1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42 
43 enum {
44 	ACTIVE_LIST,
45 	INACTIVE_LIST,
46 	PINNED_LIST,
47 };
48 
49 static const char *yesno(int v)
50 {
51 	return v ? "yes" : "no";
52 }
53 
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58 		       struct dentry *ent,
59 		       const void *key)
60 {
61 	struct drm_info_node *node;
62 
63 	node = kmalloc(sizeof(*node), GFP_KERNEL);
64 	if (node == NULL) {
65 		debugfs_remove(ent);
66 		return -ENOMEM;
67 	}
68 
69 	node->minor = minor;
70 	node->dent = ent;
71 	node->info_ent = (void *) key;
72 
73 	mutex_lock(&minor->debugfs_lock);
74 	list_add(&node->list, &minor->debugfs_list);
75 	mutex_unlock(&minor->debugfs_lock);
76 
77 	return 0;
78 }
79 
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82 	struct drm_info_node *node = m->private;
83 	struct drm_device *dev = node->minor->dev;
84 	const struct intel_device_info *info = INTEL_INFO(dev);
85 
86 	seq_printf(m, "gen: %d\n", info->gen);
87 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93 
94 	return 0;
95 }
96 
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 	if (obj->pin_display)
100 		return "p";
101 	else
102 		return " ";
103 }
104 
105 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
106 {
107 	switch (obj->tiling_mode) {
108 	default:
109 	case I915_TILING_NONE: return " ";
110 	case I915_TILING_X: return "X";
111 	case I915_TILING_Y: return "Y";
112 	}
113 }
114 
115 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
116 {
117 	return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
118 }
119 
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
124 	struct intel_engine_cs *ring;
125 	struct i915_vma *vma;
126 	int pin_count = 0;
127 	int i;
128 
129 	seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
130 		   &obj->base,
131 		   obj->active ? "*" : " ",
132 		   get_pin_flag(obj),
133 		   get_tiling_flag(obj),
134 		   get_global_flag(obj),
135 		   obj->base.size / 1024,
136 		   obj->base.read_domains,
137 		   obj->base.write_domain);
138 	for_each_ring(ring, dev_priv, i)
139 		seq_printf(m, "%x ",
140 				i915_gem_request_get_seqno(obj->last_read_req[i]));
141 	seq_printf(m, "] %x %x%s%s%s",
142 		   i915_gem_request_get_seqno(obj->last_write_req),
143 		   i915_gem_request_get_seqno(obj->last_fenced_req),
144 		   i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
145 		   obj->dirty ? " dirty" : "",
146 		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
147 	if (obj->base.name)
148 		seq_printf(m, " (name: %d)", obj->base.name);
149 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
150 		if (vma->pin_count > 0)
151 			pin_count++;
152 	}
153 	seq_printf(m, " (pinned x %d)", pin_count);
154 	if (obj->pin_display)
155 		seq_printf(m, " (display)");
156 	if (obj->fence_reg != I915_FENCE_REG_NONE)
157 		seq_printf(m, " (fence: %d)", obj->fence_reg);
158 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
159 		if (!i915_is_ggtt(vma->vm))
160 			seq_puts(m, " (pp");
161 		else
162 			seq_puts(m, " (g");
163 		seq_printf(m, "gtt offset: %08llx, size: %08llx, type: %u)",
164 			   vma->node.start, vma->node.size,
165 			   vma->ggtt_view.type);
166 	}
167 	if (obj->stolen)
168 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
169 	if (obj->pin_display || obj->fault_mappable) {
170 		char s[3], *t = s;
171 		if (obj->pin_display)
172 			*t++ = 'p';
173 		if (obj->fault_mappable)
174 			*t++ = 'f';
175 		*t = '\0';
176 		seq_printf(m, " (%s mappable)", s);
177 	}
178 	if (obj->last_write_req != NULL)
179 		seq_printf(m, " (%s)",
180 			   i915_gem_request_get_ring(obj->last_write_req)->name);
181 	if (obj->frontbuffer_bits)
182 		seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
183 }
184 
185 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
186 {
187 	seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
188 	seq_putc(m, ctx->remap_slice ? 'R' : 'r');
189 	seq_putc(m, ' ');
190 }
191 
192 static int i915_gem_object_list_info(struct seq_file *m, void *data)
193 {
194 	struct drm_info_node *node = m->private;
195 	uintptr_t list = (uintptr_t) node->info_ent->data;
196 	struct list_head *head;
197 	struct drm_device *dev = node->minor->dev;
198 	struct drm_i915_private *dev_priv = dev->dev_private;
199 	struct i915_address_space *vm = &dev_priv->gtt.base;
200 	struct i915_vma *vma;
201 	size_t total_obj_size, total_gtt_size;
202 	int count, ret;
203 
204 	ret = mutex_lock_interruptible(&dev->struct_mutex);
205 	if (ret)
206 		return ret;
207 
208 	/* FIXME: the user of this interface might want more than just GGTT */
209 	switch (list) {
210 	case ACTIVE_LIST:
211 		seq_puts(m, "Active:\n");
212 		head = &vm->active_list;
213 		break;
214 	case INACTIVE_LIST:
215 		seq_puts(m, "Inactive:\n");
216 		head = &vm->inactive_list;
217 		break;
218 	default:
219 		mutex_unlock(&dev->struct_mutex);
220 		return -EINVAL;
221 	}
222 
223 	total_obj_size = total_gtt_size = count = 0;
224 	list_for_each_entry(vma, head, mm_list) {
225 		seq_printf(m, "   ");
226 		describe_obj(m, vma->obj);
227 		seq_printf(m, "\n");
228 		total_obj_size += vma->obj->base.size;
229 		total_gtt_size += vma->node.size;
230 		count++;
231 	}
232 	mutex_unlock(&dev->struct_mutex);
233 
234 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
235 		   count, total_obj_size, total_gtt_size);
236 	return 0;
237 }
238 
239 static int obj_rank_by_stolen(void *priv,
240 			      struct list_head *A, struct list_head *B)
241 {
242 	struct drm_i915_gem_object *a =
243 		container_of(A, struct drm_i915_gem_object, obj_exec_link);
244 	struct drm_i915_gem_object *b =
245 		container_of(B, struct drm_i915_gem_object, obj_exec_link);
246 
247 	return a->stolen->start - b->stolen->start;
248 }
249 
250 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
251 {
252 	struct drm_info_node *node = m->private;
253 	struct drm_device *dev = node->minor->dev;
254 	struct drm_i915_private *dev_priv = dev->dev_private;
255 	struct drm_i915_gem_object *obj;
256 	size_t total_obj_size, total_gtt_size;
257 	LIST_HEAD(stolen);
258 	int count, ret;
259 
260 	ret = mutex_lock_interruptible(&dev->struct_mutex);
261 	if (ret)
262 		return ret;
263 
264 	total_obj_size = total_gtt_size = count = 0;
265 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
266 		if (obj->stolen == NULL)
267 			continue;
268 
269 		list_add(&obj->obj_exec_link, &stolen);
270 
271 		total_obj_size += obj->base.size;
272 		total_gtt_size += i915_gem_obj_ggtt_size(obj);
273 		count++;
274 	}
275 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
276 		if (obj->stolen == NULL)
277 			continue;
278 
279 		list_add(&obj->obj_exec_link, &stolen);
280 
281 		total_obj_size += obj->base.size;
282 		count++;
283 	}
284 	list_sort(NULL, &stolen, obj_rank_by_stolen);
285 	seq_puts(m, "Stolen:\n");
286 	while (!list_empty(&stolen)) {
287 		obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
288 		seq_puts(m, "   ");
289 		describe_obj(m, obj);
290 		seq_putc(m, '\n');
291 		list_del_init(&obj->obj_exec_link);
292 	}
293 	mutex_unlock(&dev->struct_mutex);
294 
295 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
296 		   count, total_obj_size, total_gtt_size);
297 	return 0;
298 }
299 
300 #define count_objects(list, member) do { \
301 	list_for_each_entry(obj, list, member) { \
302 		size += i915_gem_obj_ggtt_size(obj); \
303 		++count; \
304 		if (obj->map_and_fenceable) { \
305 			mappable_size += i915_gem_obj_ggtt_size(obj); \
306 			++mappable_count; \
307 		} \
308 	} \
309 } while (0)
310 
311 struct file_stats {
312 	struct drm_i915_file_private *file_priv;
313 	int count;
314 	size_t total, unbound;
315 	size_t global, shared;
316 	size_t active, inactive;
317 };
318 
319 static int per_file_stats(int id, void *ptr, void *data)
320 {
321 	struct drm_i915_gem_object *obj = ptr;
322 	struct file_stats *stats = data;
323 	struct i915_vma *vma;
324 
325 	stats->count++;
326 	stats->total += obj->base.size;
327 
328 	if (obj->base.name || obj->base.dma_buf)
329 		stats->shared += obj->base.size;
330 
331 	if (USES_FULL_PPGTT(obj->base.dev)) {
332 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
333 			struct i915_hw_ppgtt *ppgtt;
334 
335 			if (!drm_mm_node_allocated(&vma->node))
336 				continue;
337 
338 			if (i915_is_ggtt(vma->vm)) {
339 				stats->global += obj->base.size;
340 				continue;
341 			}
342 
343 			ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
344 			if (ppgtt->file_priv != stats->file_priv)
345 				continue;
346 
347 			if (obj->active) /* XXX per-vma statistic */
348 				stats->active += obj->base.size;
349 			else
350 				stats->inactive += obj->base.size;
351 
352 			return 0;
353 		}
354 	} else {
355 		if (i915_gem_obj_ggtt_bound(obj)) {
356 			stats->global += obj->base.size;
357 			if (obj->active)
358 				stats->active += obj->base.size;
359 			else
360 				stats->inactive += obj->base.size;
361 			return 0;
362 		}
363 	}
364 
365 	if (!list_empty(&obj->global_list))
366 		stats->unbound += obj->base.size;
367 
368 	return 0;
369 }
370 
371 #define print_file_stats(m, name, stats) do { \
372 	if (stats.count) \
373 		seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n", \
374 			   name, \
375 			   stats.count, \
376 			   stats.total, \
377 			   stats.active, \
378 			   stats.inactive, \
379 			   stats.global, \
380 			   stats.shared, \
381 			   stats.unbound); \
382 } while (0)
383 
384 static void print_batch_pool_stats(struct seq_file *m,
385 				   struct drm_i915_private *dev_priv)
386 {
387 	struct drm_i915_gem_object *obj;
388 	struct file_stats stats;
389 	struct intel_engine_cs *ring;
390 	int i, j;
391 
392 	memset(&stats, 0, sizeof(stats));
393 
394 	for_each_ring(ring, dev_priv, i) {
395 		for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
396 			list_for_each_entry(obj,
397 					    &ring->batch_pool.cache_list[j],
398 					    batch_pool_link)
399 				per_file_stats(0, obj, &stats);
400 		}
401 	}
402 
403 	print_file_stats(m, "[k]batch pool", stats);
404 }
405 
406 #define count_vmas(list, member) do { \
407 	list_for_each_entry(vma, list, member) { \
408 		size += i915_gem_obj_ggtt_size(vma->obj); \
409 		++count; \
410 		if (vma->obj->map_and_fenceable) { \
411 			mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
412 			++mappable_count; \
413 		} \
414 	} \
415 } while (0)
416 
417 static int i915_gem_object_info(struct seq_file *m, void* data)
418 {
419 	struct drm_info_node *node = m->private;
420 	struct drm_device *dev = node->minor->dev;
421 	struct drm_i915_private *dev_priv = dev->dev_private;
422 	u32 count, mappable_count, purgeable_count;
423 	size_t size, mappable_size, purgeable_size;
424 	struct drm_i915_gem_object *obj;
425 	struct i915_address_space *vm = &dev_priv->gtt.base;
426 	struct drm_file *file;
427 	struct i915_vma *vma;
428 	int ret;
429 
430 	ret = mutex_lock_interruptible(&dev->struct_mutex);
431 	if (ret)
432 		return ret;
433 
434 	seq_printf(m, "%u objects, %zu bytes\n",
435 		   dev_priv->mm.object_count,
436 		   dev_priv->mm.object_memory);
437 
438 	size = count = mappable_size = mappable_count = 0;
439 	count_objects(&dev_priv->mm.bound_list, global_list);
440 	seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
441 		   count, mappable_count, size, mappable_size);
442 
443 	size = count = mappable_size = mappable_count = 0;
444 	count_vmas(&vm->active_list, mm_list);
445 	seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
446 		   count, mappable_count, size, mappable_size);
447 
448 	size = count = mappable_size = mappable_count = 0;
449 	count_vmas(&vm->inactive_list, mm_list);
450 	seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
451 		   count, mappable_count, size, mappable_size);
452 
453 	size = count = purgeable_size = purgeable_count = 0;
454 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
455 		size += obj->base.size, ++count;
456 		if (obj->madv == I915_MADV_DONTNEED)
457 			purgeable_size += obj->base.size, ++purgeable_count;
458 	}
459 	seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
460 
461 	size = count = mappable_size = mappable_count = 0;
462 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
463 		if (obj->fault_mappable) {
464 			size += i915_gem_obj_ggtt_size(obj);
465 			++count;
466 		}
467 		if (obj->pin_display) {
468 			mappable_size += i915_gem_obj_ggtt_size(obj);
469 			++mappable_count;
470 		}
471 		if (obj->madv == I915_MADV_DONTNEED) {
472 			purgeable_size += obj->base.size;
473 			++purgeable_count;
474 		}
475 	}
476 	seq_printf(m, "%u purgeable objects, %zu bytes\n",
477 		   purgeable_count, purgeable_size);
478 	seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
479 		   mappable_count, mappable_size);
480 	seq_printf(m, "%u fault mappable objects, %zu bytes\n",
481 		   count, size);
482 
483 	seq_printf(m, "%zu [%lu] gtt total\n",
484 		   dev_priv->gtt.base.total,
485 		   dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
486 
487 	seq_putc(m, '\n');
488 	print_batch_pool_stats(m, dev_priv);
489 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
490 		struct file_stats stats;
491 		struct task_struct *task;
492 
493 		memset(&stats, 0, sizeof(stats));
494 		stats.file_priv = file->driver_priv;
495 		spin_lock(&file->table_lock);
496 		idr_for_each(&file->object_idr, per_file_stats, &stats);
497 		spin_unlock(&file->table_lock);
498 		/*
499 		 * Although we have a valid reference on file->pid, that does
500 		 * not guarantee that the task_struct who called get_pid() is
501 		 * still alive (e.g. get_pid(current) => fork() => exit()).
502 		 * Therefore, we need to protect this ->comm access using RCU.
503 		 */
504 		rcu_read_lock();
505 		task = pid_task(file->pid, PIDTYPE_PID);
506 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
507 		rcu_read_unlock();
508 	}
509 
510 	mutex_unlock(&dev->struct_mutex);
511 
512 	return 0;
513 }
514 
515 static int i915_gem_gtt_info(struct seq_file *m, void *data)
516 {
517 	struct drm_info_node *node = m->private;
518 	struct drm_device *dev = node->minor->dev;
519 	uintptr_t list = (uintptr_t) node->info_ent->data;
520 	struct drm_i915_private *dev_priv = dev->dev_private;
521 	struct drm_i915_gem_object *obj;
522 	size_t total_obj_size, total_gtt_size;
523 	int count, ret;
524 
525 	ret = mutex_lock_interruptible(&dev->struct_mutex);
526 	if (ret)
527 		return ret;
528 
529 	total_obj_size = total_gtt_size = count = 0;
530 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
531 		if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
532 			continue;
533 
534 		seq_puts(m, "   ");
535 		describe_obj(m, obj);
536 		seq_putc(m, '\n');
537 		total_obj_size += obj->base.size;
538 		total_gtt_size += i915_gem_obj_ggtt_size(obj);
539 		count++;
540 	}
541 
542 	mutex_unlock(&dev->struct_mutex);
543 
544 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
545 		   count, total_obj_size, total_gtt_size);
546 
547 	return 0;
548 }
549 
550 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
551 {
552 	struct drm_info_node *node = m->private;
553 	struct drm_device *dev = node->minor->dev;
554 	struct drm_i915_private *dev_priv = dev->dev_private;
555 	struct intel_crtc *crtc;
556 	int ret;
557 
558 	ret = mutex_lock_interruptible(&dev->struct_mutex);
559 	if (ret)
560 		return ret;
561 
562 	for_each_intel_crtc(dev, crtc) {
563 		const char pipe = pipe_name(crtc->pipe);
564 		const char plane = plane_name(crtc->plane);
565 		struct intel_unpin_work *work;
566 
567 		spin_lock_irq(&dev->event_lock);
568 		work = crtc->unpin_work;
569 		if (work == NULL) {
570 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
571 				   pipe, plane);
572 		} else {
573 			u32 addr;
574 
575 			if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
576 				seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
577 					   pipe, plane);
578 			} else {
579 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
580 					   pipe, plane);
581 			}
582 			if (work->flip_queued_req) {
583 				struct intel_engine_cs *ring =
584 					i915_gem_request_get_ring(work->flip_queued_req);
585 
586 				seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
587 					   ring->name,
588 					   i915_gem_request_get_seqno(work->flip_queued_req),
589 					   dev_priv->next_seqno,
590 					   ring->get_seqno(ring, true),
591 					   i915_gem_request_completed(work->flip_queued_req, true));
592 			} else
593 				seq_printf(m, "Flip not associated with any ring\n");
594 			seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
595 				   work->flip_queued_vblank,
596 				   work->flip_ready_vblank,
597 				   drm_crtc_vblank_count(&crtc->base));
598 			if (work->enable_stall_check)
599 				seq_puts(m, "Stall check enabled, ");
600 			else
601 				seq_puts(m, "Stall check waiting for page flip ioctl, ");
602 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
603 
604 			if (INTEL_INFO(dev)->gen >= 4)
605 				addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
606 			else
607 				addr = I915_READ(DSPADDR(crtc->plane));
608 			seq_printf(m, "Current scanout address 0x%08x\n", addr);
609 
610 			if (work->pending_flip_obj) {
611 				seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
612 				seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
613 			}
614 		}
615 		spin_unlock_irq(&dev->event_lock);
616 	}
617 
618 	mutex_unlock(&dev->struct_mutex);
619 
620 	return 0;
621 }
622 
623 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
624 {
625 	struct drm_info_node *node = m->private;
626 	struct drm_device *dev = node->minor->dev;
627 	struct drm_i915_private *dev_priv = dev->dev_private;
628 	struct drm_i915_gem_object *obj;
629 	struct intel_engine_cs *ring;
630 	int total = 0;
631 	int ret, i, j;
632 
633 	ret = mutex_lock_interruptible(&dev->struct_mutex);
634 	if (ret)
635 		return ret;
636 
637 	for_each_ring(ring, dev_priv, i) {
638 		for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
639 			int count;
640 
641 			count = 0;
642 			list_for_each_entry(obj,
643 					    &ring->batch_pool.cache_list[j],
644 					    batch_pool_link)
645 				count++;
646 			seq_printf(m, "%s cache[%d]: %d objects\n",
647 				   ring->name, j, count);
648 
649 			list_for_each_entry(obj,
650 					    &ring->batch_pool.cache_list[j],
651 					    batch_pool_link) {
652 				seq_puts(m, "   ");
653 				describe_obj(m, obj);
654 				seq_putc(m, '\n');
655 			}
656 
657 			total += count;
658 		}
659 	}
660 
661 	seq_printf(m, "total: %d\n", total);
662 
663 	mutex_unlock(&dev->struct_mutex);
664 
665 	return 0;
666 }
667 
668 static int i915_gem_request_info(struct seq_file *m, void *data)
669 {
670 	struct drm_info_node *node = m->private;
671 	struct drm_device *dev = node->minor->dev;
672 	struct drm_i915_private *dev_priv = dev->dev_private;
673 	struct intel_engine_cs *ring;
674 	struct drm_i915_gem_request *req;
675 	int ret, any, i;
676 
677 	ret = mutex_lock_interruptible(&dev->struct_mutex);
678 	if (ret)
679 		return ret;
680 
681 	any = 0;
682 	for_each_ring(ring, dev_priv, i) {
683 		int count;
684 
685 		count = 0;
686 		list_for_each_entry(req, &ring->request_list, list)
687 			count++;
688 		if (count == 0)
689 			continue;
690 
691 		seq_printf(m, "%s requests: %d\n", ring->name, count);
692 		list_for_each_entry(req, &ring->request_list, list) {
693 			struct task_struct *task;
694 
695 			rcu_read_lock();
696 			task = NULL;
697 			if (req->pid)
698 				task = pid_task(req->pid, PIDTYPE_PID);
699 			seq_printf(m, "    %x @ %d: %s [%d]\n",
700 				   req->seqno,
701 				   (int) (jiffies - req->emitted_jiffies),
702 				   task ? task->comm : "<unknown>",
703 				   task ? task->pid : -1);
704 			rcu_read_unlock();
705 		}
706 
707 		any++;
708 	}
709 	mutex_unlock(&dev->struct_mutex);
710 
711 	if (any == 0)
712 		seq_puts(m, "No requests\n");
713 
714 	return 0;
715 }
716 
717 static void i915_ring_seqno_info(struct seq_file *m,
718 				 struct intel_engine_cs *ring)
719 {
720 	if (ring->get_seqno) {
721 		seq_printf(m, "Current sequence (%s): %x\n",
722 			   ring->name, ring->get_seqno(ring, false));
723 	}
724 }
725 
726 static int i915_gem_seqno_info(struct seq_file *m, void *data)
