1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/sort.h>
31 #include <linux/sched/mm.h>
32 #include "intel_drv.h"
33 #include "i915_guc_submission.h"
34 
35 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
36 {
37 	return to_i915(node->minor->dev);
38 }
39 
40 static __always_inline void seq_print_param(struct seq_file *m,
41 					    const char *name,
42 					    const char *type,
43 					    const void *x)
44 {
45 	if (!__builtin_strcmp(type, "bool"))
46 		seq_printf(m, "i915.%s=%s\n", name, yesno(*(const bool *)x));
47 	else if (!__builtin_strcmp(type, "int"))
48 		seq_printf(m, "i915.%s=%d\n", name, *(const int *)x);
49 	else if (!__builtin_strcmp(type, "unsigned int"))
50 		seq_printf(m, "i915.%s=%u\n", name, *(const unsigned int *)x);
51 	else if (!__builtin_strcmp(type, "char *"))
52 		seq_printf(m, "i915.%s=%s\n", name, *(const char **)x);
53 	else
54 		BUILD_BUG();
55 }
56 
57 static int i915_capabilities(struct seq_file *m, void *data)
58 {
59 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
60 	const struct intel_device_info *info = INTEL_INFO(dev_priv);
61 
62 	seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
63 	seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
64 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
65 
66 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
67 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
68 #undef PRINT_FLAG
69 
70 	kernel_param_lock(THIS_MODULE);
71 #define PRINT_PARAM(T, x, ...) seq_print_param(m, #x, #T, &i915_modparams.x);
72 	I915_PARAMS_FOR_EACH(PRINT_PARAM);
73 #undef PRINT_PARAM
74 	kernel_param_unlock(THIS_MODULE);
75 
76 	return 0;
77 }
78 
79 static char get_active_flag(struct drm_i915_gem_object *obj)
80 {
81 	return i915_gem_object_is_active(obj) ? '*' : ' ';
82 }
83 
84 static char get_pin_flag(struct drm_i915_gem_object *obj)
85 {
86 	return obj->pin_global ? 'p' : ' ';
87 }
88 
89 static char get_tiling_flag(struct drm_i915_gem_object *obj)
90 {
91 	switch (i915_gem_object_get_tiling(obj)) {
92 	default:
93 	case I915_TILING_NONE: return ' ';
94 	case I915_TILING_X: return 'X';
95 	case I915_TILING_Y: return 'Y';
96 	}
97 }
98 
99 static char get_global_flag(struct drm_i915_gem_object *obj)
100 {
101 	return obj->userfault_count ? 'g' : ' ';
102 }
103 
104 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
105 {
106 	return obj->mm.mapping ? 'M' : ' ';
107 }
108 
109 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
110 {
111 	u64 size = 0;
112 	struct i915_vma *vma;
113 
114 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
115 		if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
116 			size += vma->node.size;
117 	}
118 
119 	return size;
120 }
121 
122 static const char *
123 stringify_page_sizes(unsigned int page_sizes, char *buf, size_t len)
124 {
125 	size_t x = 0;
126 
127 	switch (page_sizes) {
128 	case 0:
129 		return "";
130 	case I915_GTT_PAGE_SIZE_4K:
131 		return "4K";
132 	case I915_GTT_PAGE_SIZE_64K:
133 		return "64K";
134 	case I915_GTT_PAGE_SIZE_2M:
135 		return "2M";
136 	default:
137 		if (!buf)
138 			return "M";
139 
140 		if (page_sizes & I915_GTT_PAGE_SIZE_2M)
141 			x += snprintf(buf + x, len - x, "2M, ");
142 		if (page_sizes & I915_GTT_PAGE_SIZE_64K)
143 			x += snprintf(buf + x, len - x, "64K, ");
144 		if (page_sizes & I915_GTT_PAGE_SIZE_4K)
145 			x += snprintf(buf + x, len - x, "4K, ");
146 		buf[x-2] = '\0';
147 
148 		return buf;
149 	}
150 }
151 
152 static void
153 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
154 {
155 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
156 	struct intel_engine_cs *engine;
157 	struct i915_vma *vma;
158 	unsigned int frontbuffer_bits;
159 	int pin_count = 0;
160 
161 	lockdep_assert_held(&obj->base.dev->struct_mutex);
162 
163 	seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
164 		   &obj->base,
165 		   get_active_flag(obj),
166 		   get_pin_flag(obj),
167 		   get_tiling_flag(obj),
168 		   get_global_flag(obj),
169 		   get_pin_mapped_flag(obj),
170 		   obj->base.size / 1024,
171 		   obj->base.read_domains,
172 		   obj->base.write_domain,
173 		   i915_cache_level_str(dev_priv, obj->cache_level),
174 		   obj->mm.dirty ? " dirty" : "",
175 		   obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
176 	if (obj->base.name)
177 		seq_printf(m, " (name: %d)", obj->base.name);
178 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
179 		if (i915_vma_is_pinned(vma))
180 			pin_count++;
181 	}
182 	seq_printf(m, " (pinned x %d)", pin_count);
183 	if (obj->pin_global)
184 		seq_printf(m, " (global)");
185 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
186 		if (!drm_mm_node_allocated(&vma->node))
187 			continue;
188 
189 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx, pages: %s",
190 			   i915_vma_is_ggtt(vma) ? "g" : "pp",
191 			   vma->node.start, vma->node.size,
192 			   stringify_page_sizes(vma->page_sizes.gtt, NULL, 0));
193 		if (i915_vma_is_ggtt(vma)) {
194 			switch (vma->ggtt_view.type) {
195 			case I915_GGTT_VIEW_NORMAL:
196 				seq_puts(m, ", normal");
197 				break;
198 
199 			case I915_GGTT_VIEW_PARTIAL:
200 				seq_printf(m, ", partial [%08llx+%x]",
201 					   vma->ggtt_view.partial.offset << PAGE_SHIFT,
202 					   vma->ggtt_view.partial.size << PAGE_SHIFT);
203 				break;
204 
205 			case I915_GGTT_VIEW_ROTATED:
206 				seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
207 					   vma->ggtt_view.rotated.plane[0].width,
208 					   vma->ggtt_view.rotated.plane[0].height,
209 					   vma->ggtt_view.rotated.plane[0].stride,
210 					   vma->ggtt_view.rotated.plane[0].offset,
211 					   vma->ggtt_view.rotated.plane[1].width,
212 					   vma->ggtt_view.rotated.plane[1].height,
213 					   vma->ggtt_view.rotated.plane[1].stride,
214 					   vma->ggtt_view.rotated.plane[1].offset);
215 				break;
216 
217 			default:
218 				MISSING_CASE(vma->ggtt_view.type);
219 				break;
220 			}
221 		}
222 		if (vma->fence)
223 			seq_printf(m, " , fence: %d%s",
224 				   vma->fence->id,
225 				   i915_gem_active_isset(&vma->last_fence) ? "*" : "");
226 		seq_puts(m, ")");
227 	}
228 	if (obj->stolen)
229 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
230 
231 	engine = i915_gem_object_last_write_engine(obj);
232 	if (engine)
233 		seq_printf(m, " (%s)", engine->name);
234 
235 	frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
236 	if (frontbuffer_bits)
237 		seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
238 }
239 
240 static int obj_rank_by_stolen(const void *A, const void *B)
241 {
242 	const struct drm_i915_gem_object *a =
243 		*(const struct drm_i915_gem_object **)A;
244 	const struct drm_i915_gem_object *b =
245 		*(const struct drm_i915_gem_object **)B;
246 
247 	if (a->stolen->start < b->stolen->start)
248 		return -1;
249 	if (a->stolen->start > b->stolen->start)
250 		return 1;
251 	return 0;
252 }
253 
254 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
255 {
256 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
257 	struct drm_device *dev = &dev_priv->drm;
258 	struct drm_i915_gem_object **objects;
259 	struct drm_i915_gem_object *obj;
260 	u64 total_obj_size, total_gtt_size;
261 	unsigned long total, count, n;
262 	int ret;
263 
264 	total = READ_ONCE(dev_priv->mm.object_count);
265 	objects = kvmalloc_array(total, sizeof(*objects), GFP_KERNEL);
266 	if (!objects)
267 		return -ENOMEM;
268 
269 	ret = mutex_lock_interruptible(&dev->struct_mutex);
270 	if (ret)
271 		goto out;
272 
273 	total_obj_size = total_gtt_size = count = 0;
274 
275 	spin_lock(&dev_priv->mm.obj_lock);
276 	list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
277 		if (count == total)
278 			break;
279 
280 		if (obj->stolen == NULL)
281 			continue;
282 
283 		objects[count++] = obj;
284 		total_obj_size += obj->base.size;
285 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286 
287 	}
288 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
289 		if (count == total)
290 			break;
291 
292 		if (obj->stolen == NULL)
293 			continue;
294 
295 		objects[count++] = obj;
296 		total_obj_size += obj->base.size;
297 	}
298 	spin_unlock(&dev_priv->mm.obj_lock);
299 
300 	sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
301 
302 	seq_puts(m, "Stolen:\n");
303 	for (n = 0; n < count; n++) {
304 		seq_puts(m, "   ");
305 		describe_obj(m, objects[n]);
306 		seq_putc(m, '\n');
307 	}
308 	seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
309 		   count, total_obj_size, total_gtt_size);
310 
311 	mutex_unlock(&dev->struct_mutex);
312 out:
313 	kvfree(objects);
314 	return ret;
315 }
316 
317 struct file_stats {
318 	struct drm_i915_file_private *file_priv;
319 	unsigned long count;
320 	u64 total, unbound;
321 	u64 global, shared;
322 	u64 active, inactive;
323 };
324 
325 static int per_file_stats(int id, void *ptr, void *data)
326 {
327 	struct drm_i915_gem_object *obj = ptr;
328 	struct file_stats *stats = data;
329 	struct i915_vma *vma;
330 
331 	lockdep_assert_held(&obj->base.dev->struct_mutex);
332 
333 	stats->count++;
334 	stats->total += obj->base.size;
335 	if (!obj->bind_count)
336 		stats->unbound += obj->base.size;
337 	if (obj->base.name || obj->base.dma_buf)
338 		stats->shared += obj->base.size;
339 
340 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
341 		if (!drm_mm_node_allocated(&vma->node))
342 			continue;
343 
344 		if (i915_vma_is_ggtt(vma)) {
345 			stats->global += vma->node.size;
346 		} else {
347 			struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
348 
349 			if (ppgtt->base.file != stats->file_priv)
350 				continue;
351 		}
352 
353 		if (i915_vma_is_active(vma))
354 			stats->active += vma->node.size;
355 		else
356 			stats->inactive += vma->node.size;
357 	}
358 
359 	return 0;
360 }
361 
362 #define print_file_stats(m, name, stats) do { \
363 	if (stats.count) \
364 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
365 			   name, \
366 			   stats.count, \
367 			   stats.total, \
368 			   stats.active, \
369 			   stats.inactive, \
370 			   stats.global, \
371 			   stats.shared, \
372 			   stats.unbound); \
373 } while (0)
374 
375 static void print_batch_pool_stats(struct seq_file *m,
376 				   struct drm_i915_private *dev_priv)
377 {
378 	struct drm_i915_gem_object *obj;
379 	struct file_stats stats;
380 	struct intel_engine_cs *engine;
381 	enum intel_engine_id id;
382 	int j;
383 
384 	memset(&stats, 0, sizeof(stats));
385 
386 	for_each_engine(engine, dev_priv, id) {
387 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
388 			list_for_each_entry(obj,
389 					    &engine->batch_pool.cache_list[j],
390 					    batch_pool_link)
391 				per_file_stats(0, obj, &stats);
392 		}
393 	}
394 
395 	print_file_stats(m, "[k]batch pool", stats);
396 }
397 
398 static int per_file_ctx_stats(int id, void *ptr, void *data)
399 {
400 	struct i915_gem_context *ctx = ptr;
401 	int n;
402 
403 	for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
404 		if (ctx->engine[n].state)
405 			per_file_stats(0, ctx->engine[n].state->obj, data);
406 		if (ctx->engine[n].ring)
407 			per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
408 	}
409 
410 	return 0;
411 }
412 
413 static void print_context_stats(struct seq_file *m,
414 				struct drm_i915_private *dev_priv)
415 {
416 	struct drm_device *dev = &dev_priv->drm;
417 	struct file_stats stats;
418 	struct drm_file *file;
419 
420 	memset(&stats, 0, sizeof(stats));
421 
422 	mutex_lock(&dev->struct_mutex);
423 	if (dev_priv->kernel_context)
424 		per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
425 
426 	list_for_each_entry(file, &dev->filelist, lhead) {
427 		struct drm_i915_file_private *fpriv = file->driver_priv;
428 		idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
429 	}
430 	mutex_unlock(&dev->struct_mutex);
431 
432 	print_file_stats(m, "[k]contexts", stats);
433 }
434 
435 static int i915_gem_object_info(struct seq_file *m, void *data)
436 {
437 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
438 	struct drm_device *dev = &dev_priv->drm;
439 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
440 	u32 count, mapped_count, purgeable_count, dpy_count, huge_count;
441 	u64 size, mapped_size, purgeable_size, dpy_size, huge_size;
442 	struct drm_i915_gem_object *obj;
443 	unsigned int page_sizes = 0;
444 	struct drm_file *file;
445 	char buf[80];
446 	int ret;
447 
448 	ret = mutex_lock_interruptible(&dev->struct_mutex);
449 	if (ret)
450 		return ret;
451 
452 	seq_printf(m, "%u objects, %llu bytes\n",
453 		   dev_priv->mm.object_count,
454 		   dev_priv->mm.object_memory);
455 
456 	size = count = 0;
457 	mapped_size = mapped_count = 0;
458 	purgeable_size = purgeable_count = 0;
459 	huge_size = huge_count = 0;
460 
461 	spin_lock(&dev_priv->mm.obj_lock);
462 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
463 		size += obj->base.size;
464 		++count;
465 
466 		if (obj->mm.madv == I915_MADV_DONTNEED) {
467 			purgeable_size += obj->base.size;
468 			++purgeable_count;
469 		}
470 
471 		if (obj->mm.mapping) {
472 			mapped_count++;
473 			mapped_size += obj->base.size;
474 		}
475 
476 		if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
477 			huge_count++;
478 			huge_size += obj->base.size;
479 			page_sizes |= obj->mm.page_sizes.sg;
480 		}
481 	}
482 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
483 
484 	size = count = dpy_size = dpy_count = 0;
485 	list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
486 		size += obj->base.size;
487 		++count;
488 
489 		if (obj->pin_global) {
490 			dpy_size += obj->base.size;
491 			++dpy_count;
492 		}
493 
494 		if (obj->mm.madv == I915_MADV_DONTNEED) {
495 			purgeable_size += obj->base.size;
496 			++purgeable_count;
497 		}
498 
499 		if (obj->mm.mapping) {
500 			mapped_count++;
501 			mapped_size += obj->base.size;
502 		}
503 
504 		if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
505 			huge_count++;
506 			huge_size += obj->base.size;
507 			page_sizes |= obj->mm.page_sizes.sg;
508 		}
509 	}
510 	spin_unlock(&dev_priv->mm.obj_lock);
511 
512 	seq_printf(m, "%u bound objects, %llu bytes\n",
513 		   count, size);
514 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
515 		   purgeable_count, purgeable_size);
516 	seq_printf(m, "%u mapped objects, %llu bytes\n",
517 		   mapped_count, mapped_size);
518 	seq_printf(m, "%u huge-paged objects (%s) %llu bytes\n",
519 		   huge_count,
520 		   stringify_page_sizes(page_sizes, buf, sizeof(buf)),
521 		   huge_size);
522 	seq_printf(m, "%u display objects (globally pinned), %llu bytes\n",
523 		   dpy_count, dpy_size);
524 
525 	seq_printf(m, "%llu [%llu] gtt total\n",
526 		   ggtt->base.total, ggtt->mappable_end);
527 	seq_printf(m, "Supported page sizes: %s\n",
528 		   stringify_page_sizes(INTEL_INFO(dev_priv)->page_sizes,
529 					buf, sizeof(buf)));
530 
531 	seq_putc(m, '\n');
532 	print_batch_pool_stats(m, dev_priv);
533 	mutex_unlock(&dev->struct_mutex);
534 
535 	mutex_lock(&dev->filelist_mutex);
536 	print_context_stats(m, dev_priv);
537 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
538 		struct file_stats stats;
539 		struct drm_i915_file_private *file_priv = file->driver_priv;
540 		struct drm_i915_gem_request *request;
541 		struct task_struct *task;
542 
543 		mutex_lock(&dev->struct_mutex);
544 
545 		memset(&stats, 0, sizeof(stats));
546 		stats.file_priv = file->driver_priv;
547 		spin_lock(&file->table_lock);
548 		idr_for_each(&file->object_idr, per_file_stats, &stats);
549 		spin_unlock(&file->table_lock);
550 		/*
551 		 * Although we have a valid reference on file->pid, that does
552 		 * not guarantee that the task_struct who called get_pid() is
553 		 * still alive (e.g. get_pid(current) => fork() => exit()).
554 		 * Therefore, we need to protect this ->comm access using RCU.
555 		 */
556 		request = list_first_entry_or_null(&file_priv->mm.request_list,
557 						   struct drm_i915_gem_request,
558 						   client_link);
559 		rcu_read_lock();
560 		task = pid_task(request && request->ctx->pid ?
