1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42 
43 enum {
44 	ACTIVE_LIST,
45 	INACTIVE_LIST,
46 	PINNED_LIST,
47 };
48 
49 static const char *yesno(int v)
50 {
51 	return v ? "yes" : "no";
52 }
53 
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58 		       struct dentry *ent,
59 		       const void *key)
60 {
61 	struct drm_info_node *node;
62 
63 	node = kmalloc(sizeof(*node), GFP_KERNEL);
64 	if (node == NULL) {
65 		debugfs_remove(ent);
66 		return -ENOMEM;
67 	}
68 
69 	node->minor = minor;
70 	node->dent = ent;
71 	node->info_ent = (void *) key;
72 
73 	mutex_lock(&minor->debugfs_lock);
74 	list_add(&node->list, &minor->debugfs_list);
75 	mutex_unlock(&minor->debugfs_lock);
76 
77 	return 0;
78 }
79 
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82 	struct drm_info_node *node = m->private;
83 	struct drm_device *dev = node->minor->dev;
84 	const struct intel_device_info *info = INTEL_INFO(dev);
85 
86 	seq_printf(m, "gen: %d\n", info->gen);
87 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93 
94 	return 0;
95 }
96 
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 	if (obj->user_pin_count > 0)
100 		return "P";
101 	else if (i915_gem_obj_is_pinned(obj))
102 		return "p";
103 	else
104 		return " ";
105 }
106 
107 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
108 {
109 	switch (obj->tiling_mode) {
110 	default:
111 	case I915_TILING_NONE: return " ";
112 	case I915_TILING_X: return "X";
113 	case I915_TILING_Y: return "Y";
114 	}
115 }
116 
117 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
118 {
119 	return obj->has_global_gtt_mapping ? "g" : " ";
120 }
121 
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125 	struct i915_vma *vma;
126 	int pin_count = 0;
127 
128 	seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
129 		   &obj->base,
130 		   get_pin_flag(obj),
131 		   get_tiling_flag(obj),
132 		   get_global_flag(obj),
133 		   obj->base.size / 1024,
134 		   obj->base.read_domains,
135 		   obj->base.write_domain,
136 		   obj->last_read_seqno,
137 		   obj->last_write_seqno,
138 		   obj->last_fenced_seqno,
139 		   i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
140 		   obj->dirty ? " dirty" : "",
141 		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
142 	if (obj->base.name)
143 		seq_printf(m, " (name: %d)", obj->base.name);
144 	list_for_each_entry(vma, &obj->vma_list, vma_link)
145 		if (vma->pin_count > 0)
146 			pin_count++;
147 		seq_printf(m, " (pinned x %d)", pin_count);
148 	if (obj->pin_display)
149 		seq_printf(m, " (display)");
150 	if (obj->fence_reg != I915_FENCE_REG_NONE)
151 		seq_printf(m, " (fence: %d)", obj->fence_reg);
152 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
153 		if (!i915_is_ggtt(vma->vm))
154 			seq_puts(m, " (pp");
155 		else
156 			seq_puts(m, " (g");
157 		seq_printf(m, "gtt offset: %08lx, size: %08lx)",
158 			   vma->node.start, vma->node.size);
159 	}
160 	if (obj->stolen)
161 		seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
162 	if (obj->pin_mappable || obj->fault_mappable) {
163 		char s[3], *t = s;
164 		if (obj->pin_mappable)
165 			*t++ = 'p';
166 		if (obj->fault_mappable)
167 			*t++ = 'f';
168 		*t = '\0';
169 		seq_printf(m, " (%s mappable)", s);
170 	}
171 	if (obj->ring != NULL)
172 		seq_printf(m, " (%s)", obj->ring->name);
173 	if (obj->frontbuffer_bits)
174 		seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
175 }
176 
177 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
178 {
179 	seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
180 	seq_putc(m, ctx->remap_slice ? 'R' : 'r');
181 	seq_putc(m, ' ');
182 }
183 
184 static int i915_gem_object_list_info(struct seq_file *m, void *data)
185 {
186 	struct drm_info_node *node = m->private;
187 	uintptr_t list = (uintptr_t) node->info_ent->data;
188 	struct list_head *head;
189 	struct drm_device *dev = node->minor->dev;
190 	struct drm_i915_private *dev_priv = dev->dev_private;
191 	struct i915_address_space *vm = &dev_priv->gtt.base;
192 	struct i915_vma *vma;
193 	size_t total_obj_size, total_gtt_size;
194 	int count, ret;
195 
196 	ret = mutex_lock_interruptible(&dev->struct_mutex);
197 	if (ret)
198 		return ret;
199 
200 	/* FIXME: the user of this interface might want more than just GGTT */
201 	switch (list) {
202 	case ACTIVE_LIST:
203 		seq_puts(m, "Active:\n");
204 		head = &vm->active_list;
205 		break;
206 	case INACTIVE_LIST:
207 		seq_puts(m, "Inactive:\n");
208 		head = &vm->inactive_list;
209 		break;
210 	default:
211 		mutex_unlock(&dev->struct_mutex);
212 		return -EINVAL;
213 	}
214 
215 	total_obj_size = total_gtt_size = count = 0;
216 	list_for_each_entry(vma, head, mm_list) {
217 		seq_printf(m, "   ");
218 		describe_obj(m, vma->obj);
219 		seq_printf(m, "\n");
220 		total_obj_size += vma->obj->base.size;
221 		total_gtt_size += vma->node.size;
222 		count++;
223 	}
224 	mutex_unlock(&dev->struct_mutex);
225 
226 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
227 		   count, total_obj_size, total_gtt_size);
228 	return 0;
229 }
230 
231 static int obj_rank_by_stolen(void *priv,
232 			      struct list_head *A, struct list_head *B)
233 {
234 	struct drm_i915_gem_object *a =
235 		container_of(A, struct drm_i915_gem_object, obj_exec_link);
236 	struct drm_i915_gem_object *b =
237 		container_of(B, struct drm_i915_gem_object, obj_exec_link);
238 
239 	return a->stolen->start - b->stolen->start;
240 }
241 
242 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
243 {
244 	struct drm_info_node *node = m->private;
245 	struct drm_device *dev = node->minor->dev;
246 	struct drm_i915_private *dev_priv = dev->dev_private;
247 	struct drm_i915_gem_object *obj;
248 	size_t total_obj_size, total_gtt_size;
249 	LIST_HEAD(stolen);
250 	int count, ret;
251 
252 	ret = mutex_lock_interruptible(&dev->struct_mutex);
253 	if (ret)
254 		return ret;
255 
256 	total_obj_size = total_gtt_size = count = 0;
257 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
258 		if (obj->stolen == NULL)
259 			continue;
260 
261 		list_add(&obj->obj_exec_link, &stolen);
262 
263 		total_obj_size += obj->base.size;
264 		total_gtt_size += i915_gem_obj_ggtt_size(obj);
265 		count++;
266 	}
267 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
268 		if (obj->stolen == NULL)
269 			continue;
270 
271 		list_add(&obj->obj_exec_link, &stolen);
272 
273 		total_obj_size += obj->base.size;
274 		count++;
275 	}
276 	list_sort(NULL, &stolen, obj_rank_by_stolen);
277 	seq_puts(m, "Stolen:\n");
278 	while (!list_empty(&stolen)) {
279 		obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
280 		seq_puts(m, "   ");
281 		describe_obj(m, obj);
282 		seq_putc(m, '\n');
283 		list_del_init(&obj->obj_exec_link);
284 	}
285 	mutex_unlock(&dev->struct_mutex);
286 
287 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
288 		   count, total_obj_size, total_gtt_size);
289 	return 0;
290 }
291 
292 #define count_objects(list, member) do { \
293 	list_for_each_entry(obj, list, member) { \
294 		size += i915_gem_obj_ggtt_size(obj); \
295 		++count; \
296 		if (obj->map_and_fenceable) { \
297 			mappable_size += i915_gem_obj_ggtt_size(obj); \
298 			++mappable_count; \
299 		} \
300 	} \
301 } while (0)
302 
303 struct file_stats {
304 	struct drm_i915_file_private *file_priv;
305 	int count;
306 	size_t total, unbound;
307 	size_t global, shared;
308 	size_t active, inactive;
309 };
310 
311 static int per_file_stats(int id, void *ptr, void *data)
312 {
313 	struct drm_i915_gem_object *obj = ptr;
314 	struct file_stats *stats = data;
315 	struct i915_vma *vma;
316 
317 	stats->count++;
318 	stats->total += obj->base.size;
319 
320 	if (obj->base.name || obj->base.dma_buf)
321 		stats->shared += obj->base.size;
322 
323 	if (USES_FULL_PPGTT(obj->base.dev)) {
324 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
325 			struct i915_hw_ppgtt *ppgtt;
326 
327 			if (!drm_mm_node_allocated(&vma->node))
328 				continue;
329 
330 			if (i915_is_ggtt(vma->vm)) {
331 				stats->global += obj->base.size;
332 				continue;
333 			}
334 
335 			ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
336 			if (ppgtt->file_priv != stats->file_priv)
337 				continue;
338 
339 			if (obj->ring) /* XXX per-vma statistic */
340 				stats->active += obj->base.size;
341 			else
342 				stats->inactive += obj->base.size;
343 
344 			return 0;
345 		}
346 	} else {
347 		if (i915_gem_obj_ggtt_bound(obj)) {
348 			stats->global += obj->base.size;
349 			if (obj->ring)
350 				stats->active += obj->base.size;
351 			else
352 				stats->inactive += obj->base.size;
353 			return 0;
354 		}
355 	}
356 
357 	if (!list_empty(&obj->global_list))
358 		stats->unbound += obj->base.size;
359 
360 	return 0;
361 }
362 
363 #define count_vmas(list, member) do { \
364 	list_for_each_entry(vma, list, member) { \
365 		size += i915_gem_obj_ggtt_size(vma->obj); \
366 		++count; \
367 		if (vma->obj->map_and_fenceable) { \
368 			mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
369 			++mappable_count; \
370 		} \
371 	} \
372 } while (0)
373 
374 static int i915_gem_object_info(struct seq_file *m, void* data)
375 {
376 	struct drm_info_node *node = m->private;
377 	struct drm_device *dev = node->minor->dev;
378 	struct drm_i915_private *dev_priv = dev->dev_private;
379 	u32 count, mappable_count, purgeable_count;
380 	size_t size, mappable_size, purgeable_size;
381 	struct drm_i915_gem_object *obj;
382 	struct i915_address_space *vm = &dev_priv->gtt.base;
383 	struct drm_file *file;
384 	struct i915_vma *vma;
385 	int ret;
386 
387 	ret = mutex_lock_interruptible(&dev->struct_mutex);
388 	if (ret)
389 		return ret;
390 
391 	seq_printf(m, "%u objects, %zu bytes\n",
392 		   dev_priv->mm.object_count,
393 		   dev_priv->mm.object_memory);
394 
395 	size = count = mappable_size = mappable_count = 0;
396 	count_objects(&dev_priv->mm.bound_list, global_list);
397 	seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
398 		   count, mappable_count, size, mappable_size);
399 
400 	size = count = mappable_size = mappable_count = 0;
401 	count_vmas(&vm->active_list, mm_list);
402 	seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
403 		   count, mappable_count, size, mappable_size);
404 
405 	size = count = mappable_size = mappable_count = 0;
406 	count_vmas(&vm->inactive_list, mm_list);
407 	seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
408 		   count, mappable_count, size, mappable_size);
409 
410 	size = count = purgeable_size = purgeable_count = 0;
411 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
412 		size += obj->base.size, ++count;
413 		if (obj->madv == I915_MADV_DONTNEED)
414 			purgeable_size += obj->base.size, ++purgeable_count;
415 	}
416 	seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
417 
418 	size = count = mappable_size = mappable_count = 0;
419 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
420 		if (obj->fault_mappable) {
421 			size += i915_gem_obj_ggtt_size(obj);
422 			++count;
423 		}
424 		if (obj->pin_mappable) {
425 			mappable_size += i915_gem_obj_ggtt_size(obj);
426 			++mappable_count;
427 		}
428 		if (obj->madv == I915_MADV_DONTNEED) {
429 			purgeable_size += obj->base.size;
430 			++purgeable_count;
431 		}
432 	}
433 	seq_printf(m, "%u purgeable objects, %zu bytes\n",
434 		   purgeable_count, purgeable_size);
435 	seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
436 		   mappable_count, mappable_size);
437 	seq_printf(m, "%u fault mappable objects, %zu bytes\n",
438 		   count, size);
439 
440 	seq_printf(m, "%zu [%lu] gtt total\n",
441 		   dev_priv->gtt.base.total,
442 		   dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
443 
444 	seq_putc(m, '\n');
445 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
446 		struct file_stats stats;
447 		struct task_struct *task;
448 
449 		memset(&stats, 0, sizeof(stats));
450 		stats.file_priv = file->driver_priv;
451 		spin_lock(&file->table_lock);
452 		idr_for_each(&file->object_idr, per_file_stats, &stats);
453 		spin_unlock(&file->table_lock);
454 		/*
455 		 * Although we have a valid reference on file->pid, that does
456 		 * not guarantee that the task_struct who called get_pid() is
457 		 * still alive (e.g. get_pid(current) => fork() => exit()).
458 		 * Therefore, we need to protect this ->comm access using RCU.