727 {
728 	struct drm_info_node *node = m->private;
729 	struct drm_device *dev = node->minor->dev;
730 	struct drm_i915_private *dev_priv = dev->dev_private;
731 	struct intel_engine_cs *ring;
732 	int ret, i;
733 
734 	ret = mutex_lock_interruptible(&dev->struct_mutex);
735 	if (ret)
736 		return ret;
737 	intel_runtime_pm_get(dev_priv);
738 
739 	for_each_ring(ring, dev_priv, i)
740 		i915_ring_seqno_info(m, ring);
741 
742 	intel_runtime_pm_put(dev_priv);
743 	mutex_unlock(&dev->struct_mutex);
744 
745 	return 0;
746 }
747 
748 
749 static int i915_interrupt_info(struct seq_file *m, void *data)
750 {
751 	struct drm_info_node *node = m->private;
752 	struct drm_device *dev = node->minor->dev;
753 	struct drm_i915_private *dev_priv = dev->dev_private;
754 	struct intel_engine_cs *ring;
755 	int ret, i, pipe;
756 
757 	ret = mutex_lock_interruptible(&dev->struct_mutex);
758 	if (ret)
759 		return ret;
760 	intel_runtime_pm_get(dev_priv);
761 
762 	if (IS_CHERRYVIEW(dev)) {
763 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
764 			   I915_READ(GEN8_MASTER_IRQ));
765 
766 		seq_printf(m, "Display IER:\t%08x\n",
767 			   I915_READ(VLV_IER));
768 		seq_printf(m, "Display IIR:\t%08x\n",
769 			   I915_READ(VLV_IIR));
770 		seq_printf(m, "Display IIR_RW:\t%08x\n",
771 			   I915_READ(VLV_IIR_RW));
772 		seq_printf(m, "Display IMR:\t%08x\n",
773 			   I915_READ(VLV_IMR));
774 		for_each_pipe(dev_priv, pipe)
775 			seq_printf(m, "Pipe %c stat:\t%08x\n",
776 				   pipe_name(pipe),
777 				   I915_READ(PIPESTAT(pipe)));
778 
779 		seq_printf(m, "Port hotplug:\t%08x\n",
780 			   I915_READ(PORT_HOTPLUG_EN));
781 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
782 			   I915_READ(VLV_DPFLIPSTAT));
783 		seq_printf(m, "DPINVGTT:\t%08x\n",
784 			   I915_READ(DPINVGTT));
785 
786 		for (i = 0; i < 4; i++) {
787 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
788 				   i, I915_READ(GEN8_GT_IMR(i)));
789 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
790 				   i, I915_READ(GEN8_GT_IIR(i)));
791 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
792 				   i, I915_READ(GEN8_GT_IER(i)));
793 		}
794 
795 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
796 			   I915_READ(GEN8_PCU_IMR));
797 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
798 			   I915_READ(GEN8_PCU_IIR));
799 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
800 			   I915_READ(GEN8_PCU_IER));
801 	} else if (INTEL_INFO(dev)->gen >= 8) {
802 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
803 			   I915_READ(GEN8_MASTER_IRQ));
804 
805 		for (i = 0; i < 4; i++) {
806 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
807 				   i, I915_READ(GEN8_GT_IMR(i)));
808 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
809 				   i, I915_READ(GEN8_GT_IIR(i)));
810 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
811 				   i, I915_READ(GEN8_GT_IER(i)));
812 		}
813 
814 		for_each_pipe(dev_priv, pipe) {
815 			if (!intel_display_power_is_enabled(dev_priv,
816 						POWER_DOMAIN_PIPE(pipe))) {
817 				seq_printf(m, "Pipe %c power disabled\n",
818 					   pipe_name(pipe));
819 				continue;
820 			}
821 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
822 				   pipe_name(pipe),
823 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
824 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
825 				   pipe_name(pipe),
826 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
827 			seq_printf(m, "Pipe %c IER:\t%08x\n",
828 				   pipe_name(pipe),
829 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
830 		}
831 
832 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
833 			   I915_READ(GEN8_DE_PORT_IMR));
834 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
835 			   I915_READ(GEN8_DE_PORT_IIR));
836 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
837 			   I915_READ(GEN8_DE_PORT_IER));
838 
839 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
840 			   I915_READ(GEN8_DE_MISC_IMR));
841 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
842 			   I915_READ(GEN8_DE_MISC_IIR));
843 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
844 			   I915_READ(GEN8_DE_MISC_IER));
845 
846 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
847 			   I915_READ(GEN8_PCU_IMR));
848 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
849 			   I915_READ(GEN8_PCU_IIR));
850 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
851 			   I915_READ(GEN8_PCU_IER));
852 	} else if (IS_VALLEYVIEW(dev)) {
853 		seq_printf(m, "Display IER:\t%08x\n",
854 			   I915_READ(VLV_IER));
855 		seq_printf(m, "Display IIR:\t%08x\n",
856 			   I915_READ(VLV_IIR));
857 		seq_printf(m, "Display IIR_RW:\t%08x\n",
858 			   I915_READ(VLV_IIR_RW));
859 		seq_printf(m, "Display IMR:\t%08x\n",
860 			   I915_READ(VLV_IMR));
861 		for_each_pipe(dev_priv, pipe)
862 			seq_printf(m, "Pipe %c stat:\t%08x\n",
863 				   pipe_name(pipe),
864 				   I915_READ(PIPESTAT(pipe)));
865 
866 		seq_printf(m, "Master IER:\t%08x\n",
867 			   I915_READ(VLV_MASTER_IER));
868 
869 		seq_printf(m, "Render IER:\t%08x\n",
870 			   I915_READ(GTIER));
871 		seq_printf(m, "Render IIR:\t%08x\n",
872 			   I915_READ(GTIIR));
873 		seq_printf(m, "Render IMR:\t%08x\n",
874 			   I915_READ(GTIMR));
875 
876 		seq_printf(m, "PM IER:\t\t%08x\n",
877 			   I915_READ(GEN6_PMIER));
878 		seq_printf(m, "PM IIR:\t\t%08x\n",
879 			   I915_READ(GEN6_PMIIR));
880 		seq_printf(m, "PM IMR:\t\t%08x\n",
881 			   I915_READ(GEN6_PMIMR));
882 
883 		seq_printf(m, "Port hotplug:\t%08x\n",
884 			   I915_READ(PORT_HOTPLUG_EN));
885 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
886 			   I915_READ(VLV_DPFLIPSTAT));
887 		seq_printf(m, "DPINVGTT:\t%08x\n",
888 			   I915_READ(DPINVGTT));
889 
890 	} else if (!HAS_PCH_SPLIT(dev)) {
891 		seq_printf(m, "Interrupt enable:    %08x\n",
892 			   I915_READ(IER));
893 		seq_printf(m, "Interrupt identity:  %08x\n",
894 			   I915_READ(IIR));
895 		seq_printf(m, "Interrupt mask:      %08x\n",
896 			   I915_READ(IMR));
897 		for_each_pipe(dev_priv, pipe)
898 			seq_printf(m, "Pipe %c stat:         %08x\n",
899 				   pipe_name(pipe),
900 				   I915_READ(PIPESTAT(pipe)));
901 	} else {
902 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
903 			   I915_READ(DEIER));
904 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
905 			   I915_READ(DEIIR));
906 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
907 			   I915_READ(DEIMR));
908 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
909 			   I915_READ(SDEIER));
910 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
911 			   I915_READ(SDEIIR));
912 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
913 			   I915_READ(SDEIMR));
914 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
915 			   I915_READ(GTIER));
916 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
917 			   I915_READ(GTIIR));
918 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
919 			   I915_READ(GTIMR));
920 	}
921 	for_each_ring(ring, dev_priv, i) {
922 		if (INTEL_INFO(dev)->gen >= 6) {
923 			seq_printf(m,
924 				   "Graphics Interrupt mask (%s):	%08x\n",
925 				   ring->name, I915_READ_IMR(ring));
926 		}
927 		i915_ring_seqno_info(m, ring);
928 	}
929 	intel_runtime_pm_put(dev_priv);
930 	mutex_unlock(&dev->struct_mutex);
931 
932 	return 0;
933 }
934 
935 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
936 {
937 	struct drm_info_node *node = m->private;
938 	struct drm_device *dev = node->minor->dev;
939 	struct drm_i915_private *dev_priv = dev->dev_private;
940 	int i, ret;
941 
942 	ret = mutex_lock_interruptible(&dev->struct_mutex);
943 	if (ret)
944 		return ret;
945 
946 	seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
947 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
948 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
949 		struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
950 
951 		seq_printf(m, "Fence %d, pin count = %d, object = ",
952 			   i, dev_priv->fence_regs[i].pin_count);
953 		if (obj == NULL)
954 			seq_puts(m, "unused");
955 		else
956 			describe_obj(m, obj);
957 		seq_putc(m, '\n');
958 	}
959 
960 	mutex_unlock(&dev->struct_mutex);
961 	return 0;
962 }
963 
964 static int i915_hws_info(struct seq_file *m, void *data)
965 {
966 	struct drm_info_node *node = m->private;
967 	struct drm_device *dev = node->minor->dev;
968 	struct drm_i915_private *dev_priv = dev->dev_private;
969 	struct intel_engine_cs *ring;
970 	const u32 *hws;
971 	int i;
972 
973 	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
974 	hws = ring->status_page.page_addr;
975 	if (hws == NULL)
976 		return 0;
977 
978 	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
979 		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
980 			   i * 4,
981 			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
982 	}
983 	return 0;
984 }
985 
986 static ssize_t
987 i915_error_state_write(struct file *filp,
988 		       const char __user *ubuf,
989 		       size_t cnt,
990 		       loff_t *ppos)
991 {
992 	struct i915_error_state_file_priv *error_priv = filp->private_data;
993 	struct drm_device *dev = error_priv->dev;
994 	int ret;
995 
996 	DRM_DEBUG_DRIVER("Resetting error state\n");
997 
998 	ret = mutex_lock_interruptible(&dev->struct_mutex);
999 	if (ret)
1000 		return ret;
1001 
1002 	i915_destroy_error_state(dev);
1003 	mutex_unlock(&dev->struct_mutex);
1004 
1005 	return cnt;
1006 }
1007 
1008 static int i915_error_state_open(struct inode *inode, struct file *file)
1009 {
1010 	struct drm_device *dev = inode->i_private;
1011 	struct i915_error_state_file_priv *error_priv;
1012 
1013 	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1014 	if (!error_priv)
1015 		return -ENOMEM;
1016 
1017 	error_priv->dev = dev;
1018 
1019 	i915_error_state_get(dev, error_priv);
1020 
1021 	file->private_data = error_priv;
1022 
1023 	return 0;
1024 }
1025 
1026 static int i915_error_state_release(struct inode *inode, struct file *file)
1027 {
1028 	struct i915_error_state_file_priv *error_priv = file->private_data;
1029 
1030 	i915_error_state_put(error_priv);
1031 	kfree(error_priv);
1032 
1033 	return 0;
1034 }
1035 
1036 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1037 				     size_t count, loff_t *pos)
1038 {
1039 	struct i915_error_state_file_priv *error_priv = file->private_data;
1040 	struct drm_i915_error_state_buf error_str;
1041 	loff_t tmp_pos = 0;
1042 	ssize_t ret_count = 0;
1043 	int ret;
1044 
1045 	ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1046 	if (ret)
1047 		return ret;
1048 
1049 	ret = i915_error_state_to_str(&error_str, error_priv);
1050 	if (ret)
1051 		goto out;
1052 
1053 	ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1054 					    error_str.buf,
1055 					    error_str.bytes);
1056 
1057 	if (ret_count < 0)
1058 		ret = ret_count;
1059 	else
1060 		*pos = error_str.start + ret_count;
1061 out:
1062 	i915_error_state_buf_release(&error_str);
1063 	return ret ?: ret_count;
1064 }
1065 
1066 static const struct file_operations i915_error_state_fops = {
1067 	.owner = THIS_MODULE,
1068 	.open = i915_error_state_open,
1069 	.read = i915_error_state_read,
1070 	.write = i915_error_state_write,
1071 	.llseek = default_llseek,
1072 	.release = i915_error_state_release,
1073 };
1074 
1075 static int
1076 i915_next_seqno_get(void *data, u64 *val)
1077 {
1078 	struct drm_device *dev = data;
1079 	struct drm_i915_private *dev_priv = dev->dev_private;
1080 	int ret;
1081 
1082 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1083 	if (ret)
1084 		return ret;
1085 
1086 	*val = dev_priv->next_seqno;
1087 	mutex_unlock(&dev->struct_mutex);
1088 
1089 	return 0;
1090 }
1091 
1092 static int
1093 i915_next_seqno_set(void *data, u64 val)
1094 {
1095 	struct drm_device *dev = data;
1096 	int ret;
1097 
1098 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1099 	if (ret)
1100 		return ret;
1101 
1102 	ret = i915_gem_set_seqno(dev, val);
1103 	mutex_unlock(&dev->struct_mutex);
1104 
1105 	return ret;
1106 }
1107 
1108 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1109 			i915_next_seqno_get, i915_next_seqno_set,
1110 			"0x%llx\n");
1111 
1112 static int i915_frequency_info(struct seq_file *m, void *unused)
1113 {
1114 	struct drm_info_node *node = m->private;
1115 	struct drm_device *dev = node->minor->dev;
1116 	struct drm_i915_private *dev_priv = dev->dev_private;
1117 	int ret = 0;
1118 
1119 	intel_runtime_pm_get(dev_priv);
1120 
1121 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1122 
1123 	if (IS_GEN5(dev)) {
1124 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1125 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1126 
1127 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1128 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1129 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1130 			   MEMSTAT_VID_SHIFT);
1131 		seq_printf(m, "Current P-state: %d\n",
1132 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1133 	} else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1134 		   IS_BROADWELL(dev) || IS_GEN9(dev)) {
1135 		u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1136 		u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1137 		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1138 		u32 rpmodectl, rpinclimit, rpdeclimit;
1139 		u32 rpstat, cagf, reqf;
1140 		u32 rpupei, rpcurup, rpprevup;
1141 		u32 rpdownei, rpcurdown, rpprevdown;
1142 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1143 		int max_freq;
1144 
1145 		/* RPSTAT1 is in the GT power well */
1146 		ret = mutex_lock_interruptible(&dev->struct_mutex);
1147 		if (ret)
1148 			goto out;
1149 
1150 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1151 
1152 		reqf = I915_READ(GEN6_RPNSWREQ);
1153 		if (IS_GEN9(dev))
1154 			reqf >>= 23;
1155 		else {
1156 			reqf &= ~GEN6_TURBO_DISABLE;
1157 			if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1158 				reqf >>= 24;
1159 			else
1160 				reqf >>= 25;
1161 		}
1162 		reqf = intel_gpu_freq(dev_priv, reqf);
1163 
1164 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1165 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1166 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1167 
1168 		rpstat = I915_READ(GEN6_RPSTAT1);
1169 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1170 		rpcurup = I915_READ(GEN6_RP_CUR_UP);
1171 		rpprevup = I915_READ(GEN6_RP_PREV_UP);
1172 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1173 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1174 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1175 		if (IS_GEN9(dev))
1176 			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1177 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1178 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1179 		else
1180 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1181 		cagf = intel_gpu_freq(dev_priv, cagf);
1182 
1183 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1184 		mutex_unlock(&dev->struct_mutex);
1185 
1186 		if (IS_GEN6(dev) || IS_GEN7(dev)) {
1187 			pm_ier = I915_READ(GEN6_PMIER);
1188 			pm_imr = I915_READ(GEN6_PMIMR);
1189 			pm_isr = I915_READ(GEN6_PMISR);
1190 			pm_iir = I915_READ(GEN6_PMIIR);
1191 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1192 		} else {
1193 			pm_ier = I915_READ(GEN8_GT_IER(2));
1194 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1195 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1196 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1197 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1198 		}
1199 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1200 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1201 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1202 		seq_printf(m, "Render p-state ratio: %d\n",
1203 			   (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1204 		seq_printf(m, "Render p-state VID: %d\n",
1205 			   gt_perf_status & 0xff);
1206 		seq_printf(m, "Render p-state limit: %d\n",
1207 			   rp_state_limits & 0xff);
1208 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1209 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1210 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1211 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1212 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1213 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1214 		seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1215 			   GEN6_CURICONT_MASK);
1216 		seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1217 			   GEN6_CURBSYTAVG_MASK);
1218 		seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1219 			   GEN6_CURBSYTAVG_MASK);
1220 		seq_printf(m, "Up threshold: %d%%\n",
1221 			   dev_priv->rps.up_threshold);
1222 
1223 		seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1224 			   GEN6_CURIAVG_MASK);
1225 		seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1226 			   GEN6_CURBSYTAVG_MASK);
1227 		seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1228 			   GEN6_CURBSYTAVG_MASK);
1229 		seq_printf(m, "Down threshold: %d%%\n",
1230 			   dev_priv->rps.down_threshold);
1231 
1232 		max_freq = (rp_state_cap & 0xff0000) >> 16;
1233 		max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1234 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1235 			   intel_gpu_freq(dev_priv, max_freq));
1236 
1237 		max_freq = (rp_state_cap & 0xff00) >> 8;
1238 		max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1239 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1240 			   intel_gpu_freq(dev_priv, max_freq));
1241 
1242 		max_freq = rp_state_cap & 0xff;
1243 		max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1244 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1245 			   intel_gpu_freq(dev_priv, max_freq));
1246 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1247 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1248 
1249 		seq_printf(m, "Current freq: %d MHz\n",
1250 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1251 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1252 		seq_printf(m, "Idle freq: %d MHz\n",
1253 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1254 		seq_printf(m, "Min freq: %d MHz\n",
1255 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1256 		seq_printf(m, "Max freq: %d MHz\n",
1257 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1258 		seq_printf(m,
1259 			   "efficient (RPe) frequency: %d MHz\n",
1260 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1261 	} else if (IS_VALLEYVIEW(dev)) {
1262 		u32 freq_sts;
1263 
1264 		mutex_lock(&dev_priv->rps.hw_lock);
1265 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1266 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1267 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1268 
1269 		seq_printf(m, "actual GPU freq: %d MHz\n",
1270 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1271 
1272 		seq_printf(m, "current GPU freq: %d MHz\n",
1273 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1274 
1275 		seq_printf(m, "max GPU freq: %d MHz\n",
1276 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1277 
1278 		seq_printf(m, "min GPU freq: %d MHz\n",
1279 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1280 
1281 		seq_printf(m, "idle GPU freq: %d MHz\n",
1282 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1283 
1284 		seq_printf(m,
1285 			   "efficient (RPe) frequency: %d MHz\n",
1286 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1287 		mutex_unlock(&dev_priv->rps.hw_lock);
1288 	} else {
1289 		seq_puts(m, "no P-state info available\n");
1290 	}
1291 
1292 out:
1293 	intel_runtime_pm_put(dev_priv);
1294 	return ret;
1295 }
1296 
1297 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1298 {
1299 	struct drm_info_node *node = m->private;
1300 	struct drm_device *dev = node->minor->dev;
1301 	struct drm_i915_private *dev_priv = dev->dev_private;
1302 	struct intel_engine_cs *ring;
1303 	u64 acthd[I915_NUM_RINGS];
1304 	u32 seqno[I915_NUM_RINGS];
1305 	int i;
1306 
1307 	if (!i915.enable_hangcheck) {
1308 		seq_printf(m, "Hangcheck disabled\n");
1309 		return 0;
1310 	}
1311 