561 				request->ctx->pid : file->pid,
562 				PIDTYPE_PID);
563 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
564 		rcu_read_unlock();
565 
566 		mutex_unlock(&dev->struct_mutex);
567 	}
568 	mutex_unlock(&dev->filelist_mutex);
569 
570 	return 0;
571 }
572 
573 static int i915_gem_gtt_info(struct seq_file *m, void *data)
574 {
575 	struct drm_info_node *node = m->private;
576 	struct drm_i915_private *dev_priv = node_to_i915(node);
577 	struct drm_device *dev = &dev_priv->drm;
578 	struct drm_i915_gem_object **objects;
579 	struct drm_i915_gem_object *obj;
580 	u64 total_obj_size, total_gtt_size;
581 	unsigned long nobject, n;
582 	int count, ret;
583 
584 	nobject = READ_ONCE(dev_priv->mm.object_count);
585 	objects = kvmalloc_array(nobject, sizeof(*objects), GFP_KERNEL);
586 	if (!objects)
587 		return -ENOMEM;
588 
589 	ret = mutex_lock_interruptible(&dev->struct_mutex);
590 	if (ret)
591 		return ret;
592 
593 	count = 0;
594 	spin_lock(&dev_priv->mm.obj_lock);
595 	list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
596 		objects[count++] = obj;
597 		if (count == nobject)
598 			break;
599 	}
600 	spin_unlock(&dev_priv->mm.obj_lock);
601 
602 	total_obj_size = total_gtt_size = 0;
603 	for (n = 0;  n < count; n++) {
604 		obj = objects[n];
605 
606 		seq_puts(m, "   ");
607 		describe_obj(m, obj);
608 		seq_putc(m, '\n');
609 		total_obj_size += obj->base.size;
610 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
611 	}
612 
613 	mutex_unlock(&dev->struct_mutex);
614 
615 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
616 		   count, total_obj_size, total_gtt_size);
617 	kvfree(objects);
618 
619 	return 0;
620 }
621 
622 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
623 {
624 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
625 	struct drm_device *dev = &dev_priv->drm;
626 	struct drm_i915_gem_object *obj;
627 	struct intel_engine_cs *engine;
628 	enum intel_engine_id id;
629 	int total = 0;
630 	int ret, j;
631 
632 	ret = mutex_lock_interruptible(&dev->struct_mutex);
633 	if (ret)
634 		return ret;
635 
636 	for_each_engine(engine, dev_priv, id) {
637 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
638 			int count;
639 
640 			count = 0;
641 			list_for_each_entry(obj,
642 					    &engine->batch_pool.cache_list[j],
643 					    batch_pool_link)
644 				count++;
645 			seq_printf(m, "%s cache[%d]: %d objects\n",
646 				   engine->name, j, count);
647 
648 			list_for_each_entry(obj,
649 					    &engine->batch_pool.cache_list[j],
650 					    batch_pool_link) {
651 				seq_puts(m, "   ");
652 				describe_obj(m, obj);
653 				seq_putc(m, '\n');
654 			}
655 
656 			total += count;
657 		}
658 	}
659 
660 	seq_printf(m, "total: %d\n", total);
661 
662 	mutex_unlock(&dev->struct_mutex);
663 
664 	return 0;
665 }
666 
667 static void i915_ring_seqno_info(struct seq_file *m,
668 				 struct intel_engine_cs *engine)
669 {
670 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
671 	struct rb_node *rb;
672 
673 	seq_printf(m, "Current sequence (%s): %x\n",
674 		   engine->name, intel_engine_get_seqno(engine));
675 
676 	spin_lock_irq(&b->rb_lock);
677 	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
678 		struct intel_wait *w = rb_entry(rb, typeof(*w), node);
679 
680 		seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
681 			   engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
682 	}
683 	spin_unlock_irq(&b->rb_lock);
684 }
685 
686 static int i915_gem_seqno_info(struct seq_file *m, void *data)
687 {
688 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
689 	struct intel_engine_cs *engine;
690 	enum intel_engine_id id;
691 
692 	for_each_engine(engine, dev_priv, id)
693 		i915_ring_seqno_info(m, engine);
694 
695 	return 0;
696 }
697 
698 
699 static int i915_interrupt_info(struct seq_file *m, void *data)
700 {
701 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
702 	struct intel_engine_cs *engine;
703 	enum intel_engine_id id;
704 	int i, pipe;
705 
706 	intel_runtime_pm_get(dev_priv);
707 
708 	if (IS_CHERRYVIEW(dev_priv)) {
709 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
710 			   I915_READ(GEN8_MASTER_IRQ));
711 
712 		seq_printf(m, "Display IER:\t%08x\n",
713 			   I915_READ(VLV_IER));
714 		seq_printf(m, "Display IIR:\t%08x\n",
715 			   I915_READ(VLV_IIR));
716 		seq_printf(m, "Display IIR_RW:\t%08x\n",
717 			   I915_READ(VLV_IIR_RW));
718 		seq_printf(m, "Display IMR:\t%08x\n",
719 			   I915_READ(VLV_IMR));
720 		for_each_pipe(dev_priv, pipe) {
721 			enum intel_display_power_domain power_domain;
722 
723 			power_domain = POWER_DOMAIN_PIPE(pipe);
724 			if (!intel_display_power_get_if_enabled(dev_priv,
725 								power_domain)) {
726 				seq_printf(m, "Pipe %c power disabled\n",
727 					   pipe_name(pipe));
728 				continue;
729 			}
730 
731 			seq_printf(m, "Pipe %c stat:\t%08x\n",
732 				   pipe_name(pipe),
733 				   I915_READ(PIPESTAT(pipe)));
734 
735 			intel_display_power_put(dev_priv, power_domain);
736 		}
737 
738 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
739 		seq_printf(m, "Port hotplug:\t%08x\n",
740 			   I915_READ(PORT_HOTPLUG_EN));
741 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
742 			   I915_READ(VLV_DPFLIPSTAT));
743 		seq_printf(m, "DPINVGTT:\t%08x\n",
744 			   I915_READ(DPINVGTT));
745 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
746 
747 		for (i = 0; i < 4; i++) {
748 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
749 				   i, I915_READ(GEN8_GT_IMR(i)));
750 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
751 				   i, I915_READ(GEN8_GT_IIR(i)));
752 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
753 				   i, I915_READ(GEN8_GT_IER(i)));
754 		}
755 
756 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
757 			   I915_READ(GEN8_PCU_IMR));
758 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
759 			   I915_READ(GEN8_PCU_IIR));
760 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
761 			   I915_READ(GEN8_PCU_IER));
762 	} else if (INTEL_GEN(dev_priv) >= 8) {
763 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
764 			   I915_READ(GEN8_MASTER_IRQ));
765 
766 		for (i = 0; i < 4; i++) {
767 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
768 				   i, I915_READ(GEN8_GT_IMR(i)));
769 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
770 				   i, I915_READ(GEN8_GT_IIR(i)));
771 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
772 				   i, I915_READ(GEN8_GT_IER(i)));
773 		}
774 
775 		for_each_pipe(dev_priv, pipe) {
776 			enum intel_display_power_domain power_domain;
777 
778 			power_domain = POWER_DOMAIN_PIPE(pipe);
779 			if (!intel_display_power_get_if_enabled(dev_priv,
780 								power_domain)) {
781 				seq_printf(m, "Pipe %c power disabled\n",
782 					   pipe_name(pipe));
783 				continue;
784 			}
785 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
786 				   pipe_name(pipe),
787 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
788 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
789 				   pipe_name(pipe),
790 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
791 			seq_printf(m, "Pipe %c IER:\t%08x\n",
792 				   pipe_name(pipe),
793 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
794 
795 			intel_display_power_put(dev_priv, power_domain);
796 		}
797 
798 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
799 			   I915_READ(GEN8_DE_PORT_IMR));
800 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
801 			   I915_READ(GEN8_DE_PORT_IIR));
802 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
803 			   I915_READ(GEN8_DE_PORT_IER));
804 
805 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
806 			   I915_READ(GEN8_DE_MISC_IMR));
807 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
808 			   I915_READ(GEN8_DE_MISC_IIR));
809 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
810 			   I915_READ(GEN8_DE_MISC_IER));
811 
812 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
813 			   I915_READ(GEN8_PCU_IMR));
814 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
815 			   I915_READ(GEN8_PCU_IIR));
816 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
817 			   I915_READ(GEN8_PCU_IER));
818 	} else if (IS_VALLEYVIEW(dev_priv)) {
819 		seq_printf(m, "Display IER:\t%08x\n",
820 			   I915_READ(VLV_IER));
821 		seq_printf(m, "Display IIR:\t%08x\n",
822 			   I915_READ(VLV_IIR));
823 		seq_printf(m, "Display IIR_RW:\t%08x\n",
824 			   I915_READ(VLV_IIR_RW));
825 		seq_printf(m, "Display IMR:\t%08x\n",
826 			   I915_READ(VLV_IMR));
827 		for_each_pipe(dev_priv, pipe) {
828 			enum intel_display_power_domain power_domain;
829 
830 			power_domain = POWER_DOMAIN_PIPE(pipe);
831 			if (!intel_display_power_get_if_enabled(dev_priv,
832 								power_domain)) {
833 				seq_printf(m, "Pipe %c power disabled\n",
834 					   pipe_name(pipe));
835 				continue;
836 			}
837 
838 			seq_printf(m, "Pipe %c stat:\t%08x\n",
839 				   pipe_name(pipe),
840 				   I915_READ(PIPESTAT(pipe)));
841 			intel_display_power_put(dev_priv, power_domain);
842 		}
843 
844 		seq_printf(m, "Master IER:\t%08x\n",
845 			   I915_READ(VLV_MASTER_IER));
846 
847 		seq_printf(m, "Render IER:\t%08x\n",
848 			   I915_READ(GTIER));
849 		seq_printf(m, "Render IIR:\t%08x\n",
850 			   I915_READ(GTIIR));
851 		seq_printf(m, "Render IMR:\t%08x\n",
852 			   I915_READ(GTIMR));
853 
854 		seq_printf(m, "PM IER:\t\t%08x\n",
855 			   I915_READ(GEN6_PMIER));
856 		seq_printf(m, "PM IIR:\t\t%08x\n",
857 			   I915_READ(GEN6_PMIIR));
858 		seq_printf(m, "PM IMR:\t\t%08x\n",
859 			   I915_READ(GEN6_PMIMR));
860 
861 		seq_printf(m, "Port hotplug:\t%08x\n",
862 			   I915_READ(PORT_HOTPLUG_EN));
863 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
864 			   I915_READ(VLV_DPFLIPSTAT));
865 		seq_printf(m, "DPINVGTT:\t%08x\n",
866 			   I915_READ(DPINVGTT));
867 
868 	} else if (!HAS_PCH_SPLIT(dev_priv)) {
869 		seq_printf(m, "Interrupt enable:    %08x\n",
870 			   I915_READ(IER));
871 		seq_printf(m, "Interrupt identity:  %08x\n",
872 			   I915_READ(IIR));
873 		seq_printf(m, "Interrupt mask:      %08x\n",
874 			   I915_READ(IMR));
875 		for_each_pipe(dev_priv, pipe)
876 			seq_printf(m, "Pipe %c stat:         %08x\n",
877 				   pipe_name(pipe),
878 				   I915_READ(PIPESTAT(pipe)));
879 	} else {
880 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
881 			   I915_READ(DEIER));
882 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
883 			   I915_READ(DEIIR));
884 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
885 			   I915_READ(DEIMR));
886 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
887 			   I915_READ(SDEIER));
888 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
889 			   I915_READ(SDEIIR));
890 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
891 			   I915_READ(SDEIMR));
892 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
893 			   I915_READ(GTIER));
894 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
895 			   I915_READ(GTIIR));
896 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
897 			   I915_READ(GTIMR));
898 	}
899 	for_each_engine(engine, dev_priv, id) {
900 		if (INTEL_GEN(dev_priv) >= 6) {
901 			seq_printf(m,
902 				   "Graphics Interrupt mask (%s):	%08x\n",
903 				   engine->name, I915_READ_IMR(engine));
904 		}
905 		i915_ring_seqno_info(m, engine);
906 	}
907 	intel_runtime_pm_put(dev_priv);
908 
909 	return 0;
910 }
911 
912 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
913 {
914 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
915 	struct drm_device *dev = &dev_priv->drm;
916 	int i, ret;
917 
918 	ret = mutex_lock_interruptible(&dev->struct_mutex);
919 	if (ret)
920 		return ret;
921 
922 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
923 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
924 		struct i915_vma *vma = dev_priv->fence_regs[i].vma;
925 
926 		seq_printf(m, "Fence %d, pin count = %d, object = ",
927 			   i, dev_priv->fence_regs[i].pin_count);
928 		if (!vma)
929 			seq_puts(m, "unused");
930 		else
931 			describe_obj(m, vma->obj);
932 		seq_putc(m, '\n');
933 	}
934 
935 	mutex_unlock(&dev->struct_mutex);
936 	return 0;
937 }
938 
939 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
940 static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
941 			      size_t count, loff_t *pos)
942 {
943 	struct i915_gpu_state *error = file->private_data;
944 	struct drm_i915_error_state_buf str;
945 	ssize_t ret;
946 	loff_t tmp;
947 
948 	if (!error)
949 		return 0;
950 
951 	ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
952 	if (ret)
953 		return ret;
954 
955 	ret = i915_error_state_to_str(&str, error);
956 	if (ret)
957 		goto out;
958 
959 	tmp = 0;
960 	ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
961 	if (ret < 0)
962 		goto out;
963 
964 	*pos = str.start + ret;
965 out:
966 	i915_error_state_buf_release(&str);
967 	return ret;
968 }
969 
970 static int gpu_state_release(struct inode *inode, struct file *file)
971 {
972 	i915_gpu_state_put(file->private_data);
973 	return 0;
974 }
975 
976 static int i915_gpu_info_open(struct inode *inode, struct file *file)
977 {
978 	struct drm_i915_private *i915 = inode->i_private;
979 	struct i915_gpu_state *gpu;
980 
981 	intel_runtime_pm_get(i915);
982 	gpu = i915_capture_gpu_state(i915);
983 	intel_runtime_pm_put(i915);
984 	if (!gpu)
985 		return -ENOMEM;
986 
987 	file->private_data = gpu;
988 	return 0;
989 }
990 
991 static const struct file_operations i915_gpu_info_fops = {
992 	.owner = THIS_MODULE,
993 	.open = i915_gpu_info_open,
994 	.read = gpu_state_read,
995 	.llseek = default_llseek,
996 	.release = gpu_state_release,
997 };
998 
999 static ssize_t
1000 i915_error_state_write(struct file *filp,
1001 		       const char __user *ubuf,
1002 		       size_t cnt,
1003 		       loff_t *ppos)
1004 {
1005 	struct i915_gpu_state *error = filp->private_data;
1006 
1007 	if (!error)
1008 		return 0;
1009 
1010 	DRM_DEBUG_DRIVER("Resetting error state\n");
1011 	i915_reset_error_state(error->i915);
1012 
1013 	return cnt;
1014 }
1015 
1016 static int i915_error_state_open(struct inode *inode, struct file *file)
1017 {
1018 	file->private_data = i915_first_error_state(inode->i_private);
1019 	return 0;
1020 }
1021 
1022 static const struct file_operations i915_error_state_fops = {
1023 	.owner = THIS_MODULE,
1024 	.open = i915_error_state_open,
1025 	.read = gpu_state_read,
1026 	.write = i915_error_state_write,
1027 	.llseek = default_llseek,
1028 	.release = gpu_state_release,
1029 };
1030 #endif
1031 
1032 static int
1033 i915_next_seqno_set(void *data, u64 val)
1034 {
1035 	struct drm_i915_private *dev_priv = data;
1036 	struct drm_device *dev = &dev_priv->drm;
1037 	int ret;
1038 
1039 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1040 	if (ret)
1041 		return ret;
1042 
1043 	ret = i915_gem_set_global_seqno(dev, val);
1044 	mutex_unlock(&dev->struct_mutex);
1045 
1046 	return ret;
1047 }
1048 
1049 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1050 			NULL, i915_next_seqno_set,
1051 			"0x%llx\n");
1052 
1053 static int i915_frequency_info(struct seq_file *m, void *unused)
1054 {
1055 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1056 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1057 	int ret = 0;
1058 
1059 	intel_runtime_pm_get(dev_priv);
1060 
1061 	if (IS_GEN5(dev_priv)) {
1062 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1063 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1064 
1065 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1066 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1067 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1068 			   MEMSTAT_VID_SHIFT);
1069 		seq_printf(m, "Current P-state: %d\n",
1070 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1071 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1072 		u32 rpmodectl, freq_sts;
1073 
1074 		mutex_lock(&dev_priv->pcu_lock);
1075 
1076 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1077 		seq_printf(m, "Video Turbo Mode: %s\n",
1078 			   yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
1079 		seq_printf(m, "HW control enabled: %s\n",
1080 			   yesno(rpmodectl & GEN6_RP_ENABLE));
1081 		seq_printf(m, "SW control enabled: %s\n",
1082 			   yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
1083 				  GEN6_RP_MEDIA_SW_MODE));
1084 
1085 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1086 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1087 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1088 
1089 		seq_printf(m, "actual GPU freq: %d MHz\n",
1090 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1091 
1092 		seq_printf(m, "current GPU freq: %d MHz\n",
1093 			   intel_gpu_freq(dev_priv, rps->cur_freq));
1094 
1095 		seq_printf(m, "max GPU freq: %d MHz\n",
1096 			   intel_gpu_freq(dev_priv, rps->max_freq));
1097 
1098 		seq_printf(m, "min GPU freq: %d MHz\n",
1099 			   intel_gpu_freq(dev_priv, rps->min_freq));
1100 
1101 		seq_printf(m, "idle GPU freq: %d MHz\n",
1102 			   intel_gpu_freq(dev_priv, rps->idle_freq));
1103 
1104 		seq_printf(m,
1105 			   "efficient (RPe) frequency: %d MHz\n",
1106 			   intel_gpu_freq(dev_priv, rps->efficient_freq));
1107 		mutex_unlock(&dev_priv->pcu_lock);
1108 	} else if (INTEL_GEN(dev_priv) >= 6) {
1109 		u32 rp_state_limits;
1110 		u32 gt_perf_status;
1111 		u32 rp_state_cap;
1112 		u32 rpmodectl, rpinclimit, rpdeclimit;
1113 		u32 rpstat, cagf, reqf;
1114 		u32 rpupei, rpcurup, rpprevup;
1115 		u32 rpdownei, rpcurdown, rpprevdown;
1116 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1117 		int max_freq;
1118 
1119 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1120 		if (IS_GEN9_LP(dev_priv)) {
1121 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1122 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1123 		} else {
1124 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1125 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1126 		}
1127 
1128 		/* RPSTAT1 is in the GT power well */
1129 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1130 
1131 		reqf = I915_READ(GEN6_RPNSWREQ);
1132 		if (INTEL_GEN(dev_priv) >= 9)
1133 			reqf >>= 23;
1134 		else {
1135 			reqf &= ~GEN6_TURBO_DISABLE;
1136 			if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1137 				reqf >>= 24;
1138 			else
1139 				reqf >>= 25;
1140 		}
1141 		reqf = intel_gpu_freq(dev_priv, reqf);
1142 
1143 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1144 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1145 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1146 
1147 		rpstat = I915_READ(GEN6_RPSTAT1);
1148 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1149 		rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1150 		rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1151 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1152 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1153 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1154 		if (INTEL_GEN(dev_priv) >= 9)
1155 			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1156 		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1157 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1158 		else
1159 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1160 		cagf = intel_gpu_freq(dev_priv, cagf);
1161 
1162 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1163 
1164 		if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1165 			pm_ier = I915_READ(GEN6_PMIER);
1166 			pm_imr = I915_READ(GEN6_PMIMR);
1167 			pm_isr = I915_READ(GEN6_PMISR);
1168 			pm_iir = I915_READ(GEN6_PMIIR);
1169 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1170 		} else {
1171 			pm_ier = I915_READ(GEN8_GT_IER(2));
1172 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1173 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1174 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1175 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1176 		}
1177 		seq_printf(m, "Video Turbo Mode: %s\n",
1178 			   yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
1179 		seq_printf(m, "HW control enabled: %s\n",
1180 			   yesno(rpmodectl & GEN6_RP_ENABLE));
1181 		seq_printf(m, "SW control enabled: %s\n",
1182 			   yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
1183 				  GEN6_RP_MEDIA_SW_MODE));
1184 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1185 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1186 		seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
1187 			   rps->pm_intrmsk_mbz);
1188 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1189 		seq_printf(m, "Render p-state ratio: %d\n",
1190 			   (gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
1191 		seq_printf(m, "Render p-state VID: %d\n",
1192 			   gt_perf_status & 0xff);
1193 		seq_printf(m, "Render p-state limit: %d\n",
1194 			   rp_state_limits & 0xff);
1195 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1196 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1197 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1198 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1199 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1200 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1201 		seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1202 			   rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1203 		seq_printf(m, "RP CUR UP: %d (%dus)\n",
1204 			   rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1205 		seq_printf(m, "RP PREV UP: %d (%dus)\n",
1206 			   rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1207 		seq_printf(m, "Up threshold: %d%%\n", rps->up_threshold);
1208 