459 		 */
460 		rcu_read_lock();
461 		task = pid_task(file->pid, PIDTYPE_PID);
462 		seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
463 			   task ? task->comm : "<unknown>",
464 			   stats.count,
465 			   stats.total,
466 			   stats.active,
467 			   stats.inactive,
468 			   stats.global,
469 			   stats.shared,
470 			   stats.unbound);
471 		rcu_read_unlock();
472 	}
473 
474 	mutex_unlock(&dev->struct_mutex);
475 
476 	return 0;
477 }
478 
479 static int i915_gem_gtt_info(struct seq_file *m, void *data)
480 {
481 	struct drm_info_node *node = m->private;
482 	struct drm_device *dev = node->minor->dev;
483 	uintptr_t list = (uintptr_t) node->info_ent->data;
484 	struct drm_i915_private *dev_priv = dev->dev_private;
485 	struct drm_i915_gem_object *obj;
486 	size_t total_obj_size, total_gtt_size;
487 	int count, ret;
488 
489 	ret = mutex_lock_interruptible(&dev->struct_mutex);
490 	if (ret)
491 		return ret;
492 
493 	total_obj_size = total_gtt_size = count = 0;
494 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
495 		if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
496 			continue;
497 
498 		seq_puts(m, "   ");
499 		describe_obj(m, obj);
500 		seq_putc(m, '\n');
501 		total_obj_size += obj->base.size;
502 		total_gtt_size += i915_gem_obj_ggtt_size(obj);
503 		count++;
504 	}
505 
506 	mutex_unlock(&dev->struct_mutex);
507 
508 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
509 		   count, total_obj_size, total_gtt_size);
510 
511 	return 0;
512 }
513 
514 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
515 {
516 	struct drm_info_node *node = m->private;
517 	struct drm_device *dev = node->minor->dev;
518 	struct drm_i915_private *dev_priv = dev->dev_private;
519 	unsigned long flags;
520 	struct intel_crtc *crtc;
521 	int ret;
522 
523 	ret = mutex_lock_interruptible(&dev->struct_mutex);
524 	if (ret)
525 		return ret;
526 
527 	for_each_intel_crtc(dev, crtc) {
528 		const char pipe = pipe_name(crtc->pipe);
529 		const char plane = plane_name(crtc->plane);
530 		struct intel_unpin_work *work;
531 
532 		spin_lock_irqsave(&dev->event_lock, flags);
533 		work = crtc->unpin_work;
534 		if (work == NULL) {
535 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
536 				   pipe, plane);
537 		} else {
538 			u32 addr;
539 
540 			if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
541 				seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
542 					   pipe, plane);
543 			} else {
544 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
545 					   pipe, plane);
546 			}
547 			if (work->flip_queued_ring) {
548 				seq_printf(m, "Flip queued on %s at seqno %u, next seqno %u [current breadcrumb %u], completed? %d\n",
549 					   work->flip_queued_ring->name,
550 					   work->flip_queued_seqno,
551 					   dev_priv->next_seqno,
552 					   work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
553 					   i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
554 							     work->flip_queued_seqno));
555 			} else
556 				seq_printf(m, "Flip not associated with any ring\n");
557 			seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
558 				   work->flip_queued_vblank,
559 				   work->flip_ready_vblank,
560 				   drm_vblank_count(dev, crtc->pipe));
561 			if (work->enable_stall_check)
562 				seq_puts(m, "Stall check enabled, ");
563 			else
564 				seq_puts(m, "Stall check waiting for page flip ioctl, ");
565 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
566 
567 			if (INTEL_INFO(dev)->gen >= 4)
568 				addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
569 			else
570 				addr = I915_READ(DSPADDR(crtc->plane));
571 			seq_printf(m, "Current scanout address 0x%08x\n", addr);
572 
573 			if (work->pending_flip_obj) {
574 				seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
575 				seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
576 			}
577 		}
578 		spin_unlock_irqrestore(&dev->event_lock, flags);
579 	}
580 
581 	mutex_unlock(&dev->struct_mutex);
582 
583 	return 0;
584 }
585 
586 static int i915_gem_request_info(struct seq_file *m, void *data)
587 {
588 	struct drm_info_node *node = m->private;
589 	struct drm_device *dev = node->minor->dev;
590 	struct drm_i915_private *dev_priv = dev->dev_private;
591 	struct intel_engine_cs *ring;
592 	struct drm_i915_gem_request *gem_request;
593 	int ret, count, i;
594 
595 	ret = mutex_lock_interruptible(&dev->struct_mutex);
596 	if (ret)
597 		return ret;
598 
599 	count = 0;
600 	for_each_ring(ring, dev_priv, i) {
601 		if (list_empty(&ring->request_list))
602 			continue;
603 
604 		seq_printf(m, "%s requests:\n", ring->name);
605 		list_for_each_entry(gem_request,
606 				    &ring->request_list,
607 				    list) {
608 			seq_printf(m, "    %d @ %d\n",
609 				   gem_request->seqno,
610 				   (int) (jiffies - gem_request->emitted_jiffies));
611 		}
612 		count++;
613 	}
614 	mutex_unlock(&dev->struct_mutex);
615 
616 	if (count == 0)
617 		seq_puts(m, "No requests\n");
618 
619 	return 0;
620 }
621 
622 static void i915_ring_seqno_info(struct seq_file *m,
623 				 struct intel_engine_cs *ring)
624 {
625 	if (ring->get_seqno) {
626 		seq_printf(m, "Current sequence (%s): %u\n",
627 			   ring->name, ring->get_seqno(ring, false));
628 	}
629 }
630 
631 static int i915_gem_seqno_info(struct seq_file *m, void *data)
632 {
633 	struct drm_info_node *node = m->private;
634 	struct drm_device *dev = node->minor->dev;
635 	struct drm_i915_private *dev_priv = dev->dev_private;
636 	struct intel_engine_cs *ring;
637 	int ret, i;
638 
639 	ret = mutex_lock_interruptible(&dev->struct_mutex);
640 	if (ret)
641 		return ret;
642 	intel_runtime_pm_get(dev_priv);
643 
644 	for_each_ring(ring, dev_priv, i)
645 		i915_ring_seqno_info(m, ring);
646 
647 	intel_runtime_pm_put(dev_priv);
648 	mutex_unlock(&dev->struct_mutex);
649 
650 	return 0;
651 }
652 
653 
654 static int i915_interrupt_info(struct seq_file *m, void *data)
655 {
656 	struct drm_info_node *node = m->private;
657 	struct drm_device *dev = node->minor->dev;
658 	struct drm_i915_private *dev_priv = dev->dev_private;
659 	struct intel_engine_cs *ring;
660 	int ret, i, pipe;
661 
662 	ret = mutex_lock_interruptible(&dev->struct_mutex);
663 	if (ret)
664 		return ret;
665 	intel_runtime_pm_get(dev_priv);
666 
667 	if (IS_CHERRYVIEW(dev)) {
668 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
669 			   I915_READ(GEN8_MASTER_IRQ));
670 
671 		seq_printf(m, "Display IER:\t%08x\n",
672 			   I915_READ(VLV_IER));
673 		seq_printf(m, "Display IIR:\t%08x\n",
674 			   I915_READ(VLV_IIR));
675 		seq_printf(m, "Display IIR_RW:\t%08x\n",
676 			   I915_READ(VLV_IIR_RW));
677 		seq_printf(m, "Display IMR:\t%08x\n",
678 			   I915_READ(VLV_IMR));
679 		for_each_pipe(dev_priv, pipe)
680 			seq_printf(m, "Pipe %c stat:\t%08x\n",
681 				   pipe_name(pipe),
682 				   I915_READ(PIPESTAT(pipe)));
683 
684 		seq_printf(m, "Port hotplug:\t%08x\n",
685 			   I915_READ(PORT_HOTPLUG_EN));
686 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
687 			   I915_READ(VLV_DPFLIPSTAT));
688 		seq_printf(m, "DPINVGTT:\t%08x\n",
689 			   I915_READ(DPINVGTT));
690 
691 		for (i = 0; i < 4; i++) {
692 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
693 				   i, I915_READ(GEN8_GT_IMR(i)));
694 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
695 				   i, I915_READ(GEN8_GT_IIR(i)));
696 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
697 				   i, I915_READ(GEN8_GT_IER(i)));
698 		}
699 
700 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
701 			   I915_READ(GEN8_PCU_IMR));
702 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
703 			   I915_READ(GEN8_PCU_IIR));
704 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
705 			   I915_READ(GEN8_PCU_IER));
706 	} else if (INTEL_INFO(dev)->gen >= 8) {
707 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
708 			   I915_READ(GEN8_MASTER_IRQ));
709 
710 		for (i = 0; i < 4; i++) {
711 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
712 				   i, I915_READ(GEN8_GT_IMR(i)));
713 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
714 				   i, I915_READ(GEN8_GT_IIR(i)));
715 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
716 				   i, I915_READ(GEN8_GT_IER(i)));
717 		}
718 
719 		for_each_pipe(dev_priv, pipe) {
720 			if (!intel_display_power_enabled(dev_priv,
721 						POWER_DOMAIN_PIPE(pipe))) {
722 				seq_printf(m, "Pipe %c power disabled\n",
723 					   pipe_name(pipe));
724 				continue;
725 			}
726 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
727 				   pipe_name(pipe),
728 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
729 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
730 				   pipe_name(pipe),
731 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
732 			seq_printf(m, "Pipe %c IER:\t%08x\n",
733 				   pipe_name(pipe),
734 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
735 		}
736 
737 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
738 			   I915_READ(GEN8_DE_PORT_IMR));
739 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
740 			   I915_READ(GEN8_DE_PORT_IIR));
741 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
742 			   I915_READ(GEN8_DE_PORT_IER));
743 
744 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
745 			   I915_READ(GEN8_DE_MISC_IMR));
746 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
747 			   I915_READ(GEN8_DE_MISC_IIR));
748 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
749 			   I915_READ(GEN8_DE_MISC_IER));
750 
751 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
752 			   I915_READ(GEN8_PCU_IMR));
753 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
754 			   I915_READ(GEN8_PCU_IIR));
755 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
756 			   I915_READ(GEN8_PCU_IER));
757 	} else if (IS_VALLEYVIEW(dev)) {
758 		seq_printf(m, "Display IER:\t%08x\n",
759 			   I915_READ(VLV_IER));
760 		seq_printf(m, "Display IIR:\t%08x\n",
761 			   I915_READ(VLV_IIR));
762 		seq_printf(m, "Display IIR_RW:\t%08x\n",
763 			   I915_READ(VLV_IIR_RW));
764 		seq_printf(m, "Display IMR:\t%08x\n",
765 			   I915_READ(VLV_IMR));
766 		for_each_pipe(dev_priv, pipe)
767 			seq_printf(m, "Pipe %c stat:\t%08x\n",
768 				   pipe_name(pipe),
769 				   I915_READ(PIPESTAT(pipe)));
770 
771 		seq_printf(m, "Master IER:\t%08x\n",
772 			   I915_READ(VLV_MASTER_IER));
773 
774 		seq_printf(m, "Render IER:\t%08x\n",
775 			   I915_READ(GTIER));
776 		seq_printf(m, "Render IIR:\t%08x\n",
777 			   I915_READ(GTIIR));
778 		seq_printf(m, "Render IMR:\t%08x\n",
779 			   I915_READ(GTIMR));
780 
781 		seq_printf(m, "PM IER:\t\t%08x\n",
782 			   I915_READ(GEN6_PMIER));
783 		seq_printf(m, "PM IIR:\t\t%08x\n",
784 			   I915_READ(GEN6_PMIIR));
785 		seq_printf(m, "PM IMR:\t\t%08x\n",
786 			   I915_READ(GEN6_PMIMR));
787 
788 		seq_printf(m, "Port hotplug:\t%08x\n",
789 			   I915_READ(PORT_HOTPLUG_EN));
790 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
791 			   I915_READ(VLV_DPFLIPSTAT));
792 		seq_printf(m, "DPINVGTT:\t%08x\n",
793 			   I915_READ(DPINVGTT));
794 
795 	} else if (!HAS_PCH_SPLIT(dev)) {
796 		seq_printf(m, "Interrupt enable:    %08x\n",
797 			   I915_READ(IER));
798 		seq_printf(m, "Interrupt identity:  %08x\n",
799 			   I915_READ(IIR));
800 		seq_printf(m, "Interrupt mask:      %08x\n",
801 			   I915_READ(IMR));
802 		for_each_pipe(dev_priv, pipe)
803 			seq_printf(m, "Pipe %c stat:         %08x\n",
804 				   pipe_name(pipe),
805 				   I915_READ(PIPESTAT(pipe)));
806 	} else {
807 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
808 			   I915_READ(DEIER));
809 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
810 			   I915_READ(DEIIR));
811 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
812 			   I915_READ(DEIMR));
813 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
814 			   I915_READ(SDEIER));
815 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
816 			   I915_READ(SDEIIR));
817 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
818 			   I915_READ(SDEIMR));
819 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
820 			   I915_READ(GTIER));
821 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
822 			   I915_READ(GTIIR));
823 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
824 			   I915_READ(GTIMR));
825 	}
826 	for_each_ring(ring, dev_priv, i) {
827 		if (INTEL_INFO(dev)->gen >= 6) {
828 			seq_printf(m,
829 				   "Graphics Interrupt mask (%s):	%08x\n",
830 				   ring->name, I915_READ_IMR(ring));
831 		}
832 		i915_ring_seqno_info(m, ring);
833 	}
834 	intel_runtime_pm_put(dev_priv);
835 	mutex_unlock(&dev->struct_mutex);
836 
837 	return 0;
838 }
839 
840 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
841 {
842 	struct drm_info_node *node = m->private;
843 	struct drm_device *dev = node->minor->dev;
844 	struct drm_i915_private *dev_priv = dev->dev_private;
845 	int i, ret;
846 
847 	ret = mutex_lock_interruptible(&dev->struct_mutex);
848 	if (ret)
849 		return ret;
850 
851 	seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
852 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
853 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
854 		struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
855 
856 		seq_printf(m, "Fence %d, pin count = %d, object = ",
857 			   i, dev_priv->fence_regs[i].pin_count);
858 		if (obj == NULL)
859 			seq_puts(m, "unused");
860 		else
861 			describe_obj(m, obj);
862 		seq_putc(m, '\n');
863 	}
864 
865 	mutex_unlock(&dev->struct_mutex);
866 	return 0;
867 }
868 
869 static int i915_hws_info(struct seq_file *m, void *data)
870 {
871 	struct drm_info_node *node = m->private;
872 	struct drm_device *dev = node->minor->dev;
873 	struct drm_i915_private *dev_priv = dev->dev_private;
874 	struct intel_engine_cs *ring;
875 	const u32 *hws;
876 	int i;
877 
878 	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
879 	hws = ring->status_page.page_addr;
880 	if (hws == NULL)
881 		return 0;
882 
883 	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
884 		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
885 			   i * 4,
886 			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
887 	}
888 	return 0;
889 }
890 
891 static ssize_t
892 i915_error_state_write(struct file *filp,
893 		       const char __user *ubuf,
894 		       size_t cnt,
895 		       loff_t *ppos)
896 {
897 	struct i915_error_state_file_priv *error_priv = filp->private_data;
898 	struct drm_device *dev = error_priv->dev;
899 	int ret;
900 
901 	DRM_DEBUG_DRIVER("Resetting error state\n");
902 
903 	ret = mutex_lock_interruptible(&dev->struct_mutex);
904 	if (ret)
905 		return ret;
906 
907 	i915_destroy_error_state(dev);
908 	mutex_unlock(&dev->struct_mutex);
909 
910 	return cnt;
911 }
912 
913 static int i915_error_state_open(struct inode *inode, struct file *file)
914 {
915 	struct drm_device *dev = inode->i_private;
916 	struct i915_error_state_file_priv *error_priv;
917 
918 	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
919 	if (!error_priv)
920 		return -ENOMEM;
921 
922 	error_priv->dev = dev;
923 
924 	i915_error_state_get(dev, error_priv);
925 
926 	file->private_data = error_priv;
927 
928 	return 0;
929 }
930 
931 static int i915_error_state_release(struct inode *inode, struct file *file)
932 {
933 	struct i915_error_state_file_priv *error_priv = file->private_data;
934 
935 	i915_error_state_put(error_priv);
936 	kfree(error_priv);
937 
938 	return 0;
939 }
940 
941 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
942 				     size_t count, loff_t *pos)
943 {
944 	struct i915_error_state_file_priv *error_priv = file->private_data;
945 	struct drm_i915_error_state_buf error_str;
946 	loff_t tmp_pos = 0;
947 	ssize_t ret_count = 0;
948 	int ret;
949 
950 	ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
951 	if (ret)
952 		return ret;
953 
954 	ret = i915_error_state_to_str(&error_str, error_priv);
955 	if (ret)
956 		goto out;
957 
958 	ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
959 					    error_str.buf,
960 					    error_str.bytes);
961 
962 	if (ret_count < 0)
963 		ret = ret_count;
964 	else
965 		*pos = error_str.start + ret_count;
966 out:
967 	i915_error_state_buf_release(&error_str);
968 	return ret ?: ret_count;
969 }
970 
971 static const struct file_operations i915_error_state_fops = {
972 	.owner = THIS_MODULE,
973 	.open = i915_error_state_open,
974 	.read = i915_error_state_read,
975 	.write = i915_error_state_write,
976 	.llseek = default_llseek,
977 	.release = i915_error_state_release,
978 };
979 
980 static int
981 i915_next_seqno_get(void *data, u64 *val)
982 {
983 	struct drm_device *dev = data;
984 	struct drm_i915_private *dev_priv = dev->dev_private;
985 	int ret;
986 
987 	ret = mutex_lock_interruptible(&dev->struct_mutex);
988 	if (ret)
989 		return ret;
990 
991 	*val = dev_priv->next_seqno;
992 	mutex_unlock(&dev->struct_mutex);
993 
994 	return 0;
995 }
996 
997 static int
998 i915_next_seqno_set(void *data, u64 val)
999 {
1000 	struct drm_device *dev = data;
1001 	int ret;
1002 
1003 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1004 	if (ret)
1005 		return ret;
1006 
1007 	ret = i915_gem_set_seqno(dev, val);
1008 	mutex_unlock(&dev->struct_mutex);
1009 
1010 	return ret;
1011 }
1012 
1013 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1014 			i915_next_seqno_get, i915_next_seqno_set,
1015 			"0x%llx\n");
1016 
1017 static int i915_frequency_info(struct seq_file *m, void *unused)
1018 {
1019 	struct drm_info_node *node = m->private;