1312 	intel_runtime_pm_get(dev_priv);
1313 
1314 	for_each_ring(ring, dev_priv, i) {
1315 		seqno[i] = ring->get_seqno(ring, false);
1316 		acthd[i] = intel_ring_get_active_head(ring);
1317 	}
1318 
1319 	intel_runtime_pm_put(dev_priv);
1320 
1321 	if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1322 		seq_printf(m, "Hangcheck active, fires in %dms\n",
1323 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1324 					    jiffies));
1325 	} else
1326 		seq_printf(m, "Hangcheck inactive\n");
1327 
1328 	for_each_ring(ring, dev_priv, i) {
1329 		seq_printf(m, "%s:\n", ring->name);
1330 		seq_printf(m, "\tseqno = %x [current %x]\n",
1331 			   ring->hangcheck.seqno, seqno[i]);
1332 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1333 			   (long long)ring->hangcheck.acthd,
1334 			   (long long)acthd[i]);
1335 		seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1336 			   (long long)ring->hangcheck.max_acthd);
1337 		seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1338 		seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 static int ironlake_drpc_info(struct seq_file *m)
1345 {
1346 	struct drm_info_node *node = m->private;
1347 	struct drm_device *dev = node->minor->dev;
1348 	struct drm_i915_private *dev_priv = dev->dev_private;
1349 	u32 rgvmodectl, rstdbyctl;
1350 	u16 crstandvid;
1351 	int ret;
1352 
1353 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1354 	if (ret)
1355 		return ret;
1356 	intel_runtime_pm_get(dev_priv);
1357 
1358 	rgvmodectl = I915_READ(MEMMODECTL);
1359 	rstdbyctl = I915_READ(RSTDBYCTL);
1360 	crstandvid = I915_READ16(CRSTANDVID);
1361 
1362 	intel_runtime_pm_put(dev_priv);
1363 	mutex_unlock(&dev->struct_mutex);
1364 
1365 	seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1366 		   "yes" : "no");
1367 	seq_printf(m, "Boost freq: %d\n",
1368 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1369 		   MEMMODE_BOOST_FREQ_SHIFT);
1370 	seq_printf(m, "HW control enabled: %s\n",
1371 		   rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1372 	seq_printf(m, "SW control enabled: %s\n",
1373 		   rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1374 	seq_printf(m, "Gated voltage change: %s\n",
1375 		   rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1376 	seq_printf(m, "Starting frequency: P%d\n",
1377 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1378 	seq_printf(m, "Max P-state: P%d\n",
1379 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1380 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1381 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1382 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1383 	seq_printf(m, "Render standby enabled: %s\n",
1384 		   (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1385 	seq_puts(m, "Current RS state: ");
1386 	switch (rstdbyctl & RSX_STATUS_MASK) {
1387 	case RSX_STATUS_ON:
1388 		seq_puts(m, "on\n");
1389 		break;
1390 	case RSX_STATUS_RC1:
1391 		seq_puts(m, "RC1\n");
1392 		break;
1393 	case RSX_STATUS_RC1E:
1394 		seq_puts(m, "RC1E\n");
1395 		break;
1396 	case RSX_STATUS_RS1:
1397 		seq_puts(m, "RS1\n");
1398 		break;
1399 	case RSX_STATUS_RS2:
1400 		seq_puts(m, "RS2 (RC6)\n");
1401 		break;
1402 	case RSX_STATUS_RS3:
1403 		seq_puts(m, "RC3 (RC6+)\n");
1404 		break;
1405 	default:
1406 		seq_puts(m, "unknown\n");
1407 		break;
1408 	}
1409 
1410 	return 0;
1411 }
1412 
1413 static int i915_forcewake_domains(struct seq_file *m, void *data)
1414 {
1415 	struct drm_info_node *node = m->private;
1416 	struct drm_device *dev = node->minor->dev;
1417 	struct drm_i915_private *dev_priv = dev->dev_private;
1418 	struct intel_uncore_forcewake_domain *fw_domain;
1419 	int i;
1420 
1421 	spin_lock_irq(&dev_priv->uncore.lock);
1422 	for_each_fw_domain(fw_domain, dev_priv, i) {
1423 		seq_printf(m, "%s.wake_count = %u\n",
1424 			   intel_uncore_forcewake_domain_to_str(i),
1425 			   fw_domain->wake_count);
1426 	}
1427 	spin_unlock_irq(&dev_priv->uncore.lock);
1428 
1429 	return 0;
1430 }
1431 
1432 static int vlv_drpc_info(struct seq_file *m)
1433 {
1434 	struct drm_info_node *node = m->private;
1435 	struct drm_device *dev = node->minor->dev;
1436 	struct drm_i915_private *dev_priv = dev->dev_private;
1437 	u32 rpmodectl1, rcctl1, pw_status;
1438 
1439 	intel_runtime_pm_get(dev_priv);
1440 
1441 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1442 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1443 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1444 
1445 	intel_runtime_pm_put(dev_priv);
1446 
1447 	seq_printf(m, "Video Turbo Mode: %s\n",
1448 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1449 	seq_printf(m, "Turbo enabled: %s\n",
1450 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1451 	seq_printf(m, "HW control enabled: %s\n",
1452 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1453 	seq_printf(m, "SW control enabled: %s\n",
1454 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1455 			  GEN6_RP_MEDIA_SW_MODE));
1456 	seq_printf(m, "RC6 Enabled: %s\n",
1457 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1458 					GEN6_RC_CTL_EI_MODE(1))));
1459 	seq_printf(m, "Render Power Well: %s\n",
1460 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1461 	seq_printf(m, "Media Power Well: %s\n",
1462 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1463 
1464 	seq_printf(m, "Render RC6 residency since boot: %u\n",
1465 		   I915_READ(VLV_GT_RENDER_RC6));
1466 	seq_printf(m, "Media RC6 residency since boot: %u\n",
1467 		   I915_READ(VLV_GT_MEDIA_RC6));
1468 
1469 	return i915_forcewake_domains(m, NULL);
1470 }
1471 
1472 static int gen6_drpc_info(struct seq_file *m)
1473 {
1474 	struct drm_info_node *node = m->private;
1475 	struct drm_device *dev = node->minor->dev;
1476 	struct drm_i915_private *dev_priv = dev->dev_private;
1477 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1478 	unsigned forcewake_count;
1479 	int count = 0, ret;
1480 
1481 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1482 	if (ret)
1483 		return ret;
1484 	intel_runtime_pm_get(dev_priv);
1485 
1486 	spin_lock_irq(&dev_priv->uncore.lock);
1487 	forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1488 	spin_unlock_irq(&dev_priv->uncore.lock);
1489 
1490 	if (forcewake_count) {
1491 		seq_puts(m, "RC information inaccurate because somebody "
1492 			    "holds a forcewake reference \n");
1493 	} else {
1494 		/* NB: we cannot use forcewake, else we read the wrong values */
1495 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1496 			udelay(10);
1497 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1498 	}
1499 
1500 	gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1501 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1502 
1503 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1504 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1505 	mutex_unlock(&dev->struct_mutex);
1506 	mutex_lock(&dev_priv->rps.hw_lock);
1507 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1508 	mutex_unlock(&dev_priv->rps.hw_lock);
1509 
1510 	intel_runtime_pm_put(dev_priv);
1511 
1512 	seq_printf(m, "Video Turbo Mode: %s\n",
1513 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1514 	seq_printf(m, "HW control enabled: %s\n",
1515 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1516 	seq_printf(m, "SW control enabled: %s\n",
1517 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1518 			  GEN6_RP_MEDIA_SW_MODE));
1519 	seq_printf(m, "RC1e Enabled: %s\n",
1520 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1521 	seq_printf(m, "RC6 Enabled: %s\n",
1522 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1523 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1524 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1525 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1526 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1527 	seq_puts(m, "Current RC state: ");
1528 	switch (gt_core_status & GEN6_RCn_MASK) {
1529 	case GEN6_RC0:
1530 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1531 			seq_puts(m, "Core Power Down\n");
1532 		else
1533 			seq_puts(m, "on\n");
1534 		break;
1535 	case GEN6_RC3:
1536 		seq_puts(m, "RC3\n");
1537 		break;
1538 	case GEN6_RC6:
1539 		seq_puts(m, "RC6\n");
1540 		break;
1541 	case GEN6_RC7:
1542 		seq_puts(m, "RC7\n");
1543 		break;
1544 	default:
1545 		seq_puts(m, "Unknown\n");
1546 		break;
1547 	}
1548 
1549 	seq_printf(m, "Core Power Down: %s\n",
1550 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1551 
1552 	/* Not exactly sure what this is */
1553 	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1554 		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1555 	seq_printf(m, "RC6 residency since boot: %u\n",
1556 		   I915_READ(GEN6_GT_GFX_RC6));
1557 	seq_printf(m, "RC6+ residency since boot: %u\n",
1558 		   I915_READ(GEN6_GT_GFX_RC6p));
1559 	seq_printf(m, "RC6++ residency since boot: %u\n",
1560 		   I915_READ(GEN6_GT_GFX_RC6pp));
1561 
1562 	seq_printf(m, "RC6   voltage: %dmV\n",
1563 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1564 	seq_printf(m, "RC6+  voltage: %dmV\n",
1565 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1566 	seq_printf(m, "RC6++ voltage: %dmV\n",
1567 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1568 	return 0;
1569 }
1570 
1571 static int i915_drpc_info(struct seq_file *m, void *unused)
1572 {
1573 	struct drm_info_node *node = m->private;
1574 	struct drm_device *dev = node->minor->dev;
1575 
1576 	if (IS_VALLEYVIEW(dev))
1577 		return vlv_drpc_info(m);
1578 	else if (INTEL_INFO(dev)->gen >= 6)
1579 		return gen6_drpc_info(m);
1580 	else
1581 		return ironlake_drpc_info(m);
1582 }
1583 
1584 static int i915_fbc_status(struct seq_file *m, void *unused)
1585 {
1586 	struct drm_info_node *node = m->private;
1587 	struct drm_device *dev = node->minor->dev;
1588 	struct drm_i915_private *dev_priv = dev->dev_private;
1589 
1590 	if (!HAS_FBC(dev)) {
1591 		seq_puts(m, "FBC unsupported on this chipset\n");
1592 		return 0;
1593 	}
1594 
1595 	intel_runtime_pm_get(dev_priv);
1596 
1597 	if (intel_fbc_enabled(dev)) {
1598 		seq_puts(m, "FBC enabled\n");
1599 	} else {
1600 		seq_puts(m, "FBC disabled: ");
1601 		switch (dev_priv->fbc.no_fbc_reason) {
1602 		case FBC_OK:
1603 			seq_puts(m, "FBC actived, but currently disabled in hardware");
1604 			break;
1605 		case FBC_UNSUPPORTED:
1606 			seq_puts(m, "unsupported by this chipset");
1607 			break;
1608 		case FBC_NO_OUTPUT:
1609 			seq_puts(m, "no outputs");
1610 			break;
1611 		case FBC_STOLEN_TOO_SMALL:
1612 			seq_puts(m, "not enough stolen memory");
1613 			break;
1614 		case FBC_UNSUPPORTED_MODE:
1615 			seq_puts(m, "mode not supported");
1616 			break;
1617 		case FBC_MODE_TOO_LARGE:
1618 			seq_puts(m, "mode too large");
1619 			break;
1620 		case FBC_BAD_PLANE:
1621 			seq_puts(m, "FBC unsupported on plane");
1622 			break;
1623 		case FBC_NOT_TILED:
1624 			seq_puts(m, "scanout buffer not tiled");
1625 			break;
1626 		case FBC_MULTIPLE_PIPES:
1627 			seq_puts(m, "multiple pipes are enabled");
1628 			break;
1629 		case FBC_MODULE_PARAM:
1630 			seq_puts(m, "disabled per module param (default off)");
1631 			break;
1632 		case FBC_CHIP_DEFAULT:
1633 			seq_puts(m, "disabled per chip default");
1634 			break;
1635 		default:
1636 			seq_puts(m, "unknown reason");
1637 		}
1638 		seq_putc(m, '\n');
1639 	}
1640 
1641 	intel_runtime_pm_put(dev_priv);
1642 
1643 	return 0;
1644 }
1645 
1646 static int i915_fbc_fc_get(void *data, u64 *val)
1647 {
1648 	struct drm_device *dev = data;
1649 	struct drm_i915_private *dev_priv = dev->dev_private;
1650 
1651 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1652 		return -ENODEV;
1653 
1654 	drm_modeset_lock_all(dev);
1655 	*val = dev_priv->fbc.false_color;
1656 	drm_modeset_unlock_all(dev);
1657 
1658 	return 0;
1659 }
1660 
1661 static int i915_fbc_fc_set(void *data, u64 val)
1662 {
1663 	struct drm_device *dev = data;
1664 	struct drm_i915_private *dev_priv = dev->dev_private;
1665 	u32 reg;
1666 
1667 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1668 		return -ENODEV;
1669 
1670 	drm_modeset_lock_all(dev);
1671 
1672 	reg = I915_READ(ILK_DPFC_CONTROL);
1673 	dev_priv->fbc.false_color = val;
1674 
1675 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1676 		   (reg | FBC_CTL_FALSE_COLOR) :
1677 		   (reg & ~FBC_CTL_FALSE_COLOR));
1678 
1679 	drm_modeset_unlock_all(dev);
1680 	return 0;
1681 }
1682 
1683 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1684 			i915_fbc_fc_get, i915_fbc_fc_set,
1685 			"%llu\n");
1686 
1687 static int i915_ips_status(struct seq_file *m, void *unused)
1688 {
1689 	struct drm_info_node *node = m->private;
1690 	struct drm_device *dev = node->minor->dev;
1691 	struct drm_i915_private *dev_priv = dev->dev_private;
1692 
1693 	if (!HAS_IPS(dev)) {
1694 		seq_puts(m, "not supported\n");
1695 		return 0;
1696 	}
1697 
1698 	intel_runtime_pm_get(dev_priv);
1699 
1700 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1701 		   yesno(i915.enable_ips));
1702 
1703 	if (INTEL_INFO(dev)->gen >= 8) {
1704 		seq_puts(m, "Currently: unknown\n");
1705 	} else {
1706 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1707 			seq_puts(m, "Currently: enabled\n");
1708 		else
1709 			seq_puts(m, "Currently: disabled\n");
1710 	}
1711 
1712 	intel_runtime_pm_put(dev_priv);
1713 
1714 	return 0;
1715 }
1716 
1717 static int i915_sr_status(struct seq_file *m, void *unused)
1718 {
1719 	struct drm_info_node *node = m->private;
1720 	struct drm_device *dev = node->minor->dev;
1721 	struct drm_i915_private *dev_priv = dev->dev_private;
1722 	bool sr_enabled = false;
1723 
1724 	intel_runtime_pm_get(dev_priv);
1725 
1726 	if (HAS_PCH_SPLIT(dev))
1727 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1728 	else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1729 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1730 	else if (IS_I915GM(dev))
1731 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1732 	else if (IS_PINEVIEW(dev))
1733 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1734 
1735 	intel_runtime_pm_put(dev_priv);
1736 
1737 	seq_printf(m, "self-refresh: %s\n",
1738 		   sr_enabled ? "enabled" : "disabled");
1739 
1740 	return 0;
1741 }
1742 
1743 static int i915_emon_status(struct seq_file *m, void *unused)
1744 {
1745 	struct drm_info_node *node = m->private;
1746 	struct drm_device *dev = node->minor->dev;
1747 	struct drm_i915_private *dev_priv = dev->dev_private;
1748 	unsigned long temp, chipset, gfx;
1749 	int ret;
1750 
1751 	if (!IS_GEN5(dev))
1752 		return -ENODEV;
1753 
1754 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1755 	if (ret)
1756 		return ret;
1757 
1758 	temp = i915_mch_val(dev_priv);
1759 	chipset = i915_chipset_val(dev_priv);
1760 	gfx = i915_gfx_val(dev_priv);
1761 	mutex_unlock(&dev->struct_mutex);
1762 
1763 	seq_printf(m, "GMCH temp: %ld\n", temp);
1764 	seq_printf(m, "Chipset power: %ld\n", chipset);
1765 	seq_printf(m, "GFX power: %ld\n", gfx);
1766 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1767 
1768 	return 0;
1769 }
1770 
1771 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1772 {
1773 	struct drm_info_node *node = m->private;
1774 	struct drm_device *dev = node->minor->dev;
1775 	struct drm_i915_private *dev_priv = dev->dev_private;
1776 	int ret = 0;
1777 	int gpu_freq, ia_freq;
1778 
1779 	if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1780 		seq_puts(m, "unsupported on this chipset\n");
1781 		return 0;
1782 	}
1783 
1784 	intel_runtime_pm_get(dev_priv);
1785 
1786 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1787 
1788 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1789 	if (ret)
1790 		goto out;
1791 
1792 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1793 
1794 	for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1795 	     gpu_freq <= dev_priv->rps.max_freq_softlimit;
1796 	     gpu_freq++) {
1797 		ia_freq = gpu_freq;
1798 		sandybridge_pcode_read(dev_priv,
1799 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1800 				       &ia_freq);
1801 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1802 			   intel_gpu_freq(dev_priv, gpu_freq),
1803 			   ((ia_freq >> 0) & 0xff) * 100,
1804 			   ((ia_freq >> 8) & 0xff) * 100);
1805 	}
1806 
1807 	mutex_unlock(&dev_priv->rps.hw_lock);
1808 
1809 out:
1810 	intel_runtime_pm_put(dev_priv);
1811 	return ret;
1812 }
1813 
1814 static int i915_opregion(struct seq_file *m, void *unused)
1815 {
1816 	struct drm_info_node *node = m->private;
1817 	struct drm_device *dev = node->minor->dev;
1818 	struct drm_i915_private *dev_priv = dev->dev_private;
1819 	struct intel_opregion *opregion = &dev_priv->opregion;
1820 	void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1821 	int ret;
1822 
1823 	if (data == NULL)
1824 		return -ENOMEM;
1825 
1826 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1827 	if (ret)
1828 		goto out;
1829 
1830 	if (opregion->header) {
1831 		memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1832 		seq_write(m, data, OPREGION_SIZE);
1833 	}
1834 
1835 	mutex_unlock(&dev->struct_mutex);
1836 
1837 out:
1838 	kfree(data);
1839 	return 0;
1840 }
1841 
1842 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1843 {
1844 	struct drm_info_node *node = m->private;
1845 	struct drm_device *dev = node->minor->dev;
1846 	struct intel_fbdev *ifbdev = NULL;
1847 	struct intel_framebuffer *fb;
1848 
1849 #ifdef CONFIG_DRM_I915_FBDEV
1850 	struct drm_i915_private *dev_priv = dev->dev_private;
1851 
1852 	ifbdev = dev_priv->fbdev;
1853 	fb = to_intel_framebuffer(ifbdev->helper.fb);
1854 
1855 	seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1856 		   fb->base.width,
1857 		   fb->base.height,
1858 		   fb->base.depth,
1859 		   fb->base.bits_per_pixel,
1860 		   fb->base.modifier[0],
1861 		   atomic_read(&fb->base.refcount.refcount));
1862 	describe_obj(m, fb->obj);
1863 	seq_putc(m, '\n');
1864 #endif
1865 
1866 	mutex_lock(&dev->mode_config.fb_lock);
1867 	list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1868 		if (ifbdev && &fb->base == ifbdev->helper.fb)
1869 			continue;
1870 
1871 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1872 			   fb->base.width,
1873 			   fb->base.height,
1874 			   fb->base.depth,
1875 			   fb->base.bits_per_pixel,
1876 			   fb->base.modifier[0],
1877 			   atomic_read(&fb->base.refcount.refcount));
1878 		describe_obj(m, fb->obj);
1879 		seq_putc(m, '\n');
1880 	}
1881 	mutex_unlock(&dev->mode_config.fb_lock);
1882 
1883 	return 0;
1884 }
1885 
1886 static void describe_ctx_ringbuf(struct seq_file *m,
1887 				 struct intel_ringbuffer *ringbuf)
1888 {
1889 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1890 		   ringbuf->space, ringbuf->head, ringbuf->tail,
1891 		   ringbuf->last_retired_head);
1892 }
1893 
1894 static int i915_context_status(struct seq_file *m, void *unused)
1895 {
1896 	struct drm_info_node *node = m->private;
1897 	struct drm_device *dev = node->minor->dev;
1898 	struct drm_i915_private *dev_priv = dev->dev_private;
1899 	struct intel_engine_cs *ring;
1900 	struct intel_context *ctx;
1901 	int ret, i;
1902 
1903 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1904 	if (ret)
1905 		return ret;
1906 
1907 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1908 		if (!i915.enable_execlists &&
1909 		    ctx->legacy_hw_ctx.rcs_state == NULL)
1910 			continue;
1911 
1912 		seq_puts(m, "HW context ");
1913 		describe_ctx(m, ctx);
1914 		for_each_ring(ring, dev_priv, i) {
1915 			if (ring->default_context == ctx)
1916 				seq_printf(m, "(default context %s) ",
1917 					   ring->name);
1918 		}
1919 
1920 		if (i915.enable_execlists) {
1921 			seq_putc(m, '\n');
1922 			for_each_ring(ring, dev_priv, i) {
1923 				struct drm_i915_gem_object *ctx_obj =
1924 					ctx->engine[i].state;
1925 				struct intel_ringbuffer *ringbuf =
1926 					ctx->engine[i].ringbuf;
1927 
1928 				seq_printf(m, "%s: ", ring->name);
1929 				if (ctx_obj)
1930 					describe_obj(m, ctx_obj);
1931 				if (ringbuf)
1932 					describe_ctx_ringbuf(m, ringbuf);
1933 				seq_putc(m, '\n');
1934 			}
1935 		} else {
1936 			describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1937 		}