1209 		seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1210 			   rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1211 		seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1212 			   rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1213 		seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1214 			   rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1215 		seq_printf(m, "Down threshold: %d%%\n", rps->down_threshold);
1216 
1217 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
1218 			    rp_state_cap >> 16) & 0xff;
1219 		max_freq *= (IS_GEN9_BC(dev_priv) ||
1220 			     IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1221 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1222 			   intel_gpu_freq(dev_priv, max_freq));
1223 
1224 		max_freq = (rp_state_cap & 0xff00) >> 8;
1225 		max_freq *= (IS_GEN9_BC(dev_priv) ||
1226 			     IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1227 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1228 			   intel_gpu_freq(dev_priv, max_freq));
1229 
1230 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
1231 			    rp_state_cap >> 0) & 0xff;
1232 		max_freq *= (IS_GEN9_BC(dev_priv) ||
1233 			     IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1234 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1235 			   intel_gpu_freq(dev_priv, max_freq));
1236 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1237 			   intel_gpu_freq(dev_priv, rps->max_freq));
1238 
1239 		seq_printf(m, "Current freq: %d MHz\n",
1240 			   intel_gpu_freq(dev_priv, rps->cur_freq));
1241 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1242 		seq_printf(m, "Idle freq: %d MHz\n",
1243 			   intel_gpu_freq(dev_priv, rps->idle_freq));
1244 		seq_printf(m, "Min freq: %d MHz\n",
1245 			   intel_gpu_freq(dev_priv, rps->min_freq));
1246 		seq_printf(m, "Boost freq: %d MHz\n",
1247 			   intel_gpu_freq(dev_priv, rps->boost_freq));
1248 		seq_printf(m, "Max freq: %d MHz\n",
1249 			   intel_gpu_freq(dev_priv, rps->max_freq));
1250 		seq_printf(m,
1251 			   "efficient (RPe) frequency: %d MHz\n",
1252 			   intel_gpu_freq(dev_priv, rps->efficient_freq));
1253 	} else {
1254 		seq_puts(m, "no P-state info available\n");
1255 	}
1256 
1257 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
1258 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1259 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1260 
1261 	intel_runtime_pm_put(dev_priv);
1262 	return ret;
1263 }
1264 
1265 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1266 			       struct seq_file *m,
1267 			       struct intel_instdone *instdone)
1268 {
1269 	int slice;
1270 	int subslice;
1271 
1272 	seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1273 		   instdone->instdone);
1274 
1275 	if (INTEL_GEN(dev_priv) <= 3)
1276 		return;
1277 
1278 	seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1279 		   instdone->slice_common);
1280 
1281 	if (INTEL_GEN(dev_priv) <= 6)
1282 		return;
1283 
1284 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1285 		seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1286 			   slice, subslice, instdone->sampler[slice][subslice]);
1287 
1288 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1289 		seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1290 			   slice, subslice, instdone->row[slice][subslice]);
1291 }
1292 
1293 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1294 {
1295 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1296 	struct intel_engine_cs *engine;
1297 	u64 acthd[I915_NUM_ENGINES];
1298 	u32 seqno[I915_NUM_ENGINES];
1299 	struct intel_instdone instdone;
1300 	enum intel_engine_id id;
1301 
1302 	if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1303 		seq_puts(m, "Wedged\n");
1304 	if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
1305 		seq_puts(m, "Reset in progress: struct_mutex backoff\n");
1306 	if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
1307 		seq_puts(m, "Reset in progress: reset handoff to waiter\n");
1308 	if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1309 		seq_puts(m, "Waiter holding struct mutex\n");
1310 	if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1311 		seq_puts(m, "struct_mutex blocked for reset\n");
1312 
1313 	if (!i915_modparams.enable_hangcheck) {
1314 		seq_puts(m, "Hangcheck disabled\n");
1315 		return 0;
1316 	}
1317 
1318 	intel_runtime_pm_get(dev_priv);
1319 
1320 	for_each_engine(engine, dev_priv, id) {
1321 		acthd[id] = intel_engine_get_active_head(engine);
1322 		seqno[id] = intel_engine_get_seqno(engine);
1323 	}
1324 
1325 	intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1326 
1327 	intel_runtime_pm_put(dev_priv);
1328 
1329 	if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
1330 		seq_printf(m, "Hangcheck active, timer fires in %dms\n",
1331 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1332 					    jiffies));
1333 	else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
1334 		seq_puts(m, "Hangcheck active, work pending\n");
1335 	else
1336 		seq_puts(m, "Hangcheck inactive\n");
1337 
1338 	seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
1339 
1340 	for_each_engine(engine, dev_priv, id) {
1341 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
1342 		struct rb_node *rb;
1343 
1344 		seq_printf(m, "%s:\n", engine->name);
1345 		seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
1346 			   engine->hangcheck.seqno, seqno[id],
1347 			   intel_engine_last_submit(engine),
1348 			   engine->timeline->inflight_seqnos);
1349 		seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
1350 			   yesno(intel_engine_has_waiter(engine)),
1351 			   yesno(test_bit(engine->id,
1352 					  &dev_priv->gpu_error.missed_irq_rings)),
1353 			   yesno(engine->hangcheck.stalled));
1354 
1355 		spin_lock_irq(&b->rb_lock);
1356 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1357 			struct intel_wait *w = rb_entry(rb, typeof(*w), node);
1358 
1359 			seq_printf(m, "\t%s [%d] waiting for %x\n",
1360 				   w->tsk->comm, w->tsk->pid, w->seqno);
1361 		}
1362 		spin_unlock_irq(&b->rb_lock);
1363 
1364 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1365 			   (long long)engine->hangcheck.acthd,
1366 			   (long long)acthd[id]);
1367 		seq_printf(m, "\taction = %s(%d) %d ms ago\n",
1368 			   hangcheck_action_to_str(engine->hangcheck.action),
1369 			   engine->hangcheck.action,
1370 			   jiffies_to_msecs(jiffies -
1371 					    engine->hangcheck.action_timestamp));
1372 
1373 		if (engine->id == RCS) {
1374 			seq_puts(m, "\tinstdone read =\n");
1375 
1376 			i915_instdone_info(dev_priv, m, &instdone);
1377 
1378 			seq_puts(m, "\tinstdone accu =\n");
1379 
1380 			i915_instdone_info(dev_priv, m,
1381 					   &engine->hangcheck.instdone);
1382 		}
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 static int i915_reset_info(struct seq_file *m, void *unused)
1389 {
1390 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1391 	struct i915_gpu_error *error = &dev_priv->gpu_error;
1392 	struct intel_engine_cs *engine;
1393 	enum intel_engine_id id;
1394 
1395 	seq_printf(m, "full gpu reset = %u\n", i915_reset_count(error));
1396 
1397 	for_each_engine(engine, dev_priv, id) {
1398 		seq_printf(m, "%s = %u\n", engine->name,
1399 			   i915_reset_engine_count(error, engine));
1400 	}
1401 
1402 	return 0;
1403 }
1404 
1405 static int ironlake_drpc_info(struct seq_file *m)
1406 {
1407 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1408 	u32 rgvmodectl, rstdbyctl;
1409 	u16 crstandvid;
1410 
1411 	rgvmodectl = I915_READ(MEMMODECTL);
1412 	rstdbyctl = I915_READ(RSTDBYCTL);
1413 	crstandvid = I915_READ16(CRSTANDVID);
1414 
1415 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1416 	seq_printf(m, "Boost freq: %d\n",
1417 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1418 		   MEMMODE_BOOST_FREQ_SHIFT);
1419 	seq_printf(m, "HW control enabled: %s\n",
1420 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1421 	seq_printf(m, "SW control enabled: %s\n",
1422 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1423 	seq_printf(m, "Gated voltage change: %s\n",
1424 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1425 	seq_printf(m, "Starting frequency: P%d\n",
1426 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1427 	seq_printf(m, "Max P-state: P%d\n",
1428 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1429 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1430 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1431 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1432 	seq_printf(m, "Render standby enabled: %s\n",
1433 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1434 	seq_puts(m, "Current RS state: ");
1435 	switch (rstdbyctl & RSX_STATUS_MASK) {
1436 	case RSX_STATUS_ON:
1437 		seq_puts(m, "on\n");
1438 		break;
1439 	case RSX_STATUS_RC1:
1440 		seq_puts(m, "RC1\n");
1441 		break;
1442 	case RSX_STATUS_RC1E:
1443 		seq_puts(m, "RC1E\n");
1444 		break;
1445 	case RSX_STATUS_RS1:
1446 		seq_puts(m, "RS1\n");
1447 		break;
1448 	case RSX_STATUS_RS2:
1449 		seq_puts(m, "RS2 (RC6)\n");
1450 		break;
1451 	case RSX_STATUS_RS3:
1452 		seq_puts(m, "RC3 (RC6+)\n");
1453 		break;
1454 	default:
1455 		seq_puts(m, "unknown\n");
1456 		break;
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 static int i915_forcewake_domains(struct seq_file *m, void *data)
1463 {
1464 	struct drm_i915_private *i915 = node_to_i915(m->private);
1465 	struct intel_uncore_forcewake_domain *fw_domain;
1466 	unsigned int tmp;
1467 
1468 	seq_printf(m, "user.bypass_count = %u\n",
1469 		   i915->uncore.user_forcewake.count);
1470 
1471 	for_each_fw_domain(fw_domain, i915, tmp)
1472 		seq_printf(m, "%s.wake_count = %u\n",
1473 			   intel_uncore_forcewake_domain_to_str(fw_domain->id),
1474 			   READ_ONCE(fw_domain->wake_count));
1475 
1476 	return 0;
1477 }
1478 
1479 static void print_rc6_res(struct seq_file *m,
1480 			  const char *title,
1481 			  const i915_reg_t reg)
1482 {
1483 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1484 
1485 	seq_printf(m, "%s %u (%llu us)\n",
1486 		   title, I915_READ(reg),
1487 		   intel_rc6_residency_us(dev_priv, reg));
1488 }
1489 
1490 static int vlv_drpc_info(struct seq_file *m)
1491 {
1492 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1493 	u32 rcctl1, pw_status;
1494 
1495 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1496 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1497 
1498 	seq_printf(m, "RC6 Enabled: %s\n",
1499 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1500 					GEN6_RC_CTL_EI_MODE(1))));
1501 	seq_printf(m, "Render Power Well: %s\n",
1502 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1503 	seq_printf(m, "Media Power Well: %s\n",
1504 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1505 
1506 	print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
1507 	print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
1508 
1509 	return i915_forcewake_domains(m, NULL);
1510 }
1511 
1512 static int gen6_drpc_info(struct seq_file *m)
1513 {
1514 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1515 	u32 gt_core_status, rcctl1, rc6vids = 0;
1516 	u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1517 	unsigned forcewake_count;
1518 	int count = 0;
1519 
1520 	forcewake_count = READ_ONCE(dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count);
1521 	if (forcewake_count) {
1522 		seq_puts(m, "RC information inaccurate because somebody "
1523 			    "holds a forcewake reference \n");
1524 	} else {
1525 		/* NB: we cannot use forcewake, else we read the wrong values */
1526 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1527 			udelay(10);
1528 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1529 	}
1530 
1531 	gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1532 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1533 
1534 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1535 	if (INTEL_GEN(dev_priv) >= 9) {
1536 		gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1537 		gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1538 	}
1539 
1540 	mutex_lock(&dev_priv->pcu_lock);
1541 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1542 	mutex_unlock(&dev_priv->pcu_lock);
1543 
1544 	seq_printf(m, "RC1e Enabled: %s\n",
1545 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1546 	seq_printf(m, "RC6 Enabled: %s\n",
1547 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1548 	if (INTEL_GEN(dev_priv) >= 9) {
1549 		seq_printf(m, "Render Well Gating Enabled: %s\n",
1550 			yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1551 		seq_printf(m, "Media Well Gating Enabled: %s\n",
1552 			yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1553 	}
1554 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1555 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1556 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1557 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1558 	seq_puts(m, "Current RC state: ");
1559 	switch (gt_core_status & GEN6_RCn_MASK) {
1560 	case GEN6_RC0:
1561 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1562 			seq_puts(m, "Core Power Down\n");
1563 		else
1564 			seq_puts(m, "on\n");
1565 		break;
1566 	case GEN6_RC3:
1567 		seq_puts(m, "RC3\n");
1568 		break;
1569 	case GEN6_RC6:
1570 		seq_puts(m, "RC6\n");
1571 		break;
1572 	case GEN6_RC7:
1573 		seq_puts(m, "RC7\n");
1574 		break;
1575 	default:
1576 		seq_puts(m, "Unknown\n");
1577 		break;
1578 	}
1579 
1580 	seq_printf(m, "Core Power Down: %s\n",
1581 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1582 	if (INTEL_GEN(dev_priv) >= 9) {
1583 		seq_printf(m, "Render Power Well: %s\n",
1584 			(gen9_powergate_status &
1585 			 GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1586 		seq_printf(m, "Media Power Well: %s\n",
1587 			(gen9_powergate_status &
1588 			 GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1589 	}
1590 
1591 	/* Not exactly sure what this is */
1592 	print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
1593 		      GEN6_GT_GFX_RC6_LOCKED);
1594 	print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
1595 	print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
1596 	print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
1597 
1598 	seq_printf(m, "RC6   voltage: %dmV\n",
1599 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1600 	seq_printf(m, "RC6+  voltage: %dmV\n",
1601 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1602 	seq_printf(m, "RC6++ voltage: %dmV\n",
1603 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1604 	return i915_forcewake_domains(m, NULL);
1605 }
1606 
1607 static int i915_drpc_info(struct seq_file *m, void *unused)
1608 {
1609 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1610 	int err;
1611 
1612 	intel_runtime_pm_get(dev_priv);
1613 
1614 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1615 		err = vlv_drpc_info(m);
1616 	else if (INTEL_GEN(dev_priv) >= 6)
1617 		err = gen6_drpc_info(m);
1618 	else
1619 		err = ironlake_drpc_info(m);
1620 
1621 	intel_runtime_pm_put(dev_priv);
1622 
1623 	return err;
1624 }
1625 
1626 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1627 {
1628 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1629 
1630 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1631 		   dev_priv->fb_tracking.busy_bits);
1632 
1633 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1634 		   dev_priv->fb_tracking.flip_bits);
1635 
1636 	return 0;
1637 }
1638 
1639 static int i915_fbc_status(struct seq_file *m, void *unused)
1640 {
1641 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1642 
1643 	if (!HAS_FBC(dev_priv)) {
1644 		seq_puts(m, "FBC unsupported on this chipset\n");
1645 		return 0;
1646 	}
1647 
1648 	intel_runtime_pm_get(dev_priv);
1649 	mutex_lock(&dev_priv->fbc.lock);
1650 
1651 	if (intel_fbc_is_active(dev_priv))
1652 		seq_puts(m, "FBC enabled\n");
1653 	else
1654 		seq_printf(m, "FBC disabled: %s\n",
1655 			   dev_priv->fbc.no_fbc_reason);
1656 
1657 	if (intel_fbc_is_active(dev_priv)) {
1658 		u32 mask;
1659 
1660 		if (INTEL_GEN(dev_priv) >= 8)
1661 			mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK;
1662 		else if (INTEL_GEN(dev_priv) >= 7)
1663 			mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK;
1664 		else if (INTEL_GEN(dev_priv) >= 5)
1665 			mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK;
1666 		else if (IS_G4X(dev_priv))
1667 			mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK;
1668 		else
1669 			mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING |
1670 							FBC_STAT_COMPRESSED);
1671 
1672 		seq_printf(m, "Compressing: %s\n", yesno(mask));
1673 	}
1674 
1675 	mutex_unlock(&dev_priv->fbc.lock);
1676 	intel_runtime_pm_put(dev_priv);
1677 
1678 	return 0;
1679 }
1680 
1681 static int i915_fbc_false_color_get(void *data, u64 *val)
1682 {
1683 	struct drm_i915_private *dev_priv = data;
1684 
1685 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1686 		return -ENODEV;
1687 
1688 	*val = dev_priv->fbc.false_color;
1689 
1690 	return 0;
1691 }
1692 
1693 static int i915_fbc_false_color_set(void *data, u64 val)
1694 {
1695 	struct drm_i915_private *dev_priv = data;
1696 	u32 reg;
1697 
1698 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1699 		return -ENODEV;
1700 
1701 	mutex_lock(&dev_priv->fbc.lock);
1702 
1703 	reg = I915_READ(ILK_DPFC_CONTROL);
1704 	dev_priv->fbc.false_color = val;
1705 
1706 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1707 		   (reg | FBC_CTL_FALSE_COLOR) :
1708 		   (reg & ~FBC_CTL_FALSE_COLOR));
1709 
1710 	mutex_unlock(&dev_priv->fbc.lock);
1711 	return 0;
1712 }
1713 
1714 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops,
1715 			i915_fbc_false_color_get, i915_fbc_false_color_set,
1716 			"%llu\n");
1717 
1718 static int i915_ips_status(struct seq_file *m, void *unused)
1719 {
1720 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1721 
1722 	if (!HAS_IPS(dev_priv)) {
1723 		seq_puts(m, "not supported\n");
1724 		return 0;
1725 	}
1726 
1727 	intel_runtime_pm_get(dev_priv);
1728 
1729 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1730 		   yesno(i915_modparams.enable_ips));
1731 
1732 	if (INTEL_GEN(dev_priv) >= 8) {
1733 		seq_puts(m, "Currently: unknown\n");
1734 	} else {
1735 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1736 			seq_puts(m, "Currently: enabled\n");
1737 		else
1738 			seq_puts(m, "Currently: disabled\n");
1739 	}
1740 
1741 	intel_runtime_pm_put(dev_priv);
1742 
1743 	return 0;
1744 }
1745 
1746 static int i915_sr_status(struct seq_file *m, void *unused)
1747 {
1748 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1749 	bool sr_enabled = false;
1750 
1751 	intel_runtime_pm_get(dev_priv);
1752 	intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1753 
1754 	if (INTEL_GEN(dev_priv) >= 9)
1755 		/* no global SR status; inspect per-plane WM */;
1756 	else if (HAS_PCH_SPLIT(dev_priv))
1757 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1758 	else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
1759 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1760 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1761 	else if (IS_I915GM(dev_priv))
1762 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1763 	else if (IS_PINEVIEW(dev_priv))
1764 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1765 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1766 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1767 
1768 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1769 	intel_runtime_pm_put(dev_priv);
1770 
1771 	seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
1772 
1773 	return 0;
1774 }
1775 
1776 static int i915_emon_status(struct seq_file *m, void *unused)
1777 {
1778 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1779 	struct drm_device *dev = &dev_priv->drm;
1780 	unsigned long temp, chipset, gfx;
1781 	int ret;
1782 
1783 	if (!IS_GEN5(dev_priv))
1784 		return -ENODEV;
1785 
1786 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1787 	if (ret)
1788 		return ret;
1789 
1790 	temp = i915_mch_val(dev_priv);
1791 	chipset = i915_chipset_val(dev_priv);
1792 	gfx = i915_gfx_val(dev_priv);
1793 	mutex_unlock(&dev->struct_mutex);
1794 
1795 	seq_printf(m, "GMCH temp: %ld\n", temp);
1796 	seq_printf(m, "Chipset power: %ld\n", chipset);
1797 	seq_printf(m, "GFX power: %ld\n", gfx);
1798 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1799 
1800 	return 0;
1801 }
1802 
1803 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1804 {
1805 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1806 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1807 	int ret = 0;
1808 	int gpu_freq, ia_freq;
1809 	unsigned int max_gpu_freq, min_gpu_freq;
1810 
1811 	if (!HAS_LLC(dev_priv)) {
1812 		seq_puts(m, "unsupported on this chipset\n");
1813 		return 0;
1814 	}
1815 
1816 	intel_runtime_pm_get(dev_priv);
1817 
1818 	ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
1819 	if (ret)
1820 		goto out;
1821 
1822 	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
1823 		/* Convert GT frequency to 50 HZ units */
1824 		min_gpu_freq = rps->min_freq_softlimit / GEN9_FREQ_SCALER;
1825 		max_gpu_freq = rps->max_freq_softlimit / GEN9_FREQ_SCALER;
1826 	} else {
1827 		min_gpu_freq = rps->min_freq_softlimit;
1828 		max_gpu_freq = rps->max_freq_softlimit;
1829 	}
1830 
1831 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1832 
1833 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1834 		ia_freq = gpu_freq;
1835 		sandybridge_pcode_read(dev_priv,
1836 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1837 				       &ia_freq);
1838 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1839 			   intel_gpu_freq(dev_priv, (gpu_freq *
