	if (a->stolen->start < b->stolen->start)
215 		return -1;
216 	if (a->stolen->start > b->stolen->start)
217 		return 1;
218 	return 0;
219 }
220 
221 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
222 {
223 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
224 	struct drm_device *dev = &dev_priv->drm;
225 	struct drm_i915_gem_object **objects;
226 	struct drm_i915_gem_object *obj;
227 	u64 total_obj_size, total_gtt_size;
228 	unsigned long total, count, n;
229 	int ret;
230 
231 	total = READ_ONCE(dev_priv->mm.object_count);
232 	objects = kvmalloc_array(total, sizeof(*objects), GFP_KERNEL);
233 	if (!objects)
234 		return -ENOMEM;
235 
236 	ret = mutex_lock_interruptible(&dev->struct_mutex);
237 	if (ret)
238 		goto out;
239 
240 	total_obj_size = total_gtt_size = count = 0;
241 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
242 		if (count == total)
243 			break;
244 
245 		if (obj->stolen == NULL)
246 			continue;
247 
248 		objects[count++] = obj;
249 		total_obj_size += obj->base.size;
250 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
251 
252 	}
253 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
254 		if (count == total)
255 			break;
256 
257 		if (obj->stolen == NULL)
258 			continue;
259 
260 		objects[count++] = obj;
261 		total_obj_size += obj->base.size;
262 	}
263 
264 	sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
265 
266 	seq_puts(m, "Stolen:\n");
267 	for (n = 0; n < count; n++) {
268 		seq_puts(m, "   ");
269 		describe_obj(m, objects[n]);
270 		seq_putc(m, '\n');
271 	}
272 	seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
273 		   count, total_obj_size, total_gtt_size);
274 
275 	mutex_unlock(&dev->struct_mutex);
276 out:
277 	kvfree(objects);
278 	return ret;
279 }
280 
281 struct file_stats {
282 	struct drm_i915_file_private *file_priv;
283 	unsigned long count;
284 	u64 total, unbound;
285 	u64 global, shared;
286 	u64 active, inactive;
287 };
288 
289 static int per_file_stats(int id, void *ptr, void *data)
290 {
291 	struct drm_i915_gem_object *obj = ptr;
292 	struct file_stats *stats = data;
293 	struct i915_vma *vma;
294 
295 	lockdep_assert_held(&obj->base.dev->struct_mutex);
296 
297 	stats->count++;
298 	stats->total += obj->base.size;
299 	if (!obj->bind_count)
300 		stats->unbound += obj->base.size;
301 	if (obj->base.name || obj->base.dma_buf)
302 		stats->shared += obj->base.size;
303 
304 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
305 		if (!drm_mm_node_allocated(&vma->node))
306 			continue;
307 
308 		if (i915_vma_is_ggtt(vma)) {
309 			stats->global += vma->node.size;
310 		} else {
311 			struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
312 
313 			if (ppgtt->base.file != stats->file_priv)
314 				continue;
315 		}
316 
317 		if (i915_vma_is_active(vma))
318 			stats->active += vma->node.size;
319 		else
320 			stats->inactive += vma->node.size;
321 	}
322 
323 	return 0;
324 }
325 
326 #define print_file_stats(m, name, stats) do { \
327 	if (stats.count) \
328 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
329 			   name, \
330 			   stats.count, \
331 			   stats.total, \
332 			   stats.active, \
333 			   stats.inactive, \
334 			   stats.global, \
335 			   stats.shared, \
336 			   stats.unbound); \
337 } while (0)
338 
339 static void print_batch_pool_stats(struct seq_file *m,
340 				   struct drm_i915_private *dev_priv)
341 {
342 	struct drm_i915_gem_object *obj;
343 	struct file_stats stats;
344 	struct intel_engine_cs *engine;
345 	enum intel_engine_id id;
346 	int j;
347 
348 	memset(&stats, 0, sizeof(stats));
349 
350 	for_each_engine(engine, dev_priv, id) {
351 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
352 			list_for_each_entry(obj,
353 					    &engine->batch_pool.cache_list[j],
354 					    batch_pool_link)
355 				per_file_stats(0, obj, &stats);
356 		}
357 	}
358 
359 	print_file_stats(m, "[k]batch pool", stats);
360 }
361 
362 static int per_file_ctx_stats(int id, void *ptr, void *data)
363 {
364 	struct i915_gem_context *ctx = ptr;
365 	int n;
366 
367 	for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
368 		if (ctx->engine[n].state)
369 			per_file_stats(0, ctx->engine[n].state->obj, data);
370 		if (ctx->engine[n].ring)
371 			per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
372 	}
373 
374 	return 0;
375 }
376 
377 static void print_context_stats(struct seq_file *m,
378 				struct drm_i915_private *dev_priv)
379 {
380 	struct drm_device *dev = &dev_priv->drm;
381 	struct file_stats stats;
382 	struct drm_file *file;
383 
384 	memset(&stats, 0, sizeof(stats));
385 
386 	mutex_lock(&dev->struct_mutex);
387 	if (dev_priv->kernel_context)
388 		per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
389 
390 	list_for_each_entry(file, &dev->filelist, lhead) {
391 		struct drm_i915_file_private *fpriv = file->driver_priv;
392 		idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
393 	}
394 	mutex_unlock(&dev->struct_mutex);
395 
396 	print_file_stats(m, "[k]contexts", stats);
397 }
398 
399 static int i915_gem_object_info(struct seq_file *m, void *data)
400 {
401 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
402 	struct drm_device *dev = &dev_priv->drm;
403 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
404 	u32 count, mapped_count, purgeable_count, dpy_count;
405 	u64 size, mapped_size, purgeable_size, dpy_size;
406 	struct drm_i915_gem_object *obj;
407 	struct drm_file *file;
408 	int ret;
409 
410 	ret = mutex_lock_interruptible(&dev->struct_mutex);
411 	if (ret)
412 		return ret;
413 
414 	seq_printf(m, "%u objects, %llu bytes\n",
415 		   dev_priv->mm.object_count,
416 		   dev_priv->mm.object_memory);
417 
418 	size = count = 0;
419 	mapped_size = mapped_count = 0;
420 	purgeable_size = purgeable_count = 0;
421 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
422 		size += obj->base.size;
423 		++count;
424 
425 		if (obj->mm.madv == I915_MADV_DONTNEED) {
426 			purgeable_size += obj->base.size;
427 			++purgeable_count;
428 		}
429 
430 		if (obj->mm.mapping) {
431 			mapped_count++;
432 			mapped_size += obj->base.size;
433 		}
434 	}
435 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
436 
437 	size = count = dpy_size = dpy_count = 0;
438 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
439 		size += obj->base.size;
440 		++count;
441 
442 		if (obj->pin_display) {
443 			dpy_size += obj->base.size;
444 			++dpy_count;
445 		}
446 
447 		if (obj->mm.madv == I915_MADV_DONTNEED) {
448 			purgeable_size += obj->base.size;
449 			++purgeable_count;
450 		}
451 
452 		if (obj->mm.mapping) {
453 			mapped_count++;
454 			mapped_size += obj->base.size;
455 		}
456 	}
457 	seq_printf(m, "%u bound objects, %llu bytes\n",
458 		   count, size);
459 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
460 		   purgeable_count, purgeable_size);
461 	seq_printf(m, "%u mapped objects, %llu bytes\n",
462 		   mapped_count, mapped_size);
463 	seq_printf(m, "%u display objects (pinned), %llu bytes\n",
464 		   dpy_count, dpy_size);
465 
466 	seq_printf(m, "%llu [%llu] gtt total\n",
467 		   ggtt->base.total, ggtt->mappable_end);
468 
469 	seq_putc(m, '\n');
470 	print_batch_pool_stats(m, dev_priv);
471 	mutex_unlock(&dev->struct_mutex);
472 
473 	mutex_lock(&dev->filelist_mutex);
474 	print_context_stats(m, dev_priv);
475 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
476 		struct file_stats stats;
477 		struct drm_i915_file_private *file_priv = file->driver_priv;
478 		struct drm_i915_gem_request *request;
479 		struct task_struct *task;
480 
481 		mutex_lock(&dev->struct_mutex);
482 
483 		memset(&stats, 0, sizeof(stats));
484 		stats.file_priv = file->driver_priv;
485 		spin_lock(&file->table_lock);
486 		idr_for_each(&file->object_idr, per_file_stats, &stats);
487 		spin_unlock(&file->table_lock);
488 		/*
489 		 * Although we have a valid reference on file->pid, that does
490 		 * not guarantee that the task_struct who called get_pid() is
491 		 * still alive (e.g. get_pid(current) => fork() => exit()).
492 		 * Therefore, we need to protect this ->comm access using RCU.
493 		 */
494 		request = list_first_entry_or_null(&file_priv->mm.request_list,
495 						   struct drm_i915_gem_request,
496 						   client_link);
497 		rcu_read_lock();
498 		task = pid_task(request && request->ctx->pid ?
499 				request->ctx->pid : file->pid,
500 				PIDTYPE_PID);
501 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
502 		rcu_read_unlock();
503 
504 		mutex_unlock(&dev->struct_mutex);
505 	}
506 	mutex_unlock(&dev->filelist_mutex);
507 
508 	return 0;
509 }
510 
511 static int i915_gem_gtt_info(struct seq_file *m, void *data)
512 {
513 	struct drm_info_node *node = m->private;
514 	struct drm_i915_private *dev_priv = node_to_i915(node);
515 	struct drm_device *dev = &dev_priv->drm;
516 	bool show_pin_display_only = !!node->info_ent->data;
517 	struct drm_i915_gem_object *obj;
518 	u64 total_obj_size, total_gtt_size;
519 	int count, ret;
520 
521 	ret = mutex_lock_interruptible(&dev->struct_mutex);
522 	if (ret)
523 		return ret;
524 
525 	total_obj_size = total_gtt_size = count = 0;
526 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
527 		if (show_pin_display_only && !obj->pin_display)
528 			continue;
529 
530 		seq_puts(m, "   ");
531 		describe_obj(m, obj);
532 		seq_putc(m, '\n');
533 		total_obj_size += obj->base.size;
534 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
535 		count++;
536 	}
537 
538 	mutex_unlock(&dev->struct_mutex);
539 
540 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
541 		   count, total_obj_size, total_gtt_size);
542 
543 	return 0;
544 }
545 
546 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
547 {
548 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
549 	struct drm_device *dev = &dev_priv->drm;
550 	struct intel_crtc *crtc;
551 	int ret;
552 
553 	ret = mutex_lock_interruptible(&dev->struct_mutex);
554 	if (ret)
555 		return ret;
556 
557 	for_each_intel_crtc(dev, crtc) {
558 		const char pipe = pipe_name(crtc->pipe);
559 		const char plane = plane_name(crtc->plane);
560 		struct intel_flip_work *work;
561 
562 		spin_lock_irq(&dev->event_lock);
563 		work = crtc->flip_work;
564 		if (work == NULL) {
565 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
566 				   pipe, plane);
567 		} else {
568 			u32 pending;
569 			u32 addr;
570 
571 			pending = atomic_read(&work->pending);
572 			if (pending) {
573 				seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
574 					   pipe, plane);
575 			} else {
576 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
577 					   pipe, plane);
578 			}
579 			if (work->flip_queued_req) {
580 				struct intel_engine_cs *engine = work->flip_queued_req->engine;
581 
582 				seq_printf(m, "Flip queued on %s at seqno %x, last submitted seqno %x [current breadcrumb %x], completed? %d\n",
583 					   engine->name,
584 					   work->flip_queued_req->global_seqno,
585 					   intel_engine_last_submit(engine),
586 					   intel_engine_get_seqno(engine),
587 					   i915_gem_request_completed(work->flip_queued_req));
588 			} else
589 				seq_printf(m, "Flip not associated with any ring\n");
590 			seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
591 				   work->flip_queued_vblank,
592 				   work->flip_ready_vblank,
593 				   intel_crtc_get_vblank_counter(crtc));
594 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
595 
596 			if (INTEL_GEN(dev_priv) >= 4)
597 				addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
598 			else
599 				addr = I915_READ(DSPADDR(crtc->plane));
600 			seq_printf(m, "Current scanout address 0x%08x\n", addr);
601 
602 			if (work->pending_flip_obj) {
603 				seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
604 				seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
605 			}
606 		}
607 		spin_unlock_irq(&dev->event_lock);
608 	}
609 
610 	mutex_unlock(&dev->struct_mutex);
611 
612 	return 0;
613 }
614 
615 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
616 {
617 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
618 	struct drm_device *dev = &dev_priv->drm;
619 	struct drm_i915_gem_object *obj;
620 	struct intel_engine_cs *engine;
621 	enum intel_engine_id id;
622 	int total = 0;
623 	int ret, j;
624 
625 	ret = mutex_lock_interruptible(&dev->struct_mutex);
626 	if (ret)
627 		return ret;
628 
629 	for_each_engine(engine, dev_priv, id) {
630 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
631 			int count;
632 
633 			count = 0;
634 			list_for_each_entry(obj,
635 					    &engine->batch_pool.cache_list[j],
636 					    batch_pool_link)
637 				count++;
638 			seq_printf(m, "%s cache[%d]: %d objects\n",
639 				   engine->name, j, count);
640 
641 			list_for_each_entry(obj,
642 					    &engine->batch_pool.cache_list[j],
643 					    batch_pool_link) {
644 				seq_puts(m, "   ");
645 				describe_obj(m, obj);
646 				seq_putc(m, '\n');
647 			}
648 
649 			total += count;
650 		}
651 	}
652 
653 	seq_printf(m, "total: %d\n", total);
654 
655 	mutex_unlock(&dev->struct_mutex);
656 
657 	return 0;
658 }
659 
660 static void print_request(struct seq_file *m,
661 			  struct drm_i915_gem_request *rq,
662 			  const char *prefix)
663 {
664 	seq_printf(m, "%s%x [%x:%x] prio=%d @ %dms: %s\n", prefix,
665 		   rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
666 		   rq->priotree.priority,
667 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
668 		   rq->timeline->common->name);
669 }
670 
671 static int i915_gem_request_info(struct seq_file *m, void *data)
672 {
673 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
674 	struct drm_device *dev = &dev_priv->drm;
675 	struct drm_i915_gem_request *req;
676 	struct intel_engine_cs *engine;
677 	enum intel_engine_id id;
678 	int ret, any;
679 
680 	ret = mutex_lock_interruptible(&dev->struct_mutex);
681 	if (ret)
682 		return ret;
683 
684 	any = 0;
685 	for_each_engine(engine, dev_priv, id) {
686 		int count;
687 
688 		count = 0;
689 		list_for_each_entry(req, &engine->timeline->requests, link)
690 			count++;
691 		if (count == 0)
692 			continue;
693 
694 		seq_printf(m, "%s requests: %d\n", engine->name, count);
695 		list_for_each_entry(req, &engine->timeline->requests, link)
696 			print_request(m, req, "    ");
697 
698 		any++;
699 	}
700 	mutex_unlock(&dev->struct_mutex);
701 
702 	if (any == 0)
703 		seq_puts(m, "No requests\n");
704 
705 	return 0;
706 }
707 
708 static void i915_ring_seqno_info(struct seq_file *m,
709 				 struct intel_engine_cs *engine)
710 {
711 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
712 	struct rb_node *rb;
713 
714 	seq_printf(m, "Current sequence (%s): %x\n",
715 		   engine->name, intel_engine_get_seqno(engine));
716 
717 	spin_lock_irq(&b->rb_lock);
718 	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
719 		struct intel_wait *w = rb_entry(rb, typeof(*w), node);
720 
721 		seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
722 			   engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
723 	}
724 	spin_unlock_irq(&b->rb_lock);
725 }
726 
727 static int i915_gem_seqno_info(struct seq_file *m, void *data)
728 {
729 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
730 	struct intel_engine_cs *engine;
731 	enum intel_engine_id id;
732 
733 	for_each_engine(engine, dev_priv, id)
734 		i915_ring_seqno_info(m, engine);
735 
736 	return 0;
737 }
738 
739 
740 static int i915_interrupt_info(struct seq_file *m, void *data)
741 {
742 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
743 	struct intel_engine_cs *engine;
744 	enum intel_engine_id id;
745 	int i, pipe;
746 
747 	intel_runtime_pm_get(dev_priv);
748 
749 	if (IS_CHERRYVIEW(dev_priv)) {
750 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
751 			   I915_READ(GEN8_MASTER_IRQ));
752 
753 		seq_printf(m, "Display IER:\t%08x\n",
754 			   I915_READ(VLV_IER));
755 		seq_printf(m, "Display IIR:\t%08x\n",
756 			   I915_READ(VLV_IIR));
757 		seq_printf(m, "Display IIR_RW:\t%08x\n",
758 			   I915_READ(VLV_IIR_RW));
759 		seq_printf(m, "Display IMR:\t%08x\n",
760 			   I915_READ(VLV_IMR));
761 		for_each_pipe(dev_priv, pipe) {
762 			enum intel_display_power_domain power_domain;
763 
764 			power_domain = POWER_DOMAIN_PIPE(pipe);
765 			if (!intel_display_power_get_if_enabled(dev_priv,
766 								power_domain)) {
767 				seq_printf(m, "Pipe %c power disabled\n",
768 					   pipe_name(pipe));
769 				continue;
770 			}
771 
772 			seq_printf(m, "Pipe %c stat:\t%08x\n",
773 				   pipe_name(pipe),
774 				   I915_READ(PIPESTAT(pipe)));
775 
776 			intel_display_power_put(dev_priv, power_domain);
777 		}
778 
779 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
780 		seq_printf(m, "Port hotplug:\t%08x\n",
781 			   I915_READ(PORT_HOTPLUG_EN));
782 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
783 			   I915_READ(VLV_DPFLIPSTAT));
784 		seq_printf(m, "DPINVGTT:\t%08x\n",
785 			   I915_READ(DPINVGTT));
786 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
787 
788 		for (i = 0; i < 4; i++) {
789 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
790 				   i, I915_READ(GEN8_GT_IMR(i)));
791 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
792 				   i, I915_READ(GEN8_GT_IIR(i)));
793 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
794 				   i, I915_READ(GEN8_GT_IER(i)));
795 		}
796 
797 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
798 			   I915_READ(GEN8_PCU_IMR));
799 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
800 			   I915_READ(GEN8_PCU_IIR));
801 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
802 			   I915_READ(GEN8_PCU_IER));
803 	} else if (INTEL_GEN(dev_priv) >= 8) {
804 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
805 			   I915_READ(GEN8_MASTER_IRQ));
806 
807 		for (i = 0; i < 4; i++) {
808 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
809 				   i, I915_READ(GEN8_GT_IMR(i)));
810 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
811 				   i, I915_READ(GEN8_GT_IIR(i)));
812 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
813 				   i, I915_READ(GEN8_GT_IER(i)));
814 		}
815 
816 		for_each_pipe(dev_priv, pipe) {
817 			enum intel_display_power_domain power_domain;
818 
819 			power_domain = POWER_DOMAIN_PIPE(pipe);
820 			if (!intel_display_power_get_if_enabled(dev_priv,
821 								power_domain)) {
822 				seq_printf(m, "Pipe %c power disabled\n",
823 					   pipe_name(pipe));
824 				continue;
825 			}
826 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
827 				   pipe_name(pipe),
828 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
829 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
830 				   pipe_name(pipe),
831 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
832 			seq_printf(m, "Pipe %c IER:\t%08x\n",
833 				   pipe_name(pipe),
834 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
835 
836 			intel_display_power_put(dev_priv, power_domain);
837 		}
838 
839 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
840 			   I915_READ(GEN8_DE_PORT_IMR));