1938 
1939 		seq_putc(m, '\n');
1940 	}
1941 
1942 	mutex_unlock(&dev->struct_mutex);
1943 
1944 	return 0;
1945 }
1946 
1947 static void i915_dump_lrc_obj(struct seq_file *m,
1948 			      struct intel_engine_cs *ring,
1949 			      struct drm_i915_gem_object *ctx_obj)
1950 {
1951 	struct page *page;
1952 	uint32_t *reg_state;
1953 	int j;
1954 	unsigned long ggtt_offset = 0;
1955 
1956 	if (ctx_obj == NULL) {
1957 		seq_printf(m, "Context on %s with no gem object\n",
1958 			   ring->name);
1959 		return;
1960 	}
1961 
1962 	seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1963 		   intel_execlists_ctx_id(ctx_obj));
1964 
1965 	if (!i915_gem_obj_ggtt_bound(ctx_obj))
1966 		seq_puts(m, "\tNot bound in GGTT\n");
1967 	else
1968 		ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1969 
1970 	if (i915_gem_object_get_pages(ctx_obj)) {
1971 		seq_puts(m, "\tFailed to get pages for context object\n");
1972 		return;
1973 	}
1974 
1975 	page = i915_gem_object_get_page(ctx_obj, 1);
1976 	if (!WARN_ON(page == NULL)) {
1977 		reg_state = kmap_atomic(page);
1978 
1979 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1980 			seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1981 				   ggtt_offset + 4096 + (j * 4),
1982 				   reg_state[j], reg_state[j + 1],
1983 				   reg_state[j + 2], reg_state[j + 3]);
1984 		}
1985 		kunmap_atomic(reg_state);
1986 	}
1987 
1988 	seq_putc(m, '\n');
1989 }
1990 
1991 static int i915_dump_lrc(struct seq_file *m, void *unused)
1992 {
1993 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1994 	struct drm_device *dev = node->minor->dev;
1995 	struct drm_i915_private *dev_priv = dev->dev_private;
1996 	struct intel_engine_cs *ring;
1997 	struct intel_context *ctx;
1998 	int ret, i;
1999 
2000 	if (!i915.enable_execlists) {
2001 		seq_printf(m, "Logical Ring Contexts are disabled\n");
2002 		return 0;
2003 	}
2004 
2005 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2006 	if (ret)
2007 		return ret;
2008 
2009 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2010 		for_each_ring(ring, dev_priv, i) {
2011 			if (ring->default_context != ctx)
2012 				i915_dump_lrc_obj(m, ring,
2013 						  ctx->engine[i].state);
2014 		}
2015 	}
2016 
2017 	mutex_unlock(&dev->struct_mutex);
2018 
2019 	return 0;
2020 }
2021 
2022 static int i915_execlists(struct seq_file *m, void *data)
2023 {
2024 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2025 	struct drm_device *dev = node->minor->dev;
2026 	struct drm_i915_private *dev_priv = dev->dev_private;
2027 	struct intel_engine_cs *ring;
2028 	u32 status_pointer;
2029 	u8 read_pointer;
2030 	u8 write_pointer;
2031 	u32 status;
2032 	u32 ctx_id;
2033 	struct list_head *cursor;
2034 	int ring_id, i;
2035 	int ret;
2036 
2037 	if (!i915.enable_execlists) {
2038 		seq_puts(m, "Logical Ring Contexts are disabled\n");
2039 		return 0;
2040 	}
2041 
2042 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2043 	if (ret)
2044 		return ret;
2045 
2046 	intel_runtime_pm_get(dev_priv);
2047 
2048 	for_each_ring(ring, dev_priv, ring_id) {
2049 		struct drm_i915_gem_request *head_req = NULL;
2050 		int count = 0;
2051 		unsigned long flags;
2052 
2053 		seq_printf(m, "%s\n", ring->name);
2054 
2055 		status = I915_READ(RING_EXECLIST_STATUS(ring));
2056 		ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
2057 		seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2058 			   status, ctx_id);
2059 
2060 		status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2061 		seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2062 
2063 		read_pointer = ring->next_context_status_buffer;
2064 		write_pointer = status_pointer & 0x07;
2065 		if (read_pointer > write_pointer)
2066 			write_pointer += 6;
2067 		seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2068 			   read_pointer, write_pointer);
2069 
2070 		for (i = 0; i < 6; i++) {
2071 			status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
2072 			ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
2073 
2074 			seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2075 				   i, status, ctx_id);
2076 		}
2077 
2078 		spin_lock_irqsave(&ring->execlist_lock, flags);
2079 		list_for_each(cursor, &ring->execlist_queue)
2080 			count++;
2081 		head_req = list_first_entry_or_null(&ring->execlist_queue,
2082 				struct drm_i915_gem_request, execlist_link);
2083 		spin_unlock_irqrestore(&ring->execlist_lock, flags);
2084 
2085 		seq_printf(m, "\t%d requests in queue\n", count);
2086 		if (head_req) {
2087 			struct drm_i915_gem_object *ctx_obj;
2088 
2089 			ctx_obj = head_req->ctx->engine[ring_id].state;
2090 			seq_printf(m, "\tHead request id: %u\n",
2091 				   intel_execlists_ctx_id(ctx_obj));
2092 			seq_printf(m, "\tHead request tail: %u\n",
2093 				   head_req->tail);
2094 		}
2095 
2096 		seq_putc(m, '\n');
2097 	}
2098 
2099 	intel_runtime_pm_put(dev_priv);
2100 	mutex_unlock(&dev->struct_mutex);
2101 
2102 	return 0;
2103 }
2104 
2105 static const char *swizzle_string(unsigned swizzle)
2106 {
2107 	switch (swizzle) {
2108 	case I915_BIT_6_SWIZZLE_NONE:
2109 		return "none";
2110 	case I915_BIT_6_SWIZZLE_9:
2111 		return "bit9";
2112 	case I915_BIT_6_SWIZZLE_9_10:
2113 		return "bit9/bit10";
2114 	case I915_BIT_6_SWIZZLE_9_11:
2115 		return "bit9/bit11";
2116 	case I915_BIT_6_SWIZZLE_9_10_11:
2117 		return "bit9/bit10/bit11";
2118 	case I915_BIT_6_SWIZZLE_9_17:
2119 		return "bit9/bit17";
2120 	case I915_BIT_6_SWIZZLE_9_10_17:
2121 		return "bit9/bit10/bit17";
2122 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2123 		return "unknown";
2124 	}
2125 
2126 	return "bug";
2127 }
2128 
2129 static int i915_swizzle_info(struct seq_file *m, void *data)
2130 {
2131 	struct drm_info_node *node = m->private;
2132 	struct drm_device *dev = node->minor->dev;
2133 	struct drm_i915_private *dev_priv = dev->dev_private;
2134 	int ret;
2135 
2136 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2137 	if (ret)
2138 		return ret;
2139 	intel_runtime_pm_get(dev_priv);
2140 
2141 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2142 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2143 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2144 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2145 
2146 	if (IS_GEN3(dev) || IS_GEN4(dev)) {
2147 		seq_printf(m, "DDC = 0x%08x\n",
2148 			   I915_READ(DCC));
2149 		seq_printf(m, "DDC2 = 0x%08x\n",
2150 			   I915_READ(DCC2));
2151 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2152 			   I915_READ16(C0DRB3));
2153 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2154 			   I915_READ16(C1DRB3));
2155 	} else if (INTEL_INFO(dev)->gen >= 6) {
2156 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2157 			   I915_READ(MAD_DIMM_C0));
2158 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2159 			   I915_READ(MAD_DIMM_C1));
2160 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2161 			   I915_READ(MAD_DIMM_C2));
2162 		seq_printf(m, "TILECTL = 0x%08x\n",
2163 			   I915_READ(TILECTL));
2164 		if (INTEL_INFO(dev)->gen >= 8)
2165 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2166 				   I915_READ(GAMTARBMODE));
2167 		else
2168 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2169 				   I915_READ(ARB_MODE));
2170 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2171 			   I915_READ(DISP_ARB_CTL));
2172 	}
2173 
2174 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2175 		seq_puts(m, "L-shaped memory detected\n");
2176 
2177 	intel_runtime_pm_put(dev_priv);
2178 	mutex_unlock(&dev->struct_mutex);
2179 
2180 	return 0;
2181 }
2182 
2183 static int per_file_ctx(int id, void *ptr, void *data)
2184 {
2185 	struct intel_context *ctx = ptr;
2186 	struct seq_file *m = data;
2187 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2188 
2189 	if (!ppgtt) {
2190 		seq_printf(m, "  no ppgtt for context %d\n",
2191 			   ctx->user_handle);
2192 		return 0;
2193 	}
2194 
2195 	if (i915_gem_context_is_default(ctx))
2196 		seq_puts(m, "  default context:\n");
2197 	else
2198 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2199 	ppgtt->debug_dump(ppgtt, m);
2200 
2201 	return 0;
2202 }
2203 
2204 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2205 {
2206 	struct drm_i915_private *dev_priv = dev->dev_private;
2207 	struct intel_engine_cs *ring;
2208 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2209 	int unused, i;
2210 
2211 	if (!ppgtt)
2212 		return;
2213 
2214 	for_each_ring(ring, dev_priv, unused) {
2215 		seq_printf(m, "%s\n", ring->name);
2216 		for (i = 0; i < 4; i++) {
2217 			u32 offset = 0x270 + i * 8;
2218 			u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2219 			pdp <<= 32;
2220 			pdp |= I915_READ(ring->mmio_base + offset);
2221 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2222 		}
2223 	}
2224 }
2225 
2226 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2227 {
2228 	struct drm_i915_private *dev_priv = dev->dev_private;
2229 	struct intel_engine_cs *ring;
2230 	struct drm_file *file;
2231 	int i;
2232 
2233 	if (INTEL_INFO(dev)->gen == 6)
2234 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2235 
2236 	for_each_ring(ring, dev_priv, i) {
2237 		seq_printf(m, "%s\n", ring->name);
2238 		if (INTEL_INFO(dev)->gen == 7)
2239 			seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2240 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2241 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2242 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2243 	}
2244 	if (dev_priv->mm.aliasing_ppgtt) {
2245 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2246 
2247 		seq_puts(m, "aliasing PPGTT:\n");
2248 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.pd_offset);
2249 
2250 		ppgtt->debug_dump(ppgtt, m);
2251 	}
2252 
2253 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2254 		struct drm_i915_file_private *file_priv = file->driver_priv;
2255 
2256 		seq_printf(m, "proc: %s\n",
2257 			   get_pid_task(file->pid, PIDTYPE_PID)->comm);
2258 		idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2259 	}
2260 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2261 }
2262 
2263 static int i915_ppgtt_info(struct seq_file *m, void *data)
2264 {
2265 	struct drm_info_node *node = m->private;
2266 	struct drm_device *dev = node->minor->dev;
2267 	struct drm_i915_private *dev_priv = dev->dev_private;
2268 
2269 	int ret = mutex_lock_interruptible(&dev->struct_mutex);
2270 	if (ret)
2271 		return ret;
2272 	intel_runtime_pm_get(dev_priv);
2273 
2274 	if (INTEL_INFO(dev)->gen >= 8)
2275 		gen8_ppgtt_info(m, dev);
2276 	else if (INTEL_INFO(dev)->gen >= 6)
2277 		gen6_ppgtt_info(m, dev);
2278 
2279 	intel_runtime_pm_put(dev_priv);
2280 	mutex_unlock(&dev->struct_mutex);
2281 
2282 	return 0;
2283 }
2284 
2285 static int count_irq_waiters(struct drm_i915_private *i915)
2286 {
2287 	struct intel_engine_cs *ring;
2288 	int count = 0;
2289 	int i;
2290 
2291 	for_each_ring(ring, i915, i)
2292 		count += ring->irq_refcount;
2293 
2294 	return count;
2295 }
2296 
2297 static int i915_rps_boost_info(struct seq_file *m, void *data)
2298 {
2299 	struct drm_info_node *node = m->private;
2300 	struct drm_device *dev = node->minor->dev;
2301 	struct drm_i915_private *dev_priv = dev->dev_private;
2302 	struct drm_file *file;
2303 
2304 	seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2305 	seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2306 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2307 	seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2308 		   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2309 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2310 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2311 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2312 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2313 	spin_lock(&dev_priv->rps.client_lock);
2314 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2315 		struct drm_i915_file_private *file_priv = file->driver_priv;
2316 		struct task_struct *task;
2317 
2318 		rcu_read_lock();
2319 		task = pid_task(file->pid, PIDTYPE_PID);
2320 		seq_printf(m, "%s [%d]: %d boosts%s\n",
2321 			   task ? task->comm : "<unknown>",
2322 			   task ? task->pid : -1,
2323 			   file_priv->rps.boosts,
2324 			   list_empty(&file_priv->rps.link) ? "" : ", active");
2325 		rcu_read_unlock();
2326 	}
2327 	seq_printf(m, "Semaphore boosts: %d%s\n",
2328 		   dev_priv->rps.semaphores.boosts,
2329 		   list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2330 	seq_printf(m, "MMIO flip boosts: %d%s\n",
2331 		   dev_priv->rps.mmioflips.boosts,
2332 		   list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2333 	seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2334 	spin_unlock(&dev_priv->rps.client_lock);
2335 
2336 	return 0;
2337 }
2338 
2339 static int i915_llc(struct seq_file *m, void *data)
2340 {
2341 	struct drm_info_node *node = m->private;
2342 	struct drm_device *dev = node->minor->dev;
2343 	struct drm_i915_private *dev_priv = dev->dev_private;
2344 
2345 	/* Size calculation for LLC is a bit of a pain. Ignore for now. */
2346 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2347 	seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2348 
2349 	return 0;
2350 }
2351 
2352 static int i915_edp_psr_status(struct seq_file *m, void *data)
2353 {
2354 	struct drm_info_node *node = m->private;
2355 	struct drm_device *dev = node->minor->dev;
2356 	struct drm_i915_private *dev_priv = dev->dev_private;
2357 	u32 psrperf = 0;
2358 	u32 stat[3];
2359 	enum pipe pipe;
2360 	bool enabled = false;
2361 
2362 	if (!HAS_PSR(dev)) {
2363 		seq_puts(m, "PSR not supported\n");
2364 		return 0;
2365 	}
2366 
2367 	intel_runtime_pm_get(dev_priv);
2368 
2369 	mutex_lock(&dev_priv->psr.lock);
2370 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2371 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2372 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2373 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2374 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2375 		   dev_priv->psr.busy_frontbuffer_bits);
2376 	seq_printf(m, "Re-enable work scheduled: %s\n",
2377 		   yesno(work_busy(&dev_priv->psr.work.work)));
2378 
2379 	if (HAS_DDI(dev))
2380 		enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2381 	else {
2382 		for_each_pipe(dev_priv, pipe) {
2383 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2384 				VLV_EDP_PSR_CURR_STATE_MASK;
2385 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2386 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2387 				enabled = true;
2388 		}
2389 	}
2390 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2391 
2392 	if (!HAS_DDI(dev))
2393 		for_each_pipe(dev_priv, pipe) {
2394 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2395 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2396 				seq_printf(m, " pipe %c", pipe_name(pipe));
2397 		}
2398 	seq_puts(m, "\n");
2399 
2400 	/* CHV PSR has no kind of performance counter */
2401 	if (HAS_DDI(dev)) {
2402 		psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2403 			EDP_PSR_PERF_CNT_MASK;
2404 
2405 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2406 	}
2407 	mutex_unlock(&dev_priv->psr.lock);
2408 
2409 	intel_runtime_pm_put(dev_priv);
2410 	return 0;
2411 }
2412 
2413 static int i915_sink_crc(struct seq_file *m, void *data)
2414 {
2415 	struct drm_info_node *node = m->private;
2416 	struct drm_device *dev = node->minor->dev;
2417 	struct intel_encoder *encoder;
2418 	struct intel_connector *connector;
2419 	struct intel_dp *intel_dp = NULL;
2420 	int ret;
2421 	u8 crc[6];
2422 
2423 	drm_modeset_lock_all(dev);
2424 	for_each_intel_connector(dev, connector) {
2425 
2426 		if (connector->base.dpms != DRM_MODE_DPMS_ON)
2427 			continue;
2428 
2429 		if (!connector->base.encoder)
2430 			continue;
2431 
2432 		encoder = to_intel_encoder(connector->base.encoder);
2433 		if (encoder->type != INTEL_OUTPUT_EDP)
2434 			continue;
2435 
2436 		intel_dp = enc_to_intel_dp(&encoder->base);
2437 
2438 		ret = intel_dp_sink_crc(intel_dp, crc);
2439 		if (ret)
2440 			goto out;
2441 
2442 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2443 			   crc[0], crc[1], crc[2],
2444 			   crc[3], crc[4], crc[5]);
2445 		goto out;
2446 	}
2447 	ret = -ENODEV;
2448 out:
2449 	drm_modeset_unlock_all(dev);
2450 	return ret;
2451 }
2452 
2453 static int i915_energy_uJ(struct seq_file *m, void *data)
2454 {
2455 	struct drm_info_node *node = m->private;
2456 	struct drm_device *dev = node->minor->dev;
2457 	struct drm_i915_private *dev_priv = dev->dev_private;
2458 	u64 power;
2459 	u32 units;
2460 
2461 	if (INTEL_INFO(dev)->gen < 6)
2462 		return -ENODEV;
2463 
2464 	intel_runtime_pm_get(dev_priv);
2465 
2466 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2467 	power = (power & 0x1f00) >> 8;
2468 	units = 1000000 / (1 << power); /* convert to uJ */
2469 	power = I915_READ(MCH_SECP_NRG_STTS);
2470 	power *= units;
2471 
2472 	intel_runtime_pm_put(dev_priv);
2473 
2474 	seq_printf(m, "%llu", (long long unsigned)power);
2475 
2476 	return 0;
2477 }
2478 
2479 static int i915_pc8_status(struct seq_file *m, void *unused)
2480 {
2481 	struct drm_info_node *node = m->private;
2482 	struct drm_device *dev = node->minor->dev;
2483 	struct drm_i915_private *dev_priv = dev->dev_private;
2484 
2485 	if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2486 		seq_puts(m, "not supported\n");
2487 		return 0;
2488 	}
2489 
2490 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2491 	seq_printf(m, "IRQs disabled: %s\n",
2492 		   yesno(!intel_irqs_enabled(dev_priv)));
2493 
2494 	return 0;
2495 }
2496 
2497 static const char *power_domain_str(enum intel_display_power_domain domain)
2498 {
2499 	switch (domain) {
2500 	case POWER_DOMAIN_PIPE_A:
2501 		return "PIPE_A";
2502 	case POWER_DOMAIN_PIPE_B:
2503 		return "PIPE_B";
2504 	case POWER_DOMAIN_PIPE_C:
2505 		return "PIPE_C";
2506 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2507 		return "PIPE_A_PANEL_FITTER";
2508 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2509 		return "PIPE_B_PANEL_FITTER";
2510 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2511 		return "PIPE_C_PANEL_FITTER";
2512 	case POWER_DOMAIN_TRANSCODER_A:
2513 		return "TRANSCODER_A";
2514 	case POWER_DOMAIN_TRANSCODER_B:
2515 		return "TRANSCODER_B";
2516 	case POWER_DOMAIN_TRANSCODER_C:
2517 		return "TRANSCODER_C";
2518 	case POWER_DOMAIN_TRANSCODER_EDP:
2519 		return "TRANSCODER_EDP";
2520 	case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2521 		return "PORT_DDI_A_2_LANES";
2522 	case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2523 		return "PORT_DDI_A_4_LANES";
2524 	case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2525 		return "PORT_DDI_B_2_LANES";
2526 	case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2527 		return "PORT_DDI_B_4_LANES";
2528 	case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2529 		return "PORT_DDI_C_2_LANES";
2530 	case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2531 		return "PORT_DDI_C_4_LANES";
2532 	case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2533 		return "PORT_DDI_D_2_LANES";
2534 	case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2535 		return "PORT_DDI_D_4_LANES";
2536 	case POWER_DOMAIN_PORT_DSI:
2537 		return "PORT_DSI";
2538 	case POWER_DOMAIN_PORT_CRT:
2539 		return "PORT_CRT";
2540 	case POWER_DOMAIN_PORT_OTHER:
2541 		return "PORT_OTHER";
2542 	case POWER_DOMAIN_VGA:
2543 		return "VGA";
2544 	case POWER_DOMAIN_AUDIO:
2545 		return "AUDIO";
2546 	case POWER_DOMAIN_PLLS:
2547 		return "PLLS";
2548 	case POWER_DOMAIN_AUX_A:
2549 		return "AUX_A";
2550 	case POWER_DOMAIN_AUX_B:
2551 		return "AUX_B";
2552 	case POWER_DOMAIN_AUX_C:
2553 		return "AUX_C";
2554 	case POWER_DOMAIN_AUX_D:
2555 		return "AUX_D";
2556 	case POWER_DOMAIN_INIT:
2557 		return "INIT";
2558 	default:
2559 		MISSING_CASE(domain);
2560 		return "?";
2561 	}
2562 }
2563 
2564 static int i915_power_domain_info(struct seq_file *m, void *unused)
2565 {
2566 	struct drm_info_node *node = m->private;
2567 	struct drm_device *dev = node->minor->dev;
