1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/sort.h>
31 #include <linux/sched/mm.h>
32 #include "intel_drv.h"
33 #include "intel_guc_submission.h"
34 
35 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
36 {
37 	return to_i915(node->minor->dev);
38 }
39 
40 static int i915_capabilities(struct seq_file *m, void *data)
41 {
42 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
43 	const struct intel_device_info *info = INTEL_INFO(dev_priv);
44 	struct drm_printer p = drm_seq_file_printer(m);
45 
46 	seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
47 	seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
48 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
49 
50 	intel_device_info_dump_flags(info, &p);
51 	intel_device_info_dump_runtime(info, &p);
52 
53 	kernel_param_lock(THIS_MODULE);
54 	i915_params_dump(&i915_modparams, &p);
55 	kernel_param_unlock(THIS_MODULE);
56 
57 	return 0;
58 }
59 
60 static char get_active_flag(struct drm_i915_gem_object *obj)
61 {
62 	return i915_gem_object_is_active(obj) ? '*' : ' ';
63 }
64 
65 static char get_pin_flag(struct drm_i915_gem_object *obj)
66 {
67 	return obj->pin_global ? 'p' : ' ';
68 }
69 
70 static char get_tiling_flag(struct drm_i915_gem_object *obj)
71 {
72 	switch (i915_gem_object_get_tiling(obj)) {
73 	default:
74 	case I915_TILING_NONE: return ' ';
75 	case I915_TILING_X: return 'X';
76 	case I915_TILING_Y: return 'Y';
77 	}
78 }
79 
80 static char get_global_flag(struct drm_i915_gem_object *obj)
81 {
82 	return obj->userfault_count ? 'g' : ' ';
83 }
84 
85 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
86 {
87 	return obj->mm.mapping ? 'M' : ' ';
88 }
89 
90 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
91 {
92 	u64 size = 0;
93 	struct i915_vma *vma;
94 
95 	for_each_ggtt_vma(vma, obj) {
96 		if (drm_mm_node_allocated(&vma->node))
97 			size += vma->node.size;
98 	}
99 
100 	return size;
101 }
102 
103 static const char *
104 stringify_page_sizes(unsigned int page_sizes, char *buf, size_t len)
105 {
106 	size_t x = 0;
107 
108 	switch (page_sizes) {
109 	case 0:
110 		return "";
111 	case I915_GTT_PAGE_SIZE_4K:
112 		return "4K";
113 	case I915_GTT_PAGE_SIZE_64K:
114 		return "64K";
115 	case I915_GTT_PAGE_SIZE_2M:
116 		return "2M";
117 	default:
118 		if (!buf)
119 			return "M";
120 
121 		if (page_sizes & I915_GTT_PAGE_SIZE_2M)
122 			x += snprintf(buf + x, len - x, "2M, ");
123 		if (page_sizes & I915_GTT_PAGE_SIZE_64K)
124 			x += snprintf(buf + x, len - x, "64K, ");
125 		if (page_sizes & I915_GTT_PAGE_SIZE_4K)
126 			x += snprintf(buf + x, len - x, "4K, ");
127 		buf[x-2] = '\0';
128 
129 		return buf;
130 	}
131 }
132 
133 static void
134 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
135 {
136 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
137 	struct intel_engine_cs *engine;
138 	struct i915_vma *vma;
139 	unsigned int frontbuffer_bits;
140 	int pin_count = 0;
141 
142 	lockdep_assert_held(&obj->base.dev->struct_mutex);
143 
144 	seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
145 		   &obj->base,
146 		   get_active_flag(obj),
147 		   get_pin_flag(obj),
148 		   get_tiling_flag(obj),
149 		   get_global_flag(obj),
150 		   get_pin_mapped_flag(obj),
151 		   obj->base.size / 1024,
152 		   obj->base.read_domains,
153 		   obj->base.write_domain,
154 		   i915_cache_level_str(dev_priv, obj->cache_level),
155 		   obj->mm.dirty ? " dirty" : "",
156 		   obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
157 	if (obj->base.name)
158 		seq_printf(m, " (name: %d)", obj->base.name);
159 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
160 		if (i915_vma_is_pinned(vma))
161 			pin_count++;
162 	}
163 	seq_printf(m, " (pinned x %d)", pin_count);
164 	if (obj->pin_global)
165 		seq_printf(m, " (global)");
166 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
167 		if (!drm_mm_node_allocated(&vma->node))
168 			continue;
169 
170 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx, pages: %s",
171 			   i915_vma_is_ggtt(vma) ? "g" : "pp",
172 			   vma->node.start, vma->node.size,
173 			   stringify_page_sizes(vma->page_sizes.gtt, NULL, 0));
174 		if (i915_vma_is_ggtt(vma)) {
175 			switch (vma->ggtt_view.type) {
176 			case I915_GGTT_VIEW_NORMAL:
177 				seq_puts(m, ", normal");
178 				break;
179 
180 			case I915_GGTT_VIEW_PARTIAL:
181 				seq_printf(m, ", partial [%08llx+%x]",
182 					   vma->ggtt_view.partial.offset << PAGE_SHIFT,
183 					   vma->ggtt_view.partial.size << PAGE_SHIFT);
184 				break;
185 
186 			case I915_GGTT_VIEW_ROTATED:
187 				seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
188 					   vma->ggtt_view.rotated.plane[0].width,
189 					   vma->ggtt_view.rotated.plane[0].height,
190 					   vma->ggtt_view.rotated.plane[0].stride,
191 					   vma->ggtt_view.rotated.plane[0].offset,
192 					   vma->ggtt_view.rotated.plane[1].width,
193 					   vma->ggtt_view.rotated.plane[1].height,
194 					   vma->ggtt_view.rotated.plane[1].stride,
195 					   vma->ggtt_view.rotated.plane[1].offset);
196 				break;
197 
198 			default:
199 				MISSING_CASE(vma->ggtt_view.type);
200 				break;
201 			}
202 		}
203 		if (vma->fence)
204 			seq_printf(m, " , fence: %d%s",
205 				   vma->fence->id,
206 				   i915_gem_active_isset(&vma->last_fence) ? "*" : "");
207 		seq_puts(m, ")");
208 	}
209 	if (obj->stolen)
210 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
211 
212 	engine = i915_gem_object_last_write_engine(obj);
213 	if (engine)
214 		seq_printf(m, " (%s)", engine->name);
215 
216 	frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
217 	if (frontbuffer_bits)
218 		seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
219 }
220 
221 static int obj_rank_by_stolen(const void *A, const void *B)
222 {
223 	const struct drm_i915_gem_object *a =
224 		*(const struct drm_i915_gem_object **)A;
225 	const struct drm_i915_gem_object *b =
226 		*(const struct drm_i915_gem_object **)B;
227 
228 	if (a->stolen->start < b->stolen->start)
229 		return -1;
230 	if (a->stolen->start > b->stolen->start)
231 		return 1;
232 	return 0;
233 }
234 
235 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
236 {
237 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
238 	struct drm_device *dev = &dev_priv->drm;
239 	struct drm_i915_gem_object **objects;
240 	struct drm_i915_gem_object *obj;
241 	u64 total_obj_size, total_gtt_size;
242 	unsigned long total, count, n;
243 	int ret;
244 
245 	total = READ_ONCE(dev_priv->mm.object_count);
246 	objects = kvmalloc_array(total, sizeof(*objects), GFP_KERNEL);
247 	if (!objects)
248 		return -ENOMEM;
249 
250 	ret = mutex_lock_interruptible(&dev->struct_mutex);
251 	if (ret)
252 		goto out;
253 
254 	total_obj_size = total_gtt_size = count = 0;
255 
256 	spin_lock(&dev_priv->mm.obj_lock);
257 	list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
258 		if (count == total)
259 			break;
260 
261 		if (obj->stolen == NULL)
262 			continue;
263 
264 		objects[count++] = obj;
265 		total_obj_size += obj->base.size;
266 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
267 
268 	}
269 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
270 		if (count == total)
271 			break;
272 
273 		if (obj->stolen == NULL)
274 			continue;
275 
276 		objects[count++] = obj;
277 		total_obj_size += obj->base.size;
278 	}
279 	spin_unlock(&dev_priv->mm.obj_lock);
280 
281 	sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
282 
283 	seq_puts(m, "Stolen:\n");
284 	for (n = 0; n < count; n++) {
285 		seq_puts(m, "   ");
286 		describe_obj(m, objects[n]);
287 		seq_putc(m, '\n');
288 	}
289 	seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
290 		   count, total_obj_size, total_gtt_size);
291 
292 	mutex_unlock(&dev->struct_mutex);
293 out:
294 	kvfree(objects);
295 	return ret;
296 }
297 
298 struct file_stats {
299 	struct drm_i915_file_private *file_priv;
300 	unsigned long count;
301 	u64 total, unbound;
302 	u64 global, shared;
303 	u64 active, inactive;
304 };
305 
306 static int per_file_stats(int id, void *ptr, void *data)
307 {
308 	struct drm_i915_gem_object *obj = ptr;
309 	struct file_stats *stats = data;
310 	struct i915_vma *vma;
311 
312 	lockdep_assert_held(&obj->base.dev->struct_mutex);
313 
314 	stats->count++;
315 	stats->total += obj->base.size;
316 	if (!obj->bind_count)
317 		stats->unbound += obj->base.size;
318 	if (obj->base.name || obj->base.dma_buf)
319 		stats->shared += obj->base.size;
320 
321 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
322 		if (!drm_mm_node_allocated(&vma->node))
323 			continue;
324 
325 		if (i915_vma_is_ggtt(vma)) {
326 			stats->global += vma->node.size;
327 		} else {
328 			struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
329 
330 			if (ppgtt->base.file != stats->file_priv)
331 				continue;
332 		}
333 
334 		if (i915_vma_is_active(vma))
335 			stats->active += vma->node.size;
336 		else
337 			stats->inactive += vma->node.size;
338 	}
339 
340 	return 0;
341 }
342 
343 #define print_file_stats(m, name, stats) do { \
344 	if (stats.count) \
345 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
346 			   name, \
347 			   stats.count, \
348 			   stats.total, \
349 			   stats.active, \
350 			   stats.inactive, \
351 			   stats.global, \
352 			   stats.shared, \
353 			   stats.unbound); \
354 } while (0)
355 
356 static void print_batch_pool_stats(struct seq_file *m,
357 				   struct drm_i915_private *dev_priv)
358 {
359 	struct drm_i915_gem_object *obj;
360 	struct file_stats stats;
361 	struct intel_engine_cs *engine;
362 	enum intel_engine_id id;
363 	int j;
364 
365 	memset(&stats, 0, sizeof(stats));
366 
367 	for_each_engine(engine, dev_priv, id) {
368 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
369 			list_for_each_entry(obj,
370 					    &engine->batch_pool.cache_list[j],
371 					    batch_pool_link)
372 				per_file_stats(0, obj, &stats);
373 		}
374 	}
375 
376 	print_file_stats(m, "[k]batch pool", stats);
377 }
378 
379 static int per_file_ctx_stats(int id, void *ptr, void *data)
380 {
381 	struct i915_gem_context *ctx = ptr;
382 	int n;
383 
384 	for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
385 		if (ctx->engine[n].state)
386 			per_file_stats(0, ctx->engine[n].state->obj, data);
387 		if (ctx->engine[n].ring)
388 			per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
389 	}
390 
391 	return 0;
392 }
393 
394 static void print_context_stats(struct seq_file *m,
395 				struct drm_i915_private *dev_priv)
396 {
397 	struct drm_device *dev = &dev_priv->drm;
398 	struct file_stats stats;
399 	struct drm_file *file;
400 
401 	memset(&stats, 0, sizeof(stats));
402 
403 	mutex_lock(&dev->struct_mutex);
404 	if (dev_priv->kernel_context)
405 		per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
406 
407 	list_for_each_entry(file, &dev->filelist, lhead) {
408 		struct drm_i915_file_private *fpriv = file->driver_priv;
409 		idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
410 	}
411 	mutex_unlock(&dev->struct_mutex);
412 
413 	print_file_stats(m, "[k]contexts", stats);
414 }
415 
416 static int i915_gem_object_info(struct seq_file *m, void *data)
417 {
418 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
419 	struct drm_device *dev = &dev_priv->drm;
420 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
421 	u32 count, mapped_count, purgeable_count, dpy_count, huge_count;
422 	u64 size, mapped_size, purgeable_size, dpy_size, huge_size;
423 	struct drm_i915_gem_object *obj;
424 	unsigned int page_sizes = 0;
425 	struct drm_file *file;
426 	char buf[80];
427 	int ret;
428 
429 	ret = mutex_lock_interruptible(&dev->struct_mutex);
430 	if (ret)
431 		return ret;
432 
433 	seq_printf(m, "%u objects, %llu bytes\n",
434 		   dev_priv->mm.object_count,
435 		   dev_priv->mm.object_memory);
436 
437 	size = count = 0;
438 	mapped_size = mapped_count = 0;
439 	purgeable_size = purgeable_count = 0;
440 	huge_size = huge_count = 0;
441 
442 	spin_lock(&dev_priv->mm.obj_lock);
443 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
444 		size += obj->base.size;
445 		++count;
446 
447 		if (obj->mm.madv == I915_MADV_DONTNEED) {
448 			purgeable_size += obj->base.size;
449 			++purgeable_count;
450 		}
451 
452 		if (obj->mm.mapping) {
453 			mapped_count++;
454 			mapped_size += obj->base.size;
455 		}
456 
457 		if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
458 			huge_count++;
459 			huge_size += obj->base.size;
460 			page_sizes |= obj->mm.page_sizes.sg;
461 		}
462 	}
463 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
464 
465 	size = count = dpy_size = dpy_count = 0;
466 	list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
467 		size += obj->base.size;
468 		++count;
469 
470 		if (obj->pin_global) {
471 			dpy_size += obj->base.size;
472 			++dpy_count;
473 		}
474 
475 		if (obj->mm.madv == I915_MADV_DONTNEED) {
476 			purgeable_size += obj->base.size;
477 			++purgeable_count;
478 		}
479 
480 		if (obj->mm.mapping) {
481 			mapped_count++;
482 			mapped_size += obj->base.size;
483 		}
484 
485 		if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
486 			huge_count++;
487 			huge_size += obj->base.size;
488 			page_sizes |= obj->mm.page_sizes.sg;
489 		}
490 	}
491 	spin_unlock(&dev_priv->mm.obj_lock);
492 
493 	seq_printf(m, "%u bound objects, %llu bytes\n",
494 		   count, size);
495 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
496 		   purgeable_count, purgeable_size);
497 	seq_printf(m, "%u mapped objects, %llu bytes\n",
498 		   mapped_count, mapped_size);
499 	seq_printf(m, "%u huge-paged objects (%s) %llu bytes\n",
500 		   huge_count,
501 		   stringify_page_sizes(page_sizes, buf, sizeof(buf)),
502 		   huge_size);
503 	seq_printf(m, "%u display objects (globally pinned), %llu bytes\n",
504 		   dpy_count, dpy_size);
505 
506 	seq_printf(m, "%llu [%pa] gtt total\n",
507 		   ggtt->base.total, &ggtt->mappable_end);
508 	seq_printf(m, "Supported page sizes: %s\n",
509 		   stringify_page_sizes(INTEL_INFO(dev_priv)->page_sizes,
510 					buf, sizeof(buf)));
511 
512 	seq_putc(m, '\n');
513 	print_batch_pool_stats(m, dev_priv);
514 	mutex_unlock(&dev->struct_mutex);
515 
516 	mutex_lock(&dev->filelist_mutex);
517 	print_context_stats(m, dev_priv);
518 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
519 		struct file_stats stats;
520 		struct drm_i915_file_private *file_priv = file->driver_priv;
521 		struct drm_i915_gem_request *request;
522 		struct task_struct *task;
523 
524 		mutex_lock(&dev->struct_mutex);
525 
526 		memset(&stats, 0, sizeof(stats));
527 		stats.file_priv = file->driver_priv;
528 		spin_lock(&file->table_lock);
529 		idr_for_each(&file->object_idr, per_file_stats, &stats);
530 		spin_unlock(&file->table_lock);
531 		/*
532 		 * Although we have a valid reference on file->pid, that does
533 		 * not guarantee that the task_struct who called get_pid() is
534 		 * still alive (e.g. get_pid(current) => fork() => exit()).
535 		 * Therefore, we need to protect this ->comm access using RCU.
536 		 */
537 		request = list_first_entry_or_null(&file_priv->mm.request_list,
538 						   struct drm_i915_gem_request,
539 						   client_link);
540 		rcu_read_lock();
541 		task = pid_task(request && request->ctx->pid ?