841 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
842 			   I915_READ(GEN8_DE_PORT_IIR));
843 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
844 			   I915_READ(GEN8_DE_PORT_IER));
845 
846 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
847 			   I915_READ(GEN8_DE_MISC_IMR));
848 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
849 			   I915_READ(GEN8_DE_MISC_IIR));
850 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
851 			   I915_READ(GEN8_DE_MISC_IER));
852 
853 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
854 			   I915_READ(GEN8_PCU_IMR));
855 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
856 			   I915_READ(GEN8_PCU_IIR));
857 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
858 			   I915_READ(GEN8_PCU_IER));
859 	} else if (IS_VALLEYVIEW(dev_priv)) {
860 		seq_printf(m, "Display IER:\t%08x\n",
861 			   I915_READ(VLV_IER));
862 		seq_printf(m, "Display IIR:\t%08x\n",
863 			   I915_READ(VLV_IIR));
864 		seq_printf(m, "Display IIR_RW:\t%08x\n",
865 			   I915_READ(VLV_IIR_RW));
866 		seq_printf(m, "Display IMR:\t%08x\n",
867 			   I915_READ(VLV_IMR));
868 		for_each_pipe(dev_priv, pipe) {
869 			enum intel_display_power_domain power_domain;
870 
871 			power_domain = POWER_DOMAIN_PIPE(pipe);
872 			if (!intel_display_power_get_if_enabled(dev_priv,
873 								power_domain)) {
874 				seq_printf(m, "Pipe %c power disabled\n",
875 					   pipe_name(pipe));
876 				continue;
877 			}
878 
879 			seq_printf(m, "Pipe %c stat:\t%08x\n",
880 				   pipe_name(pipe),
881 				   I915_READ(PIPESTAT(pipe)));
882 			intel_display_power_put(dev_priv, power_domain);
883 		}
884 
885 		seq_printf(m, "Master IER:\t%08x\n",
886 			   I915_READ(VLV_MASTER_IER));
887 
888 		seq_printf(m, "Render IER:\t%08x\n",
889 			   I915_READ(GTIER));
890 		seq_printf(m, "Render IIR:\t%08x\n",
891 			   I915_READ(GTIIR));
892 		seq_printf(m, "Render IMR:\t%08x\n",
893 			   I915_READ(GTIMR));
894 
895 		seq_printf(m, "PM IER:\t\t%08x\n",
896 			   I915_READ(GEN6_PMIER));
897 		seq_printf(m, "PM IIR:\t\t%08x\n",
898 			   I915_READ(GEN6_PMIIR));
899 		seq_printf(m, "PM IMR:\t\t%08x\n",
900 			   I915_READ(GEN6_PMIMR));
901 
902 		seq_printf(m, "Port hotplug:\t%08x\n",
903 			   I915_READ(PORT_HOTPLUG_EN));
904 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
905 			   I915_READ(VLV_DPFLIPSTAT));
906 		seq_printf(m, "DPINVGTT:\t%08x\n",
907 			   I915_READ(DPINVGTT));
908 
909 	} else if (!HAS_PCH_SPLIT(dev_priv)) {
910 		seq_printf(m, "Interrupt enable:    %08x\n",
911 			   I915_READ(IER));
912 		seq_printf(m, "Interrupt identity:  %08x\n",
913 			   I915_READ(IIR));
914 		seq_printf(m, "Interrupt mask:      %08x\n",
915 			   I915_READ(IMR));
916 		for_each_pipe(dev_priv, pipe)
917 			seq_printf(m, "Pipe %c stat:         %08x\n",
918 				   pipe_name(pipe),
919 				   I915_READ(PIPESTAT(pipe)));
920 	} else {
921 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
922 			   I915_READ(DEIER));
923 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
924 			   I915_READ(DEIIR));
925 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
926 			   I915_READ(DEIMR));
927 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
928 			   I915_READ(SDEIER));
929 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
930 			   I915_READ(SDEIIR));
931 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
932 			   I915_READ(SDEIMR));
933 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
934 			   I915_READ(GTIER));
935 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
936 			   I915_READ(GTIIR));
937 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
938 			   I915_READ(GTIMR));
939 	}
940 	for_each_engine(engine, dev_priv, id) {
941 		if (INTEL_GEN(dev_priv) >= 6) {
942 			seq_printf(m,
943 				   "Graphics Interrupt mask (%s):	%08x\n",
944 				   engine->name, I915_READ_IMR(engine));
945 		}
946 		i915_ring_seqno_info(m, engine);
947 	}
948 	intel_runtime_pm_put(dev_priv);
949 
950 	return 0;
951 }
952 
953 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
954 {
955 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
956 	struct drm_device *dev = &dev_priv->drm;
957 	int i, ret;
958 
959 	ret = mutex_lock_interruptible(&dev->struct_mutex);
960 	if (ret)
961 		return ret;
962 
963 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
964 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
965 		struct i915_vma *vma = dev_priv->fence_regs[i].vma;
966 
967 		seq_printf(m, "Fence %d, pin count = %d, object = ",
968 			   i, dev_priv->fence_regs[i].pin_count);
969 		if (!vma)
970 			seq_puts(m, "unused");
971 		else
972 			describe_obj(m, vma->obj);
973 		seq_putc(m, '\n');
974 	}
975 
976 	mutex_unlock(&dev->struct_mutex);
977 	return 0;
978 }
979 
980 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
981 static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
982 			      size_t count, loff_t *pos)
983 {
984 	struct i915_gpu_state *error = file->private_data;
985 	struct drm_i915_error_state_buf str;
986 	ssize_t ret;
987 	loff_t tmp;
988 
989 	if (!error)
990 		return 0;
991 
992 	ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
993 	if (ret)
994 		return ret;
995 
996 	ret = i915_error_state_to_str(&str, error);
997 	if (ret)
998 		goto out;
999 
1000 	tmp = 0;
1001 	ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
1002 	if (ret < 0)
1003 		goto out;
1004 
1005 	*pos = str.start + ret;
1006 out:
1007 	i915_error_state_buf_release(&str);
1008 	return ret;
1009 }
1010 
1011 static int gpu_state_release(struct inode *inode, struct file *file)
1012 {
1013 	i915_gpu_state_put(file->private_data);
1014 	return 0;
1015 }
1016 
1017 static int i915_gpu_info_open(struct inode *inode, struct file *file)
1018 {
1019 	struct drm_i915_private *i915 = inode->i_private;
1020 	struct i915_gpu_state *gpu;
1021 
1022 	intel_runtime_pm_get(i915);
1023 	gpu = i915_capture_gpu_state(i915);
1024 	intel_runtime_pm_put(i915);
1025 	if (!gpu)
1026 		return -ENOMEM;
1027 
1028 	file->private_data = gpu;
1029 	return 0;
1030 }
1031 
1032 static const struct file_operations i915_gpu_info_fops = {
1033 	.owner = THIS_MODULE,
1034 	.open = i915_gpu_info_open,
1035 	.read = gpu_state_read,
1036 	.llseek = default_llseek,
1037 	.release = gpu_state_release,
1038 };
1039 
1040 static ssize_t
1041 i915_error_state_write(struct file *filp,
1042 		       const char __user *ubuf,
1043 		       size_t cnt,
1044 		       loff_t *ppos)
1045 {
1046 	struct i915_gpu_state *error = filp->private_data;
1047 
1048 	if (!error)
1049 		return 0;
1050 
1051 	DRM_DEBUG_DRIVER("Resetting error state\n");
1052 	i915_reset_error_state(error->i915);
1053 
1054 	return cnt;
1055 }
1056 
1057 static int i915_error_state_open(struct inode *inode, struct file *file)
1058 {
1059 	file->private_data = i915_first_error_state(inode->i_private);
1060 	return 0;
1061 }
1062 
1063 static const struct file_operations i915_error_state_fops = {
1064 	.owner = THIS_MODULE,
1065 	.open = i915_error_state_open,
1066 	.read = gpu_state_read,
1067 	.write = i915_error_state_write,
1068 	.llseek = default_llseek,
1069 	.release = gpu_state_release,
1070 };
1071 #endif
1072 
1073 static int
1074 i915_next_seqno_set(void *data, u64 val)
1075 {
1076 	struct drm_i915_private *dev_priv = data;
1077 	struct drm_device *dev = &dev_priv->drm;
1078 	int ret;
1079 
1080 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1081 	if (ret)
1082 		return ret;
1083 
1084 	ret = i915_gem_set_global_seqno(dev, val);
1085 	mutex_unlock(&dev->struct_mutex);
1086 
1087 	return ret;
1088 }
1089 
1090 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1091 			NULL, i915_next_seqno_set,
1092 			"0x%llx\n");
1093 
1094 static int i915_frequency_info(struct seq_file *m, void *unused)
1095 {
1096 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1097 	int ret = 0;
1098 
1099 	intel_runtime_pm_get(dev_priv);
1100 
1101 	if (IS_GEN5(dev_priv)) {
1102 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1103 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1104 
1105 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1106 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1107 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1108 			   MEMSTAT_VID_SHIFT);
1109 		seq_printf(m, "Current P-state: %d\n",
1110 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1111 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1112 		u32 freq_sts;
1113 
1114 		mutex_lock(&dev_priv->rps.hw_lock);
1115 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1116 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1117 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1118 
1119 		seq_printf(m, "actual GPU freq: %d MHz\n",
1120 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1121 
1122 		seq_printf(m, "current GPU freq: %d MHz\n",
1123 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1124 
1125 		seq_printf(m, "max GPU freq: %d MHz\n",
1126 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1127 
1128 		seq_printf(m, "min GPU freq: %d MHz\n",
1129 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1130 
1131 		seq_printf(m, "idle GPU freq: %d MHz\n",
1132 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1133 
1134 		seq_printf(m,
1135 			   "efficient (RPe) frequency: %d MHz\n",
1136 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1137 		mutex_unlock(&dev_priv->rps.hw_lock);
1138 	} else if (INTEL_GEN(dev_priv) >= 6) {
1139 		u32 rp_state_limits;
1140 		u32 gt_perf_status;
1141 		u32 rp_state_cap;
1142 		u32 rpmodectl, rpinclimit, rpdeclimit;
1143 		u32 rpstat, cagf, reqf;
1144 		u32 rpupei, rpcurup, rpprevup;
1145 		u32 rpdownei, rpcurdown, rpprevdown;
1146 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1147 		int max_freq;
1148 
1149 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1150 		if (IS_GEN9_LP(dev_priv)) {
1151 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1152 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1153 		} else {
1154 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1155 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1156 		}
1157 
1158 		/* RPSTAT1 is in the GT power well */
1159 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1160 
1161 		reqf = I915_READ(GEN6_RPNSWREQ);
1162 		if (IS_GEN9(dev_priv))
1163 			reqf >>= 23;
1164 		else {
1165 			reqf &= ~GEN6_TURBO_DISABLE;
1166 			if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1167 				reqf >>= 24;
1168 			else
1169 				reqf >>= 25;
1170 		}
1171 		reqf = intel_gpu_freq(dev_priv, reqf);
1172 
1173 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1174 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1175 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1176 
1177 		rpstat = I915_READ(GEN6_RPSTAT1);
1178 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1179 		rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1180 		rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1181 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1182 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1183 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1184 		if (IS_GEN9(dev_priv))
1185 			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1186 		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1187 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1188 		else
1189 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1190 		cagf = intel_gpu_freq(dev_priv, cagf);
1191 
1192 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1193 
1194 		if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1195 			pm_ier = I915_READ(GEN6_PMIER);
1196 			pm_imr = I915_READ(GEN6_PMIMR);
1197 			pm_isr = I915_READ(GEN6_PMISR);
1198 			pm_iir = I915_READ(GEN6_PMIIR);
1199 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1200 		} else {
1201 			pm_ier = I915_READ(GEN8_GT_IER(2));
1202 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1203 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1204 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1205 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1206 		}
1207 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1208 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1209 		seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
1210 			   dev_priv->rps.pm_intrmsk_mbz);
1211 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1212 		seq_printf(m, "Render p-state ratio: %d\n",
1213 			   (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
1214 		seq_printf(m, "Render p-state VID: %d\n",
1215 			   gt_perf_status & 0xff);
1216 		seq_printf(m, "Render p-state limit: %d\n",
1217 			   rp_state_limits & 0xff);
1218 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1219 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1220 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1221 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1222 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1223 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1224 		seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1225 			   rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1226 		seq_printf(m, "RP CUR UP: %d (%dus)\n",
1227 			   rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1228 		seq_printf(m, "RP PREV UP: %d (%dus)\n",
1229 			   rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1230 		seq_printf(m, "Up threshold: %d%%\n",
1231 			   dev_priv->rps.up_threshold);
1232 
1233 		seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1234 			   rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1235 		seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1236 			   rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1237 		seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1238 			   rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1239 		seq_printf(m, "Down threshold: %d%%\n",
1240 			   dev_priv->rps.down_threshold);
1241 
1242 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
1243 			    rp_state_cap >> 16) & 0xff;
1244 		max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1245 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1246 			   intel_gpu_freq(dev_priv, max_freq));
1247 
1248 		max_freq = (rp_state_cap & 0xff00) >> 8;
1249 		max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1250 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1251 			   intel_gpu_freq(dev_priv, max_freq));
1252 
1253 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
1254 			    rp_state_cap >> 0) & 0xff;
1255 		max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1256 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1257 			   intel_gpu_freq(dev_priv, max_freq));
1258 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1259 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1260 
1261 		seq_printf(m, "Current freq: %d MHz\n",
1262 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1263 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1264 		seq_printf(m, "Idle freq: %d MHz\n",
1265 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1266 		seq_printf(m, "Min freq: %d MHz\n",
1267 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1268 		seq_printf(m, "Boost freq: %d MHz\n",
1269 			   intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1270 		seq_printf(m, "Max freq: %d MHz\n",
1271 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1272 		seq_printf(m,
1273 			   "efficient (RPe) frequency: %d MHz\n",
1274 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1275 	} else {
1276 		seq_puts(m, "no P-state info available\n");
1277 	}
1278 
1279 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
1280 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1281 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1282 
1283 	intel_runtime_pm_put(dev_priv);
1284 	return ret;
1285 }
1286 
1287 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1288 			       struct seq_file *m,
1289 			       struct intel_instdone *instdone)
1290 {
1291 	int slice;
1292 	int subslice;
1293 
1294 	seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1295 		   instdone->instdone);
1296 
1297 	if (INTEL_GEN(dev_priv) <= 3)
1298 		return;
1299 
1300 	seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1301 		   instdone->slice_common);
1302 
1303 	if (INTEL_GEN(dev_priv) <= 6)
1304 		return;
1305 
1306 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1307 		seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1308 			   slice, subslice, instdone->sampler[slice][subslice]);
1309 
1310 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1311 		seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1312 			   slice, subslice, instdone->row[slice][subslice]);
1313 }
1314 
1315 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1316 {
1317 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1318 	struct intel_engine_cs *engine;
1319 	u64 acthd[I915_NUM_ENGINES];
1320 	u32 seqno[I915_NUM_ENGINES];
1321 	struct intel_instdone instdone;
1322 	enum intel_engine_id id;
1323 
1324 	if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1325 		seq_puts(m, "Wedged\n");
1326 	if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
1327 		seq_puts(m, "Reset in progress: struct_mutex backoff\n");
1328 	if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
1329 		seq_puts(m, "Reset in progress: reset handoff to waiter\n");
1330 	if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1331 		seq_puts(m, "Waiter holding struct mutex\n");
1332 	if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1333 		seq_puts(m, "struct_mutex blocked for reset\n");
1334 
1335 	if (!i915.enable_hangcheck) {
1336 		seq_puts(m, "Hangcheck disabled\n");
1337 		return 0;
1338 	}
1339 
1340 	intel_runtime_pm_get(dev_priv);
1341 
1342 	for_each_engine(engine, dev_priv, id) {
1343 		acthd[id] = intel_engine_get_active_head(engine);
1344 		seqno[id] = intel_engine_get_seqno(engine);
1345 	}
1346 
1347 	intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1348 
1349 	intel_runtime_pm_put(dev_priv);
1350 
1351 	if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
1352 		seq_printf(m, "Hangcheck active, timer fires in %dms\n",
1353 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1354 					    jiffies));
1355 	else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
1356 		seq_puts(m, "Hangcheck active, work pending\n");
1357 	else
1358 		seq_puts(m, "Hangcheck inactive\n");
1359 
1360 	seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
1361 
1362 	for_each_engine(engine, dev_priv, id) {
1363 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
1364 		struct rb_node *rb;
1365 
1366 		seq_printf(m, "%s:\n", engine->name);
1367 		seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
1368 			   engine->hangcheck.seqno, seqno[id],
1369 			   intel_engine_last_submit(engine),
1370 			   engine->timeline->inflight_seqnos);
1371 		seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
1372 			   yesno(intel_engine_has_waiter(engine)),