2568 	struct drm_i915_private *dev_priv = dev->dev_private;
2569 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2570 	int i;
2571 
2572 	mutex_lock(&power_domains->lock);
2573 
2574 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2575 	for (i = 0; i < power_domains->power_well_count; i++) {
2576 		struct i915_power_well *power_well;
2577 		enum intel_display_power_domain power_domain;
2578 
2579 		power_well = &power_domains->power_wells[i];
2580 		seq_printf(m, "%-25s %d\n", power_well->name,
2581 			   power_well->count);
2582 
2583 		for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2584 		     power_domain++) {
2585 			if (!(BIT(power_domain) & power_well->domains))
2586 				continue;
2587 
2588 			seq_printf(m, "  %-23s %d\n",
2589 				 power_domain_str(power_domain),
2590 				 power_domains->domain_use_count[power_domain]);
2591 		}
2592 	}
2593 
2594 	mutex_unlock(&power_domains->lock);
2595 
2596 	return 0;
2597 }
2598 
2599 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2600 				 struct drm_display_mode *mode)
2601 {
2602 	int i;
2603 
2604 	for (i = 0; i < tabs; i++)
2605 		seq_putc(m, '\t');
2606 
2607 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2608 		   mode->base.id, mode->name,
2609 		   mode->vrefresh, mode->clock,
2610 		   mode->hdisplay, mode->hsync_start,
2611 		   mode->hsync_end, mode->htotal,
2612 		   mode->vdisplay, mode->vsync_start,
2613 		   mode->vsync_end, mode->vtotal,
2614 		   mode->type, mode->flags);
2615 }
2616 
2617 static void intel_encoder_info(struct seq_file *m,
2618 			       struct intel_crtc *intel_crtc,
2619 			       struct intel_encoder *intel_encoder)
2620 {
2621 	struct drm_info_node *node = m->private;
2622 	struct drm_device *dev = node->minor->dev;
2623 	struct drm_crtc *crtc = &intel_crtc->base;
2624 	struct intel_connector *intel_connector;
2625 	struct drm_encoder *encoder;
2626 
2627 	encoder = &intel_encoder->base;
2628 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2629 		   encoder->base.id, encoder->name);
2630 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2631 		struct drm_connector *connector = &intel_connector->base;
2632 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2633 			   connector->base.id,
2634 			   connector->name,
2635 			   drm_get_connector_status_name(connector->status));
2636 		if (connector->status == connector_status_connected) {
2637 			struct drm_display_mode *mode = &crtc->mode;
2638 			seq_printf(m, ", mode:\n");
2639 			intel_seq_print_mode(m, 2, mode);
2640 		} else {
2641 			seq_putc(m, '\n');
2642 		}
2643 	}
2644 }
2645 
2646 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2647 {
2648 	struct drm_info_node *node = m->private;
2649 	struct drm_device *dev = node->minor->dev;
2650 	struct drm_crtc *crtc = &intel_crtc->base;
2651 	struct intel_encoder *intel_encoder;
2652 
2653 	if (crtc->primary->fb)
2654 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2655 			   crtc->primary->fb->base.id, crtc->x, crtc->y,
2656 			   crtc->primary->fb->width, crtc->primary->fb->height);
2657 	else
2658 		seq_puts(m, "\tprimary plane disabled\n");
2659 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2660 		intel_encoder_info(m, intel_crtc, intel_encoder);
2661 }
2662 
2663 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2664 {
2665 	struct drm_display_mode *mode = panel->fixed_mode;
2666 
2667 	seq_printf(m, "\tfixed mode:\n");
2668 	intel_seq_print_mode(m, 2, mode);
2669 }
2670 
2671 static void intel_dp_info(struct seq_file *m,
2672 			  struct intel_connector *intel_connector)
2673 {
2674 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2675 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2676 
2677 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2678 	seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2679 		   "no");
2680 	if (intel_encoder->type == INTEL_OUTPUT_EDP)
2681 		intel_panel_info(m, &intel_connector->panel);
2682 }
2683 
2684 static void intel_hdmi_info(struct seq_file *m,
2685 			    struct intel_connector *intel_connector)
2686 {
2687 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2688 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2689 
2690 	seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2691 		   "no");
2692 }
2693 
2694 static void intel_lvds_info(struct seq_file *m,
2695 			    struct intel_connector *intel_connector)
2696 {
2697 	intel_panel_info(m, &intel_connector->panel);
2698 }
2699 
2700 static void intel_connector_info(struct seq_file *m,
2701 				 struct drm_connector *connector)
2702 {
2703 	struct intel_connector *intel_connector = to_intel_connector(connector);
2704 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2705 	struct drm_display_mode *mode;
2706 
2707 	seq_printf(m, "connector %d: type %s, status: %s\n",
2708 		   connector->base.id, connector->name,
2709 		   drm_get_connector_status_name(connector->status));
2710 	if (connector->status == connector_status_connected) {
2711 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
2712 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2713 			   connector->display_info.width_mm,
2714 			   connector->display_info.height_mm);
2715 		seq_printf(m, "\tsubpixel order: %s\n",
2716 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2717 		seq_printf(m, "\tCEA rev: %d\n",
2718 			   connector->display_info.cea_rev);
2719 	}
2720 	if (intel_encoder) {
2721 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2722 		    intel_encoder->type == INTEL_OUTPUT_EDP)
2723 			intel_dp_info(m, intel_connector);
2724 		else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2725 			intel_hdmi_info(m, intel_connector);
2726 		else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2727 			intel_lvds_info(m, intel_connector);
2728 	}
2729 
2730 	seq_printf(m, "\tmodes:\n");
2731 	list_for_each_entry(mode, &connector->modes, head)
2732 		intel_seq_print_mode(m, 2, mode);
2733 }
2734 
2735 static bool cursor_active(struct drm_device *dev, int pipe)
2736 {
2737 	struct drm_i915_private *dev_priv = dev->dev_private;
2738 	u32 state;
2739 
2740 	if (IS_845G(dev) || IS_I865G(dev))
2741 		state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2742 	else
2743 		state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2744 
2745 	return state;
2746 }
2747 
2748 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2749 {
2750 	struct drm_i915_private *dev_priv = dev->dev_private;
2751 	u32 pos;
2752 
2753 	pos = I915_READ(CURPOS(pipe));
2754 
2755 	*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2756 	if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2757 		*x = -*x;
2758 
2759 	*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2760 	if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2761 		*y = -*y;
2762 
2763 	return cursor_active(dev, pipe);
2764 }
2765 
2766 static int i915_display_info(struct seq_file *m, void *unused)
2767 {
2768 	struct drm_info_node *node = m->private;
2769 	struct drm_device *dev = node->minor->dev;
2770 	struct drm_i915_private *dev_priv = dev->dev_private;
2771 	struct intel_crtc *crtc;
2772 	struct drm_connector *connector;
2773 
2774 	intel_runtime_pm_get(dev_priv);
2775 	drm_modeset_lock_all(dev);
2776 	seq_printf(m, "CRTC info\n");
2777 	seq_printf(m, "---------\n");
2778 	for_each_intel_crtc(dev, crtc) {
2779 		bool active;
2780 		int x, y;
2781 
2782 		seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2783 			   crtc->base.base.id, pipe_name(crtc->pipe),
2784 			   yesno(crtc->active), crtc->config->pipe_src_w,
2785 			   crtc->config->pipe_src_h);
2786 		if (crtc->active) {
2787 			intel_crtc_info(m, crtc);
2788 
2789 			active = cursor_position(dev, crtc->pipe, &x, &y);
2790 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2791 				   yesno(crtc->cursor_base),
2792 				   x, y, crtc->base.cursor->state->crtc_w,
2793 				   crtc->base.cursor->state->crtc_h,
2794 				   crtc->cursor_addr, yesno(active));
2795 		}
2796 
2797 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2798 			   yesno(!crtc->cpu_fifo_underrun_disabled),
2799 			   yesno(!crtc->pch_fifo_underrun_disabled));
2800 	}
2801 
2802 	seq_printf(m, "\n");
2803 	seq_printf(m, "Connector info\n");
2804 	seq_printf(m, "--------------\n");
2805 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2806 		intel_connector_info(m, connector);
2807 	}
2808 	drm_modeset_unlock_all(dev);
2809 	intel_runtime_pm_put(dev_priv);
2810 
2811 	return 0;
2812 }
2813 
2814 static int i915_semaphore_status(struct seq_file *m, void *unused)
2815 {
2816 	struct drm_info_node *node = (struct drm_info_node *) m->private;
2817 	struct drm_device *dev = node->minor->dev;
2818 	struct drm_i915_private *dev_priv = dev->dev_private;
2819 	struct intel_engine_cs *ring;
2820 	int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2821 	int i, j, ret;
2822 
2823 	if (!i915_semaphore_is_enabled(dev)) {
2824 		seq_puts(m, "Semaphores are disabled\n");
2825 		return 0;
2826 	}
2827 
2828 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2829 	if (ret)
2830 		return ret;
2831 	intel_runtime_pm_get(dev_priv);
2832 
2833 	if (IS_BROADWELL(dev)) {
2834 		struct page *page;
2835 		uint64_t *seqno;
2836 
2837 		page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2838 
2839 		seqno = (uint64_t *)kmap_atomic(page);
2840 		for_each_ring(ring, dev_priv, i) {
2841 			uint64_t offset;
2842 
2843 			seq_printf(m, "%s\n", ring->name);
2844 
2845 			seq_puts(m, "  Last signal:");
2846 			for (j = 0; j < num_rings; j++) {
2847 				offset = i * I915_NUM_RINGS + j;
2848 				seq_printf(m, "0x%08llx (0x%02llx) ",
2849 					   seqno[offset], offset * 8);
2850 			}
2851 			seq_putc(m, '\n');
2852 
2853 			seq_puts(m, "  Last wait:  ");
2854 			for (j = 0; j < num_rings; j++) {
2855 				offset = i + (j * I915_NUM_RINGS);
2856 				seq_printf(m, "0x%08llx (0x%02llx) ",
2857 					   seqno[offset], offset * 8);
2858 			}
2859 			seq_putc(m, '\n');
2860 
2861 		}
2862 		kunmap_atomic(seqno);
2863 	} else {
2864 		seq_puts(m, "  Last signal:");
2865 		for_each_ring(ring, dev_priv, i)
2866 			for (j = 0; j < num_rings; j++)
2867 				seq_printf(m, "0x%08x\n",
2868 					   I915_READ(ring->semaphore.mbox.signal[j]));
2869 		seq_putc(m, '\n');
2870 	}
2871 
2872 	seq_puts(m, "\nSync seqno:\n");
2873 	for_each_ring(ring, dev_priv, i) {
2874 		for (j = 0; j < num_rings; j++) {
2875 			seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
2876 		}
2877 		seq_putc(m, '\n');
2878 	}
2879 	seq_putc(m, '\n');
2880 
2881 	intel_runtime_pm_put(dev_priv);
2882 	mutex_unlock(&dev->struct_mutex);
2883 	return 0;
2884 }
2885 
2886 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2887 {
2888 	struct drm_info_node *node = (struct drm_info_node *) m->private;
2889 	struct drm_device *dev = node->minor->dev;
2890 	struct drm_i915_private *dev_priv = dev->dev_private;
2891 	int i;
2892 
2893 	drm_modeset_lock_all(dev);
2894 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2895 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2896 
2897 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2898 		seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
2899 			   pll->config.crtc_mask, pll->active, yesno(pll->on));
2900 		seq_printf(m, " tracked hardware state:\n");
2901 		seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
2902 		seq_printf(m, " dpll_md: 0x%08x\n",
2903 			   pll->config.hw_state.dpll_md);
2904 		seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
2905 		seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
2906 		seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
2907 	}
2908 	drm_modeset_unlock_all(dev);
2909 
2910 	return 0;
2911 }
2912 
2913 static int i915_wa_registers(struct seq_file *m, void *unused)
2914 {
2915 	int i;
2916 	int ret;
2917 	struct drm_info_node *node = (struct drm_info_node *) m->private;
2918 	struct drm_device *dev = node->minor->dev;
2919 	struct drm_i915_private *dev_priv = dev->dev_private;
2920 
2921 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2922 	if (ret)
2923 		return ret;
2924 
2925 	intel_runtime_pm_get(dev_priv);
2926 
2927 	seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2928 	for (i = 0; i < dev_priv->workarounds.count; ++i) {
2929 		u32 addr, mask, value, read;
2930 		bool ok;
2931 
2932 		addr = dev_priv->workarounds.reg[i].addr;
2933 		mask = dev_priv->workarounds.reg[i].mask;
2934 		value = dev_priv->workarounds.reg[i].value;
2935 		read = I915_READ(addr);
2936 		ok = (value & mask) == (read & mask);
2937 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2938 			   addr, value, mask, read, ok ? "OK" : "FAIL");
2939 	}
2940 
2941 	intel_runtime_pm_put(dev_priv);
2942 	mutex_unlock(&dev->struct_mutex);
2943 
2944 	return 0;
2945 }
2946 
2947 static int i915_ddb_info(struct seq_file *m, void *unused)
2948 {
2949 	struct drm_info_node *node = m->private;
2950 	struct drm_device *dev = node->minor->dev;
2951 	struct drm_i915_private *dev_priv = dev->dev_private;
2952 	struct skl_ddb_allocation *ddb;
2953 	struct skl_ddb_entry *entry;
2954 	enum pipe pipe;
2955 	int plane;
2956 
2957 	if (INTEL_INFO(dev)->gen < 9)
2958 		return 0;
2959 
2960 	drm_modeset_lock_all(dev);
2961 
2962 	ddb = &dev_priv->wm.skl_hw.ddb;
2963 
2964 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
2965 
2966 	for_each_pipe(dev_priv, pipe) {
2967 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
2968 
2969 		for_each_plane(dev_priv, pipe, plane) {
2970 			entry = &ddb->plane[pipe][plane];
2971 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
2972 				   entry->start, entry->end,
2973 				   skl_ddb_entry_size(entry));
2974 		}
2975 
2976 		entry = &ddb->cursor[pipe];
2977 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
2978 			   entry->end, skl_ddb_entry_size(entry));
2979 	}
2980 
2981 	drm_modeset_unlock_all(dev);
2982 
2983 	return 0;
2984 }
2985 
2986 static void drrs_status_per_crtc(struct seq_file *m,
2987 		struct drm_device *dev, struct intel_crtc *intel_crtc)
2988 {
2989 	struct intel_encoder *intel_encoder;
2990 	struct drm_i915_private *dev_priv = dev->dev_private;
2991 	struct i915_drrs *drrs = &dev_priv->drrs;
2992 	int vrefresh = 0;
2993 
2994 	for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
2995 		/* Encoder connected on this CRTC */
2996 		switch (intel_encoder->type) {
2997 		case INTEL_OUTPUT_EDP:
2998 			seq_puts(m, "eDP:\n");
2999 			break;
3000 		case INTEL_OUTPUT_DSI:
3001 			seq_puts(m, "DSI:\n");
3002 			break;
3003 		case INTEL_OUTPUT_HDMI:
3004 			seq_puts(m, "HDMI:\n");
3005 			break;
3006 		case INTEL_OUTPUT_DISPLAYPORT:
3007 			seq_puts(m, "DP:\n");
3008 			break;
3009 		default:
3010 			seq_printf(m, "Other encoder (id=%d).\n",
3011 						intel_encoder->type);
3012 			return;
3013 		}
3014 	}
3015 
3016 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3017 		seq_puts(m, "\tVBT: DRRS_type: Static");
3018 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3019 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3020 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3021 		seq_puts(m, "\tVBT: DRRS_type: None");
3022 	else
3023 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3024 
3025 	seq_puts(m, "\n\n");
3026 
3027 	if (intel_crtc->config->has_drrs) {
3028 		struct intel_panel *panel;
3029 
3030 		mutex_lock(&drrs->mutex);
3031 		/* DRRS Supported */
3032 		seq_puts(m, "\tDRRS Supported: Yes\n");
3033 
3034 		/* disable_drrs() will make drrs->dp NULL */
3035 		if (!drrs->dp) {
3036 			seq_puts(m, "Idleness DRRS: Disabled");
3037 			mutex_unlock(&drrs->mutex);
3038 			return;
3039 		}
3040 
3041 		panel = &drrs->dp->attached_connector->panel;
3042 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3043 					drrs->busy_frontbuffer_bits);
3044 
3045 		seq_puts(m, "\n\t\t");
3046 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3047 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3048 			vrefresh = panel->fixed_mode->vrefresh;
3049 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3050 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3051 			vrefresh = panel->downclock_mode->vrefresh;
3052 		} else {
3053 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3054 						drrs->refresh_rate_type);
3055 			mutex_unlock(&drrs->mutex);
3056 			return;
3057 		}
3058 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3059 
3060 		seq_puts(m, "\n\t\t");
3061 		mutex_unlock(&drrs->mutex);
3062 	} else {
3063 		/* DRRS not supported. Print the VBT parameter*/
3064 		seq_puts(m, "\tDRRS Supported : No");
3065 	}
3066 	seq_puts(m, "\n");
3067 }
3068 
3069 static int i915_drrs_status(struct seq_file *m, void *unused)
3070 {
3071 	struct drm_info_node *node = m->private;
3072 	struct drm_device *dev = node->minor->dev;
3073 	struct intel_crtc *intel_crtc;
3074 	int active_crtc_cnt = 0;
3075 
3076 	for_each_intel_crtc(dev, intel_crtc) {
3077 		drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3078 
3079 		if (intel_crtc->active) {
3080 			active_crtc_cnt++;
3081 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3082 
3083 			drrs_status_per_crtc(m, dev, intel_crtc);
3084 		}
3085 
3086 		drm_modeset_unlock(&intel_crtc->base.mutex);
3087 	}
3088 
3089 	if (!active_crtc_cnt)
3090 		seq_puts(m, "No active crtc found\n");
3091 
3092 	return 0;
3093 }
3094 
3095 struct pipe_crc_info {
3096 	const char *name;
3097 	struct drm_device *dev;
3098 	enum pipe pipe;
3099 };
3100 
3101 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3102 {
3103 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3104 	struct drm_device *dev = node->minor->dev;
3105 	struct drm_encoder *encoder;
3106 	struct intel_encoder *intel_encoder;
3107 	struct intel_digital_port *intel_dig_port;
3108 	drm_modeset_lock_all(dev);
3109 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3110 		intel_encoder = to_intel_encoder(encoder);
3111 		if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3112 			continue;
3113 		intel_dig_port = enc_to_dig_port(encoder);
3114 		if (!intel_dig_port->dp.can_mst)
3115 			continue;
3116 
3117 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3118 	}
3119 	drm_modeset_unlock_all(dev);
3120 	return 0;
3121 }
3122 
3123 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3124 {
3125 	struct pipe_crc_info *info = inode->i_private;
3126 	struct drm_i915_private *dev_priv = info->dev->dev_private;
3127 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3128 
3129 	if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3130 		return -ENODEV;
3131 
3132 	spin_lock_irq(&pipe_crc->lock);
3133 
3134 	if (pipe_crc->opened) {
3135 		spin_unlock_irq(&pipe_crc->lock);
3136 		return -EBUSY; /* already open */
3137 	}
3138 
3139 	pipe_crc->opened = true;
3140 	filep->private_data = inode->i_private;
3141 
3142 	spin_unlock_irq(&pipe_crc->lock);
3143 
3144 	return 0;
3145 }
3146 
3147 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3148 {
3149 	struct pipe_crc_info *info = inode->i_private;
3150 	struct drm_i915_private *dev_priv = info->dev->dev_private;
3151 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3152 
3153 	spin_lock_irq(&pipe_crc->lock);
3154 	pipe_crc->opened = false;
3155 	spin_unlock_irq(&pipe_crc->lock);
3156 
3157 	return 0;
3158 }
3159 
3160 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3161 #define PIPE_CRC_LINE_LEN	(6 * 8 + 5 + 1)
3162 /* account for \'0' */
3163 #define PIPE_CRC_BUFFER_LEN	(PIPE_CRC_LINE_LEN + 1)
3164 
3165 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3166 {
3167 	assert_spin_locked(&pipe_crc->lock);
3168 	return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3169 			INTEL_PIPE_CRC_ENTRIES_NR);
3170 }
3171 
3172 static ssize_t
3173 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3174 		   loff_t *pos)
3175 {
3176 	struct pipe_crc_info *info = filep->private_data;
3177 	struct drm_device *dev = info->dev;
3178 	struct drm_i915_private *dev_priv = dev->dev_private;
3179 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3180 	char buf[PIPE_CRC_BUFFER_LEN];
3181 	int n_entries;
3182 	ssize_t bytes_read;
3183 
3184 	/*
3185 	 * Don't allow user space to provide buffers not big enough to hold
3186 	 * a line of data.