542 				request->ctx->pid : file->pid,
543 				PIDTYPE_PID);
544 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
545 		rcu_read_unlock();
546 
547 		mutex_unlock(&dev->struct_mutex);
548 	}
549 	mutex_unlock(&dev->filelist_mutex);
550 
551 	return 0;
552 }
553 
554 static int i915_gem_gtt_info(struct seq_file *m, void *data)
555 {
556 	struct drm_info_node *node = m->private;
557 	struct drm_i915_private *dev_priv = node_to_i915(node);
558 	struct drm_device *dev = &dev_priv->drm;
559 	struct drm_i915_gem_object **objects;
560 	struct drm_i915_gem_object *obj;
561 	u64 total_obj_size, total_gtt_size;
562 	unsigned long nobject, n;
563 	int count, ret;
564 
565 	nobject = READ_ONCE(dev_priv->mm.object_count);
566 	objects = kvmalloc_array(nobject, sizeof(*objects), GFP_KERNEL);
567 	if (!objects)
568 		return -ENOMEM;
569 
570 	ret = mutex_lock_interruptible(&dev->struct_mutex);
571 	if (ret)
572 		return ret;
573 
574 	count = 0;
575 	spin_lock(&dev_priv->mm.obj_lock);
576 	list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
577 		objects[count++] = obj;
578 		if (count == nobject)
579 			break;
580 	}
581 	spin_unlock(&dev_priv->mm.obj_lock);
582 
583 	total_obj_size = total_gtt_size = 0;
584 	for (n = 0;  n < count; n++) {
585 		obj = objects[n];
586 
587 		seq_puts(m, "   ");
588 		describe_obj(m, obj);
589 		seq_putc(m, '\n');
590 		total_obj_size += obj->base.size;
591 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
592 	}
593 
594 	mutex_unlock(&dev->struct_mutex);
595 
596 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
597 		   count, total_obj_size, total_gtt_size);
598 	kvfree(objects);
599 
600 	return 0;
601 }
602 
603 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
604 {
605 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
606 	struct drm_device *dev = &dev_priv->drm;
607 	struct drm_i915_gem_object *obj;
608 	struct intel_engine_cs *engine;
609 	enum intel_engine_id id;
610 	int total = 0;
611 	int ret, j;
612 
613 	ret = mutex_lock_interruptible(&dev->struct_mutex);
614 	if (ret)
615 		return ret;
616 
617 	for_each_engine(engine, dev_priv, id) {
618 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
619 			int count;
620 
621 			count = 0;
622 			list_for_each_entry(obj,
623 					    &engine->batch_pool.cache_list[j],
624 					    batch_pool_link)
625 				count++;
626 			seq_printf(m, "%s cache[%d]: %d objects\n",
627 				   engine->name, j, count);
628 
629 			list_for_each_entry(obj,
630 					    &engine->batch_pool.cache_list[j],
631 					    batch_pool_link) {
632 				seq_puts(m, "   ");
633 				describe_obj(m, obj);
634 				seq_putc(m, '\n');
635 			}
636 
637 			total += count;
638 		}
639 	}
640 
641 	seq_printf(m, "total: %d\n", total);
642 
643 	mutex_unlock(&dev->struct_mutex);
644 
645 	return 0;
646 }
647 
648 static int i915_interrupt_info(struct seq_file *m, void *data)
649 {
650 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
651 	struct intel_engine_cs *engine;
652 	enum intel_engine_id id;
653 	int i, pipe;
654 
655 	intel_runtime_pm_get(dev_priv);
656 
657 	if (IS_CHERRYVIEW(dev_priv)) {
658 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
659 			   I915_READ(GEN8_MASTER_IRQ));
660 
661 		seq_printf(m, "Display IER:\t%08x\n",
662 			   I915_READ(VLV_IER));
663 		seq_printf(m, "Display IIR:\t%08x\n",
664 			   I915_READ(VLV_IIR));
665 		seq_printf(m, "Display IIR_RW:\t%08x\n",
666 			   I915_READ(VLV_IIR_RW));
667 		seq_printf(m, "Display IMR:\t%08x\n",
668 			   I915_READ(VLV_IMR));
669 		for_each_pipe(dev_priv, pipe) {
670 			enum intel_display_power_domain power_domain;
671 
672 			power_domain = POWER_DOMAIN_PIPE(pipe);
673 			if (!intel_display_power_get_if_enabled(dev_priv,
674 								power_domain)) {
675 				seq_printf(m, "Pipe %c power disabled\n",
676 					   pipe_name(pipe));
677 				continue;
678 			}
679 
680 			seq_printf(m, "Pipe %c stat:\t%08x\n",
681 				   pipe_name(pipe),
682 				   I915_READ(PIPESTAT(pipe)));
683 
684 			intel_display_power_put(dev_priv, power_domain);
685 		}
686 
687 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
688 		seq_printf(m, "Port hotplug:\t%08x\n",
689 			   I915_READ(PORT_HOTPLUG_EN));
690 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
691 			   I915_READ(VLV_DPFLIPSTAT));
692 		seq_printf(m, "DPINVGTT:\t%08x\n",
693 			   I915_READ(DPINVGTT));
694 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
695 
696 		for (i = 0; i < 4; i++) {
697 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
698 				   i, I915_READ(GEN8_GT_IMR(i)));
699 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
700 				   i, I915_READ(GEN8_GT_IIR(i)));
701 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
702 				   i, I915_READ(GEN8_GT_IER(i)));
703 		}
704 
705 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
706 			   I915_READ(GEN8_PCU_IMR));
707 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
708 			   I915_READ(GEN8_PCU_IIR));
709 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
710 			   I915_READ(GEN8_PCU_IER));
711 	} else if (INTEL_GEN(dev_priv) >= 8) {
712 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
713 			   I915_READ(GEN8_MASTER_IRQ));
714 
715 		for (i = 0; i < 4; i++) {
716 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
717 				   i, I915_READ(GEN8_GT_IMR(i)));
718 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
719 				   i, I915_READ(GEN8_GT_IIR(i)));
720 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
721 				   i, I915_READ(GEN8_GT_IER(i)));
722 		}
723 
724 		for_each_pipe(dev_priv, pipe) {
725 			enum intel_display_power_domain power_domain;
726 
727 			power_domain = POWER_DOMAIN_PIPE(pipe);
728 			if (!intel_display_power_get_if_enabled(dev_priv,
729 								power_domain)) {
730 				seq_printf(m, "Pipe %c power disabled\n",
731 					   pipe_name(pipe));
732 				continue;
733 			}
734 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
735 				   pipe_name(pipe),
736 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
737 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
738 				   pipe_name(pipe),
739 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
740 			seq_printf(m, "Pipe %c IER:\t%08x\n",
741 				   pipe_name(pipe),
742 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
743 
744 			intel_display_power_put(dev_priv, power_domain);
745 		}
746 
747 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
748 			   I915_READ(GEN8_DE_PORT_IMR));
749 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
750 			   I915_READ(GEN8_DE_PORT_IIR));
751 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
752 			   I915_READ(GEN8_DE_PORT_IER));
753 
754 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
755 			   I915_READ(GEN8_DE_MISC_IMR));
756 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
757 			   I915_READ(GEN8_DE_MISC_IIR));
758 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
759 			   I915_READ(GEN8_DE_MISC_IER));
760 
761 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
762 			   I915_READ(GEN8_PCU_IMR));
763 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
764 			   I915_READ(GEN8_PCU_IIR));
765 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
766 			   I915_READ(GEN8_PCU_IER));
767 	} else if (IS_VALLEYVIEW(dev_priv)) {
768 		seq_printf(m, "Display IER:\t%08x\n",
769 			   I915_READ(VLV_IER));
770 		seq_printf(m, "Display IIR:\t%08x\n",
771 			   I915_READ(VLV_IIR));
772 		seq_printf(m, "Display IIR_RW:\t%08x\n",
773 			   I915_READ(VLV_IIR_RW));
774 		seq_printf(m, "Display IMR:\t%08x\n",
775 			   I915_READ(VLV_IMR));
776 		for_each_pipe(dev_priv, pipe) {
777 			enum intel_display_power_domain power_domain;
778 
779 			power_domain = POWER_DOMAIN_PIPE(pipe);
780 			if (!intel_display_power_get_if_enabled(dev_priv,
781 								power_domain)) {
782 				seq_printf(m, "Pipe %c power disabled\n",
783 					   pipe_name(pipe));
784 				continue;
785 			}
786 
787 			seq_printf(m, "Pipe %c stat:\t%08x\n",
788 				   pipe_name(pipe),
789 				   I915_READ(PIPESTAT(pipe)));
790 			intel_display_power_put(dev_priv, power_domain);
791 		}
792 
793 		seq_printf(m, "Master IER:\t%08x\n",
794 			   I915_READ(VLV_MASTER_IER));
795 
796 		seq_printf(m, "Render IER:\t%08x\n",
797 			   I915_READ(GTIER));
798 		seq_printf(m, "Render IIR:\t%08x\n",
799 			   I915_READ(GTIIR));
800 		seq_printf(m, "Render IMR:\t%08x\n",
801 			   I915_READ(GTIMR));
802 
803 		seq_printf(m, "PM IER:\t\t%08x\n",
804 			   I915_READ(GEN6_PMIER));
805 		seq_printf(m, "PM IIR:\t\t%08x\n",
806 			   I915_READ(GEN6_PMIIR));
807 		seq_printf(m, "PM IMR:\t\t%08x\n",
808 			   I915_READ(GEN6_PMIMR));
809 
810 		seq_printf(m, "Port hotplug:\t%08x\n",
811 			   I915_READ(PORT_HOTPLUG_EN));
812 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
813 			   I915_READ(VLV_DPFLIPSTAT));
814 		seq_printf(m, "DPINVGTT:\t%08x\n",
815 			   I915_READ(DPINVGTT));
816 
817 	} else if (!HAS_PCH_SPLIT(dev_priv)) {
818 		seq_printf(m, "Interrupt enable:    %08x\n",
819 			   I915_READ(IER));
820 		seq_printf(m, "Interrupt identity:  %08x\n",
821 			   I915_READ(IIR));
822 		seq_printf(m, "Interrupt mask:      %08x\n",
823 			   I915_READ(IMR));
824 		for_each_pipe(dev_priv, pipe)
825 			seq_printf(m, "Pipe %c stat:         %08x\n",
826 				   pipe_name(pipe),
827 				   I915_READ(PIPESTAT(pipe)));
828 	} else {
829 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
830 			   I915_READ(DEIER));
831 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
832 			   I915_READ(DEIIR));
833 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
834 			   I915_READ(DEIMR));
835 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
836 			   I915_READ(SDEIER));
837 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
838 			   I915_READ(SDEIIR));
839 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
840 			   I915_READ(SDEIMR));
841 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
842 			   I915_READ(GTIER));
843 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
844 			   I915_READ(GTIIR));
845 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
846 			   I915_READ(GTIMR));
847 	}
848 	if (INTEL_GEN(dev_priv) >= 6) {
849 		for_each_engine(engine, dev_priv, id) {
850 			seq_printf(m,
851 				   "Graphics Interrupt mask (%s):	%08x\n",
852 				   engine->name, I915_READ_IMR(engine));
853 		}
854 	}
855 	intel_runtime_pm_put(dev_priv);
856 
857 	return 0;
858 }
859 
860 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
861 {
862 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
863 	struct drm_device *dev = &dev_priv->drm;
864 	int i, ret;
865 
866 	ret = mutex_lock_interruptible(&dev->struct_mutex);
867 	if (ret)
868 		return ret;
869 
870 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
871 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
872 		struct i915_vma *vma = dev_priv->fence_regs[i].vma;
873 
874 		seq_printf(m, "Fence %d, pin count = %d, object = ",
875 			   i, dev_priv->fence_regs[i].pin_count);
876 		if (!vma)
877 			seq_puts(m, "unused");
878 		else
879 			describe_obj(m, vma->obj);
880 		seq_putc(m, '\n');
881 	}
882 
883 	mutex_unlock(&dev->struct_mutex);
884 	return 0;
885 }
886 
887 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
888 static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
889 			      size_t count, loff_t *pos)
890 {
891 	struct i915_gpu_state *error = file->private_data;
892 	struct drm_i915_error_state_buf str;
893 	ssize_t ret;
894 	loff_t tmp;
895 
896 	if (!error)
897 		return 0;
898 
899 	ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
900 	if (ret)
901 		return ret;
902 
903 	ret = i915_error_state_to_str(&str, error);
904 	if (ret)
905 		goto out;
906 
907 	tmp = 0;
908 	ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
909 	if (ret < 0)
910 		goto out;
911 
912 	*pos = str.start + ret;
913 out:
914 	i915_error_state_buf_release(&str);
915 	return ret;
916 }
917 
918 static int gpu_state_release(struct inode *inode, struct file *file)
919 {
920 	i915_gpu_state_put(file->private_data);
921 	return 0;
922 }
923 
924 static int i915_gpu_info_open(struct inode *inode, struct file *file)
925 {
926 	struct drm_i915_private *i915 = inode->i_private;
927 	struct i915_gpu_state *gpu;
928 
929 	intel_runtime_pm_get(i915);
930 	gpu = i915_capture_gpu_state(i915);
931 	intel_runtime_pm_put(i915);
932 	if (!gpu)
933 		return -ENOMEM;
934 
935 	file->private_data = gpu;
936 	return 0;
937 }
938 
939 static const struct file_operations i915_gpu_info_fops = {
940 	.owner = THIS_MODULE,
941 	.open = i915_gpu_info_open,
942 	.read = gpu_state_read,
943 	.llseek = default_llseek,
944 	.release = gpu_state_release,
945 };
946 
947 static ssize_t
948 i915_error_state_write(struct file *filp,
949 		       const char __user *ubuf,
950 		       size_t cnt,
951 		       loff_t *ppos)
952 {
953 	struct i915_gpu_state *error = filp->private_data;
954 
955 	if (!error)
956 		return 0;
957 
958 	DRM_DEBUG_DRIVER("Resetting error state\n");
959 	i915_reset_error_state(error->i915);
960 
961 	return cnt;
962 }
963 
964 static int i915_error_state_open(struct inode *inode, struct file *file)
965 {
966 	file->private_data = i915_first_error_state(inode->i_private);
967 	return 0;
968 }
969 
970 static const struct file_operations i915_error_state_fops = {
971 	.owner = THIS_MODULE,
972 	.open = i915_error_state_open,
973 	.read = gpu_state_read,
974 	.write = i915_error_state_write,
975 	.llseek = default_llseek,
976 	.release = gpu_state_release,
977 };
978 #endif
979 
980 static int
981 i915_next_seqno_set(void *data, u64 val)
982 {
983 	struct drm_i915_private *dev_priv = data;
984 	struct drm_device *dev = &dev_priv->drm;
985 	int ret;
986 
987 	ret = mutex_lock_interruptible(&dev->struct_mutex);
988 	if (ret)
989 		return ret;
990 
991 	intel_runtime_pm_get(dev_priv);
992 	ret = i915_gem_set_global_seqno(dev, val);
993 	intel_runtime_pm_put(dev_priv);
994 
995 	mutex_unlock(&dev->struct_mutex);
996 
997 	return ret;
998 }
999 
1000 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1001 			NULL, i915_next_seqno_set,
1002 			"0x%llx\n");
1003 
1004 static int i915_frequency_info(struct seq_file *m, void *unused)
1005 {
1006 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1007 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1008 	int ret = 0;
1009 
1010 	intel_runtime_pm_get(dev_priv);
1011 
1012 	if (IS_GEN5(dev_priv)) {
1013 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1014 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1015 
1016 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1017 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1018 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1019 			   MEMSTAT_VID_SHIFT);
1020 		seq_printf(m, "Current P-state: %d\n",
1021 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1022 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1023 		u32 rpmodectl, freq_sts;
1024 
1025 		mutex_lock(&dev_priv->pcu_lock);
1026 
1027 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1028 		seq_printf(m, "Video Turbo Mode: %s\n",
1029 			   yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
1030 		seq_printf(m, "HW control enabled: %s\n",
1031 			   yesno(rpmodectl & GEN6_RP_ENABLE));
1032 		seq_printf(m, "SW control enabled: %s\n",
1033 			   yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
1034 				  GEN6_RP_MEDIA_SW_MODE));
1035 
1036 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1037 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1038 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1039 
1040 		seq_printf(m, "actual GPU freq: %d MHz\n",
1041 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1042 
1043 		seq_printf(m, "current GPU freq: %d MHz\n",
1044 			   intel_gpu_freq(dev_priv, rps->cur_freq));
1045 
1046 		seq_printf(m, "max GPU freq: %d MHz\n",
1047 			   intel_gpu_freq(dev_priv, rps->max_freq));
1048 
1049 		seq_printf(m, "min GPU freq: %d MHz\n",
1050 			   intel_gpu_freq(dev_priv, rps->min_freq));
1051 
1052 		seq_printf(m, "idle GPU freq: %d MHz\n",
1053 			   intel_gpu_freq(dev_priv, rps->idle_freq));
1054 
1055 		seq_printf(m,
1056 			   "efficient (RPe) frequency: %d MHz\n",
1057 			   intel_gpu_freq(dev_priv, rps->efficient_freq));
1058 		mutex_unlock(&dev_priv->pcu_lock);
1059 	} else if (INTEL_GEN(dev_priv) >= 6) {
1060 		u32 rp_state_limits;
1061 		u32 gt_perf_status;
1062 		u32 rp_state_cap;
1063 		u32 rpmodectl, rpinclimit, rpdeclimit;
1064 		u32 rpstat, cagf, reqf;
1065 		u32 rpupei, rpcurup, rpprevup;
1066 		u32 rpdownei, rpcurdown, rpprevdown;
1067 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1068 		int max_freq;
1069 
1070 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1071 		if (IS_GEN9_LP(dev_priv)) {
1072 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1073 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1074 		} else {
1075 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1076 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1077 		}
1078 
1079 		/* RPSTAT1 is in the GT power well */
1080 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1081 
1082 		reqf = I915_READ(GEN6_RPNSWREQ);
1083 		if (INTEL_GEN(dev_priv) >= 9)
1084 			reqf >>= 23;
1085 		else {
1086 			reqf &= ~GEN6_TURBO_DISABLE;
1087 			if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1088 				reqf >>= 24;
1089 			else
1090 				reqf >>= 25;
1091 		}
1092 		reqf = intel_gpu_freq(dev_priv, reqf);
1093 
1094 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1095 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1096 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1097 
1098 		rpstat = I915_READ(GEN6_RPSTAT1);
1099 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1100 		rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1101 		rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1102 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1103 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1104 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1105 		cagf = intel_gpu_freq(dev_priv,
1106 				      intel_get_cagf(dev_priv, rpstat));
1107 
1108 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1109 
1110 		if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1111 			pm_ier = I915_READ(GEN6_PMIER);
1112 			pm_imr = I915_READ(GEN6_PMIMR);
1113 			pm_isr = I915_READ(GEN6_PMISR);
1114 			pm_iir = I915_READ(GEN6_PMIIR);
1115 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1116 		} else {
1117 			pm_ier = I915_READ(GEN8_GT_IER(2));
1118 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1119 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1120 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1121 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1122 		}
1123 		seq_printf(m, "Video Turbo Mode: %s\n",
1124 			   yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
1125 		seq_printf(m, "HW control enabled: %s\n",
1126 			   yesno(rpmodectl & GEN6_RP_ENABLE));
1127 		seq_printf(m, "SW control enabled: %s\n",
1128 			   yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
1129 				  GEN6_RP_MEDIA_SW_MODE));
1130 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1131 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1132 		seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
1133 			   rps->pm_intrmsk_mbz);
1134 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1135 		seq_printf(m, "Render p-state ratio: %d\n",
1136 			   (gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
1137 		seq_printf(m, "Render p-state VID: %d\n",
1138 			   gt_perf_status & 0xff);
1139 		seq_printf(m, "Render p-state limit: %d\n",
1140 			   rp_state_limits & 0xff);
1141 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1142 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1143 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1144 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1145 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1146 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1147 		seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1148 			   rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1149 		seq_printf(m, "RP CUR UP: %d (%dus)\n",
1150 			   rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1151 		seq_printf(m, "RP PREV UP: %d (%dus)\n",
1152 			   rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1153 		seq_printf(m, "Up threshold: %d%%\n", rps->up_threshold);
1154 
1155 		seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1156 			   rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1157 		seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1158 			   rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1159 		seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1160 			   rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1161 		seq_printf(m, "Down threshold: %d%%\n", rps->down_threshold);
1162 
1163 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
1164 			    rp_state_cap >> 16) & 0xff;
1165 		max_freq *= (IS_GEN9_BC(dev_priv) ||
