1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42 
43 enum {
44 	ACTIVE_LIST,
45 	INACTIVE_LIST,
46 	PINNED_LIST,
47 };
48 
49 static const char *yesno(int v)
50 {
51 	return v ? "yes" : "no";
52 }
53 
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58 		       struct dentry *ent,
59 		       const void *key)
60 {
61 	struct drm_info_node *node;
62 
63 	node = kmalloc(sizeof(*node), GFP_KERNEL);
64 	if (node == NULL) {
65 		debugfs_remove(ent);
66 		return -ENOMEM;
67 	}
68 
69 	node->minor = minor;
70 	node->dent = ent;
71 	node->info_ent = (void *) key;
72 
73 	mutex_lock(&minor->debugfs_lock);
74 	list_add(&node->list, &minor->debugfs_list);
75 	mutex_unlock(&minor->debugfs_lock);
76 
77 	return 0;
78 }
79 
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82 	struct drm_info_node *node = m->private;
83 	struct drm_device *dev = node->minor->dev;
84 	const struct intel_device_info *info = INTEL_INFO(dev);
85 
86 	seq_printf(m, "gen: %d\n", info->gen);
87 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93 
94 	return 0;
95 }
96 
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 	if (obj->user_pin_count > 0)
100 		return "P";
101 	else if (i915_gem_obj_is_pinned(obj))
102 		return "p";
103 	else
104 		return " ";
105 }
106 
107 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
108 {
109 	switch (obj->tiling_mode) {
110 	default:
111 	case I915_TILING_NONE: return " ";
112 	case I915_TILING_X: return "X";
113 	case I915_TILING_Y: return "Y";
114 	}
115 }
116 
117 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
118 {
119 	return obj->has_global_gtt_mapping ? "g" : " ";
120 }
121 
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125 	struct i915_vma *vma;
126 	int pin_count = 0;
127 
128 	seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
129 		   &obj->base,
130 		   get_pin_flag(obj),
131 		   get_tiling_flag(obj),
132 		   get_global_flag(obj),
133 		   obj->base.size / 1024,
134 		   obj->base.read_domains,
135 		   obj->base.write_domain,
136 		   obj->last_read_seqno,
137 		   obj->last_write_seqno,
138 		   obj->last_fenced_seqno,
139 		   i915_cache_level_str(obj->cache_level),
140 		   obj->dirty ? " dirty" : "",
141 		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
142 	if (obj->base.name)
143 		seq_printf(m, " (name: %d)", obj->base.name);
144 	list_for_each_entry(vma, &obj->vma_list, vma_link)
145 		if (vma->pin_count > 0)
146 			pin_count++;
147 		seq_printf(m, " (pinned x %d)", pin_count);
148 	if (obj->pin_display)
149 		seq_printf(m, " (display)");
150 	if (obj->fence_reg != I915_FENCE_REG_NONE)
151 		seq_printf(m, " (fence: %d)", obj->fence_reg);
152 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
153 		if (!i915_is_ggtt(vma->vm))
154 			seq_puts(m, " (pp");
155 		else
156 			seq_puts(m, " (g");
157 		seq_printf(m, "gtt offset: %08lx, size: %08lx)",
158 			   vma->node.start, vma->node.size);
159 	}
160 	if (obj->stolen)
161 		seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
162 	if (obj->pin_mappable || obj->fault_mappable) {
163 		char s[3], *t = s;
164 		if (obj->pin_mappable)
165 			*t++ = 'p';
166 		if (obj->fault_mappable)
167 			*t++ = 'f';
168 		*t = '\0';
169 		seq_printf(m, " (%s mappable)", s);
170 	}
171 	if (obj->ring != NULL)
172 		seq_printf(m, " (%s)", obj->ring->name);
173 }
174 
175 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
176 {
177 	seq_putc(m, ctx->is_initialized ? 'I' : 'i');
178 	seq_putc(m, ctx->remap_slice ? 'R' : 'r');
179 	seq_putc(m, ' ');
180 }
181 
182 static int i915_gem_object_list_info(struct seq_file *m, void *data)
183 {
184 	struct drm_info_node *node = m->private;
185 	uintptr_t list = (uintptr_t) node->info_ent->data;
186 	struct list_head *head;
187 	struct drm_device *dev = node->minor->dev;
188 	struct drm_i915_private *dev_priv = dev->dev_private;
189 	struct i915_address_space *vm = &dev_priv->gtt.base;
190 	struct i915_vma *vma;
191 	size_t total_obj_size, total_gtt_size;
192 	int count, ret;
193 
194 	ret = mutex_lock_interruptible(&dev->struct_mutex);
195 	if (ret)
196 		return ret;
197 
198 	/* FIXME: the user of this interface might want more than just GGTT */
199 	switch (list) {
200 	case ACTIVE_LIST:
201 		seq_puts(m, "Active:\n");
202 		head = &vm->active_list;
203 		break;
204 	case INACTIVE_LIST:
205 		seq_puts(m, "Inactive:\n");
206 		head = &vm->inactive_list;
207 		break;
208 	default:
209 		mutex_unlock(&dev->struct_mutex);
210 		return -EINVAL;
211 	}
212 
213 	total_obj_size = total_gtt_size = count = 0;
214 	list_for_each_entry(vma, head, mm_list) {
215 		seq_printf(m, "   ");
216 		describe_obj(m, vma->obj);
217 		seq_printf(m, "\n");
218 		total_obj_size += vma->obj->base.size;
219 		total_gtt_size += vma->node.size;
220 		count++;
221 	}
222 	mutex_unlock(&dev->struct_mutex);
223 
224 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
225 		   count, total_obj_size, total_gtt_size);
226 	return 0;
227 }
228 
229 static int obj_rank_by_stolen(void *priv,
230 			      struct list_head *A, struct list_head *B)
231 {
232 	struct drm_i915_gem_object *a =
233 		container_of(A, struct drm_i915_gem_object, obj_exec_link);
234 	struct drm_i915_gem_object *b =
235 		container_of(B, struct drm_i915_gem_object, obj_exec_link);
236 
237 	return a->stolen->start - b->stolen->start;
238 }
239 
240 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
241 {
242 	struct drm_info_node *node = m->private;
243 	struct drm_device *dev = node->minor->dev;
244 	struct drm_i915_private *dev_priv = dev->dev_private;
245 	struct drm_i915_gem_object *obj;
246 	size_t total_obj_size, total_gtt_size;
247 	LIST_HEAD(stolen);
248 	int count, ret;
249 
250 	ret = mutex_lock_interruptible(&dev->struct_mutex);
251 	if (ret)
252 		return ret;
253 
254 	total_obj_size = total_gtt_size = count = 0;
255 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
256 		if (obj->stolen == NULL)
257 			continue;
258 
259 		list_add(&obj->obj_exec_link, &stolen);
260 
261 		total_obj_size += obj->base.size;
262 		total_gtt_size += i915_gem_obj_ggtt_size(obj);
263 		count++;
264 	}
265 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
266 		if (obj->stolen == NULL)
267 			continue;
268 
269 		list_add(&obj->obj_exec_link, &stolen);
270 
271 		total_obj_size += obj->base.size;
272 		count++;
273 	}
274 	list_sort(NULL, &stolen, obj_rank_by_stolen);
275 	seq_puts(m, "Stolen:\n");
276 	while (!list_empty(&stolen)) {
277 		obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
278 		seq_puts(m, "   ");
279 		describe_obj(m, obj);
280 		seq_putc(m, '\n');
281 		list_del_init(&obj->obj_exec_link);
282 	}
283 	mutex_unlock(&dev->struct_mutex);
284 
285 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
286 		   count, total_obj_size, total_gtt_size);
287 	return 0;
288 }
289 
290 #define count_objects(list, member) do { \
291 	list_for_each_entry(obj, list, member) { \
292 		size += i915_gem_obj_ggtt_size(obj); \
293 		++count; \
294 		if (obj->map_and_fenceable) { \
295 			mappable_size += i915_gem_obj_ggtt_size(obj); \
296 			++mappable_count; \
297 		} \
298 	} \
299 } while (0)
300 
301 struct file_stats {
302 	struct drm_i915_file_private *file_priv;
303 	int count;
304 	size_t total, unbound;
305 	size_t global, shared;
306 	size_t active, inactive;
307 };
308 
309 static int per_file_stats(int id, void *ptr, void *data)
310 {
311 	struct drm_i915_gem_object *obj = ptr;
312 	struct file_stats *stats = data;
313 	struct i915_vma *vma;
314 
315 	stats->count++;
316 	stats->total += obj->base.size;
317 
318 	if (obj->base.name || obj->base.dma_buf)
319 		stats->shared += obj->base.size;
320 
321 	if (USES_FULL_PPGTT(obj->base.dev)) {
322 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
323 			struct i915_hw_ppgtt *ppgtt;
324 
325 			if (!drm_mm_node_allocated(&vma->node))
326 				continue;
327 
328 			if (i915_is_ggtt(vma->vm)) {
329 				stats->global += obj->base.size;
330 				continue;
331 			}
332 
333 			ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
334 			if (ppgtt->ctx && ppgtt->ctx->file_priv != stats->file_priv)
335 				continue;
336 
337 			if (obj->ring) /* XXX per-vma statistic */
338 				stats->active += obj->base.size;
339 			else
340 				stats->inactive += obj->base.size;
341 
342 			return 0;
343 		}
344 	} else {
345 		if (i915_gem_obj_ggtt_bound(obj)) {
346 			stats->global += obj->base.size;
347 			if (obj->ring)
348 				stats->active += obj->base.size;
349 			else
350 				stats->inactive += obj->base.size;
351 			return 0;
352 		}
353 	}
354 
355 	if (!list_empty(&obj->global_list))
356 		stats->unbound += obj->base.size;
357 
358 	return 0;
359 }
360 
361 #define count_vmas(list, member) do { \
362 	list_for_each_entry(vma, list, member) { \
363 		size += i915_gem_obj_ggtt_size(vma->obj); \
364 		++count; \
365 		if (vma->obj->map_and_fenceable) { \
366 			mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
367 			++mappable_count; \
368 		} \
369 	} \
370 } while (0)
371 
372 static int i915_gem_object_info(struct seq_file *m, void* data)
373 {
374 	struct drm_info_node *node = m->private;
375 	struct drm_device *dev = node->minor->dev;
376 	struct drm_i915_private *dev_priv = dev->dev_private;
377 	u32 count, mappable_count, purgeable_count;
378 	size_t size, mappable_size, purgeable_size;
379 	struct drm_i915_gem_object *obj;
380 	struct i915_address_space *vm = &dev_priv->gtt.base;
381 	struct drm_file *file;
382 	struct i915_vma *vma;
383 	int ret;
384 
385 	ret = mutex_lock_interruptible(&dev->struct_mutex);
386 	if (ret)
387 		return ret;
388 
389 	seq_printf(m, "%u objects, %zu bytes\n",
390 		   dev_priv->mm.object_count,
391 		   dev_priv->mm.object_memory);
392 
393 	size = count = mappable_size = mappable_count = 0;
394 	count_objects(&dev_priv->mm.bound_list, global_list);
395 	seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
396 		   count, mappable_count, size, mappable_size);
397 
398 	size = count = mappable_size = mappable_count = 0;
399 	count_vmas(&vm->active_list, mm_list);
400 	seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
401 		   count, mappable_count, size, mappable_size);
402 
403 	size = count = mappable_size = mappable_count = 0;
404 	count_vmas(&vm->inactive_list, mm_list);
405 	seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
406 		   count, mappable_count, size, mappable_size);
407 
408 	size = count = purgeable_size = purgeable_count = 0;
409 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
410 		size += obj->base.size, ++count;
411 		if (obj->madv == I915_MADV_DONTNEED)
412 			purgeable_size += obj->base.size, ++purgeable_count;
413 	}
414 	seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
415 
416 	size = count = mappable_size = mappable_count = 0;
417 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
418 		if (obj->fault_mappable) {
419 			size += i915_gem_obj_ggtt_size(obj);
420 			++count;
421 		}
422 		if (obj->pin_mappable) {
423 			mappable_size += i915_gem_obj_ggtt_size(obj);
424 			++mappable_count;
425 		}
426 		if (obj->madv == I915_MADV_DONTNEED) {
427 			purgeable_size += obj->base.size;
428 			++purgeable_count;
429 		}
430 	}
431 	seq_printf(m, "%u purgeable objects, %zu bytes\n",
432 		   purgeable_count, purgeable_size);
433 	seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
434 		   mappable_count, mappable_size);
435 	seq_printf(m, "%u fault mappable objects, %zu bytes\n",
436 		   count, size);
437 
438 	seq_printf(m, "%zu [%lu] gtt total\n",
439 		   dev_priv->gtt.base.total,
440 		   dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
441 
442 	seq_putc(m, '\n');
443 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
444 		struct file_stats stats;
445 		struct task_struct *task;
446 
447 		memset(&stats, 0, sizeof(stats));
448 		stats.file_priv = file->driver_priv;
449 		idr_for_each(&file->object_idr, per_file_stats, &stats);
450 		/*
451 		 * Although we have a valid reference on file->pid, that does
452 		 * not guarantee that the task_struct who called get_pid() is
453 		 * still alive (e.g. get_pid(current) => fork() => exit()).
454 		 * Therefore, we need to protect this ->comm access using RCU.