1020 	struct drm_device *dev = node->minor->dev;
1021 	struct drm_i915_private *dev_priv = dev->dev_private;
1022 	int ret = 0;
1023 
1024 	intel_runtime_pm_get(dev_priv);
1025 
1026 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1027 
1028 	if (IS_GEN5(dev)) {
1029 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1030 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1031 
1032 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1033 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1034 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1035 			   MEMSTAT_VID_SHIFT);
1036 		seq_printf(m, "Current P-state: %d\n",
1037 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1038 	} else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1039 		   IS_BROADWELL(dev)) {
1040 		u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1041 		u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1042 		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1043 		u32 rpmodectl, rpinclimit, rpdeclimit;
1044 		u32 rpstat, cagf, reqf;
1045 		u32 rpupei, rpcurup, rpprevup;
1046 		u32 rpdownei, rpcurdown, rpprevdown;
1047 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1048 		int max_freq;
1049 
1050 		/* RPSTAT1 is in the GT power well */
1051 		ret = mutex_lock_interruptible(&dev->struct_mutex);
1052 		if (ret)
1053 			goto out;
1054 
1055 		gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
1056 
1057 		reqf = I915_READ(GEN6_RPNSWREQ);
1058 		reqf &= ~GEN6_TURBO_DISABLE;
1059 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1060 			reqf >>= 24;
1061 		else
1062 			reqf >>= 25;
1063 		reqf *= GT_FREQUENCY_MULTIPLIER;
1064 
1065 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1066 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1067 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1068 
1069 		rpstat = I915_READ(GEN6_RPSTAT1);
1070 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1071 		rpcurup = I915_READ(GEN6_RP_CUR_UP);
1072 		rpprevup = I915_READ(GEN6_RP_PREV_UP);
1073 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1074 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1075 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1076 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1077 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1078 		else
1079 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1080 		cagf *= GT_FREQUENCY_MULTIPLIER;
1081 
1082 		gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
1083 		mutex_unlock(&dev->struct_mutex);
1084 
1085 		if (IS_GEN6(dev) || IS_GEN7(dev)) {
1086 			pm_ier = I915_READ(GEN6_PMIER);
1087 			pm_imr = I915_READ(GEN6_PMIMR);
1088 			pm_isr = I915_READ(GEN6_PMISR);
1089 			pm_iir = I915_READ(GEN6_PMIIR);
1090 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1091 		} else {
1092 			pm_ier = I915_READ(GEN8_GT_IER(2));
1093 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1094 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1095 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1096 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1097 		}
1098 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1099 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1100 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1101 		seq_printf(m, "Render p-state ratio: %d\n",
1102 			   (gt_perf_status & 0xff00) >> 8);
1103 		seq_printf(m, "Render p-state VID: %d\n",
1104 			   gt_perf_status & 0xff);
1105 		seq_printf(m, "Render p-state limit: %d\n",
1106 			   rp_state_limits & 0xff);
1107 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1108 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1109 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1110 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1111 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1112 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1113 		seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1114 			   GEN6_CURICONT_MASK);
1115 		seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1116 			   GEN6_CURBSYTAVG_MASK);
1117 		seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1118 			   GEN6_CURBSYTAVG_MASK);
1119 		seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1120 			   GEN6_CURIAVG_MASK);
1121 		seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1122 			   GEN6_CURBSYTAVG_MASK);
1123 		seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1124 			   GEN6_CURBSYTAVG_MASK);
1125 
1126 		max_freq = (rp_state_cap & 0xff0000) >> 16;
1127 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1128 			   max_freq * GT_FREQUENCY_MULTIPLIER);
1129 
1130 		max_freq = (rp_state_cap & 0xff00) >> 8;
1131 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1132 			   max_freq * GT_FREQUENCY_MULTIPLIER);
1133 
1134 		max_freq = rp_state_cap & 0xff;
1135 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1136 			   max_freq * GT_FREQUENCY_MULTIPLIER);
1137 
1138 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1139 			   dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
1140 	} else if (IS_VALLEYVIEW(dev)) {
1141 		u32 freq_sts;
1142 
1143 		mutex_lock(&dev_priv->rps.hw_lock);
1144 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1145 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1146 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1147 
1148 		seq_printf(m, "max GPU freq: %d MHz\n",
1149 			   vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1150 
1151 		seq_printf(m, "min GPU freq: %d MHz\n",
1152 			   vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1153 
1154 		seq_printf(m, "efficient (RPe) frequency: %d MHz\n",
1155 			   vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1156 
1157 		seq_printf(m, "current GPU freq: %d MHz\n",
1158 			   vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1159 		mutex_unlock(&dev_priv->rps.hw_lock);
1160 	} else {
1161 		seq_puts(m, "no P-state info available\n");
1162 	}
1163 
1164 out:
1165 	intel_runtime_pm_put(dev_priv);
1166 	return ret;
1167 }
1168 
1169 static int ironlake_drpc_info(struct seq_file *m)
1170 {
1171 	struct drm_info_node *node = m->private;
1172 	struct drm_device *dev = node->minor->dev;
1173 	struct drm_i915_private *dev_priv = dev->dev_private;
1174 	u32 rgvmodectl, rstdbyctl;
1175 	u16 crstandvid;
1176 	int ret;
1177 
1178 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1179 	if (ret)
1180 		return ret;
1181 	intel_runtime_pm_get(dev_priv);
1182 
1183 	rgvmodectl = I915_READ(MEMMODECTL);
1184 	rstdbyctl = I915_READ(RSTDBYCTL);
1185 	crstandvid = I915_READ16(CRSTANDVID);
1186 
1187 	intel_runtime_pm_put(dev_priv);
1188 	mutex_unlock(&dev->struct_mutex);
1189 
1190 	seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1191 		   "yes" : "no");
1192 	seq_printf(m, "Boost freq: %d\n",
1193 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1194 		   MEMMODE_BOOST_FREQ_SHIFT);
1195 	seq_printf(m, "HW control enabled: %s\n",
1196 		   rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1197 	seq_printf(m, "SW control enabled: %s\n",
1198 		   rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1199 	seq_printf(m, "Gated voltage change: %s\n",
1200 		   rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1201 	seq_printf(m, "Starting frequency: P%d\n",
1202 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1203 	seq_printf(m, "Max P-state: P%d\n",
1204 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1205 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1206 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1207 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1208 	seq_printf(m, "Render standby enabled: %s\n",
1209 		   (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1210 	seq_puts(m, "Current RS state: ");
1211 	switch (rstdbyctl & RSX_STATUS_MASK) {
1212 	case RSX_STATUS_ON:
1213 		seq_puts(m, "on\n");
1214 		break;
1215 	case RSX_STATUS_RC1:
1216 		seq_puts(m, "RC1\n");
1217 		break;
1218 	case RSX_STATUS_RC1E:
1219 		seq_puts(m, "RC1E\n");
1220 		break;
1221 	case RSX_STATUS_RS1:
1222 		seq_puts(m, "RS1\n");
1223 		break;
1224 	case RSX_STATUS_RS2:
1225 		seq_puts(m, "RS2 (RC6)\n");
1226 		break;
1227 	case RSX_STATUS_RS3:
1228 		seq_puts(m, "RC3 (RC6+)\n");
1229 		break;
1230 	default:
1231 		seq_puts(m, "unknown\n");
1232 		break;
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 static int vlv_drpc_info(struct seq_file *m)
1239 {
1240 
1241 	struct drm_info_node *node = m->private;
1242 	struct drm_device *dev = node->minor->dev;
1243 	struct drm_i915_private *dev_priv = dev->dev_private;
1244 	u32 rpmodectl1, rcctl1;
1245 	unsigned fw_rendercount = 0, fw_mediacount = 0;
1246 
1247 	intel_runtime_pm_get(dev_priv);
1248 
1249 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1250 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1251 
1252 	intel_runtime_pm_put(dev_priv);
1253 
1254 	seq_printf(m, "Video Turbo Mode: %s\n",
1255 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1256 	seq_printf(m, "Turbo enabled: %s\n",
1257 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1258 	seq_printf(m, "HW control enabled: %s\n",
1259 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1260 	seq_printf(m, "SW control enabled: %s\n",
1261 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1262 			  GEN6_RP_MEDIA_SW_MODE));
1263 	seq_printf(m, "RC6 Enabled: %s\n",
1264 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1265 					GEN6_RC_CTL_EI_MODE(1))));
1266 	seq_printf(m, "Render Power Well: %s\n",
1267 			(I915_READ(VLV_GTLC_PW_STATUS) &
1268 				VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1269 	seq_printf(m, "Media Power Well: %s\n",
1270 			(I915_READ(VLV_GTLC_PW_STATUS) &
1271 				VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1272 
1273 	seq_printf(m, "Render RC6 residency since boot: %u\n",
1274 		   I915_READ(VLV_GT_RENDER_RC6));
1275 	seq_printf(m, "Media RC6 residency since boot: %u\n",
1276 		   I915_READ(VLV_GT_MEDIA_RC6));
1277 
1278 	spin_lock_irq(&dev_priv->uncore.lock);
1279 	fw_rendercount = dev_priv->uncore.fw_rendercount;
1280 	fw_mediacount = dev_priv->uncore.fw_mediacount;
1281 	spin_unlock_irq(&dev_priv->uncore.lock);
1282 
1283 	seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1284 	seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1285 
1286 
1287 	return 0;
1288 }
1289 
1290 
1291 static int gen6_drpc_info(struct seq_file *m)
1292 {
1293 
1294 	struct drm_info_node *node = m->private;
1295 	struct drm_device *dev = node->minor->dev;
1296 	struct drm_i915_private *dev_priv = dev->dev_private;
1297 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1298 	unsigned forcewake_count;
1299 	int count = 0, ret;
1300 
1301 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1302 	if (ret)
1303 		return ret;
1304 	intel_runtime_pm_get(dev_priv);
1305 
1306 	spin_lock_irq(&dev_priv->uncore.lock);
1307 	forcewake_count = dev_priv->uncore.forcewake_count;
1308 	spin_unlock_irq(&dev_priv->uncore.lock);
1309 
1310 	if (forcewake_count) {
1311 		seq_puts(m, "RC information inaccurate because somebody "
1312 			    "holds a forcewake reference \n");
1313 	} else {
1314 		/* NB: we cannot use forcewake, else we read the wrong values */
1315 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1316 			udelay(10);
1317 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1318 	}
1319 
1320 	gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1321 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1322 
1323 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1324 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1325 	mutex_unlock(&dev->struct_mutex);
1326 	mutex_lock(&dev_priv->rps.hw_lock);
1327 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1328 	mutex_unlock(&dev_priv->rps.hw_lock);
1329 
1330 	intel_runtime_pm_put(dev_priv);
1331 
1332 	seq_printf(m, "Video Turbo Mode: %s\n",
1333 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1334 	seq_printf(m, "HW control enabled: %s\n",
1335 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1336 	seq_printf(m, "SW control enabled: %s\n",
1337 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1338 			  GEN6_RP_MEDIA_SW_MODE));
1339 	seq_printf(m, "RC1e Enabled: %s\n",
1340 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1341 	seq_printf(m, "RC6 Enabled: %s\n",
1342 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1343 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1344 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1345 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1346 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1347 	seq_puts(m, "Current RC state: ");
1348 	switch (gt_core_status & GEN6_RCn_MASK) {
1349 	case GEN6_RC0:
1350 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1351 			seq_puts(m, "Core Power Down\n");
1352 		else
1353 			seq_puts(m, "on\n");
1354 		break;
1355 	case GEN6_RC3:
1356 		seq_puts(m, "RC3\n");
1357 		break;
1358 	case GEN6_RC6:
1359 		seq_puts(m, "RC6\n");
1360 		break;
1361 	case GEN6_RC7:
1362 		seq_puts(m, "RC7\n");
1363 		break;
1364 	default:
1365 		seq_puts(m, "Unknown\n");
1366 		break;
1367 	}
1368 
1369 	seq_printf(m, "Core Power Down: %s\n",
1370 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1371 
1372 	/* Not exactly sure what this is */
1373 	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1374 		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1375 	seq_printf(m, "RC6 residency since boot: %u\n",
1376 		   I915_READ(GEN6_GT_GFX_RC6));
1377 	seq_printf(m, "RC6+ residency since boot: %u\n",
1378 		   I915_READ(GEN6_GT_GFX_RC6p));
1379 	seq_printf(m, "RC6++ residency since boot: %u\n",
1380 		   I915_READ(GEN6_GT_GFX_RC6pp));
1381 
1382 	seq_printf(m, "RC6   voltage: %dmV\n",
1383 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1384 	seq_printf(m, "RC6+  voltage: %dmV\n",
1385 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1386 	seq_printf(m, "RC6++ voltage: %dmV\n",
1387 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1388 	return 0;
1389 }
1390 
1391 static int i915_drpc_info(struct seq_file *m, void *unused)
1392 {
1393 	struct drm_info_node *node = m->private;
1394 	struct drm_device *dev = node->minor->dev;
1395 
1396 	if (IS_VALLEYVIEW(dev))
1397 		return vlv_drpc_info(m);
1398 	else if (INTEL_INFO(dev)->gen >= 6)
1399 		return gen6_drpc_info(m);
1400 	else
1401 		return ironlake_drpc_info(m);
1402 }
1403 
1404 static int i915_fbc_status(struct seq_file *m, void *unused)
1405 {
1406 	struct drm_info_node *node = m->private;
1407 	struct drm_device *dev = node->minor->dev;
1408 	struct drm_i915_private *dev_priv = dev->dev_private;
1409 
1410 	if (!HAS_FBC(dev)) {
1411 		seq_puts(m, "FBC unsupported on this chipset\n");
1412 		return 0;
1413 	}
1414 
1415 	intel_runtime_pm_get(dev_priv);
1416 
1417 	if (intel_fbc_enabled(dev)) {
1418 		seq_puts(m, "FBC enabled\n");
1419 	} else {
1420 		seq_puts(m, "FBC disabled: ");
1421 		switch (dev_priv->fbc.no_fbc_reason) {
1422 		case FBC_OK:
1423 			seq_puts(m, "FBC actived, but currently disabled in hardware");
1424 			break;
1425 		case FBC_UNSUPPORTED:
1426 			seq_puts(m, "unsupported by this chipset");
1427 			break;
1428 		case FBC_NO_OUTPUT:
1429 			seq_puts(m, "no outputs");
1430 			break;
1431 		case FBC_STOLEN_TOO_SMALL:
1432 			seq_puts(m, "not enough stolen memory");
1433 			break;
1434 		case FBC_UNSUPPORTED_MODE:
1435 			seq_puts(m, "mode not supported");
1436 			break;
1437 		case FBC_MODE_TOO_LARGE:
1438 			seq_puts(m, "mode too large");
1439 			break;
1440 		case FBC_BAD_PLANE:
1441 			seq_puts(m, "FBC unsupported on plane");
1442 			break;
1443 		case FBC_NOT_TILED:
1444 			seq_puts(m, "scanout buffer not tiled");
1445 			break;
1446 		case FBC_MULTIPLE_PIPES:
1447 			seq_puts(m, "multiple pipes are enabled");
1448 			break;
1449 		case FBC_MODULE_PARAM:
1450 			seq_puts(m, "disabled per module param (default off)");
1451 			break;
1452 		case FBC_CHIP_DEFAULT:
1453 			seq_puts(m, "disabled per chip default");
1454 			break;
1455 		default:
1456 			seq_puts(m, "unknown reason");
1457 		}
1458 		seq_putc(m, '\n');
1459 	}
1460 
1461 	intel_runtime_pm_put(dev_priv);
1462 
1463 	return 0;
1464 }
1465 
1466 static int i915_fbc_fc_get(void *data, u64 *val)
1467 {
1468 	struct drm_device *dev = data;
1469 	struct drm_i915_private *dev_priv = dev->dev_private;
1470 
1471 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1472 		return -ENODEV;
1473 
1474 	drm_modeset_lock_all(dev);
1475 	*val = dev_priv->fbc.false_color;
1476 	drm_modeset_unlock_all(dev);
1477 
1478 	return 0;
1479 }
1480 
1481 static int i915_fbc_fc_set(void *data, u64 val)
1482 {
1483 	struct drm_device *dev = data;
1484 	struct drm_i915_private *dev_priv = dev->dev_private;
1485 	u32 reg;
1486 
1487 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1488 		return -ENODEV;
1489 
1490 	drm_modeset_lock_all(dev);
1491 
1492 	reg = I915_READ(ILK_DPFC_CONTROL);
1493 	dev_priv->fbc.false_color = val;
1494 
1495 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1496 		   (reg | FBC_CTL_FALSE_COLOR) :
1497 		   (reg & ~FBC_CTL_FALSE_COLOR));
1498 
1499 	drm_modeset_unlock_all(dev);
1500 	return 0;
1501 }
1502 
1503 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1504 			i915_fbc_fc_get, i915_fbc_fc_set,
1505 			"%llu\n");
1506 
1507 static int i915_ips_status(struct seq_file *m, void *unused)
1508 {
1509 	struct drm_info_node *node = m->private;
1510 	struct drm_device *dev = node->minor->dev;