1166 			     IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1167 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1168 			   intel_gpu_freq(dev_priv, max_freq));
1169 
1170 		max_freq = (rp_state_cap & 0xff00) >> 8;
1171 		max_freq *= (IS_GEN9_BC(dev_priv) ||
1172 			     IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1173 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1174 			   intel_gpu_freq(dev_priv, max_freq));
1175 
1176 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
1177 			    rp_state_cap >> 0) & 0xff;
1178 		max_freq *= (IS_GEN9_BC(dev_priv) ||
1179 			     IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1180 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1181 			   intel_gpu_freq(dev_priv, max_freq));
1182 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1183 			   intel_gpu_freq(dev_priv, rps->max_freq));
1184 
1185 		seq_printf(m, "Current freq: %d MHz\n",
1186 			   intel_gpu_freq(dev_priv, rps->cur_freq));
1187 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1188 		seq_printf(m, "Idle freq: %d MHz\n",
1189 			   intel_gpu_freq(dev_priv, rps->idle_freq));
1190 		seq_printf(m, "Min freq: %d MHz\n",
1191 			   intel_gpu_freq(dev_priv, rps->min_freq));
1192 		seq_printf(m, "Boost freq: %d MHz\n",
1193 			   intel_gpu_freq(dev_priv, rps->boost_freq));
1194 		seq_printf(m, "Max freq: %d MHz\n",
1195 			   intel_gpu_freq(dev_priv, rps->max_freq));
1196 		seq_printf(m,
1197 			   "efficient (RPe) frequency: %d MHz\n",
1198 			   intel_gpu_freq(dev_priv, rps->efficient_freq));
1199 	} else {
1200 		seq_puts(m, "no P-state info available\n");
1201 	}
1202 
1203 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
1204 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1205 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1206 
1207 	intel_runtime_pm_put(dev_priv);
1208 	return ret;
1209 }
1210 
1211 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1212 			       struct seq_file *m,
1213 			       struct intel_instdone *instdone)
1214 {
1215 	int slice;
1216 	int subslice;
1217 
1218 	seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1219 		   instdone->instdone);
1220 
1221 	if (INTEL_GEN(dev_priv) <= 3)
1222 		return;
1223 
1224 	seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1225 		   instdone->slice_common);
1226 
1227 	if (INTEL_GEN(dev_priv) <= 6)
1228 		return;
1229 
1230 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1231 		seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1232 			   slice, subslice, instdone->sampler[slice][subslice]);
1233 
1234 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1235 		seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1236 			   slice, subslice, instdone->row[slice][subslice]);
1237 }
1238 
1239 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1240 {
1241 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1242 	struct intel_engine_cs *engine;
1243 	u64 acthd[I915_NUM_ENGINES];
1244 	u32 seqno[I915_NUM_ENGINES];
1245 	struct intel_instdone instdone;
1246 	enum intel_engine_id id;
1247 
1248 	if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1249 		seq_puts(m, "Wedged\n");
1250 	if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
1251 		seq_puts(m, "Reset in progress: struct_mutex backoff\n");
1252 	if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
1253 		seq_puts(m, "Reset in progress: reset handoff to waiter\n");
1254 	if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1255 		seq_puts(m, "Waiter holding struct mutex\n");
1256 	if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1257 		seq_puts(m, "struct_mutex blocked for reset\n");
1258 
1259 	if (!i915_modparams.enable_hangcheck) {
1260 		seq_puts(m, "Hangcheck disabled\n");
1261 		return 0;
1262 	}
1263 
1264 	intel_runtime_pm_get(dev_priv);
1265 
1266 	for_each_engine(engine, dev_priv, id) {
1267 		acthd[id] = intel_engine_get_active_head(engine);
1268 		seqno[id] = intel_engine_get_seqno(engine);
1269 	}
1270 
1271 	intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1272 
1273 	intel_runtime_pm_put(dev_priv);
1274 
1275 	if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
1276 		seq_printf(m, "Hangcheck active, timer fires in %dms\n",
1277 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1278 					    jiffies));
1279 	else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
1280 		seq_puts(m, "Hangcheck active, work pending\n");
1281 	else
1282 		seq_puts(m, "Hangcheck inactive\n");
1283 
1284 	seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
1285 
1286 	for_each_engine(engine, dev_priv, id) {
1287 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
1288 		struct rb_node *rb;
1289 
1290 		seq_printf(m, "%s:\n", engine->name);
1291 		seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
1292 			   engine->hangcheck.seqno, seqno[id],
1293 			   intel_engine_last_submit(engine),
1294 			   engine->timeline->inflight_seqnos);
1295 		seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
1296 			   yesno(intel_engine_has_waiter(engine)),
1297 			   yesno(test_bit(engine->id,
1298 					  &dev_priv->gpu_error.missed_irq_rings)),
1299 			   yesno(engine->hangcheck.stalled));
1300 
1301 		spin_lock_irq(&b->rb_lock);
1302 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1303 			struct intel_wait *w = rb_entry(rb, typeof(*w), node);
1304 
1305 			seq_printf(m, "\t%s [%d] waiting for %x\n",
1306 				   w->tsk->comm, w->tsk->pid, w->seqno);
1307 		}
1308 		spin_unlock_irq(&b->rb_lock);
1309 
1310 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1311 			   (long long)engine->hangcheck.acthd,
1312 			   (long long)acthd[id]);
1313 		seq_printf(m, "\taction = %s(%d) %d ms ago\n",
1314 			   hangcheck_action_to_str(engine->hangcheck.action),
1315 			   engine->hangcheck.action,
1316 			   jiffies_to_msecs(jiffies -
1317 					    engine->hangcheck.action_timestamp));
1318 
1319 		if (engine->id == RCS) {
1320 			seq_puts(m, "\tinstdone read =\n");
1321 
1322 			i915_instdone_info(dev_priv, m, &instdone);
1323 
1324 			seq_puts(m, "\tinstdone accu =\n");
1325 
1326 			i915_instdone_info(dev_priv, m,
1327 					   &engine->hangcheck.instdone);
1328 		}
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 static int i915_reset_info(struct seq_file *m, void *unused)
1335 {
1336 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1337 	struct i915_gpu_error *error = &dev_priv->gpu_error;
1338 	struct intel_engine_cs *engine;
1339 	enum intel_engine_id id;
1340 
1341 	seq_printf(m, "full gpu reset = %u\n", i915_reset_count(error));
1342 
1343 	for_each_engine(engine, dev_priv, id) {
1344 		seq_printf(m, "%s = %u\n", engine->name,
1345 			   i915_reset_engine_count(error, engine));
1346 	}
1347 
1348 	return 0;
1349 }
1350 
1351 static int ironlake_drpc_info(struct seq_file *m)
1352 {
1353 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1354 	u32 rgvmodectl, rstdbyctl;
1355 	u16 crstandvid;
1356 
1357 	rgvmodectl = I915_READ(MEMMODECTL);
1358 	rstdbyctl = I915_READ(RSTDBYCTL);
1359 	crstandvid = I915_READ16(CRSTANDVID);
1360 
1361 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1362 	seq_printf(m, "Boost freq: %d\n",
1363 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1364 		   MEMMODE_BOOST_FREQ_SHIFT);
1365 	seq_printf(m, "HW control enabled: %s\n",
1366 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1367 	seq_printf(m, "SW control enabled: %s\n",
1368 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1369 	seq_printf(m, "Gated voltage change: %s\n",
1370 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1371 	seq_printf(m, "Starting frequency: P%d\n",
1372 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1373 	seq_printf(m, "Max P-state: P%d\n",
1374 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1375 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1376 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1377 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1378 	seq_printf(m, "Render standby enabled: %s\n",
1379 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1380 	seq_puts(m, "Current RS state: ");
1381 	switch (rstdbyctl & RSX_STATUS_MASK) {
1382 	case RSX_STATUS_ON:
1383 		seq_puts(m, "on\n");
1384 		break;
1385 	case RSX_STATUS_RC1:
1386 		seq_puts(m, "RC1\n");
1387 		break;
1388 	case RSX_STATUS_RC1E:
1389 		seq_puts(m, "RC1E\n");
1390 		break;
1391 	case RSX_STATUS_RS1:
1392 		seq_puts(m, "RS1\n");
1393 		break;
1394 	case RSX_STATUS_RS2:
1395 		seq_puts(m, "RS2 (RC6)\n");
1396 		break;
1397 	case RSX_STATUS_RS3:
1398 		seq_puts(m, "RC3 (RC6+)\n");
1399 		break;
1400 	default:
1401 		seq_puts(m, "unknown\n");
1402 		break;
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 static int i915_forcewake_domains(struct seq_file *m, void *data)
1409 {
1410 	struct drm_i915_private *i915 = node_to_i915(m->private);
1411 	struct intel_uncore_forcewake_domain *fw_domain;
1412 	unsigned int tmp;
1413 
1414 	seq_printf(m, "user.bypass_count = %u\n",
1415 		   i915->uncore.user_forcewake.count);
1416 
1417 	for_each_fw_domain(fw_domain, i915, tmp)
1418 		seq_printf(m, "%s.wake_count = %u\n",
1419 			   intel_uncore_forcewake_domain_to_str(fw_domain->id),
1420 			   READ_ONCE(fw_domain->wake_count));
1421 
1422 	return 0;
1423 }
1424 
1425 static void print_rc6_res(struct seq_file *m,
1426 			  const char *title,
1427 			  const i915_reg_t reg)
1428 {
1429 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1430 
1431 	seq_printf(m, "%s %u (%llu us)\n",
1432 		   title, I915_READ(reg),
1433 		   intel_rc6_residency_us(dev_priv, reg));
1434 }
1435 
1436 static int vlv_drpc_info(struct seq_file *m)
1437 {
1438 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1439 	u32 rcctl1, pw_status;
1440 
1441 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1442 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1443 
1444 	seq_printf(m, "RC6 Enabled: %s\n",
1445 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1446 					GEN6_RC_CTL_EI_MODE(1))));
1447 	seq_printf(m, "Render Power Well: %s\n",
1448 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1449 	seq_printf(m, "Media Power Well: %s\n",
1450 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1451 
1452 	print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
1453 	print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
1454 
1455 	return i915_forcewake_domains(m, NULL);
1456 }
1457 
1458 static int gen6_drpc_info(struct seq_file *m)
1459 {
1460 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1461 	u32 gt_core_status, rcctl1, rc6vids = 0;
1462 	u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1463 	unsigned forcewake_count;
1464 	int count = 0;
1465 
1466 	forcewake_count = READ_ONCE(dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count);
1467 	if (forcewake_count) {
1468 		seq_puts(m, "RC information inaccurate because somebody "
1469 			    "holds a forcewake reference \n");
1470 	} else {
1471 		/* NB: we cannot use forcewake, else we read the wrong values */
1472 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1473 			udelay(10);
1474 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1475 	}
1476 
1477 	gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1478 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1479 
1480 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1481 	if (INTEL_GEN(dev_priv) >= 9) {
1482 		gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1483 		gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1484 	}
1485 
1486 	mutex_lock(&dev_priv->pcu_lock);
1487 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1488 	mutex_unlock(&dev_priv->pcu_lock);
1489 
1490 	seq_printf(m, "RC1e Enabled: %s\n",
1491 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1492 	seq_printf(m, "RC6 Enabled: %s\n",
1493 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1494 	if (INTEL_GEN(dev_priv) >= 9) {
1495 		seq_printf(m, "Render Well Gating Enabled: %s\n",
1496 			yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1497 		seq_printf(m, "Media Well Gating Enabled: %s\n",
1498 			yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1499 	}
1500 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1501 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1502 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1503 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1504 	seq_puts(m, "Current RC state: ");
1505 	switch (gt_core_status & GEN6_RCn_MASK) {
1506 	case GEN6_RC0:
1507 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1508 			seq_puts(m, "Core Power Down\n");
1509 		else
1510 			seq_puts(m, "on\n");
1511 		break;
1512 	case GEN6_RC3:
1513 		seq_puts(m, "RC3\n");
1514 		break;
1515 	case GEN6_RC6:
1516 		seq_puts(m, "RC6\n");
1517 		break;
1518 	case GEN6_RC7:
1519 		seq_puts(m, "RC7\n");
1520 		break;
1521 	default:
1522 		seq_puts(m, "Unknown\n");
1523 		break;
1524 	}
1525 
1526 	seq_printf(m, "Core Power Down: %s\n",
1527 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1528 	if (INTEL_GEN(dev_priv) >= 9) {
1529 		seq_printf(m, "Render Power Well: %s\n",
1530 			(gen9_powergate_status &
1531 			 GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1532 		seq_printf(m, "Media Power Well: %s\n",
1533 			(gen9_powergate_status &
1534 			 GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1535 	}
1536 
1537 	/* Not exactly sure what this is */
1538 	print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
1539 		      GEN6_GT_GFX_RC6_LOCKED);
1540 	print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
1541 	print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
1542 	print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
1543 
1544 	seq_printf(m, "RC6   voltage: %dmV\n",
1545 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1546 	seq_printf(m, "RC6+  voltage: %dmV\n",
1547 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1548 	seq_printf(m, "RC6++ voltage: %dmV\n",
1549 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1550 	return i915_forcewake_domains(m, NULL);
1551 }
1552 
1553 static int i915_drpc_info(struct seq_file *m, void *unused)
1554 {
1555 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1556 	int err;
1557 
1558 	intel_runtime_pm_get(dev_priv);
1559 
1560 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1561 		err = vlv_drpc_info(m);
1562 	else if (INTEL_GEN(dev_priv) >= 6)
1563 		err = gen6_drpc_info(m);
1564 	else
1565 		err = ironlake_drpc_info(m);
1566 
1567 	intel_runtime_pm_put(dev_priv);
1568 
1569 	return err;
1570 }
1571 
1572 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1573 {
1574 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1575 
1576 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1577 		   dev_priv->fb_tracking.busy_bits);
1578 
1579 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1580 		   dev_priv->fb_tracking.flip_bits);
1581 
1582 	return 0;
1583 }
1584 
1585 static int i915_fbc_status(struct seq_file *m, void *unused)
1586 {
1587 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1588 	struct intel_fbc *fbc = &dev_priv->fbc;
1589 
1590 	if (!HAS_FBC(dev_priv))
1591 		return -ENODEV;
1592 
1593 	intel_runtime_pm_get(dev_priv);
1594 	mutex_lock(&fbc->lock);
1595 
1596 	if (intel_fbc_is_active(dev_priv))
1597 		seq_puts(m, "FBC enabled\n");
1598 	else
1599 		seq_printf(m, "FBC disabled: %s\n", fbc->no_fbc_reason);
1600 
1601 	if (fbc->work.scheduled)
1602 		seq_printf(m, "FBC worker scheduled on vblank %u, now %llu\n",
1603 			   fbc->work.scheduled_vblank,
1604 			   drm_crtc_vblank_count(&fbc->crtc->base));
1605 
1606 	if (intel_fbc_is_active(dev_priv)) {
1607 		u32 mask;
1608 
1609 		if (INTEL_GEN(dev_priv) >= 8)
1610 			mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK;
1611 		else if (INTEL_GEN(dev_priv) >= 7)
1612 			mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK;
1613 		else if (INTEL_GEN(dev_priv) >= 5)
1614 			mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK;
1615 		else if (IS_G4X(dev_priv))
1616 			mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK;
1617 		else
1618 			mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING |
1619 							FBC_STAT_COMPRESSED);
1620 
1621 		seq_printf(m, "Compressing: %s\n", yesno(mask));
1622 	}
1623 
1624 	mutex_unlock(&fbc->lock);
1625 	intel_runtime_pm_put(dev_priv);
1626 
1627 	return 0;
1628 }
1629 
1630 static int i915_fbc_false_color_get(void *data, u64 *val)
1631 {
1632 	struct drm_i915_private *dev_priv = data;
1633 
1634 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1635 		return -ENODEV;
1636 
1637 	*val = dev_priv->fbc.false_color;
1638 
1639 	return 0;
1640 }
1641 
1642 static int i915_fbc_false_color_set(void *data, u64 val)
1643 {
1644 	struct drm_i915_private *dev_priv = data;
1645 	u32 reg;
1646 
1647 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1648 		return -ENODEV;
1649 
1650 	mutex_lock(&dev_priv->fbc.lock);
1651 
1652 	reg = I915_READ(ILK_DPFC_CONTROL);
1653 	dev_priv->fbc.false_color = val;
1654 
1655 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1656 		   (reg | FBC_CTL_FALSE_COLOR) :
1657 		   (reg & ~FBC_CTL_FALSE_COLOR));
1658 
1659 	mutex_unlock(&dev_priv->fbc.lock);
1660 	return 0;
1661 }
1662 
1663 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops,
1664 			i915_fbc_false_color_get, i915_fbc_false_color_set,
1665 			"%llu\n");
1666 
1667 static int i915_ips_status(struct seq_file *m, void *unused)
1668 {
1669 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1670 
1671 	if (!HAS_IPS(dev_priv))
1672 		return -ENODEV;
1673 
1674 	intel_runtime_pm_get(dev_priv);
1675 
1676 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1677 		   yesno(i915_modparams.enable_ips));
1678 
1679 	if (INTEL_GEN(dev_priv) >= 8) {
1680 		seq_puts(m, "Currently: unknown\n");
1681 	} else {
1682 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1683 			seq_puts(m, "Currently: enabled\n");
1684 		else
1685 			seq_puts(m, "Currently: disabled\n");
1686 	}
1687 
1688 	intel_runtime_pm_put(dev_priv);
1689 
1690 	return 0;
1691 }
1692 
1693 static int i915_sr_status(struct seq_file *m, void *unused)
1694 {
1695 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1696 	bool sr_enabled = false;
1697 
1698 	intel_runtime_pm_get(dev_priv);
1699 	intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1700 
1701 	if (INTEL_GEN(dev_priv) >= 9)
1702 		/* no global SR status; inspect per-plane WM */;
1703 	else if (HAS_PCH_SPLIT(dev_priv))
1704 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1705 	else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
1706 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1707 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1708 	else if (IS_I915GM(dev_priv))
1709 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1710 	else if (IS_PINEVIEW(dev_priv))
1711 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1712 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1713 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1714 
1715 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1716 	intel_runtime_pm_put(dev_priv);
1717 
1718 	seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
1719 
1720 	return 0;
1721 }
1722 
1723 static int i915_emon_status(struct seq_file *m, void *unused)
1724 {
1725 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1726 	struct drm_device *dev = &dev_priv->drm;
1727 	unsigned long temp, chipset, gfx;
1728 	int ret;
1729 
1730 	if (!IS_GEN5(dev_priv))
1731 		return -ENODEV;
1732 
1733 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1734 	if (ret)
1735 		return ret;
1736 
1737 	temp = i915_mch_val(dev_priv);
1738 	chipset = i915_chipset_val(dev_priv);
1739 	gfx = i915_gfx_val(dev_priv);
1740 	mutex_unlock(&dev->struct_mutex);
1741 
1742 	seq_printf(m, "GMCH temp: %ld\n", temp);
1743 	seq_printf(m, "Chipset power: %ld\n", chipset);
1744 	seq_printf(m, "GFX power: %ld\n", gfx);
1745 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1746 
1747 	return 0;
1748 }
1749 
1750 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1751 {
1752 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1753 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1754 	int ret = 0;
1755 	int gpu_freq, ia_freq;
1756 	unsigned int max_gpu_freq, min_gpu_freq;
1757 
1758 	if (!HAS_LLC(dev_priv))
1759 		return -ENODEV;
1760 
1761 	intel_runtime_pm_get(dev_priv);
1762 
1763 	ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
1764 	if (ret)
1765 		goto out;
1766 
1767 	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
1768 		/* Convert GT frequency to 50 HZ units */
1769 		min_gpu_freq = rps->min_freq_softlimit / GEN9_FREQ_SCALER;
1770 		max_gpu_freq = rps->max_freq_softlimit / GEN9_FREQ_SCALER;
1771 	} else {
1772 		min_gpu_freq = rps->min_freq_softlimit;
1773 		max_gpu_freq = rps->max_freq_softlimit;
1774 	}
1775 
1776 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1777 
1778 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1779 		ia_freq = gpu_freq;
1780 		sandybridge_pcode_read(dev_priv,
1781 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1782 				       &ia_freq);
1783 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1784 			   intel_gpu_freq(dev_priv, (gpu_freq *