1840 						     (IS_GEN9_BC(dev_priv) ||
1841 						      IS_CANNONLAKE(dev_priv) ?
1842 						      GEN9_FREQ_SCALER : 1))),
1843 			   ((ia_freq >> 0) & 0xff) * 100,
1844 			   ((ia_freq >> 8) & 0xff) * 100);
1845 	}
1846 
1847 	mutex_unlock(&dev_priv->pcu_lock);
1848 
1849 out:
1850 	intel_runtime_pm_put(dev_priv);
1851 	return ret;
1852 }
1853 
1854 static int i915_opregion(struct seq_file *m, void *unused)
1855 {
1856 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1857 	struct drm_device *dev = &dev_priv->drm;
1858 	struct intel_opregion *opregion = &dev_priv->opregion;
1859 	int ret;
1860 
1861 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1862 	if (ret)
1863 		goto out;
1864 
1865 	if (opregion->header)
1866 		seq_write(m, opregion->header, OPREGION_SIZE);
1867 
1868 	mutex_unlock(&dev->struct_mutex);
1869 
1870 out:
1871 	return 0;
1872 }
1873 
1874 static int i915_vbt(struct seq_file *m, void *unused)
1875 {
1876 	struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1877 
1878 	if (opregion->vbt)
1879 		seq_write(m, opregion->vbt, opregion->vbt_size);
1880 
1881 	return 0;
1882 }
1883 
1884 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1885 {
1886 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1887 	struct drm_device *dev = &dev_priv->drm;
1888 	struct intel_framebuffer *fbdev_fb = NULL;
1889 	struct drm_framebuffer *drm_fb;
1890 	int ret;
1891 
1892 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1893 	if (ret)
1894 		return ret;
1895 
1896 #ifdef CONFIG_DRM_FBDEV_EMULATION
1897 	if (dev_priv->fbdev && dev_priv->fbdev->helper.fb) {
1898 		fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1899 
1900 		seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1901 			   fbdev_fb->base.width,
1902 			   fbdev_fb->base.height,
1903 			   fbdev_fb->base.format->depth,
1904 			   fbdev_fb->base.format->cpp[0] * 8,
1905 			   fbdev_fb->base.modifier,
1906 			   drm_framebuffer_read_refcount(&fbdev_fb->base));
1907 		describe_obj(m, fbdev_fb->obj);
1908 		seq_putc(m, '\n');
1909 	}
1910 #endif
1911 
1912 	mutex_lock(&dev->mode_config.fb_lock);
1913 	drm_for_each_fb(drm_fb, dev) {
1914 		struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1915 		if (fb == fbdev_fb)
1916 			continue;
1917 
1918 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1919 			   fb->base.width,
1920 			   fb->base.height,
1921 			   fb->base.format->depth,
1922 			   fb->base.format->cpp[0] * 8,
1923 			   fb->base.modifier,
1924 			   drm_framebuffer_read_refcount(&fb->base));
1925 		describe_obj(m, fb->obj);
1926 		seq_putc(m, '\n');
1927 	}
1928 	mutex_unlock(&dev->mode_config.fb_lock);
1929 	mutex_unlock(&dev->struct_mutex);
1930 
1931 	return 0;
1932 }
1933 
1934 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1935 {
1936 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u)",
1937 		   ring->space, ring->head, ring->tail);
1938 }
1939 
1940 static int i915_context_status(struct seq_file *m, void *unused)
1941 {
1942 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1943 	struct drm_device *dev = &dev_priv->drm;
1944 	struct intel_engine_cs *engine;
1945 	struct i915_gem_context *ctx;
1946 	enum intel_engine_id id;
1947 	int ret;
1948 
1949 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1950 	if (ret)
1951 		return ret;
1952 
1953 	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1954 		seq_printf(m, "HW context %u ", ctx->hw_id);
1955 		if (ctx->pid) {
1956 			struct task_struct *task;
1957 
1958 			task = get_pid_task(ctx->pid, PIDTYPE_PID);
1959 			if (task) {
1960 				seq_printf(m, "(%s [%d]) ",
1961 					   task->comm, task->pid);
1962 				put_task_struct(task);
1963 			}
1964 		} else if (IS_ERR(ctx->file_priv)) {
1965 			seq_puts(m, "(deleted) ");
1966 		} else {
1967 			seq_puts(m, "(kernel) ");
1968 		}
1969 
1970 		seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1971 		seq_putc(m, '\n');
1972 
1973 		for_each_engine(engine, dev_priv, id) {
1974 			struct intel_context *ce = &ctx->engine[engine->id];
1975 
1976 			seq_printf(m, "%s: ", engine->name);
1977 			seq_putc(m, ce->initialised ? 'I' : 'i');
1978 			if (ce->state)
1979 				describe_obj(m, ce->state->obj);
1980 			if (ce->ring)
1981 				describe_ctx_ring(m, ce->ring);
1982 			seq_putc(m, '\n');
1983 		}
1984 
1985 		seq_putc(m, '\n');
1986 	}
1987 
1988 	mutex_unlock(&dev->struct_mutex);
1989 
1990 	return 0;
1991 }
1992 
1993 static void i915_dump_lrc_obj(struct seq_file *m,
1994 			      struct i915_gem_context *ctx,
1995 			      struct intel_engine_cs *engine)
1996 {
1997 	struct i915_vma *vma = ctx->engine[engine->id].state;
1998 	struct page *page;
1999 	int j;
2000 
2001 	seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2002 
2003 	if (!vma) {
2004 		seq_puts(m, "\tFake context\n");
2005 		return;
2006 	}
2007 
2008 	if (vma->flags & I915_VMA_GLOBAL_BIND)
2009 		seq_printf(m, "\tBound in GGTT at 0x%08x\n",
2010 			   i915_ggtt_offset(vma));
2011 
2012 	if (i915_gem_object_pin_pages(vma->obj)) {
2013 		seq_puts(m, "\tFailed to get pages for context object\n\n");
2014 		return;
2015 	}
2016 
2017 	page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
2018 	if (page) {
2019 		u32 *reg_state = kmap_atomic(page);
2020 
2021 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2022 			seq_printf(m,
2023 				   "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2024 				   j * 4,
2025 				   reg_state[j], reg_state[j + 1],
2026 				   reg_state[j + 2], reg_state[j + 3]);
2027 		}
2028 		kunmap_atomic(reg_state);
2029 	}
2030 
2031 	i915_gem_object_unpin_pages(vma->obj);
2032 	seq_putc(m, '\n');
2033 }
2034 
2035 static int i915_dump_lrc(struct seq_file *m, void *unused)
2036 {
2037 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2038 	struct drm_device *dev = &dev_priv->drm;
2039 	struct intel_engine_cs *engine;
2040 	struct i915_gem_context *ctx;
2041 	enum intel_engine_id id;
2042 	int ret;
2043 
2044 	if (!i915_modparams.enable_execlists) {
2045 		seq_printf(m, "Logical Ring Contexts are disabled\n");
2046 		return 0;
2047 	}
2048 
2049 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2050 	if (ret)
2051 		return ret;
2052 
2053 	list_for_each_entry(ctx, &dev_priv->contexts.list, link)
2054 		for_each_engine(engine, dev_priv, id)
2055 			i915_dump_lrc_obj(m, ctx, engine);
2056 
2057 	mutex_unlock(&dev->struct_mutex);
2058 
2059 	return 0;
2060 }
2061 
2062 static const char *swizzle_string(unsigned swizzle)
2063 {
2064 	switch (swizzle) {
2065 	case I915_BIT_6_SWIZZLE_NONE:
2066 		return "none";
2067 	case I915_BIT_6_SWIZZLE_9:
2068 		return "bit9";
2069 	case I915_BIT_6_SWIZZLE_9_10:
2070 		return "bit9/bit10";
2071 	case I915_BIT_6_SWIZZLE_9_11:
2072 		return "bit9/bit11";
2073 	case I915_BIT_6_SWIZZLE_9_10_11:
2074 		return "bit9/bit10/bit11";
2075 	case I915_BIT_6_SWIZZLE_9_17:
2076 		return "bit9/bit17";
2077 	case I915_BIT_6_SWIZZLE_9_10_17:
2078 		return "bit9/bit10/bit17";
2079 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2080 		return "unknown";
2081 	}
2082 
2083 	return "bug";
2084 }
2085 
2086 static int i915_swizzle_info(struct seq_file *m, void *data)
2087 {
2088 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2089 
2090 	intel_runtime_pm_get(dev_priv);
2091 
2092 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2093 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2094 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2095 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2096 
2097 	if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2098 		seq_printf(m, "DDC = 0x%08x\n",
2099 			   I915_READ(DCC));
2100 		seq_printf(m, "DDC2 = 0x%08x\n",
2101 			   I915_READ(DCC2));
2102 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2103 			   I915_READ16(C0DRB3));
2104 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2105 			   I915_READ16(C1DRB3));
2106 	} else if (INTEL_GEN(dev_priv) >= 6) {
2107 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2108 			   I915_READ(MAD_DIMM_C0));
2109 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2110 			   I915_READ(MAD_DIMM_C1));
2111 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2112 			   I915_READ(MAD_DIMM_C2));
2113 		seq_printf(m, "TILECTL = 0x%08x\n",
2114 			   I915_READ(TILECTL));
2115 		if (INTEL_GEN(dev_priv) >= 8)
2116 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2117 				   I915_READ(GAMTARBMODE));
2118 		else
2119 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2120 				   I915_READ(ARB_MODE));
2121 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2122 			   I915_READ(DISP_ARB_CTL));
2123 	}
2124 
2125 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2126 		seq_puts(m, "L-shaped memory detected\n");
2127 
2128 	intel_runtime_pm_put(dev_priv);
2129 
2130 	return 0;
2131 }
2132 
2133 static int per_file_ctx(int id, void *ptr, void *data)
2134 {
2135 	struct i915_gem_context *ctx = ptr;
2136 	struct seq_file *m = data;
2137 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2138 
2139 	if (!ppgtt) {
2140 		seq_printf(m, "  no ppgtt for context %d\n",
2141 			   ctx->user_handle);
2142 		return 0;
2143 	}
2144 
2145 	if (i915_gem_context_is_default(ctx))
2146 		seq_puts(m, "  default context:\n");
2147 	else
2148 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2149 	ppgtt->debug_dump(ppgtt, m);
2150 
2151 	return 0;
2152 }
2153 
2154 static void gen8_ppgtt_info(struct seq_file *m,
2155 			    struct drm_i915_private *dev_priv)
2156 {
2157 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2158 	struct intel_engine_cs *engine;
2159 	enum intel_engine_id id;
2160 	int i;
2161 
2162 	if (!ppgtt)
2163 		return;
2164 
2165 	for_each_engine(engine, dev_priv, id) {
2166 		seq_printf(m, "%s\n", engine->name);
2167 		for (i = 0; i < 4; i++) {
2168 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2169 			pdp <<= 32;
2170 			pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2171 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2172 		}
2173 	}
2174 }
2175 
2176 static void gen6_ppgtt_info(struct seq_file *m,
2177 			    struct drm_i915_private *dev_priv)
2178 {
2179 	struct intel_engine_cs *engine;
2180 	enum intel_engine_id id;
2181 
2182 	if (IS_GEN6(dev_priv))
2183 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2184 
2185 	for_each_engine(engine, dev_priv, id) {
2186 		seq_printf(m, "%s\n", engine->name);
2187 		if (IS_GEN7(dev_priv))
2188 			seq_printf(m, "GFX_MODE: 0x%08x\n",
2189 				   I915_READ(RING_MODE_GEN7(engine)));
2190 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2191 			   I915_READ(RING_PP_DIR_BASE(engine)));
2192 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2193 			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
2194 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2195 			   I915_READ(RING_PP_DIR_DCLV(engine)));
2196 	}
2197 	if (dev_priv->mm.aliasing_ppgtt) {
2198 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2199 
2200 		seq_puts(m, "aliasing PPGTT:\n");
2201 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2202 
2203 		ppgtt->debug_dump(ppgtt, m);
2204 	}
2205 
2206 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2207 }
2208 
2209 static int i915_ppgtt_info(struct seq_file *m, void *data)
2210 {
2211 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2212 	struct drm_device *dev = &dev_priv->drm;
2213 	struct drm_file *file;
2214 	int ret;
2215 
2216 	mutex_lock(&dev->filelist_mutex);
2217 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2218 	if (ret)
2219 		goto out_unlock;
2220 
2221 	intel_runtime_pm_get(dev_priv);
2222 
2223 	if (INTEL_GEN(dev_priv) >= 8)
2224 		gen8_ppgtt_info(m, dev_priv);
2225 	else if (INTEL_GEN(dev_priv) >= 6)
2226 		gen6_ppgtt_info(m, dev_priv);
2227 
2228 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2229 		struct drm_i915_file_private *file_priv = file->driver_priv;
2230 		struct task_struct *task;
2231 
2232 		task = get_pid_task(file->pid, PIDTYPE_PID);
2233 		if (!task) {
2234 			ret = -ESRCH;
2235 			goto out_rpm;
2236 		}
2237 		seq_printf(m, "\nproc: %s\n", task->comm);
2238 		put_task_struct(task);
2239 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2240 			     (void *)(unsigned long)m);
2241 	}
2242 
2243 out_rpm:
2244 	intel_runtime_pm_put(dev_priv);
2245 	mutex_unlock(&dev->struct_mutex);
2246 out_unlock:
2247 	mutex_unlock(&dev->filelist_mutex);
2248 	return ret;
2249 }
2250 
2251 static int count_irq_waiters(struct drm_i915_private *i915)
2252 {
2253 	struct intel_engine_cs *engine;
2254 	enum intel_engine_id id;
2255 	int count = 0;
2256 
2257 	for_each_engine(engine, i915, id)
2258 		count += intel_engine_has_waiter(engine);
2259 
2260 	return count;
2261 }
2262 
2263 static const char *rps_power_to_str(unsigned int power)
2264 {
2265 	static const char * const strings[] = {
2266 		[LOW_POWER] = "low power",
2267 		[BETWEEN] = "mixed",
2268 		[HIGH_POWER] = "high power",
2269 	};
2270 
2271 	if (power >= ARRAY_SIZE(strings) || !strings[power])
2272 		return "unknown";
2273 
2274 	return strings[power];
2275 }
2276 
2277 static int i915_rps_boost_info(struct seq_file *m, void *data)
2278 {
2279 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2280 	struct drm_device *dev = &dev_priv->drm;
2281 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
2282 	struct drm_file *file;
2283 
2284 	seq_printf(m, "RPS enabled? %d\n", rps->enabled);
2285 	seq_printf(m, "GPU busy? %s [%d requests]\n",
2286 		   yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
2287 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2288 	seq_printf(m, "Boosts outstanding? %d\n",
2289 		   atomic_read(&rps->num_waiters));
2290 	seq_printf(m, "Frequency requested %d\n",
2291 		   intel_gpu_freq(dev_priv, rps->cur_freq));
2292 	seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2293 		   intel_gpu_freq(dev_priv, rps->min_freq),
2294 		   intel_gpu_freq(dev_priv, rps->min_freq_softlimit),
2295 		   intel_gpu_freq(dev_priv, rps->max_freq_softlimit),
2296 		   intel_gpu_freq(dev_priv, rps->max_freq));
2297 	seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2298 		   intel_gpu_freq(dev_priv, rps->idle_freq),
2299 		   intel_gpu_freq(dev_priv, rps->efficient_freq),
2300 		   intel_gpu_freq(dev_priv, rps->boost_freq));
2301 
2302 	mutex_lock(&dev->filelist_mutex);
2303 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2304 		struct drm_i915_file_private *file_priv = file->driver_priv;
2305 		struct task_struct *task;
2306 
2307 		rcu_read_lock();
2308 		task = pid_task(file->pid, PIDTYPE_PID);
2309 		seq_printf(m, "%s [%d]: %d boosts\n",
2310 			   task ? task->comm : "<unknown>",
2311 			   task ? task->pid : -1,
2312 			   atomic_read(&file_priv->rps_client.boosts));
2313 		rcu_read_unlock();
2314 	}
2315 	seq_printf(m, "Kernel (anonymous) boosts: %d\n",
2316 		   atomic_read(&rps->boosts));
2317 	mutex_unlock(&dev->filelist_mutex);
2318 
2319 	if (INTEL_GEN(dev_priv) >= 6 &&
2320 	    rps->enabled &&
2321 	    dev_priv->gt.active_requests) {
2322 		u32 rpup, rpupei;
2323 		u32 rpdown, rpdownei;
2324 
2325 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2326 		rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2327 		rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2328 		rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2329 		rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2330 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2331 
2332 		seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2333 			   rps_power_to_str(rps->power));
2334 		seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2335 			   rpup && rpupei ? 100 * rpup / rpupei : 0,
2336 			   rps->up_threshold);
2337 		seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2338 			   rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
2339 			   rps->down_threshold);
2340 	} else {
2341 		seq_puts(m, "\nRPS Autotuning inactive\n");
2342 	}
2343 
2344 	return 0;
2345 }
2346 
2347 static int i915_llc(struct seq_file *m, void *data)
2348 {
2349 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2350 	const bool edram = INTEL_GEN(dev_priv) > 8;
2351 
2352 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2353 	seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2354 		   intel_uncore_edram_size(dev_priv)/1024/1024);
2355 
2356 	return 0;
2357 }
2358 
2359 static int i915_huc_load_status_info(struct seq_file *m, void *data)
2360 {
2361 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2362 	struct drm_printer p;
2363 
2364 	if (!HAS_HUC_UCODE(dev_priv))
2365 		return 0;
2366 
2367 	p = drm_seq_file_printer(m);
2368 	intel_uc_fw_dump(&dev_priv->huc.fw, &p);
2369 
2370 	intel_runtime_pm_get(dev_priv);
2371 	seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
2372 	intel_runtime_pm_put(dev_priv);
2373 
2374 	return 0;
2375 }
2376 
2377 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2378 {
2379 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2380 	struct drm_printer p;
2381 	u32 tmp, i;
2382 
2383 	if (!HAS_GUC_UCODE(dev_priv))
2384 		return 0;
2385 
2386 	p = drm_seq_file_printer(m);
2387 	intel_uc_fw_dump(&dev_priv->guc.fw, &p);
2388 
2389 	intel_runtime_pm_get(dev_priv);
2390 
2391 	tmp = I915_READ(GUC_STATUS);
2392 
2393 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2394 	seq_printf(m, "\tBootrom status = 0x%x\n",
2395 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2396 	seq_printf(m, "\tuKernel status = 0x%x\n",
2397 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2398 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2399 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2400 	seq_puts(m, "\nScratch registers:\n");
2401 	for (i = 0; i < 16; i++)
2402 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2403 
2404 	intel_runtime_pm_put(dev_priv);
2405 
2406 	return 0;
2407 }
2408 
2409 static void i915_guc_log_info(struct seq_file *m,
2410 			      struct drm_i915_private *dev_priv)
2411 {
2412 	struct intel_guc *guc = &dev_priv->guc;
2413 
2414 	seq_puts(m, "\nGuC logging stats:\n");
2415 
2416 	seq_printf(m, "\tISR:   flush count %10u, overflow count %10u\n",
2417 		   guc->log.flush_count[GUC_ISR_LOG_BUFFER],
2418 		   guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
2419 
2420 	seq_printf(m, "\tDPC:   flush count %10u, overflow count %10u\n",
2421 		   guc->log.flush_count[GUC_DPC_LOG_BUFFER],
2422 		   guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
2423 
2424 	seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
2425 		   guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
2426 		   guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
2427 
2428 	seq_printf(m, "\tTotal flush interrupt count: %u\n",
2429 		   guc->log.flush_interrupt_count);
2430 
2431 	seq_printf(m, "\tCapture miss count: %u\n",
2432 		   guc->log.capture_miss_count);
2433 }
2434 
2435 static void i915_guc_client_info(struct seq_file *m,
2436 				 struct drm_i915_private *dev_priv,
2437 				 struct i915_guc_client *client)
2438 {
2439 	struct intel_engine_cs *engine;
2440 	enum intel_engine_id id;
2441 	uint64_t tot = 0;
2442 
2443 	seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
2444 		client->priority, client->stage_id, client->proc_desc_offset);
2445 	seq_printf(m, "\tDoorbell id %d, offset: 0x%lx\n",
2446 		client->doorbell_id, client->doorbell_offset);
2447 
2448 	for_each_engine(engine, dev_priv, id) {
2449 		u64 submissions = client->submissions[id];
2450 		tot += submissions;
2451 		seq_printf(m, "\tSubmissions: %llu %s\n",
2452 				submissions, engine->name);
2453 	}
2454 	seq_printf(m, "\tTotal: %llu\n", tot);
2455 }
2456 
2457 static bool check_guc_submission(struct seq_file *m)
2458 {
2459 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2460 	const struct intel_guc *guc = &dev_priv->guc;