455 		 */
456 		rcu_read_lock();
457 		task = pid_task(file->pid, PIDTYPE_PID);
458 		seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
459 			   task ? task->comm : "<unknown>",
460 			   stats.count,
461 			   stats.total,
462 			   stats.active,
463 			   stats.inactive,
464 			   stats.global,
465 			   stats.shared,
466 			   stats.unbound);
467 		rcu_read_unlock();
468 	}
469 
470 	mutex_unlock(&dev->struct_mutex);
471 
472 	return 0;
473 }
474 
475 static int i915_gem_gtt_info(struct seq_file *m, void *data)
476 {
477 	struct drm_info_node *node = m->private;
478 	struct drm_device *dev = node->minor->dev;
479 	uintptr_t list = (uintptr_t) node->info_ent->data;
480 	struct drm_i915_private *dev_priv = dev->dev_private;
481 	struct drm_i915_gem_object *obj;
482 	size_t total_obj_size, total_gtt_size;
483 	int count, ret;
484 
485 	ret = mutex_lock_interruptible(&dev->struct_mutex);
486 	if (ret)
487 		return ret;
488 
489 	total_obj_size = total_gtt_size = count = 0;
490 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
491 		if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
492 			continue;
493 
494 		seq_puts(m, "   ");
495 		describe_obj(m, obj);
496 		seq_putc(m, '\n');
497 		total_obj_size += obj->base.size;
498 		total_gtt_size += i915_gem_obj_ggtt_size(obj);
499 		count++;
500 	}
501 
502 	mutex_unlock(&dev->struct_mutex);
503 
504 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
505 		   count, total_obj_size, total_gtt_size);
506 
507 	return 0;
508 }
509 
510 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
511 {
512 	struct drm_info_node *node = m->private;
513 	struct drm_device *dev = node->minor->dev;
514 	unsigned long flags;
515 	struct intel_crtc *crtc;
516 
517 	for_each_intel_crtc(dev, crtc) {
518 		const char pipe = pipe_name(crtc->pipe);
519 		const char plane = plane_name(crtc->plane);
520 		struct intel_unpin_work *work;
521 
522 		spin_lock_irqsave(&dev->event_lock, flags);
523 		work = crtc->unpin_work;
524 		if (work == NULL) {
525 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
526 				   pipe, plane);
527 		} else {
528 			if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
529 				seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
530 					   pipe, plane);
531 			} else {
532 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
533 					   pipe, plane);
534 			}
535 			if (work->enable_stall_check)
536 				seq_puts(m, "Stall check enabled, ");
537 			else
538 				seq_puts(m, "Stall check waiting for page flip ioctl, ");
539 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
540 
541 			if (work->old_fb_obj) {
542 				struct drm_i915_gem_object *obj = work->old_fb_obj;
543 				if (obj)
544 					seq_printf(m, "Old framebuffer gtt_offset 0x%08lx\n",
545 						   i915_gem_obj_ggtt_offset(obj));
546 			}
547 			if (work->pending_flip_obj) {
548 				struct drm_i915_gem_object *obj = work->pending_flip_obj;
549 				if (obj)
550 					seq_printf(m, "New framebuffer gtt_offset 0x%08lx\n",
551 						   i915_gem_obj_ggtt_offset(obj));
552 			}
553 		}
554 		spin_unlock_irqrestore(&dev->event_lock, flags);
555 	}
556 
557 	return 0;
558 }
559 
560 static int i915_gem_request_info(struct seq_file *m, void *data)
561 {
562 	struct drm_info_node *node = m->private;
563 	struct drm_device *dev = node->minor->dev;
564 	struct drm_i915_private *dev_priv = dev->dev_private;
565 	struct intel_engine_cs *ring;
566 	struct drm_i915_gem_request *gem_request;
567 	int ret, count, i;
568 
569 	ret = mutex_lock_interruptible(&dev->struct_mutex);
570 	if (ret)
571 		return ret;
572 
573 	count = 0;
574 	for_each_ring(ring, dev_priv, i) {
575 		if (list_empty(&ring->request_list))
576 			continue;
577 
578 		seq_printf(m, "%s requests:\n", ring->name);
579 		list_for_each_entry(gem_request,
580 				    &ring->request_list,
581 				    list) {
582 			seq_printf(m, "    %d @ %d\n",
583 				   gem_request->seqno,
584 				   (int) (jiffies - gem_request->emitted_jiffies));
585 		}
586 		count++;
587 	}
588 	mutex_unlock(&dev->struct_mutex);
589 
590 	if (count == 0)
591 		seq_puts(m, "No requests\n");
592 
593 	return 0;
594 }
595 
596 static void i915_ring_seqno_info(struct seq_file *m,
597 				 struct intel_engine_cs *ring)
598 {
599 	if (ring->get_seqno) {
600 		seq_printf(m, "Current sequence (%s): %u\n",
601 			   ring->name, ring->get_seqno(ring, false));
602 	}
603 }
604 
605 static int i915_gem_seqno_info(struct seq_file *m, void *data)
606 {
607 	struct drm_info_node *node = m->private;
608 	struct drm_device *dev = node->minor->dev;
609 	struct drm_i915_private *dev_priv = dev->dev_private;
610 	struct intel_engine_cs *ring;
611 	int ret, i;
612 
613 	ret = mutex_lock_interruptible(&dev->struct_mutex);
614 	if (ret)
615 		return ret;
616 	intel_runtime_pm_get(dev_priv);
617 
618 	for_each_ring(ring, dev_priv, i)
619 		i915_ring_seqno_info(m, ring);
620 
621 	intel_runtime_pm_put(dev_priv);
622 	mutex_unlock(&dev->struct_mutex);
623 
624 	return 0;
625 }
626 
627 
628 static int i915_interrupt_info(struct seq_file *m, void *data)
629 {
630 	struct drm_info_node *node = m->private;
631 	struct drm_device *dev = node->minor->dev;
632 	struct drm_i915_private *dev_priv = dev->dev_private;
633 	struct intel_engine_cs *ring;
634 	int ret, i, pipe;
635 
636 	ret = mutex_lock_interruptible(&dev->struct_mutex);
637 	if (ret)
638 		return ret;
639 	intel_runtime_pm_get(dev_priv);
640 
641 	if (IS_CHERRYVIEW(dev)) {
642 		int i;
643 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
644 			   I915_READ(GEN8_MASTER_IRQ));
645 
646 		seq_printf(m, "Display IER:\t%08x\n",
647 			   I915_READ(VLV_IER));
648 		seq_printf(m, "Display IIR:\t%08x\n",
649 			   I915_READ(VLV_IIR));
650 		seq_printf(m, "Display IIR_RW:\t%08x\n",
651 			   I915_READ(VLV_IIR_RW));
652 		seq_printf(m, "Display IMR:\t%08x\n",
653 			   I915_READ(VLV_IMR));
654 		for_each_pipe(pipe)
655 			seq_printf(m, "Pipe %c stat:\t%08x\n",
656 				   pipe_name(pipe),
657 				   I915_READ(PIPESTAT(pipe)));
658 
659 		seq_printf(m, "Port hotplug:\t%08x\n",
660 			   I915_READ(PORT_HOTPLUG_EN));
661 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
662 			   I915_READ(VLV_DPFLIPSTAT));
663 		seq_printf(m, "DPINVGTT:\t%08x\n",
664 			   I915_READ(DPINVGTT));
665 
666 		for (i = 0; i < 4; i++) {
667 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
668 				   i, I915_READ(GEN8_GT_IMR(i)));
669 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
670 				   i, I915_READ(GEN8_GT_IIR(i)));
671 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
672 				   i, I915_READ(GEN8_GT_IER(i)));
673 		}
674 
675 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
676 			   I915_READ(GEN8_PCU_IMR));
677 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
678 			   I915_READ(GEN8_PCU_IIR));
679 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
680 			   I915_READ(GEN8_PCU_IER));
681 	} else if (INTEL_INFO(dev)->gen >= 8) {
682 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
683 			   I915_READ(GEN8_MASTER_IRQ));
684 
685 		for (i = 0; i < 4; i++) {
686 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
687 				   i, I915_READ(GEN8_GT_IMR(i)));
688 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
689 				   i, I915_READ(GEN8_GT_IIR(i)));
690 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
691 				   i, I915_READ(GEN8_GT_IER(i)));
692 		}
693 
694 		for_each_pipe(pipe) {
695 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
696 				   pipe_name(pipe),
697 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
698 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
699 				   pipe_name(pipe),
700 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
701 			seq_printf(m, "Pipe %c IER:\t%08x\n",
702 				   pipe_name(pipe),
703 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
704 		}
705 
706 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
707 			   I915_READ(GEN8_DE_PORT_IMR));
708 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
709 			   I915_READ(GEN8_DE_PORT_IIR));
710 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
711 			   I915_READ(GEN8_DE_PORT_IER));
712 
713 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
714 			   I915_READ(GEN8_DE_MISC_IMR));
715 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
716 			   I915_READ(GEN8_DE_MISC_IIR));
717 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
718 			   I915_READ(GEN8_DE_MISC_IER));
719 
720 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
721 			   I915_READ(GEN8_PCU_IMR));
722 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
723 			   I915_READ(GEN8_PCU_IIR));
724 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
725 			   I915_READ(GEN8_PCU_IER));
726 	} else if (IS_VALLEYVIEW(dev)) {
727 		seq_printf(m, "Display IER:\t%08x\n",
728 			   I915_READ(VLV_IER));
729 		seq_printf(m, "Display IIR:\t%08x\n",
730 			   I915_READ(VLV_IIR));
731 		seq_printf(m, "Display IIR_RW:\t%08x\n",
732 			   I915_READ(VLV_IIR_RW));
733 		seq_printf(m, "Display IMR:\t%08x\n",
734 			   I915_READ(VLV_IMR));
735 		for_each_pipe(pipe)
736 			seq_printf(m, "Pipe %c stat:\t%08x\n",
737 				   pipe_name(pipe),
738 				   I915_READ(PIPESTAT(pipe)));
739 
740 		seq_printf(m, "Master IER:\t%08x\n",
741 			   I915_READ(VLV_MASTER_IER));
742 
743 		seq_printf(m, "Render IER:\t%08x\n",
744 			   I915_READ(GTIER));
745 		seq_printf(m, "Render IIR:\t%08x\n",
746 			   I915_READ(GTIIR));
747 		seq_printf(m, "Render IMR:\t%08x\n",
748 			   I915_READ(GTIMR));
749 
750 		seq_printf(m, "PM IER:\t\t%08x\n",
751 			   I915_READ(GEN6_PMIER));
752 		seq_printf(m, "PM IIR:\t\t%08x\n",
753 			   I915_READ(GEN6_PMIIR));
754 		seq_printf(m, "PM IMR:\t\t%08x\n",
755 			   I915_READ(GEN6_PMIMR));
756 
757 		seq_printf(m, "Port hotplug:\t%08x\n",
758 			   I915_READ(PORT_HOTPLUG_EN));
759 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
760 			   I915_READ(VLV_DPFLIPSTAT));
761 		seq_printf(m, "DPINVGTT:\t%08x\n",
762 			   I915_READ(DPINVGTT));
763 
764 	} else if (!HAS_PCH_SPLIT(dev)) {
765 		seq_printf(m, "Interrupt enable:    %08x\n",
766 			   I915_READ(IER));
767 		seq_printf(m, "Interrupt identity:  %08x\n",
768 			   I915_READ(IIR));
769 		seq_printf(m, "Interrupt mask:      %08x\n",
770 			   I915_READ(IMR));
771 		for_each_pipe(pipe)
772 			seq_printf(m, "Pipe %c stat:         %08x\n",
773 				   pipe_name(pipe),
774 				   I915_READ(PIPESTAT(pipe)));
775 	} else {
776 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
777 			   I915_READ(DEIER));
778 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
779 			   I915_READ(DEIIR));
780 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
781 			   I915_READ(DEIMR));
782 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
783 			   I915_READ(SDEIER));
784 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
785 			   I915_READ(SDEIIR));
786 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
787 			   I915_READ(SDEIMR));
788 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
789 			   I915_READ(GTIER));
790 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
791 			   I915_READ(GTIIR));
792 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
793 			   I915_READ(GTIMR));
794 	}
795 	for_each_ring(ring, dev_priv, i) {
796 		if (INTEL_INFO(dev)->gen >= 6) {
797 			seq_printf(m,
798 				   "Graphics Interrupt mask (%s):	%08x\n",
799 				   ring->name, I915_READ_IMR(ring));
800 		}
801 		i915_ring_seqno_info(m, ring);
802 	}
803 	intel_runtime_pm_put(dev_priv);
804 	mutex_unlock(&dev->struct_mutex);
805 
806 	return 0;
807 }
808 
809 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
810 {
811 	struct drm_info_node *node = m->private;
812 	struct drm_device *dev = node->minor->dev;
813 	struct drm_i915_private *dev_priv = dev->dev_private;
814 	int i, ret;
815 
816 	ret = mutex_lock_interruptible(&dev->struct_mutex);
817 	if (ret)
818 		return ret;
819 
820 	seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
821 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
822 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
823 		struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
824 
825 		seq_printf(m, "Fence %d, pin count = %d, object = ",
826 			   i, dev_priv->fence_regs[i].pin_count);
827 		if (obj == NULL)
828 			seq_puts(m, "unused");
829 		else
830 			describe_obj(m, obj);
831 		seq_putc(m, '\n');
832 	}
833 
834 	mutex_unlock(&dev->struct_mutex);
835 	return 0;
836 }
837 
838 static int i915_hws_info(struct seq_file *m, void *data)
839 {
840 	struct drm_info_node *node = m->private;
841 	struct drm_device *dev = node->minor->dev;
842 	struct drm_i915_private *dev_priv = dev->dev_private;
843 	struct intel_engine_cs *ring;
844 	const u32 *hws;
845 	int i;
846 
847 	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
848 	hws = ring->status_page.page_addr;
849 	if (hws == NULL)
850 		return 0;
851 
852 	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
853 		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
854 			   i * 4,
855 			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
856 	}
857 	return 0;
858 }
859 
860 static ssize_t
861 i915_error_state_write(struct file *filp,
862 		       const char __user *ubuf,
863 		       size_t cnt,
864 		       loff_t *ppos)
865 {
866 	struct i915_error_state_file_priv *error_priv = filp->private_data;
867 	struct drm_device *dev = error_priv->dev;
868 	int ret;
869 
870 	DRM_DEBUG_DRIVER("Resetting error state\n");
871 
872 	ret = mutex_lock_interruptible(&dev->struct_mutex);
873 	if (ret)
874 		return ret;
875 
876 	i915_destroy_error_state(dev);
877 	mutex_unlock(&dev->struct_mutex);
878 
879 	return cnt;
880 }
881 
882 static int i915_error_state_open(struct inode *inode, struct file *file)
883 {
884 	struct drm_device *dev = inode->i_private;
885 	struct i915_error_state_file_priv *error_priv;
886 
887 	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
888 	if (!error_priv)
889 		return -ENOMEM;
890 
891 	error_priv->dev = dev;
892 
893 	i915_error_state_get(dev, error_priv);
894 
895 	file->private_data = error_priv;
896 
897 	return 0;
898 }
899 
900 static int i915_error_state_release(struct inode *inode, struct file *file)
901 {
902 	struct i915_error_state_file_priv *error_priv = file->private_data;
903 
904 	i915_error_state_put(error_priv);
905 	kfree(error_priv);
906 
907 	return 0;
908 }
909 
910 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
911 				     size_t count, loff_t *pos)
912 {
913 	struct i915_error_state_file_priv *error_priv = file->private_data;
914 	struct drm_i915_error_state_buf error_str;
915 	loff_t tmp_pos = 0;
916 	ssize_t ret_count = 0;
917 	int ret;
918 
919 	ret = i915_error_state_buf_init(&error_str, count, *pos);
920 	if (ret)
921 		return ret;
922 
923 	ret = i915_error_state_to_str(&error_str, error_priv);
924 	if (ret)
925 		goto out;
926 
927 	ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
928 					    error_str.buf,
929 					    error_str.bytes);
930 
931 	if (ret_count < 0)
932 		ret = ret_count;
933 	else
934 		*pos = error_str.start + ret_count;
935 out:
936 	i915_error_state_buf_release(&error_str);
937 	return ret ?: ret_count;
938 }
939 
940 static const struct file_operations i915_error_state_fops = {
941 	.owner = THIS_MODULE,
942 	.open = i915_error_state_open,
943 	.read = i915_error_state_read,
944 	.write = i915_error_state_write,
945 	.llseek = default_llseek,
946 	.release = i915_error_state_release,
947 };
948 
949 static int
950 i915_next_seqno_get(void *data, u64 *val)
951 {
952 	struct drm_device *dev = data;
953 	struct drm_i915_private *dev_priv = dev->dev_private;
954 	int ret;
955 
956 	ret = mutex_lock_interruptible(&dev->struct_mutex);
957 	if (ret)
958 		return ret;
959 
960 	*val = dev_priv->next_seqno;
961 	mutex_unlock(&dev->struct_mutex);
962 
963 	return 0;
964 }
965 
966 static int
967 i915_next_seqno_set(void *data, u64 val)
968 {
969 	struct drm_device *dev = data;
970 	int ret;
971 
972 	ret = mutex_lock_interruptible(&dev->struct_mutex);
973 	if (ret)
974 		return ret;
975 
976 	ret = i915_gem_set_seqno(dev, val);