1511 	struct drm_i915_private *dev_priv = dev->dev_private;
1512 
1513 	if (!HAS_IPS(dev)) {
1514 		seq_puts(m, "not supported\n");
1515 		return 0;
1516 	}
1517 
1518 	intel_runtime_pm_get(dev_priv);
1519 
1520 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1521 		   yesno(i915.enable_ips));
1522 
1523 	if (INTEL_INFO(dev)->gen >= 8) {
1524 		seq_puts(m, "Currently: unknown\n");
1525 	} else {
1526 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1527 			seq_puts(m, "Currently: enabled\n");
1528 		else
1529 			seq_puts(m, "Currently: disabled\n");
1530 	}
1531 
1532 	intel_runtime_pm_put(dev_priv);
1533 
1534 	return 0;
1535 }
1536 
1537 static int i915_sr_status(struct seq_file *m, void *unused)
1538 {
1539 	struct drm_info_node *node = m->private;
1540 	struct drm_device *dev = node->minor->dev;
1541 	struct drm_i915_private *dev_priv = dev->dev_private;
1542 	bool sr_enabled = false;
1543 
1544 	intel_runtime_pm_get(dev_priv);
1545 
1546 	if (HAS_PCH_SPLIT(dev))
1547 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1548 	else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1549 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1550 	else if (IS_I915GM(dev))
1551 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1552 	else if (IS_PINEVIEW(dev))
1553 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1554 
1555 	intel_runtime_pm_put(dev_priv);
1556 
1557 	seq_printf(m, "self-refresh: %s\n",
1558 		   sr_enabled ? "enabled" : "disabled");
1559 
1560 	return 0;
1561 }
1562 
1563 static int i915_emon_status(struct seq_file *m, void *unused)
1564 {
1565 	struct drm_info_node *node = m->private;
1566 	struct drm_device *dev = node->minor->dev;
1567 	struct drm_i915_private *dev_priv = dev->dev_private;
1568 	unsigned long temp, chipset, gfx;
1569 	int ret;
1570 
1571 	if (!IS_GEN5(dev))
1572 		return -ENODEV;
1573 
1574 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1575 	if (ret)
1576 		return ret;
1577 
1578 	temp = i915_mch_val(dev_priv);
1579 	chipset = i915_chipset_val(dev_priv);
1580 	gfx = i915_gfx_val(dev_priv);
1581 	mutex_unlock(&dev->struct_mutex);
1582 
1583 	seq_printf(m, "GMCH temp: %ld\n", temp);
1584 	seq_printf(m, "Chipset power: %ld\n", chipset);
1585 	seq_printf(m, "GFX power: %ld\n", gfx);
1586 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1587 
1588 	return 0;
1589 }
1590 
1591 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1592 {
1593 	struct drm_info_node *node = m->private;
1594 	struct drm_device *dev = node->minor->dev;
1595 	struct drm_i915_private *dev_priv = dev->dev_private;
1596 	int ret = 0;
1597 	int gpu_freq, ia_freq;
1598 
1599 	if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1600 		seq_puts(m, "unsupported on this chipset\n");
1601 		return 0;
1602 	}
1603 
1604 	intel_runtime_pm_get(dev_priv);
1605 
1606 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1607 
1608 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1609 	if (ret)
1610 		goto out;
1611 
1612 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1613 
1614 	for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1615 	     gpu_freq <= dev_priv->rps.max_freq_softlimit;
1616 	     gpu_freq++) {
1617 		ia_freq = gpu_freq;
1618 		sandybridge_pcode_read(dev_priv,
1619 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1620 				       &ia_freq);
1621 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1622 			   gpu_freq * GT_FREQUENCY_MULTIPLIER,
1623 			   ((ia_freq >> 0) & 0xff) * 100,
1624 			   ((ia_freq >> 8) & 0xff) * 100);
1625 	}
1626 
1627 	mutex_unlock(&dev_priv->rps.hw_lock);
1628 
1629 out:
1630 	intel_runtime_pm_put(dev_priv);
1631 	return ret;
1632 }
1633 
1634 static int i915_opregion(struct seq_file *m, void *unused)
1635 {
1636 	struct drm_info_node *node = m->private;
1637 	struct drm_device *dev = node->minor->dev;
1638 	struct drm_i915_private *dev_priv = dev->dev_private;
1639 	struct intel_opregion *opregion = &dev_priv->opregion;
1640 	void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1641 	int ret;
1642 
1643 	if (data == NULL)
1644 		return -ENOMEM;
1645 
1646 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1647 	if (ret)
1648 		goto out;
1649 
1650 	if (opregion->header) {
1651 		memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1652 		seq_write(m, data, OPREGION_SIZE);
1653 	}
1654 
1655 	mutex_unlock(&dev->struct_mutex);
1656 
1657 out:
1658 	kfree(data);
1659 	return 0;
1660 }
1661 
1662 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1663 {
1664 	struct drm_info_node *node = m->private;
1665 	struct drm_device *dev = node->minor->dev;
1666 	struct intel_fbdev *ifbdev = NULL;
1667 	struct intel_framebuffer *fb;
1668 
1669 #ifdef CONFIG_DRM_I915_FBDEV
1670 	struct drm_i915_private *dev_priv = dev->dev_private;
1671 
1672 	ifbdev = dev_priv->fbdev;
1673 	fb = to_intel_framebuffer(ifbdev->helper.fb);
1674 
1675 	seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1676 		   fb->base.width,
1677 		   fb->base.height,
1678 		   fb->base.depth,
1679 		   fb->base.bits_per_pixel,
1680 		   atomic_read(&fb->base.refcount.refcount));
1681 	describe_obj(m, fb->obj);
1682 	seq_putc(m, '\n');
1683 #endif
1684 
1685 	mutex_lock(&dev->mode_config.fb_lock);
1686 	list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1687 		if (ifbdev && &fb->base == ifbdev->helper.fb)
1688 			continue;
1689 
1690 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1691 			   fb->base.width,
1692 			   fb->base.height,
1693 			   fb->base.depth,
1694 			   fb->base.bits_per_pixel,
1695 			   atomic_read(&fb->base.refcount.refcount));
1696 		describe_obj(m, fb->obj);
1697 		seq_putc(m, '\n');
1698 	}
1699 	mutex_unlock(&dev->mode_config.fb_lock);
1700 
1701 	return 0;
1702 }
1703 
1704 static void describe_ctx_ringbuf(struct seq_file *m,
1705 				 struct intel_ringbuffer *ringbuf)
1706 {
1707 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1708 		   ringbuf->space, ringbuf->head, ringbuf->tail,
1709 		   ringbuf->last_retired_head);
1710 }
1711 
1712 static int i915_context_status(struct seq_file *m, void *unused)
1713 {
1714 	struct drm_info_node *node = m->private;
1715 	struct drm_device *dev = node->minor->dev;
1716 	struct drm_i915_private *dev_priv = dev->dev_private;
1717 	struct intel_engine_cs *ring;
1718 	struct intel_context *ctx;
1719 	int ret, i;
1720 
1721 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1722 	if (ret)
1723 		return ret;
1724 
1725 	if (dev_priv->ips.pwrctx) {
1726 		seq_puts(m, "power context ");
1727 		describe_obj(m, dev_priv->ips.pwrctx);
1728 		seq_putc(m, '\n');
1729 	}
1730 
1731 	if (dev_priv->ips.renderctx) {
1732 		seq_puts(m, "render context ");
1733 		describe_obj(m, dev_priv->ips.renderctx);
1734 		seq_putc(m, '\n');
1735 	}
1736 
1737 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1738 		if (!i915.enable_execlists &&
1739 		    ctx->legacy_hw_ctx.rcs_state == NULL)
1740 			continue;
1741 
1742 		seq_puts(m, "HW context ");
1743 		describe_ctx(m, ctx);
1744 		for_each_ring(ring, dev_priv, i) {
1745 			if (ring->default_context == ctx)
1746 				seq_printf(m, "(default context %s) ",
1747 					   ring->name);
1748 		}
1749 
1750 		if (i915.enable_execlists) {
1751 			seq_putc(m, '\n');
1752 			for_each_ring(ring, dev_priv, i) {
1753 				struct drm_i915_gem_object *ctx_obj =
1754 					ctx->engine[i].state;
1755 				struct intel_ringbuffer *ringbuf =
1756 					ctx->engine[i].ringbuf;
1757 
1758 				seq_printf(m, "%s: ", ring->name);
1759 				if (ctx_obj)
1760 					describe_obj(m, ctx_obj);
1761 				if (ringbuf)
1762 					describe_ctx_ringbuf(m, ringbuf);
1763 				seq_putc(m, '\n');
1764 			}
1765 		} else {
1766 			describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1767 		}
1768 
1769 		seq_putc(m, '\n');
1770 	}
1771 
1772 	mutex_unlock(&dev->struct_mutex);
1773 
1774 	return 0;
1775 }
1776 
1777 static int i915_dump_lrc(struct seq_file *m, void *unused)
1778 {
1779 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1780 	struct drm_device *dev = node->minor->dev;
1781 	struct drm_i915_private *dev_priv = dev->dev_private;
1782 	struct intel_engine_cs *ring;
1783 	struct intel_context *ctx;
1784 	int ret, i;
1785 
1786 	if (!i915.enable_execlists) {
1787 		seq_printf(m, "Logical Ring Contexts are disabled\n");
1788 		return 0;
1789 	}
1790 
1791 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1792 	if (ret)
1793 		return ret;
1794 
1795 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1796 		for_each_ring(ring, dev_priv, i) {
1797 			struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1798 
1799 			if (ring->default_context == ctx)
1800 				continue;
1801 
1802 			if (ctx_obj) {
1803 				struct page *page = i915_gem_object_get_page(ctx_obj, 1);
1804 				uint32_t *reg_state = kmap_atomic(page);
1805 				int j;
1806 
1807 				seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1808 						intel_execlists_ctx_id(ctx_obj));
1809 
1810 				for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1811 					seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1812 					i915_gem_obj_ggtt_offset(ctx_obj) + 4096 + (j * 4),
1813 					reg_state[j], reg_state[j + 1],
1814 					reg_state[j + 2], reg_state[j + 3]);
1815 				}
1816 				kunmap_atomic(reg_state);
1817 
1818 				seq_putc(m, '\n');
1819 			}
1820 		}
1821 	}
1822 
1823 	mutex_unlock(&dev->struct_mutex);
1824 
1825 	return 0;
1826 }
1827 
1828 static int i915_execlists(struct seq_file *m, void *data)
1829 {
1830 	struct drm_info_node *node = (struct drm_info_node *)m->private;
1831 	struct drm_device *dev = node->minor->dev;
1832 	struct drm_i915_private *dev_priv = dev->dev_private;
1833 	struct intel_engine_cs *ring;
1834 	u32 status_pointer;
1835 	u8 read_pointer;
1836 	u8 write_pointer;
1837 	u32 status;
1838 	u32 ctx_id;
1839 	struct list_head *cursor;
1840 	int ring_id, i;
1841 	int ret;
1842 
1843 	if (!i915.enable_execlists) {
1844 		seq_puts(m, "Logical Ring Contexts are disabled\n");
1845 		return 0;
1846 	}
1847 
1848 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1849 	if (ret)
1850 		return ret;
1851 
1852 	for_each_ring(ring, dev_priv, ring_id) {
1853 		struct intel_ctx_submit_request *head_req = NULL;
1854 		int count = 0;
1855 		unsigned long flags;
1856 
1857 		seq_printf(m, "%s\n", ring->name);
1858 
1859 		status = I915_READ(RING_EXECLIST_STATUS(ring));
1860 		ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
1861 		seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
1862 			   status, ctx_id);
1863 
1864 		status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
1865 		seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
1866 
1867 		read_pointer = ring->next_context_status_buffer;
1868 		write_pointer = status_pointer & 0x07;
1869 		if (read_pointer > write_pointer)
1870 			write_pointer += 6;
1871 		seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
1872 			   read_pointer, write_pointer);
1873 
1874 		for (i = 0; i < 6; i++) {
1875 			status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
1876 			ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
1877 
1878 			seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
1879 				   i, status, ctx_id);
1880 		}
1881 
1882 		spin_lock_irqsave(&ring->execlist_lock, flags);
1883 		list_for_each(cursor, &ring->execlist_queue)
1884 			count++;
1885 		head_req = list_first_entry_or_null(&ring->execlist_queue,
1886 				struct intel_ctx_submit_request, execlist_link);
1887 		spin_unlock_irqrestore(&ring->execlist_lock, flags);
1888 
1889 		seq_printf(m, "\t%d requests in queue\n", count);
1890 		if (head_req) {
1891 			struct drm_i915_gem_object *ctx_obj;
1892 
1893 			ctx_obj = head_req->ctx->engine[ring_id].state;
1894 			seq_printf(m, "\tHead request id: %u\n",
1895 				   intel_execlists_ctx_id(ctx_obj));
1896 			seq_printf(m, "\tHead request tail: %u\n",
1897 				   head_req->tail);
1898 		}
1899 
1900 		seq_putc(m, '\n');
1901 	}
1902 
1903 	mutex_unlock(&dev->struct_mutex);
1904 
1905 	return 0;
1906 }
1907 
1908 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1909 {
1910 	struct drm_info_node *node = m->private;
1911 	struct drm_device *dev = node->minor->dev;
1912 	struct drm_i915_private *dev_priv = dev->dev_private;
1913 	unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1914 
1915 	spin_lock_irq(&dev_priv->uncore.lock);
1916 	if (IS_VALLEYVIEW(dev)) {
1917 		fw_rendercount = dev_priv->uncore.fw_rendercount;
1918 		fw_mediacount = dev_priv->uncore.fw_mediacount;
1919 	} else
1920 		forcewake_count = dev_priv->uncore.forcewake_count;
1921 	spin_unlock_irq(&dev_priv->uncore.lock);
1922 
1923 	if (IS_VALLEYVIEW(dev)) {
1924 		seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1925 		seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1926 	} else
1927 		seq_printf(m, "forcewake count = %u\n", forcewake_count);
1928 
1929 	return 0;
1930 }
1931 
1932 static const char *swizzle_string(unsigned swizzle)
1933 {
1934 	switch (swizzle) {
1935 	case I915_BIT_6_SWIZZLE_NONE:
1936 		return "none";
1937 	case I915_BIT_6_SWIZZLE_9:
1938 		return "bit9";
1939 	case I915_BIT_6_SWIZZLE_9_10:
1940 		return "bit9/bit10";
1941 	case I915_BIT_6_SWIZZLE_9_11:
1942 		return "bit9/bit11";
1943 	case I915_BIT_6_SWIZZLE_9_10_11:
1944 		return "bit9/bit10/bit11";
1945 	case I915_BIT_6_SWIZZLE_9_17:
1946 		return "bit9/bit17";
1947 	case I915_BIT_6_SWIZZLE_9_10_17:
1948 		return "bit9/bit10/bit17";
1949 	case I915_BIT_6_SWIZZLE_UNKNOWN:
1950 		return "unknown";
1951 	}
1952 
1953 	return "bug";
1954 }
1955 
1956 static int i915_swizzle_info(struct seq_file *m, void *data)
1957 {
1958 	struct drm_info_node *node = m->private;
1959 	struct drm_device *dev = node->minor->dev;
1960 	struct drm_i915_private *dev_priv = dev->dev_private;
1961 	int ret;
1962 
1963 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1964 	if (ret)
1965 		return ret;
1966 	intel_runtime_pm_get(dev_priv);
1967 
1968 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1969 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1970 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1971 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1972 
1973 	if (IS_GEN3(dev) || IS_GEN4(dev)) {
1974 		seq_printf(m, "DDC = 0x%08x\n",
1975 			   I915_READ(DCC));
1976 		seq_printf(m, "C0DRB3 = 0x%04x\n",
1977 			   I915_READ16(C0DRB3));
1978 		seq_printf(m, "C1DRB3 = 0x%04x\n",
1979 			   I915_READ16(C1DRB3));
1980 	} else if (INTEL_INFO(dev)->gen >= 6) {
1981 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1982 			   I915_READ(MAD_DIMM_C0));
1983 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1984 			   I915_READ(MAD_DIMM_C1));
1985 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1986 			   I915_READ(MAD_DIMM_C2));
1987 		seq_printf(m, "TILECTL = 0x%08x\n",
1988 			   I915_READ(TILECTL));
1989 		if (IS_GEN8(dev))
1990 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1991 				   I915_READ(GAMTARBMODE));
1992 		else
1993 			seq_printf(m, "ARB_MODE = 0x%08x\n",
1994 				   I915_READ(ARB_MODE));
1995 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1996 			   I915_READ(DISP_ARB_CTL));
1997 	}
1998 	intel_runtime_pm_put(dev_priv);
1999 	mutex_unlock(&dev->struct_mutex);
2000 
2001 	return 0;
2002 }
2003 
2004 static int per_file_ctx(int id, void *ptr, void *data)
2005 {
2006 	struct intel_context *ctx = ptr;
2007 	struct seq_file *m = data;
2008 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2009 
2010 	if (!ppgtt) {
2011 		seq_printf(m, "  no ppgtt for context %d\n",
2012 			   ctx->user_handle);
2013 		return 0;
2014 	}
2015 
2016 	if (i915_gem_context_is_default(ctx))
2017 		seq_puts(m, "  default context:\n");
2018 	else
2019 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2020 	ppgtt->debug_dump(ppgtt, m);
2021 
2022 	return 0;
2023 }
2024 
2025 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2026 {
2027 	struct drm_i915_private *dev_priv = dev->dev_private;
2028 	struct intel_engine_cs *ring;
2029 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2030 	int unused, i;
2031 
2032 	if (!ppgtt)
2033 		return;
2034 
2035 	seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
2036 	seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
2037 	for_each_ring(ring, dev_priv, unused) {
2038 		seq_printf(m, "%s\n", ring->name);
2039 		for (i = 0; i < 4; i++) {
2040 			u32 offset = 0x270 + i * 8;
2041 			u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2042 			pdp <<= 32;
2043 			pdp |= I915_READ(ring->mmio_base + offset);
2044 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2045 		}
2046 	}
2047 }
2048 
2049 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2050 {
2051 	struct drm_i915_private *dev_priv = dev->dev_private;
2052 	struct intel_engine_cs *ring;
2053 	struct drm_file *file;
2054 	int i;
2055 
2056 	if (INTEL_INFO(dev)->gen == 6)
2057 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2058 
2059 	for_each_ring(ring, dev_priv, i) {
2060 		seq_printf(m, "%s\n", ring->name);
2061 		if (INTEL_INFO(dev)->gen == 7)
2062 			seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2063 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2064 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2065 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2066 	}
2067 	if (dev_priv->mm.aliasing_ppgtt) {
2068 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2069 
2070 		seq_puts(m, "aliasing PPGTT:\n");
2071 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
2072 
2073 		ppgtt->debug_dump(ppgtt, m);
2074 	}
2075 