2461 
2462 	if (!guc->execbuf_client) {
2463 		seq_printf(m, "GuC submission %s\n",
2464 			   HAS_GUC_SCHED(dev_priv) ?
2465 			   "disabled" :
2466 			   "not supported");
2467 		return false;
2468 	}
2469 
2470 	return true;
2471 }
2472 
2473 static int i915_guc_info(struct seq_file *m, void *data)
2474 {
2475 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2476 	const struct intel_guc *guc = &dev_priv->guc;
2477 
2478 	if (!check_guc_submission(m))
2479 		return 0;
2480 
2481 	seq_printf(m, "Doorbell map:\n");
2482 	seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
2483 	seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
2484 
2485 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
2486 	i915_guc_client_info(m, dev_priv, guc->execbuf_client);
2487 
2488 	i915_guc_log_info(m, dev_priv);
2489 
2490 	/* Add more as required ... */
2491 
2492 	return 0;
2493 }
2494 
2495 static int i915_guc_stage_pool(struct seq_file *m, void *data)
2496 {
2497 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2498 	const struct intel_guc *guc = &dev_priv->guc;
2499 	struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
2500 	struct i915_guc_client *client = guc->execbuf_client;
2501 	unsigned int tmp;
2502 	int index;
2503 
2504 	if (!check_guc_submission(m))
2505 		return 0;
2506 
2507 	for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
2508 		struct intel_engine_cs *engine;
2509 
2510 		if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
2511 			continue;
2512 
2513 		seq_printf(m, "GuC stage descriptor %u:\n", index);
2514 		seq_printf(m, "\tIndex: %u\n", desc->stage_id);
2515 		seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
2516 		seq_printf(m, "\tPriority: %d\n", desc->priority);
2517 		seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
2518 		seq_printf(m, "\tEngines used: 0x%x\n",
2519 			   desc->engines_used);
2520 		seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
2521 			   desc->db_trigger_phy,
2522 			   desc->db_trigger_cpu,
2523 			   desc->db_trigger_uk);
2524 		seq_printf(m, "\tProcess descriptor: 0x%x\n",
2525 			   desc->process_desc);
2526 		seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
2527 			   desc->wq_addr, desc->wq_size);
2528 		seq_putc(m, '\n');
2529 
2530 		for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
2531 			u32 guc_engine_id = engine->guc_id;
2532 			struct guc_execlist_context *lrc =
2533 						&desc->lrc[guc_engine_id];
2534 
2535 			seq_printf(m, "\t%s LRC:\n", engine->name);
2536 			seq_printf(m, "\t\tContext desc: 0x%x\n",
2537 				   lrc->context_desc);
2538 			seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
2539 			seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
2540 			seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
2541 			seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
2542 			seq_putc(m, '\n');
2543 		}
2544 	}
2545 
2546 	return 0;
2547 }
2548 
2549 static int i915_guc_log_dump(struct seq_file *m, void *data)
2550 {
2551 	struct drm_info_node *node = m->private;
2552 	struct drm_i915_private *dev_priv = node_to_i915(node);
2553 	bool dump_load_err = !!node->info_ent->data;
2554 	struct drm_i915_gem_object *obj = NULL;
2555 	u32 *log;
2556 	int i = 0;
2557 
2558 	if (dump_load_err)
2559 		obj = dev_priv->guc.load_err_log;
2560 	else if (dev_priv->guc.log.vma)
2561 		obj = dev_priv->guc.log.vma->obj;
2562 
2563 	if (!obj)
2564 		return 0;
2565 
2566 	log = i915_gem_object_pin_map(obj, I915_MAP_WC);
2567 	if (IS_ERR(log)) {
2568 		DRM_DEBUG("Failed to pin object\n");
2569 		seq_puts(m, "(log data unaccessible)\n");
2570 		return PTR_ERR(log);
2571 	}
2572 
2573 	for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
2574 		seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2575 			   *(log + i), *(log + i + 1),
2576 			   *(log + i + 2), *(log + i + 3));
2577 
2578 	seq_putc(m, '\n');
2579 
2580 	i915_gem_object_unpin_map(obj);
2581 
2582 	return 0;
2583 }
2584 
2585 static int i915_guc_log_control_get(void *data, u64 *val)
2586 {
2587 	struct drm_i915_private *dev_priv = data;
2588 
2589 	if (!dev_priv->guc.log.vma)
2590 		return -EINVAL;
2591 
2592 	*val = i915_modparams.guc_log_level;
2593 
2594 	return 0;
2595 }
2596 
2597 static int i915_guc_log_control_set(void *data, u64 val)
2598 {
2599 	struct drm_i915_private *dev_priv = data;
2600 	int ret;
2601 
2602 	if (!dev_priv->guc.log.vma)
2603 		return -EINVAL;
2604 
2605 	ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
2606 	if (ret)
2607 		return ret;
2608 
2609 	intel_runtime_pm_get(dev_priv);
2610 	ret = i915_guc_log_control(dev_priv, val);
2611 	intel_runtime_pm_put(dev_priv);
2612 
2613 	mutex_unlock(&dev_priv->drm.struct_mutex);
2614 	return ret;
2615 }
2616 
2617 DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
2618 			i915_guc_log_control_get, i915_guc_log_control_set,
2619 			"%lld\n");
2620 
2621 static const char *psr2_live_status(u32 val)
2622 {
2623 	static const char * const live_status[] = {
2624 		"IDLE",
2625 		"CAPTURE",
2626 		"CAPTURE_FS",
2627 		"SLEEP",
2628 		"BUFON_FW",
2629 		"ML_UP",
2630 		"SU_STANDBY",
2631 		"FAST_SLEEP",
2632 		"DEEP_SLEEP",
2633 		"BUF_ON",
2634 		"TG_ON"
2635 	};
2636 
2637 	val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
2638 	if (val < ARRAY_SIZE(live_status))
2639 		return live_status[val];
2640 
2641 	return "unknown";
2642 }
2643 
2644 static int i915_edp_psr_status(struct seq_file *m, void *data)
2645 {
2646 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2647 	u32 psrperf = 0;
2648 	u32 stat[3];
2649 	enum pipe pipe;
2650 	bool enabled = false;
2651 
2652 	if (!HAS_PSR(dev_priv)) {
2653 		seq_puts(m, "PSR not supported\n");
2654 		return 0;
2655 	}
2656 
2657 	intel_runtime_pm_get(dev_priv);
2658 
2659 	mutex_lock(&dev_priv->psr.lock);
2660 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2661 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2662 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2663 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2664 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2665 		   dev_priv->psr.busy_frontbuffer_bits);
2666 	seq_printf(m, "Re-enable work scheduled: %s\n",
2667 		   yesno(work_busy(&dev_priv->psr.work.work)));
2668 
2669 	if (HAS_DDI(dev_priv)) {
2670 		if (dev_priv->psr.psr2_support)
2671 			enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
2672 		else
2673 			enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2674 	} else {
2675 		for_each_pipe(dev_priv, pipe) {
2676 			enum transcoder cpu_transcoder =
2677 				intel_pipe_to_cpu_transcoder(dev_priv, pipe);
2678 			enum intel_display_power_domain power_domain;
2679 
2680 			power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
2681 			if (!intel_display_power_get_if_enabled(dev_priv,
2682 								power_domain))
2683 				continue;
2684 
2685 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2686 				VLV_EDP_PSR_CURR_STATE_MASK;
2687 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2688 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2689 				enabled = true;
2690 
2691 			intel_display_power_put(dev_priv, power_domain);
2692 		}
2693 	}
2694 
2695 	seq_printf(m, "Main link in standby mode: %s\n",
2696 		   yesno(dev_priv->psr.link_standby));
2697 
2698 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2699 
2700 	if (!HAS_DDI(dev_priv))
2701 		for_each_pipe(dev_priv, pipe) {
2702 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2703 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2704 				seq_printf(m, " pipe %c", pipe_name(pipe));
2705 		}
2706 	seq_puts(m, "\n");
2707 
2708 	/*
2709 	 * VLV/CHV PSR has no kind of performance counter
2710 	 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2711 	 */
2712 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2713 		psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2714 			EDP_PSR_PERF_CNT_MASK;
2715 
2716 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2717 	}
2718 	if (dev_priv->psr.psr2_support) {
2719 		u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
2720 
2721 		seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
2722 			   psr2, psr2_live_status(psr2));
2723 	}
2724 	mutex_unlock(&dev_priv->psr.lock);
2725 
2726 	intel_runtime_pm_put(dev_priv);
2727 	return 0;
2728 }
2729 
2730 static int i915_sink_crc(struct seq_file *m, void *data)
2731 {
2732 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2733 	struct drm_device *dev = &dev_priv->drm;
2734 	struct intel_connector *connector;
2735 	struct drm_connector_list_iter conn_iter;
2736 	struct intel_dp *intel_dp = NULL;
2737 	int ret;
2738 	u8 crc[6];
2739 
2740 	drm_modeset_lock_all(dev);
2741 	drm_connector_list_iter_begin(dev, &conn_iter);
2742 	for_each_intel_connector_iter(connector, &conn_iter) {
2743 		struct drm_crtc *crtc;
2744 
2745 		if (!connector->base.state->best_encoder)
2746 			continue;
2747 
2748 		crtc = connector->base.state->crtc;
2749 		if (!crtc->state->active)
2750 			continue;
2751 
2752 		if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2753 			continue;
2754 
2755 		intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2756 
2757 		ret = intel_dp_sink_crc(intel_dp, crc);
2758 		if (ret)
2759 			goto out;
2760 
2761 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2762 			   crc[0], crc[1], crc[2],
2763 			   crc[3], crc[4], crc[5]);
2764 		goto out;
2765 	}
2766 	ret = -ENODEV;
2767 out:
2768 	drm_connector_list_iter_end(&conn_iter);
2769 	drm_modeset_unlock_all(dev);
2770 	return ret;
2771 }
2772 
2773 static int i915_energy_uJ(struct seq_file *m, void *data)
2774 {
2775 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2776 	unsigned long long power;
2777 	u32 units;
2778 
2779 	if (INTEL_GEN(dev_priv) < 6)
2780 		return -ENODEV;
2781 
2782 	intel_runtime_pm_get(dev_priv);
2783 
2784 	if (rdmsrl_safe(MSR_RAPL_POWER_UNIT, &power)) {
2785 		intel_runtime_pm_put(dev_priv);
2786 		return -ENODEV;
2787 	}
2788 
2789 	units = (power & 0x1f00) >> 8;
2790 	power = I915_READ(MCH_SECP_NRG_STTS);
2791 	power = (1000000 * power) >> units; /* convert to uJ */
2792 
2793 	intel_runtime_pm_put(dev_priv);
2794 
2795 	seq_printf(m, "%llu", power);
2796 
2797 	return 0;
2798 }
2799 
2800 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2801 {
2802 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2803 	struct pci_dev *pdev = dev_priv->drm.pdev;
2804 
2805 	if (!HAS_RUNTIME_PM(dev_priv))
2806 		seq_puts(m, "Runtime power management not supported\n");
2807 
2808 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2809 	seq_printf(m, "IRQs disabled: %s\n",
2810 		   yesno(!intel_irqs_enabled(dev_priv)));
2811 #ifdef CONFIG_PM
2812 	seq_printf(m, "Usage count: %d\n",
2813 		   atomic_read(&dev_priv->drm.dev->power.usage_count));
2814 #else
2815 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2816 #endif
2817 	seq_printf(m, "PCI device power state: %s [%d]\n",
2818 		   pci_power_name(pdev->current_state),
2819 		   pdev->current_state);
2820 
2821 	return 0;
2822 }
2823 
2824 static int i915_power_domain_info(struct seq_file *m, void *unused)
2825 {
2826 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2827 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2828 	int i;
2829 
2830 	mutex_lock(&power_domains->lock);
2831 
2832 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2833 	for (i = 0; i < power_domains->power_well_count; i++) {
2834 		struct i915_power_well *power_well;
2835 		enum intel_display_power_domain power_domain;
2836 
2837 		power_well = &power_domains->power_wells[i];
2838 		seq_printf(m, "%-25s %d\n", power_well->name,
2839 			   power_well->count);
2840 
2841 		for_each_power_domain(power_domain, power_well->domains)
2842 			seq_printf(m, "  %-23s %d\n",
2843 				 intel_display_power_domain_str(power_domain),
2844 				 power_domains->domain_use_count[power_domain]);
2845 	}
2846 
2847 	mutex_unlock(&power_domains->lock);
2848 
2849 	return 0;
2850 }
2851 
2852 static int i915_dmc_info(struct seq_file *m, void *unused)
2853 {
2854 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2855 	struct intel_csr *csr;
2856 
2857 	if (!HAS_CSR(dev_priv)) {
2858 		seq_puts(m, "not supported\n");
2859 		return 0;
2860 	}
2861 
2862 	csr = &dev_priv->csr;
2863 
2864 	intel_runtime_pm_get(dev_priv);
2865 
2866 	seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2867 	seq_printf(m, "path: %s\n", csr->fw_path);
2868 
2869 	if (!csr->dmc_payload)
2870 		goto out;
2871 
2872 	seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2873 		   CSR_VERSION_MINOR(csr->version));
2874 
2875 	if (IS_KABYLAKE(dev_priv) ||
2876 	    (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6))) {
2877 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2878 			   I915_READ(SKL_CSR_DC3_DC5_COUNT));
2879 		seq_printf(m, "DC5 -> DC6 count: %d\n",
2880 			   I915_READ(SKL_CSR_DC5_DC6_COUNT));
2881 	} else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2882 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2883 			   I915_READ(BXT_CSR_DC3_DC5_COUNT));
2884 	}
2885 
2886 out:
2887 	seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2888 	seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2889 	seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2890 
2891 	intel_runtime_pm_put(dev_priv);
2892 
2893 	return 0;
2894 }
2895 
2896 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2897 				 struct drm_display_mode *mode)
2898 {
2899 	int i;
2900 
2901 	for (i = 0; i < tabs; i++)
2902 		seq_putc(m, '\t');
2903 
2904 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2905 		   mode->base.id, mode->name,
2906 		   mode->vrefresh, mode->clock,
2907 		   mode->hdisplay, mode->hsync_start,
2908 		   mode->hsync_end, mode->htotal,
2909 		   mode->vdisplay, mode->vsync_start,
2910 		   mode->vsync_end, mode->vtotal,
2911 		   mode->type, mode->flags);
2912 }
2913 
2914 static void intel_encoder_info(struct seq_file *m,
2915 			       struct intel_crtc *intel_crtc,
2916 			       struct intel_encoder *intel_encoder)
2917 {
2918 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2919 	struct drm_device *dev = &dev_priv->drm;
2920 	struct drm_crtc *crtc = &intel_crtc->base;
2921 	struct intel_connector *intel_connector;
2922 	struct drm_encoder *encoder;
2923 
2924 	encoder = &intel_encoder->base;
2925 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2926 		   encoder->base.id, encoder->name);
2927 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2928 		struct drm_connector *connector = &intel_connector->base;
2929 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2930 			   connector->base.id,
2931 			   connector->name,
2932 			   drm_get_connector_status_name(connector->status));
2933 		if (connector->status == connector_status_connected) {
2934 			struct drm_display_mode *mode = &crtc->mode;
2935 			seq_printf(m, ", mode:\n");
2936 			intel_seq_print_mode(m, 2, mode);
2937 		} else {
2938 			seq_putc(m, '\n');
2939 		}
2940 	}
2941 }
2942 
2943 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2944 {
2945 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2946 	struct drm_device *dev = &dev_priv->drm;
2947 	struct drm_crtc *crtc = &intel_crtc->base;
2948 	struct intel_encoder *intel_encoder;
2949 	struct drm_plane_state *plane_state = crtc->primary->state;
2950 	struct drm_framebuffer *fb = plane_state->fb;
2951 
2952 	if (fb)
2953 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2954 			   fb->base.id, plane_state->src_x >> 16,
2955 			   plane_state->src_y >> 16, fb->width, fb->height);
2956 	else
2957 		seq_puts(m, "\tprimary plane disabled\n");
2958 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2959 		intel_encoder_info(m, intel_crtc, intel_encoder);
2960 }
2961 
2962 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2963 {
2964 	struct drm_display_mode *mode = panel->fixed_mode;
2965 
2966 	seq_printf(m, "\tfixed mode:\n");
2967 	intel_seq_print_mode(m, 2, mode);
2968 }
2969 
2970 static void intel_dp_info(struct seq_file *m,
2971 			  struct intel_connector *intel_connector)
2972 {
2973 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2974 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2975 
2976 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2977 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2978 	if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2979 		intel_panel_info(m, &intel_connector->panel);
2980 
2981 	drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2982 				&intel_dp->aux);
2983 }
2984 
2985 static void intel_dp_mst_info(struct seq_file *m,
2986 			  struct intel_connector *intel_connector)
2987 {
2988 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2989 	struct intel_dp_mst_encoder *intel_mst =
2990 		enc_to_mst(&intel_encoder->base);
2991 	struct intel_digital_port *intel_dig_port = intel_mst->primary;
2992 	struct intel_dp *intel_dp = &intel_dig_port->dp;
2993 	bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2994 					intel_connector->port);
2995 
2996 	seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2997 }
2998 
2999 static void intel_hdmi_info(struct seq_file *m,
3000 			    struct intel_connector *intel_connector)
3001 {
3002 	struct intel_encoder *intel_encoder = intel_connector->encoder;
3003 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
3004 
3005 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
3006 }
3007 
3008 static void intel_lvds_info(struct seq_file *m,
3009 			    struct intel_connector *intel_connector)
3010 {
3011 	intel_panel_info(m, &intel_connector->panel);
3012 }
3013 
3014 static void intel_connector_info(struct seq_file *m,
3015 				 struct drm_connector *connector)
3016 {
3017 	struct intel_connector *intel_connector = to_intel_connector(connector);
3018 	struct intel_encoder *intel_encoder = intel_connector->encoder;
3019 	struct drm_display_mode *mode;
3020 
3021 	seq_printf(m, "connector %d: type %s, status: %s\n",
3022 		   connector->base.id, connector->name,
3023 		   drm_get_connector_status_name(connector->status));
3024 	if (connector->status == connector_status_connected) {
3025 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
3026 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
3027 			   connector->display_info.width_mm,
3028 			   connector->display_info.height_mm);
3029 		seq_printf(m, "\tsubpixel order: %s\n",
3030 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
3031 		seq_printf(m, "\tCEA rev: %d\n",
3032 			   connector->display_info.cea_rev);
3033 	}
3034 
3035 	if (!intel_encoder)
3036 		return;
3037 
3038 	switch (connector->connector_type) {
3039 	case DRM_MODE_CONNECTOR_DisplayPort:
3040 	case DRM_MODE_CONNECTOR_eDP:
3041 		if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
3042 			intel_dp_mst_info(m, intel_connector);
3043 		else
3044 			intel_dp_info(m, intel_connector);
3045 		break;
3046 	case DRM_MODE_CONNECTOR_LVDS:
3047 		if (intel_encoder->type == INTEL_OUTPUT_LVDS)
3048 			intel_lvds_info(m, intel_connector);
3049 		break;
3050 	case DRM_MODE_CONNECTOR_HDMIA:
3051 		if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
3052 		    intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
3053 			intel_hdmi_info(m, intel_connector);
3054 		break;
3055 	default:
3056 		break;
3057 	}
3058 
3059 	seq_printf(m, "\tmodes:\n");
3060 	list_for_each_entry(mode, &connector->modes, head)
3061 		intel_seq_print_mode(m, 2, mode);
3062 }
3063 
3064 static const char *plane_type(enum drm_plane_type type)
3065 {
3066 	switch (type) {
3067 	case DRM_PLANE_TYPE_OVERLAY:
3068 		return "OVL";
3069 	case DRM_PLANE_TYPE_PRIMARY:
3070 		return "PRI";
3071 	case DRM_PLANE_TYPE_CURSOR:
3072 		return "CUR";
3073 	/*
3074 	 * Deliberately omitting default: to generate compiler warnings
3075 	 * when a new drm_plane_type gets added.