1373 			   yesno(test_bit(engine->id,
1374 					  &dev_priv->gpu_error.missed_irq_rings)),
1375 			   yesno(engine->hangcheck.stalled));
1376 
1377 		spin_lock_irq(&b->rb_lock);
1378 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1379 			struct intel_wait *w = rb_entry(rb, typeof(*w), node);
1380 
1381 			seq_printf(m, "\t%s [%d] waiting for %x\n",
1382 				   w->tsk->comm, w->tsk->pid, w->seqno);
1383 		}
1384 		spin_unlock_irq(&b->rb_lock);
1385 
1386 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1387 			   (long long)engine->hangcheck.acthd,
1388 			   (long long)acthd[id]);
1389 		seq_printf(m, "\taction = %s(%d) %d ms ago\n",
1390 			   hangcheck_action_to_str(engine->hangcheck.action),
1391 			   engine->hangcheck.action,
1392 			   jiffies_to_msecs(jiffies -
1393 					    engine->hangcheck.action_timestamp));
1394 
1395 		if (engine->id == RCS) {
1396 			seq_puts(m, "\tinstdone read =\n");
1397 
1398 			i915_instdone_info(dev_priv, m, &instdone);
1399 
1400 			seq_puts(m, "\tinstdone accu =\n");
1401 
1402 			i915_instdone_info(dev_priv, m,
1403 					   &engine->hangcheck.instdone);
1404 		}
1405 	}
1406 
1407 	return 0;
1408 }
1409 
1410 static int ironlake_drpc_info(struct seq_file *m)
1411 {
1412 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1413 	u32 rgvmodectl, rstdbyctl;
1414 	u16 crstandvid;
1415 
1416 	rgvmodectl = I915_READ(MEMMODECTL);
1417 	rstdbyctl = I915_READ(RSTDBYCTL);
1418 	crstandvid = I915_READ16(CRSTANDVID);
1419 
1420 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1421 	seq_printf(m, "Boost freq: %d\n",
1422 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1423 		   MEMMODE_BOOST_FREQ_SHIFT);
1424 	seq_printf(m, "HW control enabled: %s\n",
1425 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1426 	seq_printf(m, "SW control enabled: %s\n",
1427 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1428 	seq_printf(m, "Gated voltage change: %s\n",
1429 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1430 	seq_printf(m, "Starting frequency: P%d\n",
1431 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1432 	seq_printf(m, "Max P-state: P%d\n",
1433 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1434 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1435 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1436 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1437 	seq_printf(m, "Render standby enabled: %s\n",
1438 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1439 	seq_puts(m, "Current RS state: ");
1440 	switch (rstdbyctl & RSX_STATUS_MASK) {
1441 	case RSX_STATUS_ON:
1442 		seq_puts(m, "on\n");
1443 		break;
1444 	case RSX_STATUS_RC1:
1445 		seq_puts(m, "RC1\n");
1446 		break;
1447 	case RSX_STATUS_RC1E:
1448 		seq_puts(m, "RC1E\n");
1449 		break;
1450 	case RSX_STATUS_RS1:
1451 		seq_puts(m, "RS1\n");
1452 		break;
1453 	case RSX_STATUS_RS2:
1454 		seq_puts(m, "RS2 (RC6)\n");
1455 		break;
1456 	case RSX_STATUS_RS3:
1457 		seq_puts(m, "RC3 (RC6+)\n");
1458 		break;
1459 	default:
1460 		seq_puts(m, "unknown\n");
1461 		break;
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 static int i915_forcewake_domains(struct seq_file *m, void *data)
1468 {
1469 	struct drm_i915_private *i915 = node_to_i915(m->private);
1470 	struct intel_uncore_forcewake_domain *fw_domain;
1471 	unsigned int tmp;
1472 
1473 	for_each_fw_domain(fw_domain, i915, tmp)
1474 		seq_printf(m, "%s.wake_count = %u\n",
1475 			   intel_uncore_forcewake_domain_to_str(fw_domain->id),
1476 			   READ_ONCE(fw_domain->wake_count));
1477 
1478 	return 0;
1479 }
1480 
1481 static void print_rc6_res(struct seq_file *m,
1482 			  const char *title,
1483 			  const i915_reg_t reg)
1484 {
1485 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1486 
1487 	seq_printf(m, "%s %u (%llu us)\n",
1488 		   title, I915_READ(reg),
1489 		   intel_rc6_residency_us(dev_priv, reg));
1490 }
1491 
1492 static int vlv_drpc_info(struct seq_file *m)
1493 {
1494 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1495 	u32 rpmodectl1, rcctl1, pw_status;
1496 
1497 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1498 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1499 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1500 
1501 	seq_printf(m, "Video Turbo Mode: %s\n",
1502 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1503 	seq_printf(m, "Turbo enabled: %s\n",
1504 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1505 	seq_printf(m, "HW control enabled: %s\n",
1506 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1507 	seq_printf(m, "SW control enabled: %s\n",
1508 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1509 			  GEN6_RP_MEDIA_SW_MODE));
1510 	seq_printf(m, "RC6 Enabled: %s\n",
1511 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1512 					GEN6_RC_CTL_EI_MODE(1))));
1513 	seq_printf(m, "Render Power Well: %s\n",
1514 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1515 	seq_printf(m, "Media Power Well: %s\n",
1516 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1517 
1518 	print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
1519 	print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
1520 
1521 	return i915_forcewake_domains(m, NULL);
1522 }
1523 
1524 static int gen6_drpc_info(struct seq_file *m)
1525 {
1526 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1527 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1528 	u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1529 	unsigned forcewake_count;
1530 	int count = 0;
1531 
1532 	forcewake_count = READ_ONCE(dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count);
1533 	if (forcewake_count) {
1534 		seq_puts(m, "RC information inaccurate because somebody "
1535 			    "holds a forcewake reference \n");
1536 	} else {
1537 		/* NB: we cannot use forcewake, else we read the wrong values */
1538 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1539 			udelay(10);
1540 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1541 	}
1542 
1543 	gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1544 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1545 
1546 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1547 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1548 	if (INTEL_GEN(dev_priv) >= 9) {
1549 		gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1550 		gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1551 	}
1552 
1553 	mutex_lock(&dev_priv->rps.hw_lock);
1554 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1555 	mutex_unlock(&dev_priv->rps.hw_lock);
1556 
1557 	seq_printf(m, "Video Turbo Mode: %s\n",
1558 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1559 	seq_printf(m, "HW control enabled: %s\n",
1560 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1561 	seq_printf(m, "SW control enabled: %s\n",
1562 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1563 			  GEN6_RP_MEDIA_SW_MODE));
1564 	seq_printf(m, "RC1e Enabled: %s\n",
1565 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1566 	seq_printf(m, "RC6 Enabled: %s\n",
1567 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1568 	if (INTEL_GEN(dev_priv) >= 9) {
1569 		seq_printf(m, "Render Well Gating Enabled: %s\n",
1570 			yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1571 		seq_printf(m, "Media Well Gating Enabled: %s\n",
1572 			yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1573 	}
1574 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1575 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1576 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1577 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1578 	seq_puts(m, "Current RC state: ");
1579 	switch (gt_core_status & GEN6_RCn_MASK) {
1580 	case GEN6_RC0:
1581 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1582 			seq_puts(m, "Core Power Down\n");
1583 		else
1584 			seq_puts(m, "on\n");
1585 		break;
1586 	case GEN6_RC3:
1587 		seq_puts(m, "RC3\n");
1588 		break;
1589 	case GEN6_RC6:
1590 		seq_puts(m, "RC6\n");
1591 		break;
1592 	case GEN6_RC7:
1593 		seq_puts(m, "RC7\n");
1594 		break;
1595 	default:
1596 		seq_puts(m, "Unknown\n");
1597 		break;
1598 	}
1599 
1600 	seq_printf(m, "Core Power Down: %s\n",
1601 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1602 	if (INTEL_GEN(dev_priv) >= 9) {
1603 		seq_printf(m, "Render Power Well: %s\n",
1604 			(gen9_powergate_status &
1605 			 GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1606 		seq_printf(m, "Media Power Well: %s\n",
1607 			(gen9_powergate_status &
1608 			 GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1609 	}
1610 
1611 	/* Not exactly sure what this is */
1612 	print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
1613 		      GEN6_GT_GFX_RC6_LOCKED);
1614 	print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
1615 	print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
1616 	print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
1617 
1618 	seq_printf(m, "RC6   voltage: %dmV\n",
1619 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1620 	seq_printf(m, "RC6+  voltage: %dmV\n",
1621 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1622 	seq_printf(m, "RC6++ voltage: %dmV\n",
1623 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1624 	return i915_forcewake_domains(m, NULL);
1625 }
1626 
1627 static int i915_drpc_info(struct seq_file *m, void *unused)
1628 {
1629 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1630 	int err;
1631 
1632 	intel_runtime_pm_get(dev_priv);
1633 
1634 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1635 		err = vlv_drpc_info(m);
1636 	else if (INTEL_GEN(dev_priv) >= 6)
1637 		err = gen6_drpc_info(m);
1638 	else
1639 		err = ironlake_drpc_info(m);
1640 
1641 	intel_runtime_pm_put(dev_priv);
1642 
1643 	return err;
1644 }
1645 
1646 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1647 {
1648 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1649 
1650 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1651 		   dev_priv->fb_tracking.busy_bits);
1652 
1653 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1654 		   dev_priv->fb_tracking.flip_bits);
1655 
1656 	return 0;
1657 }
1658 
1659 static int i915_fbc_status(struct seq_file *m, void *unused)
1660 {
1661 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1662 
1663 	if (!HAS_FBC(dev_priv)) {
1664 		seq_puts(m, "FBC unsupported on this chipset\n");
1665 		return 0;
1666 	}
1667 
1668 	intel_runtime_pm_get(dev_priv);
1669 	mutex_lock(&dev_priv->fbc.lock);
1670 
1671 	if (intel_fbc_is_active(dev_priv))
1672 		seq_puts(m, "FBC enabled\n");
1673 	else
1674 		seq_printf(m, "FBC disabled: %s\n",
1675 			   dev_priv->fbc.no_fbc_reason);
1676 
1677 	if (intel_fbc_is_active(dev_priv)) {
1678 		u32 mask;
1679 
1680 		if (INTEL_GEN(dev_priv) >= 8)
1681 			mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK;
1682 		else if (INTEL_GEN(dev_priv) >= 7)
1683 			mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK;
1684 		else if (INTEL_GEN(dev_priv) >= 5)
1685 			mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK;
1686 		else if (IS_G4X(dev_priv))
1687 			mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK;
1688 		else
1689 			mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING |
1690 							FBC_STAT_COMPRESSED);
1691 
1692 		seq_printf(m, "Compressing: %s\n", yesno(mask));
1693 	}
1694 
1695 	mutex_unlock(&dev_priv->fbc.lock);
1696 	intel_runtime_pm_put(dev_priv);
1697 
1698 	return 0;
1699 }
1700 
1701 static int i915_fbc_false_color_get(void *data, u64 *val)
1702 {
1703 	struct drm_i915_private *dev_priv = data;
1704 
1705 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1706 		return -ENODEV;
1707 
1708 	*val = dev_priv->fbc.false_color;
1709 
1710 	return 0;
1711 }
1712 
1713 static int i915_fbc_false_color_set(void *data, u64 val)
1714 {
1715 	struct drm_i915_private *dev_priv = data;
1716 	u32 reg;
1717 
1718 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1719 		return -ENODEV;
1720 
1721 	mutex_lock(&dev_priv->fbc.lock);
1722 
1723 	reg = I915_READ(ILK_DPFC_CONTROL);
1724 	dev_priv->fbc.false_color = val;
1725 
1726 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1727 		   (reg | FBC_CTL_FALSE_COLOR) :
1728 		   (reg & ~FBC_CTL_FALSE_COLOR));
1729 
1730 	mutex_unlock(&dev_priv->fbc.lock);
1731 	return 0;
1732 }
1733 
1734 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops,
1735 			i915_fbc_false_color_get, i915_fbc_false_color_set,
1736 			"%llu\n");
1737 
1738 static int i915_ips_status(struct seq_file *m, void *unused)
1739 {
1740 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1741 
1742 	if (!HAS_IPS(dev_priv)) {
1743 		seq_puts(m, "not supported\n");
1744 		return 0;
1745 	}
1746 
1747 	intel_runtime_pm_get(dev_priv);
1748 
1749 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1750 		   yesno(i915.enable_ips));
1751 
1752 	if (INTEL_GEN(dev_priv) >= 8) {
1753 		seq_puts(m, "Currently: unknown\n");
1754 	} else {
1755 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1756 			seq_puts(m, "Currently: enabled\n");
1757 		else
1758 			seq_puts(m, "Currently: disabled\n");
1759 	}
1760 
1761 	intel_runtime_pm_put(dev_priv);
1762 
1763 	return 0;
1764 }
1765 
1766 static int i915_sr_status(struct seq_file *m, void *unused)
1767 {
1768 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1769 	bool sr_enabled = false;
1770 
1771 	intel_runtime_pm_get(dev_priv);
1772 	intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1773 
1774 	if (INTEL_GEN(dev_priv) >= 9)
1775 		/* no global SR status; inspect per-plane WM */;
1776 	else if (HAS_PCH_SPLIT(dev_priv))
1777 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1778 	else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
1779 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1780 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1781 	else if (IS_I915GM(dev_priv))
1782 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1783 	else if (IS_PINEVIEW(dev_priv))
1784 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1785 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1786 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1787 
1788 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1789 	intel_runtime_pm_put(dev_priv);
1790 
1791 	seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
1792 
1793 	return 0;
1794 }
1795 
1796 static int i915_emon_status(struct seq_file *m, void *unused)
1797 {
1798 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1799 	struct drm_device *dev = &dev_priv->drm;
1800 	unsigned long temp, chipset, gfx;
1801 	int ret;
1802 
1803 	if (!IS_GEN5(dev_priv))
1804 		return -ENODEV;
1805 
1806 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1807 	if (ret)
1808 		return ret;
1809 
1810 	temp = i915_mch_val(dev_priv);
1811 	chipset = i915_chipset_val(dev_priv);
1812 	gfx = i915_gfx_val(dev_priv);
1813 	mutex_unlock(&dev->struct_mutex);
1814 
1815 	seq_printf(m, "GMCH temp: %ld\n", temp);
1816 	seq_printf(m, "Chipset power: %ld\n", chipset);
1817 	seq_printf(m, "GFX power: %ld\n", gfx);
1818 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1819 
1820 	return 0;
1821 }
1822 
1823 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1824 {
1825 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1826 	int ret = 0;
1827 	int gpu_freq, ia_freq;
1828 	unsigned int max_gpu_freq, min_gpu_freq;
1829 
1830 	if (!HAS_LLC(dev_priv)) {
1831 		seq_puts(m, "unsupported on this chipset\n");
1832 		return 0;
1833 	}
1834 
1835 	intel_runtime_pm_get(dev_priv);
1836 
1837 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1838 	if (ret)
1839 		goto out;
1840 
1841 	if (IS_GEN9_BC(dev_priv)) {
1842 		/* Convert GT frequency to 50 HZ units */
1843 		min_gpu_freq =
1844 			dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1845 		max_gpu_freq =
1846 			dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1847 	} else {
1848 		min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1849 		max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1850 	}
1851 
1852 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1853 
1854 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1855 		ia_freq = gpu_freq;
1856 		sandybridge_pcode_read(dev_priv,
1857 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1858 				       &ia_freq);
1859 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1860 			   intel_gpu_freq(dev_priv, (gpu_freq *
1861 						     (IS_GEN9_BC(dev_priv) ?
1862 						      GEN9_FREQ_SCALER : 1))),
1863 			   ((ia_freq >> 0) & 0xff) * 100,
1864 			   ((ia_freq >> 8) & 0xff) * 100);
1865 	}
1866 
1867 	mutex_unlock(&dev_priv->rps.hw_lock);
1868 
1869 out:
1870 	intel_runtime_pm_put(dev_priv);
1871 	return ret;
1872 }
1873 
1874 static int i915_opregion(struct seq_file *m, void *unused)
1875 {
1876 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1877 	struct drm_device *dev = &dev_priv->drm;
1878 	struct intel_opregion *opregion = &dev_priv->opregion;
1879 	int ret;
1880 
1881 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1882 	if (ret)
1883 		goto out;
1884 
1885 	if (opregion->header)
1886 		seq_write(m, opregion->header, OPREGION_SIZE);
1887 
1888 	mutex_unlock(&dev->struct_mutex);
1889 
1890 out:
1891 	return 0;
1892 }
1893 
1894 static int i915_vbt(struct seq_file *m, void *unused)
1895 {
1896 	struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1897 
1898 	if (opregion->vbt)
1899 		seq_write(m, opregion->vbt, opregion->vbt_size);
1900 
1901 	return 0;
1902 }
1903 
1904 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1905 {
1906 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1907 	struct drm_device *dev = &dev_priv->drm;
1908 	struct intel_framebuffer *fbdev_fb = NULL;
1909 	struct drm_framebuffer *drm_fb;
1910 	int ret;
1911 
1912 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1913 	if (ret)
1914 		return ret;
1915 
1916 #ifdef CONFIG_DRM_FBDEV_EMULATION
1917 	if (dev_priv->fbdev) {
1918 		fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1919 
1920 		seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1921 			   fbdev_fb->base.width,
1922 			   fbdev_fb->base.height,
1923 			   fbdev_fb->base.format->depth,
1924 			   fbdev_fb->base.format->cpp[0] * 8,
1925 			   fbdev_fb->base.modifier,
1926 			   drm_framebuffer_read_refcount(&fbdev_fb->base));
1927 		describe_obj(m, fbdev_fb->obj);
1928 		seq_putc(m, '\n');
1929 	}
1930 #endif
1931 
1932 	mutex_lock(&dev->mode_config.fb_lock);
1933 	drm_for_each_fb(drm_fb, dev) {
1934 		struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1935 		if (fb == fbdev_fb)
1936 			continue;
1937 
1938 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1939 			   fb->base.width,
1940 			   fb->base.height,
1941 			   fb->base.format->depth,
1942 			   fb->base.format->cpp[0] * 8,
1943 			   fb->base.modifier,
1944 			   drm_framebuffer_read_refcount(&fb->base));
1945 		describe_obj(m, fb->obj);
1946 		seq_putc(m, '\n');
1947 	}
1948 	mutex_unlock(&dev->mode_config.fb_lock);
1949 	mutex_unlock(&dev->struct_mutex);
1950 
1951 	return 0;
1952 }
1953 