2076 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2077 		struct drm_i915_file_private *file_priv = file->driver_priv;
2078 
2079 		seq_printf(m, "proc: %s\n",
2080 			   get_pid_task(file->pid, PIDTYPE_PID)->comm);
2081 		idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2082 	}
2083 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2084 }
2085 
2086 static int i915_ppgtt_info(struct seq_file *m, void *data)
2087 {
2088 	struct drm_info_node *node = m->private;
2089 	struct drm_device *dev = node->minor->dev;
2090 	struct drm_i915_private *dev_priv = dev->dev_private;
2091 
2092 	int ret = mutex_lock_interruptible(&dev->struct_mutex);
2093 	if (ret)
2094 		return ret;
2095 	intel_runtime_pm_get(dev_priv);
2096 
2097 	if (INTEL_INFO(dev)->gen >= 8)
2098 		gen8_ppgtt_info(m, dev);
2099 	else if (INTEL_INFO(dev)->gen >= 6)
2100 		gen6_ppgtt_info(m, dev);
2101 
2102 	intel_runtime_pm_put(dev_priv);
2103 	mutex_unlock(&dev->struct_mutex);
2104 
2105 	return 0;
2106 }
2107 
2108 static int i915_llc(struct seq_file *m, void *data)
2109 {
2110 	struct drm_info_node *node = m->private;
2111 	struct drm_device *dev = node->minor->dev;
2112 	struct drm_i915_private *dev_priv = dev->dev_private;
2113 
2114 	/* Size calculation for LLC is a bit of a pain. Ignore for now. */
2115 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2116 	seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2117 
2118 	return 0;
2119 }
2120 
2121 static int i915_edp_psr_status(struct seq_file *m, void *data)
2122 {
2123 	struct drm_info_node *node = m->private;
2124 	struct drm_device *dev = node->minor->dev;
2125 	struct drm_i915_private *dev_priv = dev->dev_private;
2126 	u32 psrperf = 0;
2127 	bool enabled = false;
2128 
2129 	intel_runtime_pm_get(dev_priv);
2130 
2131 	mutex_lock(&dev_priv->psr.lock);
2132 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2133 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2134 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2135 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2136 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2137 		   dev_priv->psr.busy_frontbuffer_bits);
2138 	seq_printf(m, "Re-enable work scheduled: %s\n",
2139 		   yesno(work_busy(&dev_priv->psr.work.work)));
2140 
2141 	enabled = HAS_PSR(dev) &&
2142 		I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2143 	seq_printf(m, "HW Enabled & Active bit: %s\n", yesno(enabled));
2144 
2145 	if (HAS_PSR(dev))
2146 		psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2147 			EDP_PSR_PERF_CNT_MASK;
2148 	seq_printf(m, "Performance_Counter: %u\n", psrperf);
2149 	mutex_unlock(&dev_priv->psr.lock);
2150 
2151 	intel_runtime_pm_put(dev_priv);
2152 	return 0;
2153 }
2154 
2155 static int i915_sink_crc(struct seq_file *m, void *data)
2156 {
2157 	struct drm_info_node *node = m->private;
2158 	struct drm_device *dev = node->minor->dev;
2159 	struct intel_encoder *encoder;
2160 	struct intel_connector *connector;
2161 	struct intel_dp *intel_dp = NULL;
2162 	int ret;
2163 	u8 crc[6];
2164 
2165 	drm_modeset_lock_all(dev);
2166 	list_for_each_entry(connector, &dev->mode_config.connector_list,
2167 			    base.head) {
2168 
2169 		if (connector->base.dpms != DRM_MODE_DPMS_ON)
2170 			continue;
2171 
2172 		if (!connector->base.encoder)
2173 			continue;
2174 
2175 		encoder = to_intel_encoder(connector->base.encoder);
2176 		if (encoder->type != INTEL_OUTPUT_EDP)
2177 			continue;
2178 
2179 		intel_dp = enc_to_intel_dp(&encoder->base);
2180 
2181 		ret = intel_dp_sink_crc(intel_dp, crc);
2182 		if (ret)
2183 			goto out;
2184 
2185 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2186 			   crc[0], crc[1], crc[2],
2187 			   crc[3], crc[4], crc[5]);
2188 		goto out;
2189 	}
2190 	ret = -ENODEV;
2191 out:
2192 	drm_modeset_unlock_all(dev);
2193 	return ret;
2194 }
2195 
2196 static int i915_energy_uJ(struct seq_file *m, void *data)
2197 {
2198 	struct drm_info_node *node = m->private;
2199 	struct drm_device *dev = node->minor->dev;
2200 	struct drm_i915_private *dev_priv = dev->dev_private;
2201 	u64 power;
2202 	u32 units;
2203 
2204 	if (INTEL_INFO(dev)->gen < 6)
2205 		return -ENODEV;
2206 
2207 	intel_runtime_pm_get(dev_priv);
2208 
2209 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2210 	power = (power & 0x1f00) >> 8;
2211 	units = 1000000 / (1 << power); /* convert to uJ */
2212 	power = I915_READ(MCH_SECP_NRG_STTS);
2213 	power *= units;
2214 
2215 	intel_runtime_pm_put(dev_priv);
2216 
2217 	seq_printf(m, "%llu", (long long unsigned)power);
2218 
2219 	return 0;
2220 }
2221 
2222 static int i915_pc8_status(struct seq_file *m, void *unused)
2223 {
2224 	struct drm_info_node *node = m->private;
2225 	struct drm_device *dev = node->minor->dev;
2226 	struct drm_i915_private *dev_priv = dev->dev_private;
2227 
2228 	if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2229 		seq_puts(m, "not supported\n");
2230 		return 0;
2231 	}
2232 
2233 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2234 	seq_printf(m, "IRQs disabled: %s\n",
2235 		   yesno(!intel_irqs_enabled(dev_priv)));
2236 
2237 	return 0;
2238 }
2239 
2240 static const char *power_domain_str(enum intel_display_power_domain domain)
2241 {
2242 	switch (domain) {
2243 	case POWER_DOMAIN_PIPE_A:
2244 		return "PIPE_A";
2245 	case POWER_DOMAIN_PIPE_B:
2246 		return "PIPE_B";
2247 	case POWER_DOMAIN_PIPE_C:
2248 		return "PIPE_C";
2249 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2250 		return "PIPE_A_PANEL_FITTER";
2251 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2252 		return "PIPE_B_PANEL_FITTER";
2253 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2254 		return "PIPE_C_PANEL_FITTER";
2255 	case POWER_DOMAIN_TRANSCODER_A:
2256 		return "TRANSCODER_A";
2257 	case POWER_DOMAIN_TRANSCODER_B:
2258 		return "TRANSCODER_B";
2259 	case POWER_DOMAIN_TRANSCODER_C:
2260 		return "TRANSCODER_C";
2261 	case POWER_DOMAIN_TRANSCODER_EDP:
2262 		return "TRANSCODER_EDP";
2263 	case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2264 		return "PORT_DDI_A_2_LANES";
2265 	case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2266 		return "PORT_DDI_A_4_LANES";
2267 	case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2268 		return "PORT_DDI_B_2_LANES";
2269 	case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2270 		return "PORT_DDI_B_4_LANES";
2271 	case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2272 		return "PORT_DDI_C_2_LANES";
2273 	case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2274 		return "PORT_DDI_C_4_LANES";
2275 	case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2276 		return "PORT_DDI_D_2_LANES";
2277 	case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2278 		return "PORT_DDI_D_4_LANES";
2279 	case POWER_DOMAIN_PORT_DSI:
2280 		return "PORT_DSI";
2281 	case POWER_DOMAIN_PORT_CRT:
2282 		return "PORT_CRT";
2283 	case POWER_DOMAIN_PORT_OTHER:
2284 		return "PORT_OTHER";
2285 	case POWER_DOMAIN_VGA:
2286 		return "VGA";
2287 	case POWER_DOMAIN_AUDIO:
2288 		return "AUDIO";
2289 	case POWER_DOMAIN_PLLS:
2290 		return "PLLS";
2291 	case POWER_DOMAIN_INIT:
2292 		return "INIT";
2293 	default:
2294 		WARN_ON(1);
2295 		return "?";
2296 	}
2297 }
2298 
2299 static int i915_power_domain_info(struct seq_file *m, void *unused)
2300 {
2301 	struct drm_info_node *node = m->private;
2302 	struct drm_device *dev = node->minor->dev;
2303 	struct drm_i915_private *dev_priv = dev->dev_private;
2304 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2305 	int i;
2306 
2307 	mutex_lock(&power_domains->lock);
2308 
2309 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2310 	for (i = 0; i < power_domains->power_well_count; i++) {
2311 		struct i915_power_well *power_well;
2312 		enum intel_display_power_domain power_domain;
2313 
2314 		power_well = &power_domains->power_wells[i];
2315 		seq_printf(m, "%-25s %d\n", power_well->name,
2316 			   power_well->count);
2317 
2318 		for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2319 		     power_domain++) {
2320 			if (!(BIT(power_domain) & power_well->domains))
2321 				continue;
2322 
2323 			seq_printf(m, "  %-23s %d\n",
2324 				 power_domain_str(power_domain),
2325 				 power_domains->domain_use_count[power_domain]);
2326 		}
2327 	}
2328 
2329 	mutex_unlock(&power_domains->lock);
2330 
2331 	return 0;
2332 }
2333 
2334 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2335 				 struct drm_display_mode *mode)
2336 {
2337 	int i;
2338 
2339 	for (i = 0; i < tabs; i++)
2340 		seq_putc(m, '\t');
2341 
2342 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2343 		   mode->base.id, mode->name,
2344 		   mode->vrefresh, mode->clock,
2345 		   mode->hdisplay, mode->hsync_start,
2346 		   mode->hsync_end, mode->htotal,
2347 		   mode->vdisplay, mode->vsync_start,
2348 		   mode->vsync_end, mode->vtotal,
2349 		   mode->type, mode->flags);
2350 }
2351 
2352 static void intel_encoder_info(struct seq_file *m,
2353 			       struct intel_crtc *intel_crtc,
2354 			       struct intel_encoder *intel_encoder)
2355 {
2356 	struct drm_info_node *node = m->private;
2357 	struct drm_device *dev = node->minor->dev;
2358 	struct drm_crtc *crtc = &intel_crtc->base;
2359 	struct intel_connector *intel_connector;
2360 	struct drm_encoder *encoder;
2361 
2362 	encoder = &intel_encoder->base;
2363 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2364 		   encoder->base.id, encoder->name);
2365 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2366 		struct drm_connector *connector = &intel_connector->base;
2367 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2368 			   connector->base.id,
2369 			   connector->name,
2370 			   drm_get_connector_status_name(connector->status));
2371 		if (connector->status == connector_status_connected) {
2372 			struct drm_display_mode *mode = &crtc->mode;
2373 			seq_printf(m, ", mode:\n");
2374 			intel_seq_print_mode(m, 2, mode);
2375 		} else {
2376 			seq_putc(m, '\n');
2377 		}
2378 	}
2379 }
2380 
2381 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2382 {
2383 	struct drm_info_node *node = m->private;
2384 	struct drm_device *dev = node->minor->dev;
2385 	struct drm_crtc *crtc = &intel_crtc->base;
2386 	struct intel_encoder *intel_encoder;
2387 
2388 	if (crtc->primary->fb)
2389 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2390 			   crtc->primary->fb->base.id, crtc->x, crtc->y,
2391 			   crtc->primary->fb->width, crtc->primary->fb->height);
2392 	else
2393 		seq_puts(m, "\tprimary plane disabled\n");
2394 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2395 		intel_encoder_info(m, intel_crtc, intel_encoder);
2396 }
2397 
2398 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2399 {
2400 	struct drm_display_mode *mode = panel->fixed_mode;
2401 
2402 	seq_printf(m, "\tfixed mode:\n");
2403 	intel_seq_print_mode(m, 2, mode);
2404 }
2405 
2406 static void intel_dp_info(struct seq_file *m,
2407 			  struct intel_connector *intel_connector)
2408 {
2409 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2410 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2411 
2412 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2413 	seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2414 		   "no");
2415 	if (intel_encoder->type == INTEL_OUTPUT_EDP)
2416 		intel_panel_info(m, &intel_connector->panel);
2417 }
2418 
2419 static void intel_hdmi_info(struct seq_file *m,
2420 			    struct intel_connector *intel_connector)
2421 {
2422 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2423 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2424 
2425 	seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2426 		   "no");
2427 }
2428 
2429 static void intel_lvds_info(struct seq_file *m,
2430 			    struct intel_connector *intel_connector)
2431 {
2432 	intel_panel_info(m, &intel_connector->panel);
2433 }
2434 
2435 static void intel_connector_info(struct seq_file *m,
2436 				 struct drm_connector *connector)
2437 {
2438 	struct intel_connector *intel_connector = to_intel_connector(connector);
2439 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2440 	struct drm_display_mode *mode;
2441 
2442 	seq_printf(m, "connector %d: type %s, status: %s\n",
2443 		   connector->base.id, connector->name,
2444 		   drm_get_connector_status_name(connector->status));
2445 	if (connector->status == connector_status_connected) {
2446 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
2447 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2448 			   connector->display_info.width_mm,
2449 			   connector->display_info.height_mm);
2450 		seq_printf(m, "\tsubpixel order: %s\n",
2451 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2452 		seq_printf(m, "\tCEA rev: %d\n",
2453 			   connector->display_info.cea_rev);
2454 	}
2455 	if (intel_encoder) {
2456 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2457 		    intel_encoder->type == INTEL_OUTPUT_EDP)
2458 			intel_dp_info(m, intel_connector);
2459 		else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2460 			intel_hdmi_info(m, intel_connector);
2461 		else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2462 			intel_lvds_info(m, intel_connector);
2463 	}
2464 
2465 	seq_printf(m, "\tmodes:\n");
2466 	list_for_each_entry(mode, &connector->modes, head)
2467 		intel_seq_print_mode(m, 2, mode);
2468 }
2469 
2470 static bool cursor_active(struct drm_device *dev, int pipe)
2471 {
2472 	struct drm_i915_private *dev_priv = dev->dev_private;
2473 	u32 state;
2474 
2475 	if (IS_845G(dev) || IS_I865G(dev))
2476 		state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2477 	else
2478 		state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2479 
2480 	return state;
2481 }
2482 
2483 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2484 {
2485 	struct drm_i915_private *dev_priv = dev->dev_private;
2486 	u32 pos;
2487 
2488 	pos = I915_READ(CURPOS(pipe));
2489 
2490 	*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2491 	if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2492 		*x = -*x;
2493 
2494 	*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2495 	if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2496 		*y = -*y;
2497 
2498 	return cursor_active(dev, pipe);
2499 }
2500 
2501 static int i915_display_info(struct seq_file *m, void *unused)
2502 {
2503 	struct drm_info_node *node = m->private;
2504 	struct drm_device *dev = node->minor->dev;
2505 	struct drm_i915_private *dev_priv = dev->dev_private;
2506 	struct intel_crtc *crtc;
2507 	struct drm_connector *connector;
2508 
2509 	intel_runtime_pm_get(dev_priv);
2510 	drm_modeset_lock_all(dev);
2511 	seq_printf(m, "CRTC info\n");
2512 	seq_printf(m, "---------\n");
2513 	for_each_intel_crtc(dev, crtc) {
2514 		bool active;
2515 		int x, y;
2516 
2517 		seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2518 			   crtc->base.base.id, pipe_name(crtc->pipe),
2519 			   yesno(crtc->active), crtc->config.pipe_src_w, crtc->config.pipe_src_h);
2520 		if (crtc->active) {
2521 			intel_crtc_info(m, crtc);
2522 
2523 			active = cursor_position(dev, crtc->pipe, &x, &y);
2524 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2525 				   yesno(crtc->cursor_base),
2526 				   x, y, crtc->cursor_width, crtc->cursor_height,
2527 				   crtc->cursor_addr, yesno(active));
2528 		}
2529 
2530 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2531 			   yesno(!crtc->cpu_fifo_underrun_disabled),
2532 			   yesno(!crtc->pch_fifo_underrun_disabled));
2533 	}
2534 
2535 	seq_printf(m, "\n");
2536 	seq_printf(m, "Connector info\n");
2537 	seq_printf(m, "--------------\n");
2538 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2539 		intel_connector_info(m, connector);
2540 	}
2541 	drm_modeset_unlock_all(dev);
2542 	intel_runtime_pm_put(dev_priv);
2543 
2544 	return 0;
2545 }
2546 
2547 static int i915_semaphore_status(struct seq_file *m, void *unused)
2548 {
2549 	struct drm_info_node *node = (struct drm_info_node *) m->private;
2550 	struct drm_device *dev = node->minor->dev;
2551 	struct drm_i915_private *dev_priv = dev->dev_private;
2552 	struct intel_engine_cs *ring;
2553 	int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2554 	int i, j, ret;
2555 
2556 	if (!i915_semaphore_is_enabled(dev)) {
2557 		seq_puts(m, "Semaphores are disabled\n");
2558 		return 0;
2559 	}
2560 
2561 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2562 	if (ret)
2563 		return ret;
2564 	intel_runtime_pm_get(dev_priv);
2565 
2566 	if (IS_BROADWELL(dev)) {
2567 		struct page *page;
2568 		uint64_t *seqno;
2569 
2570 		page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2571 
2572 		seqno = (uint64_t *)kmap_atomic(page);
2573 		for_each_ring(ring, dev_priv, i) {
2574 			uint64_t offset;
2575 
2576 			seq_printf(m, "%s\n", ring->name);
2577 
2578 			seq_puts(m, "  Last signal:");
2579 			for (j = 0; j < num_rings; j++) {
2580 				offset = i * I915_NUM_RINGS + j;
2581 				seq_printf(m, "0x%08llx (0x%02llx) ",
2582 					   seqno[offset], offset * 8);
2583 			}
2584 			seq_putc(m, '\n');
2585 
2586 			seq_puts(m, "  Last wait:  ");
2587 			for (j = 0; j < num_rings; j++) {
2588 				offset = i + (j * I915_NUM_RINGS);
2589 				seq_printf(m, "0x%08llx (0x%02llx) ",
2590 					   seqno[offset], offset * 8);
2591 			}
2592 			seq_putc(m, '\n');
2593 
2594 		}
2595 		kunmap_atomic(seqno);
2596 	} else {
2597 		seq_puts(m, "  Last signal:");
2598 		for_each_ring(ring, dev_priv, i)
2599 			for (j = 0; j < num_rings; j++)
2600 				seq_printf(m, "0x%08x\n",
2601 					   I915_READ(ring->semaphore.mbox.signal[j]));