3076 	 */
3077 	}
3078 
3079 	return "unknown";
3080 }
3081 
3082 static const char *plane_rotation(unsigned int rotation)
3083 {
3084 	static char buf[48];
3085 	/*
3086 	 * According to doc only one DRM_MODE_ROTATE_ is allowed but this
3087 	 * will print them all to visualize if the values are misused
3088 	 */
3089 	snprintf(buf, sizeof(buf),
3090 		 "%s%s%s%s%s%s(0x%08x)",
3091 		 (rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
3092 		 (rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
3093 		 (rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
3094 		 (rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
3095 		 (rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
3096 		 (rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
3097 		 rotation);
3098 
3099 	return buf;
3100 }
3101 
3102 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3103 {
3104 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3105 	struct drm_device *dev = &dev_priv->drm;
3106 	struct intel_plane *intel_plane;
3107 
3108 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3109 		struct drm_plane_state *state;
3110 		struct drm_plane *plane = &intel_plane->base;
3111 		struct drm_format_name_buf format_name;
3112 
3113 		if (!plane->state) {
3114 			seq_puts(m, "plane->state is NULL!\n");
3115 			continue;
3116 		}
3117 
3118 		state = plane->state;
3119 
3120 		if (state->fb) {
3121 			drm_get_format_name(state->fb->format->format,
3122 					    &format_name);
3123 		} else {
3124 			sprintf(format_name.str, "N/A");
3125 		}
3126 
3127 		seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3128 			   plane->base.id,
3129 			   plane_type(intel_plane->base.type),
3130 			   state->crtc_x, state->crtc_y,
3131 			   state->crtc_w, state->crtc_h,
3132 			   (state->src_x >> 16),
3133 			   ((state->src_x & 0xffff) * 15625) >> 10,
3134 			   (state->src_y >> 16),
3135 			   ((state->src_y & 0xffff) * 15625) >> 10,
3136 			   (state->src_w >> 16),
3137 			   ((state->src_w & 0xffff) * 15625) >> 10,
3138 			   (state->src_h >> 16),
3139 			   ((state->src_h & 0xffff) * 15625) >> 10,
3140 			   format_name.str,
3141 			   plane_rotation(state->rotation));
3142 	}
3143 }
3144 
3145 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3146 {
3147 	struct intel_crtc_state *pipe_config;
3148 	int num_scalers = intel_crtc->num_scalers;
3149 	int i;
3150 
3151 	pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3152 
3153 	/* Not all platformas have a scaler */
3154 	if (num_scalers) {
3155 		seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3156 			   num_scalers,
3157 			   pipe_config->scaler_state.scaler_users,
3158 			   pipe_config->scaler_state.scaler_id);
3159 
3160 		for (i = 0; i < num_scalers; i++) {
3161 			struct intel_scaler *sc =
3162 					&pipe_config->scaler_state.scalers[i];
3163 
3164 			seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3165 				   i, yesno(sc->in_use), sc->mode);
3166 		}
3167 		seq_puts(m, "\n");
3168 	} else {
3169 		seq_puts(m, "\tNo scalers available on this platform\n");
3170 	}
3171 }
3172 
3173 static int i915_display_info(struct seq_file *m, void *unused)
3174 {
3175 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3176 	struct drm_device *dev = &dev_priv->drm;
3177 	struct intel_crtc *crtc;
3178 	struct drm_connector *connector;
3179 	struct drm_connector_list_iter conn_iter;
3180 
3181 	intel_runtime_pm_get(dev_priv);
3182 	seq_printf(m, "CRTC info\n");
3183 	seq_printf(m, "---------\n");
3184 	for_each_intel_crtc(dev, crtc) {
3185 		struct intel_crtc_state *pipe_config;
3186 
3187 		drm_modeset_lock(&crtc->base.mutex, NULL);
3188 		pipe_config = to_intel_crtc_state(crtc->base.state);
3189 
3190 		seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3191 			   crtc->base.base.id, pipe_name(crtc->pipe),
3192 			   yesno(pipe_config->base.active),
3193 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3194 			   yesno(pipe_config->dither), pipe_config->pipe_bpp);
3195 
3196 		if (pipe_config->base.active) {
3197 			struct intel_plane *cursor =
3198 				to_intel_plane(crtc->base.cursor);
3199 
3200 			intel_crtc_info(m, crtc);
3201 
3202 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
3203 				   yesno(cursor->base.state->visible),
3204 				   cursor->base.state->crtc_x,
3205 				   cursor->base.state->crtc_y,
3206 				   cursor->base.state->crtc_w,
3207 				   cursor->base.state->crtc_h,
3208 				   cursor->cursor.base);
3209 			intel_scaler_info(m, crtc);
3210 			intel_plane_info(m, crtc);
3211 		}
3212 
3213 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3214 			   yesno(!crtc->cpu_fifo_underrun_disabled),
3215 			   yesno(!crtc->pch_fifo_underrun_disabled));
3216 		drm_modeset_unlock(&crtc->base.mutex);
3217 	}
3218 
3219 	seq_printf(m, "\n");
3220 	seq_printf(m, "Connector info\n");
3221 	seq_printf(m, "--------------\n");
3222 	mutex_lock(&dev->mode_config.mutex);
3223 	drm_connector_list_iter_begin(dev, &conn_iter);
3224 	drm_for_each_connector_iter(connector, &conn_iter)
3225 		intel_connector_info(m, connector);
3226 	drm_connector_list_iter_end(&conn_iter);
3227 	mutex_unlock(&dev->mode_config.mutex);
3228 
3229 	intel_runtime_pm_put(dev_priv);
3230 
3231 	return 0;
3232 }
3233 
3234 static int i915_engine_info(struct seq_file *m, void *unused)
3235 {
3236 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3237 	struct intel_engine_cs *engine;
3238 	enum intel_engine_id id;
3239 	struct drm_printer p;
3240 
3241 	intel_runtime_pm_get(dev_priv);
3242 
3243 	seq_printf(m, "GT awake? %s\n",
3244 		   yesno(dev_priv->gt.awake));
3245 	seq_printf(m, "Global active requests: %d\n",
3246 		   dev_priv->gt.active_requests);
3247 
3248 	p = drm_seq_file_printer(m);
3249 	for_each_engine(engine, dev_priv, id)
3250 		intel_engine_dump(engine, &p);
3251 
3252 	intel_runtime_pm_put(dev_priv);
3253 
3254 	return 0;
3255 }
3256 
3257 static int i915_shrinker_info(struct seq_file *m, void *unused)
3258 {
3259 	struct drm_i915_private *i915 = node_to_i915(m->private);
3260 
3261 	seq_printf(m, "seeks = %d\n", i915->mm.shrinker.seeks);
3262 	seq_printf(m, "batch = %lu\n", i915->mm.shrinker.batch);
3263 
3264 	return 0;
3265 }
3266 
3267 static int i915_semaphore_status(struct seq_file *m, void *unused)
3268 {
3269 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3270 	struct drm_device *dev = &dev_priv->drm;
3271 	struct intel_engine_cs *engine;
3272 	int num_rings = INTEL_INFO(dev_priv)->num_rings;
3273 	enum intel_engine_id id;
3274 	int j, ret;
3275 
3276 	if (!i915_modparams.semaphores) {
3277 		seq_puts(m, "Semaphores are disabled\n");
3278 		return 0;
3279 	}
3280 
3281 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3282 	if (ret)
3283 		return ret;
3284 	intel_runtime_pm_get(dev_priv);
3285 
3286 	if (IS_BROADWELL(dev_priv)) {
3287 		struct page *page;
3288 		uint64_t *seqno;
3289 
3290 		page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3291 
3292 		seqno = (uint64_t *)kmap_atomic(page);
3293 		for_each_engine(engine, dev_priv, id) {
3294 			uint64_t offset;
3295 
3296 			seq_printf(m, "%s\n", engine->name);
3297 
3298 			seq_puts(m, "  Last signal:");
3299 			for (j = 0; j < num_rings; j++) {
3300 				offset = id * I915_NUM_ENGINES + j;
3301 				seq_printf(m, "0x%08llx (0x%02llx) ",
3302 					   seqno[offset], offset * 8);
3303 			}
3304 			seq_putc(m, '\n');
3305 
3306 			seq_puts(m, "  Last wait:  ");
3307 			for (j = 0; j < num_rings; j++) {
3308 				offset = id + (j * I915_NUM_ENGINES);
3309 				seq_printf(m, "0x%08llx (0x%02llx) ",
3310 					   seqno[offset], offset * 8);
3311 			}
3312 			seq_putc(m, '\n');
3313 
3314 		}
3315 		kunmap_atomic(seqno);
3316 	} else {
3317 		seq_puts(m, "  Last signal:");
3318 		for_each_engine(engine, dev_priv, id)
3319 			for (j = 0; j < num_rings; j++)
3320 				seq_printf(m, "0x%08x\n",
3321 					   I915_READ(engine->semaphore.mbox.signal[j]));
3322 		seq_putc(m, '\n');
3323 	}
3324 
3325 	intel_runtime_pm_put(dev_priv);
3326 	mutex_unlock(&dev->struct_mutex);
3327 	return 0;
3328 }
3329 
3330 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3331 {
3332 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3333 	struct drm_device *dev = &dev_priv->drm;
3334 	int i;
3335 
3336 	drm_modeset_lock_all(dev);
3337 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3338 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3339 
3340 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3341 		seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3342 			   pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
3343 		seq_printf(m, " tracked hardware state:\n");
3344 		seq_printf(m, " dpll:    0x%08x\n", pll->state.hw_state.dpll);
3345 		seq_printf(m, " dpll_md: 0x%08x\n",
3346 			   pll->state.hw_state.dpll_md);
3347 		seq_printf(m, " fp0:     0x%08x\n", pll->state.hw_state.fp0);
3348 		seq_printf(m, " fp1:     0x%08x\n", pll->state.hw_state.fp1);
3349 		seq_printf(m, " wrpll:   0x%08x\n", pll->state.hw_state.wrpll);
3350 	}
3351 	drm_modeset_unlock_all(dev);
3352 
3353 	return 0;
3354 }
3355 
3356 static int i915_wa_registers(struct seq_file *m, void *unused)
3357 {
3358 	int i;
3359 	int ret;
3360 	struct intel_engine_cs *engine;
3361 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3362 	struct drm_device *dev = &dev_priv->drm;
3363 	struct i915_workarounds *workarounds = &dev_priv->workarounds;
3364 	enum intel_engine_id id;
3365 
3366 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3367 	if (ret)
3368 		return ret;
3369 
3370 	intel_runtime_pm_get(dev_priv);
3371 
3372 	seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3373 	for_each_engine(engine, dev_priv, id)
3374 		seq_printf(m, "HW whitelist count for %s: %d\n",
3375 			   engine->name, workarounds->hw_whitelist_count[id]);
3376 	for (i = 0; i < workarounds->count; ++i) {
3377 		i915_reg_t addr;
3378 		u32 mask, value, read;
3379 		bool ok;
3380 
3381 		addr = workarounds->reg[i].addr;
3382 		mask = workarounds->reg[i].mask;
3383 		value = workarounds->reg[i].value;
3384 		read = I915_READ(addr);
3385 		ok = (value & mask) == (read & mask);
3386 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3387 			   i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3388 	}
3389 
3390 	intel_runtime_pm_put(dev_priv);
3391 	mutex_unlock(&dev->struct_mutex);
3392 
3393 	return 0;
3394 }
3395 
3396 static int i915_ipc_status_show(struct seq_file *m, void *data)
3397 {
3398 	struct drm_i915_private *dev_priv = m->private;
3399 
3400 	seq_printf(m, "Isochronous Priority Control: %s\n",
3401 			yesno(dev_priv->ipc_enabled));
3402 	return 0;
3403 }
3404 
3405 static int i915_ipc_status_open(struct inode *inode, struct file *file)
3406 {
3407 	struct drm_i915_private *dev_priv = inode->i_private;
3408 
3409 	if (!HAS_IPC(dev_priv))
3410 		return -ENODEV;
3411 
3412 	return single_open(file, i915_ipc_status_show, dev_priv);
3413 }
3414 
3415 static ssize_t i915_ipc_status_write(struct file *file, const char __user *ubuf,
3416 				     size_t len, loff_t *offp)
3417 {
3418 	struct seq_file *m = file->private_data;
3419 	struct drm_i915_private *dev_priv = m->private;
3420 	int ret;
3421 	bool enable;
3422 
3423 	ret = kstrtobool_from_user(ubuf, len, &enable);
3424 	if (ret < 0)
3425 		return ret;
3426 
3427 	intel_runtime_pm_get(dev_priv);
3428 	if (!dev_priv->ipc_enabled && enable)
3429 		DRM_INFO("Enabling IPC: WM will be proper only after next commit\n");
3430 	dev_priv->wm.distrust_bios_wm = true;
3431 	dev_priv->ipc_enabled = enable;
3432 	intel_enable_ipc(dev_priv);
3433 	intel_runtime_pm_put(dev_priv);
3434 
3435 	return len;
3436 }
3437 
3438 static const struct file_operations i915_ipc_status_fops = {
3439 	.owner = THIS_MODULE,
3440 	.open = i915_ipc_status_open,
3441 	.read = seq_read,
3442 	.llseek = seq_lseek,
3443 	.release = single_release,
3444 	.write = i915_ipc_status_write
3445 };
3446 
3447 static int i915_ddb_info(struct seq_file *m, void *unused)
3448 {
3449 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3450 	struct drm_device *dev = &dev_priv->drm;
3451 	struct skl_ddb_allocation *ddb;
3452 	struct skl_ddb_entry *entry;
3453 	enum pipe pipe;
3454 	int plane;
3455 
3456 	if (INTEL_GEN(dev_priv) < 9)
3457 		return 0;
3458 
3459 	drm_modeset_lock_all(dev);
3460 
3461 	ddb = &dev_priv->wm.skl_hw.ddb;
3462 
3463 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3464 
3465 	for_each_pipe(dev_priv, pipe) {
3466 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3467 
3468 		for_each_universal_plane(dev_priv, pipe, plane) {
3469 			entry = &ddb->plane[pipe][plane];
3470 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3471 				   entry->start, entry->end,
3472 				   skl_ddb_entry_size(entry));
3473 		}
3474 
3475 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3476 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3477 			   entry->end, skl_ddb_entry_size(entry));
3478 	}
3479 
3480 	drm_modeset_unlock_all(dev);
3481 
3482 	return 0;
3483 }
3484 
3485 static void drrs_status_per_crtc(struct seq_file *m,
3486 				 struct drm_device *dev,
3487 				 struct intel_crtc *intel_crtc)
3488 {
3489 	struct drm_i915_private *dev_priv = to_i915(dev);
3490 	struct i915_drrs *drrs = &dev_priv->drrs;
3491 	int vrefresh = 0;
3492 	struct drm_connector *connector;
3493 	struct drm_connector_list_iter conn_iter;
3494 
3495 	drm_connector_list_iter_begin(dev, &conn_iter);
3496 	drm_for_each_connector_iter(connector, &conn_iter) {
3497 		if (connector->state->crtc != &intel_crtc->base)
3498 			continue;
3499 
3500 		seq_printf(m, "%s:\n", connector->name);
3501 	}
3502 	drm_connector_list_iter_end(&conn_iter);
3503 
3504 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3505 		seq_puts(m, "\tVBT: DRRS_type: Static");
3506 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3507 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3508 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3509 		seq_puts(m, "\tVBT: DRRS_type: None");
3510 	else
3511 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3512 
3513 	seq_puts(m, "\n\n");
3514 
3515 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3516 		struct intel_panel *panel;
3517 
3518 		mutex_lock(&drrs->mutex);
3519 		/* DRRS Supported */
3520 		seq_puts(m, "\tDRRS Supported: Yes\n");
3521 
3522 		/* disable_drrs() will make drrs->dp NULL */
3523 		if (!drrs->dp) {
3524 			seq_puts(m, "Idleness DRRS: Disabled");
3525 			mutex_unlock(&drrs->mutex);
3526 			return;
3527 		}
3528 
3529 		panel = &drrs->dp->attached_connector->panel;
3530 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3531 					drrs->busy_frontbuffer_bits);
3532 
3533 		seq_puts(m, "\n\t\t");
3534 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3535 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3536 			vrefresh = panel->fixed_mode->vrefresh;
3537 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3538 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3539 			vrefresh = panel->downclock_mode->vrefresh;
3540 		} else {
3541 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3542 						drrs->refresh_rate_type);
3543 			mutex_unlock(&drrs->mutex);
3544 			return;
3545 		}
3546 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3547 
3548 		seq_puts(m, "\n\t\t");
3549 		mutex_unlock(&drrs->mutex);
3550 	} else {
3551 		/* DRRS not supported. Print the VBT parameter*/
3552 		seq_puts(m, "\tDRRS Supported : No");
3553 	}