3187 	 */
3188 	if (count < PIPE_CRC_LINE_LEN)
3189 		return -EINVAL;
3190 
3191 	if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3192 		return 0;
3193 
3194 	/* nothing to read */
3195 	spin_lock_irq(&pipe_crc->lock);
3196 	while (pipe_crc_data_count(pipe_crc) == 0) {
3197 		int ret;
3198 
3199 		if (filep->f_flags & O_NONBLOCK) {
3200 			spin_unlock_irq(&pipe_crc->lock);
3201 			return -EAGAIN;
3202 		}
3203 
3204 		ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3205 				pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3206 		if (ret) {
3207 			spin_unlock_irq(&pipe_crc->lock);
3208 			return ret;
3209 		}
3210 	}
3211 
3212 	/* We now have one or more entries to read */
3213 	n_entries = count / PIPE_CRC_LINE_LEN;
3214 
3215 	bytes_read = 0;
3216 	while (n_entries > 0) {
3217 		struct intel_pipe_crc_entry *entry =
3218 			&pipe_crc->entries[pipe_crc->tail];
3219 		int ret;
3220 
3221 		if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3222 			     INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3223 			break;
3224 
3225 		BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3226 		pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3227 
3228 		bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3229 				       "%8u %8x %8x %8x %8x %8x\n",
3230 				       entry->frame, entry->crc[0],
3231 				       entry->crc[1], entry->crc[2],
3232 				       entry->crc[3], entry->crc[4]);
3233 
3234 		spin_unlock_irq(&pipe_crc->lock);
3235 
3236 		ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3237 		if (ret == PIPE_CRC_LINE_LEN)
3238 			return -EFAULT;
3239 
3240 		user_buf += PIPE_CRC_LINE_LEN;
3241 		n_entries--;
3242 
3243 		spin_lock_irq(&pipe_crc->lock);
3244 	}
3245 
3246 	spin_unlock_irq(&pipe_crc->lock);
3247 
3248 	return bytes_read;
3249 }
3250 
3251 static const struct file_operations i915_pipe_crc_fops = {
3252 	.owner = THIS_MODULE,
3253 	.open = i915_pipe_crc_open,
3254 	.read = i915_pipe_crc_read,
3255 	.release = i915_pipe_crc_release,
3256 };
3257 
3258 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3259 	{
3260 		.name = "i915_pipe_A_crc",
3261 		.pipe = PIPE_A,
3262 	},
3263 	{
3264 		.name = "i915_pipe_B_crc",
3265 		.pipe = PIPE_B,
3266 	},
3267 	{
3268 		.name = "i915_pipe_C_crc",
3269 		.pipe = PIPE_C,
3270 	},
3271 };
3272 
3273 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3274 				enum pipe pipe)
3275 {
3276 	struct drm_device *dev = minor->dev;
3277 	struct dentry *ent;
3278 	struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3279 
3280 	info->dev = dev;
3281 	ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3282 				  &i915_pipe_crc_fops);
3283 	if (!ent)
3284 		return -ENOMEM;
3285 
3286 	return drm_add_fake_info_node(minor, ent, info);
3287 }
3288 
3289 static const char * const pipe_crc_sources[] = {
3290 	"none",
3291 	"plane1",
3292 	"plane2",
3293 	"pf",
3294 	"pipe",
3295 	"TV",
3296 	"DP-B",
3297 	"DP-C",
3298 	"DP-D",
3299 	"auto",
3300 };
3301 
3302 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3303 {
3304 	BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3305 	return pipe_crc_sources[source];
3306 }
3307 
3308 static int display_crc_ctl_show(struct seq_file *m, void *data)
3309 {
3310 	struct drm_device *dev = m->private;
3311 	struct drm_i915_private *dev_priv = dev->dev_private;
3312 	int i;
3313 
3314 	for (i = 0; i < I915_MAX_PIPES; i++)
3315 		seq_printf(m, "%c %s\n", pipe_name(i),
3316 			   pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3317 
3318 	return 0;
3319 }
3320 
3321 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3322 {
3323 	struct drm_device *dev = inode->i_private;
3324 
3325 	return single_open(file, display_crc_ctl_show, dev);
3326 }
3327 
3328 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3329 				 uint32_t *val)
3330 {
3331 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3332 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3333 
3334 	switch (*source) {
3335 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3336 		*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3337 		break;
3338 	case INTEL_PIPE_CRC_SOURCE_NONE:
3339 		*val = 0;
3340 		break;
3341 	default:
3342 		return -EINVAL;
3343 	}
3344 
3345 	return 0;
3346 }
3347 
3348 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3349 				     enum intel_pipe_crc_source *source)
3350 {
3351 	struct intel_encoder *encoder;
3352 	struct intel_crtc *crtc;
3353 	struct intel_digital_port *dig_port;
3354 	int ret = 0;
3355 
3356 	*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3357 
3358 	drm_modeset_lock_all(dev);
3359 	for_each_intel_encoder(dev, encoder) {
3360 		if (!encoder->base.crtc)
3361 			continue;
3362 
3363 		crtc = to_intel_crtc(encoder->base.crtc);
3364 
3365 		if (crtc->pipe != pipe)
3366 			continue;
3367 
3368 		switch (encoder->type) {
3369 		case INTEL_OUTPUT_TVOUT:
3370 			*source = INTEL_PIPE_CRC_SOURCE_TV;
3371 			break;
3372 		case INTEL_OUTPUT_DISPLAYPORT:
3373 		case INTEL_OUTPUT_EDP:
3374 			dig_port = enc_to_dig_port(&encoder->base);
3375 			switch (dig_port->port) {
3376 			case PORT_B:
3377 				*source = INTEL_PIPE_CRC_SOURCE_DP_B;
3378 				break;
3379 			case PORT_C:
3380 				*source = INTEL_PIPE_CRC_SOURCE_DP_C;
3381 				break;
3382 			case PORT_D:
3383 				*source = INTEL_PIPE_CRC_SOURCE_DP_D;
3384 				break;
3385 			default:
3386 				WARN(1, "nonexisting DP port %c\n",
3387 				     port_name(dig_port->port));
3388 				break;
3389 			}
3390 			break;
3391 		default:
3392 			break;
3393 		}
3394 	}
3395 	drm_modeset_unlock_all(dev);
3396 
3397 	return ret;
3398 }
3399 
3400 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3401 				enum pipe pipe,
3402 				enum intel_pipe_crc_source *source,
3403 				uint32_t *val)
3404 {
3405 	struct drm_i915_private *dev_priv = dev->dev_private;
3406 	bool need_stable_symbols = false;
3407 
3408 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3409 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3410 		if (ret)
3411 			return ret;
3412 	}
3413 
3414 	switch (*source) {
3415 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3416 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3417 		break;
3418 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3419 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3420 		need_stable_symbols = true;
3421 		break;
3422 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3423 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3424 		need_stable_symbols = true;
3425 		break;
3426 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3427 		if (!IS_CHERRYVIEW(dev))
3428 			return -EINVAL;
3429 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3430 		need_stable_symbols = true;
3431 		break;
3432 	case INTEL_PIPE_CRC_SOURCE_NONE:
3433 		*val = 0;
3434 		break;
3435 	default:
3436 		return -EINVAL;
3437 	}
3438 
3439 	/*
3440 	 * When the pipe CRC tap point is after the transcoders we need
3441 	 * to tweak symbol-level features to produce a deterministic series of
3442 	 * symbols for a given frame. We need to reset those features only once
3443 	 * a frame (instead of every nth symbol):
3444 	 *   - DC-balance: used to ensure a better clock recovery from the data
3445 	 *     link (SDVO)
3446 	 *   - DisplayPort scrambling: used for EMI reduction
3447 	 */
3448 	if (need_stable_symbols) {
3449 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3450 
3451 		tmp |= DC_BALANCE_RESET_VLV;
3452 		switch (pipe) {
3453 		case PIPE_A:
3454 			tmp |= PIPE_A_SCRAMBLE_RESET;
3455 			break;
3456 		case PIPE_B:
3457 			tmp |= PIPE_B_SCRAMBLE_RESET;
3458 			break;
3459 		case PIPE_C:
3460 			tmp |= PIPE_C_SCRAMBLE_RESET;
3461 			break;
3462 		default:
3463 			return -EINVAL;
3464 		}
3465 		I915_WRITE(PORT_DFT2_G4X, tmp);
3466 	}
3467 
3468 	return 0;
3469 }
3470 
3471 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3472 				 enum pipe pipe,
3473 				 enum intel_pipe_crc_source *source,
3474 				 uint32_t *val)
3475 {
3476 	struct drm_i915_private *dev_priv = dev->dev_private;
3477 	bool need_stable_symbols = false;
3478 
3479 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3480 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3481 		if (ret)
3482 			return ret;
3483 	}
3484 
3485 	switch (*source) {
3486 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3487 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3488 		break;
3489 	case INTEL_PIPE_CRC_SOURCE_TV:
3490 		if (!SUPPORTS_TV(dev))
3491 			return -EINVAL;
3492 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3493 		break;
3494 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3495 		if (!IS_G4X(dev))
3496 			return -EINVAL;
3497 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3498 		need_stable_symbols = true;
3499 		break;
3500 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3501 		if (!IS_G4X(dev))
3502 			return -EINVAL;
3503 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3504 		need_stable_symbols = true;
3505 		break;
3506 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3507 		if (!IS_G4X(dev))
3508 			return -EINVAL;
3509 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3510 		need_stable_symbols = true;
3511 		break;
3512 	case INTEL_PIPE_CRC_SOURCE_NONE:
3513 		*val = 0;
3514 		break;
3515 	default:
3516 		return -EINVAL;
3517 	}
3518 
3519 	/*
3520 	 * When the pipe CRC tap point is after the transcoders we need
3521 	 * to tweak symbol-level features to produce a deterministic series of
3522 	 * symbols for a given frame. We need to reset those features only once
3523 	 * a frame (instead of every nth symbol):
3524 	 *   - DC-balance: used to ensure a better clock recovery from the data
3525 	 *     link (SDVO)
3526 	 *   - DisplayPort scrambling: used for EMI reduction
3527 	 */
3528 	if (need_stable_symbols) {
3529 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3530 
3531 		WARN_ON(!IS_G4X(dev));
3532 
3533 		I915_WRITE(PORT_DFT_I9XX,
3534 			   I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3535 
3536 		if (pipe == PIPE_A)
3537 			tmp |= PIPE_A_SCRAMBLE_RESET;
3538 		else
3539 			tmp |= PIPE_B_SCRAMBLE_RESET;
3540 
3541 		I915_WRITE(PORT_DFT2_G4X, tmp);
3542 	}
3543 
3544 	return 0;
3545 }
3546 
3547 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3548 					 enum pipe pipe)
3549 {
3550 	struct drm_i915_private *dev_priv = dev->dev_private;
3551 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3552 
3553 	switch (pipe) {
3554 	case PIPE_A:
3555 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3556 		break;
3557 	case PIPE_B:
3558 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3559 		break;
3560 	case PIPE_C:
3561 		tmp &= ~PIPE_C_SCRAMBLE_RESET;
3562 		break;
3563 	default:
3564 		return;
3565 	}
3566 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3567 		tmp &= ~DC_BALANCE_RESET_VLV;
3568 	I915_WRITE(PORT_DFT2_G4X, tmp);
3569 
3570 }
3571 
3572 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3573 					 enum pipe pipe)
3574 {
3575 	struct drm_i915_private *dev_priv = dev->dev_private;
3576 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3577 
3578 	if (pipe == PIPE_A)
3579 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3580 	else
3581 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3582 	I915_WRITE(PORT_DFT2_G4X, tmp);
3583 
3584 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3585 		I915_WRITE(PORT_DFT_I9XX,
3586 			   I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3587 	}
3588 }
3589 
3590 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3591 				uint32_t *val)
3592 {
3593 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3594 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3595 
3596 	switch (*source) {
3597 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3598 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3599 		break;
3600 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3601 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3602 		break;
3603 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3604 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3605 		break;
3606 	case INTEL_PIPE_CRC_SOURCE_NONE:
3607 		*val = 0;
3608 		break;
3609 	default:
3610 		return -EINVAL;
3611 	}
3612 
3613 	return 0;
3614 }
3615 
3616 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3617 {
3618 	struct drm_i915_private *dev_priv = dev->dev_private;
3619 	struct intel_crtc *crtc =
3620 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3621 
3622 	drm_modeset_lock_all(dev);
3623 	/*
3624 	 * If we use the eDP transcoder we need to make sure that we don't
3625 	 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3626 	 * relevant on hsw with pipe A when using the always-on power well
3627 	 * routing.
3628 	 */
3629 	if (crtc->config->cpu_transcoder == TRANSCODER_EDP &&
3630 	    !crtc->config->pch_pfit.enabled) {
3631 		crtc->config->pch_pfit.force_thru = true;
3632 
3633 		intel_display_power_get(dev_priv,
3634 					POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3635 
3636 		intel_crtc_reset(crtc);
3637 	}
3638 	drm_modeset_unlock_all(dev);
3639 }
3640 
3641 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3642 {
3643 	struct drm_i915_private *dev_priv = dev->dev_private;
3644 	struct intel_crtc *crtc =
3645 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3646 
3647 	drm_modeset_lock_all(dev);
3648 	/*
3649 	 * If we use the eDP transcoder we need to make sure that we don't
3650 	 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3651 	 * relevant on hsw with pipe A when using the always-on power well
3652 	 * routing.
3653 	 */
3654 	if (crtc->config->pch_pfit.force_thru) {
3655 		crtc->config->pch_pfit.force_thru = false;
3656 
3657 		intel_crtc_reset(crtc);
3658 
3659 		intel_display_power_put(dev_priv,
3660 					POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3661 	}
3662 	drm_modeset_unlock_all(dev);
3663 }
3664 
3665 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3666 				enum pipe pipe,
3667 				enum intel_pipe_crc_source *source,
3668 				uint32_t *val)
3669 {
3670 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3671 		*source = INTEL_PIPE_CRC_SOURCE_PF;
3672 
3673 	switch (*source) {
3674 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3675 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3676 		break;
3677 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3678 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3679 		break;
3680 	case INTEL_PIPE_CRC_SOURCE_PF:
3681 		if (IS_HASWELL(dev) && pipe == PIPE_A)
3682 			hsw_trans_edp_pipe_A_crc_wa(dev);
3683 
3684 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3685 		break;
3686 	case INTEL_PIPE_CRC_SOURCE_NONE:
3687 		*val = 0;
3688 		break;
3689 	default:
3690 		return -EINVAL;
3691 	}
3692 
3693 	return 0;
3694 }
3695 
3696 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3697 			       enum intel_pipe_crc_source source)
3698 {
3699 	struct drm_i915_private *dev_priv = dev->dev_private;
3700 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3701 	struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3702 									pipe));
3703 	u32 val = 0; /* shut up gcc */
3704 	int ret;
3705 
3706 	if (pipe_crc->source == source)
3707 		return 0;
3708 
3709 	/* forbid changing the source without going back to 'none' */
3710 	if (pipe_crc->source && source)
3711 		return -EINVAL;
3712 
3713 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3714 		DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3715 		return -EIO;
3716 	}
3717 
3718 	if (IS_GEN2(dev))
3719 		ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3720 	else if (INTEL_INFO(dev)->gen < 5)
3721 		ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3722 	else if (IS_VALLEYVIEW(dev))
3723 		ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3724 	else if (IS_GEN5(dev) || IS_GEN6(dev))
3725 		ret = ilk_pipe_crc_ctl_reg(&source, &val);
3726 	else
3727 		ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3728 
3729 	if (ret != 0)
3730 		return ret;
3731 
3732 	/* none -> real source transition */
3733 	if (source) {
3734 		struct intel_pipe_crc_entry *entries;
3735 
3736 		DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3737 				 pipe_name(pipe), pipe_crc_source_name(source));
3738 
3739 		entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3740 				  sizeof(pipe_crc->entries[0]),
3741 				  GFP_KERNEL);
3742 		if (!entries)
3743 			return -ENOMEM;
3744 
3745 		/*
3746 		 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3747 		 * enabled and disabled dynamically based on package C states,
3748 		 * user space can't make reliable use of the CRCs, so let's just
3749 		 * completely disable it.