2602 		seq_putc(m, '\n');
2603 	}
2604 
2605 	seq_puts(m, "\nSync seqno:\n");
2606 	for_each_ring(ring, dev_priv, i) {
2607 		for (j = 0; j < num_rings; j++) {
2608 			seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
2609 		}
2610 		seq_putc(m, '\n');
2611 	}
2612 	seq_putc(m, '\n');
2613 
2614 	intel_runtime_pm_put(dev_priv);
2615 	mutex_unlock(&dev->struct_mutex);
2616 	return 0;
2617 }
2618 
2619 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2620 {
2621 	struct drm_info_node *node = (struct drm_info_node *) m->private;
2622 	struct drm_device *dev = node->minor->dev;
2623 	struct drm_i915_private *dev_priv = dev->dev_private;
2624 	int i;
2625 
2626 	drm_modeset_lock_all(dev);
2627 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2628 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2629 
2630 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2631 		seq_printf(m, " refcount: %i, active: %i, on: %s\n", pll->refcount,
2632 			   pll->active, yesno(pll->on));
2633 		seq_printf(m, " tracked hardware state:\n");
2634 		seq_printf(m, " dpll:    0x%08x\n", pll->hw_state.dpll);
2635 		seq_printf(m, " dpll_md: 0x%08x\n", pll->hw_state.dpll_md);
2636 		seq_printf(m, " fp0:     0x%08x\n", pll->hw_state.fp0);
2637 		seq_printf(m, " fp1:     0x%08x\n", pll->hw_state.fp1);
2638 		seq_printf(m, " wrpll:   0x%08x\n", pll->hw_state.wrpll);
2639 	}
2640 	drm_modeset_unlock_all(dev);
2641 
2642 	return 0;
2643 }
2644 
2645 static int i915_wa_registers(struct seq_file *m, void *unused)
2646 {
2647 	int i;
2648 	int ret;
2649 	struct drm_info_node *node = (struct drm_info_node *) m->private;
2650 	struct drm_device *dev = node->minor->dev;
2651 	struct drm_i915_private *dev_priv = dev->dev_private;
2652 
2653 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2654 	if (ret)
2655 		return ret;
2656 
2657 	intel_runtime_pm_get(dev_priv);
2658 
2659 	seq_printf(m, "Workarounds applied: %d\n", dev_priv->num_wa_regs);
2660 	for (i = 0; i < dev_priv->num_wa_regs; ++i) {
2661 		u32 addr, mask;
2662 
2663 		addr = dev_priv->intel_wa_regs[i].addr;
2664 		mask = dev_priv->intel_wa_regs[i].mask;
2665 		dev_priv->intel_wa_regs[i].value = I915_READ(addr) | mask;
2666 		if (dev_priv->intel_wa_regs[i].addr)
2667 			seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X\n",
2668 				   dev_priv->intel_wa_regs[i].addr,
2669 				   dev_priv->intel_wa_regs[i].value,
2670 				   dev_priv->intel_wa_regs[i].mask);
2671 	}
2672 
2673 	intel_runtime_pm_put(dev_priv);
2674 	mutex_unlock(&dev->struct_mutex);
2675 
2676 	return 0;
2677 }
2678 
2679 struct pipe_crc_info {
2680 	const char *name;
2681 	struct drm_device *dev;
2682 	enum pipe pipe;
2683 };
2684 
2685 static int i915_dp_mst_info(struct seq_file *m, void *unused)
2686 {
2687 	struct drm_info_node *node = (struct drm_info_node *) m->private;
2688 	struct drm_device *dev = node->minor->dev;
2689 	struct drm_encoder *encoder;
2690 	struct intel_encoder *intel_encoder;
2691 	struct intel_digital_port *intel_dig_port;
2692 	drm_modeset_lock_all(dev);
2693 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2694 		intel_encoder = to_intel_encoder(encoder);
2695 		if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
2696 			continue;
2697 		intel_dig_port = enc_to_dig_port(encoder);
2698 		if (!intel_dig_port->dp.can_mst)
2699 			continue;
2700 
2701 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
2702 	}
2703 	drm_modeset_unlock_all(dev);
2704 	return 0;
2705 }
2706 
2707 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2708 {
2709 	struct pipe_crc_info *info = inode->i_private;
2710 	struct drm_i915_private *dev_priv = info->dev->dev_private;
2711 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2712 
2713 	if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2714 		return -ENODEV;
2715 
2716 	spin_lock_irq(&pipe_crc->lock);
2717 
2718 	if (pipe_crc->opened) {
2719 		spin_unlock_irq(&pipe_crc->lock);
2720 		return -EBUSY; /* already open */
2721 	}
2722 
2723 	pipe_crc->opened = true;
2724 	filep->private_data = inode->i_private;
2725 
2726 	spin_unlock_irq(&pipe_crc->lock);
2727 
2728 	return 0;
2729 }
2730 
2731 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2732 {
2733 	struct pipe_crc_info *info = inode->i_private;
2734 	struct drm_i915_private *dev_priv = info->dev->dev_private;
2735 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2736 
2737 	spin_lock_irq(&pipe_crc->lock);
2738 	pipe_crc->opened = false;
2739 	spin_unlock_irq(&pipe_crc->lock);
2740 
2741 	return 0;
2742 }
2743 
2744 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2745 #define PIPE_CRC_LINE_LEN	(6 * 8 + 5 + 1)
2746 /* account for \'0' */
2747 #define PIPE_CRC_BUFFER_LEN	(PIPE_CRC_LINE_LEN + 1)
2748 
2749 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2750 {
2751 	assert_spin_locked(&pipe_crc->lock);
2752 	return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2753 			INTEL_PIPE_CRC_ENTRIES_NR);
2754 }
2755 
2756 static ssize_t
2757 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2758 		   loff_t *pos)
2759 {
2760 	struct pipe_crc_info *info = filep->private_data;
2761 	struct drm_device *dev = info->dev;
2762 	struct drm_i915_private *dev_priv = dev->dev_private;
2763 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2764 	char buf[PIPE_CRC_BUFFER_LEN];
2765 	int head, tail, n_entries, n;
2766 	ssize_t bytes_read;
2767 
2768 	/*
2769 	 * Don't allow user space to provide buffers not big enough to hold
2770 	 * a line of data.
2771 	 */
2772 	if (count < PIPE_CRC_LINE_LEN)
2773 		return -EINVAL;
2774 
2775 	if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2776 		return 0;
2777 
2778 	/* nothing to read */
2779 	spin_lock_irq(&pipe_crc->lock);
2780 	while (pipe_crc_data_count(pipe_crc) == 0) {
2781 		int ret;
2782 
2783 		if (filep->f_flags & O_NONBLOCK) {
2784 			spin_unlock_irq(&pipe_crc->lock);
2785 			return -EAGAIN;
2786 		}
2787 
2788 		ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2789 				pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2790 		if (ret) {
2791 			spin_unlock_irq(&pipe_crc->lock);
2792 			return ret;
2793 		}
2794 	}
2795 
2796 	/* We now have one or more entries to read */
2797 	head = pipe_crc->head;
2798 	tail = pipe_crc->tail;
2799 	n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2800 			count / PIPE_CRC_LINE_LEN);
2801 	spin_unlock_irq(&pipe_crc->lock);
2802 
2803 	bytes_read = 0;
2804 	n = 0;
2805 	do {
2806 		struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2807 		int ret;
2808 
2809 		bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2810 				       "%8u %8x %8x %8x %8x %8x\n",
2811 				       entry->frame, entry->crc[0],
2812 				       entry->crc[1], entry->crc[2],
2813 				       entry->crc[3], entry->crc[4]);
2814 
2815 		ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2816 				   buf, PIPE_CRC_LINE_LEN);
2817 		if (ret == PIPE_CRC_LINE_LEN)
2818 			return -EFAULT;
2819 
2820 		BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2821 		tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2822 		n++;
2823 	} while (--n_entries);
2824 
2825 	spin_lock_irq(&pipe_crc->lock);
2826 	pipe_crc->tail = tail;
2827 	spin_unlock_irq(&pipe_crc->lock);
2828 
2829 	return bytes_read;
2830 }
2831 
2832 static const struct file_operations i915_pipe_crc_fops = {
2833 	.owner = THIS_MODULE,
2834 	.open = i915_pipe_crc_open,
2835 	.read = i915_pipe_crc_read,
2836 	.release = i915_pipe_crc_release,
2837 };
2838 
2839 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2840 	{
2841 		.name = "i915_pipe_A_crc",
2842 		.pipe = PIPE_A,
2843 	},
2844 	{
2845 		.name = "i915_pipe_B_crc",
2846 		.pipe = PIPE_B,
2847 	},
2848 	{
2849 		.name = "i915_pipe_C_crc",
2850 		.pipe = PIPE_C,
2851 	},
2852 };
2853 
2854 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2855 				enum pipe pipe)
2856 {
2857 	struct drm_device *dev = minor->dev;
2858 	struct dentry *ent;
2859 	struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2860 
2861 	info->dev = dev;
2862 	ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2863 				  &i915_pipe_crc_fops);
2864 	if (!ent)
2865 		return -ENOMEM;
2866 
2867 	return drm_add_fake_info_node(minor, ent, info);
2868 }
2869 
2870 static const char * const pipe_crc_sources[] = {
2871 	"none",
2872 	"plane1",
2873 	"plane2",
2874 	"pf",
2875 	"pipe",
2876 	"TV",
2877 	"DP-B",
2878 	"DP-C",
2879 	"DP-D",
2880 	"auto",
2881 };
2882 
2883 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2884 {
2885 	BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2886 	return pipe_crc_sources[source];
2887 }
2888 
2889 static int display_crc_ctl_show(struct seq_file *m, void *data)
2890 {
2891 	struct drm_device *dev = m->private;
2892 	struct drm_i915_private *dev_priv = dev->dev_private;
2893 	int i;
2894 
2895 	for (i = 0; i < I915_MAX_PIPES; i++)
2896 		seq_printf(m, "%c %s\n", pipe_name(i),
2897 			   pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2898 
2899 	return 0;
2900 }
2901 
2902 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2903 {
2904 	struct drm_device *dev = inode->i_private;
2905 
2906 	return single_open(file, display_crc_ctl_show, dev);
2907 }
2908 
2909 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2910 				 uint32_t *val)
2911 {
2912 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2913 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
2914 
2915 	switch (*source) {
2916 	case INTEL_PIPE_CRC_SOURCE_PIPE:
2917 		*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2918 		break;
2919 	case INTEL_PIPE_CRC_SOURCE_NONE:
2920 		*val = 0;
2921 		break;
2922 	default:
2923 		return -EINVAL;
2924 	}
2925 
2926 	return 0;
2927 }
2928 
2929 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2930 				     enum intel_pipe_crc_source *source)
2931 {
2932 	struct intel_encoder *encoder;
2933 	struct intel_crtc *crtc;
2934 	struct intel_digital_port *dig_port;
2935 	int ret = 0;
2936 
2937 	*source = INTEL_PIPE_CRC_SOURCE_PIPE;
2938 
2939 	drm_modeset_lock_all(dev);
2940 	for_each_intel_encoder(dev, encoder) {
2941 		if (!encoder->base.crtc)
2942 			continue;
2943 
2944 		crtc = to_intel_crtc(encoder->base.crtc);
2945 
2946 		if (crtc->pipe != pipe)
2947 			continue;
2948 
2949 		switch (encoder->type) {
2950 		case INTEL_OUTPUT_TVOUT:
2951 			*source = INTEL_PIPE_CRC_SOURCE_TV;
2952 			break;
2953 		case INTEL_OUTPUT_DISPLAYPORT:
2954 		case INTEL_OUTPUT_EDP:
2955 			dig_port = enc_to_dig_port(&encoder->base);
2956 			switch (dig_port->port) {
2957 			case PORT_B:
2958 				*source = INTEL_PIPE_CRC_SOURCE_DP_B;
2959 				break;
2960 			case PORT_C:
2961 				*source = INTEL_PIPE_CRC_SOURCE_DP_C;
2962 				break;
2963 			case PORT_D:
2964 				*source = INTEL_PIPE_CRC_SOURCE_DP_D;
2965 				break;
2966 			default:
2967 				WARN(1, "nonexisting DP port %c\n",
2968 				     port_name(dig_port->port));
2969 				break;
2970 			}
2971 			break;
2972 		}
2973 	}
2974 	drm_modeset_unlock_all(dev);
2975 
2976 	return ret;
2977 }
2978 
2979 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
2980 				enum pipe pipe,
2981 				enum intel_pipe_crc_source *source,
2982 				uint32_t *val)
2983 {
2984 	struct drm_i915_private *dev_priv = dev->dev_private;
2985 	bool need_stable_symbols = false;
2986 
2987 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2988 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2989 		if (ret)
2990 			return ret;
2991 	}
2992 
2993 	switch (*source) {
2994 	case INTEL_PIPE_CRC_SOURCE_PIPE:
2995 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
2996 		break;
2997 	case INTEL_PIPE_CRC_SOURCE_DP_B:
2998 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
2999 		need_stable_symbols = true;
3000 		break;
3001 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3002 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3003 		need_stable_symbols = true;
3004 		break;
3005 	case INTEL_PIPE_CRC_SOURCE_NONE:
3006 		*val = 0;
3007 		break;
3008 	default:
3009 		return -EINVAL;
3010 	}
3011 
3012 	/*
3013 	 * When the pipe CRC tap point is after the transcoders we need
3014 	 * to tweak symbol-level features to produce a deterministic series of
3015 	 * symbols for a given frame. We need to reset those features only once
3016 	 * a frame (instead of every nth symbol):
3017 	 *   - DC-balance: used to ensure a better clock recovery from the data
3018 	 *     link (SDVO)
3019 	 *   - DisplayPort scrambling: used for EMI reduction
3020 	 */
3021 	if (need_stable_symbols) {
3022 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3023 
3024 		tmp |= DC_BALANCE_RESET_VLV;
3025 		if (pipe == PIPE_A)
3026 			tmp |= PIPE_A_SCRAMBLE_RESET;
3027 		else
3028 			tmp |= PIPE_B_SCRAMBLE_RESET;
3029 
3030 		I915_WRITE(PORT_DFT2_G4X, tmp);
3031 	}
3032 
3033 	return 0;
3034 }
3035 
3036 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3037 				 enum pipe pipe,
3038 				 enum intel_pipe_crc_source *source,
3039 				 uint32_t *val)
3040 {
3041 	struct drm_i915_private *dev_priv = dev->dev_private;
3042 	bool need_stable_symbols = false;
3043 
3044 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3045 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3046 		if (ret)
3047 			return ret;
3048 	}
3049 
3050 	switch (*source) {
3051 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3052 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3053 		break;
3054 	case INTEL_PIPE_CRC_SOURCE_TV:
3055 		if (!SUPPORTS_TV(dev))
3056 			return -EINVAL;
3057 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3058 		break;
3059 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3060 		if (!IS_G4X(dev))
3061 			return -EINVAL;
3062 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3063 		need_stable_symbols = true;
3064 		break;
3065 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3066 		if (!IS_G4X(dev))
3067 			return -EINVAL;
3068 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3069 		need_stable_symbols = true;
3070 		break;
3071 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3072 		if (!IS_G4X(dev))
3073 			return -EINVAL;
3074 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3075 		need_stable_symbols = true;
3076 		break;
3077 	case INTEL_PIPE_CRC_SOURCE_NONE:
3078 		*val = 0;
3079 		break;
3080 	default:
3081 		return -EINVAL;
3082 	}
3083 
3084 	/*
3085 	 * When the pipe CRC tap point is after the transcoders we need
3086 	 * to tweak symbol-level features to produce a deterministic series of
3087 	 * symbols for a given frame. We need to reset those features only once
3088 	 * a frame (instead of every nth symbol):
3089 	 *   - DC-balance: used to ensure a better clock recovery from the data
3090 	 *     link (SDVO)
3091 	 *   - DisplayPort scrambling: used for EMI reduction
3092 	 */
3093 	if (need_stable_symbols) {
3094 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3095 
3096 		WARN_ON(!IS_G4X(dev));
3097 
3098 		I915_WRITE(PORT_DFT_I9XX,
3099 			   I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3100 
3101 		if (pipe == PIPE_A)
3102 			tmp |= PIPE_A_SCRAMBLE_RESET;
3103 		else
3104 			tmp |= PIPE_B_SCRAMBLE_RESET;
3105 
3106 		I915_WRITE(PORT_DFT2_G4X, tmp);
3107 	}
3108 
3109 	return 0;
3110 }
3111 
3112 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3113 					 enum pipe pipe)
3114 {
3115 	struct drm_i915_private *dev_priv = dev->dev_private;
3116 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3117 
3118 	if (pipe == PIPE_A)
3119 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3120 	else
3121 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3122 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3123 		tmp &= ~DC_BALANCE_RESET_VLV;
3124 	I915_WRITE(PORT_DFT2_G4X, tmp);
3125 
3126 }
3127 
3128 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3129 					 enum pipe pipe)
3130 {
3131 	struct drm_i915_private *dev_priv = dev->dev_private;
3132 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3133 
3134 	if (pipe == PIPE_A)
3135 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3136 	else
3137 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3138 	I915_WRITE(PORT_DFT2_G4X, tmp);
3139 
3140 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3141 		I915_WRITE(PORT_DFT_I9XX,
3142 			   I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3143 	}
3144 }
3145 
3146 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3147 				uint32_t *val)
3148 {
3149 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3150 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3151 
3152 	switch (*source) {
3153 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3154 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3155 		break;
3156 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3157 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3158 		break;
3159 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3160 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3161 		break;
3162 	case INTEL_PIPE_CRC_SOURCE_NONE:
3163 		*val = 0;
3164 		break;
3165 	default:
3166 		return -EINVAL;
3167 	}
3168 
3169 	return 0;
3170 }
3171 
3172 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3173 {
3174 	struct drm_i915_private *dev_priv = dev->dev_private;
3175 	struct intel_crtc *crtc =
3176 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3177 
3178 	drm_modeset_lock_all(dev);
3179 	/*
3180 	 * If we use the eDP transcoder we need to make sure that we don't
3181 	 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3182 	 * relevant on hsw with pipe A when using the always-on power well
3183 	 * routing.