977 	mutex_unlock(&dev->struct_mutex);
978 
979 	return ret;
980 }
981 
982 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
983 			i915_next_seqno_get, i915_next_seqno_set,
984 			"0x%llx\n");
985 
986 static int i915_rstdby_delays(struct seq_file *m, void *unused)
987 {
988 	struct drm_info_node *node = m->private;
989 	struct drm_device *dev = node->minor->dev;
990 	struct drm_i915_private *dev_priv = dev->dev_private;
991 	u16 crstanddelay;
992 	int ret;
993 
994 	ret = mutex_lock_interruptible(&dev->struct_mutex);
995 	if (ret)
996 		return ret;
997 	intel_runtime_pm_get(dev_priv);
998 
999 	crstanddelay = I915_READ16(CRSTANDVID);
1000 
1001 	intel_runtime_pm_put(dev_priv);
1002 	mutex_unlock(&dev->struct_mutex);
1003 
1004 	seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
1005 
1006 	return 0;
1007 }
1008 
1009 static int i915_frequency_info(struct seq_file *m, void *unused)
1010 {
1011 	struct drm_info_node *node = m->private;
1012 	struct drm_device *dev = node->minor->dev;
1013 	struct drm_i915_private *dev_priv = dev->dev_private;
1014 	int ret = 0;
1015 
1016 	intel_runtime_pm_get(dev_priv);
1017 
1018 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1019 
1020 	if (IS_GEN5(dev)) {
1021 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1022 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1023 
1024 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1025 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1026 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1027 			   MEMSTAT_VID_SHIFT);
1028 		seq_printf(m, "Current P-state: %d\n",
1029 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1030 	} else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
1031 		u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1032 		u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1033 		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1034 		u32 rpmodectl, rpinclimit, rpdeclimit;
1035 		u32 rpstat, cagf, reqf;
1036 		u32 rpupei, rpcurup, rpprevup;
1037 		u32 rpdownei, rpcurdown, rpprevdown;
1038 		int max_freq;
1039 
1040 		/* RPSTAT1 is in the GT power well */
1041 		ret = mutex_lock_interruptible(&dev->struct_mutex);
1042 		if (ret)
1043 			goto out;
1044 
1045 		gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
1046 
1047 		reqf = I915_READ(GEN6_RPNSWREQ);
1048 		reqf &= ~GEN6_TURBO_DISABLE;
1049 		if (IS_HASWELL(dev))
1050 			reqf >>= 24;
1051 		else
1052 			reqf >>= 25;
1053 		reqf *= GT_FREQUENCY_MULTIPLIER;
1054 
1055 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1056 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1057 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1058 
1059 		rpstat = I915_READ(GEN6_RPSTAT1);
1060 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1061 		rpcurup = I915_READ(GEN6_RP_CUR_UP);
1062 		rpprevup = I915_READ(GEN6_RP_PREV_UP);
1063 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1064 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1065 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1066 		if (IS_HASWELL(dev))
1067 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1068 		else
1069 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1070 		cagf *= GT_FREQUENCY_MULTIPLIER;
1071 
1072 		gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
1073 		mutex_unlock(&dev->struct_mutex);
1074 
1075 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1076 			   I915_READ(GEN6_PMIER),
1077 			   I915_READ(GEN6_PMIMR),
1078 			   I915_READ(GEN6_PMISR),
1079 			   I915_READ(GEN6_PMIIR),
1080 			   I915_READ(GEN6_PMINTRMSK));
1081 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1082 		seq_printf(m, "Render p-state ratio: %d\n",
1083 			   (gt_perf_status & 0xff00) >> 8);
1084 		seq_printf(m, "Render p-state VID: %d\n",
1085 			   gt_perf_status & 0xff);
1086 		seq_printf(m, "Render p-state limit: %d\n",
1087 			   rp_state_limits & 0xff);
1088 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1089 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1090 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1091 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1092 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1093 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1094 		seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1095 			   GEN6_CURICONT_MASK);
1096 		seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1097 			   GEN6_CURBSYTAVG_MASK);
1098 		seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1099 			   GEN6_CURBSYTAVG_MASK);
1100 		seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1101 			   GEN6_CURIAVG_MASK);
1102 		seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1103 			   GEN6_CURBSYTAVG_MASK);
1104 		seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1105 			   GEN6_CURBSYTAVG_MASK);
1106 
1107 		max_freq = (rp_state_cap & 0xff0000) >> 16;
1108 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1109 			   max_freq * GT_FREQUENCY_MULTIPLIER);
1110 
1111 		max_freq = (rp_state_cap & 0xff00) >> 8;
1112 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1113 			   max_freq * GT_FREQUENCY_MULTIPLIER);
1114 
1115 		max_freq = rp_state_cap & 0xff;
1116 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1117 			   max_freq * GT_FREQUENCY_MULTIPLIER);
1118 
1119 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1120 			   dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
1121 	} else if (IS_VALLEYVIEW(dev)) {
1122 		u32 freq_sts, val;
1123 
1124 		mutex_lock(&dev_priv->rps.hw_lock);
1125 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1126 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1127 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1128 
1129 		val = valleyview_rps_max_freq(dev_priv);
1130 		seq_printf(m, "max GPU freq: %d MHz\n",
1131 			   vlv_gpu_freq(dev_priv, val));
1132 
1133 		val = valleyview_rps_min_freq(dev_priv);
1134 		seq_printf(m, "min GPU freq: %d MHz\n",
1135 			   vlv_gpu_freq(dev_priv, val));
1136 
1137 		seq_printf(m, "current GPU freq: %d MHz\n",
1138 			   vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1139 		mutex_unlock(&dev_priv->rps.hw_lock);
1140 	} else {
1141 		seq_puts(m, "no P-state info available\n");
1142 	}
1143 
1144 out:
1145 	intel_runtime_pm_put(dev_priv);
1146 	return ret;
1147 }
1148 
1149 static int i915_delayfreq_table(struct seq_file *m, void *unused)
1150 {
1151 	struct drm_info_node *node = m->private;
1152 	struct drm_device *dev = node->minor->dev;
1153 	struct drm_i915_private *dev_priv = dev->dev_private;
1154 	u32 delayfreq;
1155 	int ret, i;
1156 
1157 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1158 	if (ret)
1159 		return ret;
1160 	intel_runtime_pm_get(dev_priv);
1161 
1162 	for (i = 0; i < 16; i++) {
1163 		delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
1164 		seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
1165 			   (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
1166 	}
1167 
1168 	intel_runtime_pm_put(dev_priv);
1169 
1170 	mutex_unlock(&dev->struct_mutex);
1171 
1172 	return 0;
1173 }
1174 
1175 static inline int MAP_TO_MV(int map)
1176 {
1177 	return 1250 - (map * 25);
1178 }
1179 
1180 static int i915_inttoext_table(struct seq_file *m, void *unused)
1181 {
1182 	struct drm_info_node *node = m->private;
1183 	struct drm_device *dev = node->minor->dev;
1184 	struct drm_i915_private *dev_priv = dev->dev_private;
1185 	u32 inttoext;
1186 	int ret, i;
1187 
1188 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1189 	if (ret)
1190 		return ret;
1191 	intel_runtime_pm_get(dev_priv);
1192 
1193 	for (i = 1; i <= 32; i++) {
1194 		inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
1195 		seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
1196 	}
1197 
1198 	intel_runtime_pm_put(dev_priv);
1199 	mutex_unlock(&dev->struct_mutex);
1200 
1201 	return 0;
1202 }
1203 
1204 static int ironlake_drpc_info(struct seq_file *m)
1205 {
1206 	struct drm_info_node *node = m->private;
1207 	struct drm_device *dev = node->minor->dev;
1208 	struct drm_i915_private *dev_priv = dev->dev_private;
1209 	u32 rgvmodectl, rstdbyctl;
1210 	u16 crstandvid;
1211 	int ret;
1212 
1213 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1214 	if (ret)
1215 		return ret;
1216 	intel_runtime_pm_get(dev_priv);
1217 
1218 	rgvmodectl = I915_READ(MEMMODECTL);
1219 	rstdbyctl = I915_READ(RSTDBYCTL);
1220 	crstandvid = I915_READ16(CRSTANDVID);
1221 
1222 	intel_runtime_pm_put(dev_priv);
1223 	mutex_unlock(&dev->struct_mutex);
1224 
1225 	seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1226 		   "yes" : "no");
1227 	seq_printf(m, "Boost freq: %d\n",
1228 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1229 		   MEMMODE_BOOST_FREQ_SHIFT);
1230 	seq_printf(m, "HW control enabled: %s\n",
1231 		   rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1232 	seq_printf(m, "SW control enabled: %s\n",
1233 		   rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1234 	seq_printf(m, "Gated voltage change: %s\n",
1235 		   rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1236 	seq_printf(m, "Starting frequency: P%d\n",
1237 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1238 	seq_printf(m, "Max P-state: P%d\n",
1239 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1240 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1241 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1242 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1243 	seq_printf(m, "Render standby enabled: %s\n",
1244 		   (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1245 	seq_puts(m, "Current RS state: ");
1246 	switch (rstdbyctl & RSX_STATUS_MASK) {
1247 	case RSX_STATUS_ON:
1248 		seq_puts(m, "on\n");
1249 		break;
1250 	case RSX_STATUS_RC1:
1251 		seq_puts(m, "RC1\n");
1252 		break;
1253 	case RSX_STATUS_RC1E:
1254 		seq_puts(m, "RC1E\n");
1255 		break;
1256 	case RSX_STATUS_RS1:
1257 		seq_puts(m, "RS1\n");
1258 		break;
1259 	case RSX_STATUS_RS2:
1260 		seq_puts(m, "RS2 (RC6)\n");
1261 		break;
1262 	case RSX_STATUS_RS3:
1263 		seq_puts(m, "RC3 (RC6+)\n");
1264 		break;
1265 	default:
1266 		seq_puts(m, "unknown\n");
1267 		break;
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 static int vlv_drpc_info(struct seq_file *m)
1274 {
1275 
1276 	struct drm_info_node *node = m->private;
1277 	struct drm_device *dev = node->minor->dev;
1278 	struct drm_i915_private *dev_priv = dev->dev_private;
1279 	u32 rpmodectl1, rcctl1;
1280 	unsigned fw_rendercount = 0, fw_mediacount = 0;
1281 
1282 	intel_runtime_pm_get(dev_priv);
1283 
1284 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1285 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1286 
1287 	intel_runtime_pm_put(dev_priv);
1288 
1289 	seq_printf(m, "Video Turbo Mode: %s\n",
1290 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1291 	seq_printf(m, "Turbo enabled: %s\n",
1292 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1293 	seq_printf(m, "HW control enabled: %s\n",
1294 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1295 	seq_printf(m, "SW control enabled: %s\n",
1296 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1297 			  GEN6_RP_MEDIA_SW_MODE));
1298 	seq_printf(m, "RC6 Enabled: %s\n",
1299 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1300 					GEN6_RC_CTL_EI_MODE(1))));
1301 	seq_printf(m, "Render Power Well: %s\n",
1302 			(I915_READ(VLV_GTLC_PW_STATUS) &
1303 				VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1304 	seq_printf(m, "Media Power Well: %s\n",
1305 			(I915_READ(VLV_GTLC_PW_STATUS) &
1306 				VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1307 
1308 	seq_printf(m, "Render RC6 residency since boot: %u\n",
1309 		   I915_READ(VLV_GT_RENDER_RC6));
1310 	seq_printf(m, "Media RC6 residency since boot: %u\n",
1311 		   I915_READ(VLV_GT_MEDIA_RC6));
1312 
1313 	spin_lock_irq(&dev_priv->uncore.lock);
1314 	fw_rendercount = dev_priv->uncore.fw_rendercount;
1315 	fw_mediacount = dev_priv->uncore.fw_mediacount;
1316 	spin_unlock_irq(&dev_priv->uncore.lock);
1317 
1318 	seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1319 	seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1320 
1321 
1322 	return 0;
1323 }
1324 
1325 
1326 static int gen6_drpc_info(struct seq_file *m)
1327 {
1328 
1329 	struct drm_info_node *node = m->private;
1330 	struct drm_device *dev = node->minor->dev;
1331 	struct drm_i915_private *dev_priv = dev->dev_private;
1332 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1333 	unsigned forcewake_count;
1334 	int count = 0, ret;
1335 
1336 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1337 	if (ret)
1338 		return ret;
1339 	intel_runtime_pm_get(dev_priv);
1340 
1341 	spin_lock_irq(&dev_priv->uncore.lock);
1342 	forcewake_count = dev_priv->uncore.forcewake_count;
1343 	spin_unlock_irq(&dev_priv->uncore.lock);
1344 
1345 	if (forcewake_count) {
1346 		seq_puts(m, "RC information inaccurate because somebody "
1347 			    "holds a forcewake reference \n");
1348 	} else {
1349 		/* NB: we cannot use forcewake, else we read the wrong values */
1350 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1351 			udelay(10);
1352 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1353 	}
1354 
1355 	gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1356 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1357 
1358 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1359 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1360 	mutex_unlock(&dev->struct_mutex);
1361 	mutex_lock(&dev_priv->rps.hw_lock);
1362 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1363 	mutex_unlock(&dev_priv->rps.hw_lock);
1364 
1365 	intel_runtime_pm_put(dev_priv);
1366 
1367 	seq_printf(m, "Video Turbo Mode: %s\n",
1368 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1369 	seq_printf(m, "HW control enabled: %s\n",
1370 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1371 	seq_printf(m, "SW control enabled: %s\n",
1372 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1373 			  GEN6_RP_MEDIA_SW_MODE));
1374 	seq_printf(m, "RC1e Enabled: %s\n",
1375 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1376 	seq_printf(m, "RC6 Enabled: %s\n",
1377 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1378 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1379 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1380 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1381 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1382 	seq_puts(m, "Current RC state: ");
1383 	switch (gt_core_status & GEN6_RCn_MASK) {
1384 	case GEN6_RC0:
1385 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1386 			seq_puts(m, "Core Power Down\n");
1387 		else
1388 			seq_puts(m, "on\n");
1389 		break;
1390 	case GEN6_RC3:
1391 		seq_puts(m, "RC3\n");
1392 		break;
1393 	case GEN6_RC6:
1394 		seq_puts(m, "RC6\n");
1395 		break;
1396 	case GEN6_RC7:
1397 		seq_puts(m, "RC7\n");
1398 		break;
1399 	default:
1400 		seq_puts(m, "Unknown\n");
1401 		break;
1402 	}
1403 
1404 	seq_printf(m, "Core Power Down: %s\n",
1405 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1406 
1407 	/* Not exactly sure what this is */
1408 	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1409 		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1410 	seq_printf(m, "RC6 residency since boot: %u\n",
1411 		   I915_READ(GEN6_GT_GFX_RC6));
1412 	seq_printf(m, "RC6+ residency since boot: %u\n",
1413 		   I915_READ(GEN6_GT_GFX_RC6p));
1414 	seq_printf(m, "RC6++ residency since boot: %u\n",
1415 		   I915_READ(GEN6_GT_GFX_RC6pp));
1416 
1417 	seq_printf(m, "RC6   voltage: %dmV\n",
1418 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1419 	seq_printf(m, "RC6+  voltage: %dmV\n",
1420 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1421 	seq_printf(m, "RC6++ voltage: %dmV\n",
1422 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1423 	return 0;
1424 }
1425 
1426 static int i915_drpc_info(struct seq_file *m, void *unused)
1427 {
1428 	struct drm_info_node *node = m->private;
1429 	struct drm_device *dev = node->minor->dev;
1430 
1431 	if (IS_VALLEYVIEW(dev))