3554 	seq_puts(m, "\n");
3555 }
3556 
3557 static int i915_drrs_status(struct seq_file *m, void *unused)
3558 {
3559 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3560 	struct drm_device *dev = &dev_priv->drm;
3561 	struct intel_crtc *intel_crtc;
3562 	int active_crtc_cnt = 0;
3563 
3564 	drm_modeset_lock_all(dev);
3565 	for_each_intel_crtc(dev, intel_crtc) {
3566 		if (intel_crtc->base.state->active) {
3567 			active_crtc_cnt++;
3568 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3569 
3570 			drrs_status_per_crtc(m, dev, intel_crtc);
3571 		}
3572 	}
3573 	drm_modeset_unlock_all(dev);
3574 
3575 	if (!active_crtc_cnt)
3576 		seq_puts(m, "No active crtc found\n");
3577 
3578 	return 0;
3579 }
3580 
3581 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3582 {
3583 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3584 	struct drm_device *dev = &dev_priv->drm;
3585 	struct intel_encoder *intel_encoder;
3586 	struct intel_digital_port *intel_dig_port;
3587 	struct drm_connector *connector;
3588 	struct drm_connector_list_iter conn_iter;
3589 
3590 	drm_connector_list_iter_begin(dev, &conn_iter);
3591 	drm_for_each_connector_iter(connector, &conn_iter) {
3592 		if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3593 			continue;
3594 
3595 		intel_encoder = intel_attached_encoder(connector);
3596 		if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3597 			continue;
3598 
3599 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3600 		if (!intel_dig_port->dp.can_mst)
3601 			continue;
3602 
3603 		seq_printf(m, "MST Source Port %c\n",
3604 			   port_name(intel_dig_port->port));
3605 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3606 	}
3607 	drm_connector_list_iter_end(&conn_iter);
3608 
3609 	return 0;
3610 }
3611 
3612 static ssize_t i915_displayport_test_active_write(struct file *file,
3613 						  const char __user *ubuf,
3614 						  size_t len, loff_t *offp)
3615 {
3616 	char *input_buffer;
3617 	int status = 0;
3618 	struct drm_device *dev;
3619 	struct drm_connector *connector;
3620 	struct drm_connector_list_iter conn_iter;
3621 	struct intel_dp *intel_dp;
3622 	int val = 0;
3623 
3624 	dev = ((struct seq_file *)file->private_data)->private;
3625 
3626 	if (len == 0)
3627 		return 0;
3628 
3629 	input_buffer = memdup_user_nul(ubuf, len);
3630 	if (IS_ERR(input_buffer))
3631 		return PTR_ERR(input_buffer);
3632 
3633 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
3634 
3635 	drm_connector_list_iter_begin(dev, &conn_iter);
3636 	drm_for_each_connector_iter(connector, &conn_iter) {
3637 		struct intel_encoder *encoder;
3638 
3639 		if (connector->connector_type !=
3640 		    DRM_MODE_CONNECTOR_DisplayPort)
3641 			continue;
3642 
3643 		encoder = to_intel_encoder(connector->encoder);
3644 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3645 			continue;
3646 
3647 		if (encoder && connector->status == connector_status_connected) {
3648 			intel_dp = enc_to_intel_dp(&encoder->base);
3649 			status = kstrtoint(input_buffer, 10, &val);
3650 			if (status < 0)
3651 				break;
3652 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
3653 			/* To prevent erroneous activation of the compliance
3654 			 * testing code, only accept an actual value of 1 here
3655 			 */
3656 			if (val == 1)
3657 				intel_dp->compliance.test_active = 1;
3658 			else
3659 				intel_dp->compliance.test_active = 0;
3660 		}
3661 	}
3662 	drm_connector_list_iter_end(&conn_iter);
3663 	kfree(input_buffer);
3664 	if (status < 0)
3665 		return status;
3666 
3667 	*offp += len;
3668 	return len;
3669 }
3670 
3671 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
3672 {
3673 	struct drm_device *dev = m->private;
3674 	struct drm_connector *connector;
3675 	struct drm_connector_list_iter conn_iter;
3676 	struct intel_dp *intel_dp;
3677 
3678 	drm_connector_list_iter_begin(dev, &conn_iter);
3679 	drm_for_each_connector_iter(connector, &conn_iter) {
3680 		struct intel_encoder *encoder;
3681 
3682 		if (connector->connector_type !=
3683 		    DRM_MODE_CONNECTOR_DisplayPort)
3684 			continue;
3685 
3686 		encoder = to_intel_encoder(connector->encoder);
3687 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3688 			continue;
3689 
3690 		if (encoder && connector->status == connector_status_connected) {
3691 			intel_dp = enc_to_intel_dp(&encoder->base);
3692 			if (intel_dp->compliance.test_active)
3693 				seq_puts(m, "1");
3694 			else
3695 				seq_puts(m, "0");
3696 		} else
3697 			seq_puts(m, "0");
3698 	}
3699 	drm_connector_list_iter_end(&conn_iter);
3700 
3701 	return 0;
3702 }
3703 
3704 static int i915_displayport_test_active_open(struct inode *inode,
3705 					     struct file *file)
3706 {
3707 	struct drm_i915_private *dev_priv = inode->i_private;
3708 
3709 	return single_open(file, i915_displayport_test_active_show,
3710 			   &dev_priv->drm);
3711 }
3712 
3713 static const struct file_operations i915_displayport_test_active_fops = {
3714 	.owner = THIS_MODULE,
3715 	.open = i915_displayport_test_active_open,
3716 	.read = seq_read,
3717 	.llseek = seq_lseek,
3718 	.release = single_release,
3719 	.write = i915_displayport_test_active_write
3720 };
3721 
3722 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
3723 {
3724 	struct drm_device *dev = m->private;
3725 	struct drm_connector *connector;
3726 	struct drm_connector_list_iter conn_iter;
3727 	struct intel_dp *intel_dp;
3728 
3729 	drm_connector_list_iter_begin(dev, &conn_iter);
3730 	drm_for_each_connector_iter(connector, &conn_iter) {
3731 		struct intel_encoder *encoder;
3732 
3733 		if (connector->connector_type !=
3734 		    DRM_MODE_CONNECTOR_DisplayPort)
3735 			continue;
3736 
3737 		encoder = to_intel_encoder(connector->encoder);
3738 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3739 			continue;
3740 
3741 		if (encoder && connector->status == connector_status_connected) {
3742 			intel_dp = enc_to_intel_dp(&encoder->base);
3743 			if (intel_dp->compliance.test_type ==
3744 			    DP_TEST_LINK_EDID_READ)
3745 				seq_printf(m, "%lx",
3746 					   intel_dp->compliance.test_data.edid);
3747 			else if (intel_dp->compliance.test_type ==
3748 				 DP_TEST_LINK_VIDEO_PATTERN) {
3749 				seq_printf(m, "hdisplay: %d\n",
3750 					   intel_dp->compliance.test_data.hdisplay);
3751 				seq_printf(m, "vdisplay: %d\n",
3752 					   intel_dp->compliance.test_data.vdisplay);
3753 				seq_printf(m, "bpc: %u\n",
3754 					   intel_dp->compliance.test_data.bpc);
3755 			}
3756 		} else
3757 			seq_puts(m, "0");
3758 	}
3759 	drm_connector_list_iter_end(&conn_iter);
3760 
3761 	return 0;
3762 }
3763 static int i915_displayport_test_data_open(struct inode *inode,
3764 					   struct file *file)
3765 {
3766 	struct drm_i915_private *dev_priv = inode->i_private;
3767 
3768 	return single_open(file, i915_displayport_test_data_show,
3769 			   &dev_priv->drm);
3770 }
3771 
3772 static const struct file_operations i915_displayport_test_data_fops = {
3773 	.owner = THIS_MODULE,
3774 	.open = i915_displayport_test_data_open,
3775 	.read = seq_read,
3776 	.llseek = seq_lseek,
3777 	.release = single_release
3778 };
3779 
3780 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
3781 {
3782 	struct drm_device *dev = m->private;
3783 	struct drm_connector *connector;
3784 	struct drm_connector_list_iter conn_iter;
3785 	struct intel_dp *intel_dp;
3786 
3787 	drm_connector_list_iter_begin(dev, &conn_iter);
3788 	drm_for_each_connector_iter(connector, &conn_iter) {
3789 		struct intel_encoder *encoder;
3790 
3791 		if (connector->connector_type !=
3792 		    DRM_MODE_CONNECTOR_DisplayPort)
3793 			continue;
3794 
3795 		encoder = to_intel_encoder(connector->encoder);
3796 		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3797 			continue;
3798 
3799 		if (encoder && connector->status == connector_status_connected) {
3800 			intel_dp = enc_to_intel_dp(&encoder->base);
3801 			seq_printf(m, "%02lx", intel_dp->compliance.test_type);
3802 		} else
3803 			seq_puts(m, "0");
3804 	}
3805 	drm_connector_list_iter_end(&conn_iter);
3806 
3807 	return 0;
3808 }
3809 
3810 static int i915_displayport_test_type_open(struct inode *inode,
3811 				       struct file *file)
3812 {
3813 	struct drm_i915_private *dev_priv = inode->i_private;
3814 
3815 	return single_open(file, i915_displayport_test_type_show,
3816 			   &dev_priv->drm);
3817 }
3818 
3819 static const struct file_operations i915_displayport_test_type_fops = {
3820 	.owner = THIS_MODULE,
3821 	.open = i915_displayport_test_type_open,
3822 	.read = seq_read,
3823 	.llseek = seq_lseek,
3824 	.release = single_release
3825 };
3826 
3827 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3828 {
3829 	struct drm_i915_private *dev_priv = m->private;
3830 	struct drm_device *dev = &dev_priv->drm;
3831 	int level;
3832 	int num_levels;
3833 
3834 	if (IS_CHERRYVIEW(dev_priv))
3835 		num_levels = 3;
3836 	else if (IS_VALLEYVIEW(dev_priv))
3837 		num_levels = 1;
3838 	else if (IS_G4X(dev_priv))
3839 		num_levels = 3;
3840 	else
3841 		num_levels = ilk_wm_max_level(dev_priv) + 1;
3842 
3843 	drm_modeset_lock_all(dev);
3844 
3845 	for (level = 0; level < num_levels; level++) {
3846 		unsigned int latency = wm[level];
3847 
3848 		/*
3849 		 * - WM1+ latency values in 0.5us units
3850 		 * - latencies are in us on gen9/vlv/chv
3851 		 */
3852 		if (INTEL_GEN(dev_priv) >= 9 ||
3853 		    IS_VALLEYVIEW(dev_priv) ||
3854 		    IS_CHERRYVIEW(dev_priv) ||
3855 		    IS_G4X(dev_priv))
3856 			latency *= 10;
3857 		else if (level > 0)
3858 			latency *= 5;
3859 
3860 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
3861 			   level, wm[level], latency / 10, latency % 10);
3862 	}
3863 
3864 	drm_modeset_unlock_all(dev);
3865 }
3866 
3867 static int pri_wm_latency_show(struct seq_file *m, void *data)
3868 {
3869 	struct drm_i915_private *dev_priv = m->private;
3870 	const uint16_t *latencies;
3871 
3872 	if (INTEL_GEN(dev_priv) >= 9)
3873 		latencies = dev_priv->wm.skl_latency;
3874 	else
3875 		latencies = dev_priv->wm.pri_latency;
3876 
3877 	wm_latency_show(m, latencies);
3878 
3879 	return 0;
3880 }
3881 
3882 static int spr_wm_latency_show(struct seq_file *m, void *data)
3883 {
3884 	struct drm_i915_private *dev_priv = m->private;
3885 	const uint16_t *latencies;
3886 
3887 	if (INTEL_GEN(dev_priv) >= 9)
3888 		latencies = dev_priv->wm.skl_latency;
3889 	else
3890 		latencies = dev_priv->wm.spr_latency;
3891 
3892 	wm_latency_show(m, latencies);
3893 
3894 	return 0;
3895 }
3896 
3897 static int cur_wm_latency_show(struct seq_file *m, void *data)
3898 {
3899 	struct drm_i915_private *dev_priv = m->private;
3900 	const uint16_t *latencies;
3901 
3902 	if (INTEL_GEN(dev_priv) >= 9)
3903 		latencies = dev_priv->wm.skl_latency;
3904 	else
3905 		latencies = dev_priv->wm.cur_latency;
3906 
3907 	wm_latency_show(m, latencies);
3908 
3909 	return 0;
3910 }
3911 
3912 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3913 {
3914 	struct drm_i915_private *dev_priv = inode->i_private;
3915 
3916 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
3917 		return -ENODEV;
3918 
3919 	return single_open(file, pri_wm_latency_show, dev_priv);
3920 }
3921 
3922 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3923 {
3924 	struct drm_i915_private *dev_priv = inode->i_private;
3925 
3926 	if (HAS_GMCH_DISPLAY(dev_priv))
3927 		return -ENODEV;
3928 
3929 	return single_open(file, spr_wm_latency_show, dev_priv);
3930 }
3931 
3932 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3933 {
3934 	struct drm_i915_private *dev_priv = inode->i_private;
3935 
3936 	if (HAS_GMCH_DISPLAY(dev_priv))
3937 		return -ENODEV;
3938 
3939 	return single_open(file, cur_wm_latency_show, dev_priv);
3940 }
3941 
3942 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3943 				size_t len, loff_t *offp, uint16_t wm[8])
3944 {
3945 	struct seq_file *m = file->private_data;
3946 	struct drm_i915_private *dev_priv = m->private;
3947 	struct drm_device *dev = &dev_priv->drm;
3948 	uint16_t new[8] = { 0 };
3949 	int num_levels;
3950 	int level;
3951 	int ret;
3952 	char tmp[32];
3953 
3954 	if (IS_CHERRYVIEW(dev_priv))
3955 		num_levels = 3;
3956 	else if (IS_VALLEYVIEW(dev_priv))
3957 		num_levels = 1;
3958 	else if (IS_G4X(dev_priv))
3959 		num_levels = 3;
3960 	else
3961 		num_levels = ilk_wm_max_level(dev_priv) + 1;
3962 
3963 	if (len >= sizeof(tmp))
3964 		return -EINVAL;
3965 
3966 	if (copy_from_user(tmp, ubuf, len))
3967 		return -EFAULT;
3968 
3969 	tmp[len] = '\0';
3970 
3971 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
3972 		     &new[0], &new[1], &new[2], &new[3],
3973 		     &new[4], &new[5], &new[6], &new[7]);
3974 	if (ret != num_levels)
3975 		return -EINVAL;
3976 
3977 	drm_modeset_lock_all(dev);
3978 
3979 	for (level = 0; level < num_levels; level++)
3980 		wm[level] = new[level];
3981 
3982 	drm_modeset_unlock_all(dev);
3983 
3984 	return len;
3985 }
3986 
3987 
3988 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3989 				    size_t len, loff_t *offp)
3990 {
3991 	struct seq_file *m = file->private_data;
3992 	struct drm_i915_private *dev_priv = m->private;
3993 	uint16_t *latencies;
3994 
3995 	if (INTEL_GEN(dev_priv) >= 9)
3996 		latencies = dev_priv->wm.skl_latency;
3997 	else
3998 		latencies = dev_priv->wm.pri_latency;
3999 
4000 	return wm_latency_write(file, ubuf, len, offp, latencies);
4001 }
4002 
4003 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4004 				    size_t len, loff_t *offp)
4005 {
4006 	struct seq_file *m = file->private_data;
4007 	struct drm_i915_private *dev_priv = m->private;
4008 	uint16_t *latencies;
4009 
4010 	if (INTEL_GEN(dev_priv) >= 9)
4011 		latencies = dev_priv->wm.skl_latency;
4012 	else
4013 		latencies = dev_priv->wm.spr_latency;
4014 
4015 	return wm_latency_write(file, ubuf, len, offp, latencies);
4016 }
4017 
4018 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4019 				    size_t len, loff_t *offp)
4020 {
4021 	struct seq_file *m = file->private_data;
4022 	struct drm_i915_private *dev_priv = m->private;
4023 	uint16_t *latencies;
4024 
4025 	if (INTEL_GEN(dev_priv) >= 9)
4026 		latencies = dev_priv->wm.skl_latency;
4027 	else
4028 		latencies = dev_priv->wm.cur_latency;
4029 
4030 	return wm_latency_write(file, ubuf, len, offp, latencies);
4031 }
4032 
4033 static const struct file_operations i915_pri_wm_latency_fops = {
4034 	.owner = THIS_MODULE,
4035 	.open = pri_wm_latency_open,
4036 	.read = seq_read,
4037 	.llseek = seq_lseek,
4038 	.release = single_release,
4039 	.write = pri_wm_latency_write
4040 };
4041 
4042 static const struct file_operations i915_spr_wm_latency_fops = {
4043 	.owner = THIS_MODULE,
4044 	.open = spr_wm_latency_open,
4045 	.read = seq_read,
4046 	.llseek = seq_lseek,
4047 	.release = single_release,
4048 	.write = spr_wm_latency_write
4049 };
4050 
4051 static const struct file_operations i915_cur_wm_latency_fops = {
4052 	.owner = THIS_MODULE,
4053 	.open = cur_wm_latency_open,
4054 	.read = seq_read,
4055 	.llseek = seq_lseek,
4056 	.release = single_release,
4057 	.write = cur_wm_latency_write
4058 };
4059 
4060 static int
4061 i915_wedged_get(void *data, u64 *val)
4062 {
4063 	struct drm_i915_private *dev_priv = data;
4064 
4065 	*val = i915_terminally_wedged(&dev_priv->gpu_error);
4066 
4067 	return 0;
4068 }
4069 
4070 static int
4071 i915_wedged_set(void *data, u64 val)
4072 {
4073 	struct drm_i915_private *i915 = data;
4074 	struct intel_engine_cs *engine;