1954 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1955 {
1956 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u)",
1957 		   ring->space, ring->head, ring->tail);
1958 }
1959 
1960 static int i915_context_status(struct seq_file *m, void *unused)
1961 {
1962 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1963 	struct drm_device *dev = &dev_priv->drm;
1964 	struct intel_engine_cs *engine;
1965 	struct i915_gem_context *ctx;
1966 	enum intel_engine_id id;
1967 	int ret;
1968 
1969 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1970 	if (ret)
1971 		return ret;
1972 
1973 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1974 		seq_printf(m, "HW context %u ", ctx->hw_id);
1975 		if (ctx->pid) {
1976 			struct task_struct *task;
1977 
1978 			task = get_pid_task(ctx->pid, PIDTYPE_PID);
1979 			if (task) {
1980 				seq_printf(m, "(%s [%d]) ",
1981 					   task->comm, task->pid);
1982 				put_task_struct(task);
1983 			}
1984 		} else if (IS_ERR(ctx->file_priv)) {
1985 			seq_puts(m, "(deleted) ");
1986 		} else {
1987 			seq_puts(m, "(kernel) ");
1988 		}
1989 
1990 		seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1991 		seq_putc(m, '\n');
1992 
1993 		for_each_engine(engine, dev_priv, id) {
1994 			struct intel_context *ce = &ctx->engine[engine->id];
1995 
1996 			seq_printf(m, "%s: ", engine->name);
1997 			seq_putc(m, ce->initialised ? 'I' : 'i');
1998 			if (ce->state)
1999 				describe_obj(m, ce->state->obj);
2000 			if (ce->ring)
2001 				describe_ctx_ring(m, ce->ring);
2002 			seq_putc(m, '\n');
2003 		}
2004 
2005 		seq_printf(m,
2006 			   "\tvma hashtable size=%u (actual %lu), count=%u\n",
2007 			   ctx->vma_lut.ht_size,
2008 			   BIT(ctx->vma_lut.ht_bits),
2009 			   ctx->vma_lut.ht_count);
2010 
2011 		seq_putc(m, '\n');
2012 	}
2013 
2014 	mutex_unlock(&dev->struct_mutex);
2015 
2016 	return 0;
2017 }
2018 
2019 static void i915_dump_lrc_obj(struct seq_file *m,
2020 			      struct i915_gem_context *ctx,
2021 			      struct intel_engine_cs *engine)
2022 {
2023 	struct i915_vma *vma = ctx->engine[engine->id].state;
2024 	struct page *page;
2025 	int j;
2026 
2027 	seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2028 
2029 	if (!vma) {
2030 		seq_puts(m, "\tFake context\n");
2031 		return;
2032 	}
2033 
2034 	if (vma->flags & I915_VMA_GLOBAL_BIND)
2035 		seq_printf(m, "\tBound in GGTT at 0x%08x\n",
2036 			   i915_ggtt_offset(vma));
2037 
2038 	if (i915_gem_object_pin_pages(vma->obj)) {
2039 		seq_puts(m, "\tFailed to get pages for context object\n\n");
2040 		return;
2041 	}
2042 
2043 	page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
2044 	if (page) {
2045 		u32 *reg_state = kmap_atomic(page);
2046 
2047 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2048 			seq_printf(m,
2049 				   "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2050 				   j * 4,
2051 				   reg_state[j], reg_state[j + 1],
2052 				   reg_state[j + 2], reg_state[j + 3]);
2053 		}
2054 		kunmap_atomic(reg_state);
2055 	}
2056 
2057 	i915_gem_object_unpin_pages(vma->obj);
2058 	seq_putc(m, '\n');
2059 }
2060 
2061 static int i915_dump_lrc(struct seq_file *m, void *unused)
2062 {
2063 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2064 	struct drm_device *dev = &dev_priv->drm;
2065 	struct intel_engine_cs *engine;
2066 	struct i915_gem_context *ctx;
2067 	enum intel_engine_id id;
2068 	int ret;
2069 
2070 	if (!i915.enable_execlists) {
2071 		seq_printf(m, "Logical Ring Contexts are disabled\n");
2072 		return 0;
2073 	}
2074 
2075 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2076 	if (ret)
2077 		return ret;
2078 
2079 	list_for_each_entry(ctx, &dev_priv->context_list, link)
2080 		for_each_engine(engine, dev_priv, id)
2081 			i915_dump_lrc_obj(m, ctx, engine);
2082 
2083 	mutex_unlock(&dev->struct_mutex);
2084 
2085 	return 0;
2086 }
2087 
2088 static const char *swizzle_string(unsigned swizzle)
2089 {
2090 	switch (swizzle) {
2091 	case I915_BIT_6_SWIZZLE_NONE:
2092 		return "none";
2093 	case I915_BIT_6_SWIZZLE_9:
2094 		return "bit9";
2095 	case I915_BIT_6_SWIZZLE_9_10:
2096 		return "bit9/bit10";
2097 	case I915_BIT_6_SWIZZLE_9_11:
2098 		return "bit9/bit11";
2099 	case I915_BIT_6_SWIZZLE_9_10_11:
2100 		return "bit9/bit10/bit11";
2101 	case I915_BIT_6_SWIZZLE_9_17:
2102 		return "bit9/bit17";
2103 	case I915_BIT_6_SWIZZLE_9_10_17:
2104 		return "bit9/bit10/bit17";
2105 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2106 		return "unknown";
2107 	}
2108 
2109 	return "bug";
2110 }
2111 
2112 static int i915_swizzle_info(struct seq_file *m, void *data)
2113 {
2114 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2115 
2116 	intel_runtime_pm_get(dev_priv);
2117 
2118 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2119 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2120 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2121 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2122 
2123 	if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2124 		seq_printf(m, "DDC = 0x%08x\n",
2125 			   I915_READ(DCC));
2126 		seq_printf(m, "DDC2 = 0x%08x\n",
2127 			   I915_READ(DCC2));
2128 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2129 			   I915_READ16(C0DRB3));
2130 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2131 			   I915_READ16(C1DRB3));
2132 	} else if (INTEL_GEN(dev_priv) >= 6) {
2133 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2134 			   I915_READ(MAD_DIMM_C0));
2135 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2136 			   I915_READ(MAD_DIMM_C1));
2137 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2138 			   I915_READ(MAD_DIMM_C2));
2139 		seq_printf(m, "TILECTL = 0x%08x\n",
2140 			   I915_READ(TILECTL));
2141 		if (INTEL_GEN(dev_priv) >= 8)
2142 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2143 				   I915_READ(GAMTARBMODE));
2144 		else
2145 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2146 				   I915_READ(ARB_MODE));
2147 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2148 			   I915_READ(DISP_ARB_CTL));
2149 	}
2150 
2151 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2152 		seq_puts(m, "L-shaped memory detected\n");
2153 
2154 	intel_runtime_pm_put(dev_priv);
2155 
2156 	return 0;
2157 }
2158 
2159 static int per_file_ctx(int id, void *ptr, void *data)
2160 {
2161 	struct i915_gem_context *ctx = ptr;
2162 	struct seq_file *m = data;
2163 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2164 
2165 	if (!ppgtt) {
2166 		seq_printf(m, "  no ppgtt for context %d\n",
2167 			   ctx->user_handle);
2168 		return 0;
2169 	}
2170 
2171 	if (i915_gem_context_is_default(ctx))
2172 		seq_puts(m, "  default context:\n");
2173 	else
2174 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2175 	ppgtt->debug_dump(ppgtt, m);
2176 
2177 	return 0;
2178 }
2179 
2180 static void gen8_ppgtt_info(struct seq_file *m,
2181 			    struct drm_i915_private *dev_priv)
2182 {
2183 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2184 	struct intel_engine_cs *engine;
2185 	enum intel_engine_id id;
2186 	int i;
2187 
2188 	if (!ppgtt)
2189 		return;
2190 
2191 	for_each_engine(engine, dev_priv, id) {
2192 		seq_printf(m, "%s\n", engine->name);
2193 		for (i = 0; i < 4; i++) {
2194 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2195 			pdp <<= 32;
2196 			pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2197 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2198 		}
2199 	}
2200 }
2201 
2202 static void gen6_ppgtt_info(struct seq_file *m,
2203 			    struct drm_i915_private *dev_priv)
2204 {
2205 	struct intel_engine_cs *engine;
2206 	enum intel_engine_id id;
2207 
2208 	if (IS_GEN6(dev_priv))
2209 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2210 
2211 	for_each_engine(engine, dev_priv, id) {
2212 		seq_printf(m, "%s\n", engine->name);
2213 		if (IS_GEN7(dev_priv))
2214 			seq_printf(m, "GFX_MODE: 0x%08x\n",
2215 				   I915_READ(RING_MODE_GEN7(engine)));
2216 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2217 			   I915_READ(RING_PP_DIR_BASE(engine)));
2218 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2219 			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
2220 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2221 			   I915_READ(RING_PP_DIR_DCLV(engine)));
2222 	}
2223 	if (dev_priv->mm.aliasing_ppgtt) {
2224 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2225 
2226 		seq_puts(m, "aliasing PPGTT:\n");
2227 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2228 
2229 		ppgtt->debug_dump(ppgtt, m);
2230 	}
2231 
2232 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2233 }
2234 
2235 static int i915_ppgtt_info(struct seq_file *m, void *data)
2236 {
2237 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2238 	struct drm_device *dev = &dev_priv->drm;
2239 	struct drm_file *file;
2240 	int ret;
2241 
2242 	mutex_lock(&dev->filelist_mutex);
2243 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2244 	if (ret)
2245 		goto out_unlock;
2246 
2247 	intel_runtime_pm_get(dev_priv);
2248 
2249 	if (INTEL_GEN(dev_priv) >= 8)
2250 		gen8_ppgtt_info(m, dev_priv);
2251 	else if (INTEL_GEN(dev_priv) >= 6)
2252 		gen6_ppgtt_info(m, dev_priv);
2253 
2254 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2255 		struct drm_i915_file_private *file_priv = file->driver_priv;
2256 		struct task_struct *task;
2257 
2258 		task = get_pid_task(file->pid, PIDTYPE_PID);
2259 		if (!task) {
2260 			ret = -ESRCH;
2261 			goto out_rpm;
2262 		}
2263 		seq_printf(m, "\nproc: %s\n", task->comm);
2264 		put_task_struct(task);
2265 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2266 			     (void *)(unsigned long)m);
2267 	}
2268 
2269 out_rpm:
2270 	intel_runtime_pm_put(dev_priv);
2271 	mutex_unlock(&dev->struct_mutex);
2272 out_unlock:
2273 	mutex_unlock(&dev->filelist_mutex);
2274 	return ret;
2275 }
2276 
2277 static int count_irq_waiters(struct drm_i915_private *i915)
2278 {
2279 	struct intel_engine_cs *engine;
2280 	enum intel_engine_id id;
2281 	int count = 0;
2282 
2283 	for_each_engine(engine, i915, id)
2284 		count += intel_engine_has_waiter(engine);
2285 
2286 	return count;
2287 }
2288 
2289 static const char *rps_power_to_str(unsigned int power)
2290 {
2291 	static const char * const strings[] = {
2292 		[LOW_POWER] = "low power",
2293 		[BETWEEN] = "mixed",
2294 		[HIGH_POWER] = "high power",
2295 	};
2296 
2297 	if (power >= ARRAY_SIZE(strings) || !strings[power])
2298 		return "unknown";
2299 
2300 	return strings[power];
2301 }
2302 
2303 static int i915_rps_boost_info(struct seq_file *m, void *data)
2304 {
2305 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2306 	struct drm_device *dev = &dev_priv->drm;
2307 	struct drm_file *file;
2308 
2309 	seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2310 	seq_printf(m, "GPU busy? %s [%d requests]\n",
2311 		   yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
2312 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2313 	seq_printf(m, "Frequency requested %d\n",
2314 		   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
2315 	seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2316 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2317 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2318 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2319 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2320 	seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2321 		   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
2322 		   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2323 		   intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
2324 
2325 	mutex_lock(&dev->filelist_mutex);
2326 	spin_lock(&dev_priv->rps.client_lock);
2327 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2328 		struct drm_i915_file_private *file_priv = file->driver_priv;
2329 		struct task_struct *task;
2330 
2331 		rcu_read_lock();
2332 		task = pid_task(file->pid, PIDTYPE_PID);
2333 		seq_printf(m, "%s [%d]: %d boosts%s\n",
2334 			   task ? task->comm : "<unknown>",
2335 			   task ? task->pid : -1,
2336 			   file_priv->rps.boosts,
2337 			   list_empty(&file_priv->rps.link) ? "" : ", active");
2338 		rcu_read_unlock();
2339 	}
2340 	seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2341 	spin_unlock(&dev_priv->rps.client_lock);
2342 	mutex_unlock(&dev->filelist_mutex);
2343 
2344 	if (INTEL_GEN(dev_priv) >= 6 &&
2345 	    dev_priv->rps.enabled &&
2346 	    dev_priv->gt.active_requests) {
2347 		u32 rpup, rpupei;
2348 		u32 rpdown, rpdownei;
2349 
2350 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2351 		rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2352 		rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2353 		rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2354 		rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2355 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2356 
2357 		seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2358 			   rps_power_to_str(dev_priv->rps.power));
2359 		seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2360 			   rpup && rpupei ? 100 * rpup / rpupei : 0,
2361 			   dev_priv->rps.up_threshold);
2362 		seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2363 			   rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
2364 			   dev_priv->rps.down_threshold);
2365 	} else {
2366 		seq_puts(m, "\nRPS Autotuning inactive\n");
2367 	}
2368 
2369 	return 0;
2370 }
2371 
2372 static int i915_llc(struct seq_file *m, void *data)
2373 {
2374 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2375 	const bool edram = INTEL_GEN(dev_priv) > 8;
2376 
2377 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2378 	seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2379 		   intel_uncore_edram_size(dev_priv)/1024/1024);
2380 
2381 	return 0;
2382 }
2383 
2384 static int i915_huc_load_status_info(struct seq_file *m, void *data)
2385 {
2386 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2387 	struct intel_uc_fw *huc_fw = &dev_priv->huc.fw;
2388 
2389 	if (!HAS_HUC_UCODE(dev_priv))
2390 		return 0;
2391 
2392 	seq_puts(m, "HuC firmware status:\n");
2393 	seq_printf(m, "\tpath: %s\n", huc_fw->path);
2394 	seq_printf(m, "\tfetch: %s\n",
2395 		intel_uc_fw_status_repr(huc_fw->fetch_status));
2396 	seq_printf(m, "\tload: %s\n",
2397 		intel_uc_fw_status_repr(huc_fw->load_status));
2398 	seq_printf(m, "\tversion wanted: %d.%d\n",
2399 		huc_fw->major_ver_wanted, huc_fw->minor_ver_wanted);
2400 	seq_printf(m, "\tversion found: %d.%d\n",
2401 		huc_fw->major_ver_found, huc_fw->minor_ver_found);
2402 	seq_printf(m, "\theader: offset is %d; size = %d\n",
2403 		huc_fw->header_offset, huc_fw->header_size);
2404 	seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2405 		huc_fw->ucode_offset, huc_fw->ucode_size);
2406 	seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2407 		huc_fw->rsa_offset, huc_fw->rsa_size);
2408 
2409 	intel_runtime_pm_get(dev_priv);
2410 	seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
2411 	intel_runtime_pm_put(dev_priv);
2412 
2413 	return 0;
2414 }
2415 
2416 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2417 {
2418 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2419 	struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
2420 	u32 tmp, i;
2421 
2422 	if (!HAS_GUC_UCODE(dev_priv))
2423 		return 0;
2424 
2425 	seq_printf(m, "GuC firmware status:\n");
2426 	seq_printf(m, "\tpath: %s\n",
2427 		guc_fw->path);
2428 	seq_printf(m, "\tfetch: %s\n",
2429 		intel_uc_fw_status_repr(guc_fw->fetch_status));
2430 	seq_printf(m, "\tload: %s\n",
2431 		intel_uc_fw_status_repr(guc_fw->load_status));
2432 	seq_printf(m, "\tversion wanted: %d.%d\n",
2433 		guc_fw->major_ver_wanted, guc_fw->minor_ver_wanted);
2434 	seq_printf(m, "\tversion found: %d.%d\n",
2435 		guc_fw->major_ver_found, guc_fw->minor_ver_found);
2436 	seq_printf(m, "\theader: offset is %d; size = %d\n",
2437 		guc_fw->header_offset, guc_fw->header_size);
2438 	seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2439 		guc_fw->ucode_offset, guc_fw->ucode_size);
2440 	seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2441 		guc_fw->rsa_offset, guc_fw->rsa_size);
2442 
2443 	intel_runtime_pm_get(dev_priv);
2444 
2445 	tmp = I915_READ(GUC_STATUS);
2446 
2447 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2448 	seq_printf(m, "\tBootrom status = 0x%x\n",
2449 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2450 	seq_printf(m, "\tuKernel status = 0x%x\n",
2451 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2452 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2453 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2454 	seq_puts(m, "\nScratch registers:\n");
2455 	for (i = 0; i < 16; i++)
2456 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2457 
2458 	intel_runtime_pm_put(dev_priv);
2459 
2460 	return 0;
2461 }
2462 
2463 static void i915_guc_log_info(struct seq_file *m,
2464 			      struct drm_i915_private *dev_priv)
2465 {
2466 	struct intel_guc *guc = &dev_priv->guc;
2467 
2468 	seq_puts(m, "\nGuC logging stats:\n");
2469 
2470 	seq_printf(m, "\tISR:   flush count %10u, overflow count %10u\n",
2471 		   guc->log.flush_count[GUC_ISR_LOG_BUFFER],
2472 		   guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
2473 
2474 	seq_printf(m, "\tDPC:   flush count %10u, overflow count %10u\n",
2475 		   guc->log.flush_count[GUC_DPC_LOG_BUFFER],
2476 		   guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
2477 
2478 	seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
2479 		   guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
2480 		   guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
2481 
2482 	seq_printf(m, "\tTotal flush interrupt count: %u\n",
2483 		   guc->log.flush_interrupt_count);
2484 
2485 	seq_printf(m, "\tCapture miss count: %u\n",
2486 		   guc->log.capture_miss_count);
2487 }
2488 
2489 static void i915_guc_client_info(struct seq_file *m,
2490 				 struct drm_i915_private *dev_priv,
2491 				 struct i915_guc_client *client)
2492 {
2493 	struct intel_engine_cs *engine;
2494 	enum intel_engine_id id;
2495 	uint64_t tot = 0;
2496 
2497 	seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
2498 		client->priority, client->stage_id, client->proc_desc_offset);
2499 	seq_printf(m, "\tDoorbell id %d, offset: 0x%lx, cookie 0x%x\n",
2500 		client->doorbell_id, client->doorbell_offset, client->doorbell_cookie);
2501 	seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2502 		client->wq_size, client->wq_offset, client->wq_tail);
2503 
2504 	seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2505 
2506 	for_each_engine(engine, dev_priv, id) {
2507 		u64 submissions = client->submissions[id];
2508 		tot += submissions;
2509 		seq_printf(m, "\tSubmissions: %llu %s\n",
2510 				submissions, engine->name);
2511 	}
2512 	seq_printf(m, "\tTotal: %llu\n", tot);
2513 }
2514 
2515 static bool check_guc_submission(struct seq_file *m)
2516 {
2517 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2518 	const struct intel_guc *guc = &dev_priv->guc;