3750 		 */
3751 		hsw_disable_ips(crtc);
3752 
3753 		spin_lock_irq(&pipe_crc->lock);
3754 		kfree(pipe_crc->entries);
3755 		pipe_crc->entries = entries;
3756 		pipe_crc->head = 0;
3757 		pipe_crc->tail = 0;
3758 		spin_unlock_irq(&pipe_crc->lock);
3759 	}
3760 
3761 	pipe_crc->source = source;
3762 
3763 	I915_WRITE(PIPE_CRC_CTL(pipe), val);
3764 	POSTING_READ(PIPE_CRC_CTL(pipe));
3765 
3766 	/* real source -> none transition */
3767 	if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3768 		struct intel_pipe_crc_entry *entries;
3769 		struct intel_crtc *crtc =
3770 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3771 
3772 		DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3773 				 pipe_name(pipe));
3774 
3775 		drm_modeset_lock(&crtc->base.mutex, NULL);
3776 		if (crtc->active)
3777 			intel_wait_for_vblank(dev, pipe);
3778 		drm_modeset_unlock(&crtc->base.mutex);
3779 
3780 		spin_lock_irq(&pipe_crc->lock);
3781 		entries = pipe_crc->entries;
3782 		pipe_crc->entries = NULL;
3783 		pipe_crc->head = 0;
3784 		pipe_crc->tail = 0;
3785 		spin_unlock_irq(&pipe_crc->lock);
3786 
3787 		kfree(entries);
3788 
3789 		if (IS_G4X(dev))
3790 			g4x_undo_pipe_scramble_reset(dev, pipe);
3791 		else if (IS_VALLEYVIEW(dev))
3792 			vlv_undo_pipe_scramble_reset(dev, pipe);
3793 		else if (IS_HASWELL(dev) && pipe == PIPE_A)
3794 			hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3795 
3796 		hsw_enable_ips(crtc);
3797 	}
3798 
3799 	return 0;
3800 }
3801 
3802 /*
3803  * Parse pipe CRC command strings:
3804  *   command: wsp* object wsp+ name wsp+ source wsp*
3805  *   object: 'pipe'
3806  *   name: (A | B | C)
3807  *   source: (none | plane1 | plane2 | pf)
3808  *   wsp: (#0x20 | #0x9 | #0xA)+
3809  *
3810  * eg.:
3811  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3812  *  "pipe A none"    ->  Stop CRC
3813  */
3814 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3815 {
3816 	int n_words = 0;
3817 
3818 	while (*buf) {
3819 		char *end;
3820 
3821 		/* skip leading white space */
3822 		buf = skip_spaces(buf);
3823 		if (!*buf)
3824 			break;	/* end of buffer */
3825 
3826 		/* find end of word */
3827 		for (end = buf; *end && !isspace(*end); end++)
3828 			;
3829 
3830 		if (n_words == max_words) {
3831 			DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3832 					 max_words);
3833 			return -EINVAL;	/* ran out of words[] before bytes */
3834 		}
3835 
3836 		if (*end)
3837 			*end++ = '\0';
3838 		words[n_words++] = buf;
3839 		buf = end;
3840 	}
3841 
3842 	return n_words;
3843 }
3844 
3845 enum intel_pipe_crc_object {
3846 	PIPE_CRC_OBJECT_PIPE,
3847 };
3848 
3849 static const char * const pipe_crc_objects[] = {
3850 	"pipe",
3851 };
3852 
3853 static int
3854 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3855 {
3856 	int i;
3857 
3858 	for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3859 		if (!strcmp(buf, pipe_crc_objects[i])) {
3860 			*o = i;
3861 			return 0;
3862 		    }
3863 
3864 	return -EINVAL;
3865 }
3866 
3867 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3868 {
3869 	const char name = buf[0];
3870 
3871 	if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3872 		return -EINVAL;
3873 
3874 	*pipe = name - 'A';
3875 
3876 	return 0;
3877 }
3878 
3879 static int
3880 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3881 {
3882 	int i;
3883 
3884 	for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3885 		if (!strcmp(buf, pipe_crc_sources[i])) {
3886 			*s = i;
3887 			return 0;
3888 		    }
3889 
3890 	return -EINVAL;
3891 }
3892 
3893 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3894 {
3895 #define N_WORDS 3
3896 	int n_words;
3897 	char *words[N_WORDS];
3898 	enum pipe pipe;
3899 	enum intel_pipe_crc_object object;
3900 	enum intel_pipe_crc_source source;
3901 
3902 	n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3903 	if (n_words != N_WORDS) {
3904 		DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3905 				 N_WORDS);
3906 		return -EINVAL;
3907 	}
3908 
3909 	if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3910 		DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3911 		return -EINVAL;
3912 	}
3913 
3914 	if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3915 		DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3916 		return -EINVAL;
3917 	}
3918 
3919 	if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3920 		DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3921 		return -EINVAL;
3922 	}
3923 
3924 	return pipe_crc_set_source(dev, pipe, source);
3925 }
3926 
3927 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3928 				     size_t len, loff_t *offp)
3929 {
3930 	struct seq_file *m = file->private_data;
3931 	struct drm_device *dev = m->private;
3932 	char *tmpbuf;
3933 	int ret;
3934 
3935 	if (len == 0)
3936 		return 0;
3937 
3938 	if (len > PAGE_SIZE - 1) {
3939 		DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3940 				 PAGE_SIZE);
3941 		return -E2BIG;
3942 	}
3943 
3944 	tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3945 	if (!tmpbuf)
3946 		return -ENOMEM;
3947 
3948 	if (copy_from_user(tmpbuf, ubuf, len)) {
3949 		ret = -EFAULT;
3950 		goto out;
3951 	}
3952 	tmpbuf[len] = '\0';
3953 
3954 	ret = display_crc_ctl_parse(dev, tmpbuf, len);
3955 
3956 out:
3957 	kfree(tmpbuf);
3958 	if (ret < 0)
3959 		return ret;
3960 
3961 	*offp += len;
3962 	return len;
3963 }
3964 
3965 static const struct file_operations i915_display_crc_ctl_fops = {
3966 	.owner = THIS_MODULE,
3967 	.open = display_crc_ctl_open,
3968 	.read = seq_read,
3969 	.llseek = seq_lseek,
3970 	.release = single_release,
3971 	.write = display_crc_ctl_write
3972 };
3973 
3974 static ssize_t i915_displayport_test_active_write(struct file *file,
3975 					    const char __user *ubuf,
3976 					    size_t len, loff_t *offp)
3977 {
3978 	char *input_buffer;
3979 	int status = 0;
3980 	struct seq_file *m;
3981 	struct drm_device *dev;
3982 	struct drm_connector *connector;
3983 	struct list_head *connector_list;
3984 	struct intel_dp *intel_dp;
3985 	int val = 0;
3986 
3987 	m = file->private_data;
3988 	if (!m) {
3989 		status = -ENODEV;
3990 		return status;
3991 	}
3992 	dev = m->private;
3993 
3994 	if (!dev) {
3995 		status = -ENODEV;
3996 		return status;
3997 	}
3998 	connector_list = &dev->mode_config.connector_list;
3999 
4000 	if (len == 0)
4001 		return 0;
4002 
4003 	input_buffer = kmalloc(len + 1, GFP_KERNEL);
4004 	if (!input_buffer)
4005 		return -ENOMEM;
4006 
4007 	if (copy_from_user(input_buffer, ubuf, len)) {
4008 		status = -EFAULT;
4009 		goto out;
4010 	}
4011 
4012 	input_buffer[len] = '\0';
4013 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4014 
4015 	list_for_each_entry(connector, connector_list, head) {
4016 
4017 		if (connector->connector_type !=
4018 		    DRM_MODE_CONNECTOR_DisplayPort)
4019 			continue;
4020 
4021 		if (connector->connector_type ==
4022 		    DRM_MODE_CONNECTOR_DisplayPort &&
4023 		    connector->status == connector_status_connected &&
4024 		    connector->encoder != NULL) {
4025 			intel_dp = enc_to_intel_dp(connector->encoder);
4026 			status = kstrtoint(input_buffer, 10, &val);
4027 			if (status < 0)
4028 				goto out;
4029 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4030 			/* To prevent erroneous activation of the compliance
4031 			 * testing code, only accept an actual value of 1 here
4032 			 */
4033 			if (val == 1)
4034 				intel_dp->compliance_test_active = 1;
4035 			else
4036 				intel_dp->compliance_test_active = 0;
4037 		}
4038 	}
4039 out:
4040 	kfree(input_buffer);
4041 	if (status < 0)
4042 		return status;
4043 
4044 	*offp += len;
4045 	return len;
4046 }
4047 
4048 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4049 {
4050 	struct drm_device *dev = m->private;
4051 	struct drm_connector *connector;
4052 	struct list_head *connector_list = &dev->mode_config.connector_list;
4053 	struct intel_dp *intel_dp;
4054 
4055 	if (!dev)
4056 		return -ENODEV;
4057 
4058 	list_for_each_entry(connector, connector_list, head) {
4059 
4060 		if (connector->connector_type !=
4061 		    DRM_MODE_CONNECTOR_DisplayPort)
4062 			continue;
4063 
4064 		if (connector->status == connector_status_connected &&
4065 		    connector->encoder != NULL) {
4066 			intel_dp = enc_to_intel_dp(connector->encoder);
4067 			if (intel_dp->compliance_test_active)
4068 				seq_puts(m, "1");
4069 			else
4070 				seq_puts(m, "0");
4071 		} else
4072 			seq_puts(m, "0");
4073 	}
4074 
4075 	return 0;
4076 }
4077 
4078 static int i915_displayport_test_active_open(struct inode *inode,
4079 				       struct file *file)
4080 {
4081 	struct drm_device *dev = inode->i_private;
4082 
4083 	return single_open(file, i915_displayport_test_active_show, dev);
4084 }
4085 
4086 static const struct file_operations i915_displayport_test_active_fops = {
4087 	.owner = THIS_MODULE,
4088 	.open = i915_displayport_test_active_open,
4089 	.read = seq_read,
4090 	.llseek = seq_lseek,
4091 	.release = single_release,
4092 	.write = i915_displayport_test_active_write
4093 };
4094 
4095 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4096 {
4097 	struct drm_device *dev = m->private;
4098 	struct drm_connector *connector;
4099 	struct list_head *connector_list = &dev->mode_config.connector_list;
4100 	struct intel_dp *intel_dp;
4101 
4102 	if (!dev)
4103 		return -ENODEV;
4104 
4105 	list_for_each_entry(connector, connector_list, head) {
4106 
4107 		if (connector->connector_type !=
4108 		    DRM_MODE_CONNECTOR_DisplayPort)
4109 			continue;
4110 
4111 		if (connector->status == connector_status_connected &&
4112 		    connector->encoder != NULL) {
4113 			intel_dp = enc_to_intel_dp(connector->encoder);
4114 			seq_printf(m, "%lx", intel_dp->compliance_test_data);
4115 		} else
4116 			seq_puts(m, "0");
4117 	}
4118 
4119 	return 0;
4120 }
4121 static int i915_displayport_test_data_open(struct inode *inode,
4122 				       struct file *file)
4123 {
4124 	struct drm_device *dev = inode->i_private;
4125 
4126 	return single_open(file, i915_displayport_test_data_show, dev);
4127 }
4128 
4129 static const struct file_operations i915_displayport_test_data_fops = {
4130 	.owner = THIS_MODULE,
4131 	.open = i915_displayport_test_data_open,
4132 	.read = seq_read,
4133 	.llseek = seq_lseek,
4134 	.release = single_release
4135 };
4136 
4137 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4138 {
4139 	struct drm_device *dev = m->private;
4140 	struct drm_connector *connector;
4141 	struct list_head *connector_list = &dev->mode_config.connector_list;
4142 	struct intel_dp *intel_dp;
4143 
4144 	if (!dev)
4145 		return -ENODEV;
4146 
4147 	list_for_each_entry(connector, connector_list, head) {
4148 
4149 		if (connector->connector_type !=
4150 		    DRM_MODE_CONNECTOR_DisplayPort)
4151 			continue;
4152 
4153 		if (connector->status == connector_status_connected &&
4154 		    connector->encoder != NULL) {
4155 			intel_dp = enc_to_intel_dp(connector->encoder);
4156 			seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4157 		} else
4158 			seq_puts(m, "0");
4159 	}
4160 
4161 	return 0;
4162 }
4163 
4164 static int i915_displayport_test_type_open(struct inode *inode,
4165 				       struct file *file)
4166 {
4167 	struct drm_device *dev = inode->i_private;
4168 
4169 	return single_open(file, i915_displayport_test_type_show, dev);
4170 }
4171 
4172 static const struct file_operations i915_displayport_test_type_fops = {
4173 	.owner = THIS_MODULE,
4174 	.open = i915_displayport_test_type_open,
4175 	.read = seq_read,
4176 	.llseek = seq_lseek,
4177 	.release = single_release
4178 };
4179 
4180 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4181 {
4182 	struct drm_device *dev = m->private;
4183 	int num_levels = ilk_wm_max_level(dev) + 1;
4184 	int level;
4185 
4186 	drm_modeset_lock_all(dev);
4187 
4188 	for (level = 0; level < num_levels; level++) {
4189 		unsigned int latency = wm[level];
4190 
4191 		/*
4192 		 * - WM1+ latency values in 0.5us units
4193 		 * - latencies are in us on gen9
4194 		 */
4195 		if (INTEL_INFO(dev)->gen >= 9)
4196 			latency *= 10;
4197 		else if (level > 0)
4198 			latency *= 5;
4199 
4200 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
4201 			   level, wm[level], latency / 10, latency % 10);
4202 	}
4203 
4204 	drm_modeset_unlock_all(dev);
4205 }
4206 
4207 static int pri_wm_latency_show(struct seq_file *m, void *data)
4208 {
4209 	struct drm_device *dev = m->private;
4210 	struct drm_i915_private *dev_priv = dev->dev_private;
4211 	const uint16_t *latencies;
4212 
4213 	if (INTEL_INFO(dev)->gen >= 9)
4214 		latencies = dev_priv->wm.skl_latency;
4215 	else
4216 		latencies = to_i915(dev)->wm.pri_latency;
4217 
4218 	wm_latency_show(m, latencies);
4219 
4220 	return 0;
4221 }
4222 
4223 static int spr_wm_latency_show(struct seq_file *m, void *data)
4224 {
4225 	struct drm_device *dev = m->private;
4226 	struct drm_i915_private *dev_priv = dev->dev_private;
4227 	const uint16_t *latencies;
4228 
4229 	if (INTEL_INFO(dev)->gen >= 9)
4230 		latencies = dev_priv->wm.skl_latency;
4231 	else
4232 		latencies = to_i915(dev)->wm.spr_latency;
4233 
4234 	wm_latency_show(m, latencies);
4235 
4236 	return 0;
4237 }
4238 
4239 static int cur_wm_latency_show(struct seq_file *m, void *data)
4240 {
4241 	struct drm_device *dev = m->private;
4242 	struct drm_i915_private *dev_priv = dev->dev_private;
4243 	const uint16_t *latencies;
4244 
4245 	if (INTEL_INFO(dev)->gen >= 9)
4246 		latencies = dev_priv->wm.skl_latency;
4247 	else
4248 		latencies = to_i915(dev)->wm.cur_latency;
4249 
4250 	wm_latency_show(m, latencies);
4251 
4252 	return 0;
4253 }
4254 
4255 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4256 {
4257 	struct drm_device *dev = inode->i_private;
4258 
4259 	if (HAS_GMCH_DISPLAY(dev))
4260 		return -ENODEV;
4261 
4262 	return single_open(file, pri_wm_latency_show, dev);
4263 }
4264 
4265 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4266 {
4267 	struct drm_device *dev = inode->i_private;
4268 
4269 	if (HAS_GMCH_DISPLAY(dev))
4270 		return -ENODEV;
4271 
4272 	return single_open(file, spr_wm_latency_show, dev);
4273 }
4274 
4275 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4276 {
4277 	struct drm_device *dev = inode->i_private;
4278 
4279 	if (HAS_GMCH_DISPLAY(dev))
4280 		return -ENODEV;
4281 
4282 	return single_open(file, cur_wm_latency_show, dev);
4283 }
4284 
4285 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4286 				size_t len, loff_t *offp, uint16_t wm[8])
4287 {
4288 	struct seq_file *m = file->private_data;
4289 	struct drm_device *dev = m->private;
4290 	uint16_t new[8] = { 0 };
4291 	int num_levels = ilk_wm_max_level(dev) + 1;
4292 	int level;
4293 	int ret;
4294 	char tmp[32];
4295 
4296 	if (len >= sizeof(tmp))
4297 		return -EINVAL;
4298 
4299 	if (copy_from_user(tmp, ubuf, len))
4300 		return -EFAULT;
4301 
4302 	tmp[len] = '\0';
4303 
4304 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4305 		     &new[0], &new[1], &new[2], &new[3],
4306 		     &new[4], &new[5], &new[6], &new[7]);
4307 	if (ret != num_levels)
4308 		return -EINVAL;
4309 
4310 	drm_modeset_lock_all(dev);
4311 
4312 	for (level = 0; level < num_levels; level++)
4313 		wm[level] = new[level];
4314 
4315 	drm_modeset_unlock_all(dev);
4316 
4317 	return len;
4318 }
4319 
4320 
4321 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4322 				    size_t len, loff_t *offp)
4323 {
4324 	struct seq_file *m = file->private_data;
4325 	struct drm_device *dev = m->private;
4326 	struct drm_i915_private *dev_priv = dev->dev_private;
4327 	uint16_t *latencies;
4328 
4329 	if (INTEL_INFO(dev)->gen >= 9)
4330 		latencies = dev_priv->wm.skl_latency;
4331 	else
4332 		latencies = to_i915(dev)->wm.pri_latency;
4333 
4334 	return wm_latency_write(file, ubuf, len, offp, latencies);
4335 }
4336 
4337 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4338 				    size_t len, loff_t *offp)
4339 {
4340 	struct seq_file *m = file->private_data;
4341 	struct drm_device *dev = m->private;
4342 	struct drm_i915_private *dev_priv = dev->dev_private;
4343 	uint16_t *latencies;
4344 
4345 	if (INTEL_INFO(dev)->gen >= 9)
4346 		latencies = dev_priv->wm.skl_latency;
4347 	else
4348 		latencies = to_i915(dev)->wm.spr_latency;
4349 
4350 	return wm_latency_write(file, ubuf, len, offp, latencies);
4351 }
4352 
4353 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4354 				    size_t len, loff_t *offp)
4355 {
4356 	struct seq_file *m = file->private_data;
4357 	struct drm_device *dev = m->private;
4358 	struct drm_i915_private *dev_priv = dev->dev_private;
4359 	uint16_t *latencies;
4360 
4361 	if (INTEL_INFO(dev)->gen >= 9)
4362 		latencies = dev_priv->wm.skl_latency;
4363 	else
4364 		latencies = to_i915(dev)->wm.cur_latency;
4365 
4366 	return wm_latency_write(file, ubuf, len, offp, latencies);
4367 }
4368 
4369 static const struct file_operations i915_pri_wm_latency_fops = {
4370 	.owner = THIS_MODULE,
4371 	.open = pri_wm_latency_open,
4372 	.read = seq_read,
4373 	.llseek = seq_lseek,
4374 	.release = single_release,
4375 	.write = pri_wm_latency_write
4376 };
4377 
4378 static const struct file_operations i915_spr_wm_latency_fops = {
4379 	.owner = THIS_MODULE,
4380 	.open = spr_wm_latency_open,
4381 	.read = seq_read,
4382 	.llseek = seq_lseek,
4383 	.release = single_release,
4384 	.write = spr_wm_latency_write
4385 };
4386 
4387 static const struct file_operations i915_cur_wm_latency_fops = {
4388 	.owner = THIS_MODULE,
4389 	.open = cur_wm_latency_open,
4390 	.read = seq_read,
4391 	.llseek = seq_lseek,
4392 	.release = single_release,
4393 	.write = cur_wm_latency_write
4394 };
4395 
4396 static int
4397 i915_wedged_get(void *data, u64 *val)
4398 {
4399 	struct drm_device *dev = data;
4400 	struct drm_i915_private *dev_priv = dev->dev_private;
4401 
4402 	*val = atomic_read(&dev_priv->gpu_error.reset_counter);
4403 
4404 	return 0;
4405 }
4406 
4407 static int
4408 i915_wedged_set(void *data, u64 val)
4409 {
4410 	struct drm_device *dev = data;
4411 	struct drm_i915_private *dev_priv = dev->dev_private;
4412 
4413 	/*
4414 	 * There is no safeguard against this debugfs entry colliding
4415 	 * with the hangcheck calling same i915_handle_error() in
4416 	 * parallel, causing an explosion. For now we assume that the
4417 	 * test harness is responsible enough not to inject gpu hangs
4418 	 * while it is writing to 'i915_wedged'
4419 	 */
4420 
4421 	if (i915_reset_in_progress(&dev_priv->gpu_error))
4422 		return -EAGAIN;
4423 
4424 	intel_runtime_pm_get(dev_priv);
4425 
4426 	i915_handle_error(dev, val,
4427 			  "Manually setting wedged to %llu", val);
4428 
4429 	intel_runtime_pm_put(dev_priv);
4430 
4431 	return 0;
4432 }
4433 
4434 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4435 			i915_wedged_get, i915_wedged_set,
4436 			"%llu\n");
4437 
4438 static int
4439 i915_ring_stop_get(void *data, u64 *val)
4440 {
4441 	struct drm_device *dev = data;
4442 	struct drm_i915_private *dev_priv = dev->dev_private;
4443 
4444 	*val = dev_priv->gpu_error.stop_rings;
4445 
4446 	return 0;
4447 }
4448 
4449 static int
4450 i915_ring_stop_set(void *data, u64 val)
4451 {
4452 	struct drm_device *dev = data;
4453 	struct drm_i915_private *dev_priv = dev->dev_private;
4454 	int ret;
4455 
4456 	DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4457 
4458 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4459 	if (ret)
4460 		return ret;
4461 
4462 	dev_priv->gpu_error.stop_rings = val;
4463 	mutex_unlock(&dev->struct_mutex);
4464 
4465 	return 0;
4466 }
4467 
4468 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4469 			i915_ring_stop_get, i915_ring_stop_set,
4470 			"0x%08llx\n");
4471 
4472 static int
4473 i915_ring_missed_irq_get(void *data, u64 *val)
4474 {
4475 	struct drm_device *dev = data;
4476 	struct drm_i915_private *dev_priv = dev->dev_private;
4477 
4478 	*val = dev_priv->gpu_error.missed_irq_rings;
4479 	return 0;
4480 }
4481 
4482 static int
4483 i915_ring_missed_irq_set(void *data, u64 val)
4484 {
4485 	struct drm_device *dev = data;
4486 	struct drm_i915_private *dev_priv = dev->dev_private;
4487 	int ret;
4488 
4489 	/* Lock against concurrent debugfs callers */
4490 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4491 	if (ret)
4492 		return ret;
4493 	dev_priv->gpu_error.missed_irq_rings = val;
4494 	mutex_unlock(&dev->struct_mutex);
4495 
4496 	return 0;
4497 }
4498 
4499 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4500 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4501 			"0x%08llx\n");
4502 
4503 static int
4504 i915_ring_test_irq_get(void *data, u64 *val)
4505 {
4506 	struct drm_device *dev = data;
4507 	struct drm_i915_private *dev_priv = dev->dev_private;
4508 
4509 	*val = dev_priv->gpu_error.test_irq_rings;
4510 
4511 	return 0;
4512 }
4513 
4514 static int
4515 i915_ring_test_irq_set(void *data, u64 val)
4516 {
4517 	struct drm_device *dev = data;
4518 	struct drm_i915_private *dev_priv = dev->dev_private;
4519 	int ret;
4520 
4521 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4522 
4523 	/* Lock against concurrent debugfs callers */
4524 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4525 	if (ret)
4526 		return ret;
4527 
4528 	dev_priv->gpu_error.test_irq_rings = val;
4529 	mutex_unlock(&dev->struct_mutex);
4530 
4531 	return 0;
4532 }
4533 
4534 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4535 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4536 			"0x%08llx\n");
4537 
4538 #define DROP_UNBOUND 0x1
4539 #define DROP_BOUND 0x2
4540 #define DROP_RETIRE 0x4
4541 #define DROP_ACTIVE 0x8
4542 #define DROP_ALL (DROP_UNBOUND | \
4543 		  DROP_BOUND | \
4544 		  DROP_RETIRE | \
4545 		  DROP_ACTIVE)
4546 static int
4547 i915_drop_caches_get(void *data, u64 *val)
4548 {
4549 	*val = DROP_ALL;
4550 
4551 	return 0;
4552 }
4553 
4554 static int
4555 i915_drop_caches_set(void *data, u64 val)
4556 {
4557 	struct drm_device *dev = data;
4558 	struct drm_i915_private *dev_priv = dev->dev_private;
4559 	int ret;
4560 
4561 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4562 
4563 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4564 	 * on ioctls on -EAGAIN. */
4565 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4566 	if (ret)
4567 		return ret;
4568 
4569 	if (val & DROP_ACTIVE) {
4570 		ret = i915_gpu_idle(dev);
4571 		if (ret)
4572 			goto unlock;
4573 	}
4574 
4575 	if (val & (DROP_RETIRE | DROP_ACTIVE))
4576 		i915_gem_retire_requests(dev);
4577 
4578 	if (val & DROP_BOUND)
4579 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4580 
4581 	if (val & DROP_UNBOUND)
4582 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4583 
4584 unlock:
4585 	mutex_unlock(&dev->struct_mutex);
4586 
4587 	return ret;
4588 }
4589 
4590 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4591 			i915_drop_caches_get, i915_drop_caches_set,
4592 			"0x%08llx\n");
4593 
4594 static int
4595 i915_max_freq_get(void *data, u64 *val)
4596 {
4597 	struct drm_device *dev = data;
4598 	struct drm_i915_private *dev_priv = dev->dev_private;
4599 	int ret;
4600 
4601 	if (INTEL_INFO(dev)->gen < 6)
4602 		return -ENODEV;
4603 
4604 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4605 
4606 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4607 	if (ret)
4608 		return ret;
4609 
4610 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4611 	mutex_unlock(&dev_priv->rps.hw_lock);
4612 
4613 	return 0;
4614 }
4615 
4616 static int
4617 i915_max_freq_set(void *data, u64 val)
4618 {
4619 	struct drm_device *dev = data;
4620 	struct drm_i915_private *dev_priv = dev->dev_private;
4621 	u32 hw_max, hw_min;
4622 	int ret;
4623 
4624 	if (INTEL_INFO(dev)->gen < 6)
4625 		return -ENODEV;
4626 
4627 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4628 
4629 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4630 
4631 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4632 	if (ret)
4633 		return ret;
4634 
4635 	/*
4636 	 * Turbo will still be enabled, but won't go above the set value.