1785 						     (IS_GEN9_BC(dev_priv) ||
1786 						      IS_CANNONLAKE(dev_priv) ?
1787 						      GEN9_FREQ_SCALER : 1))),
1788 			   ((ia_freq >> 0) & 0xff) * 100,
1789 			   ((ia_freq >> 8) & 0xff) * 100);
1790 	}
1791 
1792 	mutex_unlock(&dev_priv->pcu_lock);
1793 
1794 out:
1795 	intel_runtime_pm_put(dev_priv);
1796 	return ret;
1797 }
1798 
1799 static int i915_opregion(struct seq_file *m, void *unused)
1800 {
1801 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1802 	struct drm_device *dev = &dev_priv->drm;
1803 	struct intel_opregion *opregion = &dev_priv->opregion;
1804 	int ret;
1805 
1806 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1807 	if (ret)
1808 		goto out;
1809 
1810 	if (opregion->header)
1811 		seq_write(m, opregion->header, OPREGION_SIZE);
1812 
1813 	mutex_unlock(&dev->struct_mutex);
1814 
1815 out:
1816 	return 0;
1817 }
1818 
1819 static int i915_vbt(struct seq_file *m, void *unused)
1820 {
1821 	struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1822 
1823 	if (opregion->vbt)
1824 		seq_write(m, opregion->vbt, opregion->vbt_size);
1825 
1826 	return 0;
1827 }
1828 
1829 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1830 {
1831 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1832 	struct drm_device *dev = &dev_priv->drm;
1833 	struct intel_framebuffer *fbdev_fb = NULL;
1834 	struct drm_framebuffer *drm_fb;
1835 	int ret;
1836 
1837 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1838 	if (ret)
1839 		return ret;
1840 
1841 #ifdef CONFIG_DRM_FBDEV_EMULATION
1842 	if (dev_priv->fbdev && dev_priv->fbdev->helper.fb) {
1843 		fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1844 
1845 		seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1846 			   fbdev_fb->base.width,
1847 			   fbdev_fb->base.height,
1848 			   fbdev_fb->base.format->depth,
1849 			   fbdev_fb->base.format->cpp[0] * 8,
1850 			   fbdev_fb->base.modifier,
1851 			   drm_framebuffer_read_refcount(&fbdev_fb->base));
1852 		describe_obj(m, fbdev_fb->obj);
1853 		seq_putc(m, '\n');
1854 	}
1855 #endif
1856 
1857 	mutex_lock(&dev->mode_config.fb_lock);
1858 	drm_for_each_fb(drm_fb, dev) {
1859 		struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1860 		if (fb == fbdev_fb)
1861 			continue;
1862 
1863 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1864 			   fb->base.width,
1865 			   fb->base.height,
1866 			   fb->base.format->depth,
1867 			   fb->base.format->cpp[0] * 8,
1868 			   fb->base.modifier,
1869 			   drm_framebuffer_read_refcount(&fb->base));
1870 		describe_obj(m, fb->obj);
1871 		seq_putc(m, '\n');
1872 	}
1873 	mutex_unlock(&dev->mode_config.fb_lock);
1874 	mutex_unlock(&dev->struct_mutex);
1875 
1876 	return 0;
1877 }
1878 
1879 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1880 {
1881 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u)",
1882 		   ring->space, ring->head, ring->tail);
1883 }
1884 
1885 static int i915_context_status(struct seq_file *m, void *unused)
1886 {
1887 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1888 	struct drm_device *dev = &dev_priv->drm;
1889 	struct intel_engine_cs *engine;
1890 	struct i915_gem_context *ctx;
1891 	enum intel_engine_id id;
1892 	int ret;
1893 
1894 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1895 	if (ret)
1896 		return ret;
1897 
1898 	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1899 		seq_printf(m, "HW context %u ", ctx->hw_id);
1900 		if (ctx->pid) {
1901 			struct task_struct *task;
1902 
1903 			task = get_pid_task(ctx->pid, PIDTYPE_PID);
1904 			if (task) {
1905 				seq_printf(m, "(%s [%d]) ",
1906 					   task->comm, task->pid);
1907 				put_task_struct(task);
1908 			}
1909 		} else if (IS_ERR(ctx->file_priv)) {
1910 			seq_puts(m, "(deleted) ");
1911 		} else {
1912 			seq_puts(m, "(kernel) ");
1913 		}
1914 
1915 		seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1916 		seq_putc(m, '\n');
1917 
1918 		for_each_engine(engine, dev_priv, id) {
1919 			struct intel_context *ce = &ctx->engine[engine->id];
1920 
1921 			seq_printf(m, "%s: ", engine->name);
1922 			if (ce->state)
1923 				describe_obj(m, ce->state->obj);
1924 			if (ce->ring)
1925 				describe_ctx_ring(m, ce->ring);
1926 			seq_putc(m, '\n');
1927 		}
1928 
1929 		seq_putc(m, '\n');
1930 	}
1931 
1932 	mutex_unlock(&dev->struct_mutex);
1933 
1934 	return 0;
1935 }
1936 
1937 static const char *swizzle_string(unsigned swizzle)
1938 {
1939 	switch (swizzle) {
1940 	case I915_BIT_6_SWIZZLE_NONE:
1941 		return "none";
1942 	case I915_BIT_6_SWIZZLE_9:
1943 		return "bit9";
1944 	case I915_BIT_6_SWIZZLE_9_10:
1945 		return "bit9/bit10";
1946 	case I915_BIT_6_SWIZZLE_9_11:
1947 		return "bit9/bit11";
1948 	case I915_BIT_6_SWIZZLE_9_10_11:
1949 		return "bit9/bit10/bit11";
1950 	case I915_BIT_6_SWIZZLE_9_17:
1951 		return "bit9/bit17";
1952 	case I915_BIT_6_SWIZZLE_9_10_17:
1953 		return "bit9/bit10/bit17";
1954 	case I915_BIT_6_SWIZZLE_UNKNOWN:
1955 		return "unknown";
1956 	}
1957 
1958 	return "bug";
1959 }
1960 
1961 static int i915_swizzle_info(struct seq_file *m, void *data)
1962 {
1963 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1964 
1965 	intel_runtime_pm_get(dev_priv);
1966 
1967 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1968 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1969 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1970 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1971 
1972 	if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
1973 		seq_printf(m, "DDC = 0x%08x\n",
1974 			   I915_READ(DCC));
1975 		seq_printf(m, "DDC2 = 0x%08x\n",
1976 			   I915_READ(DCC2));
1977 		seq_printf(m, "C0DRB3 = 0x%04x\n",
1978 			   I915_READ16(C0DRB3));
1979 		seq_printf(m, "C1DRB3 = 0x%04x\n",
1980 			   I915_READ16(C1DRB3));
1981 	} else if (INTEL_GEN(dev_priv) >= 6) {
1982 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1983 			   I915_READ(MAD_DIMM_C0));
1984 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1985 			   I915_READ(MAD_DIMM_C1));
1986 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1987 			   I915_READ(MAD_DIMM_C2));
1988 		seq_printf(m, "TILECTL = 0x%08x\n",
1989 			   I915_READ(TILECTL));
1990 		if (INTEL_GEN(dev_priv) >= 8)
1991 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1992 				   I915_READ(GAMTARBMODE));
1993 		else
1994 			seq_printf(m, "ARB_MODE = 0x%08x\n",
1995 				   I915_READ(ARB_MODE));
1996 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1997 			   I915_READ(DISP_ARB_CTL));
1998 	}
1999 
2000 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2001 		seq_puts(m, "L-shaped memory detected\n");
2002 
2003 	intel_runtime_pm_put(dev_priv);
2004 
2005 	return 0;
2006 }
2007 
2008 static int per_file_ctx(int id, void *ptr, void *data)
2009 {
2010 	struct i915_gem_context *ctx = ptr;
2011 	struct seq_file *m = data;
2012 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2013 
2014 	if (!ppgtt) {
2015 		seq_printf(m, "  no ppgtt for context %d\n",
2016 			   ctx->user_handle);
2017 		return 0;
2018 	}
2019 
2020 	if (i915_gem_context_is_default(ctx))
2021 		seq_puts(m, "  default context:\n");
2022 	else
2023 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2024 	ppgtt->debug_dump(ppgtt, m);
2025 
2026 	return 0;
2027 }
2028 
2029 static void gen8_ppgtt_info(struct seq_file *m,
2030 			    struct drm_i915_private *dev_priv)
2031 {
2032 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2033 	struct intel_engine_cs *engine;
2034 	enum intel_engine_id id;
2035 	int i;
2036 
2037 	if (!ppgtt)
2038 		return;
2039 
2040 	for_each_engine(engine, dev_priv, id) {
2041 		seq_printf(m, "%s\n", engine->name);
2042 		for (i = 0; i < 4; i++) {
2043 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2044 			pdp <<= 32;
2045 			pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2046 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2047 		}
2048 	}
2049 }
2050 
2051 static void gen6_ppgtt_info(struct seq_file *m,
2052 			    struct drm_i915_private *dev_priv)
2053 {
2054 	struct intel_engine_cs *engine;
2055 	enum intel_engine_id id;
2056 
2057 	if (IS_GEN6(dev_priv))
2058 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2059 
2060 	for_each_engine(engine, dev_priv, id) {
2061 		seq_printf(m, "%s\n", engine->name);
2062 		if (IS_GEN7(dev_priv))
2063 			seq_printf(m, "GFX_MODE: 0x%08x\n",
2064 				   I915_READ(RING_MODE_GEN7(engine)));
2065 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2066 			   I915_READ(RING_PP_DIR_BASE(engine)));
2067 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2068 			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
2069 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2070 			   I915_READ(RING_PP_DIR_DCLV(engine)));
2071 	}
2072 	if (dev_priv->mm.aliasing_ppgtt) {
2073 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2074 
2075 		seq_puts(m, "aliasing PPGTT:\n");
2076 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2077 
2078 		ppgtt->debug_dump(ppgtt, m);
2079 	}
2080 
2081 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2082 }
2083 
2084 static int i915_ppgtt_info(struct seq_file *m, void *data)
2085 {
2086 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2087 	struct drm_device *dev = &dev_priv->drm;
2088 	struct drm_file *file;
2089 	int ret;
2090 
2091 	mutex_lock(&dev->filelist_mutex);
2092 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2093 	if (ret)
2094 		goto out_unlock;
2095 
2096 	intel_runtime_pm_get(dev_priv);
2097 
2098 	if (INTEL_GEN(dev_priv) >= 8)
2099 		gen8_ppgtt_info(m, dev_priv);
2100 	else if (INTEL_GEN(dev_priv) >= 6)
2101 		gen6_ppgtt_info(m, dev_priv);
2102 
2103 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2104 		struct drm_i915_file_private *file_priv = file->driver_priv;
2105 		struct task_struct *task;
2106 
2107 		task = get_pid_task(file->pid, PIDTYPE_PID);
2108 		if (!task) {
2109 			ret = -ESRCH;
2110 			goto out_rpm;
2111 		}
2112 		seq_printf(m, "\nproc: %s\n", task->comm);
2113 		put_task_struct(task);
2114 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2115 			     (void *)(unsigned long)m);
2116 	}
2117 
2118 out_rpm:
2119 	intel_runtime_pm_put(dev_priv);
2120 	mutex_unlock(&dev->struct_mutex);
2121 out_unlock:
2122 	mutex_unlock(&dev->filelist_mutex);
2123 	return ret;
2124 }
2125 
2126 static int count_irq_waiters(struct drm_i915_private *i915)
2127 {
2128 	struct intel_engine_cs *engine;
2129 	enum intel_engine_id id;
2130 	int count = 0;
2131 
2132 	for_each_engine(engine, i915, id)
2133 		count += intel_engine_has_waiter(engine);
2134 
2135 	return count;
2136 }
2137 
2138 static const char *rps_power_to_str(unsigned int power)
2139 {
2140 	static const char * const strings[] = {
2141 		[LOW_POWER] = "low power",
2142 		[BETWEEN] = "mixed",
2143 		[HIGH_POWER] = "high power",
2144 	};
2145 
2146 	if (power >= ARRAY_SIZE(strings) || !strings[power])
2147 		return "unknown";
2148 
2149 	return strings[power];
2150 }
2151 
2152 static int i915_rps_boost_info(struct seq_file *m, void *data)
2153 {
2154 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2155 	struct drm_device *dev = &dev_priv->drm;
2156 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
2157 	struct drm_file *file;
2158 
2159 	seq_printf(m, "RPS enabled? %d\n", rps->enabled);
2160 	seq_printf(m, "GPU busy? %s [%d requests]\n",
2161 		   yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
2162 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2163 	seq_printf(m, "Boosts outstanding? %d\n",
2164 		   atomic_read(&rps->num_waiters));
2165 	seq_printf(m, "Frequency requested %d\n",
2166 		   intel_gpu_freq(dev_priv, rps->cur_freq));
2167 	seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2168 		   intel_gpu_freq(dev_priv, rps->min_freq),
2169 		   intel_gpu_freq(dev_priv, rps->min_freq_softlimit),
2170 		   intel_gpu_freq(dev_priv, rps->max_freq_softlimit),
2171 		   intel_gpu_freq(dev_priv, rps->max_freq));
2172 	seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2173 		   intel_gpu_freq(dev_priv, rps->idle_freq),
2174 		   intel_gpu_freq(dev_priv, rps->efficient_freq),
2175 		   intel_gpu_freq(dev_priv, rps->boost_freq));
2176 
2177 	mutex_lock(&dev->filelist_mutex);
2178 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2179 		struct drm_i915_file_private *file_priv = file->driver_priv;
2180 		struct task_struct *task;
2181 
2182 		rcu_read_lock();
2183 		task = pid_task(file->pid, PIDTYPE_PID);
2184 		seq_printf(m, "%s [%d]: %d boosts\n",
2185 			   task ? task->comm : "<unknown>",
2186 			   task ? task->pid : -1,
2187 			   atomic_read(&file_priv->rps_client.boosts));
2188 		rcu_read_unlock();
2189 	}
2190 	seq_printf(m, "Kernel (anonymous) boosts: %d\n",
2191 		   atomic_read(&rps->boosts));
2192 	mutex_unlock(&dev->filelist_mutex);
2193 
2194 	if (INTEL_GEN(dev_priv) >= 6 &&
2195 	    rps->enabled &&
2196 	    dev_priv->gt.active_requests) {
2197 		u32 rpup, rpupei;
2198 		u32 rpdown, rpdownei;
2199 
2200 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2201 		rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2202 		rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2203 		rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2204 		rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2205 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2206 
2207 		seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2208 			   rps_power_to_str(rps->power));
2209 		seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2210 			   rpup && rpupei ? 100 * rpup / rpupei : 0,
2211 			   rps->up_threshold);
2212 		seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2213 			   rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
2214 			   rps->down_threshold);
2215 	} else {
2216 		seq_puts(m, "\nRPS Autotuning inactive\n");
2217 	}
2218 
2219 	return 0;
2220 }
2221 
2222 static int i915_llc(struct seq_file *m, void *data)
2223 {
2224 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2225 	const bool edram = INTEL_GEN(dev_priv) > 8;
2226 
2227 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2228 	seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2229 		   intel_uncore_edram_size(dev_priv)/1024/1024);
2230 
2231 	return 0;
2232 }
2233 
2234 static int i915_huc_load_status_info(struct seq_file *m, void *data)
2235 {
2236 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2237 	struct drm_printer p;
2238 
2239 	if (!HAS_HUC(dev_priv))
2240 		return -ENODEV;
2241 
2242 	p = drm_seq_file_printer(m);
2243 	intel_uc_fw_dump(&dev_priv->huc.fw, &p);
2244 
2245 	intel_runtime_pm_get(dev_priv);
2246 	seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
2247 	intel_runtime_pm_put(dev_priv);
2248 
2249 	return 0;
2250 }
2251 
2252 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2253 {
2254 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2255 	struct drm_printer p;
2256 	u32 tmp, i;
2257 
2258 	if (!HAS_GUC(dev_priv))
2259 		return -ENODEV;
2260 
2261 	p = drm_seq_file_printer(m);
2262 	intel_uc_fw_dump(&dev_priv->guc.fw, &p);
2263 
2264 	intel_runtime_pm_get(dev_priv);
2265 
2266 	tmp = I915_READ(GUC_STATUS);
2267 
2268 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2269 	seq_printf(m, "\tBootrom status = 0x%x\n",
2270 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2271 	seq_printf(m, "\tuKernel status = 0x%x\n",
2272 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2273 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2274 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2275 	seq_puts(m, "\nScratch registers:\n");
2276 	for (i = 0; i < 16; i++)
2277 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2278 
2279 	intel_runtime_pm_put(dev_priv);
2280 
2281 	return 0;
2282 }
2283 
2284 static void i915_guc_log_info(struct seq_file *m,
2285 			      struct drm_i915_private *dev_priv)
2286 {
2287 	struct intel_guc *guc = &dev_priv->guc;
2288 
2289 	seq_puts(m, "\nGuC logging stats:\n");
2290 
2291 	seq_printf(m, "\tISR:   flush count %10u, overflow count %10u\n",
2292 		   guc->log.flush_count[GUC_ISR_LOG_BUFFER],
2293 		   guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
2294 
2295 	seq_printf(m, "\tDPC:   flush count %10u, overflow count %10u\n",
2296 		   guc->log.flush_count[GUC_DPC_LOG_BUFFER],
2297 		   guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
2298 
2299 	seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
2300 		   guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
2301 		   guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
2302 
2303 	seq_printf(m, "\tTotal flush interrupt count: %u\n",
2304 		   guc->log.flush_interrupt_count);
2305 
2306 	seq_printf(m, "\tCapture miss count: %u\n",
2307 		   guc->log.capture_miss_count);
2308 }
2309 
2310 static void i915_guc_client_info(struct seq_file *m,
2311 				 struct drm_i915_private *dev_priv,
2312 				 struct intel_guc_client *client)
2313 {
2314 	struct intel_engine_cs *engine;
2315 	enum intel_engine_id id;
2316 	uint64_t tot = 0;
2317 
2318 	seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
2319 		client->priority, client->stage_id, client->proc_desc_offset);
2320 	seq_printf(m, "\tDoorbell id %d, offset: 0x%lx\n",
2321 		client->doorbell_id, client->doorbell_offset);
2322 
2323 	for_each_engine(engine, dev_priv, id) {
2324 		u64 submissions = client->submissions[id];
2325 		tot += submissions;
2326 		seq_printf(m, "\tSubmissions: %llu %s\n",
2327 				submissions, engine->name);
2328 	}
2329 	seq_printf(m, "\tTotal: %llu\n", tot);
2330 }
2331 
2332 static int i915_guc_info(struct seq_file *m, void *data)
2333 {
2334 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2335 	const struct intel_guc *guc = &dev_priv->guc;
2336 
2337 	if (!USES_GUC_SUBMISSION(dev_priv))
2338 		return -ENODEV;
2339 
2340 	GEM_BUG_ON(!guc->execbuf_client);
2341 	GEM_BUG_ON(!guc->preempt_client);
2342 
2343 	seq_printf(m, "Doorbell map:\n");
2344 	seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
2345 	seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
2346 
2347 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
2348 	i915_guc_client_info(m, dev_priv, guc->execbuf_client);
2349 	seq_printf(m, "\nGuC preempt client @ %p:\n", guc->preempt_client);
2350 	i915_guc_client_info(m, dev_priv, guc->preempt_client);
2351 
2352 	i915_guc_log_info(m, dev_priv);
2353 
2354 	/* Add more as required ... */
2355 
2356 	return 0;
2357 }
2358 
2359 static int i915_guc_stage_pool(struct seq_file *m, void *data)
2360 {
2361 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2362 	const struct intel_guc *guc = &dev_priv->guc;
2363 	struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
2364 	struct intel_guc_client *client = guc->execbuf_client;
2365 	unsigned int tmp;
2366 	int index;
2367 
2368 	if (!USES_GUC_SUBMISSION(dev_priv))
2369 		return -ENODEV;
2370 
2371 	for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
2372 		struct intel_engine_cs *engine;
2373 
2374 		if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
2375 			continue;
2376 
2377 		seq_printf(m, "GuC stage descriptor %u:\n", index);
2378 		seq_printf(m, "\tIndex: %u\n", desc->stage_id);
2379 		seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
2380 		seq_printf(m, "\tPriority: %d\n", desc->priority);
2381 		seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
2382 		seq_printf(m, "\tEngines used: 0x%x\n",
2383 			   desc->engines_used);
2384 		seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
2385 			   desc->db_trigger_phy,
2386 			   desc->db_trigger_cpu,
2387 			   desc->db_trigger_uk);
2388 		seq_printf(m, "\tProcess descriptor: 0x%x\n",
2389 			   desc->process_desc);
2390 		seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
2391 			   desc->wq_addr, desc->wq_size);
2392 		seq_putc(m, '\n');
2393 
2394 		for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
2395 			u32 guc_engine_id = engine->guc_id;
2396 			struct guc_execlist_context *lrc =
2397 						&desc->lrc[guc_engine_id];
2398 
2399 			seq_printf(m, "\t%s LRC:\n", engine->name);
2400 			seq_printf(m, "\t\tContext desc: 0x%x\n",
2401 				   lrc->context_desc);
2402 			seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
2403 			seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
2404 			seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
2405 			seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
2406 			seq_putc(m, '\n');
2407 		}
2408 	}
2409 
2410 	return 0;
2411 }
2412 
2413 static int i915_guc_log_dump(struct seq_file *m, void *data)
2414 {
2415 	struct drm_info_node *node = m->private;
2416 	struct drm_i915_private *dev_priv = node_to_i915(node);
2417 	bool dump_load_err = !!node->info_ent->data;
2418 	struct drm_i915_gem_object *obj = NULL;
2419 	u32 *log;
2420 	int i = 0;
2421 
2422 	if (!HAS_GUC(dev_priv))
2423 		return -ENODEV;
2424 
2425 	if (dump_load_err)
2426 		obj = dev_priv->guc.load_err_log;
2427 	else if (dev_priv->guc.log.vma)
2428 		obj = dev_priv->guc.log.vma->obj;
2429 
2430 	if (!obj)
2431 		return 0;
2432 
2433 	log = i915_gem_object_pin_map(obj, I915_MAP_WC);
2434 	if (IS_ERR(log)) {
2435 		DRM_DEBUG("Failed to pin object\n");
2436 		seq_puts(m, "(log data unaccessible)\n");
2437 		return PTR_ERR(log);
2438 	}
2439 
2440 	for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
2441 		seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2442 			   *(log + i), *(log + i + 1),
2443 			   *(log + i + 2), *(log + i + 3));
2444 
2445 	seq_putc(m, '\n');
2446 
2447 	i915_gem_object_unpin_map(obj);
2448 
2449 	return 0;
2450 }
2451 
2452 static int i915_guc_log_control_get(void *data, u64 *val)
2453 {
2454 	struct drm_i915_private *dev_priv = data;
2455 
2456 	if (!HAS_GUC(dev_priv))
2457 		return -ENODEV;
2458 
2459 	if (!dev_priv->guc.log.vma)
2460 		return -EINVAL;
2461 
2462 	*val = i915_modparams.guc_log_level;
2463 
2464 	return 0;
2465 }
2466 
2467 static int i915_guc_log_control_set(void *data, u64 val)
2468 {
2469 	struct drm_i915_private *dev_priv = data;
2470 
2471 	if (!HAS_GUC(dev_priv))
2472 		return -ENODEV;
2473 
2474 	return intel_guc_log_control(&dev_priv->guc, val);
2475 }
2476 
2477 DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
2478 			i915_guc_log_control_get, i915_guc_log_control_set,
2479 			"%lld\n");
2480 
2481 static const char *psr2_live_status(u32 val)
2482 {
2483 	static const char * const live_status[] = {
2484 		"IDLE",
2485 		"CAPTURE",
2486 		"CAPTURE_FS",
2487 		"SLEEP",
2488 		"BUFON_FW",
2489 		"ML_UP",
2490 		"SU_STANDBY",
2491 		"FAST_SLEEP",
2492 		"DEEP_SLEEP",
2493 		"BUF_ON",
2494 		"TG_ON"
2495 	};
2496 
2497 	val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
2498 	if (val < ARRAY_SIZE(live_status))
2499 		return live_status[val];
2500 
2501 	return "unknown";
2502 }
2503 
2504 static int i915_edp_psr_status(struct seq_file *m, void *data)
2505 {
2506 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2507 	u32 psrperf = 0;
2508 	u32 stat[3];
2509 	enum pipe pipe;
2510 	bool enabled = false;
2511 	bool sink_support;
2512 
2513 	if (!HAS_PSR(dev_priv))
2514 		return -ENODEV;
2515 
2516 	sink_support = dev_priv->psr.sink_support;
2517 	seq_printf(m, "Sink_Support: %s\n", yesno(sink_support));
2518 	if (!sink_support)
2519 		return 0;
2520 
2521 	intel_runtime_pm_get(dev_priv);
2522 
2523 	mutex_lock(&dev_priv->psr.lock);
2524 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2525 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2526 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2527 		   dev_priv->psr.busy_frontbuffer_bits);
2528 	seq_printf(m, "Re-enable work scheduled: %s\n",
2529 		   yesno(work_busy(&dev_priv->psr.work.work)));
2530 
2531 	if (HAS_DDI(dev_priv)) {
2532 		if (dev_priv->psr.psr2_support)
2533 			enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
2534 		else
2535 			enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2536 	} else {
2537 		for_each_pipe(dev_priv, pipe) {
2538 			enum transcoder cpu_transcoder =
2539 				intel_pipe_to_cpu_transcoder(dev_priv, pipe);
2540 			enum intel_display_power_domain power_domain;
2541 
2542 			power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
2543 			if (!intel_display_power_get_if_enabled(dev_priv,
2544 								power_domain))
2545 				continue;
2546 
2547 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2548 				VLV_EDP_PSR_CURR_STATE_MASK;
2549 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2550 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2551 				enabled = true;
2552 
2553 			intel_display_power_put(dev_priv, power_domain);
2554 		}
2555 	}
2556 
2557 	seq_printf(m, "Main link in standby mode: %s\n",
2558 		   yesno(dev_priv->psr.link_standby));
2559 
2560 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2561 
2562 	if (!HAS_DDI(dev_priv))
2563 		for_each_pipe(dev_priv, pipe) {
2564 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2565 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2566 				seq_printf(m, " pipe %c", pipe_name(pipe));
2567 		}
2568 	seq_puts(m, "\n");
2569 
2570 	/*
2571 	 * VLV/CHV PSR has no kind of performance counter
2572 	 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2573 	 */
2574 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2575 		psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2576 			EDP_PSR_PERF_CNT_MASK;
2577 
2578 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2579 	}
2580 	if (dev_priv->psr.psr2_support) {
2581 		u32 psr2 = I915_READ(EDP_PSR2_STATUS);
2582 
2583 		seq_printf(m, "EDP_PSR2_STATUS: %x [%s]\n",
2584 			   psr2, psr2_live_status(psr2));
2585 	}
2586 	mutex_unlock(&dev_priv->psr.lock);
2587 
2588 	intel_runtime_pm_put(dev_priv);
2589 	return 0;
2590 }
2591 
2592 static int i915_sink_crc(struct seq_file *m, void *data)
2593 {
2594 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2595 	struct drm_device *dev = &dev_priv->drm;
2596 	struct intel_connector *connector;
2597 	struct drm_connector_list_iter conn_iter;
2598 	struct intel_dp *intel_dp = NULL;
2599 	struct drm_modeset_acquire_ctx ctx;
2600 	int ret;
2601 	u8 crc[6];
2602 
2603 	drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
2604 
2605 	drm_connector_list_iter_begin(dev, &conn_iter);
2606 
2607 	for_each_intel_connector_iter(connector, &conn_iter) {
2608 		struct drm_crtc *crtc;
2609 		struct drm_connector_state *state;
2610 		struct intel_crtc_state *crtc_state;
2611 
2612 		if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2613 			continue;
2614 
2615 retry:
2616 		ret = drm_modeset_lock(&dev->mode_config.connection_mutex, &ctx);
2617 		if (ret)
2618 			goto err;
2619 
2620 		state = connector->base.state;
2621 		if (!state->best_encoder)
2622 			continue;
2623 
2624 		crtc = state->crtc;
2625 		ret = drm_modeset_lock(&crtc->mutex, &ctx);
2626 		if (ret)
2627 			goto err;
2628 
2629 		crtc_state = to_intel_crtc_state(crtc->state);
2630 		if (!crtc_state->base.active)
2631 			continue;
2632 
2633 		/*
2634 		 * We need to wait for all crtc updates to complete, to make
2635 		 * sure any pending modesets and plane updates are completed.