3184 	 */
3185 	if (crtc->config.cpu_transcoder == TRANSCODER_EDP &&
3186 	    !crtc->config.pch_pfit.enabled) {
3187 		crtc->config.pch_pfit.force_thru = true;
3188 
3189 		intel_display_power_get(dev_priv,
3190 					POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3191 
3192 		dev_priv->display.crtc_disable(&crtc->base);
3193 		dev_priv->display.crtc_enable(&crtc->base);
3194 	}
3195 	drm_modeset_unlock_all(dev);
3196 }
3197 
3198 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3199 {
3200 	struct drm_i915_private *dev_priv = dev->dev_private;
3201 	struct intel_crtc *crtc =
3202 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3203 
3204 	drm_modeset_lock_all(dev);
3205 	/*
3206 	 * If we use the eDP transcoder we need to make sure that we don't
3207 	 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3208 	 * relevant on hsw with pipe A when using the always-on power well
3209 	 * routing.
3210 	 */
3211 	if (crtc->config.pch_pfit.force_thru) {
3212 		crtc->config.pch_pfit.force_thru = false;
3213 
3214 		dev_priv->display.crtc_disable(&crtc->base);
3215 		dev_priv->display.crtc_enable(&crtc->base);
3216 
3217 		intel_display_power_put(dev_priv,
3218 					POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3219 	}
3220 	drm_modeset_unlock_all(dev);
3221 }
3222 
3223 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3224 				enum pipe pipe,
3225 				enum intel_pipe_crc_source *source,
3226 				uint32_t *val)
3227 {
3228 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3229 		*source = INTEL_PIPE_CRC_SOURCE_PF;
3230 
3231 	switch (*source) {
3232 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3233 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3234 		break;
3235 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3236 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3237 		break;
3238 	case INTEL_PIPE_CRC_SOURCE_PF:
3239 		if (IS_HASWELL(dev) && pipe == PIPE_A)
3240 			hsw_trans_edp_pipe_A_crc_wa(dev);
3241 
3242 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3243 		break;
3244 	case INTEL_PIPE_CRC_SOURCE_NONE:
3245 		*val = 0;
3246 		break;
3247 	default:
3248 		return -EINVAL;
3249 	}
3250 
3251 	return 0;
3252 }
3253 
3254 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3255 			       enum intel_pipe_crc_source source)
3256 {
3257 	struct drm_i915_private *dev_priv = dev->dev_private;
3258 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3259 	u32 val = 0; /* shut up gcc */
3260 	int ret;
3261 
3262 	if (pipe_crc->source == source)
3263 		return 0;
3264 
3265 	/* forbid changing the source without going back to 'none' */
3266 	if (pipe_crc->source && source)
3267 		return -EINVAL;
3268 
3269 	if (IS_GEN2(dev))
3270 		ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3271 	else if (INTEL_INFO(dev)->gen < 5)
3272 		ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3273 	else if (IS_VALLEYVIEW(dev))
3274 		ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3275 	else if (IS_GEN5(dev) || IS_GEN6(dev))
3276 		ret = ilk_pipe_crc_ctl_reg(&source, &val);
3277 	else
3278 		ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3279 
3280 	if (ret != 0)
3281 		return ret;
3282 
3283 	/* none -> real source transition */
3284 	if (source) {
3285 		DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3286 				 pipe_name(pipe), pipe_crc_source_name(source));
3287 
3288 		pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
3289 					    INTEL_PIPE_CRC_ENTRIES_NR,
3290 					    GFP_KERNEL);
3291 		if (!pipe_crc->entries)
3292 			return -ENOMEM;
3293 
3294 		spin_lock_irq(&pipe_crc->lock);
3295 		pipe_crc->head = 0;
3296 		pipe_crc->tail = 0;
3297 		spin_unlock_irq(&pipe_crc->lock);
3298 	}
3299 
3300 	pipe_crc->source = source;
3301 
3302 	I915_WRITE(PIPE_CRC_CTL(pipe), val);
3303 	POSTING_READ(PIPE_CRC_CTL(pipe));
3304 
3305 	/* real source -> none transition */
3306 	if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3307 		struct intel_pipe_crc_entry *entries;
3308 		struct intel_crtc *crtc =
3309 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3310 
3311 		DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3312 				 pipe_name(pipe));
3313 
3314 		drm_modeset_lock(&crtc->base.mutex, NULL);
3315 		if (crtc->active)
3316 			intel_wait_for_vblank(dev, pipe);
3317 		drm_modeset_unlock(&crtc->base.mutex);
3318 
3319 		spin_lock_irq(&pipe_crc->lock);
3320 		entries = pipe_crc->entries;
3321 		pipe_crc->entries = NULL;
3322 		spin_unlock_irq(&pipe_crc->lock);
3323 
3324 		kfree(entries);
3325 
3326 		if (IS_G4X(dev))
3327 			g4x_undo_pipe_scramble_reset(dev, pipe);
3328 		else if (IS_VALLEYVIEW(dev))
3329 			vlv_undo_pipe_scramble_reset(dev, pipe);
3330 		else if (IS_HASWELL(dev) && pipe == PIPE_A)
3331 			hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3332 	}
3333 
3334 	return 0;
3335 }
3336 
3337 /*
3338  * Parse pipe CRC command strings:
3339  *   command: wsp* object wsp+ name wsp+ source wsp*
3340  *   object: 'pipe'
3341  *   name: (A | B | C)
3342  *   source: (none | plane1 | plane2 | pf)
3343  *   wsp: (#0x20 | #0x9 | #0xA)+
3344  *
3345  * eg.:
3346  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3347  *  "pipe A none"    ->  Stop CRC
3348  */
3349 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3350 {
3351 	int n_words = 0;
3352 
3353 	while (*buf) {
3354 		char *end;
3355 
3356 		/* skip leading white space */
3357 		buf = skip_spaces(buf);
3358 		if (!*buf)
3359 			break;	/* end of buffer */
3360 
3361 		/* find end of word */
3362 		for (end = buf; *end && !isspace(*end); end++)
3363 			;
3364 
3365 		if (n_words == max_words) {
3366 			DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3367 					 max_words);
3368 			return -EINVAL;	/* ran out of words[] before bytes */
3369 		}
3370 
3371 		if (*end)
3372 			*end++ = '\0';
3373 		words[n_words++] = buf;
3374 		buf = end;
3375 	}
3376 
3377 	return n_words;
3378 }
3379 
3380 enum intel_pipe_crc_object {
3381 	PIPE_CRC_OBJECT_PIPE,
3382 };
3383 
3384 static const char * const pipe_crc_objects[] = {
3385 	"pipe",
3386 };
3387 
3388 static int
3389 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3390 {
3391 	int i;
3392 
3393 	for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3394 		if (!strcmp(buf, pipe_crc_objects[i])) {
3395 			*o = i;
3396 			return 0;
3397 		    }
3398 
3399 	return -EINVAL;
3400 }
3401 
3402 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3403 {
3404 	const char name = buf[0];
3405 
3406 	if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3407 		return -EINVAL;
3408 
3409 	*pipe = name - 'A';
3410 
3411 	return 0;
3412 }
3413 
3414 static int
3415 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3416 {
3417 	int i;
3418 
3419 	for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3420 		if (!strcmp(buf, pipe_crc_sources[i])) {
3421 			*s = i;
3422 			return 0;
3423 		    }
3424 
3425 	return -EINVAL;
3426 }
3427 
3428 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3429 {
3430 #define N_WORDS 3
3431 	int n_words;
3432 	char *words[N_WORDS];
3433 	enum pipe pipe;
3434 	enum intel_pipe_crc_object object;
3435 	enum intel_pipe_crc_source source;
3436 
3437 	n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3438 	if (n_words != N_WORDS) {
3439 		DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3440 				 N_WORDS);
3441 		return -EINVAL;
3442 	}
3443 
3444 	if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3445 		DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3446 		return -EINVAL;
3447 	}
3448 
3449 	if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3450 		DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3451 		return -EINVAL;
3452 	}
3453 
3454 	if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3455 		DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3456 		return -EINVAL;
3457 	}
3458 
3459 	return pipe_crc_set_source(dev, pipe, source);
3460 }
3461 
3462 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3463 				     size_t len, loff_t *offp)
3464 {
3465 	struct seq_file *m = file->private_data;
3466 	struct drm_device *dev = m->private;
3467 	char *tmpbuf;
3468 	int ret;
3469 
3470 	if (len == 0)
3471 		return 0;
3472 
3473 	if (len > PAGE_SIZE - 1) {
3474 		DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3475 				 PAGE_SIZE);
3476 		return -E2BIG;
3477 	}
3478 
3479 	tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3480 	if (!tmpbuf)
3481 		return -ENOMEM;
3482 
3483 	if (copy_from_user(tmpbuf, ubuf, len)) {
3484 		ret = -EFAULT;
3485 		goto out;
3486 	}
3487 	tmpbuf[len] = '\0';
3488 
3489 	ret = display_crc_ctl_parse(dev, tmpbuf, len);
3490 
3491 out:
3492 	kfree(tmpbuf);
3493 	if (ret < 0)
3494 		return ret;
3495 
3496 	*offp += len;
3497 	return len;
3498 }
3499 
3500 static const struct file_operations i915_display_crc_ctl_fops = {
3501 	.owner = THIS_MODULE,
3502 	.open = display_crc_ctl_open,
3503 	.read = seq_read,
3504 	.llseek = seq_lseek,
3505 	.release = single_release,
3506 	.write = display_crc_ctl_write
3507 };
3508 
3509 static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
3510 {
3511 	struct drm_device *dev = m->private;
3512 	int num_levels = ilk_wm_max_level(dev) + 1;
3513 	int level;
3514 
3515 	drm_modeset_lock_all(dev);
3516 
3517 	for (level = 0; level < num_levels; level++) {
3518 		unsigned int latency = wm[level];
3519 
3520 		/* WM1+ latency values in 0.5us units */
3521 		if (level > 0)
3522 			latency *= 5;
3523 
3524 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
3525 			   level, wm[level],
3526 			   latency / 10, latency % 10);
3527 	}
3528 
3529 	drm_modeset_unlock_all(dev);
3530 }
3531 
3532 static int pri_wm_latency_show(struct seq_file *m, void *data)
3533 {
3534 	struct drm_device *dev = m->private;
3535 
3536 	wm_latency_show(m, to_i915(dev)->wm.pri_latency);
3537 
3538 	return 0;
3539 }
3540 
3541 static int spr_wm_latency_show(struct seq_file *m, void *data)
3542 {
3543 	struct drm_device *dev = m->private;
3544 
3545 	wm_latency_show(m, to_i915(dev)->wm.spr_latency);
3546 
3547 	return 0;
3548 }
3549 
3550 static int cur_wm_latency_show(struct seq_file *m, void *data)
3551 {
3552 	struct drm_device *dev = m->private;
3553 
3554 	wm_latency_show(m, to_i915(dev)->wm.cur_latency);
3555 
3556 	return 0;
3557 }
3558 
3559 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3560 {
3561 	struct drm_device *dev = inode->i_private;
3562 
3563 	if (HAS_GMCH_DISPLAY(dev))
3564 		return -ENODEV;
3565 
3566 	return single_open(file, pri_wm_latency_show, dev);
3567 }
3568 
3569 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3570 {
3571 	struct drm_device *dev = inode->i_private;
3572 
3573 	if (HAS_GMCH_DISPLAY(dev))
3574 		return -ENODEV;
3575 
3576 	return single_open(file, spr_wm_latency_show, dev);
3577 }
3578 
3579 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3580 {
3581 	struct drm_device *dev = inode->i_private;
3582 
3583 	if (HAS_GMCH_DISPLAY(dev))
3584 		return -ENODEV;
3585 
3586 	return single_open(file, cur_wm_latency_show, dev);
3587 }
3588 
3589 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3590 				size_t len, loff_t *offp, uint16_t wm[5])
3591 {
3592 	struct seq_file *m = file->private_data;
3593 	struct drm_device *dev = m->private;
3594 	uint16_t new[5] = { 0 };
3595 	int num_levels = ilk_wm_max_level(dev) + 1;
3596 	int level;
3597 	int ret;
3598 	char tmp[32];
3599 
3600 	if (len >= sizeof(tmp))
3601 		return -EINVAL;
3602 
3603 	if (copy_from_user(tmp, ubuf, len))
3604 		return -EFAULT;
3605 
3606 	tmp[len] = '\0';
3607 
3608 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
3609 	if (ret != num_levels)
3610 		return -EINVAL;
3611 
3612 	drm_modeset_lock_all(dev);
3613 
3614 	for (level = 0; level < num_levels; level++)
3615 		wm[level] = new[level];
3616 
3617 	drm_modeset_unlock_all(dev);
3618 
3619 	return len;
3620 }
3621 
3622 
3623 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3624 				    size_t len, loff_t *offp)
3625 {
3626 	struct seq_file *m = file->private_data;
3627 	struct drm_device *dev = m->private;
3628 
3629 	return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
3630 }
3631 
3632 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3633 				    size_t len, loff_t *offp)
3634 {
3635 	struct seq_file *m = file->private_data;
3636 	struct drm_device *dev = m->private;
3637 
3638 	return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
3639 }
3640 
3641 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3642 				    size_t len, loff_t *offp)
3643 {
3644 	struct seq_file *m = file->private_data;
3645 	struct drm_device *dev = m->private;
3646 
3647 	return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
3648 }
3649 
3650 static const struct file_operations i915_pri_wm_latency_fops = {
3651 	.owner = THIS_MODULE,
3652 	.open = pri_wm_latency_open,
3653 	.read = seq_read,
3654 	.llseek = seq_lseek,
3655 	.release = single_release,
3656 	.write = pri_wm_latency_write
3657 };
3658 
3659 static const struct file_operations i915_spr_wm_latency_fops = {
3660 	.owner = THIS_MODULE,
3661 	.open = spr_wm_latency_open,
3662 	.read = seq_read,
3663 	.llseek = seq_lseek,
3664 	.release = single_release,
3665 	.write = spr_wm_latency_write
3666 };
3667 
3668 static const struct file_operations i915_cur_wm_latency_fops = {
3669 	.owner = THIS_MODULE,
3670 	.open = cur_wm_latency_open,
3671 	.read = seq_read,
3672 	.llseek = seq_lseek,
3673 	.release = single_release,
3674 	.write = cur_wm_latency_write
3675 };
3676 
3677 static int
3678 i915_wedged_get(void *data, u64 *val)
3679 {
3680 	struct drm_device *dev = data;
3681 	struct drm_i915_private *dev_priv = dev->dev_private;
3682 
3683 	*val = atomic_read(&dev_priv->gpu_error.reset_counter);
3684 
3685 	return 0;
3686 }
3687 
3688 static int
3689 i915_wedged_set(void *data, u64 val)
3690 {
3691 	struct drm_device *dev = data;
3692 	struct drm_i915_private *dev_priv = dev->dev_private;
3693 
3694 	intel_runtime_pm_get(dev_priv);
3695 
3696 	i915_handle_error(dev, val,
3697 			  "Manually setting wedged to %llu", val);
3698 
3699 	intel_runtime_pm_put(dev_priv);
3700 
3701 	return 0;
3702 }
3703 
3704 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3705 			i915_wedged_get, i915_wedged_set,
3706 			"%llu\n");
3707 
3708 static int
3709 i915_ring_stop_get(void *data, u64 *val)
3710 {
3711 	struct drm_device *dev = data;
3712 	struct drm_i915_private *dev_priv = dev->dev_private;
3713 
3714 	*val = dev_priv->gpu_error.stop_rings;
3715 
3716 	return 0;
3717 }
3718 
3719 static int
3720 i915_ring_stop_set(void *data, u64 val)
3721 {
3722 	struct drm_device *dev = data;
3723 	struct drm_i915_private *dev_priv = dev->dev_private;
3724 	int ret;
3725 
3726 	DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3727 
3728 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3729 	if (ret)
3730 		return ret;
3731 
3732 	dev_priv->gpu_error.stop_rings = val;
3733 	mutex_unlock(&dev->struct_mutex);
3734 
3735 	return 0;
3736 }
3737 
3738 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3739 			i915_ring_stop_get, i915_ring_stop_set,
3740 			"0x%08llx\n");
3741 
3742 static int
3743 i915_ring_missed_irq_get(void *data, u64 *val)
3744 {
3745 	struct drm_device *dev = data;
3746 	struct drm_i915_private *dev_priv = dev->dev_private;
3747 
3748 	*val = dev_priv->gpu_error.missed_irq_rings;
3749 	return 0;
3750 }
3751 
3752 static int
3753 i915_ring_missed_irq_set(void *data, u64 val)
3754 {
3755 	struct drm_device *dev = data;
3756 	struct drm_i915_private *dev_priv = dev->dev_private;
3757 	int ret;
3758 
3759 	/* Lock against concurrent debugfs callers */