4637 	 */
4638 	val = intel_freq_opcode(dev_priv, val);
4639 
4640 	hw_max = dev_priv->rps.max_freq;
4641 	hw_min = dev_priv->rps.min_freq;
4642 
4643 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4644 		mutex_unlock(&dev_priv->rps.hw_lock);
4645 		return -EINVAL;
4646 	}
4647 
4648 	dev_priv->rps.max_freq_softlimit = val;
4649 
4650 	intel_set_rps(dev, val);
4651 
4652 	mutex_unlock(&dev_priv->rps.hw_lock);
4653 
4654 	return 0;
4655 }
4656 
4657 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4658 			i915_max_freq_get, i915_max_freq_set,
4659 			"%llu\n");
4660 
4661 static int
4662 i915_min_freq_get(void *data, u64 *val)
4663 {
4664 	struct drm_device *dev = data;
4665 	struct drm_i915_private *dev_priv = dev->dev_private;
4666 	int ret;
4667 
4668 	if (INTEL_INFO(dev)->gen < 6)
4669 		return -ENODEV;
4670 
4671 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4672 
4673 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4674 	if (ret)
4675 		return ret;
4676 
4677 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4678 	mutex_unlock(&dev_priv->rps.hw_lock);
4679 
4680 	return 0;
4681 }
4682 
4683 static int
4684 i915_min_freq_set(void *data, u64 val)
4685 {
4686 	struct drm_device *dev = data;
4687 	struct drm_i915_private *dev_priv = dev->dev_private;
4688 	u32 hw_max, hw_min;
4689 	int ret;
4690 
4691 	if (INTEL_INFO(dev)->gen < 6)
4692 		return -ENODEV;
4693 
4694 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4695 
4696 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4697 
4698 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4699 	if (ret)
4700 		return ret;
4701 
4702 	/*
4703 	 * Turbo will still be enabled, but won't go below the set value.
4704 	 */
4705 	val = intel_freq_opcode(dev_priv, val);
4706 
4707 	hw_max = dev_priv->rps.max_freq;
4708 	hw_min = dev_priv->rps.min_freq;
4709 
4710 	if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4711 		mutex_unlock(&dev_priv->rps.hw_lock);
4712 		return -EINVAL;
4713 	}
4714 
4715 	dev_priv->rps.min_freq_softlimit = val;
4716 
4717 	intel_set_rps(dev, val);
4718 
4719 	mutex_unlock(&dev_priv->rps.hw_lock);
4720 
4721 	return 0;
4722 }
4723 
4724 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4725 			i915_min_freq_get, i915_min_freq_set,
4726 			"%llu\n");
4727 
4728 static int
4729 i915_cache_sharing_get(void *data, u64 *val)
4730 {
4731 	struct drm_device *dev = data;
4732 	struct drm_i915_private *dev_priv = dev->dev_private;
4733 	u32 snpcr;
4734 	int ret;
4735 
4736 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4737 		return -ENODEV;
4738 
4739 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4740 	if (ret)
4741 		return ret;
4742 	intel_runtime_pm_get(dev_priv);
4743 
4744 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4745 
4746 	intel_runtime_pm_put(dev_priv);
4747 	mutex_unlock(&dev_priv->dev->struct_mutex);
4748 
4749 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4750 
4751 	return 0;
4752 }
4753 
4754 static int
4755 i915_cache_sharing_set(void *data, u64 val)
4756 {
4757 	struct drm_device *dev = data;
4758 	struct drm_i915_private *dev_priv = dev->dev_private;
4759 	u32 snpcr;
4760 
4761 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4762 		return -ENODEV;
4763 
4764 	if (val > 3)
4765 		return -EINVAL;
4766 
4767 	intel_runtime_pm_get(dev_priv);
4768 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4769 
4770 	/* Update the cache sharing policy here as well */
4771 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4772 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
4773 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4774 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4775 
4776 	intel_runtime_pm_put(dev_priv);
4777 	return 0;
4778 }
4779 
4780 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4781 			i915_cache_sharing_get, i915_cache_sharing_set,
4782 			"%llu\n");
4783 
4784 struct sseu_dev_status {
4785 	unsigned int slice_total;
4786 	unsigned int subslice_total;
4787 	unsigned int subslice_per_slice;
4788 	unsigned int eu_total;
4789 	unsigned int eu_per_subslice;
4790 };
4791 
4792 static void cherryview_sseu_device_status(struct drm_device *dev,
4793 					  struct sseu_dev_status *stat)
4794 {
4795 	struct drm_i915_private *dev_priv = dev->dev_private;
4796 	const int ss_max = 2;
4797 	int ss;
4798 	u32 sig1[ss_max], sig2[ss_max];
4799 
4800 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4801 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4802 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4803 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4804 
4805 	for (ss = 0; ss < ss_max; ss++) {
4806 		unsigned int eu_cnt;
4807 
4808 		if (sig1[ss] & CHV_SS_PG_ENABLE)
4809 			/* skip disabled subslice */
4810 			continue;
4811 
4812 		stat->slice_total = 1;
4813 		stat->subslice_per_slice++;
4814 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4815 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4816 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4817 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4818 		stat->eu_total += eu_cnt;
4819 		stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
4820 	}
4821 	stat->subslice_total = stat->subslice_per_slice;
4822 }
4823 
4824 static void gen9_sseu_device_status(struct drm_device *dev,
4825 				    struct sseu_dev_status *stat)
4826 {
4827 	struct drm_i915_private *dev_priv = dev->dev_private;
4828 	int s_max = 3, ss_max = 4;
4829 	int s, ss;
4830 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4831 
4832 	/* BXT has a single slice and at most 3 subslices. */
4833 	if (IS_BROXTON(dev)) {
4834 		s_max = 1;
4835 		ss_max = 3;
4836 	}
4837 
4838 	for (s = 0; s < s_max; s++) {
4839 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4840 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4841 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4842 	}
4843 
4844 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4845 		     GEN9_PGCTL_SSA_EU19_ACK |
4846 		     GEN9_PGCTL_SSA_EU210_ACK |
4847 		     GEN9_PGCTL_SSA_EU311_ACK;
4848 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4849 		     GEN9_PGCTL_SSB_EU19_ACK |
4850 		     GEN9_PGCTL_SSB_EU210_ACK |
4851 		     GEN9_PGCTL_SSB_EU311_ACK;
4852 
4853 	for (s = 0; s < s_max; s++) {
4854 		unsigned int ss_cnt = 0;
4855 
4856 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4857 			/* skip disabled slice */
4858 			continue;
4859 
4860 		stat->slice_total++;
4861 
4862 		if (IS_SKYLAKE(dev))
4863 			ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
4864 
4865 		for (ss = 0; ss < ss_max; ss++) {
4866 			unsigned int eu_cnt;
4867 
4868 			if (IS_BROXTON(dev) &&
4869 			    !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4870 				/* skip disabled subslice */
4871 				continue;
4872 
4873 			if (IS_BROXTON(dev))
4874 				ss_cnt++;
4875 
4876 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4877 					       eu_mask[ss%2]);
4878 			stat->eu_total += eu_cnt;
4879 			stat->eu_per_subslice = max(stat->eu_per_subslice,
4880 						    eu_cnt);
4881 		}
4882 
4883 		stat->subslice_total += ss_cnt;
4884 		stat->subslice_per_slice = max(stat->subslice_per_slice,
4885 					       ss_cnt);
4886 	}
4887 }
4888 
4889 static int i915_sseu_status(struct seq_file *m, void *unused)
4890 {
4891 	struct drm_info_node *node = (struct drm_info_node *) m->private;
4892 	struct drm_device *dev = node->minor->dev;
4893 	struct sseu_dev_status stat;
4894 
4895 	if ((INTEL_INFO(dev)->gen < 8) || IS_BROADWELL(dev))
4896 		return -ENODEV;
4897 
4898 	seq_puts(m, "SSEU Device Info\n");
4899 	seq_printf(m, "  Available Slice Total: %u\n",
4900 		   INTEL_INFO(dev)->slice_total);
4901 	seq_printf(m, "  Available Subslice Total: %u\n",
4902 		   INTEL_INFO(dev)->subslice_total);
4903 	seq_printf(m, "  Available Subslice Per Slice: %u\n",
4904 		   INTEL_INFO(dev)->subslice_per_slice);
4905 	seq_printf(m, "  Available EU Total: %u\n",
4906 		   INTEL_INFO(dev)->eu_total);
4907 	seq_printf(m, "  Available EU Per Subslice: %u\n",
4908 		   INTEL_INFO(dev)->eu_per_subslice);
4909 	seq_printf(m, "  Has Slice Power Gating: %s\n",
4910 		   yesno(INTEL_INFO(dev)->has_slice_pg));
4911 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
4912 		   yesno(INTEL_INFO(dev)->has_subslice_pg));
4913 	seq_printf(m, "  Has EU Power Gating: %s\n",
4914 		   yesno(INTEL_INFO(dev)->has_eu_pg));
4915 
4916 	seq_puts(m, "SSEU Device Status\n");
4917 	memset(&stat, 0, sizeof(stat));
4918 	if (IS_CHERRYVIEW(dev)) {
4919 		cherryview_sseu_device_status(dev, &stat);
4920 	} else if (INTEL_INFO(dev)->gen >= 9) {
4921 		gen9_sseu_device_status(dev, &stat);
4922 	}
4923 	seq_printf(m, "  Enabled Slice Total: %u\n",
4924 		   stat.slice_total);
4925 	seq_printf(m, "  Enabled Subslice Total: %u\n",
4926 		   stat.subslice_total);
4927 	seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
4928 		   stat.subslice_per_slice);
4929 	seq_printf(m, "  Enabled EU Total: %u\n",
4930 		   stat.eu_total);
4931 	seq_printf(m, "  Enabled EU Per Subslice: %u\n",
4932 		   stat.eu_per_subslice);
4933 
4934 	return 0;
4935 }
4936 
4937 static int i915_forcewake_open(struct inode *inode, struct file *file)
4938 {
4939 	struct drm_device *dev = inode->i_private;
4940 	struct drm_i915_private *dev_priv = dev->dev_private;
4941 
4942 	if (INTEL_INFO(dev)->gen < 6)
4943 		return 0;
4944 
4945 	intel_runtime_pm_get(dev_priv);
4946 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4947 
4948 	return 0;
4949 }
4950 
4951 static int i915_forcewake_release(struct inode *inode, struct file *file)
4952 {
4953 	struct drm_device *dev = inode->i_private;
4954 	struct drm_i915_private *dev_priv = dev->dev_private;
4955 
4956 	if (INTEL_INFO(dev)->gen < 6)
4957 		return 0;
4958 
4959 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4960 	intel_runtime_pm_put(dev_priv);
4961 
4962 	return 0;
4963 }
4964 
4965 static const struct file_operations i915_forcewake_fops = {
4966 	.owner = THIS_MODULE,
4967 	.open = i915_forcewake_open,
4968 	.release = i915_forcewake_release,
4969 };
4970 
4971 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4972 {
4973 	struct drm_device *dev = minor->dev;
4974 	struct dentry *ent;
4975 
4976 	ent = debugfs_create_file("i915_forcewake_user",
4977 				  S_IRUSR,
4978 				  root, dev,
4979 				  &i915_forcewake_fops);
4980 	if (!ent)
4981 		return -ENOMEM;
4982 
4983 	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4984 }
4985 
4986 static int i915_debugfs_create(struct dentry *root,
4987 			       struct drm_minor *minor,
4988 			       const char *name,
4989 			       const struct file_operations *fops)
4990 {
4991 	struct drm_device *dev = minor->dev;
4992 	struct dentry *ent;
4993 
4994 	ent = debugfs_create_file(name,
4995 				  S_IRUGO | S_IWUSR,
4996 				  root, dev,
4997 				  fops);
4998 	if (!ent)
4999 		return -ENOMEM;
5000 
5001 	return drm_add_fake_info_node(minor, ent, fops);
5002 }
5003 
5004 static const struct drm_info_list i915_debugfs_list[] = {
5005 	{"i915_capabilities", i915_capabilities, 0},
5006 	{"i915_gem_objects", i915_gem_object_info, 0},
5007 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
5008 	{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5009 	{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5010 	{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5011 	{"i915_gem_stolen", i915_gem_stolen_list_info },
5012 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5013 	{"i915_gem_request", i915_gem_request_info, 0},
5014 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
5015 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5016 	{"i915_gem_interrupt", i915_interrupt_info, 0},
5017 	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5018 	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5019 	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5020 	{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5021 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5022 	{"i915_frequency_info", i915_frequency_info, 0},
5023 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
5024 	{"i915_drpc_info", i915_drpc_info, 0},
5025 	{"i915_emon_status", i915_emon_status, 0},
5026 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
5027 	{"i915_fbc_status", i915_fbc_status, 0},
5028 	{"i915_ips_status", i915_ips_status, 0},
5029 	{"i915_sr_status", i915_sr_status, 0},
5030 	{"i915_opregion", i915_opregion, 0},
5031 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5032 	{"i915_context_status", i915_context_status, 0},
5033 	{"i915_dump_lrc", i915_dump_lrc, 0},
5034 	{"i915_execlists", i915_execlists, 0},
5035 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
5036 	{"i915_swizzle_info", i915_swizzle_info, 0},
5037 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
5038 	{"i915_llc", i915_llc, 0},
5039 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
5040 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
5041 	{"i915_energy_uJ", i915_energy_uJ, 0},
5042 	{"i915_pc8_status", i915_pc8_status, 0},
5043 	{"i915_power_domain_info", i915_power_domain_info, 0},
5044 	{"i915_display_info", i915_display_info, 0},
5045 	{"i915_semaphore_status", i915_semaphore_status, 0},
5046 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5047 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
5048 	{"i915_wa_registers", i915_wa_registers, 0},
5049 	{"i915_ddb_info", i915_ddb_info, 0},
5050 	{"i915_sseu_status", i915_sseu_status, 0},
5051 	{"i915_drrs_status", i915_drrs_status, 0},
5052 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
5053 };
5054 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5055 
5056 static const struct i915_debugfs_files {
5057 	const char *name;
5058 	const struct file_operations *fops;
5059 } i915_debugfs_files[] = {
5060 	{"i915_wedged", &i915_wedged_fops},
5061 	{"i915_max_freq", &i915_max_freq_fops},
5062 	{"i915_min_freq", &i915_min_freq_fops},
5063 	{"i915_cache_sharing", &i915_cache_sharing_fops},
5064 	{"i915_ring_stop", &i915_ring_stop_fops},
5065 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5066 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
5067 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
5068 	{"i915_error_state", &i915_error_state_fops},
5069 	{"i915_next_seqno", &i915_next_seqno_fops},
5070 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5071 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5072 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5073 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5074 	{"i915_fbc_false_color", &i915_fbc_fc_fops},
5075 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
5076 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
5077 	{"i915_dp_test_active", &i915_displayport_test_active_fops}
5078 };
5079 
5080 void intel_display_crc_init(struct drm_device *dev)
5081 {
5082 	struct drm_i915_private *dev_priv = dev->dev_private;
5083 	enum pipe pipe;
5084 
5085 	for_each_pipe(dev_priv, pipe) {
5086 		struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5087 
5088 		pipe_crc->opened = false;
5089 		spin_lock_init(&pipe_crc->lock);
5090 		init_waitqueue_head(&pipe_crc->wq);
5091 	}
5092 }
5093 
5094 int i915_debugfs_init(struct drm_minor *minor)
5095 {
5096 	int ret, i;
5097 
5098 	ret = i915_forcewake_create(minor->debugfs_root, minor);
5099 	if (ret)
5100 		return ret;
5101 
5102 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5103 		ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5104 		if (ret)
5105 			return ret;
5106 	}
5107 
5108 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5109 		ret = i915_debugfs_create(minor->debugfs_root, minor,
5110 					  i915_debugfs_files[i].name,
5111 					  i915_debugfs_files[i].fops);
5112 		if (ret)
5113 			return ret;
5114 	}
5115 
5116 	return drm_debugfs_create_files(i915_debugfs_list,
5117 					I915_DEBUGFS_ENTRIES,
5118 					minor->debugfs_root, minor);
5119 }
5120 
5121 void i915_debugfs_cleanup(struct drm_minor *minor)
5122 {
5123 	int i;
5124 
5125 	drm_debugfs_remove_files(i915_debugfs_list,
5126 				 I915_DEBUGFS_ENTRIES, minor);
5127 
5128 	drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5129 				 1, minor);
5130 
5131 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5132 		struct drm_info_list *info_list =
5133 			(struct drm_info_list *)&i915_pipe_crc_data[i];
5134 
5135 		drm_debugfs_remove_files(info_list, 1, minor);
5136 	}
5137 
5138 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5139 		struct drm_info_list *info_list =
5140 			(struct drm_info_list *) i915_debugfs_files[i].fops;
5141 
5142 		drm_debugfs_remove_files(info_list, 1, minor);
5143 	}
5144 }
5145 
5146 struct dpcd_block {
5147 	/* DPCD dump start address. */
5148 	unsigned int offset;
5149 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
5150 	unsigned int end;
5151 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5152 	size_t size;
5153 	/* Only valid for eDP. */
5154 	bool edp;
5155 };
5156 
5157 static const struct dpcd_block i915_dpcd_debug[] = {
5158 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5159 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5160 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5161 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5162 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5163 	{ .offset = DP_SET_POWER },
5164 	{ .offset = DP_EDP_DPCD_REV },
5165 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5166 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5167 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5168 };
5169 
5170 static int i915_dpcd_show(struct seq_file *m, void *data)
5171 {
5172 	struct drm_connector *connector = m->private;
5173 	struct intel_dp *intel_dp =
5174 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5175 	uint8_t buf[16];
5176 	ssize_t err;
5177 	int i;
5178 
5179 	if (connector->status != connector_status_connected)
5180 		return -ENODEV;
5181 
5182 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5183 		const struct dpcd_block *b = &i915_dpcd_debug[i];
5184 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5185 
5186 		if (b->edp &&
5187 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5188 			continue;
5189 
5190 		/* low tech for now */
5191 		if (WARN_ON(size > sizeof(buf)))
5192 			continue;
5193 
5194 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5195 		if (err <= 0) {
5196 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5197 				  size, b->offset, err);
5198 			continue;
5199 		}
5200 
5201 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5202 	}
5203 
5204 	return 0;
5205 }
5206 
5207 static int i915_dpcd_open(struct inode *inode, struct file *file)
5208 {
5209 	return single_open(file, i915_dpcd_show, inode->i_private);
5210 }
5211 
5212 static const struct file_operations i915_dpcd_fops = {
5213 	.owner = THIS_MODULE,
5214 	.open = i915_dpcd_open,
5215 	.read = seq_read,
5216 	.llseek = seq_lseek,
5217 	.release = single_release,
5218 };
5219 
5220 /**
5221  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5222  * @connector: pointer to a registered drm_connector
5223  *
5224  * Cleanup will be done by drm_connector_unregister() through a call to
5225  * drm_debugfs_connector_remove().
5226  *
5227  * Returns 0 on success, negative error codes on error.
5228  */
5229 int i915_debugfs_connector_add(struct drm_connector *connector)
5230 {
5231 	struct dentry *root = connector->debugfs_entry;
5232 
5233 	/* The connector must have been registered beforehands. */
5234 	if (!root)
5235 		return -ENODEV;
5236 
5237 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5238 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5239 		debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5240 				    &i915_dpcd_fops);
5241 
5242 	return 0;
5243 }
5244