2519 
2520 	if (!guc->execbuf_client) {
2521 		seq_printf(m, "GuC submission %s\n",
2522 			   HAS_GUC_SCHED(dev_priv) ?
2523 			   "disabled" :
2524 			   "not supported");
2525 		return false;
2526 	}
2527 
2528 	return true;
2529 }
2530 
2531 static int i915_guc_info(struct seq_file *m, void *data)
2532 {
2533 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2534 	const struct intel_guc *guc = &dev_priv->guc;
2535 
2536 	if (!check_guc_submission(m))
2537 		return 0;
2538 
2539 	seq_printf(m, "Doorbell map:\n");
2540 	seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
2541 	seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
2542 
2543 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
2544 	i915_guc_client_info(m, dev_priv, guc->execbuf_client);
2545 
2546 	i915_guc_log_info(m, dev_priv);
2547 
2548 	/* Add more as required ... */
2549 
2550 	return 0;
2551 }
2552 
2553 static int i915_guc_stage_pool(struct seq_file *m, void *data)
2554 {
2555 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2556 	const struct intel_guc *guc = &dev_priv->guc;
2557 	struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
2558 	struct i915_guc_client *client = guc->execbuf_client;
2559 	unsigned int tmp;
2560 	int index;
2561 
2562 	if (!check_guc_submission(m))
2563 		return 0;
2564 
2565 	for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
2566 		struct intel_engine_cs *engine;
2567 
2568 		if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
2569 			continue;
2570 
2571 		seq_printf(m, "GuC stage descriptor %u:\n", index);
2572 		seq_printf(m, "\tIndex: %u\n", desc->stage_id);
2573 		seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
2574 		seq_printf(m, "\tPriority: %d\n", desc->priority);
2575 		seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
2576 		seq_printf(m, "\tEngines used: 0x%x\n",
2577 			   desc->engines_used);
2578 		seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
2579 			   desc->db_trigger_phy,
2580 			   desc->db_trigger_cpu,
2581 			   desc->db_trigger_uk);
2582 		seq_printf(m, "\tProcess descriptor: 0x%x\n",
2583 			   desc->process_desc);
2584 		seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
2585 			   desc->wq_addr, desc->wq_size);
2586 		seq_putc(m, '\n');
2587 
2588 		for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
2589 			u32 guc_engine_id = engine->guc_id;
2590 			struct guc_execlist_context *lrc =
2591 						&desc->lrc[guc_engine_id];
2592 
2593 			seq_printf(m, "\t%s LRC:\n", engine->name);
2594 			seq_printf(m, "\t\tContext desc: 0x%x\n",
2595 				   lrc->context_desc);
2596 			seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
2597 			seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
2598 			seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
2599 			seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
2600 			seq_putc(m, '\n');
2601 		}
2602 	}
2603 
2604 	return 0;
2605 }
2606 
2607 static int i915_guc_log_dump(struct seq_file *m, void *data)
2608 {
2609 	struct drm_info_node *node = m->private;
2610 	struct drm_i915_private *dev_priv = node_to_i915(node);
2611 	bool dump_load_err = !!node->info_ent->data;
2612 	struct drm_i915_gem_object *obj = NULL;
2613 	u32 *log;
2614 	int i = 0;
2615 
2616 	if (dump_load_err)
2617 		obj = dev_priv->guc.load_err_log;
2618 	else if (dev_priv->guc.log.vma)
2619 		obj = dev_priv->guc.log.vma->obj;
2620 
2621 	if (!obj)
2622 		return 0;
2623 
2624 	log = i915_gem_object_pin_map(obj, I915_MAP_WC);
2625 	if (IS_ERR(log)) {
2626 		DRM_DEBUG("Failed to pin object\n");
2627 		seq_puts(m, "(log data unaccessible)\n");
2628 		return PTR_ERR(log);
2629 	}
2630 
2631 	for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
2632 		seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2633 			   *(log + i), *(log + i + 1),
2634 			   *(log + i + 2), *(log + i + 3));
2635 
2636 	seq_putc(m, '\n');
2637 
2638 	i915_gem_object_unpin_map(obj);
2639 
2640 	return 0;
2641 }
2642 
2643 static int i915_guc_log_control_get(void *data, u64 *val)
2644 {
2645 	struct drm_i915_private *dev_priv = data;
2646 
2647 	if (!dev_priv->guc.log.vma)
2648 		return -EINVAL;
2649 
2650 	*val = i915.guc_log_level;
2651 
2652 	return 0;
2653 }
2654 
2655 static int i915_guc_log_control_set(void *data, u64 val)
2656 {
2657 	struct drm_i915_private *dev_priv = data;
2658 	int ret;
2659 
2660 	if (!dev_priv->guc.log.vma)
2661 		return -EINVAL;
2662 
2663 	ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
2664 	if (ret)
2665 		return ret;
2666 
2667 	intel_runtime_pm_get(dev_priv);
2668 	ret = i915_guc_log_control(dev_priv, val);
2669 	intel_runtime_pm_put(dev_priv);
2670 
2671 	mutex_unlock(&dev_priv->drm.struct_mutex);
2672 	return ret;
2673 }
2674 
2675 DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
2676 			i915_guc_log_control_get, i915_guc_log_control_set,
2677 			"%lld\n");
2678 
2679 static const char *psr2_live_status(u32 val)
2680 {
2681 	static const char * const live_status[] = {
2682 		"IDLE",
2683 		"CAPTURE",
2684 		"CAPTURE_FS",
2685 		"SLEEP",
2686 		"BUFON_FW",
2687 		"ML_UP",
2688 		"SU_STANDBY",
2689 		"FAST_SLEEP",
2690 		"DEEP_SLEEP",
2691 		"BUF_ON",
2692 		"TG_ON"
2693 	};
2694 
2695 	val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
2696 	if (val < ARRAY_SIZE(live_status))
2697 		return live_status[val];
2698 
2699 	return "unknown";
2700 }
2701 
2702 static int i915_edp_psr_status(struct seq_file *m, void *data)
2703 {
2704 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2705 	u32 psrperf = 0;
2706 	u32 stat[3];
2707 	enum pipe pipe;
2708 	bool enabled = false;
2709 
2710 	if (!HAS_PSR(dev_priv)) {
2711 		seq_puts(m, "PSR not supported\n");
2712 		return 0;
2713 	}
2714 
2715 	intel_runtime_pm_get(dev_priv);
2716 
2717 	mutex_lock(&dev_priv->psr.lock);
2718 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2719 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2720 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2721 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2722 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2723 		   dev_priv->psr.busy_frontbuffer_bits);
2724 	seq_printf(m, "Re-enable work scheduled: %s\n",
2725 		   yesno(work_busy(&dev_priv->psr.work.work)));
2726 
2727 	if (HAS_DDI(dev_priv)) {
2728 		if (dev_priv->psr.psr2_support)
2729 			enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
2730 		else
2731 			enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2732 	} else {
2733 		for_each_pipe(dev_priv, pipe) {
2734 			enum transcoder cpu_transcoder =
2735 				intel_pipe_to_cpu_transcoder(dev_priv, pipe);
2736 			enum intel_display_power_domain power_domain;
2737 
2738 			power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
2739 			if (!intel_display_power_get_if_enabled(dev_priv,
2740 								power_domain))
2741 				continue;
2742 
2743 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2744 				VLV_EDP_PSR_CURR_STATE_MASK;
2745 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2746 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2747 				enabled = true;
2748 
2749 			intel_display_power_put(dev_priv, power_domain);
2750 		}
2751 	}
2752 
2753 	seq_printf(m, "Main link in standby mode: %s\n",
2754 		   yesno(dev_priv->psr.link_standby));
2755 
2756 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2757 
2758 	if (!HAS_DDI(dev_priv))
2759 		for_each_pipe(dev_priv, pipe) {
2760 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2761 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2762 				seq_printf(m, " pipe %c", pipe_name(pipe));
2763 		}
2764 	seq_puts(m, "\n");
2765 
2766 	/*
2767 	 * VLV/CHV PSR has no kind of performance counter
2768 	 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2769 	 */
2770 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2771 		psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2772 			EDP_PSR_PERF_CNT_MASK;
2773 
2774 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2775 	}
2776 	if (dev_priv->psr.psr2_support) {
2777 		u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
2778 
2779 		seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
2780 			   psr2, psr2_live_status(psr2));
2781 	}
2782 	mutex_unlock(&dev_priv->psr.lock);
2783 
2784 	intel_runtime_pm_put(dev_priv);
2785 	return 0;
2786 }
2787 
2788 static int i915_sink_crc(struct seq_file *m, void *data)
2789 {
2790 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2791 	struct drm_device *dev = &dev_priv->drm;
2792 	struct intel_connector *connector;
2793 	struct drm_connector_list_iter conn_iter;
2794 	struct intel_dp *intel_dp = NULL;
2795 	int ret;
2796 	u8 crc[6];
2797 
2798 	drm_modeset_lock_all(dev);
2799 	drm_connector_list_iter_begin(dev, &conn_iter);
2800 	for_each_intel_connector_iter(connector, &conn_iter) {
2801 		struct drm_crtc *crtc;
2802 
2803 		if (!connector->base.state->best_encoder)
2804 			continue;
2805 
2806 		crtc = connector->base.state->crtc;
2807 		if (!crtc->state->active)
2808 			continue;
2809 
2810 		if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2811 			continue;
2812 
2813 		intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2814 
2815 		ret = intel_dp_sink_crc(intel_dp, crc);
2816 		if (ret)
2817 			goto out;
2818 
2819 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2820 			   crc[0], crc[1], crc[2],
2821 			   crc[3], crc[4], crc[5]);
2822 		goto out;
2823 	}
2824 	ret = -ENODEV;
2825 out:
2826 	drm_connector_list_iter_end(&conn_iter);
2827 	drm_modeset_unlock_all(dev);
2828 	return ret;
2829 }
2830 
2831 static int i915_energy_uJ(struct seq_file *m, void *data)
2832 {
2833 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2834 	u64 power;
2835 	u32 units;
2836 
2837 	if (INTEL_GEN(dev_priv) < 6)
2838 		return -ENODEV;
2839 
2840 	intel_runtime_pm_get(dev_priv);
2841 
2842 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2843 	power = (power & 0x1f00) >> 8;
2844 	units = 1000000 / (1 << power); /* convert to uJ */
2845 	power = I915_READ(MCH_SECP_NRG_STTS);
2846 	power *= units;
2847 
2848 	intel_runtime_pm_put(dev_priv);
2849 
2850 	seq_printf(m, "%llu", (long long unsigned)power);
2851 
2852 	return 0;
2853 }
2854 
2855 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2856 {
2857 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2858 	struct pci_dev *pdev = dev_priv->drm.pdev;
2859 
2860 	if (!HAS_RUNTIME_PM(dev_priv))
2861 		seq_puts(m, "Runtime power management not supported\n");
2862 
2863 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2864 	seq_printf(m, "IRQs disabled: %s\n",
2865 		   yesno(!intel_irqs_enabled(dev_priv)));
2866 #ifdef CONFIG_PM
2867 	seq_printf(m, "Usage count: %d\n",
2868 		   atomic_read(&dev_priv->drm.dev->power.usage_count));
2869 #else
2870 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2871 #endif
2872 	seq_printf(m, "PCI device power state: %s [%d]\n",
2873 		   pci_power_name(pdev->current_state),
2874 		   pdev->current_state);
2875 
2876 	return 0;
2877 }
2878 
2879 static int i915_power_domain_info(struct seq_file *m, void *unused)
2880 {
2881 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2882 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2883 	int i;
2884 
2885 	mutex_lock(&power_domains->lock);
2886 
2887 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2888 	for (i = 0; i < power_domains->power_well_count; i++) {
2889 		struct i915_power_well *power_well;
2890 		enum intel_display_power_domain power_domain;
2891 
2892 		power_well = &power_domains->power_wells[i];
2893 		seq_printf(m, "%-25s %d\n", power_well->name,
2894 			   power_well->count);
2895 
2896 		for_each_power_domain(power_domain, power_well->domains)
2897 			seq_printf(m, "  %-23s %d\n",
2898 				 intel_display_power_domain_str(power_domain),
2899 				 power_domains->domain_use_count[power_domain]);
2900 	}
2901 
2902 	mutex_unlock(&power_domains->lock);
2903 
2904 	return 0;
2905 }
2906 
2907 static int i915_dmc_info(struct seq_file *m, void *unused)
2908 {
2909 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2910 	struct intel_csr *csr;
2911 
2912 	if (!HAS_CSR(dev_priv)) {
2913 		seq_puts(m, "not supported\n");
2914 		return 0;
2915 	}
2916 
2917 	csr = &dev_priv->csr;
2918 
2919 	intel_runtime_pm_get(dev_priv);
2920 
2921 	seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2922 	seq_printf(m, "path: %s\n", csr->fw_path);
2923 
2924 	if (!csr->dmc_payload)
2925 		goto out;
2926 
2927 	seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2928 		   CSR_VERSION_MINOR(csr->version));
2929 
2930 	if (IS_KABYLAKE(dev_priv) ||
2931 	    (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6))) {
2932 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2933 			   I915_READ(SKL_CSR_DC3_DC5_COUNT));
2934 		seq_printf(m, "DC5 -> DC6 count: %d\n",
2935 			   I915_READ(SKL_CSR_DC5_DC6_COUNT));
2936 	} else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2937 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2938 			   I915_READ(BXT_CSR_DC3_DC5_COUNT));
2939 	}
2940 
2941 out:
2942 	seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2943 	seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2944 	seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2945 
2946 	intel_runtime_pm_put(dev_priv);
2947 
2948 	return 0;
2949 }
2950 
2951 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2952 				 struct drm_display_mode *mode)
2953 {
2954 	int i;
2955 
2956 	for (i = 0; i < tabs; i++)
2957 		seq_putc(m, '\t');
2958 
2959 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2960 		   mode->base.id, mode->name,
2961 		   mode->vrefresh, mode->clock,
2962 		   mode->hdisplay, mode->hsync_start,
2963 		   mode->hsync_end, mode->htotal,
2964 		   mode->vdisplay, mode->vsync_start,
2965 		   mode->vsync_end, mode->vtotal,
2966 		   mode->type, mode->flags);
2967 }
2968 
2969 static void intel_encoder_info(struct seq_file *m,
2970 			       struct intel_crtc *intel_crtc,
2971 			       struct intel_encoder *intel_encoder)
2972 {
2973 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2974 	struct drm_device *dev = &dev_priv->drm;
2975 	struct drm_crtc *crtc = &intel_crtc->base;
2976 	struct intel_connector *intel_connector;
2977 	struct drm_encoder *encoder;
2978 
2979 	encoder = &intel_encoder->base;
2980 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2981 		   encoder->base.id, encoder->name);
2982 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2983 		struct drm_connector *connector = &intel_connector->base;
2984 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2985 			   connector->base.id,
2986 			   connector->name,
2987 			   drm_get_connector_status_name(connector->status));
2988 		if (connector->status == connector_status_connected) {
2989 			struct drm_display_mode *mode = &crtc->mode;
2990 			seq_printf(m, ", mode:\n");
2991 			intel_seq_print_mode(m, 2, mode);
2992 		} else {
2993 			seq_putc(m, '\n');
2994 		}
2995 	}
2996 }
2997 
2998 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2999 {
3000 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3001 	struct drm_device *dev = &dev_priv->drm;
3002 	struct drm_crtc *crtc = &intel_crtc->base;
3003 	struct intel_encoder *intel_encoder;
3004 	struct drm_plane_state *plane_state = crtc->primary->state;
3005 	struct drm_framebuffer *fb = plane_state->fb;
3006 
3007 	if (fb)
3008 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
3009 			   fb->base.id, plane_state->src_x >> 16,
3010 			   plane_state->src_y >> 16, fb->width, fb->height);
3011 	else
3012 		seq_puts(m, "\tprimary plane disabled\n");
3013 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3014 		intel_encoder_info(m, intel_crtc, intel_encoder);
3015 }
3016 
3017 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
3018 {
3019 	struct drm_display_mode *mode = panel->fixed_mode;
3020 
3021 	seq_printf(m, "\tfixed mode:\n");
3022 	intel_seq_print_mode(m, 2, mode);
3023 }
3024 
3025 static void intel_dp_info(struct seq_file *m,
3026 			  struct intel_connector *intel_connector)
3027 {
3028 	struct intel_encoder *intel_encoder = intel_connector->encoder;
3029 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3030 
3031 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
3032 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
3033 	if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
3034 		intel_panel_info(m, &intel_connector->panel);
3035 
3036 	drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
3037 				&intel_dp->aux);
3038 }
3039 
3040 static void intel_dp_mst_info(struct seq_file *m,
3041 			  struct intel_connector *intel_connector)
3042 {
3043 	struct intel_encoder *intel_encoder = intel_connector->encoder;
3044 	struct intel_dp_mst_encoder *intel_mst =
3045 		enc_to_mst(&intel_encoder->base);
3046 	struct intel_digital_port *intel_dig_port = intel_mst->primary;
3047 	struct intel_dp *intel_dp = &intel_dig_port->dp;
3048 	bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
3049 					intel_connector->port);
3050 
3051 	seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
3052 }
3053 
3054 static void intel_hdmi_info(struct seq_file *m,
3055 			    struct intel_connector *intel_connector)
3056 {
3057 	struct intel_encoder *intel_encoder = intel_connector->encoder;
3058 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
3059 
3060 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
3061 }
3062 
3063 static void intel_lvds_info(struct seq_file *m,
3064 			    struct intel_connector *intel_connector)
3065 {
3066 	intel_panel_info(m, &intel_connector->panel);
3067 }
3068 
3069 static void intel_connector_info(struct seq_file *m,
3070 				 struct drm_connector *connector)
3071 {
3072 	struct intel_connector *intel_connector = to_intel_connector(connector);
3073 	struct intel_encoder *intel_encoder = intel_connector->encoder;
3074 	struct drm_display_mode *mode;
3075 
3076 	seq_printf(m, "connector %d: type %s, status: %s\n",
3077 		   connector->base.id, connector->name,
3078 		   drm_get_connector_status_name(connector->status));
3079 	if (connector->status == connector_status_connected) {
3080 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
3081 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
3082 			   connector->display_info.width_mm,
3083 			   connector->display_info.height_mm);
3084 		seq_printf(m, "\tsubpixel order: %s\n",
3085 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
3086 		seq_printf(m, "\tCEA rev: %d\n",
3087 			   connector->display_info.cea_rev);
3088 	}
3089 
3090 	if (!intel_encoder)
3091 		return;
3092 
3093 	switch (connector->connector_type) {
3094 	case DRM_MODE_CONNECTOR_DisplayPort:
3095 	case DRM_MODE_CONNECTOR_eDP:
3096 		if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
3097 			intel_dp_mst_info(m, intel_connector);
3098 		else
3099 			intel_dp_info(m, intel_connector);
3100 		break;
3101 	case DRM_MODE_CONNECTOR_LVDS:
3102 		if (intel_encoder->type == INTEL_OUTPUT_LVDS)
3103 			intel_lvds_info(m, intel_connector);
3104 		break;
3105 	case DRM_MODE_CONNECTOR_HDMIA:
3106 		if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
3107 		    intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
3108 			intel_hdmi_info(m, intel_connector);
3109 		break;
3110 	default:
3111 		break;
3112 	}
3113 
3114 	seq_printf(m, "\tmodes:\n");
3115 	list_for_each_entry(mode, &connector->modes, head)
3116 		intel_seq_print_mode(m, 2, mode);
3117 }
3118 
3119 static const char *plane_type(enum drm_plane_type type)
3120 {
3121 	switch (type) {
3122 	case DRM_PLANE_TYPE_OVERLAY:
3123 		return "OVL";
3124 	case DRM_PLANE_TYPE_PRIMARY:
3125 		return "PRI";
3126 	case DRM_PLANE_TYPE_CURSOR:
3127 		return "CUR";
3128 	/*
3129 	 * Deliberately omitting default: to generate compiler warnings
3130 	 * when a new drm_plane_type gets added.