2636 		 */
2637 		if (crtc_state->base.commit) {
2638 			ret = wait_for_completion_interruptible(&crtc_state->base.commit->hw_done);
2639 
2640 			if (ret)
2641 				goto err;
2642 		}
2643 
2644 		intel_dp = enc_to_intel_dp(state->best_encoder);
2645 
2646 		ret = intel_dp_sink_crc(intel_dp, crtc_state, crc);
2647 		if (ret)
2648 			goto err;
2649 
2650 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2651 			   crc[0], crc[1], crc[2],
2652 			   crc[3], crc[4], crc[5]);
2653 		goto out;
2654 
2655 err:
2656 		if (ret == -EDEADLK) {
2657 			ret = drm_modeset_backoff(&ctx);
2658 			if (!ret)
2659 				goto retry;
2660 		}
2661 		goto out;
2662 	}
2663 	ret = -ENODEV;
2664 out:
2665 	drm_connector_list_iter_end(&conn_iter);
2666 	drm_modeset_drop_locks(&ctx);
2667 	drm_modeset_acquire_fini(&ctx);
2668 
2669 	return ret;
2670 }
2671 
2672 static int i915_energy_uJ(struct seq_file *m, void *data)
2673 {
2674 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2675 	unsigned long long power;
2676 	u32 units;
2677 
2678 	if (INTEL_GEN(dev_priv) < 6)
2679 		return -ENODEV;
2680 
2681 	intel_runtime_pm_get(dev_priv);
2682 
2683 	if (rdmsrl_safe(MSR_RAPL_POWER_UNIT, &power)) {
2684 		intel_runtime_pm_put(dev_priv);
2685 		return -ENODEV;
2686 	}
2687 
2688 	units = (power & 0x1f00) >> 8;
2689 	power = I915_READ(MCH_SECP_NRG_STTS);
2690 	power = (1000000 * power) >> units; /* convert to uJ */
2691 
2692 	intel_runtime_pm_put(dev_priv);
2693 
2694 	seq_printf(m, "%llu", power);
2695 
2696 	return 0;
2697 }
2698 
2699 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2700 {
2701 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2702 	struct pci_dev *pdev = dev_priv->drm.pdev;
2703 
2704 	if (!HAS_RUNTIME_PM(dev_priv))
2705 		seq_puts(m, "Runtime power management not supported\n");
2706 
2707 	seq_printf(m, "GPU idle: %s (epoch %u)\n",
2708 		   yesno(!dev_priv->gt.awake), dev_priv->gt.epoch);
2709 	seq_printf(m, "IRQs disabled: %s\n",
2710 		   yesno(!intel_irqs_enabled(dev_priv)));
2711 #ifdef CONFIG_PM
2712 	seq_printf(m, "Usage count: %d\n",
2713 		   atomic_read(&dev_priv->drm.dev->power.usage_count));
2714 #else
2715 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2716 #endif
2717 	seq_printf(m, "PCI device power state: %s [%d]\n",
2718 		   pci_power_name(pdev->current_state),
2719 		   pdev->current_state);
2720 
2721 	return 0;
2722 }
2723 
2724 static int i915_power_domain_info(struct seq_file *m, void *unused)
2725 {
2726 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2727 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2728 	int i;
2729 
2730 	mutex_lock(&power_domains->lock);
2731 
2732 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2733 	for (i = 0; i < power_domains->power_well_count; i++) {
2734 		struct i915_power_well *power_well;
2735 		enum intel_display_power_domain power_domain;
2736 
2737 		power_well = &power_domains->power_wells[i];
2738 		seq_printf(m, "%-25s %d\n", power_well->name,
2739 			   power_well->count);
2740 
2741 		for_each_power_domain(power_domain, power_well->domains)
2742 			seq_printf(m, "  %-23s %d\n",
2743 				 intel_display_power_domain_str(power_domain),
2744 				 power_domains->domain_use_count[power_domain]);
2745 	}
2746 
2747 	mutex_unlock(&power_domains->lock);
2748 
2749 	return 0;
2750 }
2751 
2752 static int i915_dmc_info(struct seq_file *m, void *unused)
2753 {
2754 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2755 	struct intel_csr *csr;
2756 
2757 	if (!HAS_CSR(dev_priv))
2758 		return -ENODEV;
2759 
2760 	csr = &dev_priv->csr;
2761 
2762 	intel_runtime_pm_get(dev_priv);
2763 
2764 	seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2765 	seq_printf(m, "path: %s\n", csr->fw_path);
2766 
2767 	if (!csr->dmc_payload)
2768 		goto out;
2769 
2770 	seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2771 		   CSR_VERSION_MINOR(csr->version));
2772 
2773 	if (IS_KABYLAKE(dev_priv) ||
2774 	    (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6))) {
2775 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2776 			   I915_READ(SKL_CSR_DC3_DC5_COUNT));
2777 		seq_printf(m, "DC5 -> DC6 count: %d\n",
2778 			   I915_READ(SKL_CSR_DC5_DC6_COUNT));
2779 	} else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2780 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2781 			   I915_READ(BXT_CSR_DC3_DC5_COUNT));
2782 	}
2783 
2784 out:
2785 	seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2786 	seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2787 	seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2788 
2789 	intel_runtime_pm_put(dev_priv);
2790 
2791 	return 0;
2792 }
2793 
2794 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2795 				 struct drm_display_mode *mode)
2796 {
2797 	int i;
2798 
2799 	for (i = 0; i < tabs; i++)
2800 		seq_putc(m, '\t');
2801 
2802 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2803 		   mode->base.id, mode->name,
2804 		   mode->vrefresh, mode->clock,
2805 		   mode->hdisplay, mode->hsync_start,
2806 		   mode->hsync_end, mode->htotal,
2807 		   mode->vdisplay, mode->vsync_start,
2808 		   mode->vsync_end, mode->vtotal,
2809 		   mode->type, mode->flags);
2810 }
2811 
2812 static void intel_encoder_info(struct seq_file *m,
2813 			       struct intel_crtc *intel_crtc,
2814 			       struct intel_encoder *intel_encoder)
2815 {
2816 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2817 	struct drm_device *dev = &dev_priv->drm;
2818 	struct drm_crtc *crtc = &intel_crtc->base;
2819 	struct intel_connector *intel_connector;
2820 	struct drm_encoder *encoder;
2821 
2822 	encoder = &intel_encoder->base;
2823 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2824 		   encoder->base.id, encoder->name);
2825 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2826 		struct drm_connector *connector = &intel_connector->base;
2827 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2828 			   connector->base.id,
2829 			   connector->name,
2830 			   drm_get_connector_status_name(connector->status));
2831 		if (connector->status == connector_status_connected) {
2832 			struct drm_display_mode *mode = &crtc->mode;
2833 			seq_printf(m, ", mode:\n");
2834 			intel_seq_print_mode(m, 2, mode);
2835 		} else {
2836 			seq_putc(m, '\n');
2837 		}
2838 	}
2839 }
2840 
2841 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2842 {
2843 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2844 	struct drm_device *dev = &dev_priv->drm;
2845 	struct drm_crtc *crtc = &intel_crtc->base;
2846 	struct intel_encoder *intel_encoder;
2847 	struct drm_plane_state *plane_state = crtc->primary->state;
2848 	struct drm_framebuffer *fb = plane_state->fb;
2849 
2850 	if (fb)
2851 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2852 			   fb->base.id, plane_state->src_x >> 16,
2853 			   plane_state->src_y >> 16, fb->width, fb->height);
2854 	else
2855 		seq_puts(m, "\tprimary plane disabled\n");
2856 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2857 		intel_encoder_info(m, intel_crtc, intel_encoder);
2858 }
2859 
2860 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2861 {
2862 	struct drm_display_mode *mode = panel->fixed_mode;
2863 
2864 	seq_printf(m, "\tfixed mode:\n");
2865 	intel_seq_print_mode(m, 2, mode);
2866 }
2867 
2868 static void intel_dp_info(struct seq_file *m,
2869 			  struct intel_connector *intel_connector)
2870 {
2871 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2872 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2873 
2874 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2875 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2876 	if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2877 		intel_panel_info(m, &intel_connector->panel);
2878 
2879 	drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2880 				&intel_dp->aux);
2881 }
2882 
2883 static void intel_dp_mst_info(struct seq_file *m,
2884 			  struct intel_connector *intel_connector)
2885 {
2886 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2887 	struct intel_dp_mst_encoder *intel_mst =
2888 		enc_to_mst(&intel_encoder->base);
2889 	struct intel_digital_port *intel_dig_port = intel_mst->primary;
2890 	struct intel_dp *intel_dp = &intel_dig_port->dp;
2891 	bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2892 					intel_connector->port);
2893 
2894 	seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2895 }
2896 
2897 static void intel_hdmi_info(struct seq_file *m,
2898 			    struct intel_connector *intel_connector)
2899 {
2900 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2901 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2902 
2903 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2904 }
2905 
2906 static void intel_lvds_info(struct seq_file *m,
2907 			    struct intel_connector *intel_connector)
2908 {
2909 	intel_panel_info(m, &intel_connector->panel);
2910 }
2911 
2912 static void intel_connector_info(struct seq_file *m,
2913 				 struct drm_connector *connector)
2914 {
2915 	struct intel_connector *intel_connector = to_intel_connector(connector);
2916 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2917 	struct drm_display_mode *mode;
2918 
2919 	seq_printf(m, "connector %d: type %s, status: %s\n",
2920 		   connector->base.id, connector->name,
2921 		   drm_get_connector_status_name(connector->status));
2922 	if (connector->status == connector_status_connected) {
2923 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
2924 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2925 			   connector->display_info.width_mm,
2926 			   connector->display_info.height_mm);
2927 		seq_printf(m, "\tsubpixel order: %s\n",
2928 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2929 		seq_printf(m, "\tCEA rev: %d\n",
2930 			   connector->display_info.cea_rev);
2931 	}
2932 
2933 	if (!intel_encoder)
2934 		return;
2935 
2936 	switch (connector->connector_type) {
2937 	case DRM_MODE_CONNECTOR_DisplayPort:
2938 	case DRM_MODE_CONNECTOR_eDP:
2939 		if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
2940 			intel_dp_mst_info(m, intel_connector);
2941 		else
2942 			intel_dp_info(m, intel_connector);
2943 		break;
2944 	case DRM_MODE_CONNECTOR_LVDS:
2945 		if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2946 			intel_lvds_info(m, intel_connector);
2947 		break;
2948 	case DRM_MODE_CONNECTOR_HDMIA:
2949 		if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
2950 		    intel_encoder->type == INTEL_OUTPUT_DDI)
2951 			intel_hdmi_info(m, intel_connector);
2952 		break;
2953 	default:
2954 		break;
2955 	}
2956 
2957 	seq_printf(m, "\tmodes:\n");
2958 	list_for_each_entry(mode, &connector->modes, head)
2959 		intel_seq_print_mode(m, 2, mode);
2960 }
2961 
2962 static const char *plane_type(enum drm_plane_type type)
2963 {
2964 	switch (type) {
2965 	case DRM_PLANE_TYPE_OVERLAY:
2966 		return "OVL";
2967 	case DRM_PLANE_TYPE_PRIMARY:
2968 		return "PRI";
2969 	case DRM_PLANE_TYPE_CURSOR:
2970 		return "CUR";
2971 	/*
2972 	 * Deliberately omitting default: to generate compiler warnings
2973 	 * when a new drm_plane_type gets added.