1432 		return vlv_drpc_info(m);
1433 	else if (IS_GEN6(dev) || IS_GEN7(dev))
1434 		return gen6_drpc_info(m);
1435 	else
1436 		return ironlake_drpc_info(m);
1437 }
1438 
1439 static int i915_fbc_status(struct seq_file *m, void *unused)
1440 {
1441 	struct drm_info_node *node = m->private;
1442 	struct drm_device *dev = node->minor->dev;
1443 	struct drm_i915_private *dev_priv = dev->dev_private;
1444 
1445 	if (!HAS_FBC(dev)) {
1446 		seq_puts(m, "FBC unsupported on this chipset\n");
1447 		return 0;
1448 	}
1449 
1450 	intel_runtime_pm_get(dev_priv);
1451 
1452 	if (intel_fbc_enabled(dev)) {
1453 		seq_puts(m, "FBC enabled\n");
1454 	} else {
1455 		seq_puts(m, "FBC disabled: ");
1456 		switch (dev_priv->fbc.no_fbc_reason) {
1457 		case FBC_OK:
1458 			seq_puts(m, "FBC actived, but currently disabled in hardware");
1459 			break;
1460 		case FBC_UNSUPPORTED:
1461 			seq_puts(m, "unsupported by this chipset");
1462 			break;
1463 		case FBC_NO_OUTPUT:
1464 			seq_puts(m, "no outputs");
1465 			break;
1466 		case FBC_STOLEN_TOO_SMALL:
1467 			seq_puts(m, "not enough stolen memory");
1468 			break;
1469 		case FBC_UNSUPPORTED_MODE:
1470 			seq_puts(m, "mode not supported");
1471 			break;
1472 		case FBC_MODE_TOO_LARGE:
1473 			seq_puts(m, "mode too large");
1474 			break;
1475 		case FBC_BAD_PLANE:
1476 			seq_puts(m, "FBC unsupported on plane");
1477 			break;
1478 		case FBC_NOT_TILED:
1479 			seq_puts(m, "scanout buffer not tiled");
1480 			break;
1481 		case FBC_MULTIPLE_PIPES:
1482 			seq_puts(m, "multiple pipes are enabled");
1483 			break;
1484 		case FBC_MODULE_PARAM:
1485 			seq_puts(m, "disabled per module param (default off)");
1486 			break;
1487 		case FBC_CHIP_DEFAULT:
1488 			seq_puts(m, "disabled per chip default");
1489 			break;
1490 		default:
1491 			seq_puts(m, "unknown reason");
1492 		}
1493 		seq_putc(m, '\n');
1494 	}
1495 
1496 	intel_runtime_pm_put(dev_priv);
1497 
1498 	return 0;
1499 }
1500 
1501 static int i915_ips_status(struct seq_file *m, void *unused)
1502 {
1503 	struct drm_info_node *node = m->private;
1504 	struct drm_device *dev = node->minor->dev;
1505 	struct drm_i915_private *dev_priv = dev->dev_private;
1506 
1507 	if (!HAS_IPS(dev)) {
1508 		seq_puts(m, "not supported\n");
1509 		return 0;
1510 	}
1511 
1512 	intel_runtime_pm_get(dev_priv);
1513 
1514 	if (IS_BROADWELL(dev) || I915_READ(IPS_CTL) & IPS_ENABLE)
1515 		seq_puts(m, "enabled\n");
1516 	else
1517 		seq_puts(m, "disabled\n");
1518 
1519 	intel_runtime_pm_put(dev_priv);
1520 
1521 	return 0;
1522 }
1523 
1524 static int i915_sr_status(struct seq_file *m, void *unused)
1525 {
1526 	struct drm_info_node *node = m->private;
1527 	struct drm_device *dev = node->minor->dev;
1528 	struct drm_i915_private *dev_priv = dev->dev_private;
1529 	bool sr_enabled = false;
1530 
1531 	intel_runtime_pm_get(dev_priv);
1532 
1533 	if (HAS_PCH_SPLIT(dev))
1534 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1535 	else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1536 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1537 	else if (IS_I915GM(dev))
1538 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1539 	else if (IS_PINEVIEW(dev))
1540 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1541 
1542 	intel_runtime_pm_put(dev_priv);
1543 
1544 	seq_printf(m, "self-refresh: %s\n",
1545 		   sr_enabled ? "enabled" : "disabled");
1546 
1547 	return 0;
1548 }
1549 
1550 static int i915_emon_status(struct seq_file *m, void *unused)
1551 {
1552 	struct drm_info_node *node = m->private;
1553 	struct drm_device *dev = node->minor->dev;
1554 	struct drm_i915_private *dev_priv = dev->dev_private;
1555 	unsigned long temp, chipset, gfx;
1556 	int ret;
1557 
1558 	if (!IS_GEN5(dev))
1559 		return -ENODEV;
1560 
1561 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1562 	if (ret)
1563 		return ret;
1564 
1565 	temp = i915_mch_val(dev_priv);
1566 	chipset = i915_chipset_val(dev_priv);
1567 	gfx = i915_gfx_val(dev_priv);
1568 	mutex_unlock(&dev->struct_mutex);
1569 
1570 	seq_printf(m, "GMCH temp: %ld\n", temp);
1571 	seq_printf(m, "Chipset power: %ld\n", chipset);
1572 	seq_printf(m, "GFX power: %ld\n", gfx);
1573 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1574 
1575 	return 0;
1576 }
1577 
1578 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1579 {
1580 	struct drm_info_node *node = m->private;
1581 	struct drm_device *dev = node->minor->dev;
1582 	struct drm_i915_private *dev_priv = dev->dev_private;
1583 	int ret = 0;
1584 	int gpu_freq, ia_freq;
1585 
1586 	if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1587 		seq_puts(m, "unsupported on this chipset\n");
1588 		return 0;
1589 	}
1590 
1591 	intel_runtime_pm_get(dev_priv);
1592 
1593 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1594 
1595 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1596 	if (ret)
1597 		goto out;
1598 
1599 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1600 
1601 	for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1602 	     gpu_freq <= dev_priv->rps.max_freq_softlimit;
1603 	     gpu_freq++) {
1604 		ia_freq = gpu_freq;
1605 		sandybridge_pcode_read(dev_priv,
1606 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1607 				       &ia_freq);
1608 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1609 			   gpu_freq * GT_FREQUENCY_MULTIPLIER,
1610 			   ((ia_freq >> 0) & 0xff) * 100,
1611 			   ((ia_freq >> 8) & 0xff) * 100);
1612 	}
1613 
1614 	mutex_unlock(&dev_priv->rps.hw_lock);
1615 
1616 out:
1617 	intel_runtime_pm_put(dev_priv);
1618 	return ret;
1619 }
1620 
1621 static int i915_gfxec(struct seq_file *m, void *unused)
1622 {
1623 	struct drm_info_node *node = m->private;
1624 	struct drm_device *dev = node->minor->dev;
1625 	struct drm_i915_private *dev_priv = dev->dev_private;
1626 	int ret;
1627 
1628 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1629 	if (ret)
1630 		return ret;
1631 	intel_runtime_pm_get(dev_priv);
1632 
1633 	seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
1634 	intel_runtime_pm_put(dev_priv);
1635 
1636 	mutex_unlock(&dev->struct_mutex);
1637 
1638 	return 0;
1639 }
1640 
1641 static int i915_opregion(struct seq_file *m, void *unused)
1642 {
1643 	struct drm_info_node *node = m->private;
1644 	struct drm_device *dev = node->minor->dev;
1645 	struct drm_i915_private *dev_priv = dev->dev_private;
1646 	struct intel_opregion *opregion = &dev_priv->opregion;
1647 	void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1648 	int ret;
1649 
1650 	if (data == NULL)
1651 		return -ENOMEM;
1652 
1653 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1654 	if (ret)
1655 		goto out;
1656 
1657 	if (opregion->header) {
1658 		memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1659 		seq_write(m, data, OPREGION_SIZE);
1660 	}
1661 
1662 	mutex_unlock(&dev->struct_mutex);
1663 
1664 out:
1665 	kfree(data);
1666 	return 0;
1667 }
1668 
1669 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1670 {
1671 	struct drm_info_node *node = m->private;
1672 	struct drm_device *dev = node->minor->dev;
1673 	struct intel_fbdev *ifbdev = NULL;
1674 	struct intel_framebuffer *fb;
1675 
1676 #ifdef CONFIG_DRM_I915_FBDEV
1677 	struct drm_i915_private *dev_priv = dev->dev_private;
1678 	int ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1679 	if (ret)
1680 		return ret;
1681 
1682 	ifbdev = dev_priv->fbdev;
1683 	fb = to_intel_framebuffer(ifbdev->helper.fb);
1684 
1685 	seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1686 		   fb->base.width,
1687 		   fb->base.height,
1688 		   fb->base.depth,
1689 		   fb->base.bits_per_pixel,
1690 		   atomic_read(&fb->base.refcount.refcount));
1691 	describe_obj(m, fb->obj);
1692 	seq_putc(m, '\n');
1693 	mutex_unlock(&dev->mode_config.mutex);
1694 #endif
1695 
1696 	mutex_lock(&dev->mode_config.fb_lock);
1697 	list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1698 		if (ifbdev && &fb->base == ifbdev->helper.fb)
1699 			continue;
1700 
1701 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1702 			   fb->base.width,
1703 			   fb->base.height,
1704 			   fb->base.depth,
1705 			   fb->base.bits_per_pixel,
1706 			   atomic_read(&fb->base.refcount.refcount));
1707 		describe_obj(m, fb->obj);
1708 		seq_putc(m, '\n');
1709 	}
1710 	mutex_unlock(&dev->mode_config.fb_lock);
1711 
1712 	return 0;
1713 }
1714 
1715 static int i915_context_status(struct seq_file *m, void *unused)
1716 {
1717 	struct drm_info_node *node = m->private;
1718 	struct drm_device *dev = node->minor->dev;
1719 	struct drm_i915_private *dev_priv = dev->dev_private;
1720 	struct intel_engine_cs *ring;
1721 	struct intel_context *ctx;
1722 	int ret, i;
1723 
1724 	ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1725 	if (ret)
1726 		return ret;
1727 
1728 	if (dev_priv->ips.pwrctx) {
1729 		seq_puts(m, "power context ");
1730 		describe_obj(m, dev_priv->ips.pwrctx);
1731 		seq_putc(m, '\n');
1732 	}
1733 
1734 	if (dev_priv->ips.renderctx) {
1735 		seq_puts(m, "render context ");
1736 		describe_obj(m, dev_priv->ips.renderctx);
1737 		seq_putc(m, '\n');
1738 	}
1739 
1740 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1741 		if (ctx->obj == NULL)
1742 			continue;
1743 
1744 		seq_puts(m, "HW context ");
1745 		describe_ctx(m, ctx);
1746 		for_each_ring(ring, dev_priv, i)
1747 			if (ring->default_context == ctx)
1748 				seq_printf(m, "(default context %s) ", ring->name);
1749 
1750 		describe_obj(m, ctx->obj);
1751 		seq_putc(m, '\n');
1752 	}
1753 
1754 	mutex_unlock(&dev->mode_config.mutex);
1755 
1756 	return 0;
1757 }
1758 
1759 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1760 {
1761 	struct drm_info_node *node = m->private;
1762 	struct drm_device *dev = node->minor->dev;
1763 	struct drm_i915_private *dev_priv = dev->dev_private;
1764 	unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1765 
1766 	spin_lock_irq(&dev_priv->uncore.lock);
1767 	if (IS_VALLEYVIEW(dev)) {
1768 		fw_rendercount = dev_priv->uncore.fw_rendercount;
1769 		fw_mediacount = dev_priv->uncore.fw_mediacount;
1770 	} else
1771 		forcewake_count = dev_priv->uncore.forcewake_count;
1772 	spin_unlock_irq(&dev_priv->uncore.lock);
1773 
1774 	if (IS_VALLEYVIEW(dev)) {
1775 		seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1776 		seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1777 	} else
1778 		seq_printf(m, "forcewake count = %u\n", forcewake_count);
1779 
1780 	return 0;
1781 }
1782 
1783 static const char *swizzle_string(unsigned swizzle)
1784 {
1785 	switch (swizzle) {
1786 	case I915_BIT_6_SWIZZLE_NONE:
1787 		return "none";
1788 	case I915_BIT_6_SWIZZLE_9:
1789 		return "bit9";
1790 	case I915_BIT_6_SWIZZLE_9_10:
1791 		return "bit9/bit10";
1792 	case I915_BIT_6_SWIZZLE_9_11:
1793 		return "bit9/bit11";
1794 	case I915_BIT_6_SWIZZLE_9_10_11:
1795 		return "bit9/bit10/bit11";
1796 	case I915_BIT_6_SWIZZLE_9_17:
1797 		return "bit9/bit17";
1798 	case I915_BIT_6_SWIZZLE_9_10_17:
1799 		return "bit9/bit10/bit17";
1800 	case I915_BIT_6_SWIZZLE_UNKNOWN:
1801 		return "unknown";
1802 	}
1803 
1804 	return "bug";
1805 }
1806 
1807 static int i915_swizzle_info(struct seq_file *m, void *data)
1808 {
1809 	struct drm_info_node *node = m->private;
1810 	struct drm_device *dev = node->minor->dev;
1811 	struct drm_i915_private *dev_priv = dev->dev_private;
1812 	int ret;
1813 
1814 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1815 	if (ret)
1816 		return ret;
1817 	intel_runtime_pm_get(dev_priv);
1818 
1819 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1820 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1821 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1822 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1823 
1824 	if (IS_GEN3(dev) || IS_GEN4(dev)) {
1825 		seq_printf(m, "DDC = 0x%08x\n",
1826 			   I915_READ(DCC));
1827 		seq_printf(m, "C0DRB3 = 0x%04x\n",
1828 			   I915_READ16(C0DRB3));
1829 		seq_printf(m, "C1DRB3 = 0x%04x\n",
1830 			   I915_READ16(C1DRB3));
1831 	} else if (INTEL_INFO(dev)->gen >= 6) {
1832 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1833 			   I915_READ(MAD_DIMM_C0));
1834 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1835 			   I915_READ(MAD_DIMM_C1));
1836 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1837 			   I915_READ(MAD_DIMM_C2));
1838 		seq_printf(m, "TILECTL = 0x%08x\n",
1839 			   I915_READ(TILECTL));
1840 		if (IS_GEN8(dev))
1841 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1842 				   I915_READ(GAMTARBMODE));
1843 		else
1844 			seq_printf(m, "ARB_MODE = 0x%08x\n",
1845 				   I915_READ(ARB_MODE));
1846 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1847 			   I915_READ(DISP_ARB_CTL));
1848 	}
1849 	intel_runtime_pm_put(dev_priv);
1850 	mutex_unlock(&dev->struct_mutex);
1851 
1852 	return 0;
1853 }
1854 
1855 static int per_file_ctx(int id, void *ptr, void *data)
1856 {
1857 	struct intel_context *ctx = ptr;
1858 	struct seq_file *m = data;
1859 	struct i915_hw_ppgtt *ppgtt = ctx_to_ppgtt(ctx);
1860 
1861 	if (i915_gem_context_is_default(ctx))
1862 		seq_puts(m, "  default context:\n");
1863 	else
1864 		seq_printf(m, "  context %d:\n", ctx->id);
1865 	ppgtt->debug_dump(ppgtt, m);
1866 
1867 	return 0;
1868 }
1869 
1870 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1871 {
1872 	struct drm_i915_private *dev_priv = dev->dev_private;
1873 	struct intel_engine_cs *ring;
1874 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1875 	int unused, i;
1876 
1877 	if (!ppgtt)
1878 		return;
1879 
1880 	seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
1881 	seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
1882 	for_each_ring(ring, dev_priv, unused) {
1883 		seq_printf(m, "%s\n", ring->name);
1884 		for (i = 0; i < 4; i++) {
1885 			u32 offset = 0x270 + i * 8;
1886 			u64 pdp = I915_READ(ring->mmio_base + offset + 4);
1887 			pdp <<= 32;
1888 			pdp |= I915_READ(ring->mmio_base + offset);
1889 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
1890 		}
1891 	}
1892 }
1893 
1894 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1895 {
1896 	struct drm_i915_private *dev_priv = dev->dev_private;
1897 	struct intel_engine_cs *ring;
1898 	struct drm_file *file;
1899 	int i;
1900 
1901 	if (INTEL_INFO(dev)->gen == 6)
1902 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
1903 
1904 	for_each_ring(ring, dev_priv, i) {
1905 		seq_printf(m, "%s\n", ring->name);
1906 		if (INTEL_INFO(dev)->gen == 7)
1907 			seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
1908 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
1909 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
1910 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
1911 	}
1912 	if (dev_priv->mm.aliasing_ppgtt) {
1913 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1914 
1915 		seq_puts(m, "aliasing PPGTT:\n");
1916 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
1917 
1918 		ppgtt->debug_dump(ppgtt, m);
1919 	} else
1920 		return;
1921 
1922 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
1923 		struct drm_i915_file_private *file_priv = file->driver_priv;
1924 
1925 		seq_printf(m, "proc: %s\n",
1926 			   get_pid_task(file->pid, PIDTYPE_PID)->comm);
1927 		idr_for_each(&file_priv->context_idr, per_file_ctx, m);
1928 	}
1929 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
1930 }
1931 
1932 static int i915_ppgtt_info(struct seq_file *m, void *data)
1933 {
1934 	struct drm_info_node *node = m->private;
1935 	struct drm_device *dev = node->minor->dev;
1936 	struct drm_i915_private *dev_priv = dev->dev_private;
1937 
1938 	int ret = mutex_lock_interruptible(&dev->struct_mutex);
1939 	if (ret)
1940 		return ret;
1941 	intel_runtime_pm_get(dev_priv);
1942 
1943 	if (INTEL_INFO(dev)->gen >= 8)
1944 		gen8_ppgtt_info(m, dev);
1945 	else if (INTEL_INFO(dev)->gen >= 6)
1946 		gen6_ppgtt_info(m, dev);
1947 
1948 	intel_runtime_pm_put(dev_priv);
1949 	mutex_unlock(&dev->struct_mutex);
1950 
1951 	return 0;
1952 }
1953 
1954 static int i915_llc(struct seq_file *m, void *data)
1955 {
1956 	struct drm_info_node *node = m->private;
1957 	struct drm_device *dev = node->minor->dev;