3131 	 */
3132 	}
3133 
3134 	return "unknown";
3135 }
3136 
3137 static const char *plane_rotation(unsigned int rotation)
3138 {
3139 	static char buf[48];
3140 	/*
3141 	 * According to doc only one DRM_MODE_ROTATE_ is allowed but this
3142 	 * will print them all to visualize if the values are misused
3143 	 */
3144 	snprintf(buf, sizeof(buf),
3145 		 "%s%s%s%s%s%s(0x%08x)",
3146 		 (rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
3147 		 (rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
3148 		 (rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
3149 		 (rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
3150 		 (rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
3151 		 (rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
3152 		 rotation);
3153 
3154 	return buf;
3155 }
3156 
3157 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3158 {
3159 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3160 	struct drm_device *dev = &dev_priv->drm;
3161 	struct intel_plane *intel_plane;
3162 
3163 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3164 		struct drm_plane_state *state;
3165 		struct drm_plane *plane = &intel_plane->base;
3166 		struct drm_format_name_buf format_name;
3167 
3168 		if (!plane->state) {
3169 			seq_puts(m, "plane->state is NULL!\n");
3170 			continue;
3171 		}
3172 
3173 		state = plane->state;
3174 
3175 		if (state->fb) {
3176 			drm_get_format_name(state->fb->format->format,
3177 					    &format_name);
3178 		} else {
3179 			sprintf(format_name.str, "N/A");
3180 		}
3181 
3182 		seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3183 			   plane->base.id,
3184 			   plane_type(intel_plane->base.type),
3185 			   state->crtc_x, state->crtc_y,
3186 			   state->crtc_w, state->crtc_h,
3187 			   (state->src_x >> 16),
3188 			   ((state->src_x & 0xffff) * 15625) >> 10,
3189 			   (state->src_y >> 16),
3190 			   ((state->src_y & 0xffff) * 15625) >> 10,
3191 			   (state->src_w >> 16),
3192 			   ((state->src_w & 0xffff) * 15625) >> 10,
3193 			   (state->src_h >> 16),
3194 			   ((state->src_h & 0xffff) * 15625) >> 10,
3195 			   format_name.str,
3196 			   plane_rotation(state->rotation));
3197 	}
3198 }
3199 
3200 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3201 {
3202 	struct intel_crtc_state *pipe_config;
3203 	int num_scalers = intel_crtc->num_scalers;
3204 	int i;
3205 
3206 	pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3207 
3208 	/* Not all platformas have a scaler */
3209 	if (num_scalers) {
3210 		seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3211 			   num_scalers,
3212 			   pipe_config->scaler_state.scaler_users,
3213 			   pipe_config->scaler_state.scaler_id);
3214 
3215 		for (i = 0; i < num_scalers; i++) {
3216 			struct intel_scaler *sc =
3217 					&pipe_config->scaler_state.scalers[i];
3218 
3219 			seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3220 				   i, yesno(sc->in_use), sc->mode);
3221 		}
3222 		seq_puts(m, "\n");
3223 	} else {
3224 		seq_puts(m, "\tNo scalers available on this platform\n");
3225 	}
3226 }
3227 
3228 static int i915_display_info(struct seq_file *m, void *unused)
3229 {
3230 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3231 	struct drm_device *dev = &dev_priv->drm;
3232 	struct intel_crtc *crtc;
3233 	struct drm_connector *connector;
3234 	struct drm_connector_list_iter conn_iter;
3235 
3236 	intel_runtime_pm_get(dev_priv);
3237 	seq_printf(m, "CRTC info\n");
3238 	seq_printf(m, "---------\n");
3239 	for_each_intel_crtc(dev, crtc) {
3240 		struct intel_crtc_state *pipe_config;
3241 
3242 		drm_modeset_lock(&crtc->base.mutex, NULL);
3243 		pipe_config = to_intel_crtc_state(crtc->base.state);
3244 
3245 		seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3246 			   crtc->base.base.id, pipe_name(crtc->pipe),
3247 			   yesno(pipe_config->base.active),
3248 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3249 			   yesno(pipe_config->dither), pipe_config->pipe_bpp);
3250 
3251 		if (pipe_config->base.active) {
3252 			struct intel_plane *cursor =
3253 				to_intel_plane(crtc->base.cursor);
3254 
3255 			intel_crtc_info(m, crtc);
3256 
3257 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
3258 				   yesno(cursor->base.state->visible),
3259 				   cursor->base.state->crtc_x,
3260 				   cursor->base.state->crtc_y,
3261 				   cursor->base.state->crtc_w,
3262 				   cursor->base.state->crtc_h,
3263 				   cursor->cursor.base);
3264 			intel_scaler_info(m, crtc);
3265 			intel_plane_info(m, crtc);
3266 		}
3267 
3268 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3269 			   yesno(!crtc->cpu_fifo_underrun_disabled),
3270 			   yesno(!crtc->pch_fifo_underrun_disabled));
3271 		drm_modeset_unlock(&crtc->base.mutex);
3272 	}
3273 
3274 	seq_printf(m, "\n");
3275 	seq_printf(m, "Connector info\n");
3276 	seq_printf(m, "--------------\n");
3277 	mutex_lock(&dev->mode_config.mutex);
3278 	drm_connector_list_iter_begin(dev, &conn_iter);
3279 	drm_for_each_connector_iter(connector, &conn_iter)
3280 		intel_connector_info(m, connector);
3281 	drm_connector_list_iter_end(&conn_iter);
3282 	mutex_unlock(&dev->mode_config.mutex);
3283 
3284 	intel_runtime_pm_put(dev_priv);
3285 
3286 	return 0;
3287 }
3288 
3289 static int i915_engine_info(struct seq_file *m, void *unused)
3290 {
3291 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3292 	struct intel_engine_cs *engine;
3293 	enum intel_engine_id id;
3294 
3295 	intel_runtime_pm_get(dev_priv);
3296 
3297 	seq_printf(m, "GT awake? %s\n",
3298 		   yesno(dev_priv->gt.awake));
3299 	seq_printf(m, "Global active requests: %d\n",
3300 		   dev_priv->gt.active_requests);
3301 
3302 	for_each_engine(engine, dev_priv, id) {
3303 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
3304 		struct drm_i915_gem_request *rq;
3305 		struct rb_node *rb;
3306 		u64 addr;
3307 
3308 		seq_printf(m, "%s\n", engine->name);
3309 		seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms], inflight %d\n",
3310 			   intel_engine_get_seqno(engine),
3311 			   intel_engine_last_submit(engine),
3312 			   engine->hangcheck.seqno,
3313 			   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp),
3314 			   engine->timeline->inflight_seqnos);
3315 
3316 		rcu_read_lock();
3317 
3318 		seq_printf(m, "\tRequests:\n");
3319 
3320 		rq = list_first_entry(&engine->timeline->requests,
3321 				      struct drm_i915_gem_request, link);
3322 		if (&rq->link != &engine->timeline->requests)
3323 			print_request(m, rq, "\t\tfirst  ");
3324 
3325 		rq = list_last_entry(&engine->timeline->requests,
3326 				     struct drm_i915_gem_request, link);
3327 		if (&rq->link != &engine->timeline->requests)
3328 			print_request(m, rq, "\t\tlast   ");
3329 
3330 		rq = i915_gem_find_active_request(engine);
3331 		if (rq) {
3332 			print_request(m, rq, "\t\tactive ");
3333 			seq_printf(m,
3334 				   "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
3335 				   rq->head, rq->postfix, rq->tail,
3336 				   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
3337 				   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
3338 		}
3339 
3340 		seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
3341 			   I915_READ(RING_START(engine->mmio_base)),
3342 			   rq ? i915_ggtt_offset(rq->ring->vma) : 0);
3343 		seq_printf(m, "\tRING_HEAD:  0x%08x [0x%08x]\n",
3344 			   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
3345 			   rq ? rq->ring->head : 0);
3346 		seq_printf(m, "\tRING_TAIL:  0x%08x [0x%08x]\n",
3347 			   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
3348 			   rq ? rq->ring->tail : 0);
3349 		seq_printf(m, "\tRING_CTL:   0x%08x [%s]\n",
3350 			   I915_READ(RING_CTL(engine->mmio_base)),
3351 			   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
3352 
3353 		rcu_read_unlock();
3354 
3355 		addr = intel_engine_get_active_head(engine);
3356 		seq_printf(m, "\tACTHD:  0x%08x_%08x\n",
3357 			   upper_32_bits(addr), lower_32_bits(addr));
3358 		addr = intel_engine_get_last_batch_head(engine);
3359 		seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
3360 			   upper_32_bits(addr), lower_32_bits(addr));
3361 
3362 		if (i915.enable_execlists) {
3363 			u32 ptr, read, write;
3364 			unsigned int idx;
3365 
3366 			seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
3367 				   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
3368 				   I915_READ(RING_EXECLIST_STATUS_HI(engine)));
3369 
3370 			ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
3371 			read = GEN8_CSB_READ_PTR(ptr);
3372 			write = GEN8_CSB_WRITE_PTR(ptr);
3373 			seq_printf(m, "\tExeclist CSB read %d, write %d\n",
3374 				   read, write);
3375 			if (read >= GEN8_CSB_ENTRIES)
3376 				read = 0;
3377 			if (write >= GEN8_CSB_ENTRIES)
3378 				write = 0;
3379 			if (read > write)
3380 				write += GEN8_CSB_ENTRIES;
3381 			while (read < write) {
3382 				idx = ++read % GEN8_CSB_ENTRIES;
3383 				seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
3384 					   idx,
3385 					   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
3386 					   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
3387 			}
3388 
3389 			rcu_read_lock();
3390 			for (idx = 0; idx < ARRAY_SIZE(engine->execlist_port); idx++) {
3391 				unsigned int count;
3392 
3393 				rq = port_unpack(&engine->execlist_port[idx],
3394 						 &count);
3395 				if (rq) {
3396 					seq_printf(m, "\t\tELSP[%d] count=%d, ",
3397 						   idx, count);
3398 					print_request(m, rq, "rq: ");
3399 				} else {
3400 					seq_printf(m, "\t\tELSP[%d] idle\n",
3401 						   idx);
3402 				}
3403 			}
3404 			rcu_read_unlock();
3405 
3406 			spin_lock_irq(&engine->timeline->lock);
3407 			for (rb = engine->execlist_first; rb; rb = rb_next(rb)){
3408 				struct i915_priolist *p =
3409 					rb_entry(rb, typeof(*p), node);
3410 
3411 				list_for_each_entry(rq, &p->requests,
3412 						    priotree.link)
3413 					print_request(m, rq, "\t\tQ ");
3414 			}
3415 			spin_unlock_irq(&engine->timeline->lock);
3416 		} else if (INTEL_GEN(dev_priv) > 6) {
3417 			seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
3418 				   I915_READ(RING_PP_DIR_BASE(engine)));
3419 			seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
3420 				   I915_READ(RING_PP_DIR_BASE_READ(engine)));
3421 			seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
3422 				   I915_READ(RING_PP_DIR_DCLV(engine)));
3423 		}
3424 
3425 		spin_lock_irq(&b->rb_lock);
3426 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
3427 			struct intel_wait *w = rb_entry(rb, typeof(*w), node);
3428 
3429 			seq_printf(m, "\t%s [%d] waiting for %x\n",
3430 				   w->tsk->comm, w->tsk->pid, w->seqno);
3431 		}
3432 		spin_unlock_irq(&b->rb_lock);
3433 
3434 		seq_puts(m, "\n");
3435 	}
3436 
3437 	intel_runtime_pm_put(dev_priv);
3438 
3439 	return 0;
3440 }
3441 
3442 static int i915_semaphore_status(struct seq_file *m, void *unused)
3443 {
3444 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3445 	struct drm_device *dev = &dev_priv->drm;
3446 	struct intel_engine_cs *engine;
3447 	int num_rings = INTEL_INFO(dev_priv)->num_rings;
3448 	enum intel_engine_id id;
3449 	int j, ret;
3450 
3451 	if (!i915.semaphores) {
3452 		seq_puts(m, "Semaphores are disabled\n");
3453 		return 0;
3454 	}
3455 
3456 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3457 	if (ret)
3458 		return ret;
3459 	intel_runtime_pm_get(dev_priv);
3460 
3461 	if (IS_BROADWELL(dev_priv)) {
3462 		struct page *page;
3463 		uint64_t *seqno;
3464 
3465 		page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3466 
3467 		seqno = (uint64_t *)kmap_atomic(page);
3468 		for_each_engine(engine, dev_priv, id) {
3469 			uint64_t offset;
3470 
3471 			seq_printf(m, "%s\n", engine->name);
3472 
3473 			seq_puts(m, "  Last signal:");
3474 			for (j = 0; j < num_rings; j++) {
3475 				offset = id * I915_NUM_ENGINES + j;
3476 				seq_printf(m, "0x%08llx (0x%02llx) ",
3477 					   seqno[offset], offset * 8);
3478 			}
3479 			seq_putc(m, '\n');
3480 
3481 			seq_puts(m, "  Last wait:  ");
3482 			for (j = 0; j < num_rings; j++) {
3483 				offset = id + (j * I915_NUM_ENGINES);
3484 				seq_printf(m, "0x%08llx (0x%02llx) ",
3485 					   seqno[offset], offset * 8);
3486 			}
3487 			seq_putc(m, '\n');
3488 
3489 		}
3490 		kunmap_atomic(seqno);
3491 	} else {
3492 		seq_puts(m, "  Last signal:");
3493 		for_each_engine(engine, dev_priv, id)
3494 			for (j = 0; j < num_rings; j++)
3495 				seq_printf(m, "0x%08x\n",
3496 					   I915_READ(engine->semaphore.mbox.signal[j]));
3497 		seq_putc(m, '\n');
3498 	}
3499 
3500 	intel_runtime_pm_put(dev_priv);
3501 	mutex_unlock(&dev->struct_mutex);
3502 	return 0;
3503 }
3504 
3505 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3506 {
3507 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3508 	struct drm_device *dev = &dev_priv->drm;
3509 	int i;
3510 
3511 	drm_modeset_lock_all(dev);
3512 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3513 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3514 
3515 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3516 		seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3517 			   pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
3518 		seq_printf(m, " tracked hardware state:\n");
3519 		seq_printf(m, " dpll:    0x%08x\n", pll->state.hw_state.dpll);
3520 		seq_printf(m, " dpll_md: 0x%08x\n",
3521 			   pll->state.hw_state.dpll_md);
3522 		seq_printf(m, " fp0:     0x%08x\n", pll->state.hw_state.fp0);
3523 		seq_printf(m, " fp1:     0x%08x\n", pll->state.hw_state.fp1);
3524 		seq_printf(m, " wrpll:   0x%08x\n", pll->state.hw_state.wrpll);
3525 	}
3526 	drm_modeset_unlock_all(dev);
3527 
3528 	return 0;
3529 }
3530 
3531 static int i915_wa_registers(struct seq_file *m, void *unused)
3532 {
3533 	int i;
3534 	int ret;
3535 	struct intel_engine_cs *engine;
3536 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3537 	struct drm_device *dev = &dev_priv->drm;
3538 	struct i915_workarounds *workarounds = &dev_priv->workarounds;
3539 	enum intel_engine_id id;
3540 
3541 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3542 	if (ret)
3543 		return ret;
3544 
3545 	intel_runtime_pm_get(dev_priv);
3546 
3547 	seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3548 	for_each_engine(engine, dev_priv, id)
3549 		seq_printf(m, "HW whitelist count for %s: %d\n",
3550 			   engine->name, workarounds->hw_whitelist_count[id]);
3551 	for (i = 0; i < workarounds->count; ++i) {
3552 		i915_reg_t addr;
3553 		u32 mask, value, read;
3554 		bool ok;
3555 
3556 		addr = workarounds->reg[i].addr;
3557 		mask = workarounds->reg[i].mask;
3558 		value = workarounds->reg[i].value;
3559 		read = I915_READ(addr);
3560 		ok = (value & mask) == (read & mask);
3561 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3562 			   i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3563 	}
3564 
3565 	intel_runtime_pm_put(dev_priv);
3566 	mutex_unlock(&dev->struct_mutex);
3567 
3568 	return 0;
3569 }
3570 
3571 static int i915_ddb_info(struct seq_file *m, void *unused)
3572 {
3573 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3574 	struct drm_device *dev = &dev_priv->drm;
3575 	struct skl_ddb_allocation *ddb;
3576 	struct skl_ddb_entry *entry;
3577 	enum pipe pipe;
3578 	int plane;
3579 
3580 	if (INTEL_GEN(dev_priv) < 9)
3581 		return 0;
3582 
3583 	drm_modeset_lock_all(dev);
3584 
3585 	ddb = &dev_priv->wm.skl_hw.ddb;
3586 
3587 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3588 
3589 	for_each_pipe(dev_priv, pipe) {
3590 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3591 
3592 		for_each_universal_plane(dev_priv, pipe, plane) {
3593 			entry = &ddb->plane[pipe][plane];
3594 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3595 				   entry->start, entry->end,
3596 				   skl_ddb_entry_size(entry));
3597 		}
3598 
3599 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3600 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3601 			   entry->end, skl_ddb_entry_size(entry));
3602 	}
3603 
3604 	drm_modeset_unlock_all(dev);
3605 
3606 	return 0;
3607 }
3608 
3609 static void drrs_status_per_crtc(struct seq_file *m,
3610 				 struct drm_device *dev,
3611 				 struct intel_crtc *intel_crtc)
3612 {
3613 	struct drm_i915_private *dev_priv = to_i915(dev);
3614 	struct i915_drrs *drrs = &dev_priv->drrs;
3615 	int vrefresh = 0;
3616 	struct drm_connector *connector;
3617 	struct drm_connector_list_iter conn_iter;
3618 
3619 	drm_connector_list_iter_begin(dev, &conn_iter);
3620 	drm_for_each_connector_iter(connector, &conn_iter) {
3621 		if (connector->state->crtc != &intel_crtc->base)
3622 			continue;
3623 
3624 		seq_printf(m, "%s:\n", connector->name);
3625 	}
3626 	drm_connector_list_iter_end(&conn_iter);
3627 
3628 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3629 		seq_puts(m, "\tVBT: DRRS_type: Static");
3630 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3631 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3632 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3633 		seq_puts(m, "\tVBT: DRRS_type: None");
3634 	else
3635 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3636 
3637 	seq_puts(m, "\n\n");
3638 
3639 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3640 		struct intel_panel *panel;
3641 
3642 		mutex_lock(&drrs->mutex);
3643 		/* DRRS Supported */
3644 		seq_puts(m, "\tDRRS Supported: Yes\n");
3645 
3646 		/* disable_drrs() will make drrs->dp NULL */
3647 		if (!drrs->dp) {
3648 			seq_puts(m, "Idleness DRRS: Disabled");
3649 			mutex_unlock(&drrs->mutex);
3650 			return;
3651 		}
3652 
3653 		panel = &drrs->dp->attached_connector->panel;
3654 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3655 					drrs->busy_frontbuffer_bits);
3656 
3657 		seq_puts(m, "\n\t\t");
3658 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3659 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3660 			vrefresh = panel->fixed_mode->vrefresh;
3661 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3662 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3663 			vrefresh = panel->downclock_mode->vrefresh;
3664 		} else {
3665 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3666 						drrs->refresh_rate_type);
3667 			mutex_unlock(&drrs->mutex);
3668 			return;
3669 		}
3670 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3671 
3672 		seq_puts(m, "\n\t\t");
3673 		mutex_unlock(&drrs->mutex);
3674 	} else {
3675 		/* DRRS not supported. Print the VBT parameter*/
3676 		seq_puts(m, "\tDRRS Supported : No");
3677 	}
3678 	seq_puts(m, "\n");
3679 }
3680 
3681 static int i915_drrs_status(struct seq_file *m, void *unused)
3682 {
3683 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3684 	struct drm_device *dev = &dev_priv->drm;
3685 	struct intel_crtc *intel_crtc;
3686 	int active_crtc_cnt = 0;
3687 
3688 	drm_modeset_lock_all(dev);
3689 	for_each_intel_crtc(dev, intel_crtc) {
3690 		if (intel_crtc->base.state->active) {
3691 			active_crtc_cnt++;
3692 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3693 
3694 			drrs_status_per_crtc(m, dev, intel_crtc);
3695 		}
3696 	}
3697 	drm_modeset_unlock_all(dev);
3698 
3699 	if (!active_crtc_cnt)
3700 		seq_puts(m, "No active crtc found\n");
3701 
3702 	return 0;
3703 }
3704 
3705 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3706 {
3707 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3708 	struct drm_device *dev = &dev_priv->drm;
3709 	struct intel_encoder *intel_encoder;
3710 	struct intel_digital_port *intel_dig_port;
3711 	struct drm_connector *connector;
3712 	struct drm_connector_list_iter conn_iter;
3713 
3714 	drm_connector_list_iter_begin(dev, &conn_iter);
3715 	drm_for_each_connector_iter(connector, &conn_iter) {
3716 		if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3717 			continue;
3718 
3719 		intel_encoder = intel_attached_encoder(connector);
3720 		if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3721 			continue;
3722 
3723 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3724 		if (!intel_dig_port->dp.can_mst)
3725 			continue;
3726 
3727 		seq_printf(m, "MST Source Port %c\n",
3728 			   port_name(intel_dig_port->port));