2974 	 */
2975 	}
2976 
2977 	return "unknown";
2978 }
2979 
2980 static const char *plane_rotation(unsigned int rotation)
2981 {
2982 	static char buf[48];
2983 	/*
2984 	 * According to doc only one DRM_MODE_ROTATE_ is allowed but this
2985 	 * will print them all to visualize if the values are misused
2986 	 */
2987 	snprintf(buf, sizeof(buf),
2988 		 "%s%s%s%s%s%s(0x%08x)",
2989 		 (rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
2990 		 (rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
2991 		 (rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
2992 		 (rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
2993 		 (rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
2994 		 (rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
2995 		 rotation);
2996 
2997 	return buf;
2998 }
2999 
3000 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3001 {
3002 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3003 	struct drm_device *dev = &dev_priv->drm;
3004 	struct intel_plane *intel_plane;
3005 
3006 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3007 		struct drm_plane_state *state;
3008 		struct drm_plane *plane = &intel_plane->base;
3009 		struct drm_format_name_buf format_name;
3010 
3011 		if (!plane->state) {
3012 			seq_puts(m, "plane->state is NULL!\n");
3013 			continue;
3014 		}
3015 
3016 		state = plane->state;
3017 
3018 		if (state->fb) {
3019 			drm_get_format_name(state->fb->format->format,
3020 					    &format_name);
3021 		} else {
3022 			sprintf(format_name.str, "N/A");
3023 		}
3024 
3025 		seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3026 			   plane->base.id,
3027 			   plane_type(intel_plane->base.type),
3028 			   state->crtc_x, state->crtc_y,
3029 			   state->crtc_w, state->crtc_h,
3030 			   (state->src_x >> 16),
3031 			   ((state->src_x & 0xffff) * 15625) >> 10,
3032 			   (state->src_y >> 16),
3033 			   ((state->src_y & 0xffff) * 15625) >> 10,
3034 			   (state->src_w >> 16),
3035 			   ((state->src_w & 0xffff) * 15625) >> 10,
3036 			   (state->src_h >> 16),
3037 			   ((state->src_h & 0xffff) * 15625) >> 10,
3038 			   format_name.str,
3039 			   plane_rotation(state->rotation));
3040 	}
3041 }
3042 
3043 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3044 {
3045 	struct intel_crtc_state *pipe_config;
3046 	int num_scalers = intel_crtc->num_scalers;
3047 	int i;
3048 
3049 	pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3050 
3051 	/* Not all platformas have a scaler */
3052 	if (num_scalers) {
3053 		seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3054 			   num_scalers,
3055 			   pipe_config->scaler_state.scaler_users,
3056 			   pipe_config->scaler_state.scaler_id);
3057 
3058 		for (i = 0; i < num_scalers; i++) {
3059 			struct intel_scaler *sc =
3060 					&pipe_config->scaler_state.scalers[i];
3061 
3062 			seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3063 				   i, yesno(sc->in_use), sc->mode);
3064 		}
3065 		seq_puts(m, "\n");
3066 	} else {
3067 		seq_puts(m, "\tNo scalers available on this platform\n");
3068 	}
3069 }
3070 
3071 static int i915_display_info(struct seq_file *m, void *unused)
3072 {
3073 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3074 	struct drm_device *dev = &dev_priv->drm;
3075 	struct intel_crtc *crtc;
3076 	struct drm_connector *connector;
3077 	struct drm_connector_list_iter conn_iter;
3078 
3079 	intel_runtime_pm_get(dev_priv);
3080 	seq_printf(m, "CRTC info\n");
3081 	seq_printf(m, "---------\n");
3082 	for_each_intel_crtc(dev, crtc) {
3083 		struct intel_crtc_state *pipe_config;
3084 
3085 		drm_modeset_lock(&crtc->base.mutex, NULL);
3086 		pipe_config = to_intel_crtc_state(crtc->base.state);
3087 
3088 		seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3089 			   crtc->base.base.id, pipe_name(crtc->pipe),
3090 			   yesno(pipe_config->base.active),
3091 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3092 			   yesno(pipe_config->dither), pipe_config->pipe_bpp);
3093 
3094 		if (pipe_config->base.active) {
3095 			struct intel_plane *cursor =
3096 				to_intel_plane(crtc->base.cursor);
3097 
3098 			intel_crtc_info(m, crtc);
3099 
3100 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
3101 				   yesno(cursor->base.state->visible),
3102 				   cursor->base.state->crtc_x,
3103 				   cursor->base.state->crtc_y,
3104 				   cursor->base.state->crtc_w,
3105 				   cursor->base.state->crtc_h,
3106 				   cursor->cursor.base);
3107 			intel_scaler_info(m, crtc);
3108 			intel_plane_info(m, crtc);
3109 		}
3110 
3111 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3112 			   yesno(!crtc->cpu_fifo_underrun_disabled),
3113 			   yesno(!crtc->pch_fifo_underrun_disabled));
3114 		drm_modeset_unlock(&crtc->base.mutex);
3115 	}
3116 
3117 	seq_printf(m, "\n");
3118 	seq_printf(m, "Connector info\n");
3119 	seq_printf(m, "--------------\n");
3120 	mutex_lock(&dev->mode_config.mutex);
3121 	drm_connector_list_iter_begin(dev, &conn_iter);
3122 	drm_for_each_connector_iter(connector, &conn_iter)
3123 		intel_connector_info(m, connector);
3124 	drm_connector_list_iter_end(&conn_iter);
3125 	mutex_unlock(&dev->mode_config.mutex);
3126 
3127 	intel_runtime_pm_put(dev_priv);
3128 
3129 	return 0;
3130 }
3131 
3132 static int i915_engine_info(struct seq_file *m, void *unused)
3133 {
3134 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3135 	struct intel_engine_cs *engine;
3136 	enum intel_engine_id id;
3137 	struct drm_printer p;
3138 
3139 	intel_runtime_pm_get(dev_priv);
3140 
3141 	seq_printf(m, "GT awake? %s (epoch %u)\n",
3142 		   yesno(dev_priv->gt.awake), dev_priv->gt.epoch);
3143 	seq_printf(m, "Global active requests: %d\n",
3144 		   dev_priv->gt.active_requests);
3145 	seq_printf(m, "CS timestamp frequency: %u kHz\n",
3146 		   dev_priv->info.cs_timestamp_frequency_khz);
3147 
3148 	p = drm_seq_file_printer(m);
3149 	for_each_engine(engine, dev_priv, id)
3150 		intel_engine_dump(engine, &p, "%s\n", engine->name);
3151 
3152 	intel_runtime_pm_put(dev_priv);
3153 
3154 	return 0;
3155 }
3156 
3157 static int i915_shrinker_info(struct seq_file *m, void *unused)
3158 {
3159 	struct drm_i915_private *i915 = node_to_i915(m->private);
3160 
3161 	seq_printf(m, "seeks = %d\n", i915->mm.shrinker.seeks);
3162 	seq_printf(m, "batch = %lu\n", i915->mm.shrinker.batch);
3163 
3164 	return 0;
3165 }
3166 
3167 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3168 {
3169 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3170 	struct drm_device *dev = &dev_priv->drm;
3171 	int i;
3172 
3173 	drm_modeset_lock_all(dev);
3174 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3175 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3176 
3177 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3178 		seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3179 			   pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
3180 		seq_printf(m, " tracked hardware state:\n");
3181 		seq_printf(m, " dpll:    0x%08x\n", pll->state.hw_state.dpll);
3182 		seq_printf(m, " dpll_md: 0x%08x\n",
3183 			   pll->state.hw_state.dpll_md);
3184 		seq_printf(m, " fp0:     0x%08x\n", pll->state.hw_state.fp0);
3185 		seq_printf(m, " fp1:     0x%08x\n", pll->state.hw_state.fp1);
3186 		seq_printf(m, " wrpll:   0x%08x\n", pll->state.hw_state.wrpll);
3187 	}
3188 	drm_modeset_unlock_all(dev);
3189 
3190 	return 0;
3191 }
3192 
3193 static int i915_wa_registers(struct seq_file *m, void *unused)
3194 {
3195 	int i;
3196 	int ret;
3197 	struct intel_engine_cs *engine;
3198 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3199 	struct drm_device *dev = &dev_priv->drm;
3200 	struct i915_workarounds *workarounds = &dev_priv->workarounds;
3201 	enum intel_engine_id id;
3202 
3203 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3204 	if (ret)
3205 		return ret;
3206 
3207 	intel_runtime_pm_get(dev_priv);
3208 
3209 	seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3210 	for_each_engine(engine, dev_priv, id)
3211 		seq_printf(m, "HW whitelist count for %s: %d\n",
3212 			   engine->name, workarounds->hw_whitelist_count[id]);
3213 	for (i = 0; i < workarounds->count; ++i) {
3214 		i915_reg_t addr;
3215 		u32 mask, value, read;
3216 		bool ok;
3217 
3218 		addr = workarounds->reg[i].addr;
3219 		mask = workarounds->reg[i].mask;
3220 		value = workarounds->reg[i].value;
3221 		read = I915_READ(addr);
3222 		ok = (value & mask) == (read & mask);
3223 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3224 			   i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3225 	}
3226 
3227 	intel_runtime_pm_put(dev_priv);
3228 	mutex_unlock(&dev->struct_mutex);
3229 
3230 	return 0;
3231 }
3232 
3233 static int i915_ipc_status_show(struct seq_file *m, void *data)
3234 {
3235 	struct drm_i915_private *dev_priv = m->private;
3236 
3237 	seq_printf(m, "Isochronous Priority Control: %s\n",
3238 			yesno(dev_priv->ipc_enabled));
3239 	return 0;
3240 }
3241 
3242 static int i915_ipc_status_open(struct inode *inode, struct file *file)
3243 {
3244 	struct drm_i915_private *dev_priv = inode->i_private;
3245 
3246 	if (!HAS_IPC(dev_priv))
3247 		return -ENODEV;
3248 
3249 	return single_open(file, i915_ipc_status_show, dev_priv);
3250 }
3251 
3252 static ssize_t i915_ipc_status_write(struct file *file, const char __user *ubuf,
3253 				     size_t len, loff_t *offp)
3254 {
3255 	struct seq_file *m = file->private_data;
3256 	struct drm_i915_private *dev_priv = m->private;
3257 	int ret;
3258 	bool enable;
3259 
3260 	ret = kstrtobool_from_user(ubuf, len, &enable);
3261 	if (ret < 0)
3262 		return ret;
3263 
3264 	intel_runtime_pm_get(dev_priv);
3265 	if (!dev_priv->ipc_enabled && enable)
3266 		DRM_INFO("Enabling IPC: WM will be proper only after next commit\n");
3267 	dev_priv->wm.distrust_bios_wm = true;
3268 	dev_priv->ipc_enabled = enable;
3269 	intel_enable_ipc(dev_priv);
3270 	intel_runtime_pm_put(dev_priv);
3271 
3272 	return len;
3273 }
3274 
3275 static const struct file_operations i915_ipc_status_fops = {
3276 	.owner = THIS_MODULE,
3277 	.open = i915_ipc_status_open,
3278 	.read = seq_read,
3279 	.llseek = seq_lseek,
3280 	.release = single_release,
3281 	.write = i915_ipc_status_write
3282 };
3283 
3284 static int i915_ddb_info(struct seq_file *m, void *unused)
3285 {
3286 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3287 	struct drm_device *dev = &dev_priv->drm;
3288 	struct skl_ddb_allocation *ddb;
3289 	struct skl_ddb_entry *entry;
3290 	enum pipe pipe;
3291 	int plane;
3292 
3293 	if (INTEL_GEN(dev_priv) < 9)
3294 		return -ENODEV;
3295 
3296 	drm_modeset_lock_all(dev);
3297 
3298 	ddb = &dev_priv->wm.skl_hw.ddb;
3299 
3300 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3301 
3302 	for_each_pipe(dev_priv, pipe) {
3303 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3304 
3305 		for_each_universal_plane(dev_priv, pipe, plane) {
3306 			entry = &ddb->plane[pipe][plane];
3307 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3308 				   entry->start, entry->end,
3309 				   skl_ddb_entry_size(entry));
3310 		}
3311 
3312 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3313 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3314 			   entry->end, skl_ddb_entry_size(entry));
3315 	}
3316 
3317 	drm_modeset_unlock_all(dev);
3318 
3319 	return 0;
3320 }
3321 
3322 static void drrs_status_per_crtc(struct seq_file *m,
3323 				 struct drm_device *dev,
3324 				 struct intel_crtc *intel_crtc)
3325 {
3326 	struct drm_i915_private *dev_priv = to_i915(dev);
3327 	struct i915_drrs *drrs = &dev_priv->drrs;
3328 	int vrefresh = 0;
3329 	struct drm_connector *connector;
3330 	struct drm_connector_list_iter conn_iter;
3331 
3332 	drm_connector_list_iter_begin(dev, &conn_iter);
3333 	drm_for_each_connector_iter(connector, &conn_iter) {
3334 		if (connector->state->crtc != &intel_crtc->base)
3335 			continue;
3336 
3337 		seq_printf(m, "%s:\n", connector->name);
3338 	}
3339 	drm_connector_list_iter_end(&conn_iter);
3340 
3341 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3342 		seq_puts(m, "\tVBT: DRRS_type: Static");
3343 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3344 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3345 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3346 		seq_puts(m, "\tVBT: DRRS_type: None");
3347 	else
3348 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3349 
3350 	seq_puts(m, "\n\n");
3351 
3352 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3353 		struct intel_panel *panel;
3354 
3355 		mutex_lock(&drrs->mutex);
3356 		/* DRRS Supported */
3357 		seq_puts(m, "\tDRRS Supported: Yes\n");
3358 
3359 		/* disable_drrs() will make drrs->dp NULL */
3360 		if (!drrs->dp) {
3361 			seq_puts(m, "Idleness DRRS: Disabled\n");
3362 			if (dev_priv->psr.enabled)
3363 				seq_puts(m,
3364 				"\tAs PSR is enabled, DRRS is not enabled\n");
3365 			mutex_unlock(&drrs->mutex);
3366 			return;
3367 		}
3368 
3369 		panel = &drrs->dp->attached_connector->panel;
3370 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3371 					drrs->busy_frontbuffer_bits);
3372 
3373 		seq_puts(m, "\n\t\t");
3374 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3375 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3376 			vrefresh = panel->fixed_mode->vrefresh;
3377 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3378 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3379 			vrefresh = panel->downclock_mode->vrefresh;
3380 		} else {
3381 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3382 						drrs->refresh_rate_type);
3383 			mutex_unlock(&drrs->mutex);
3384 			return;
3385 		}
3386 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3387 
3388 		seq_puts(m, "\n\t\t");
3389 		mutex_unlock(&drrs->mutex);
3390 	} else {
3391 		/* DRRS not supported. Print the VBT parameter*/
3392 		seq_puts(m, "\tDRRS Supported : No");
3393 	}
3394 	seq_puts(m, "\n");
3395 }
3396 
3397 static int i915_drrs_status(struct seq_file *m, void *unused)
3398 {
3399 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3400 	struct drm_device *dev = &dev_priv->drm;
3401 	struct intel_crtc *intel_crtc;
3402 	int active_crtc_cnt = 0;
3403 
3404 	drm_modeset_lock_all(dev);
3405 	for_each_intel_crtc(dev, intel_crtc) {
3406 		if (intel_crtc->base.state->active) {
3407 			active_crtc_cnt++;
3408 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3409 
3410 			drrs_status_per_crtc(m, dev, intel_crtc);
3411 		}
3412 	}
3413 	drm_modeset_unlock_all(dev);
3414 
3415 	if (!active_crtc_cnt)
3416 		seq_puts(m, "No active crtc found\n");
3417 
3418 	return 0;
3419 }
3420 
3421 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3422 {
3423 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3424 	struct drm_device *dev = &dev_priv->drm;
3425 	struct intel_encoder *intel_encoder;
3426 	struct intel_digital_port *intel_dig_port;
3427 	struct drm_connector *connector;
3428 	struct drm_connector_list_iter conn_iter;
3429 
3430 	drm_connector_list_iter_begin(dev, &conn_iter);
3431 	drm_for_each_connector_iter(connector, &conn_iter) {
3432 		if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3433 			continue;
3434 
3435 		intel_encoder = intel_attached_encoder(connector);
3436 		if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3437 			continue;
3438 
3439 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3440 		if (!intel_dig_port->dp.can_mst)
3441 			continue;
3442 
3443 		seq_printf(m, "MST Source Port %c\n",
3444 			   port_name(intel_dig_port->base.port));
3445 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3446 	}
3447 	drm_connector_list_iter_end(&conn_iter);
3448 
3449 	return 0;
3450 }
3451 
3452 static ssize_t i915_displayport_test_active_write(struct file *file,
3453 						  const char __user *ubuf,
3454 						  size_t len, loff_t *offp)
3455 {
3456 	char *input_buffer;
3457 	int status = 0;
3458 	struct drm_device *dev;
3459 	struct drm_connector *connector;
3460 	struct drm_connector_list_iter conn_iter;
3461 	struct intel_dp *intel_dp;
3462 	int val = 0;
3463 
3464 	dev = ((struct seq_file *)file->private_data)->private;
3465 
3466 	if (len == 0)
3467 		return 0;
3468 
3469 	input_buffer = memdup_user_nul(ubuf, len);
3470 	if (IS_ERR(input_buffer))
3471 		return PTR_ERR(input_buffer);
3472 
3473 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
3474 
3475 	drm_connector_list_iter_begin(dev, &conn_iter);
3476 	drm_for_each_connector_iter(connector, &conn_iter) {
3477 		struct intel_encoder *encoder;
3478 
3479 		if (connector->connector_type !=
3480 		    DRM_MODE_CONNECTOR_DisplayPort)
3481 			continue;
3482 
3483 		encoder = to_intel_encoder(connector->encoder);
3484 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3485 			continue;
3486 
3487 		if (encoder && connector->status == connector_status_connected) {
3488 			intel_dp = enc_to_intel_dp(&encoder->base);
3489 			status = kstrtoint(input_buffer, 10, &val);
3490 			if (status < 0)
3491 				break;
3492 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
3493 			/* To prevent erroneous activation of the compliance
3494 			 * testing code, only accept an actual value of 1 here
3495 			 */
3496 			if (val == 1)
3497 				intel_dp->compliance.test_active = 1;
3498 			else
3499 				intel_dp->compliance.test_active = 0;
3500 		}
3501 	}
3502 	drm_connector_list_iter_end(&conn_iter);
3503 	kfree(input_buffer);
3504 	if (status < 0)
3505 		return status;
3506 
3507 	*offp += len;
3508 	return len;
3509 }
3510 
3511 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
3512 {
3513 	struct drm_device *dev = m->private;
3514 	struct drm_connector *connector;
3515 	struct drm_connector_list_iter conn_iter;
3516 	struct intel_dp *intel_dp;
3517 
3518 	drm_connector_list_iter_begin(dev, &conn_iter);
3519 	drm_for_each_connector_iter(connector, &conn_iter) {
3520 		struct intel_encoder *encoder;
3521 
3522 		if (connector->connector_type !=
3523 		    DRM_MODE_CONNECTOR_DisplayPort)
3524 			continue;
3525 
3526 		encoder = to_intel_encoder(connector->encoder);
3527 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3528 			continue;
3529 
3530 		if (encoder && connector->status == connector_status_connected) {
3531 			intel_dp = enc_to_intel_dp(&encoder->base);
3532 			if (intel_dp->compliance.test_active)
3533 				seq_puts(m, "1");
3534 			else
3535 				seq_puts(m, "0");
3536 		} else
3537 			seq_puts(m, "0");
3538 	}
3539 	drm_connector_list_iter_end(&conn_iter);
3540 
3541 	return 0;
3542 }
3543 
3544 static int i915_displayport_test_active_open(struct inode *inode,
3545 					     struct file *file)
3546 {
3547 	struct drm_i915_private *dev_priv = inode->i_private;
3548 
3549 	return single_open(file, i915_displayport_test_active_show,
3550 			   &dev_priv->drm);
3551 }
3552 
3553 static const struct file_operations i915_displayport_test_active_fops = {
3554 	.owner = THIS_MODULE,
3555 	.open = i915_displayport_test_active_open,
3556 	.read = seq_read,
3557 	.llseek = seq_lseek,
3558 	.release = single_release,
3559 	.write = i915_displayport_test_active_write
3560 };
3561 
3562 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
3563 {
3564 	struct drm_device *dev = m->private;
3565 	struct drm_connector *connector;
3566 	struct drm_connector_list_iter conn_iter;
3567 	struct intel_dp *intel_dp;
3568 
3569 	drm_connector_list_iter_begin(dev, &conn_iter);
3570 	drm_for_each_connector_iter(connector, &conn_iter) {
3571 		struct intel_encoder *encoder;
3572 
3573 		if (connector->connector_type !=
3574 		    DRM_MODE_CONNECTOR_DisplayPort)
3575 			continue;
3576 
3577 		encoder = to_intel_encoder(connector->encoder);
3578 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3579 			continue;
3580 
3581 		if (encoder && connector->status == connector_status_connected) {
3582 			intel_dp = enc_to_intel_dp(&encoder->base);
3583 			if (intel_dp->compliance.test_type ==
3584 			    DP_TEST_LINK_EDID_READ)
3585 				seq_printf(m, "%lx",
3586 					   intel_dp->compliance.test_data.edid);
3587 			else if (intel_dp->compliance.test_type ==
3588 				 DP_TEST_LINK_VIDEO_PATTERN) {
3589 				seq_printf(m, "hdisplay: %d\n",