3760 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3761 	if (ret)
3762 		return ret;
3763 	dev_priv->gpu_error.missed_irq_rings = val;
3764 	mutex_unlock(&dev->struct_mutex);
3765 
3766 	return 0;
3767 }
3768 
3769 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3770 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3771 			"0x%08llx\n");
3772 
3773 static int
3774 i915_ring_test_irq_get(void *data, u64 *val)
3775 {
3776 	struct drm_device *dev = data;
3777 	struct drm_i915_private *dev_priv = dev->dev_private;
3778 
3779 	*val = dev_priv->gpu_error.test_irq_rings;
3780 
3781 	return 0;
3782 }
3783 
3784 static int
3785 i915_ring_test_irq_set(void *data, u64 val)
3786 {
3787 	struct drm_device *dev = data;
3788 	struct drm_i915_private *dev_priv = dev->dev_private;
3789 	int ret;
3790 
3791 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
3792 
3793 	/* Lock against concurrent debugfs callers */
3794 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3795 	if (ret)
3796 		return ret;
3797 
3798 	dev_priv->gpu_error.test_irq_rings = val;
3799 	mutex_unlock(&dev->struct_mutex);
3800 
3801 	return 0;
3802 }
3803 
3804 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
3805 			i915_ring_test_irq_get, i915_ring_test_irq_set,
3806 			"0x%08llx\n");
3807 
3808 #define DROP_UNBOUND 0x1
3809 #define DROP_BOUND 0x2
3810 #define DROP_RETIRE 0x4
3811 #define DROP_ACTIVE 0x8
3812 #define DROP_ALL (DROP_UNBOUND | \
3813 		  DROP_BOUND | \
3814 		  DROP_RETIRE | \
3815 		  DROP_ACTIVE)
3816 static int
3817 i915_drop_caches_get(void *data, u64 *val)
3818 {
3819 	*val = DROP_ALL;
3820 
3821 	return 0;
3822 }
3823 
3824 static int
3825 i915_drop_caches_set(void *data, u64 val)
3826 {
3827 	struct drm_device *dev = data;
3828 	struct drm_i915_private *dev_priv = dev->dev_private;
3829 	int ret;
3830 
3831 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
3832 
3833 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
3834 	 * on ioctls on -EAGAIN. */
3835 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3836 	if (ret)
3837 		return ret;
3838 
3839 	if (val & DROP_ACTIVE) {
3840 		ret = i915_gpu_idle(dev);
3841 		if (ret)
3842 			goto unlock;
3843 	}
3844 
3845 	if (val & (DROP_RETIRE | DROP_ACTIVE))
3846 		i915_gem_retire_requests(dev);
3847 
3848 	if (val & DROP_BOUND)
3849 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
3850 
3851 	if (val & DROP_UNBOUND)
3852 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
3853 
3854 unlock:
3855 	mutex_unlock(&dev->struct_mutex);
3856 
3857 	return ret;
3858 }
3859 
3860 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
3861 			i915_drop_caches_get, i915_drop_caches_set,
3862 			"0x%08llx\n");
3863 
3864 static int
3865 i915_max_freq_get(void *data, u64 *val)
3866 {
3867 	struct drm_device *dev = data;
3868 	struct drm_i915_private *dev_priv = dev->dev_private;
3869 	int ret;
3870 
3871 	if (INTEL_INFO(dev)->gen < 6)
3872 		return -ENODEV;
3873 
3874 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3875 
3876 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3877 	if (ret)
3878 		return ret;
3879 
3880 	if (IS_VALLEYVIEW(dev))
3881 		*val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
3882 	else
3883 		*val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3884 	mutex_unlock(&dev_priv->rps.hw_lock);
3885 
3886 	return 0;
3887 }
3888 
3889 static int
3890 i915_max_freq_set(void *data, u64 val)
3891 {
3892 	struct drm_device *dev = data;
3893 	struct drm_i915_private *dev_priv = dev->dev_private;
3894 	u32 rp_state_cap, hw_max, hw_min;
3895 	int ret;
3896 
3897 	if (INTEL_INFO(dev)->gen < 6)
3898 		return -ENODEV;
3899 
3900 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3901 
3902 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
3903 
3904 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3905 	if (ret)
3906 		return ret;
3907 
3908 	/*
3909 	 * Turbo will still be enabled, but won't go above the set value.
3910 	 */
3911 	if (IS_VALLEYVIEW(dev)) {
3912 		val = vlv_freq_opcode(dev_priv, val);
3913 
3914 		hw_max = dev_priv->rps.max_freq;
3915 		hw_min = dev_priv->rps.min_freq;
3916 	} else {
3917 		do_div(val, GT_FREQUENCY_MULTIPLIER);
3918 
3919 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3920 		hw_max = dev_priv->rps.max_freq;
3921 		hw_min = (rp_state_cap >> 16) & 0xff;
3922 	}
3923 
3924 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
3925 		mutex_unlock(&dev_priv->rps.hw_lock);
3926 		return -EINVAL;
3927 	}
3928 
3929 	dev_priv->rps.max_freq_softlimit = val;
3930 
3931 	if (IS_VALLEYVIEW(dev))
3932 		valleyview_set_rps(dev, val);
3933 	else
3934 		gen6_set_rps(dev, val);
3935 
3936 	mutex_unlock(&dev_priv->rps.hw_lock);
3937 
3938 	return 0;
3939 }
3940 
3941 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
3942 			i915_max_freq_get, i915_max_freq_set,
3943 			"%llu\n");
3944 
3945 static int
3946 i915_min_freq_get(void *data, u64 *val)
3947 {
3948 	struct drm_device *dev = data;
3949 	struct drm_i915_private *dev_priv = dev->dev_private;
3950 	int ret;
3951 
3952 	if (INTEL_INFO(dev)->gen < 6)
3953 		return -ENODEV;
3954 
3955 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3956 
3957 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3958 	if (ret)
3959 		return ret;
3960 
3961 	if (IS_VALLEYVIEW(dev))
3962 		*val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
3963 	else
3964 		*val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3965 	mutex_unlock(&dev_priv->rps.hw_lock);
3966 
3967 	return 0;
3968 }
3969 
3970 static int
3971 i915_min_freq_set(void *data, u64 val)
3972 {
3973 	struct drm_device *dev = data;
3974 	struct drm_i915_private *dev_priv = dev->dev_private;
3975 	u32 rp_state_cap, hw_max, hw_min;
3976 	int ret;
3977 
3978 	if (INTEL_INFO(dev)->gen < 6)
3979 		return -ENODEV;
3980 
3981 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3982 
3983 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
3984 
3985 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3986 	if (ret)
3987 		return ret;
3988 
3989 	/*
3990 	 * Turbo will still be enabled, but won't go below the set value.
3991 	 */
3992 	if (IS_VALLEYVIEW(dev)) {
3993 		val = vlv_freq_opcode(dev_priv, val);
3994 
3995 		hw_max = dev_priv->rps.max_freq;
3996 		hw_min = dev_priv->rps.min_freq;
3997 	} else {
3998 		do_div(val, GT_FREQUENCY_MULTIPLIER);
3999 
4000 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4001 		hw_max = dev_priv->rps.max_freq;
4002 		hw_min = (rp_state_cap >> 16) & 0xff;
4003 	}
4004 
4005 	if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4006 		mutex_unlock(&dev_priv->rps.hw_lock);
4007 		return -EINVAL;
4008 	}
4009 
4010 	dev_priv->rps.min_freq_softlimit = val;
4011 
4012 	if (IS_VALLEYVIEW(dev))
4013 		valleyview_set_rps(dev, val);
4014 	else
4015 		gen6_set_rps(dev, val);
4016 
4017 	mutex_unlock(&dev_priv->rps.hw_lock);
4018 
4019 	return 0;
4020 }
4021 
4022 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4023 			i915_min_freq_get, i915_min_freq_set,
4024 			"%llu\n");
4025 
4026 static int
4027 i915_cache_sharing_get(void *data, u64 *val)
4028 {
4029 	struct drm_device *dev = data;
4030 	struct drm_i915_private *dev_priv = dev->dev_private;
4031 	u32 snpcr;
4032 	int ret;
4033 
4034 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4035 		return -ENODEV;
4036 
4037 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4038 	if (ret)
4039 		return ret;
4040 	intel_runtime_pm_get(dev_priv);
4041 
4042 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4043 
4044 	intel_runtime_pm_put(dev_priv);
4045 	mutex_unlock(&dev_priv->dev->struct_mutex);
4046 
4047 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4048 
4049 	return 0;
4050 }
4051 
4052 static int
4053 i915_cache_sharing_set(void *data, u64 val)
4054 {
4055 	struct drm_device *dev = data;
4056 	struct drm_i915_private *dev_priv = dev->dev_private;
4057 	u32 snpcr;
4058 
4059 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4060 		return -ENODEV;
4061 
4062 	if (val > 3)
4063 		return -EINVAL;
4064 
4065 	intel_runtime_pm_get(dev_priv);
4066 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4067 
4068 	/* Update the cache sharing policy here as well */
4069 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4070 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
4071 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4072 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4073 
4074 	intel_runtime_pm_put(dev_priv);
4075 	return 0;
4076 }
4077 
4078 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4079 			i915_cache_sharing_get, i915_cache_sharing_set,
4080 			"%llu\n");
4081 
4082 static int i915_forcewake_open(struct inode *inode, struct file *file)
4083 {
4084 	struct drm_device *dev = inode->i_private;
4085 	struct drm_i915_private *dev_priv = dev->dev_private;
4086 
4087 	if (INTEL_INFO(dev)->gen < 6)
4088 		return 0;
4089 
4090 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4091 
4092 	return 0;
4093 }
4094 
4095 static int i915_forcewake_release(struct inode *inode, struct file *file)
4096 {
4097 	struct drm_device *dev = inode->i_private;
4098 	struct drm_i915_private *dev_priv = dev->dev_private;
4099 
4100 	if (INTEL_INFO(dev)->gen < 6)
4101 		return 0;
4102 
4103 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4104 
4105 	return 0;
4106 }
4107 
4108 static const struct file_operations i915_forcewake_fops = {
4109 	.owner = THIS_MODULE,
4110 	.open = i915_forcewake_open,
4111 	.release = i915_forcewake_release,
4112 };
4113 
4114 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4115 {
4116 	struct drm_device *dev = minor->dev;
4117 	struct dentry *ent;
4118 
4119 	ent = debugfs_create_file("i915_forcewake_user",
4120 				  S_IRUSR,
4121 				  root, dev,
4122 				  &i915_forcewake_fops);
4123 	if (!ent)
4124 		return -ENOMEM;
4125 
4126 	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4127 }
4128 
4129 static int i915_debugfs_create(struct dentry *root,
4130 			       struct drm_minor *minor,
4131 			       const char *name,
4132 			       const struct file_operations *fops)
4133 {
4134 	struct drm_device *dev = minor->dev;
4135 	struct dentry *ent;
4136 
4137 	ent = debugfs_create_file(name,
4138 				  S_IRUGO | S_IWUSR,
4139 				  root, dev,
4140 				  fops);
4141 	if (!ent)
4142 		return -ENOMEM;
4143 
4144 	return drm_add_fake_info_node(minor, ent, fops);
4145 }
4146 
4147 static const struct drm_info_list i915_debugfs_list[] = {
4148 	{"i915_capabilities", i915_capabilities, 0},
4149 	{"i915_gem_objects", i915_gem_object_info, 0},
4150 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
4151 	{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
4152 	{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
4153 	{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
4154 	{"i915_gem_stolen", i915_gem_stolen_list_info },
4155 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4156 	{"i915_gem_request", i915_gem_request_info, 0},
4157 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
4158 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4159 	{"i915_gem_interrupt", i915_interrupt_info, 0},
4160 	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
4161 	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
4162 	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
4163 	{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
4164 	{"i915_frequency_info", i915_frequency_info, 0},
4165 	{"i915_drpc_info", i915_drpc_info, 0},
4166 	{"i915_emon_status", i915_emon_status, 0},
4167 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
4168 	{"i915_fbc_status", i915_fbc_status, 0},
4169 	{"i915_ips_status", i915_ips_status, 0},
4170 	{"i915_sr_status", i915_sr_status, 0},
4171 	{"i915_opregion", i915_opregion, 0},
4172 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4173 	{"i915_context_status", i915_context_status, 0},
4174 	{"i915_dump_lrc", i915_dump_lrc, 0},
4175 	{"i915_execlists", i915_execlists, 0},
4176 	{"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
4177 	{"i915_swizzle_info", i915_swizzle_info, 0},
4178 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
4179 	{"i915_llc", i915_llc, 0},
4180 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
4181 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
4182 	{"i915_energy_uJ", i915_energy_uJ, 0},
4183 	{"i915_pc8_status", i915_pc8_status, 0},
4184 	{"i915_power_domain_info", i915_power_domain_info, 0},
4185 	{"i915_display_info", i915_display_info, 0},
4186 	{"i915_semaphore_status", i915_semaphore_status, 0},
4187 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4188 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
4189 	{"i915_wa_registers", i915_wa_registers, 0},
4190 };
4191 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4192 
4193 static const struct i915_debugfs_files {
4194 	const char *name;
4195 	const struct file_operations *fops;
4196 } i915_debugfs_files[] = {
4197 	{"i915_wedged", &i915_wedged_fops},
4198 	{"i915_max_freq", &i915_max_freq_fops},
4199 	{"i915_min_freq", &i915_min_freq_fops},
4200 	{"i915_cache_sharing", &i915_cache_sharing_fops},
4201 	{"i915_ring_stop", &i915_ring_stop_fops},
4202 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4203 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
4204 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
4205 	{"i915_error_state", &i915_error_state_fops},
4206 	{"i915_next_seqno", &i915_next_seqno_fops},
4207 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4208 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4209 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4210 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4211 	{"i915_fbc_false_color", &i915_fbc_fc_fops},
4212 };
4213 
4214 void intel_display_crc_init(struct drm_device *dev)
4215 {
4216 	struct drm_i915_private *dev_priv = dev->dev_private;
4217 	enum pipe pipe;
4218 
4219 	for_each_pipe(dev_priv, pipe) {
4220 		struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4221 
4222 		pipe_crc->opened = false;
4223 		spin_lock_init(&pipe_crc->lock);
4224 		init_waitqueue_head(&pipe_crc->wq);
4225 	}
4226 }
4227 
4228 int i915_debugfs_init(struct drm_minor *minor)
4229 {
4230 	int ret, i;
4231 
4232 	ret = i915_forcewake_create(minor->debugfs_root, minor);
4233 	if (ret)
4234 		return ret;
4235 
4236 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4237 		ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
4238 		if (ret)
4239 			return ret;
4240 	}
4241 
4242 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4243 		ret = i915_debugfs_create(minor->debugfs_root, minor,
4244 					  i915_debugfs_files[i].name,
4245 					  i915_debugfs_files[i].fops);
4246 		if (ret)
4247 			return ret;
4248 	}
4249 
4250 	return drm_debugfs_create_files(i915_debugfs_list,
4251 					I915_DEBUGFS_ENTRIES,
4252 					minor->debugfs_root, minor);
4253 }
4254 
4255 void i915_debugfs_cleanup(struct drm_minor *minor)
4256 {
4257 	int i;
4258 
4259 	drm_debugfs_remove_files(i915_debugfs_list,
4260 				 I915_DEBUGFS_ENTRIES, minor);
4261 
4262 	drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4263 				 1, minor);
4264 
4265 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4266 		struct drm_info_list *info_list =
4267 			(struct drm_info_list *)&i915_pipe_crc_data[i];
4268 
4269 		drm_debugfs_remove_files(info_list, 1, minor);
4270 	}
4271 
4272 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4273 		struct drm_info_list *info_list =
4274 			(struct drm_info_list *) i915_debugfs_files[i].fops;
4275 
4276 		drm_debugfs_remove_files(info_list, 1, minor);
4277 	}
4278 }
4279