3729 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3730 	}
3731 	drm_connector_list_iter_end(&conn_iter);
3732 
3733 	return 0;
3734 }
3735 
3736 static ssize_t i915_displayport_test_active_write(struct file *file,
3737 						  const char __user *ubuf,
3738 						  size_t len, loff_t *offp)
3739 {
3740 	char *input_buffer;
3741 	int status = 0;
3742 	struct drm_device *dev;
3743 	struct drm_connector *connector;
3744 	struct drm_connector_list_iter conn_iter;
3745 	struct intel_dp *intel_dp;
3746 	int val = 0;
3747 
3748 	dev = ((struct seq_file *)file->private_data)->private;
3749 
3750 	if (len == 0)
3751 		return 0;
3752 
3753 	input_buffer = memdup_user_nul(ubuf, len);
3754 	if (IS_ERR(input_buffer))
3755 		return PTR_ERR(input_buffer);
3756 
3757 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
3758 
3759 	drm_connector_list_iter_begin(dev, &conn_iter);
3760 	drm_for_each_connector_iter(connector, &conn_iter) {
3761 		if (connector->connector_type !=
3762 		    DRM_MODE_CONNECTOR_DisplayPort)
3763 			continue;
3764 
3765 		if (connector->status == connector_status_connected &&
3766 		    connector->encoder != NULL) {
3767 			intel_dp = enc_to_intel_dp(connector->encoder);
3768 			status = kstrtoint(input_buffer, 10, &val);
3769 			if (status < 0)
3770 				break;
3771 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
3772 			/* To prevent erroneous activation of the compliance
3773 			 * testing code, only accept an actual value of 1 here
3774 			 */
3775 			if (val == 1)
3776 				intel_dp->compliance.test_active = 1;
3777 			else
3778 				intel_dp->compliance.test_active = 0;
3779 		}
3780 	}
3781 	drm_connector_list_iter_end(&conn_iter);
3782 	kfree(input_buffer);
3783 	if (status < 0)
3784 		return status;
3785 
3786 	*offp += len;
3787 	return len;
3788 }
3789 
3790 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
3791 {
3792 	struct drm_device *dev = m->private;
3793 	struct drm_connector *connector;
3794 	struct drm_connector_list_iter conn_iter;
3795 	struct intel_dp *intel_dp;
3796 
3797 	drm_connector_list_iter_begin(dev, &conn_iter);
3798 	drm_for_each_connector_iter(connector, &conn_iter) {
3799 		if (connector->connector_type !=
3800 		    DRM_MODE_CONNECTOR_DisplayPort)
3801 			continue;
3802 
3803 		if (connector->status == connector_status_connected &&
3804 		    connector->encoder != NULL) {
3805 			intel_dp = enc_to_intel_dp(connector->encoder);
3806 			if (intel_dp->compliance.test_active)
3807 				seq_puts(m, "1");
3808 			else
3809 				seq_puts(m, "0");
3810 		} else
3811 			seq_puts(m, "0");
3812 	}
3813 	drm_connector_list_iter_end(&conn_iter);
3814 
3815 	return 0;
3816 }
3817 
3818 static int i915_displayport_test_active_open(struct inode *inode,
3819 					     struct file *file)
3820 {
3821 	struct drm_i915_private *dev_priv = inode->i_private;
3822 
3823 	return single_open(file, i915_displayport_test_active_show,
3824 			   &dev_priv->drm);
3825 }
3826 
3827 static const struct file_operations i915_displayport_test_active_fops = {
3828 	.owner = THIS_MODULE,
3829 	.open = i915_displayport_test_active_open,
3830 	.read = seq_read,
3831 	.llseek = seq_lseek,
3832 	.release = single_release,
3833 	.write = i915_displayport_test_active_write
3834 };
3835 
3836 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
3837 {
3838 	struct drm_device *dev = m->private;
3839 	struct drm_connector *connector;
3840 	struct drm_connector_list_iter conn_iter;
3841 	struct intel_dp *intel_dp;
3842 
3843 	drm_connector_list_iter_begin(dev, &conn_iter);
3844 	drm_for_each_connector_iter(connector, &conn_iter) {
3845 		if (connector->connector_type !=
3846 		    DRM_MODE_CONNECTOR_DisplayPort)
3847 			continue;
3848 
3849 		if (connector->status == connector_status_connected &&
3850 		    connector->encoder != NULL) {
3851 			intel_dp = enc_to_intel_dp(connector->encoder);
3852 			if (intel_dp->compliance.test_type ==
3853 			    DP_TEST_LINK_EDID_READ)
3854 				seq_printf(m, "%lx",
3855 					   intel_dp->compliance.test_data.edid);
3856 			else if (intel_dp->compliance.test_type ==
3857 				 DP_TEST_LINK_VIDEO_PATTERN) {
3858 				seq_printf(m, "hdisplay: %d\n",
3859 					   intel_dp->compliance.test_data.hdisplay);
3860 				seq_printf(m, "vdisplay: %d\n",
3861 					   intel_dp->compliance.test_data.vdisplay);
3862 				seq_printf(m, "bpc: %u\n",
3863 					   intel_dp->compliance.test_data.bpc);
3864 			}
3865 		} else
3866 			seq_puts(m, "0");
3867 	}
3868 	drm_connector_list_iter_end(&conn_iter);
3869 
3870 	return 0;
3871 }
3872 static int i915_displayport_test_data_open(struct inode *inode,
3873 					   struct file *file)
3874 {
3875 	struct drm_i915_private *dev_priv = inode->i_private;
3876 
3877 	return single_open(file, i915_displayport_test_data_show,
3878 			   &dev_priv->drm);
3879 }
3880 
3881 static const struct file_operations i915_displayport_test_data_fops = {
3882 	.owner = THIS_MODULE,
3883 	.open = i915_displayport_test_data_open,
3884 	.read = seq_read,
3885 	.llseek = seq_lseek,
3886 	.release = single_release
3887 };
3888 
3889 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
3890 {
3891 	struct drm_device *dev = m->private;
3892 	struct drm_connector *connector;
3893 	struct drm_connector_list_iter conn_iter;
3894 	struct intel_dp *intel_dp;
3895 
3896 	drm_connector_list_iter_begin(dev, &conn_iter);
3897 	drm_for_each_connector_iter(connector, &conn_iter) {
3898 		if (connector->connector_type !=
3899 		    DRM_MODE_CONNECTOR_DisplayPort)
3900 			continue;
3901 
3902 		if (connector->status == connector_status_connected &&
3903 		    connector->encoder != NULL) {
3904 			intel_dp = enc_to_intel_dp(connector->encoder);
3905 			seq_printf(m, "%02lx", intel_dp->compliance.test_type);
3906 		} else
3907 			seq_puts(m, "0");
3908 	}
3909 	drm_connector_list_iter_end(&conn_iter);
3910 
3911 	return 0;
3912 }
3913 
3914 static int i915_displayport_test_type_open(struct inode *inode,
3915 				       struct file *file)
3916 {
3917 	struct drm_i915_private *dev_priv = inode->i_private;
3918 
3919 	return single_open(file, i915_displayport_test_type_show,
3920 			   &dev_priv->drm);
3921 }
3922 
3923 static const struct file_operations i915_displayport_test_type_fops = {
3924 	.owner = THIS_MODULE,
3925 	.open = i915_displayport_test_type_open,
3926 	.read = seq_read,
3927 	.llseek = seq_lseek,
3928 	.release = single_release
3929 };
3930 
3931 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3932 {
3933 	struct drm_i915_private *dev_priv = m->private;
3934 	struct drm_device *dev = &dev_priv->drm;
3935 	int level;
3936 	int num_levels;
3937 
3938 	if (IS_CHERRYVIEW(dev_priv))
3939 		num_levels = 3;
3940 	else if (IS_VALLEYVIEW(dev_priv))
3941 		num_levels = 1;
3942 	else if (IS_G4X(dev_priv))
3943 		num_levels = 3;
3944 	else
3945 		num_levels = ilk_wm_max_level(dev_priv) + 1;
3946 
3947 	drm_modeset_lock_all(dev);
3948 
3949 	for (level = 0; level < num_levels; level++) {
3950 		unsigned int latency = wm[level];
3951 
3952 		/*
3953 		 * - WM1+ latency values in 0.5us units
3954 		 * - latencies are in us on gen9/vlv/chv
3955 		 */
3956 		if (INTEL_GEN(dev_priv) >= 9 ||
3957 		    IS_VALLEYVIEW(dev_priv) ||
3958 		    IS_CHERRYVIEW(dev_priv) ||
3959 		    IS_G4X(dev_priv))
3960 			latency *= 10;
3961 		else if (level > 0)
3962 			latency *= 5;
3963 
3964 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
3965 			   level, wm[level], latency / 10, latency % 10);
3966 	}
3967 
3968 	drm_modeset_unlock_all(dev);
3969 }
3970 
3971 static int pri_wm_latency_show(struct seq_file *m, void *data)
3972 {
3973 	struct drm_i915_private *dev_priv = m->private;
3974 	const uint16_t *latencies;
3975 
3976 	if (INTEL_GEN(dev_priv) >= 9)
3977 		latencies = dev_priv->wm.skl_latency;
3978 	else
3979 		latencies = dev_priv->wm.pri_latency;
3980 
3981 	wm_latency_show(m, latencies);
3982 
3983 	return 0;
3984 }
3985 
3986 static int spr_wm_latency_show(struct seq_file *m, void *data)
3987 {
3988 	struct drm_i915_private *dev_priv = m->private;
3989 	const uint16_t *latencies;
3990 
3991 	if (INTEL_GEN(dev_priv) >= 9)
3992 		latencies = dev_priv->wm.skl_latency;
3993 	else
3994 		latencies = dev_priv->wm.spr_latency;
3995 
3996 	wm_latency_show(m, latencies);
3997 
3998 	return 0;
3999 }
4000 
4001 static int cur_wm_latency_show(struct seq_file *m, void *data)
4002 {
4003 	struct drm_i915_private *dev_priv = m->private;
4004 	const uint16_t *latencies;
4005 
4006 	if (INTEL_GEN(dev_priv) >= 9)
4007 		latencies = dev_priv->wm.skl_latency;
4008 	else
4009 		latencies = dev_priv->wm.cur_latency;
4010 
4011 	wm_latency_show(m, latencies);
4012 
4013 	return 0;
4014 }
4015 
4016 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4017 {
4018 	struct drm_i915_private *dev_priv = inode->i_private;
4019 
4020 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
4021 		return -ENODEV;
4022 
4023 	return single_open(file, pri_wm_latency_show, dev_priv);
4024 }
4025 
4026 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4027 {
4028 	struct drm_i915_private *dev_priv = inode->i_private;
4029 
4030 	if (HAS_GMCH_DISPLAY(dev_priv))
4031 		return -ENODEV;
4032 
4033 	return single_open(file, spr_wm_latency_show, dev_priv);
4034 }
4035 
4036 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4037 {
4038 	struct drm_i915_private *dev_priv = inode->i_private;
4039 
4040 	if (HAS_GMCH_DISPLAY(dev_priv))
4041 		return -ENODEV;
4042 
4043 	return single_open(file, cur_wm_latency_show, dev_priv);
4044 }
4045 
4046 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4047 				size_t len, loff_t *offp, uint16_t wm[8])
4048 {
4049 	struct seq_file *m = file->private_data;
4050 	struct drm_i915_private *dev_priv = m->private;
4051 	struct drm_device *dev = &dev_priv->drm;
4052 	uint16_t new[8] = { 0 };
4053 	int num_levels;
4054 	int level;
4055 	int ret;
4056 	char tmp[32];
4057 
4058 	if (IS_CHERRYVIEW(dev_priv))
4059 		num_levels = 3;
4060 	else if (IS_VALLEYVIEW(dev_priv))
4061 		num_levels = 1;
4062 	else if (IS_G4X(dev_priv))
4063 		num_levels = 3;
4064 	else
4065 		num_levels = ilk_wm_max_level(dev_priv) + 1;
4066 
4067 	if (len >= sizeof(tmp))
4068 		return -EINVAL;
4069 
4070 	if (copy_from_user(tmp, ubuf, len))
4071 		return -EFAULT;
4072 
4073 	tmp[len] = '\0';
4074 
4075 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4076 		     &new[0], &new[1], &new[2], &new[3],
4077 		     &new[4], &new[5], &new[6], &new[7]);
4078 	if (ret != num_levels)
4079 		return -EINVAL;
4080 
4081 	drm_modeset_lock_all(dev);
4082 
4083 	for (level = 0; level < num_levels; level++)
4084 		wm[level] = new[level];
4085 
4086 	drm_modeset_unlock_all(dev);
4087 
4088 	return len;
4089 }
4090 
4091 
4092 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4093 				    size_t len, loff_t *offp)
4094 {
4095 	struct seq_file *m = file->private_data;
4096 	struct drm_i915_private *dev_priv = m->private;
4097 	uint16_t *latencies;
4098 
4099 	if (INTEL_GEN(dev_priv) >= 9)
4100 		latencies = dev_priv->wm.skl_latency;
4101 	else
4102 		latencies = dev_priv->wm.pri_latency;
4103 
4104 	return wm_latency_write(file, ubuf, len, offp, latencies);
4105 }
4106 
4107 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4108 				    size_t len, loff_t *offp)
4109 {
4110 	struct seq_file *m = file->private_data;
4111 	struct drm_i915_private *dev_priv = m->private;
4112 	uint16_t *latencies;
4113 
4114 	if (INTEL_GEN(dev_priv) >= 9)
4115 		latencies = dev_priv->wm.skl_latency;
4116 	else
4117 		latencies = dev_priv->wm.spr_latency;
4118 
4119 	return wm_latency_write(file, ubuf, len, offp, latencies);
4120 }
4121 
4122 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4123 				    size_t len, loff_t *offp)
4124 {
4125 	struct seq_file *m = file->private_data;
4126 	struct drm_i915_private *dev_priv = m->private;
4127 	uint16_t *latencies;
4128 
4129 	if (INTEL_GEN(dev_priv) >= 9)
4130 		latencies = dev_priv->wm.skl_latency;
4131 	else
4132 		latencies = dev_priv->wm.cur_latency;
4133 
4134 	return wm_latency_write(file, ubuf, len, offp, latencies);
4135 }
4136 
4137 static const struct file_operations i915_pri_wm_latency_fops = {
4138 	.owner = THIS_MODULE,
4139 	.open = pri_wm_latency_open,
4140 	.read = seq_read,
4141 	.llseek = seq_lseek,
4142 	.release = single_release,
4143 	.write = pri_wm_latency_write
4144 };
4145 
4146 static const struct file_operations i915_spr_wm_latency_fops = {
4147 	.owner = THIS_MODULE,
4148 	.open = spr_wm_latency_open,
4149 	.read = seq_read,
4150 	.llseek = seq_lseek,
4151 	.release = single_release,
4152 	.write = spr_wm_latency_write
4153 };
4154 
4155 static const struct file_operations i915_cur_wm_latency_fops = {
4156 	.owner = THIS_MODULE,
4157 	.open = cur_wm_latency_open,
4158 	.read = seq_read,
4159 	.llseek = seq_lseek,
4160 	.release = single_release,
4161 	.write = cur_wm_latency_write
4162 };
4163 
4164 static int
4165 i915_wedged_get(void *data, u64 *val)
4166 {
4167 	struct drm_i915_private *dev_priv = data;
4168 
4169 	*val = i915_terminally_wedged(&dev_priv->gpu_error);
4170 
4171 	return 0;
4172 }
4173 
4174 static int
4175 i915_wedged_set(void *data, u64 val)
4176 {
4177 	struct drm_i915_private *i915 = data;
4178 	struct intel_engine_cs *engine;
4179 	unsigned int tmp;
4180 
4181 	/*
4182 	 * There is no safeguard against this debugfs entry colliding
4183 	 * with the hangcheck calling same i915_handle_error() in
4184 	 * parallel, causing an explosion. For now we assume that the
4185 	 * test harness is responsible enough not to inject gpu hangs
4186 	 * while it is writing to 'i915_wedged'
4187 	 */
4188 
4189 	if (i915_reset_backoff(&i915->gpu_error))
4190 		return -EAGAIN;
4191 
4192 	for_each_engine_masked(engine, i915, val, tmp) {
4193 		engine->hangcheck.seqno = intel_engine_get_seqno(engine);
4194 		engine->hangcheck.stalled = true;
4195 	}
4196 
4197 	i915_handle_error(i915, val, "Manually setting wedged to %llu", val);
4198 
4199 	wait_on_bit(&i915->gpu_error.flags,
4200 		    I915_RESET_HANDOFF,
4201 		    TASK_UNINTERRUPTIBLE);
4202 
4203 	return 0;
4204 }
4205 
4206 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4207 			i915_wedged_get, i915_wedged_set,
4208 			"%llu\n");
4209 
4210 static int
4211 fault_irq_set(struct drm_i915_private *i915,
4212 	      unsigned long *irq,
4213 	      unsigned long val)
4214 {
4215 	int err;
4216 
4217 	err = mutex_lock_interruptible(&i915->drm.struct_mutex);
4218 	if (err)
4219 		return err;
4220 
4221 	err = i915_gem_wait_for_idle(i915,
4222 				     I915_WAIT_LOCKED |
4223 				     I915_WAIT_INTERRUPTIBLE);
4224 	if (err)
4225 		goto err_unlock;
4226 
4227 	*irq = val;
4228 	mutex_unlock(&i915->drm.struct_mutex);
4229 
4230 	/* Flush idle worker to disarm irq */
4231 	while (flush_delayed_work(&i915->gt.idle_work))
4232 		;
4233 
4234 	return 0;
4235 
4236 err_unlock:
4237 	mutex_unlock(&i915->drm.struct_mutex);
4238 	return err;
4239 }
4240 
4241 static int
4242 i915_ring_missed_irq_get(void *data, u64 *val)
4243 {
4244 	struct drm_i915_private *dev_priv = data;
4245 
4246 	*val = dev_priv->gpu_error.missed_irq_rings;
4247 	return 0;
4248 }
4249 
4250 static int
4251 i915_ring_missed_irq_set(void *data, u64 val)
4252 {
4253 	struct drm_i915_private *i915 = data;
4254 
4255 	return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
4256 }
4257 
4258 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4259 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4260 			"0x%08llx\n");
4261 
4262 static int
4263 i915_ring_test_irq_get(void *data, u64 *val)
4264 {
4265 	struct drm_i915_private *dev_priv = data;
4266 
4267 	*val = dev_priv->gpu_error.test_irq_rings;
4268 
4269 	return 0;
4270 }
4271 
4272 static int
4273 i915_ring_test_irq_set(void *data, u64 val)
4274 {
4275 	struct drm_i915_private *i915 = data;
4276 
4277 	val &= INTEL_INFO(i915)->ring_mask;
4278 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4279 
4280 	return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
4281 }
4282 
4283 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4284 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4285 			"0x%08llx\n");
4286 
4287 #define DROP_UNBOUND 0x1
4288 #define DROP_BOUND 0x2
4289 #define DROP_RETIRE 0x4
4290 #define DROP_ACTIVE 0x8
4291 #define DROP_FREED 0x10
4292 #define DROP_SHRINK_ALL 0x20
4293 #define DROP_ALL (DROP_UNBOUND	| \
4294 		  DROP_BOUND	| \
4295 		  DROP_RETIRE	| \
4296 		  DROP_ACTIVE	| \
4297 		  DROP_FREED	| \
4298 		  DROP_SHRINK_ALL)
4299 static int
4300 i915_drop_caches_get(void *data, u64 *val)
4301 {
4302 	*val = DROP_ALL;
4303 
4304 	return 0;
4305 }
4306 
4307 static int
4308 i915_drop_caches_set(void *data, u64 val)
4309 {
4310 	struct drm_i915_private *dev_priv = data;
4311 	struct drm_device *dev = &dev_priv->drm;
4312 	int ret = 0;
4313 
4314 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4315 
4316 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4317 	 * on ioctls on -EAGAIN. */
4318 	if (val & (DROP_ACTIVE | DROP_RETIRE)) {
4319 		ret = mutex_lock_interruptible(&dev->struct_mutex);
4320 		if (ret)
4321 			return ret;
4322 
4323 		if (val & DROP_ACTIVE)
4324 			ret = i915_gem_wait_for_idle(dev_priv,
4325 						     I915_WAIT_INTERRUPTIBLE |
4326 						     I915_WAIT_LOCKED);
4327 
4328 		if (val & DROP_RETIRE)
4329 			i915_gem_retire_requests(dev_priv);
4330 
4331 		mutex_unlock(&dev->struct_mutex);
4332 	}
4333 
4334 	lockdep_set_current_reclaim_state(GFP_KERNEL);
4335 	if (val & DROP_BOUND)
4336 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4337 
4338 	if (val & DROP_UNBOUND)
4339 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4340 
4341 	if (val & DROP_SHRINK_ALL)
4342 		i915_gem_shrink_all(dev_priv);
4343 	lockdep_clear_current_reclaim_state();
4344 
4345 	if (val & DROP_FREED) {
4346 		synchronize_rcu();
4347 		i915_gem_drain_freed_objects(dev_priv);
4348 	}
4349 
4350 	return ret;
4351 }
4352 
4353 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4354 			i915_drop_caches_get, i915_drop_caches_set,
4355 			"0x%08llx\n");
4356 
4357 static int
4358 i915_max_freq_get(void *data, u64 *val)
4359 {
4360 	struct drm_i915_private *dev_priv = data;
4361 
4362 	if (INTEL_GEN(dev_priv) < 6)
4363 		return -ENODEV;
4364 
4365 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4366 	return 0;
4367 }
4368 
4369 static int
4370 i915_max_freq_set(void *data, u64 val)
4371 {
4372 	struct drm_i915_private *dev_priv = data;
4373 	u32 hw_max, hw_min;
4374 	int ret;
4375 
4376 	if (INTEL_GEN(dev_priv) < 6)
4377 		return -ENODEV;
4378 
4379 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4380 
4381 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4382 	if (ret)
4383 		return ret;
4384 
4385 	/*
4386 	 * Turbo will still be enabled, but won't go above the set value.
4387 	 */
4388 	val = intel_freq_opcode(dev_priv, val);
4389 
4390 	hw_max = dev_priv->rps.max_freq;
4391 	hw_min = dev_priv->rps.min_freq;
4392 
4393 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4394 		mutex_unlock(&dev_priv->rps.hw_lock);
4395 		return -EINVAL;
4396 	}
4397 
4398 	dev_priv->rps.max_freq_softlimit = val;
4399 
4400 	if (intel_set_rps(dev_priv, val))
4401 		DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4402 
4403 	mutex_unlock(&dev_priv->rps.hw_lock);
4404 
4405 	return 0;
4406 }
4407 
4408 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4409 			i915_max_freq_get, i915_max_freq_set,
4410 			"%llu\n");
4411 
4412 static int
4413 i915_min_freq_get(void *data, u64 *val)
4414 {
4415 	struct drm_i915_private *dev_priv = data;
4416 
4417 	if (INTEL_GEN(dev_priv) < 6)
4418 		return -ENODEV;
4419 
4420 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4421 	return 0;
4422 }
4423 
4424 static int
4425 i915_min_freq_set(void *data, u64 val)
4426 {
4427 	struct drm_i915_private *dev_priv = data;
4428 	u32 hw_max, hw_min;
4429 	int ret;
4430 
4431 	if (INTEL_GEN(dev_priv) < 6)
4432 		return -ENODEV;
4433 
4434 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4435 
4436 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4437 	if (ret)
4438 		return ret;
4439 
4440 	/*
4441 	 * Turbo will still be enabled, but won't go below the set value.