1958 	struct drm_i915_private *dev_priv = dev->dev_private;
1959 
1960 	/* Size calculation for LLC is a bit of a pain. Ignore for now. */
1961 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
1962 	seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
1963 
1964 	return 0;
1965 }
1966 
1967 static int i915_edp_psr_status(struct seq_file *m, void *data)
1968 {
1969 	struct drm_info_node *node = m->private;
1970 	struct drm_device *dev = node->minor->dev;
1971 	struct drm_i915_private *dev_priv = dev->dev_private;
1972 	u32 psrperf = 0;
1973 	bool enabled = false;
1974 
1975 	intel_runtime_pm_get(dev_priv);
1976 
1977 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
1978 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
1979 
1980 	enabled = HAS_PSR(dev) &&
1981 		I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1982 	seq_printf(m, "Enabled: %s\n", yesno(enabled));
1983 
1984 	if (HAS_PSR(dev))
1985 		psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
1986 			EDP_PSR_PERF_CNT_MASK;
1987 	seq_printf(m, "Performance_Counter: %u\n", psrperf);
1988 
1989 	intel_runtime_pm_put(dev_priv);
1990 	return 0;
1991 }
1992 
1993 static int i915_sink_crc(struct seq_file *m, void *data)
1994 {
1995 	struct drm_info_node *node = m->private;
1996 	struct drm_device *dev = node->minor->dev;
1997 	struct intel_encoder *encoder;
1998 	struct intel_connector *connector;
1999 	struct intel_dp *intel_dp = NULL;
2000 	int ret;
2001 	u8 crc[6];
2002 
2003 	drm_modeset_lock_all(dev);
2004 	list_for_each_entry(connector, &dev->mode_config.connector_list,
2005 			    base.head) {
2006 
2007 		if (connector->base.dpms != DRM_MODE_DPMS_ON)
2008 			continue;
2009 
2010 		if (!connector->base.encoder)
2011 			continue;
2012 
2013 		encoder = to_intel_encoder(connector->base.encoder);
2014 		if (encoder->type != INTEL_OUTPUT_EDP)
2015 			continue;
2016 
2017 		intel_dp = enc_to_intel_dp(&encoder->base);
2018 
2019 		ret = intel_dp_sink_crc(intel_dp, crc);
2020 		if (ret)
2021 			goto out;
2022 
2023 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2024 			   crc[0], crc[1], crc[2],
2025 			   crc[3], crc[4], crc[5]);
2026 		goto out;
2027 	}
2028 	ret = -ENODEV;
2029 out:
2030 	drm_modeset_unlock_all(dev);
2031 	return ret;
2032 }
2033 
2034 static int i915_energy_uJ(struct seq_file *m, void *data)
2035 {
2036 	struct drm_info_node *node = m->private;
2037 	struct drm_device *dev = node->minor->dev;
2038 	struct drm_i915_private *dev_priv = dev->dev_private;
2039 	u64 power;
2040 	u32 units;
2041 
2042 	if (INTEL_INFO(dev)->gen < 6)
2043 		return -ENODEV;
2044 
2045 	intel_runtime_pm_get(dev_priv);
2046 
2047 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2048 	power = (power & 0x1f00) >> 8;
2049 	units = 1000000 / (1 << power); /* convert to uJ */
2050 	power = I915_READ(MCH_SECP_NRG_STTS);
2051 	power *= units;
2052 
2053 	intel_runtime_pm_put(dev_priv);
2054 
2055 	seq_printf(m, "%llu", (long long unsigned)power);
2056 
2057 	return 0;
2058 }
2059 
2060 static int i915_pc8_status(struct seq_file *m, void *unused)
2061 {
2062 	struct drm_info_node *node = m->private;
2063 	struct drm_device *dev = node->minor->dev;
2064 	struct drm_i915_private *dev_priv = dev->dev_private;
2065 
2066 	if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2067 		seq_puts(m, "not supported\n");
2068 		return 0;
2069 	}
2070 
2071 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2072 	seq_printf(m, "IRQs disabled: %s\n",
2073 		   yesno(dev_priv->pm.irqs_disabled));
2074 
2075 	return 0;
2076 }
2077 
2078 static const char *power_domain_str(enum intel_display_power_domain domain)
2079 {
2080 	switch (domain) {
2081 	case POWER_DOMAIN_PIPE_A:
2082 		return "PIPE_A";
2083 	case POWER_DOMAIN_PIPE_B:
2084 		return "PIPE_B";
2085 	case POWER_DOMAIN_PIPE_C:
2086 		return "PIPE_C";
2087 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2088 		return "PIPE_A_PANEL_FITTER";
2089 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2090 		return "PIPE_B_PANEL_FITTER";
2091 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2092 		return "PIPE_C_PANEL_FITTER";
2093 	case POWER_DOMAIN_TRANSCODER_A:
2094 		return "TRANSCODER_A";
2095 	case POWER_DOMAIN_TRANSCODER_B:
2096 		return "TRANSCODER_B";
2097 	case POWER_DOMAIN_TRANSCODER_C:
2098 		return "TRANSCODER_C";
2099 	case POWER_DOMAIN_TRANSCODER_EDP:
2100 		return "TRANSCODER_EDP";
2101 	case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2102 		return "PORT_DDI_A_2_LANES";
2103 	case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2104 		return "PORT_DDI_A_4_LANES";
2105 	case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2106 		return "PORT_DDI_B_2_LANES";
2107 	case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2108 		return "PORT_DDI_B_4_LANES";
2109 	case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2110 		return "PORT_DDI_C_2_LANES";
2111 	case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2112 		return "PORT_DDI_C_4_LANES";
2113 	case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2114 		return "PORT_DDI_D_2_LANES";
2115 	case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2116 		return "PORT_DDI_D_4_LANES";
2117 	case POWER_DOMAIN_PORT_DSI:
2118 		return "PORT_DSI";
2119 	case POWER_DOMAIN_PORT_CRT:
2120 		return "PORT_CRT";
2121 	case POWER_DOMAIN_PORT_OTHER:
2122 		return "PORT_OTHER";
2123 	case POWER_DOMAIN_VGA:
2124 		return "VGA";
2125 	case POWER_DOMAIN_AUDIO:
2126 		return "AUDIO";
2127 	case POWER_DOMAIN_INIT:
2128 		return "INIT";
2129 	default:
2130 		WARN_ON(1);
2131 		return "?";
2132 	}
2133 }
2134 
2135 static int i915_power_domain_info(struct seq_file *m, void *unused)
2136 {
2137 	struct drm_info_node *node = m->private;
2138 	struct drm_device *dev = node->minor->dev;
2139 	struct drm_i915_private *dev_priv = dev->dev_private;
2140 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2141 	int i;
2142 
2143 	mutex_lock(&power_domains->lock);
2144 
2145 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2146 	for (i = 0; i < power_domains->power_well_count; i++) {
2147 		struct i915_power_well *power_well;
2148 		enum intel_display_power_domain power_domain;
2149 
2150 		power_well = &power_domains->power_wells[i];
2151 		seq_printf(m, "%-25s %d\n", power_well->name,
2152 			   power_well->count);
2153 
2154 		for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2155 		     power_domain++) {
2156 			if (!(BIT(power_domain) & power_well->domains))
2157 				continue;
2158 
2159 			seq_printf(m, "  %-23s %d\n",
2160 				 power_domain_str(power_domain),
2161 				 power_domains->domain_use_count[power_domain]);
2162 		}
2163 	}
2164 
2165 	mutex_unlock(&power_domains->lock);
2166 
2167 	return 0;
2168 }
2169 
2170 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2171 				 struct drm_display_mode *mode)
2172 {
2173 	int i;
2174 
2175 	for (i = 0; i < tabs; i++)
2176 		seq_putc(m, '\t');
2177 
2178 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2179 		   mode->base.id, mode->name,
2180 		   mode->vrefresh, mode->clock,
2181 		   mode->hdisplay, mode->hsync_start,
2182 		   mode->hsync_end, mode->htotal,
2183 		   mode->vdisplay, mode->vsync_start,
2184 		   mode->vsync_end, mode->vtotal,
2185 		   mode->type, mode->flags);
2186 }
2187 
2188 static void intel_encoder_info(struct seq_file *m,
2189 			       struct intel_crtc *intel_crtc,
2190 			       struct intel_encoder *intel_encoder)
2191 {
2192 	struct drm_info_node *node = m->private;
2193 	struct drm_device *dev = node->minor->dev;
2194 	struct drm_crtc *crtc = &intel_crtc->base;
2195 	struct intel_connector *intel_connector;
2196 	struct drm_encoder *encoder;
2197 
2198 	encoder = &intel_encoder->base;
2199 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2200 		   encoder->base.id, encoder->name);
2201 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2202 		struct drm_connector *connector = &intel_connector->base;
2203 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2204 			   connector->base.id,
2205 			   connector->name,
2206 			   drm_get_connector_status_name(connector->status));
2207 		if (connector->status == connector_status_connected) {
2208 			struct drm_display_mode *mode = &crtc->mode;
2209 			seq_printf(m, ", mode:\n");
2210 			intel_seq_print_mode(m, 2, mode);
2211 		} else {
2212 			seq_putc(m, '\n');
2213 		}
2214 	}
2215 }
2216 
2217 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2218 {
2219 	struct drm_info_node *node = m->private;
2220 	struct drm_device *dev = node->minor->dev;
2221 	struct drm_crtc *crtc = &intel_crtc->base;
2222 	struct intel_encoder *intel_encoder;
2223 
2224 	seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2225 		   crtc->primary->fb->base.id, crtc->x, crtc->y,
2226 		   crtc->primary->fb->width, crtc->primary->fb->height);
2227 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2228 		intel_encoder_info(m, intel_crtc, intel_encoder);
2229 }
2230 
2231 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2232 {
2233 	struct drm_display_mode *mode = panel->fixed_mode;
2234 
2235 	seq_printf(m, "\tfixed mode:\n");
2236 	intel_seq_print_mode(m, 2, mode);
2237 }
2238 
2239 static void intel_dp_info(struct seq_file *m,
2240 			  struct intel_connector *intel_connector)
2241 {
2242 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2243 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2244 
2245 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2246 	seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2247 		   "no");
2248 	if (intel_encoder->type == INTEL_OUTPUT_EDP)
2249 		intel_panel_info(m, &intel_connector->panel);
2250 }
2251 
2252 static void intel_hdmi_info(struct seq_file *m,
2253 			    struct intel_connector *intel_connector)
2254 {
2255 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2256 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2257 
2258 	seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2259 		   "no");
2260 }
2261 
2262 static void intel_lvds_info(struct seq_file *m,
2263 			    struct intel_connector *intel_connector)
2264 {
2265 	intel_panel_info(m, &intel_connector->panel);
2266 }
2267 
2268 static void intel_connector_info(struct seq_file *m,
2269 				 struct drm_connector *connector)
2270 {
2271 	struct intel_connector *intel_connector = to_intel_connector(connector);
2272 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2273 	struct drm_display_mode *mode;
2274 
2275 	seq_printf(m, "connector %d: type %s, status: %s\n",
2276 		   connector->base.id, connector->name,
2277 		   drm_get_connector_status_name(connector->status));
2278 	if (connector->status == connector_status_connected) {
2279 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
2280 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2281 			   connector->display_info.width_mm,
2282 			   connector->display_info.height_mm);
2283 		seq_printf(m, "\tsubpixel order: %s\n",
2284 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2285 		seq_printf(m, "\tCEA rev: %d\n",
2286 			   connector->display_info.cea_rev);
2287 	}
2288 	if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2289 	    intel_encoder->type == INTEL_OUTPUT_EDP)
2290 		intel_dp_info(m, intel_connector);
2291 	else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2292 		intel_hdmi_info(m, intel_connector);
2293 	else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2294 		intel_lvds_info(m, intel_connector);
2295 
2296 	seq_printf(m, "\tmodes:\n");
2297 	list_for_each_entry(mode, &connector->modes, head)
2298 		intel_seq_print_mode(m, 2, mode);
2299 }
2300 
2301 static bool cursor_active(struct drm_device *dev, int pipe)
2302 {
2303 	struct drm_i915_private *dev_priv = dev->dev_private;
2304 	u32 state;
2305 
2306 	if (IS_845G(dev) || IS_I865G(dev))
2307 		state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2308 	else
2309 		state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2310 
2311 	return state;
2312 }
2313 
2314 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2315 {
2316 	struct drm_i915_private *dev_priv = dev->dev_private;
2317 	u32 pos;
2318 
2319 	pos = I915_READ(CURPOS(pipe));
2320 
2321 	*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2322 	if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2323 		*x = -*x;
2324 
2325 	*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2326 	if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2327 		*y = -*y;
2328 
2329 	return cursor_active(dev, pipe);
2330 }
2331 
2332 static int i915_display_info(struct seq_file *m, void *unused)
2333 {
2334 	struct drm_info_node *node = m->private;
2335 	struct drm_device *dev = node->minor->dev;
2336 	struct drm_i915_private *dev_priv = dev->dev_private;
2337 	struct intel_crtc *crtc;
2338 	struct drm_connector *connector;
2339 
2340 	intel_runtime_pm_get(dev_priv);
2341 	drm_modeset_lock_all(dev);
2342 	seq_printf(m, "CRTC info\n");
2343 	seq_printf(m, "---------\n");
2344 	for_each_intel_crtc(dev, crtc) {
2345 		bool active;
2346 		int x, y;
2347 
2348 		seq_printf(m, "CRTC %d: pipe: %c, active: %s\n",
2349 			   crtc->base.base.id, pipe_name(crtc->pipe),
2350 			   yesno(crtc->active));
2351 		if (crtc->active) {
2352 			intel_crtc_info(m, crtc);
2353 
2354 			active = cursor_position(dev, crtc->pipe, &x, &y);
2355 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), addr 0x%08x, active? %s\n",
2356 				   yesno(crtc->cursor_base),
2357 				   x, y, crtc->cursor_addr,
2358 				   yesno(active));
2359 		}
2360 
2361 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2362 			   yesno(!crtc->cpu_fifo_underrun_disabled),
2363 			   yesno(!crtc->pch_fifo_underrun_disabled));
2364 	}
2365 
2366 	seq_printf(m, "\n");
2367 	seq_printf(m, "Connector info\n");
2368 	seq_printf(m, "--------------\n");
2369 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2370 		intel_connector_info(m, connector);
2371 	}
2372 	drm_modeset_unlock_all(dev);
2373 	intel_runtime_pm_put(dev_priv);
2374 
2375 	return 0;
2376 }
2377 
2378 struct pipe_crc_info {
2379 	const char *name;
2380 	struct drm_device *dev;
2381 	enum pipe pipe;
2382 };
2383 
2384 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2385 {
2386 	struct pipe_crc_info *info = inode->i_private;
2387 	struct drm_i915_private *dev_priv = info->dev->dev_private;
2388 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2389 
2390 	if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2391 		return -ENODEV;
2392 
2393 	spin_lock_irq(&pipe_crc->lock);
2394 
2395 	if (pipe_crc->opened) {
2396 		spin_unlock_irq(&pipe_crc->lock);
2397 		return -EBUSY; /* already open */
2398 	}
2399 
2400 	pipe_crc->opened = true;
2401 	filep->private_data = inode->i_private;
2402 
2403 	spin_unlock_irq(&pipe_crc->lock);
2404 
2405 	return 0;
2406 }
2407 
2408 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2409 {
2410 	struct pipe_crc_info *info = inode->i_private;
2411 	struct drm_i915_private *dev_priv = info->dev->dev_private;
2412 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2413 
2414 	spin_lock_irq(&pipe_crc->lock);
2415 	pipe_crc->opened = false;
2416 	spin_unlock_irq(&pipe_crc->lock);
2417 
2418 	return 0;
2419 }
2420 
2421 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2422 #define PIPE_CRC_LINE_LEN	(6 * 8 + 5 + 1)
2423 /* account for \'0' */
2424 #define PIPE_CRC_BUFFER_LEN	(PIPE_CRC_LINE_LEN + 1)
2425 
2426 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2427 {
2428 	assert_spin_locked(&pipe_crc->lock);
2429 	return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2430 			INTEL_PIPE_CRC_ENTRIES_NR);
2431 }
2432 
2433 static ssize_t
2434 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2435 		   loff_t *pos)
2436 {
2437 	struct pipe_crc_info *info = filep->private_data;
2438 	struct drm_device *dev = info->dev;
2439 	struct drm_i915_private *dev_priv = dev->dev_private;
2440 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2441 	char buf[PIPE_CRC_BUFFER_LEN];
2442 	int head, tail, n_entries, n;
2443 	ssize_t bytes_read;
2444 
2445 	/*
2446 	 * Don't allow user space to provide buffers not big enough to hold
2447 	 * a line of data.