3590 					   intel_dp->compliance.test_data.hdisplay);
3591 				seq_printf(m, "vdisplay: %d\n",
3592 					   intel_dp->compliance.test_data.vdisplay);
3593 				seq_printf(m, "bpc: %u\n",
3594 					   intel_dp->compliance.test_data.bpc);
3595 			}
3596 		} else
3597 			seq_puts(m, "0");
3598 	}
3599 	drm_connector_list_iter_end(&conn_iter);
3600 
3601 	return 0;
3602 }
3603 static int i915_displayport_test_data_open(struct inode *inode,
3604 					   struct file *file)
3605 {
3606 	struct drm_i915_private *dev_priv = inode->i_private;
3607 
3608 	return single_open(file, i915_displayport_test_data_show,
3609 			   &dev_priv->drm);
3610 }
3611 
3612 static const struct file_operations i915_displayport_test_data_fops = {
3613 	.owner = THIS_MODULE,
3614 	.open = i915_displayport_test_data_open,
3615 	.read = seq_read,
3616 	.llseek = seq_lseek,
3617 	.release = single_release
3618 };
3619 
3620 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
3621 {
3622 	struct drm_device *dev = m->private;
3623 	struct drm_connector *connector;
3624 	struct drm_connector_list_iter conn_iter;
3625 	struct intel_dp *intel_dp;
3626 
3627 	drm_connector_list_iter_begin(dev, &conn_iter);
3628 	drm_for_each_connector_iter(connector, &conn_iter) {
3629 		struct intel_encoder *encoder;
3630 
3631 		if (connector->connector_type !=
3632 		    DRM_MODE_CONNECTOR_DisplayPort)
3633 			continue;
3634 
3635 		encoder = to_intel_encoder(connector->encoder);
3636 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3637 			continue;
3638 
3639 		if (encoder && connector->status == connector_status_connected) {
3640 			intel_dp = enc_to_intel_dp(&encoder->base);
3641 			seq_printf(m, "%02lx", intel_dp->compliance.test_type);
3642 		} else
3643 			seq_puts(m, "0");
3644 	}
3645 	drm_connector_list_iter_end(&conn_iter);
3646 
3647 	return 0;
3648 }
3649 
3650 static int i915_displayport_test_type_open(struct inode *inode,
3651 				       struct file *file)
3652 {
3653 	struct drm_i915_private *dev_priv = inode->i_private;
3654 
3655 	return single_open(file, i915_displayport_test_type_show,
3656 			   &dev_priv->drm);
3657 }
3658 
3659 static const struct file_operations i915_displayport_test_type_fops = {
3660 	.owner = THIS_MODULE,
3661 	.open = i915_displayport_test_type_open,
3662 	.read = seq_read,
3663 	.llseek = seq_lseek,
3664 	.release = single_release
3665 };
3666 
3667 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3668 {
3669 	struct drm_i915_private *dev_priv = m->private;
3670 	struct drm_device *dev = &dev_priv->drm;
3671 	int level;
3672 	int num_levels;
3673 
3674 	if (IS_CHERRYVIEW(dev_priv))
3675 		num_levels = 3;
3676 	else if (IS_VALLEYVIEW(dev_priv))
3677 		num_levels = 1;
3678 	else if (IS_G4X(dev_priv))
3679 		num_levels = 3;
3680 	else
3681 		num_levels = ilk_wm_max_level(dev_priv) + 1;
3682 
3683 	drm_modeset_lock_all(dev);
3684 
3685 	for (level = 0; level < num_levels; level++) {
3686 		unsigned int latency = wm[level];
3687 
3688 		/*
3689 		 * - WM1+ latency values in 0.5us units
3690 		 * - latencies are in us on gen9/vlv/chv
3691 		 */
3692 		if (INTEL_GEN(dev_priv) >= 9 ||
3693 		    IS_VALLEYVIEW(dev_priv) ||
3694 		    IS_CHERRYVIEW(dev_priv) ||
3695 		    IS_G4X(dev_priv))
3696 			latency *= 10;
3697 		else if (level > 0)
3698 			latency *= 5;
3699 
3700 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
3701 			   level, wm[level], latency / 10, latency % 10);
3702 	}
3703 
3704 	drm_modeset_unlock_all(dev);
3705 }
3706 
3707 static int pri_wm_latency_show(struct seq_file *m, void *data)
3708 {
3709 	struct drm_i915_private *dev_priv = m->private;
3710 	const uint16_t *latencies;
3711 
3712 	if (INTEL_GEN(dev_priv) >= 9)
3713 		latencies = dev_priv->wm.skl_latency;
3714 	else
3715 		latencies = dev_priv->wm.pri_latency;
3716 
3717 	wm_latency_show(m, latencies);
3718 
3719 	return 0;
3720 }
3721 
3722 static int spr_wm_latency_show(struct seq_file *m, void *data)
3723 {
3724 	struct drm_i915_private *dev_priv = m->private;
3725 	const uint16_t *latencies;
3726 
3727 	if (INTEL_GEN(dev_priv) >= 9)
3728 		latencies = dev_priv->wm.skl_latency;
3729 	else
3730 		latencies = dev_priv->wm.spr_latency;
3731 
3732 	wm_latency_show(m, latencies);
3733 
3734 	return 0;
3735 }
3736 
3737 static int cur_wm_latency_show(struct seq_file *m, void *data)
3738 {
3739 	struct drm_i915_private *dev_priv = m->private;
3740 	const uint16_t *latencies;
3741 
3742 	if (INTEL_GEN(dev_priv) >= 9)
3743 		latencies = dev_priv->wm.skl_latency;
3744 	else
3745 		latencies = dev_priv->wm.cur_latency;
3746 
3747 	wm_latency_show(m, latencies);
3748 
3749 	return 0;
3750 }
3751 
3752 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3753 {
3754 	struct drm_i915_private *dev_priv = inode->i_private;
3755 
3756 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
3757 		return -ENODEV;
3758 
3759 	return single_open(file, pri_wm_latency_show, dev_priv);
3760 }
3761 
3762 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3763 {
3764 	struct drm_i915_private *dev_priv = inode->i_private;
3765 
3766 	if (HAS_GMCH_DISPLAY(dev_priv))
3767 		return -ENODEV;
3768 
3769 	return single_open(file, spr_wm_latency_show, dev_priv);
3770 }
3771 
3772 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3773 {
3774 	struct drm_i915_private *dev_priv = inode->i_private;
3775 
3776 	if (HAS_GMCH_DISPLAY(dev_priv))
3777 		return -ENODEV;
3778 
3779 	return single_open(file, cur_wm_latency_show, dev_priv);
3780 }
3781 
3782 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3783 				size_t len, loff_t *offp, uint16_t wm[8])
3784 {
3785 	struct seq_file *m = file->private_data;
3786 	struct drm_i915_private *dev_priv = m->private;
3787 	struct drm_device *dev = &dev_priv->drm;
3788 	uint16_t new[8] = { 0 };
3789 	int num_levels;
3790 	int level;
3791 	int ret;
3792 	char tmp[32];
3793 
3794 	if (IS_CHERRYVIEW(dev_priv))
3795 		num_levels = 3;
3796 	else if (IS_VALLEYVIEW(dev_priv))
3797 		num_levels = 1;
3798 	else if (IS_G4X(dev_priv))
3799 		num_levels = 3;
3800 	else
3801 		num_levels = ilk_wm_max_level(dev_priv) + 1;
3802 
3803 	if (len >= sizeof(tmp))
3804 		return -EINVAL;
3805 
3806 	if (copy_from_user(tmp, ubuf, len))
3807 		return -EFAULT;
3808 
3809 	tmp[len] = '\0';
3810 
3811 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
3812 		     &new[0], &new[1], &new[2], &new[3],
3813 		     &new[4], &new[5], &new[6], &new[7]);
3814 	if (ret != num_levels)
3815 		return -EINVAL;
3816 
3817 	drm_modeset_lock_all(dev);
3818 
3819 	for (level = 0; level < num_levels; level++)
3820 		wm[level] = new[level];
3821 
3822 	drm_modeset_unlock_all(dev);
3823 
3824 	return len;
3825 }
3826 
3827 
3828 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3829 				    size_t len, loff_t *offp)
3830 {
3831 	struct seq_file *m = file->private_data;
3832 	struct drm_i915_private *dev_priv = m->private;
3833 	uint16_t *latencies;
3834 
3835 	if (INTEL_GEN(dev_priv) >= 9)
3836 		latencies = dev_priv->wm.skl_latency;
3837 	else
3838 		latencies = dev_priv->wm.pri_latency;
3839 
3840 	return wm_latency_write(file, ubuf, len, offp, latencies);
3841 }
3842 
3843 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3844 				    size_t len, loff_t *offp)
3845 {
3846 	struct seq_file *m = file->private_data;
3847 	struct drm_i915_private *dev_priv = m->private;
3848 	uint16_t *latencies;
3849 
3850 	if (INTEL_GEN(dev_priv) >= 9)
3851 		latencies = dev_priv->wm.skl_latency;
3852 	else
3853 		latencies = dev_priv->wm.spr_latency;
3854 
3855 	return wm_latency_write(file, ubuf, len, offp, latencies);
3856 }
3857 
3858 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3859 				    size_t len, loff_t *offp)
3860 {
3861 	struct seq_file *m = file->private_data;
3862 	struct drm_i915_private *dev_priv = m->private;
3863 	uint16_t *latencies;
3864 
3865 	if (INTEL_GEN(dev_priv) >= 9)
3866 		latencies = dev_priv->wm.skl_latency;
3867 	else
3868 		latencies = dev_priv->wm.cur_latency;
3869 
3870 	return wm_latency_write(file, ubuf, len, offp, latencies);
3871 }
3872 
3873 static const struct file_operations i915_pri_wm_latency_fops = {
3874 	.owner = THIS_MODULE,
3875 	.open = pri_wm_latency_open,
3876 	.read = seq_read,
3877 	.llseek = seq_lseek,
3878 	.release = single_release,
3879 	.write = pri_wm_latency_write
3880 };
3881 
3882 static const struct file_operations i915_spr_wm_latency_fops = {
3883 	.owner = THIS_MODULE,
3884 	.open = spr_wm_latency_open,
3885 	.read = seq_read,
3886 	.llseek = seq_lseek,
3887 	.release = single_release,
3888 	.write = spr_wm_latency_write
3889 };
3890 
3891 static const struct file_operations i915_cur_wm_latency_fops = {
3892 	.owner = THIS_MODULE,
3893 	.open = cur_wm_latency_open,
3894 	.read = seq_read,
3895 	.llseek = seq_lseek,
3896 	.release = single_release,
3897 	.write = cur_wm_latency_write
3898 };
3899 
3900 static int
3901 i915_wedged_get(void *data, u64 *val)
3902 {
3903 	struct drm_i915_private *dev_priv = data;
3904 
3905 	*val = i915_terminally_wedged(&dev_priv->gpu_error);
3906 
3907 	return 0;
3908 }
3909 
3910 static int
3911 i915_wedged_set(void *data, u64 val)
3912 {
3913 	struct drm_i915_private *i915 = data;
3914 	struct intel_engine_cs *engine;
3915 	unsigned int tmp;
3916 
3917 	/*
3918 	 * There is no safeguard against this debugfs entry colliding
3919 	 * with the hangcheck calling same i915_handle_error() in
3920 	 * parallel, causing an explosion. For now we assume that the
3921 	 * test harness is responsible enough not to inject gpu hangs
3922 	 * while it is writing to 'i915_wedged'
3923 	 */
3924 
3925 	if (i915_reset_backoff(&i915->gpu_error))
3926 		return -EAGAIN;
3927 
3928 	for_each_engine_masked(engine, i915, val, tmp) {
3929 		engine->hangcheck.seqno = intel_engine_get_seqno(engine);
3930 		engine->hangcheck.stalled = true;
3931 	}
3932 
3933 	i915_handle_error(i915, val, "Manually setting wedged to %llu", val);
3934 
3935 	wait_on_bit(&i915->gpu_error.flags,
3936 		    I915_RESET_HANDOFF,
3937 		    TASK_UNINTERRUPTIBLE);
3938 
3939 	return 0;
3940 }
3941 
3942 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3943 			i915_wedged_get, i915_wedged_set,
3944 			"%llu\n");
3945 
3946 static int
3947 fault_irq_set(struct drm_i915_private *i915,
3948 	      unsigned long *irq,
3949 	      unsigned long val)
3950 {
3951 	int err;
3952 
3953 	err = mutex_lock_interruptible(&i915->drm.struct_mutex);
3954 	if (err)
3955 		return err;
3956 
3957 	err = i915_gem_wait_for_idle(i915,
3958 				     I915_WAIT_LOCKED |
3959 				     I915_WAIT_INTERRUPTIBLE);
3960 	if (err)
3961 		goto err_unlock;
3962 
3963 	*irq = val;
3964 	mutex_unlock(&i915->drm.struct_mutex);
3965 
3966 	/* Flush idle worker to disarm irq */
3967 	drain_delayed_work(&i915->gt.idle_work);
3968 
3969 	return 0;
3970 
3971 err_unlock:
3972 	mutex_unlock(&i915->drm.struct_mutex);
3973 	return err;
3974 }
3975 
3976 static int
3977 i915_ring_missed_irq_get(void *data, u64 *val)
3978 {
3979 	struct drm_i915_private *dev_priv = data;
3980 
3981 	*val = dev_priv->gpu_error.missed_irq_rings;
3982 	return 0;
3983 }
3984 
3985 static int
3986 i915_ring_missed_irq_set(void *data, u64 val)
3987 {
3988 	struct drm_i915_private *i915 = data;
3989 
3990 	return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
3991 }
3992 
3993 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3994 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3995 			"0x%08llx\n");
3996 
3997 static int
3998 i915_ring_test_irq_get(void *data, u64 *val)
3999 {
4000 	struct drm_i915_private *dev_priv = data;
4001 
4002 	*val = dev_priv->gpu_error.test_irq_rings;
4003 
4004 	return 0;
4005 }
4006 
4007 static int
4008 i915_ring_test_irq_set(void *data, u64 val)
4009 {
4010 	struct drm_i915_private *i915 = data;
4011 
4012 	val &= INTEL_INFO(i915)->ring_mask;
4013 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4014 
4015 	return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
4016 }
4017 
4018 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4019 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4020 			"0x%08llx\n");
4021 
4022 #define DROP_UNBOUND	BIT(0)
4023 #define DROP_BOUND	BIT(1)
4024 #define DROP_RETIRE	BIT(2)
4025 #define DROP_ACTIVE	BIT(3)
4026 #define DROP_FREED	BIT(4)
4027 #define DROP_SHRINK_ALL	BIT(5)
4028 #define DROP_IDLE	BIT(6)
4029 #define DROP_ALL (DROP_UNBOUND	| \
4030 		  DROP_BOUND	| \
4031 		  DROP_RETIRE	| \
4032 		  DROP_ACTIVE	| \
4033 		  DROP_FREED	| \
4034 		  DROP_SHRINK_ALL |\
4035 		  DROP_IDLE)
4036 static int
4037 i915_drop_caches_get(void *data, u64 *val)
4038 {
4039 	*val = DROP_ALL;
4040 
4041 	return 0;
4042 }
4043 
4044 static int
4045 i915_drop_caches_set(void *data, u64 val)
4046 {
4047 	struct drm_i915_private *dev_priv = data;
4048 	struct drm_device *dev = &dev_priv->drm;
4049 	int ret = 0;
4050 
4051 	DRM_DEBUG("Dropping caches: 0x%08llx [0x%08llx]\n",
4052 		  val, val & DROP_ALL);
4053 
4054 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4055 	 * on ioctls on -EAGAIN. */
4056 	if (val & (DROP_ACTIVE | DROP_RETIRE)) {
4057 		ret = mutex_lock_interruptible(&dev->struct_mutex);
4058 		if (ret)
4059 			return ret;
4060 
4061 		if (val & DROP_ACTIVE)
4062 			ret = i915_gem_wait_for_idle(dev_priv,
4063 						     I915_WAIT_INTERRUPTIBLE |
4064 						     I915_WAIT_LOCKED);
4065 
4066 		if (val & DROP_RETIRE)
4067 			i915_gem_retire_requests(dev_priv);
4068 
4069 		mutex_unlock(&dev->struct_mutex);
4070 	}
4071 
4072 	fs_reclaim_acquire(GFP_KERNEL);
4073 	if (val & DROP_BOUND)
4074 		i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_BOUND);
4075 
4076 	if (val & DROP_UNBOUND)
4077 		i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_UNBOUND);
4078 
4079 	if (val & DROP_SHRINK_ALL)
4080 		i915_gem_shrink_all(dev_priv);
4081 	fs_reclaim_release(GFP_KERNEL);
4082 
4083 	if (val & DROP_IDLE)
4084 		drain_delayed_work(&dev_priv->gt.idle_work);
4085 
4086 	if (val & DROP_FREED) {
4087 		synchronize_rcu();
4088 		i915_gem_drain_freed_objects(dev_priv);
4089 	}
4090 
4091 	return ret;
4092 }
4093 
4094 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4095 			i915_drop_caches_get, i915_drop_caches_set,
4096 			"0x%08llx\n");
4097 
4098 static int
4099 i915_max_freq_get(void *data, u64 *val)
4100 {
4101 	struct drm_i915_private *dev_priv = data;
4102 
4103 	if (INTEL_GEN(dev_priv) < 6)
4104 		return -ENODEV;
4105 
4106 	*val = intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.max_freq_softlimit);
4107 	return 0;
4108 }
4109 
4110 static int
4111 i915_max_freq_set(void *data, u64 val)
4112 {
4113 	struct drm_i915_private *dev_priv = data;
4114 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4115 	u32 hw_max, hw_min;
4116 	int ret;
4117 
4118 	if (INTEL_GEN(dev_priv) < 6)
4119 		return -ENODEV;
4120 
4121 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4122 
4123 	ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
4124 	if (ret)
4125 		return ret;
4126 
4127 	/*
4128 	 * Turbo will still be enabled, but won't go above the set value.
4129 	 */
4130 	val = intel_freq_opcode(dev_priv, val);
4131 
4132 	hw_max = rps->max_freq;
4133 	hw_min = rps->min_freq;
4134 
4135 	if (val < hw_min || val > hw_max || val < rps->min_freq_softlimit) {
4136 		mutex_unlock(&dev_priv->pcu_lock);
4137 		return -EINVAL;
4138 	}
4139 
4140 	rps->max_freq_softlimit = val;
4141 
4142 	if (intel_set_rps(dev_priv, val))
4143 		DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4144 
4145 	mutex_unlock(&dev_priv->pcu_lock);
4146 
4147 	return 0;
4148 }
4149 
4150 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4151 			i915_max_freq_get, i915_max_freq_set,
4152 			"%llu\n");
4153 
4154 static int
4155 i915_min_freq_get(void *data, u64 *val)
4156 {
4157 	struct drm_i915_private *dev_priv = data;
4158 
4159 	if (INTEL_GEN(dev_priv) < 6)
4160 		return -ENODEV;
4161 
4162 	*val = intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.min_freq_softlimit);
4163 	return 0;
4164 }
4165 
4166 static int
4167 i915_min_freq_set(void *data, u64 val)
4168 {
4169 	struct drm_i915_private *dev_priv = data;
4170 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4171 	u32 hw_max, hw_min;
4172 	int ret;
4173 
4174 	if (INTEL_GEN(dev_priv) < 6)
4175 		return -ENODEV;
4176 
4177 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4178 
4179 	ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
4180 	if (ret)
4181 		return ret;
4182 
4183 	/*
4184 	 * Turbo will still be enabled, but won't go below the set value.
4185 	 */
4186 	val = intel_freq_opcode(dev_priv, val);
4187 
4188 	hw_max = rps->max_freq;
4189 	hw_min = rps->min_freq;
4190 
4191 	if (val < hw_min ||
4192 	    val > hw_max || val > rps->max_freq_softlimit) {
4193 		mutex_unlock(&dev_priv->pcu_lock);
4194 		return -EINVAL;
4195 	}
4196 
4197 	rps->min_freq_softlimit = val;
4198 
4199 	if (intel_set_rps(dev_priv, val))
4200 		DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4201 
4202 	mutex_unlock(&dev_priv->pcu_lock);
4203 
4204 	return 0;
4205 }
4206 
4207 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4208 			i915_min_freq_get, i915_min_freq_set,
4209 			"%llu\n");
4210 
4211 static int
4212 i915_cache_sharing_get(void *data, u64 *val)
4213 {
4214 	struct drm_i915_private *dev_priv = data;
4215 	u32 snpcr;
4216 
4217 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4218 		return -ENODEV;
4219 
4220 	intel_runtime_pm_get(dev_priv);
4221 
4222 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4223 
4224 	intel_runtime_pm_put(dev_priv);
4225 
4226 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4227 
4228 	return 0;
4229 }
4230 
4231 static int
4232 i915_cache_sharing_set(void *data, u64 val)
4233 {
4234 	struct drm_i915_private *dev_priv = data;
4235 	u32 snpcr;
4236 
4237 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4238 		return -ENODEV;
4239 
4240 	if (val > 3)
4241 		return -EINVAL;
4242 
4243 	intel_runtime_pm_get(dev_priv);
4244 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4245 
4246 	/* Update the cache sharing policy here as well */
4247 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4248 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
4249 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4250 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4251 
4252 	intel_runtime_pm_put(dev_priv);
4253 	return 0;
4254 }
4255 
4256 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4257 			i915_cache_sharing_get, i915_cache_sharing_set,
4258 			"%llu\n");
4259 
4260 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
4261 					  struct sseu_dev_info *sseu)
4262 {
4263 	int ss_max = 2;
4264 	int ss;
4265 	u32 sig1[ss_max], sig2[ss_max];
4266 
4267 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4268 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4269 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4270 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4271 
4272 	for (ss = 0; ss < ss_max; ss++) {
4273 		unsigned int eu_cnt;
4274 
4275 		if (sig1[ss] & CHV_SS_PG_ENABLE)
4276 			/* skip disabled subslice */
4277 			continue;
4278 
4279 		sseu->slice_mask = BIT(0);
4280 		sseu->subslice_mask |= BIT(ss);
4281 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4282 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4283 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4284 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4285 		sseu->eu_total += eu_cnt;
4286 		sseu->eu_per_subslice = max_t(unsigned int,
4287 					      sseu->eu_per_subslice, eu_cnt);
4288 	}
4289 }
4290 
4291 static void gen10_sseu_device_status(struct drm_i915_private *dev_priv,
4292 				     struct sseu_dev_info *sseu)
4293 {
4294 	const struct intel_device_info *info = INTEL_INFO(dev_priv);
4295 	int s_max = 6, ss_max = 4;
4296 	int s, ss;
4297 	u32 s_reg[s_max], eu_reg[2 * s_max], eu_mask[2];
4298 
4299 	for (s = 0; s < s_max; s++) {
4300 		/*
4301 		 * FIXME: Valid SS Mask respects the spec and read
4302 		 * only valid bits for those registers, excluding reserverd
4303 		 * although this seems wrong because it would leave many
4304 		 * subslices without ACK.