4442 	 */
4443 	val = intel_freq_opcode(dev_priv, val);
4444 
4445 	hw_max = dev_priv->rps.max_freq;
4446 	hw_min = dev_priv->rps.min_freq;
4447 
4448 	if (val < hw_min ||
4449 	    val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4450 		mutex_unlock(&dev_priv->rps.hw_lock);
4451 		return -EINVAL;
4452 	}
4453 
4454 	dev_priv->rps.min_freq_softlimit = val;
4455 
4456 	if (intel_set_rps(dev_priv, val))
4457 		DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4458 
4459 	mutex_unlock(&dev_priv->rps.hw_lock);
4460 
4461 	return 0;
4462 }
4463 
4464 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4465 			i915_min_freq_get, i915_min_freq_set,
4466 			"%llu\n");
4467 
4468 static int
4469 i915_cache_sharing_get(void *data, u64 *val)
4470 {
4471 	struct drm_i915_private *dev_priv = data;
4472 	u32 snpcr;
4473 
4474 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4475 		return -ENODEV;
4476 
4477 	intel_runtime_pm_get(dev_priv);
4478 
4479 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4480 
4481 	intel_runtime_pm_put(dev_priv);
4482 
4483 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4484 
4485 	return 0;
4486 }
4487 
4488 static int
4489 i915_cache_sharing_set(void *data, u64 val)
4490 {
4491 	struct drm_i915_private *dev_priv = data;
4492 	u32 snpcr;
4493 
4494 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4495 		return -ENODEV;
4496 
4497 	if (val > 3)
4498 		return -EINVAL;
4499 
4500 	intel_runtime_pm_get(dev_priv);
4501 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4502 
4503 	/* Update the cache sharing policy here as well */
4504 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4505 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
4506 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4507 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4508 
4509 	intel_runtime_pm_put(dev_priv);
4510 	return 0;
4511 }
4512 
4513 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4514 			i915_cache_sharing_get, i915_cache_sharing_set,
4515 			"%llu\n");
4516 
4517 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
4518 					  struct sseu_dev_info *sseu)
4519 {
4520 	int ss_max = 2;
4521 	int ss;
4522 	u32 sig1[ss_max], sig2[ss_max];
4523 
4524 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4525 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4526 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4527 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4528 
4529 	for (ss = 0; ss < ss_max; ss++) {
4530 		unsigned int eu_cnt;
4531 
4532 		if (sig1[ss] & CHV_SS_PG_ENABLE)
4533 			/* skip disabled subslice */
4534 			continue;
4535 
4536 		sseu->slice_mask = BIT(0);
4537 		sseu->subslice_mask |= BIT(ss);
4538 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4539 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4540 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4541 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4542 		sseu->eu_total += eu_cnt;
4543 		sseu->eu_per_subslice = max_t(unsigned int,
4544 					      sseu->eu_per_subslice, eu_cnt);
4545 	}
4546 }
4547 
4548 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
4549 				    struct sseu_dev_info *sseu)
4550 {
4551 	int s_max = 3, ss_max = 4;
4552 	int s, ss;
4553 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4554 
4555 	/* BXT has a single slice and at most 3 subslices. */
4556 	if (IS_GEN9_LP(dev_priv)) {
4557 		s_max = 1;
4558 		ss_max = 3;
4559 	}
4560 
4561 	for (s = 0; s < s_max; s++) {
4562 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4563 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4564 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4565 	}
4566 
4567 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4568 		     GEN9_PGCTL_SSA_EU19_ACK |
4569 		     GEN9_PGCTL_SSA_EU210_ACK |
4570 		     GEN9_PGCTL_SSA_EU311_ACK;
4571 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4572 		     GEN9_PGCTL_SSB_EU19_ACK |
4573 		     GEN9_PGCTL_SSB_EU210_ACK |
4574 		     GEN9_PGCTL_SSB_EU311_ACK;
4575 
4576 	for (s = 0; s < s_max; s++) {
4577 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4578 			/* skip disabled slice */
4579 			continue;
4580 
4581 		sseu->slice_mask |= BIT(s);
4582 
4583 		if (IS_GEN9_BC(dev_priv))
4584 			sseu->subslice_mask =
4585 				INTEL_INFO(dev_priv)->sseu.subslice_mask;
4586 
4587 		for (ss = 0; ss < ss_max; ss++) {
4588 			unsigned int eu_cnt;
4589 
4590 			if (IS_GEN9_LP(dev_priv)) {
4591 				if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4592 					/* skip disabled subslice */
4593 					continue;
4594 
4595 				sseu->subslice_mask |= BIT(ss);
4596 			}
4597 
4598 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4599 					       eu_mask[ss%2]);
4600 			sseu->eu_total += eu_cnt;
4601 			sseu->eu_per_subslice = max_t(unsigned int,
4602 						      sseu->eu_per_subslice,
4603 						      eu_cnt);
4604 		}
4605 	}
4606 }
4607 
4608 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
4609 					 struct sseu_dev_info *sseu)
4610 {
4611 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
4612 	int s;
4613 
4614 	sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
4615 
4616 	if (sseu->slice_mask) {
4617 		sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
4618 		sseu->eu_per_subslice =
4619 				INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
4620 		sseu->eu_total = sseu->eu_per_subslice *
4621 				 sseu_subslice_total(sseu);
4622 
4623 		/* subtract fused off EU(s) from enabled slice(s) */
4624 		for (s = 0; s < fls(sseu->slice_mask); s++) {
4625 			u8 subslice_7eu =
4626 				INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
4627 
4628 			sseu->eu_total -= hweight8(subslice_7eu);
4629 		}
4630 	}
4631 }
4632 
4633 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
4634 				 const struct sseu_dev_info *sseu)
4635 {
4636 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4637 	const char *type = is_available_info ? "Available" : "Enabled";
4638 
4639 	seq_printf(m, "  %s Slice Mask: %04x\n", type,
4640 		   sseu->slice_mask);
4641 	seq_printf(m, "  %s Slice Total: %u\n", type,
4642 		   hweight8(sseu->slice_mask));
4643 	seq_printf(m, "  %s Subslice Total: %u\n", type,
4644 		   sseu_subslice_total(sseu));
4645 	seq_printf(m, "  %s Subslice Mask: %04x\n", type,
4646 		   sseu->subslice_mask);
4647 	seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
4648 		   hweight8(sseu->subslice_mask));
4649 	seq_printf(m, "  %s EU Total: %u\n", type,
4650 		   sseu->eu_total);
4651 	seq_printf(m, "  %s EU Per Subslice: %u\n", type,
4652 		   sseu->eu_per_subslice);
4653 
4654 	if (!is_available_info)
4655 		return;
4656 
4657 	seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
4658 	if (HAS_POOLED_EU(dev_priv))
4659 		seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
4660 
4661 	seq_printf(m, "  Has Slice Power Gating: %s\n",
4662 		   yesno(sseu->has_slice_pg));
4663 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
4664 		   yesno(sseu->has_subslice_pg));
4665 	seq_printf(m, "  Has EU Power Gating: %s\n",
4666 		   yesno(sseu->has_eu_pg));
4667 }
4668 
4669 static int i915_sseu_status(struct seq_file *m, void *unused)
4670 {
4671 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4672 	struct sseu_dev_info sseu;
4673 
4674 	if (INTEL_GEN(dev_priv) < 8)
4675 		return -ENODEV;
4676 
4677 	seq_puts(m, "SSEU Device Info\n");
4678 	i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
4679 
4680 	seq_puts(m, "SSEU Device Status\n");
4681 	memset(&sseu, 0, sizeof(sseu));
4682 
4683 	intel_runtime_pm_get(dev_priv);
4684 
4685 	if (IS_CHERRYVIEW(dev_priv)) {
4686 		cherryview_sseu_device_status(dev_priv, &sseu);
4687 	} else if (IS_BROADWELL(dev_priv)) {
4688 		broadwell_sseu_device_status(dev_priv, &sseu);
4689 	} else if (INTEL_GEN(dev_priv) >= 9) {
4690 		gen9_sseu_device_status(dev_priv, &sseu);
4691 	}
4692 
4693 	intel_runtime_pm_put(dev_priv);
4694 
4695 	i915_print_sseu_info(m, false, &sseu);
4696 
4697 	return 0;
4698 }
4699 
4700 static int i915_forcewake_open(struct inode *inode, struct file *file)
4701 {
4702 	struct drm_i915_private *dev_priv = inode->i_private;
4703 
4704 	if (INTEL_GEN(dev_priv) < 6)
4705 		return 0;
4706 
4707 	intel_runtime_pm_get(dev_priv);
4708 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4709 
4710 	return 0;
4711 }
4712 
4713 static int i915_forcewake_release(struct inode *inode, struct file *file)
4714 {
4715 	struct drm_i915_private *dev_priv = inode->i_private;
4716 
4717 	if (INTEL_GEN(dev_priv) < 6)
4718 		return 0;
4719 
4720 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4721 	intel_runtime_pm_put(dev_priv);
4722 
4723 	return 0;
4724 }
4725 
4726 static const struct file_operations i915_forcewake_fops = {
4727 	.owner = THIS_MODULE,
4728 	.open = i915_forcewake_open,
4729 	.release = i915_forcewake_release,
4730 };
4731 
4732 static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
4733 {
4734 	struct drm_i915_private *dev_priv = m->private;
4735 	struct i915_hotplug *hotplug = &dev_priv->hotplug;
4736 
4737 	seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
4738 	seq_printf(m, "Detected: %s\n",
4739 		   yesno(delayed_work_pending(&hotplug->reenable_work)));
4740 
4741 	return 0;
4742 }
4743 
4744 static ssize_t i915_hpd_storm_ctl_write(struct file *file,
4745 					const char __user *ubuf, size_t len,
4746 					loff_t *offp)
4747 {
4748 	struct seq_file *m = file->private_data;
4749 	struct drm_i915_private *dev_priv = m->private;
4750 	struct i915_hotplug *hotplug = &dev_priv->hotplug;
4751 	unsigned int new_threshold;
4752 	int i;
4753 	char *newline;
4754 	char tmp[16];
4755 
4756 	if (len >= sizeof(tmp))
4757 		return -EINVAL;
4758 
4759 	if (copy_from_user(tmp, ubuf, len))
4760 		return -EFAULT;
4761 
4762 	tmp[len] = '\0';
4763 
4764 	/* Strip newline, if any */
4765 	newline = strchr(tmp, '\n');
4766 	if (newline)
4767 		*newline = '\0';
4768 
4769 	if (strcmp(tmp, "reset") == 0)
4770 		new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4771 	else if (kstrtouint(tmp, 10, &new_threshold) != 0)
4772 		return -EINVAL;
4773 
4774 	if (new_threshold > 0)
4775 		DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
4776 			      new_threshold);
4777 	else
4778 		DRM_DEBUG_KMS("Disabling HPD storm detection\n");
4779 
4780 	spin_lock_irq(&dev_priv->irq_lock);
4781 	hotplug->hpd_storm_threshold = new_threshold;
4782 	/* Reset the HPD storm stats so we don't accidentally trigger a storm */
4783 	for_each_hpd_pin(i)
4784 		hotplug->stats[i].count = 0;
4785 	spin_unlock_irq(&dev_priv->irq_lock);
4786 
4787 	/* Re-enable hpd immediately if we were in an irq storm */
4788 	flush_delayed_work(&dev_priv->hotplug.reenable_work);
4789 
4790 	return len;
4791 }
4792 
4793 static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
4794 {
4795 	return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
4796 }
4797 
4798 static const struct file_operations i915_hpd_storm_ctl_fops = {
4799 	.owner = THIS_MODULE,
4800 	.open = i915_hpd_storm_ctl_open,
4801 	.read = seq_read,
4802 	.llseek = seq_lseek,
4803 	.release = single_release,
4804 	.write = i915_hpd_storm_ctl_write
4805 };
4806 
4807 static const struct drm_info_list i915_debugfs_list[] = {
4808 	{"i915_capabilities", i915_capabilities, 0},
4809 	{"i915_gem_objects", i915_gem_object_info, 0},
4810 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
4811 	{"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
4812 	{"i915_gem_stolen", i915_gem_stolen_list_info },
4813 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4814 	{"i915_gem_request", i915_gem_request_info, 0},
4815 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
4816 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4817 	{"i915_gem_interrupt", i915_interrupt_info, 0},
4818 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4819 	{"i915_guc_info", i915_guc_info, 0},
4820 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
4821 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
4822 	{"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
4823 	{"i915_guc_stage_pool", i915_guc_stage_pool, 0},
4824 	{"i915_huc_load_status", i915_huc_load_status_info, 0},
4825 	{"i915_frequency_info", i915_frequency_info, 0},
4826 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
4827 	{"i915_drpc_info", i915_drpc_info, 0},
4828 	{"i915_emon_status", i915_emon_status, 0},
4829 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
4830 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
4831 	{"i915_fbc_status", i915_fbc_status, 0},
4832 	{"i915_ips_status", i915_ips_status, 0},
4833 	{"i915_sr_status", i915_sr_status, 0},
4834 	{"i915_opregion", i915_opregion, 0},
4835 	{"i915_vbt", i915_vbt, 0},
4836 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4837 	{"i915_context_status", i915_context_status, 0},
4838 	{"i915_dump_lrc", i915_dump_lrc, 0},
4839 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
4840 	{"i915_swizzle_info", i915_swizzle_info, 0},
4841 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
4842 	{"i915_llc", i915_llc, 0},
4843 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
4844 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
4845 	{"i915_energy_uJ", i915_energy_uJ, 0},
4846 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
4847 	{"i915_power_domain_info", i915_power_domain_info, 0},
4848 	{"i915_dmc_info", i915_dmc_info, 0},
4849 	{"i915_display_info", i915_display_info, 0},
4850 	{"i915_engine_info", i915_engine_info, 0},
4851 	{"i915_semaphore_status", i915_semaphore_status, 0},
4852 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4853 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
4854 	{"i915_wa_registers", i915_wa_registers, 0},
4855 	{"i915_ddb_info", i915_ddb_info, 0},
4856 	{"i915_sseu_status", i915_sseu_status, 0},
4857 	{"i915_drrs_status", i915_drrs_status, 0},
4858 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
4859 };
4860 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4861 
4862 static const struct i915_debugfs_files {
4863 	const char *name;
4864 	const struct file_operations *fops;
4865 } i915_debugfs_files[] = {
4866 	{"i915_wedged", &i915_wedged_fops},
4867 	{"i915_max_freq", &i915_max_freq_fops},
4868 	{"i915_min_freq", &i915_min_freq_fops},
4869 	{"i915_cache_sharing", &i915_cache_sharing_fops},
4870 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4871 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
4872 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
4873 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
4874 	{"i915_error_state", &i915_error_state_fops},
4875 	{"i915_gpu_info", &i915_gpu_info_fops},
4876 #endif
4877 	{"i915_next_seqno", &i915_next_seqno_fops},
4878 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4879 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4880 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4881 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4882 	{"i915_fbc_false_color", &i915_fbc_false_color_fops},
4883 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
4884 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
4885 	{"i915_dp_test_active", &i915_displayport_test_active_fops},
4886 	{"i915_guc_log_control", &i915_guc_log_control_fops},
4887 	{"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops}
4888 };
4889 
4890 int i915_debugfs_register(struct drm_i915_private *dev_priv)
4891 {
4892 	struct drm_minor *minor = dev_priv->drm.primary;
4893 	struct dentry *ent;
4894 	int ret, i;
4895 
4896 	ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
4897 				  minor->debugfs_root, to_i915(minor->dev),
4898 				  &i915_forcewake_fops);
4899 	if (!ent)
4900 		return -ENOMEM;
4901 
4902 	ret = intel_pipe_crc_create(minor);
4903 	if (ret)
4904 		return ret;
4905 
4906 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4907 		ent = debugfs_create_file(i915_debugfs_files[i].name,
4908 					  S_IRUGO | S_IWUSR,
4909 					  minor->debugfs_root,
4910 					  to_i915(minor->dev),
4911 					  i915_debugfs_files[i].fops);
4912 		if (!ent)
4913 			return -ENOMEM;
4914 	}
4915 
4916 	return drm_debugfs_create_files(i915_debugfs_list,
4917 					I915_DEBUGFS_ENTRIES,
4918 					minor->debugfs_root, minor);
4919 }
4920 
4921 struct dpcd_block {
4922 	/* DPCD dump start address. */
4923 	unsigned int offset;
4924 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
4925 	unsigned int end;
4926 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
4927 	size_t size;
4928 	/* Only valid for eDP. */
4929 	bool edp;
4930 };
4931 
4932 static const struct dpcd_block i915_dpcd_debug[] = {
4933 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
4934 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
4935 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
4936 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
4937 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
4938 	{ .offset = DP_SET_POWER },
4939 	{ .offset = DP_EDP_DPCD_REV },
4940 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
4941 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
4942 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
4943 };
4944 
4945 static int i915_dpcd_show(struct seq_file *m, void *data)
4946 {
4947 	struct drm_connector *connector = m->private;
4948 	struct intel_dp *intel_dp =
4949 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4950 	uint8_t buf[16];
4951 	ssize_t err;
4952 	int i;
4953 
4954 	if (connector->status != connector_status_connected)
4955 		return -ENODEV;
4956 
4957 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
4958 		const struct dpcd_block *b = &i915_dpcd_debug[i];
4959 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
4960 
4961 		if (b->edp &&
4962 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
4963 			continue;
4964 
4965 		/* low tech for now */
4966 		if (WARN_ON(size > sizeof(buf)))
4967 			continue;
4968 
4969 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
4970 		if (err <= 0) {
4971 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
4972 				  size, b->offset, err);
4973 			continue;
4974 		}
4975 
4976 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
4977 	}
4978 
4979 	return 0;
4980 }
4981 
4982 static int i915_dpcd_open(struct inode *inode, struct file *file)
4983 {
4984 	return single_open(file, i915_dpcd_show, inode->i_private);
4985 }
4986 
4987 static const struct file_operations i915_dpcd_fops = {
4988 	.owner = THIS_MODULE,
4989 	.open = i915_dpcd_open,
4990 	.read = seq_read,
4991 	.llseek = seq_lseek,
4992 	.release = single_release,
4993 };
4994 
4995 static int i915_panel_show(struct seq_file *m, void *data)
4996 {
4997 	struct drm_connector *connector = m->private;
4998 	struct intel_dp *intel_dp =
4999 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5000 
5001 	if (connector->status != connector_status_connected)
5002 		return -ENODEV;
5003 
5004 	seq_printf(m, "Panel power up delay: %d\n",
5005 		   intel_dp->panel_power_up_delay);
5006 	seq_printf(m, "Panel power down delay: %d\n",
5007 		   intel_dp->panel_power_down_delay);
5008 	seq_printf(m, "Backlight on delay: %d\n",
5009 		   intel_dp->backlight_on_delay);
5010 	seq_printf(m, "Backlight off delay: %d\n",
5011 		   intel_dp->backlight_off_delay);
5012 
5013 	return 0;
5014 }
5015 
5016 static int i915_panel_open(struct inode *inode, struct file *file)
5017 {
5018 	return single_open(file, i915_panel_show, inode->i_private);
5019 }
5020 
5021 static const struct file_operations i915_panel_fops = {
5022 	.owner = THIS_MODULE,
5023 	.open = i915_panel_open,
5024 	.read = seq_read,
5025 	.llseek = seq_lseek,
5026 	.release = single_release,
5027 };
5028 
5029 /**
5030  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5031  * @connector: pointer to a registered drm_connector
5032  *
5033  * Cleanup will be done by drm_connector_unregister() through a call to
5034  * drm_debugfs_connector_remove().
5035  *
5036  * Returns 0 on success, negative error codes on error.
5037  */
5038 int i915_debugfs_connector_add(struct drm_connector *connector)
5039 {
5040 	struct dentry *root = connector->debugfs_entry;
5041 
5042 	/* The connector must have been registered beforehands. */
5043 	if (!root)
5044 		return -ENODEV;
5045 
5046 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5047 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5048 		debugfs_create_file("i915_dpcd", S_IRUGO, root,
5049 				    connector, &i915_dpcd_fops);
5050 
5051 	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5052 		debugfs_create_file("i915_panel_timings", S_IRUGO, root,
5053 				    connector, &i915_panel_fops);
5054 
5055 	return 0;
5056 }
5057