2448 	 */
2449 	if (count < PIPE_CRC_LINE_LEN)
2450 		return -EINVAL;
2451 
2452 	if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2453 		return 0;
2454 
2455 	/* nothing to read */
2456 	spin_lock_irq(&pipe_crc->lock);
2457 	while (pipe_crc_data_count(pipe_crc) == 0) {
2458 		int ret;
2459 
2460 		if (filep->f_flags & O_NONBLOCK) {
2461 			spin_unlock_irq(&pipe_crc->lock);
2462 			return -EAGAIN;
2463 		}
2464 
2465 		ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2466 				pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2467 		if (ret) {
2468 			spin_unlock_irq(&pipe_crc->lock);
2469 			return ret;
2470 		}
2471 	}
2472 
2473 	/* We now have one or more entries to read */
2474 	head = pipe_crc->head;
2475 	tail = pipe_crc->tail;
2476 	n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2477 			count / PIPE_CRC_LINE_LEN);
2478 	spin_unlock_irq(&pipe_crc->lock);
2479 
2480 	bytes_read = 0;
2481 	n = 0;
2482 	do {
2483 		struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2484 		int ret;
2485 
2486 		bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2487 				       "%8u %8x %8x %8x %8x %8x\n",
2488 				       entry->frame, entry->crc[0],
2489 				       entry->crc[1], entry->crc[2],
2490 				       entry->crc[3], entry->crc[4]);
2491 
2492 		ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2493 				   buf, PIPE_CRC_LINE_LEN);
2494 		if (ret == PIPE_CRC_LINE_LEN)
2495 			return -EFAULT;
2496 
2497 		BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2498 		tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2499 		n++;
2500 	} while (--n_entries);
2501 
2502 	spin_lock_irq(&pipe_crc->lock);
2503 	pipe_crc->tail = tail;
2504 	spin_unlock_irq(&pipe_crc->lock);
2505 
2506 	return bytes_read;
2507 }
2508 
2509 static const struct file_operations i915_pipe_crc_fops = {
2510 	.owner = THIS_MODULE,
2511 	.open = i915_pipe_crc_open,
2512 	.read = i915_pipe_crc_read,
2513 	.release = i915_pipe_crc_release,
2514 };
2515 
2516 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2517 	{
2518 		.name = "i915_pipe_A_crc",
2519 		.pipe = PIPE_A,
2520 	},
2521 	{
2522 		.name = "i915_pipe_B_crc",
2523 		.pipe = PIPE_B,
2524 	},
2525 	{
2526 		.name = "i915_pipe_C_crc",
2527 		.pipe = PIPE_C,
2528 	},
2529 };
2530 
2531 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2532 				enum pipe pipe)
2533 {
2534 	struct drm_device *dev = minor->dev;
2535 	struct dentry *ent;
2536 	struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2537 
2538 	info->dev = dev;
2539 	ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2540 				  &i915_pipe_crc_fops);
2541 	if (!ent)
2542 		return -ENOMEM;
2543 
2544 	return drm_add_fake_info_node(minor, ent, info);
2545 }
2546 
2547 static const char * const pipe_crc_sources[] = {
2548 	"none",
2549 	"plane1",
2550 	"plane2",
2551 	"pf",
2552 	"pipe",
2553 	"TV",
2554 	"DP-B",
2555 	"DP-C",
2556 	"DP-D",
2557 	"auto",
2558 };
2559 
2560 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2561 {
2562 	BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2563 	return pipe_crc_sources[source];
2564 }
2565 
2566 static int display_crc_ctl_show(struct seq_file *m, void *data)
2567 {
2568 	struct drm_device *dev = m->private;
2569 	struct drm_i915_private *dev_priv = dev->dev_private;
2570 	int i;
2571 
2572 	for (i = 0; i < I915_MAX_PIPES; i++)
2573 		seq_printf(m, "%c %s\n", pipe_name(i),
2574 			   pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2575 
2576 	return 0;
2577 }
2578 
2579 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2580 {
2581 	struct drm_device *dev = inode->i_private;
2582 
2583 	return single_open(file, display_crc_ctl_show, dev);
2584 }
2585 
2586 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2587 				 uint32_t *val)
2588 {
2589 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2590 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
2591 
2592 	switch (*source) {
2593 	case INTEL_PIPE_CRC_SOURCE_PIPE:
2594 		*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2595 		break;
2596 	case INTEL_PIPE_CRC_SOURCE_NONE:
2597 		*val = 0;
2598 		break;
2599 	default:
2600 		return -EINVAL;
2601 	}
2602 
2603 	return 0;
2604 }
2605 
2606 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2607 				     enum intel_pipe_crc_source *source)
2608 {
2609 	struct intel_encoder *encoder;
2610 	struct intel_crtc *crtc;
2611 	struct intel_digital_port *dig_port;
2612 	int ret = 0;
2613 
2614 	*source = INTEL_PIPE_CRC_SOURCE_PIPE;
2615 
2616 	drm_modeset_lock_all(dev);
2617 	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2618 			    base.head) {
2619 		if (!encoder->base.crtc)
2620 			continue;
2621 
2622 		crtc = to_intel_crtc(encoder->base.crtc);
2623 
2624 		if (crtc->pipe != pipe)
2625 			continue;
2626 
2627 		switch (encoder->type) {
2628 		case INTEL_OUTPUT_TVOUT:
2629 			*source = INTEL_PIPE_CRC_SOURCE_TV;
2630 			break;
2631 		case INTEL_OUTPUT_DISPLAYPORT:
2632 		case INTEL_OUTPUT_EDP:
2633 			dig_port = enc_to_dig_port(&encoder->base);
2634 			switch (dig_port->port) {
2635 			case PORT_B:
2636 				*source = INTEL_PIPE_CRC_SOURCE_DP_B;
2637 				break;
2638 			case PORT_C:
2639 				*source = INTEL_PIPE_CRC_SOURCE_DP_C;
2640 				break;
2641 			case PORT_D:
2642 				*source = INTEL_PIPE_CRC_SOURCE_DP_D;
2643 				break;
2644 			default:
2645 				WARN(1, "nonexisting DP port %c\n",
2646 				     port_name(dig_port->port));
2647 				break;
2648 			}
2649 			break;
2650 		}
2651 	}
2652 	drm_modeset_unlock_all(dev);
2653 
2654 	return ret;
2655 }
2656 
2657 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
2658 				enum pipe pipe,
2659 				enum intel_pipe_crc_source *source,
2660 				uint32_t *val)
2661 {
2662 	struct drm_i915_private *dev_priv = dev->dev_private;
2663 	bool need_stable_symbols = false;
2664 
2665 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2666 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2667 		if (ret)
2668 			return ret;
2669 	}
2670 
2671 	switch (*source) {
2672 	case INTEL_PIPE_CRC_SOURCE_PIPE:
2673 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
2674 		break;
2675 	case INTEL_PIPE_CRC_SOURCE_DP_B:
2676 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
2677 		need_stable_symbols = true;
2678 		break;
2679 	case INTEL_PIPE_CRC_SOURCE_DP_C:
2680 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
2681 		need_stable_symbols = true;
2682 		break;
2683 	case INTEL_PIPE_CRC_SOURCE_NONE:
2684 		*val = 0;
2685 		break;
2686 	default:
2687 		return -EINVAL;
2688 	}
2689 
2690 	/*
2691 	 * When the pipe CRC tap point is after the transcoders we need
2692 	 * to tweak symbol-level features to produce a deterministic series of
2693 	 * symbols for a given frame. We need to reset those features only once
2694 	 * a frame (instead of every nth symbol):
2695 	 *   - DC-balance: used to ensure a better clock recovery from the data
2696 	 *     link (SDVO)
2697 	 *   - DisplayPort scrambling: used for EMI reduction
2698 	 */
2699 	if (need_stable_symbols) {
2700 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2701 
2702 		tmp |= DC_BALANCE_RESET_VLV;
2703 		if (pipe == PIPE_A)
2704 			tmp |= PIPE_A_SCRAMBLE_RESET;
2705 		else
2706 			tmp |= PIPE_B_SCRAMBLE_RESET;
2707 
2708 		I915_WRITE(PORT_DFT2_G4X, tmp);
2709 	}
2710 
2711 	return 0;
2712 }
2713 
2714 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
2715 				 enum pipe pipe,
2716 				 enum intel_pipe_crc_source *source,
2717 				 uint32_t *val)
2718 {
2719 	struct drm_i915_private *dev_priv = dev->dev_private;
2720 	bool need_stable_symbols = false;
2721 
2722 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2723 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2724 		if (ret)
2725 			return ret;
2726 	}
2727 
2728 	switch (*source) {
2729 	case INTEL_PIPE_CRC_SOURCE_PIPE:
2730 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
2731 		break;
2732 	case INTEL_PIPE_CRC_SOURCE_TV:
2733 		if (!SUPPORTS_TV(dev))
2734 			return -EINVAL;
2735 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
2736 		break;
2737 	case INTEL_PIPE_CRC_SOURCE_DP_B:
2738 		if (!IS_G4X(dev))
2739 			return -EINVAL;
2740 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
2741 		need_stable_symbols = true;
2742 		break;
2743 	case INTEL_PIPE_CRC_SOURCE_DP_C:
2744 		if (!IS_G4X(dev))
2745 			return -EINVAL;
2746 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
2747 		need_stable_symbols = true;
2748 		break;
2749 	case INTEL_PIPE_CRC_SOURCE_DP_D:
2750 		if (!IS_G4X(dev))
2751 			return -EINVAL;
2752 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
2753 		need_stable_symbols = true;
2754 		break;
2755 	case INTEL_PIPE_CRC_SOURCE_NONE:
2756 		*val = 0;
2757 		break;
2758 	default:
2759 		return -EINVAL;
2760 	}
2761 
2762 	/*
2763 	 * When the pipe CRC tap point is after the transcoders we need
2764 	 * to tweak symbol-level features to produce a deterministic series of
2765 	 * symbols for a given frame. We need to reset those features only once
2766 	 * a frame (instead of every nth symbol):
2767 	 *   - DC-balance: used to ensure a better clock recovery from the data
2768 	 *     link (SDVO)
2769 	 *   - DisplayPort scrambling: used for EMI reduction
2770 	 */
2771 	if (need_stable_symbols) {
2772 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2773 
2774 		WARN_ON(!IS_G4X(dev));
2775 
2776 		I915_WRITE(PORT_DFT_I9XX,
2777 			   I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
2778 
2779 		if (pipe == PIPE_A)
2780 			tmp |= PIPE_A_SCRAMBLE_RESET;
2781 		else
2782 			tmp |= PIPE_B_SCRAMBLE_RESET;
2783 
2784 		I915_WRITE(PORT_DFT2_G4X, tmp);
2785 	}
2786 
2787 	return 0;
2788 }
2789 
2790 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
2791 					 enum pipe pipe)
2792 {
2793 	struct drm_i915_private *dev_priv = dev->dev_private;
2794 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2795 
2796 	if (pipe == PIPE_A)
2797 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
2798 	else
2799 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
2800 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
2801 		tmp &= ~DC_BALANCE_RESET_VLV;
2802 	I915_WRITE(PORT_DFT2_G4X, tmp);
2803 
2804 }
2805 
2806 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
2807 					 enum pipe pipe)
2808 {
2809 	struct drm_i915_private *dev_priv = dev->dev_private;
2810 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2811 
2812 	if (pipe == PIPE_A)
2813 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
2814 	else
2815 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
2816 	I915_WRITE(PORT_DFT2_G4X, tmp);
2817 
2818 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
2819 		I915_WRITE(PORT_DFT_I9XX,
2820 			   I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
2821 	}
2822 }
2823 
2824 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2825 				uint32_t *val)
2826 {
2827 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2828 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
2829 
2830 	switch (*source) {
2831 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
2832 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
2833 		break;
2834 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
2835 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
2836 		break;
2837 	case INTEL_PIPE_CRC_SOURCE_PIPE:
2838 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
2839 		break;
2840 	case INTEL_PIPE_CRC_SOURCE_NONE:
2841 		*val = 0;
2842 		break;
2843 	default:
2844 		return -EINVAL;
2845 	}
2846 
2847 	return 0;
2848 }
2849 
2850 static int ivb_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2851 				uint32_t *val)
2852 {
2853 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2854 		*source = INTEL_PIPE_CRC_SOURCE_PF;
2855 
2856 	switch (*source) {
2857 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
2858 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
2859 		break;
2860 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
2861 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
2862 		break;
2863 	case INTEL_PIPE_CRC_SOURCE_PF:
2864 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
2865 		break;
2866 	case INTEL_PIPE_CRC_SOURCE_NONE:
2867 		*val = 0;
2868 		break;
2869 	default:
2870 		return -EINVAL;
2871 	}
2872 
2873 	return 0;
2874 }
2875 
2876 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
2877 			       enum intel_pipe_crc_source source)
2878 {
2879 	struct drm_i915_private *dev_priv = dev->dev_private;
2880 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
2881 	u32 val = 0; /* shut up gcc */
2882 	int ret;
2883 
2884 	if (pipe_crc->source == source)
2885 		return 0;
2886 
2887 	/* forbid changing the source without going back to 'none' */
2888 	if (pipe_crc->source && source)
2889 		return -EINVAL;
2890 
2891 	if (IS_GEN2(dev))
2892 		ret = i8xx_pipe_crc_ctl_reg(&source, &val);
2893 	else if (INTEL_INFO(dev)->gen < 5)
2894 		ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
2895 	else if (IS_VALLEYVIEW(dev))
2896 		ret = vlv_pipe_crc_ctl_reg(dev,pipe, &source, &val);
2897 	else if (IS_GEN5(dev) || IS_GEN6(dev))
2898 		ret = ilk_pipe_crc_ctl_reg(&source, &val);
2899 	else
2900 		ret = ivb_pipe_crc_ctl_reg(&source, &val);
2901 
2902 	if (ret != 0)
2903 		return ret;
2904 
2905 	/* none -> real source transition */
2906 	if (source) {
2907 		DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
2908 				 pipe_name(pipe), pipe_crc_source_name(source));
2909 
2910 		pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
2911 					    INTEL_PIPE_CRC_ENTRIES_NR,
2912 					    GFP_KERNEL);
2913 		if (!pipe_crc->entries)
2914 			return -ENOMEM;
2915 
2916 		spin_lock_irq(&pipe_crc->lock);
2917 		pipe_crc->head = 0;
2918 		pipe_crc->tail = 0;
2919 		spin_unlock_irq(&pipe_crc->lock);
2920 	}
2921 
2922 	pipe_crc->source = source;
2923 
2924 	I915_WRITE(PIPE_CRC_CTL(pipe), val);
2925 	POSTING_READ(PIPE_CRC_CTL(pipe));
2926 
2927 	/* real source -> none transition */
2928 	if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
2929 		struct intel_pipe_crc_entry *entries;
2930 
2931 		DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
2932 				 pipe_name(pipe));
2933 
2934 		intel_wait_for_vblank(dev, pipe);
2935 
2936 		spin_lock_irq(&pipe_crc->lock);
2937 		entries = pipe_crc->entries;
2938 		pipe_crc->entries = NULL;
2939 		spin_unlock_irq(&pipe_crc->lock);
2940 
2941 		kfree(entries);
2942 
2943 		if (IS_G4X(dev))
2944 			g4x_undo_pipe_scramble_reset(dev, pipe);
2945 		else if (IS_VALLEYVIEW(dev))
2946 			vlv_undo_pipe_scramble_reset(dev, pipe);
2947 	}
2948 
2949 	return 0;
2950 }
2951 
2952 /*
2953  * Parse pipe CRC command strings:
2954  *   command: wsp* object wsp+ name wsp+ source wsp*
2955  *   object: 'pipe'
2956  *   name: (A | B | C)
2957  *   source: (none | plane1 | plane2 | pf)
2958  *   wsp: (#0x20 | #0x9 | #0xA)+
2959  *
2960  * eg.:
2961  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
2962  *  "pipe A none"    ->  Stop CRC
2963  */