4305 		 */
4306 		s_reg[s] = I915_READ(GEN10_SLICE_PGCTL_ACK(s)) &
4307 			GEN10_PGCTL_VALID_SS_MASK(s);
4308 		eu_reg[2 * s] = I915_READ(GEN10_SS01_EU_PGCTL_ACK(s));
4309 		eu_reg[2 * s + 1] = I915_READ(GEN10_SS23_EU_PGCTL_ACK(s));
4310 	}
4311 
4312 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4313 		     GEN9_PGCTL_SSA_EU19_ACK |
4314 		     GEN9_PGCTL_SSA_EU210_ACK |
4315 		     GEN9_PGCTL_SSA_EU311_ACK;
4316 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4317 		     GEN9_PGCTL_SSB_EU19_ACK |
4318 		     GEN9_PGCTL_SSB_EU210_ACK |
4319 		     GEN9_PGCTL_SSB_EU311_ACK;
4320 
4321 	for (s = 0; s < s_max; s++) {
4322 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4323 			/* skip disabled slice */
4324 			continue;
4325 
4326 		sseu->slice_mask |= BIT(s);
4327 		sseu->subslice_mask = info->sseu.subslice_mask;
4328 
4329 		for (ss = 0; ss < ss_max; ss++) {
4330 			unsigned int eu_cnt;
4331 
4332 			if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4333 				/* skip disabled subslice */
4334 				continue;
4335 
4336 			eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
4337 					       eu_mask[ss % 2]);
4338 			sseu->eu_total += eu_cnt;
4339 			sseu->eu_per_subslice = max_t(unsigned int,
4340 						      sseu->eu_per_subslice,
4341 						      eu_cnt);
4342 		}
4343 	}
4344 }
4345 
4346 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
4347 				    struct sseu_dev_info *sseu)
4348 {
4349 	int s_max = 3, ss_max = 4;
4350 	int s, ss;
4351 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4352 
4353 	/* BXT has a single slice and at most 3 subslices. */
4354 	if (IS_GEN9_LP(dev_priv)) {
4355 		s_max = 1;
4356 		ss_max = 3;
4357 	}
4358 
4359 	for (s = 0; s < s_max; s++) {
4360 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4361 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4362 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4363 	}
4364 
4365 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4366 		     GEN9_PGCTL_SSA_EU19_ACK |
4367 		     GEN9_PGCTL_SSA_EU210_ACK |
4368 		     GEN9_PGCTL_SSA_EU311_ACK;
4369 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4370 		     GEN9_PGCTL_SSB_EU19_ACK |
4371 		     GEN9_PGCTL_SSB_EU210_ACK |
4372 		     GEN9_PGCTL_SSB_EU311_ACK;
4373 
4374 	for (s = 0; s < s_max; s++) {
4375 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4376 			/* skip disabled slice */
4377 			continue;
4378 
4379 		sseu->slice_mask |= BIT(s);
4380 
4381 		if (IS_GEN9_BC(dev_priv))
4382 			sseu->subslice_mask =
4383 				INTEL_INFO(dev_priv)->sseu.subslice_mask;
4384 
4385 		for (ss = 0; ss < ss_max; ss++) {
4386 			unsigned int eu_cnt;
4387 
4388 			if (IS_GEN9_LP(dev_priv)) {
4389 				if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4390 					/* skip disabled subslice */
4391 					continue;
4392 
4393 				sseu->subslice_mask |= BIT(ss);
4394 			}
4395 
4396 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4397 					       eu_mask[ss%2]);
4398 			sseu->eu_total += eu_cnt;
4399 			sseu->eu_per_subslice = max_t(unsigned int,
4400 						      sseu->eu_per_subslice,
4401 						      eu_cnt);
4402 		}
4403 	}
4404 }
4405 
4406 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
4407 					 struct sseu_dev_info *sseu)
4408 {
4409 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
4410 	int s;
4411 
4412 	sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
4413 
4414 	if (sseu->slice_mask) {
4415 		sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
4416 		sseu->eu_per_subslice =
4417 				INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
4418 		sseu->eu_total = sseu->eu_per_subslice *
4419 				 sseu_subslice_total(sseu);
4420 
4421 		/* subtract fused off EU(s) from enabled slice(s) */
4422 		for (s = 0; s < fls(sseu->slice_mask); s++) {
4423 			u8 subslice_7eu =
4424 				INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
4425 
4426 			sseu->eu_total -= hweight8(subslice_7eu);
4427 		}
4428 	}
4429 }
4430 
4431 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
4432 				 const struct sseu_dev_info *sseu)
4433 {
4434 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4435 	const char *type = is_available_info ? "Available" : "Enabled";
4436 
4437 	seq_printf(m, "  %s Slice Mask: %04x\n", type,
4438 		   sseu->slice_mask);
4439 	seq_printf(m, "  %s Slice Total: %u\n", type,
4440 		   hweight8(sseu->slice_mask));
4441 	seq_printf(m, "  %s Subslice Total: %u\n", type,
4442 		   sseu_subslice_total(sseu));
4443 	seq_printf(m, "  %s Subslice Mask: %04x\n", type,
4444 		   sseu->subslice_mask);
4445 	seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
4446 		   hweight8(sseu->subslice_mask));
4447 	seq_printf(m, "  %s EU Total: %u\n", type,
4448 		   sseu->eu_total);
4449 	seq_printf(m, "  %s EU Per Subslice: %u\n", type,
4450 		   sseu->eu_per_subslice);
4451 
4452 	if (!is_available_info)
4453 		return;
4454 
4455 	seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
4456 	if (HAS_POOLED_EU(dev_priv))
4457 		seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
4458 
4459 	seq_printf(m, "  Has Slice Power Gating: %s\n",
4460 		   yesno(sseu->has_slice_pg));
4461 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
4462 		   yesno(sseu->has_subslice_pg));
4463 	seq_printf(m, "  Has EU Power Gating: %s\n",
4464 		   yesno(sseu->has_eu_pg));
4465 }
4466 
4467 static int i915_sseu_status(struct seq_file *m, void *unused)
4468 {
4469 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4470 	struct sseu_dev_info sseu;
4471 
4472 	if (INTEL_GEN(dev_priv) < 8)
4473 		return -ENODEV;
4474 
4475 	seq_puts(m, "SSEU Device Info\n");
4476 	i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
4477 
4478 	seq_puts(m, "SSEU Device Status\n");
4479 	memset(&sseu, 0, sizeof(sseu));
4480 
4481 	intel_runtime_pm_get(dev_priv);
4482 
4483 	if (IS_CHERRYVIEW(dev_priv)) {
4484 		cherryview_sseu_device_status(dev_priv, &sseu);
4485 	} else if (IS_BROADWELL(dev_priv)) {
4486 		broadwell_sseu_device_status(dev_priv, &sseu);
4487 	} else if (IS_GEN9(dev_priv)) {
4488 		gen9_sseu_device_status(dev_priv, &sseu);
4489 	} else if (INTEL_GEN(dev_priv) >= 10) {
4490 		gen10_sseu_device_status(dev_priv, &sseu);
4491 	}
4492 
4493 	intel_runtime_pm_put(dev_priv);
4494 
4495 	i915_print_sseu_info(m, false, &sseu);
4496 
4497 	return 0;
4498 }
4499 
4500 static int i915_forcewake_open(struct inode *inode, struct file *file)
4501 {
4502 	struct drm_i915_private *i915 = inode->i_private;
4503 
4504 	if (INTEL_GEN(i915) < 6)
4505 		return 0;
4506 
4507 	intel_runtime_pm_get(i915);
4508 	intel_uncore_forcewake_user_get(i915);
4509 
4510 	return 0;
4511 }
4512 
4513 static int i915_forcewake_release(struct inode *inode, struct file *file)
4514 {
4515 	struct drm_i915_private *i915 = inode->i_private;
4516 
4517 	if (INTEL_GEN(i915) < 6)
4518 		return 0;
4519 
4520 	intel_uncore_forcewake_user_put(i915);
4521 	intel_runtime_pm_put(i915);
4522 
4523 	return 0;
4524 }
4525 
4526 static const struct file_operations i915_forcewake_fops = {
4527 	.owner = THIS_MODULE,
4528 	.open = i915_forcewake_open,
4529 	.release = i915_forcewake_release,
4530 };
4531 
4532 static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
4533 {
4534 	struct drm_i915_private *dev_priv = m->private;
4535 	struct i915_hotplug *hotplug = &dev_priv->hotplug;
4536 
4537 	seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
4538 	seq_printf(m, "Detected: %s\n",
4539 		   yesno(delayed_work_pending(&hotplug->reenable_work)));
4540 
4541 	return 0;
4542 }
4543 
4544 static ssize_t i915_hpd_storm_ctl_write(struct file *file,
4545 					const char __user *ubuf, size_t len,
4546 					loff_t *offp)
4547 {
4548 	struct seq_file *m = file->private_data;
4549 	struct drm_i915_private *dev_priv = m->private;
4550 	struct i915_hotplug *hotplug = &dev_priv->hotplug;
4551 	unsigned int new_threshold;
4552 	int i;
4553 	char *newline;
4554 	char tmp[16];
4555 
4556 	if (len >= sizeof(tmp))
4557 		return -EINVAL;
4558 
4559 	if (copy_from_user(tmp, ubuf, len))
4560 		return -EFAULT;
4561 
4562 	tmp[len] = '\0';
4563 
4564 	/* Strip newline, if any */
4565 	newline = strchr(tmp, '\n');
4566 	if (newline)
4567 		*newline = '\0';
4568 
4569 	if (strcmp(tmp, "reset") == 0)
4570 		new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4571 	else if (kstrtouint(tmp, 10, &new_threshold) != 0)
4572 		return -EINVAL;
4573 
4574 	if (new_threshold > 0)
4575 		DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
4576 			      new_threshold);
4577 	else
4578 		DRM_DEBUG_KMS("Disabling HPD storm detection\n");
4579 
4580 	spin_lock_irq(&dev_priv->irq_lock);
4581 	hotplug->hpd_storm_threshold = new_threshold;
4582 	/* Reset the HPD storm stats so we don't accidentally trigger a storm */
4583 	for_each_hpd_pin(i)
4584 		hotplug->stats[i].count = 0;
4585 	spin_unlock_irq(&dev_priv->irq_lock);
4586 
4587 	/* Re-enable hpd immediately if we were in an irq storm */
4588 	flush_delayed_work(&dev_priv->hotplug.reenable_work);
4589 
4590 	return len;
4591 }
4592 
4593 static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
4594 {
4595 	return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
4596 }
4597 
4598 static const struct file_operations i915_hpd_storm_ctl_fops = {
4599 	.owner = THIS_MODULE,
4600 	.open = i915_hpd_storm_ctl_open,
4601 	.read = seq_read,
4602 	.llseek = seq_lseek,
4603 	.release = single_release,
4604 	.write = i915_hpd_storm_ctl_write
4605 };
4606 
4607 static int i915_drrs_ctl_set(void *data, u64 val)
4608 {
4609 	struct drm_i915_private *dev_priv = data;
4610 	struct drm_device *dev = &dev_priv->drm;
4611 	struct intel_crtc *intel_crtc;
4612 	struct intel_encoder *encoder;
4613 	struct intel_dp *intel_dp;
4614 
4615 	if (INTEL_GEN(dev_priv) < 7)
4616 		return -ENODEV;
4617 
4618 	drm_modeset_lock_all(dev);
4619 	for_each_intel_crtc(dev, intel_crtc) {
4620 		if (!intel_crtc->base.state->active ||
4621 					!intel_crtc->config->has_drrs)
4622 			continue;
4623 
4624 		for_each_encoder_on_crtc(dev, &intel_crtc->base, encoder) {
4625 			if (encoder->type != INTEL_OUTPUT_EDP)
4626 				continue;
4627 
4628 			DRM_DEBUG_DRIVER("Manually %sabling DRRS. %llu\n",
4629 						val ? "en" : "dis", val);
4630 
4631 			intel_dp = enc_to_intel_dp(&encoder->base);
4632 			if (val)
4633 				intel_edp_drrs_enable(intel_dp,
4634 							intel_crtc->config);
4635 			else
4636 				intel_edp_drrs_disable(intel_dp,
4637 							intel_crtc->config);
4638 		}
4639 	}
4640 	drm_modeset_unlock_all(dev);
4641 
4642 	return 0;
4643 }
4644 
4645 DEFINE_SIMPLE_ATTRIBUTE(i915_drrs_ctl_fops, NULL, i915_drrs_ctl_set, "%llu\n");
4646 
4647 static const struct drm_info_list i915_debugfs_list[] = {
4648 	{"i915_capabilities", i915_capabilities, 0},
4649 	{"i915_gem_objects", i915_gem_object_info, 0},
4650 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
4651 	{"i915_gem_stolen", i915_gem_stolen_list_info },
4652 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4653 	{"i915_gem_interrupt", i915_interrupt_info, 0},
4654 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4655 	{"i915_guc_info", i915_guc_info, 0},
4656 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
4657 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
4658 	{"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
4659 	{"i915_guc_stage_pool", i915_guc_stage_pool, 0},
4660 	{"i915_huc_load_status", i915_huc_load_status_info, 0},
4661 	{"i915_frequency_info", i915_frequency_info, 0},
4662 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
4663 	{"i915_reset_info", i915_reset_info, 0},
4664 	{"i915_drpc_info", i915_drpc_info, 0},
4665 	{"i915_emon_status", i915_emon_status, 0},
4666 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
4667 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
4668 	{"i915_fbc_status", i915_fbc_status, 0},
4669 	{"i915_ips_status", i915_ips_status, 0},
4670 	{"i915_sr_status", i915_sr_status, 0},
4671 	{"i915_opregion", i915_opregion, 0},
4672 	{"i915_vbt", i915_vbt, 0},
4673 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4674 	{"i915_context_status", i915_context_status, 0},
4675 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
4676 	{"i915_swizzle_info", i915_swizzle_info, 0},
4677 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
4678 	{"i915_llc", i915_llc, 0},
4679 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
4680 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
4681 	{"i915_energy_uJ", i915_energy_uJ, 0},
4682 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
4683 	{"i915_power_domain_info", i915_power_domain_info, 0},
4684 	{"i915_dmc_info", i915_dmc_info, 0},
4685 	{"i915_display_info", i915_display_info, 0},
4686 	{"i915_engine_info", i915_engine_info, 0},
4687 	{"i915_shrinker_info", i915_shrinker_info, 0},
4688 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4689 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
4690 	{"i915_wa_registers", i915_wa_registers, 0},
4691 	{"i915_ddb_info", i915_ddb_info, 0},
4692 	{"i915_sseu_status", i915_sseu_status, 0},
4693 	{"i915_drrs_status", i915_drrs_status, 0},
4694 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
4695 };
4696 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4697 
4698 static const struct i915_debugfs_files {
4699 	const char *name;
4700 	const struct file_operations *fops;
4701 } i915_debugfs_files[] = {
4702 	{"i915_wedged", &i915_wedged_fops},
4703 	{"i915_max_freq", &i915_max_freq_fops},
4704 	{"i915_min_freq", &i915_min_freq_fops},
4705 	{"i915_cache_sharing", &i915_cache_sharing_fops},
4706 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4707 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
4708 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
4709 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
4710 	{"i915_error_state", &i915_error_state_fops},
4711 	{"i915_gpu_info", &i915_gpu_info_fops},
4712 #endif
4713 	{"i915_next_seqno", &i915_next_seqno_fops},
4714 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4715 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4716 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4717 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4718 	{"i915_fbc_false_color", &i915_fbc_false_color_fops},
4719 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
4720 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
4721 	{"i915_dp_test_active", &i915_displayport_test_active_fops},
4722 	{"i915_guc_log_control", &i915_guc_log_control_fops},
4723 	{"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops},
4724 	{"i915_ipc_status", &i915_ipc_status_fops},
4725 	{"i915_drrs_ctl", &i915_drrs_ctl_fops}
4726 };
4727 
4728 int i915_debugfs_register(struct drm_i915_private *dev_priv)
4729 {
4730 	struct drm_minor *minor = dev_priv->drm.primary;
4731 	struct dentry *ent;
4732 	int ret, i;
4733 
4734 	ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
4735 				  minor->debugfs_root, to_i915(minor->dev),
4736 				  &i915_forcewake_fops);
4737 	if (!ent)
4738 		return -ENOMEM;
4739 
4740 	ret = intel_pipe_crc_create(minor);
4741 	if (ret)
4742 		return ret;
4743 
4744 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4745 		ent = debugfs_create_file(i915_debugfs_files[i].name,
4746 					  S_IRUGO | S_IWUSR,
4747 					  minor->debugfs_root,
4748 					  to_i915(minor->dev),
4749 					  i915_debugfs_files[i].fops);
4750 		if (!ent)
4751 			return -ENOMEM;
4752 	}
4753 
4754 	return drm_debugfs_create_files(i915_debugfs_list,
4755 					I915_DEBUGFS_ENTRIES,
4756 					minor->debugfs_root, minor);
4757 }
4758 
4759 struct dpcd_block {
4760 	/* DPCD dump start address. */
4761 	unsigned int offset;
4762 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
4763 	unsigned int end;
4764 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
4765 	size_t size;
4766 	/* Only valid for eDP. */
4767 	bool edp;
4768 };
4769 
4770 static const struct dpcd_block i915_dpcd_debug[] = {
4771 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
4772 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
4773 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
4774 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
4775 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
4776 	{ .offset = DP_SET_POWER },
4777 	{ .offset = DP_EDP_DPCD_REV },
4778 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
4779 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
4780 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
4781 };
4782 
4783 static int i915_dpcd_show(struct seq_file *m, void *data)
4784 {
4785 	struct drm_connector *connector = m->private;
4786 	struct intel_dp *intel_dp =
4787 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4788 	uint8_t buf[16];
4789 	ssize_t err;
4790 	int i;
4791 
4792 	if (connector->status != connector_status_connected)
4793 		return -ENODEV;
4794 
4795 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
4796 		const struct dpcd_block *b = &i915_dpcd_debug[i];
4797 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
4798 
4799 		if (b->edp &&
4800 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
4801 			continue;
4802 
4803 		/* low tech for now */
4804 		if (WARN_ON(size > sizeof(buf)))
4805 			continue;
4806 
4807 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
4808 		if (err <= 0) {
4809 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
4810 				  size, b->offset, err);
4811 			continue;
4812 		}
4813 
4814 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
4815 	}
4816 
4817 	return 0;
4818 }
4819 
4820 static int i915_dpcd_open(struct inode *inode, struct file *file)
4821 {
4822 	return single_open(file, i915_dpcd_show, inode->i_private);
4823 }
4824 
4825 static const struct file_operations i915_dpcd_fops = {
4826 	.owner = THIS_MODULE,
4827 	.open = i915_dpcd_open,
4828 	.read = seq_read,
4829 	.llseek = seq_lseek,
4830 	.release = single_release,
4831 };
4832 
4833 static int i915_panel_show(struct seq_file *m, void *data)
4834 {
4835 	struct drm_connector *connector = m->private;
4836 	struct intel_dp *intel_dp =
4837 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4838 
4839 	if (connector->status != connector_status_connected)
4840 		return -ENODEV;
4841 
4842 	seq_printf(m, "Panel power up delay: %d\n",
4843 		   intel_dp->panel_power_up_delay);
4844 	seq_printf(m, "Panel power down delay: %d\n",
4845 		   intel_dp->panel_power_down_delay);
4846 	seq_printf(m, "Backlight on delay: %d\n",
4847 		   intel_dp->backlight_on_delay);
4848 	seq_printf(m, "Backlight off delay: %d\n",
4849 		   intel_dp->backlight_off_delay);
4850 
4851 	return 0;
4852 }
4853 
4854 static int i915_panel_open(struct inode *inode, struct file *file)
4855 {
4856 	return single_open(file, i915_panel_show, inode->i_private);
4857 }
4858 
4859 static const struct file_operations i915_panel_fops = {
4860 	.owner = THIS_MODULE,
4861 	.open = i915_panel_open,
4862 	.read = seq_read,
4863 	.llseek = seq_lseek,
4864 	.release = single_release,
4865 };
4866 
4867 /**
4868  * i915_debugfs_connector_add - add i915 specific connector debugfs files
4869  * @connector: pointer to a registered drm_connector
4870  *
4871  * Cleanup will be done by drm_connector_unregister() through a call to
4872  * drm_debugfs_connector_remove().
4873  *
4874  * Returns 0 on success, negative error codes on error.
4875  */
4876 int i915_debugfs_connector_add(struct drm_connector *connector)
4877 {
4878 	struct dentry *root = connector->debugfs_entry;
4879 
4880 	/* The connector must have been registered beforehands. */
4881 	if (!root)
4882 		return -ENODEV;
4883 
4884 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
4885 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4886 		debugfs_create_file("i915_dpcd", S_IRUGO, root,
4887 				    connector, &i915_dpcd_fops);
4888 
4889 	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4890 		debugfs_create_file("i915_panel_timings", S_IRUGO, root,
4891 				    connector, &i915_panel_fops);
4892 
4893 	return 0;
4894 }
4895