2964 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
2965 {
2966 	int n_words = 0;
2967 
2968 	while (*buf) {
2969 		char *end;
2970 
2971 		/* skip leading white space */
2972 		buf = skip_spaces(buf);
2973 		if (!*buf)
2974 			break;	/* end of buffer */
2975 
2976 		/* find end of word */
2977 		for (end = buf; *end && !isspace(*end); end++)
2978 			;
2979 
2980 		if (n_words == max_words) {
2981 			DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
2982 					 max_words);
2983 			return -EINVAL;	/* ran out of words[] before bytes */
2984 		}
2985 
2986 		if (*end)
2987 			*end++ = '\0';
2988 		words[n_words++] = buf;
2989 		buf = end;
2990 	}
2991 
2992 	return n_words;
2993 }
2994 
2995 enum intel_pipe_crc_object {
2996 	PIPE_CRC_OBJECT_PIPE,
2997 };
2998 
2999 static const char * const pipe_crc_objects[] = {
3000 	"pipe",
3001 };
3002 
3003 static int
3004 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3005 {
3006 	int i;
3007 
3008 	for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3009 		if (!strcmp(buf, pipe_crc_objects[i])) {
3010 			*o = i;
3011 			return 0;
3012 		    }
3013 
3014 	return -EINVAL;
3015 }
3016 
3017 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3018 {
3019 	const char name = buf[0];
3020 
3021 	if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3022 		return -EINVAL;
3023 
3024 	*pipe = name - 'A';
3025 
3026 	return 0;
3027 }
3028 
3029 static int
3030 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3031 {
3032 	int i;
3033 
3034 	for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3035 		if (!strcmp(buf, pipe_crc_sources[i])) {
3036 			*s = i;
3037 			return 0;
3038 		    }
3039 
3040 	return -EINVAL;
3041 }
3042 
3043 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3044 {
3045 #define N_WORDS 3
3046 	int n_words;
3047 	char *words[N_WORDS];
3048 	enum pipe pipe;
3049 	enum intel_pipe_crc_object object;
3050 	enum intel_pipe_crc_source source;
3051 
3052 	n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3053 	if (n_words != N_WORDS) {
3054 		DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3055 				 N_WORDS);
3056 		return -EINVAL;
3057 	}
3058 
3059 	if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3060 		DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3061 		return -EINVAL;
3062 	}
3063 
3064 	if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3065 		DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3066 		return -EINVAL;
3067 	}
3068 
3069 	if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3070 		DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3071 		return -EINVAL;
3072 	}
3073 
3074 	return pipe_crc_set_source(dev, pipe, source);
3075 }
3076 
3077 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3078 				     size_t len, loff_t *offp)
3079 {
3080 	struct seq_file *m = file->private_data;
3081 	struct drm_device *dev = m->private;
3082 	char *tmpbuf;
3083 	int ret;
3084 
3085 	if (len == 0)
3086 		return 0;
3087 
3088 	if (len > PAGE_SIZE - 1) {
3089 		DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3090 				 PAGE_SIZE);
3091 		return -E2BIG;
3092 	}
3093 
3094 	tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3095 	if (!tmpbuf)
3096 		return -ENOMEM;
3097 
3098 	if (copy_from_user(tmpbuf, ubuf, len)) {
3099 		ret = -EFAULT;
3100 		goto out;
3101 	}
3102 	tmpbuf[len] = '\0';
3103 
3104 	ret = display_crc_ctl_parse(dev, tmpbuf, len);
3105 
3106 out:
3107 	kfree(tmpbuf);
3108 	if (ret < 0)
3109 		return ret;
3110 
3111 	*offp += len;
3112 	return len;
3113 }
3114 
3115 static const struct file_operations i915_display_crc_ctl_fops = {
3116 	.owner = THIS_MODULE,
3117 	.open = display_crc_ctl_open,
3118 	.read = seq_read,
3119 	.llseek = seq_lseek,
3120 	.release = single_release,
3121 	.write = display_crc_ctl_write
3122 };
3123 
3124 static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
3125 {
3126 	struct drm_device *dev = m->private;
3127 	int num_levels = ilk_wm_max_level(dev) + 1;
3128 	int level;
3129 
3130 	drm_modeset_lock_all(dev);
3131 
3132 	for (level = 0; level < num_levels; level++) {
3133 		unsigned int latency = wm[level];
3134 
3135 		/* WM1+ latency values in 0.5us units */
3136 		if (level > 0)
3137 			latency *= 5;
3138 
3139 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
3140 			   level, wm[level],
3141 			   latency / 10, latency % 10);
3142 	}
3143 
3144 	drm_modeset_unlock_all(dev);
3145 }
3146 
3147 static int pri_wm_latency_show(struct seq_file *m, void *data)
3148 {
3149 	struct drm_device *dev = m->private;
3150 
3151 	wm_latency_show(m, to_i915(dev)->wm.pri_latency);
3152 
3153 	return 0;
3154 }
3155 
3156 static int spr_wm_latency_show(struct seq_file *m, void *data)
3157 {
3158 	struct drm_device *dev = m->private;
3159 
3160 	wm_latency_show(m, to_i915(dev)->wm.spr_latency);
3161 
3162 	return 0;
3163 }
3164 
3165 static int cur_wm_latency_show(struct seq_file *m, void *data)
3166 {
3167 	struct drm_device *dev = m->private;
3168 
3169 	wm_latency_show(m, to_i915(dev)->wm.cur_latency);
3170 
3171 	return 0;
3172 }
3173 
3174 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3175 {
3176 	struct drm_device *dev = inode->i_private;
3177 
3178 	if (!HAS_PCH_SPLIT(dev))
3179 		return -ENODEV;
3180 
3181 	return single_open(file, pri_wm_latency_show, dev);
3182 }
3183 
3184 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3185 {
3186 	struct drm_device *dev = inode->i_private;
3187 
3188 	if (!HAS_PCH_SPLIT(dev))
3189 		return -ENODEV;
3190 
3191 	return single_open(file, spr_wm_latency_show, dev);
3192 }
3193 
3194 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3195 {
3196 	struct drm_device *dev = inode->i_private;
3197 
3198 	if (!HAS_PCH_SPLIT(dev))
3199 		return -ENODEV;
3200 
3201 	return single_open(file, cur_wm_latency_show, dev);
3202 }
3203 
3204 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3205 				size_t len, loff_t *offp, uint16_t wm[5])
3206 {
3207 	struct seq_file *m = file->private_data;
3208 	struct drm_device *dev = m->private;
3209 	uint16_t new[5] = { 0 };
3210 	int num_levels = ilk_wm_max_level(dev) + 1;
3211 	int level;
3212 	int ret;
3213 	char tmp[32];
3214 
3215 	if (len >= sizeof(tmp))
3216 		return -EINVAL;
3217 
3218 	if (copy_from_user(tmp, ubuf, len))
3219 		return -EFAULT;
3220 
3221 	tmp[len] = '\0';
3222 
3223 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
3224 	if (ret != num_levels)
3225 		return -EINVAL;
3226 
3227 	drm_modeset_lock_all(dev);
3228 
3229 	for (level = 0; level < num_levels; level++)
3230 		wm[level] = new[level];
3231 
3232 	drm_modeset_unlock_all(dev);
3233 
3234 	return len;
3235 }
3236 
3237 
3238 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3239 				    size_t len, loff_t *offp)
3240 {
3241 	struct seq_file *m = file->private_data;
3242 	struct drm_device *dev = m->private;
3243 
3244 	return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
3245 }
3246 
3247 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3248 				    size_t len, loff_t *offp)
3249 {
3250 	struct seq_file *m = file->private_data;
3251 	struct drm_device *dev = m->private;
3252 
3253 	return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
3254 }
3255 
3256 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3257 				    size_t len, loff_t *offp)
3258 {
3259 	struct seq_file *m = file->private_data;
3260 	struct drm_device *dev = m->private;
3261 
3262 	return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
3263 }
3264 
3265 static const struct file_operations i915_pri_wm_latency_fops = {
3266 	.owner = THIS_MODULE,
3267 	.open = pri_wm_latency_open,
3268 	.read = seq_read,
3269 	.llseek = seq_lseek,
3270 	.release = single_release,
3271 	.write = pri_wm_latency_write
3272 };
3273 
3274 static const struct file_operations i915_spr_wm_latency_fops = {
3275 	.owner = THIS_MODULE,
3276 	.open = spr_wm_latency_open,
3277 	.read = seq_read,
3278 	.llseek = seq_lseek,
3279 	.release = single_release,
3280 	.write = spr_wm_latency_write
3281 };
3282 
3283 static const struct file_operations i915_cur_wm_latency_fops = {
3284 	.owner = THIS_MODULE,
3285 	.open = cur_wm_latency_open,
3286 	.read = seq_read,
3287 	.llseek = seq_lseek,
3288 	.release = single_release,
3289 	.write = cur_wm_latency_write
3290 };
3291 
3292 static int
3293 i915_wedged_get(void *data, u64 *val)
3294 {
3295 	struct drm_device *dev = data;
3296 	struct drm_i915_private *dev_priv = dev->dev_private;
3297 
3298 	*val = atomic_read(&dev_priv->gpu_error.reset_counter);
3299 
3300 	return 0;
3301 }
3302 
3303 static int
3304 i915_wedged_set(void *data, u64 val)
3305 {
3306 	struct drm_device *dev = data;
3307 	struct drm_i915_private *dev_priv = dev->dev_private;
3308 
3309 	intel_runtime_pm_get(dev_priv);
3310 
3311 	i915_handle_error(dev, val,
3312 			  "Manually setting wedged to %llu", val);
3313 
3314 	intel_runtime_pm_put(dev_priv);
3315 
3316 	return 0;
3317 }
3318 
3319 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3320 			i915_wedged_get, i915_wedged_set,
3321 			"%llu\n");
3322 
3323 static int
3324 i915_ring_stop_get(void *data, u64 *val)
3325 {
3326 	struct drm_device *dev = data;
3327 	struct drm_i915_private *dev_priv = dev->dev_private;
3328 
3329 	*val = dev_priv->gpu_error.stop_rings;
3330 
3331 	return 0;
3332 }
3333 
3334 static int
3335 i915_ring_stop_set(void *data, u64 val)
3336 {
3337 	struct drm_device *dev = data;
3338 	struct drm_i915_private *dev_priv = dev->dev_private;
3339 	int ret;
3340 
3341 	DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3342 
3343 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3344 	if (ret)
3345 		return ret;
3346 
3347 	dev_priv->gpu_error.stop_rings = val;
3348 	mutex_unlock(&dev->struct_mutex);
3349 
3350 	return 0;
3351 }
3352 
3353 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3354 			i915_ring_stop_get, i915_ring_stop_set,
3355 			"0x%08llx\n");
3356 
3357 static int
3358 i915_ring_missed_irq_get(void *data, u64 *val)
3359 {
3360 	struct drm_device *dev = data;
3361 	struct drm_i915_private *dev_priv = dev->dev_private;
3362 
3363 	*val = dev_priv->gpu_error.missed_irq_rings;
3364 	return 0;
3365 }
3366 
3367 static int
3368 i915_ring_missed_irq_set(void *data, u64 val)
3369 {
3370 	struct drm_device *dev = data;
3371 	struct drm_i915_private *dev_priv = dev->dev_private;
3372 	int ret;
3373 
3374 	/* Lock against concurrent debugfs callers */
3375 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3376 	if (ret)
3377 		return ret;
3378 	dev_priv->gpu_error.missed_irq_rings = val;
3379 	mutex_unlock(&dev->struct_mutex);
3380 
3381 	return 0;
3382 }
3383 
3384 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3385 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3386 			"0x%08llx\n");
3387 
3388 static int
3389 i915_ring_test_irq_get(void *data, u64 *val)
3390 {
3391 	struct drm_device *dev = data;
3392 	struct drm_i915_private *dev_priv = dev->dev_private;
3393 
3394 	*val = dev_priv->gpu_error.test_irq_rings;
3395 
3396 	return 0;
3397 }
3398 
3399 static int
3400 i915_ring_test_irq_set(void *data, u64 val)
3401 {
3402 	struct drm_device *dev = data;
3403 	struct drm_i915_private *dev_priv = dev->dev_private;
3404 	int ret;
3405 
3406 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
3407 
3408 	/* Lock against concurrent debugfs callers */
3409 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3410 	if (ret)
3411 		return ret;
3412 
3413 	dev_priv->gpu_error.test_irq_rings = val;
3414 	mutex_unlock(&dev->struct_mutex);
3415 
3416 	return 0;
3417 }
3418 
3419 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
3420 			i915_ring_test_irq_get, i915_ring_test_irq_set,
3421 			"0x%08llx\n");
3422 
3423 #define DROP_UNBOUND 0x1
3424 #define DROP_BOUND 0x2
3425 #define DROP_RETIRE 0x4
3426 #define DROP_ACTIVE 0x8
3427 #define DROP_ALL (DROP_UNBOUND | \
3428 		  DROP_BOUND | \
3429 		  DROP_RETIRE | \
3430 		  DROP_ACTIVE)
3431 static int
3432 i915_drop_caches_get(void *data, u64 *val)
3433 {
3434 	*val = DROP_ALL;
3435 
3436 	return 0;
3437 }
3438 
3439 static int
3440 i915_drop_caches_set(void *data, u64 val)
3441 {
3442 	struct drm_device *dev = data;
3443 	struct drm_i915_private *dev_priv = dev->dev_private;
3444 	struct drm_i915_gem_object *obj, *next;
3445 	struct i915_address_space *vm;
3446 	struct i915_vma *vma, *x;
3447 	int ret;
3448 
3449 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
3450 
3451 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
3452 	 * on ioctls on -EAGAIN. */
3453 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3454 	if (ret)
3455 		return ret;
3456 
3457 	if (val & DROP_ACTIVE) {
3458 		ret = i915_gpu_idle(dev);
3459 		if (ret)
3460 			goto unlock;
3461 	}
3462 
3463 	if (val & (DROP_RETIRE | DROP_ACTIVE))
3464 		i915_gem_retire_requests(dev);
3465 
3466 	if (val & DROP_BOUND) {
3467 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3468 			list_for_each_entry_safe(vma, x, &vm->inactive_list,
3469 						 mm_list) {
3470 				if (vma->pin_count)
3471 					continue;
3472 
3473 				ret = i915_vma_unbind(vma);
3474 				if (ret)
3475 					goto unlock;
3476 			}
3477 		}
3478 	}
3479 
3480 	if (val & DROP_UNBOUND) {
3481 		list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
3482 					 global_list)
3483 			if (obj->pages_pin_count == 0) {
3484 				ret = i915_gem_object_put_pages(obj);
3485 				if (ret)
3486 					goto unlock;
3487 			}
3488 	}
3489 
3490 unlock:
3491 	mutex_unlock(&dev->struct_mutex);
3492 
3493 	return ret;
3494 }
3495 
3496 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
3497 			i915_drop_caches_get, i915_drop_caches_set,
3498 			"0x%08llx\n");
3499 
3500 static int
3501 i915_max_freq_get(void *data, u64 *val)
3502 {
3503 	struct drm_device *dev = data;
3504 	struct drm_i915_private *dev_priv = dev->dev_private;
3505 	int ret;
3506 
3507 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3508 		return -ENODEV;
3509 
3510 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3511 
3512 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3513 	if (ret)
3514 		return ret;
3515 
3516 	if (IS_VALLEYVIEW(dev))
3517 		*val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
3518 	else
3519 		*val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3520 	mutex_unlock(&dev_priv->rps.hw_lock);
3521 
3522 	return 0;
3523 }
3524 
3525 static int
3526 i915_max_freq_set(void *data, u64 val)
3527 {
3528 	struct drm_device *dev = data;
3529 	struct drm_i915_private *dev_priv = dev->dev_private;
3530 	u32 rp_state_cap, hw_max, hw_min;
3531 	int ret;
3532 
3533 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3534 		return -ENODEV;
3535 
3536 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3537 
3538 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
3539 
3540 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3541 	if (ret)
3542 		return ret;
3543 
3544 	/*
3545 	 * Turbo will still be enabled, but won't go above the set value.
3546 	 */
3547 	if (IS_VALLEYVIEW(dev)) {
3548 		val = vlv_freq_opcode(dev_priv, val);
3549 
3550 		hw_max = valleyview_rps_max_freq(dev_priv);
3551 		hw_min = valleyview_rps_min_freq(dev_priv);
3552 	} else {
3553 		do_div(val, GT_FREQUENCY_MULTIPLIER);
3554 
3555 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3556 		hw_max = dev_priv->rps.max_freq;
3557 		hw_min = (rp_state_cap >> 16) & 0xff;
3558 	}
3559 
3560 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
3561 		mutex_unlock(&dev_priv->rps.hw_lock);
3562 		return -EINVAL;
3563 	}
3564 
3565 	dev_priv->rps.max_freq_softlimit = val;
3566 
3567 	if (IS_VALLEYVIEW(dev))
3568 		valleyview_set_rps(dev, val);
3569 	else
3570 		gen6_set_rps(dev, val);
3571 
3572 	mutex_unlock(&dev_priv->rps.hw_lock);
3573 
3574 	return 0;
3575 }
3576 
3577 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
3578 			i915_max_freq_get, i915_max_freq_set,
3579 			"%llu\n");
3580 
3581 static int
3582 i915_min_freq_get(void *data, u64 *val)
3583 {
3584 	struct drm_device *dev = data;
3585 	struct drm_i915_private *dev_priv = dev->dev_private;
3586 	int ret;
3587 
3588 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3589 		return -ENODEV;
3590 
3591 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3592 
3593 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3594 	if (ret)
3595 		return ret;
3596 
3597 	if (IS_VALLEYVIEW(dev))
3598 		*val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
3599 	else
3600 		*val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3601 	mutex_unlock(&dev_priv->rps.hw_lock);
3602 
3603 	return 0;
3604 }
3605 
3606 static int
3607 i915_min_freq_set(void *data, u64 val)
3608 {
3609 	struct drm_device *dev = data;
3610 	struct drm_i915_private *dev_priv = dev->dev_private;
3611 	u32 rp_state_cap, hw_max, hw_min;
3612 	int ret;
3613 
3614 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3615 		return -ENODEV;
3616 
3617 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3618 
3619 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
3620 
3621 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3622 	if (ret)
3623 		return ret;
3624 
3625 	/*
3626 	 * Turbo will still be enabled, but won't go below the set value.
3627 	 */
3628 	if (IS_VALLEYVIEW(dev)) {
3629 		val = vlv_freq_opcode(dev_priv, val);
3630 
3631 		hw_max = valleyview_rps_max_freq(dev_priv);
3632 		hw_min = valleyview_rps_min_freq(dev_priv);
3633 	} else {
3634 		do_div(val, GT_FREQUENCY_MULTIPLIER);
3635 
3636 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3637 		hw_max = dev_priv->rps.max_freq;
3638 		hw_min = (rp_state_cap >> 16) & 0xff;
3639 	}
3640 
3641 	if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
3642 		mutex_unlock(&dev_priv->rps.hw_lock);
3643 		return -EINVAL;
3644 	}
3645 
3646 	dev_priv->rps.min_freq_softlimit = val;
3647 
3648 	if (IS_VALLEYVIEW(dev))
3649 		valleyview_set_rps(dev, val);
3650 	else
3651 		gen6_set_rps(dev, val);
3652 
3653 	mutex_unlock(&dev_priv->rps.hw_lock);
3654 
3655 	return 0;
3656 }
3657 
3658 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
3659 			i915_min_freq_get, i915_min_freq_set,
3660 			"%llu\n");
3661 
3662 static int
3663 i915_cache_sharing_get(void *data, u64 *val)
3664 {
3665 	struct drm_device *dev = data;
3666 	struct drm_i915_private *dev_priv = dev->dev_private;
3667 	u32 snpcr;
3668 	int ret;
3669 
3670 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3671 		return -ENODEV;
3672 
3673 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3674 	if (ret)
3675 		return ret;
3676 	intel_runtime_pm_get(dev_priv);
3677 
3678 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3679 
3680 	intel_runtime_pm_put(dev_priv);
3681 	mutex_unlock(&dev_priv->dev->struct_mutex);
3682 
3683 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
3684 
3685 	return 0;
3686 }
3687 
3688 static int
3689 i915_cache_sharing_set(void *data, u64 val)
3690 {
3691 	struct drm_device *dev = data;
3692 	struct drm_i915_private *dev_priv = dev->dev_private;
3693 	u32 snpcr;
3694 
3695 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3696 		return -ENODEV;
3697 
3698 	if (val > 3)
3699 		return -EINVAL;
3700 
3701 	intel_runtime_pm_get(dev_priv);
3702 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
3703 
3704 	/* Update the cache sharing policy here as well */
3705 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3706 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
3707 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
3708 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3709 
3710 	intel_runtime_pm_put(dev_priv);
3711 	return 0;
3712 }
3713 
3714 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
3715 			i915_cache_sharing_get, i915_cache_sharing_set,
3716 			"%llu\n");
3717 
3718 static int i915_forcewake_open(struct inode *inode, struct file *file)
3719 {
3720 	struct drm_device *dev = inode->i_private;
3721 	struct drm_i915_private *dev_priv = dev->dev_private;
3722 
3723 	if (INTEL_INFO(dev)->gen < 6)
3724 		return 0;
3725 
3726 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3727 
3728 	return 0;
3729 }
3730 
3731 static int i915_forcewake_release(struct inode *inode, struct file *file)
3732 {
3733 	struct drm_device *dev = inode->i_private;
3734 	struct drm_i915_private *dev_priv = dev->dev_private;
3735 
3736 	if (INTEL_INFO(dev)->gen < 6)
3737 		return 0;
3738 
3739 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3740 
3741 	return 0;
3742 }
3743 
3744 static const struct file_operations i915_forcewake_fops = {
3745 	.owner = THIS_MODULE,
3746 	.open = i915_forcewake_open,
3747 	.release = i915_forcewake_release,
3748 };
3749 
3750 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
3751 {
3752 	struct drm_device *dev = minor->dev;
3753 	struct dentry *ent;
3754 
3755 	ent = debugfs_create_file("i915_forcewake_user",
3756 				  S_IRUSR,
3757 				  root, dev,
3758 				  &i915_forcewake_fops);
3759 	if (!ent)
3760 		return -ENOMEM;
3761 
3762 	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
3763 }
3764 
3765 static int i915_debugfs_create(struct dentry *root,
3766 			       struct drm_minor *minor,
3767 			       const char *name,
3768 			       const struct file_operations *fops)
3769 {
3770 	struct drm_device *dev = minor->dev;
3771 	struct dentry *ent;
3772 
3773 	ent = debugfs_create_file(name,
3774 				  S_IRUGO | S_IWUSR,
3775 				  root, dev,
3776 				  fops);
3777 	if (!ent)
3778 		return -ENOMEM;
3779 
3780 	return drm_add_fake_info_node(minor, ent, fops);
3781 }
3782 
3783 static const struct drm_info_list i915_debugfs_list[] = {
3784 	{"i915_capabilities", i915_capabilities, 0},
3785 	{"i915_gem_objects", i915_gem_object_info, 0},
3786 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
3787 	{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
3788 	{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
3789 	{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
3790 	{"i915_gem_stolen", i915_gem_stolen_list_info },
3791 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
3792 	{"i915_gem_request", i915_gem_request_info, 0},
3793 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
3794 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
3795 	{"i915_gem_interrupt", i915_interrupt_info, 0},
3796 	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
3797 	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
3798 	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
3799 	{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
3800 	{"i915_rstdby_delays", i915_rstdby_delays, 0},
3801 	{"i915_frequency_info", i915_frequency_info, 0},
3802 	{"i915_delayfreq_table", i915_delayfreq_table, 0},
3803 	{"i915_inttoext_table", i915_inttoext_table, 0},
3804 	{"i915_drpc_info", i915_drpc_info, 0},
3805 	{"i915_emon_status", i915_emon_status, 0},
3806 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
3807 	{"i915_gfxec", i915_gfxec, 0},
3808 	{"i915_fbc_status", i915_fbc_status, 0},
3809 	{"i915_ips_status", i915_ips_status, 0},
3810 	{"i915_sr_status", i915_sr_status, 0},
3811 	{"i915_opregion", i915_opregion, 0},
3812 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
3813 	{"i915_context_status", i915_context_status, 0},
3814 	{"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
3815 	{"i915_swizzle_info", i915_swizzle_info, 0},
3816 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
3817 	{"i915_llc", i915_llc, 0},
3818 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
3819 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
3820 	{"i915_energy_uJ", i915_energy_uJ, 0},
3821 	{"i915_pc8_status", i915_pc8_status, 0},
3822 	{"i915_power_domain_info", i915_power_domain_info, 0},
3823 	{"i915_display_info", i915_display_info, 0},
3824 };
3825 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
3826 
3827 static const struct i915_debugfs_files {
3828 	const char *name;
3829 	const struct file_operations *fops;
3830 } i915_debugfs_files[] = {
3831 	{"i915_wedged", &i915_wedged_fops},
3832 	{"i915_max_freq", &i915_max_freq_fops},
3833 	{"i915_min_freq", &i915_min_freq_fops},
3834 	{"i915_cache_sharing", &i915_cache_sharing_fops},
3835 	{"i915_ring_stop", &i915_ring_stop_fops},
3836 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
3837 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
3838 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
3839 	{"i915_error_state", &i915_error_state_fops},
3840 	{"i915_next_seqno", &i915_next_seqno_fops},
3841 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
3842 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
3843 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
3844 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
3845 };
3846 
3847 void intel_display_crc_init(struct drm_device *dev)
3848 {
3849 	struct drm_i915_private *dev_priv = dev->dev_private;
3850 	enum pipe pipe;
3851 
3852 	for_each_pipe(pipe) {
3853 		struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3854 
3855 		pipe_crc->opened = false;
3856 		spin_lock_init(&pipe_crc->lock);
3857 		init_waitqueue_head(&pipe_crc->wq);
3858 	}
3859 }
3860 
3861 int i915_debugfs_init(struct drm_minor *minor)
3862 {
3863 	int ret, i;
3864 
3865 	ret = i915_forcewake_create(minor->debugfs_root, minor);
3866 	if (ret)
3867 		return ret;
3868 
3869 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3870 		ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
3871 		if (ret)
3872 			return ret;
3873 	}
3874 
3875 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3876 		ret = i915_debugfs_create(minor->debugfs_root, minor,
3877 					  i915_debugfs_files[i].name,
3878 					  i915_debugfs_files[i].fops);
3879 		if (ret)
3880 			return ret;
3881 	}
3882 
3883 	return drm_debugfs_create_files(i915_debugfs_list,
3884 					I915_DEBUGFS_ENTRIES,
3885 					minor->debugfs_root, minor);
3886 }
3887 
3888 void i915_debugfs_cleanup(struct drm_minor *minor)
3889 {
3890 	int i;
3891 
3892 	drm_debugfs_remove_files(i915_debugfs_list,
3893 				 I915_DEBUGFS_ENTRIES, minor);
3894 
3895 	drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
3896 				 1, minor);
3897 
3898 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3899 		struct drm_info_list *info_list =
3900 			(struct drm_info_list *)&i915_pipe_crc_data[i];
3901 
3902 		drm_debugfs_remove_files(info_list, 1, minor);
3903 	}
3904 
3905 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3906 		struct drm_info_list *info_list =
3907 			(struct drm_info_list *) i915_debugfs_files[i].fops;
3908 
3909 		drm_debugfs_remove_files(info_list, 1, minor);
3910 	}
3911 }
3912