4075 	unsigned int tmp;
4076 
4077 	/*
4078 	 * There is no safeguard against this debugfs entry colliding
4079 	 * with the hangcheck calling same i915_handle_error() in
4080 	 * parallel, causing an explosion. For now we assume that the
4081 	 * test harness is responsible enough not to inject gpu hangs
4082 	 * while it is writing to 'i915_wedged'
4083 	 */
4084 
4085 	if (i915_reset_backoff(&i915->gpu_error))
4086 		return -EAGAIN;
4087 
4088 	for_each_engine_masked(engine, i915, val, tmp) {
4089 		engine->hangcheck.seqno = intel_engine_get_seqno(engine);
4090 		engine->hangcheck.stalled = true;
4091 	}
4092 
4093 	i915_handle_error(i915, val, "Manually setting wedged to %llu", val);
4094 
4095 	wait_on_bit(&i915->gpu_error.flags,
4096 		    I915_RESET_HANDOFF,
4097 		    TASK_UNINTERRUPTIBLE);
4098 
4099 	return 0;
4100 }
4101 
4102 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4103 			i915_wedged_get, i915_wedged_set,
4104 			"%llu\n");
4105 
4106 static int
4107 fault_irq_set(struct drm_i915_private *i915,
4108 	      unsigned long *irq,
4109 	      unsigned long val)
4110 {
4111 	int err;
4112 
4113 	err = mutex_lock_interruptible(&i915->drm.struct_mutex);
4114 	if (err)
4115 		return err;
4116 
4117 	err = i915_gem_wait_for_idle(i915,
4118 				     I915_WAIT_LOCKED |
4119 				     I915_WAIT_INTERRUPTIBLE);
4120 	if (err)
4121 		goto err_unlock;
4122 
4123 	*irq = val;
4124 	mutex_unlock(&i915->drm.struct_mutex);
4125 
4126 	/* Flush idle worker to disarm irq */
4127 	drain_delayed_work(&i915->gt.idle_work);
4128 
4129 	return 0;
4130 
4131 err_unlock:
4132 	mutex_unlock(&i915->drm.struct_mutex);
4133 	return err;
4134 }
4135 
4136 static int
4137 i915_ring_missed_irq_get(void *data, u64 *val)
4138 {
4139 	struct drm_i915_private *dev_priv = data;
4140 
4141 	*val = dev_priv->gpu_error.missed_irq_rings;
4142 	return 0;
4143 }
4144 
4145 static int
4146 i915_ring_missed_irq_set(void *data, u64 val)
4147 {
4148 	struct drm_i915_private *i915 = data;
4149 
4150 	return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
4151 }
4152 
4153 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4154 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4155 			"0x%08llx\n");
4156 
4157 static int
4158 i915_ring_test_irq_get(void *data, u64 *val)
4159 {
4160 	struct drm_i915_private *dev_priv = data;
4161 
4162 	*val = dev_priv->gpu_error.test_irq_rings;
4163 
4164 	return 0;
4165 }
4166 
4167 static int
4168 i915_ring_test_irq_set(void *data, u64 val)
4169 {
4170 	struct drm_i915_private *i915 = data;
4171 
4172 	val &= INTEL_INFO(i915)->ring_mask;
4173 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4174 
4175 	return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
4176 }
4177 
4178 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4179 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4180 			"0x%08llx\n");
4181 
4182 #define DROP_UNBOUND	BIT(0)
4183 #define DROP_BOUND	BIT(1)
4184 #define DROP_RETIRE	BIT(2)
4185 #define DROP_ACTIVE	BIT(3)
4186 #define DROP_FREED	BIT(4)
4187 #define DROP_SHRINK_ALL	BIT(5)
4188 #define DROP_IDLE	BIT(6)
4189 #define DROP_ALL (DROP_UNBOUND	| \
4190 		  DROP_BOUND	| \
4191 		  DROP_RETIRE	| \
4192 		  DROP_ACTIVE	| \
4193 		  DROP_FREED	| \
4194 		  DROP_SHRINK_ALL |\
4195 		  DROP_IDLE)
4196 static int
4197 i915_drop_caches_get(void *data, u64 *val)
4198 {
4199 	*val = DROP_ALL;
4200 
4201 	return 0;
4202 }
4203 
4204 static int
4205 i915_drop_caches_set(void *data, u64 val)
4206 {
4207 	struct drm_i915_private *dev_priv = data;
4208 	struct drm_device *dev = &dev_priv->drm;
4209 	int ret = 0;
4210 
4211 	DRM_DEBUG("Dropping caches: 0x%08llx [0x%08llx]\n",
4212 		  val, val & DROP_ALL);
4213 
4214 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4215 	 * on ioctls on -EAGAIN. */
4216 	if (val & (DROP_ACTIVE | DROP_RETIRE)) {
4217 		ret = mutex_lock_interruptible(&dev->struct_mutex);
4218 		if (ret)
4219 			return ret;
4220 
4221 		if (val & DROP_ACTIVE)
4222 			ret = i915_gem_wait_for_idle(dev_priv,
4223 						     I915_WAIT_INTERRUPTIBLE |
4224 						     I915_WAIT_LOCKED);
4225 
4226 		if (val & DROP_RETIRE)
4227 			i915_gem_retire_requests(dev_priv);
4228 
4229 		mutex_unlock(&dev->struct_mutex);
4230 	}
4231 
4232 	fs_reclaim_acquire(GFP_KERNEL);
4233 	if (val & DROP_BOUND)
4234 		i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_BOUND);
4235 
4236 	if (val & DROP_UNBOUND)
4237 		i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_UNBOUND);
4238 
4239 	if (val & DROP_SHRINK_ALL)
4240 		i915_gem_shrink_all(dev_priv);
4241 	fs_reclaim_release(GFP_KERNEL);
4242 
4243 	if (val & DROP_IDLE)
4244 		drain_delayed_work(&dev_priv->gt.idle_work);
4245 
4246 	if (val & DROP_FREED) {
4247 		synchronize_rcu();
4248 		i915_gem_drain_freed_objects(dev_priv);
4249 	}
4250 
4251 	return ret;
4252 }
4253 
4254 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4255 			i915_drop_caches_get, i915_drop_caches_set,
4256 			"0x%08llx\n");
4257 
4258 static int
4259 i915_max_freq_get(void *data, u64 *val)
4260 {
4261 	struct drm_i915_private *dev_priv = data;
4262 
4263 	if (INTEL_GEN(dev_priv) < 6)
4264 		return -ENODEV;
4265 
4266 	*val = intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.max_freq_softlimit);
4267 	return 0;
4268 }
4269 
4270 static int
4271 i915_max_freq_set(void *data, u64 val)
4272 {
4273 	struct drm_i915_private *dev_priv = data;
4274 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4275 	u32 hw_max, hw_min;
4276 	int ret;
4277 
4278 	if (INTEL_GEN(dev_priv) < 6)
4279 		return -ENODEV;
4280 
4281 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4282 
4283 	ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
4284 	if (ret)
4285 		return ret;
4286 
4287 	/*
4288 	 * Turbo will still be enabled, but won't go above the set value.
4289 	 */
4290 	val = intel_freq_opcode(dev_priv, val);
4291 
4292 	hw_max = rps->max_freq;
4293 	hw_min = rps->min_freq;
4294 
4295 	if (val < hw_min || val > hw_max || val < rps->min_freq_softlimit) {
4296 		mutex_unlock(&dev_priv->pcu_lock);
4297 		return -EINVAL;
4298 	}
4299 
4300 	rps->max_freq_softlimit = val;
4301 
4302 	if (intel_set_rps(dev_priv, val))
4303 		DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4304 
4305 	mutex_unlock(&dev_priv->pcu_lock);
4306 
4307 	return 0;
4308 }
4309 
4310 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4311 			i915_max_freq_get, i915_max_freq_set,
4312 			"%llu\n");
4313 
4314 static int
4315 i915_min_freq_get(void *data, u64 *val)
4316 {
4317 	struct drm_i915_private *dev_priv = data;
4318 
4319 	if (INTEL_GEN(dev_priv) < 6)
4320 		return -ENODEV;
4321 
4322 	*val = intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.min_freq_softlimit);
4323 	return 0;
4324 }
4325 
4326 static int
4327 i915_min_freq_set(void *data, u64 val)
4328 {
4329 	struct drm_i915_private *dev_priv = data;
4330 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4331 	u32 hw_max, hw_min;
4332 	int ret;
4333 
4334 	if (INTEL_GEN(dev_priv) < 6)
4335 		return -ENODEV;
4336 
4337 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4338 
4339 	ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
4340 	if (ret)
4341 		return ret;
4342 
4343 	/*
4344 	 * Turbo will still be enabled, but won't go below the set value.
4345 	 */
4346 	val = intel_freq_opcode(dev_priv, val);
4347 
4348 	hw_max = rps->max_freq;
4349 	hw_min = rps->min_freq;
4350 
4351 	if (val < hw_min ||
4352 	    val > hw_max || val > rps->max_freq_softlimit) {
4353 		mutex_unlock(&dev_priv->pcu_lock);
4354 		return -EINVAL;
4355 	}
4356 
4357 	rps->min_freq_softlimit = val;
4358 
4359 	if (intel_set_rps(dev_priv, val))
4360 		DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4361 
4362 	mutex_unlock(&dev_priv->pcu_lock);
4363 
4364 	return 0;
4365 }
4366 
4367 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4368 			i915_min_freq_get, i915_min_freq_set,
4369 			"%llu\n");
4370 
4371 static int
4372 i915_cache_sharing_get(void *data, u64 *val)
4373 {
4374 	struct drm_i915_private *dev_priv = data;
4375 	u32 snpcr;
4376 
4377 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4378 		return -ENODEV;
4379 
4380 	intel_runtime_pm_get(dev_priv);
4381 
4382 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4383 
4384 	intel_runtime_pm_put(dev_priv);
4385 
4386 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4387 
4388 	return 0;
4389 }
4390 
4391 static int
4392 i915_cache_sharing_set(void *data, u64 val)
4393 {
4394 	struct drm_i915_private *dev_priv = data;
4395 	u32 snpcr;
4396 
4397 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4398 		return -ENODEV;
4399 
4400 	if (val > 3)
4401 		return -EINVAL;
4402 
4403 	intel_runtime_pm_get(dev_priv);
4404 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4405 
4406 	/* Update the cache sharing policy here as well */
4407 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4408 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
4409 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4410 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4411 
4412 	intel_runtime_pm_put(dev_priv);
4413 	return 0;
4414 }
4415 
4416 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4417 			i915_cache_sharing_get, i915_cache_sharing_set,
4418 			"%llu\n");
4419 
4420 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
4421 					  struct sseu_dev_info *sseu)
4422 {
4423 	int ss_max = 2;
4424 	int ss;
4425 	u32 sig1[ss_max], sig2[ss_max];
4426 
4427 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4428 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4429 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4430 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4431 
4432 	for (ss = 0; ss < ss_max; ss++) {
4433 		unsigned int eu_cnt;
4434 
4435 		if (sig1[ss] & CHV_SS_PG_ENABLE)
4436 			/* skip disabled subslice */
4437 			continue;
4438 
4439 		sseu->slice_mask = BIT(0);
4440 		sseu->subslice_mask |= BIT(ss);
4441 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4442 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4443 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4444 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4445 		sseu->eu_total += eu_cnt;
4446 		sseu->eu_per_subslice = max_t(unsigned int,
4447 					      sseu->eu_per_subslice, eu_cnt);
4448 	}
4449 }
4450 
4451 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
4452 				    struct sseu_dev_info *sseu)
4453 {
4454 	int s_max = 3, ss_max = 4;
4455 	int s, ss;
4456 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4457 
4458 	/* BXT has a single slice and at most 3 subslices. */
4459 	if (IS_GEN9_LP(dev_priv)) {
4460 		s_max = 1;
4461 		ss_max = 3;
4462 	}
4463 
4464 	for (s = 0; s < s_max; s++) {
4465 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4466 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4467 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4468 	}
4469 
4470 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4471 		     GEN9_PGCTL_SSA_EU19_ACK |
4472 		     GEN9_PGCTL_SSA_EU210_ACK |
4473 		     GEN9_PGCTL_SSA_EU311_ACK;
4474 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4475 		     GEN9_PGCTL_SSB_EU19_ACK |
4476 		     GEN9_PGCTL_SSB_EU210_ACK |
4477 		     GEN9_PGCTL_SSB_EU311_ACK;
4478 
4479 	for (s = 0; s < s_max; s++) {
4480 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4481 			/* skip disabled slice */
4482 			continue;
4483 
4484 		sseu->slice_mask |= BIT(s);
4485 
4486 		if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv))
4487 			sseu->subslice_mask =
4488 				INTEL_INFO(dev_priv)->sseu.subslice_mask;
4489 
4490 		for (ss = 0; ss < ss_max; ss++) {
4491 			unsigned int eu_cnt;
4492 
4493 			if (IS_GEN9_LP(dev_priv)) {
4494 				if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4495 					/* skip disabled subslice */
4496 					continue;
4497 
4498 				sseu->subslice_mask |= BIT(ss);
4499 			}
4500 
4501 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4502 					       eu_mask[ss%2]);
4503 			sseu->eu_total += eu_cnt;
4504 			sseu->eu_per_subslice = max_t(unsigned int,
4505 						      sseu->eu_per_subslice,
4506 						      eu_cnt);
4507 		}
4508 	}
4509 }
4510 
4511 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
4512 					 struct sseu_dev_info *sseu)
4513 {
4514 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
4515 	int s;
4516 
4517 	sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
4518 
4519 	if (sseu->slice_mask) {
4520 		sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
4521 		sseu->eu_per_subslice =
4522 				INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
4523 		sseu->eu_total = sseu->eu_per_subslice *
4524 				 sseu_subslice_total(sseu);
4525 
4526 		/* subtract fused off EU(s) from enabled slice(s) */
4527 		for (s = 0; s < fls(sseu->slice_mask); s++) {
4528 			u8 subslice_7eu =
4529 				INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
4530 
4531 			sseu->eu_total -= hweight8(subslice_7eu);
4532 		}
4533 	}
4534 }
4535 
4536 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
4537 				 const struct sseu_dev_info *sseu)
4538 {
4539 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4540 	const char *type = is_available_info ? "Available" : "Enabled";
4541 
4542 	seq_printf(m, "  %s Slice Mask: %04x\n", type,
4543 		   sseu->slice_mask);
4544 	seq_printf(m, "  %s Slice Total: %u\n", type,
4545 		   hweight8(sseu->slice_mask));
4546 	seq_printf(m, "  %s Subslice Total: %u\n", type,
4547 		   sseu_subslice_total(sseu));
4548 	seq_printf(m, "  %s Subslice Mask: %04x\n", type,
4549 		   sseu->subslice_mask);
4550 	seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
4551 		   hweight8(sseu->subslice_mask));
4552 	seq_printf(m, "  %s EU Total: %u\n", type,
4553 		   sseu->eu_total);
4554 	seq_printf(m, "  %s EU Per Subslice: %u\n", type,
4555 		   sseu->eu_per_subslice);
4556 
4557 	if (!is_available_info)
4558 		return;
4559 
4560 	seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
4561 	if (HAS_POOLED_EU(dev_priv))
4562 		seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
4563 
4564 	seq_printf(m, "  Has Slice Power Gating: %s\n",
4565 		   yesno(sseu->has_slice_pg));
4566 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
4567 		   yesno(sseu->has_subslice_pg));
4568 	seq_printf(m, "  Has EU Power Gating: %s\n",
4569 		   yesno(sseu->has_eu_pg));
4570 }
4571 
4572 static int i915_sseu_status(struct seq_file *m, void *unused)
4573 {
4574 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4575 	struct sseu_dev_info sseu;
4576 
4577 	if (INTEL_GEN(dev_priv) < 8)
4578 		return -ENODEV;
4579 
4580 	seq_puts(m, "SSEU Device Info\n");
4581 	i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
4582 
4583 	seq_puts(m, "SSEU Device Status\n");
4584 	memset(&sseu, 0, sizeof(sseu));
4585 
4586 	intel_runtime_pm_get(dev_priv);
4587 
4588 	if (IS_CHERRYVIEW(dev_priv)) {
4589 		cherryview_sseu_device_status(dev_priv, &sseu);
4590 	} else if (IS_BROADWELL(dev_priv)) {
4591 		broadwell_sseu_device_status(dev_priv, &sseu);
4592 	} else if (INTEL_GEN(dev_priv) >= 9) {
4593 		gen9_sseu_device_status(dev_priv, &sseu);
4594 	}
4595 
4596 	intel_runtime_pm_put(dev_priv);
4597 
4598 	i915_print_sseu_info(m, false, &sseu);
4599 
4600 	return 0;
4601 }
4602 
4603 static int i915_forcewake_open(struct inode *inode, struct file *file)
4604 {
4605 	struct drm_i915_private *i915 = inode->i_private;
4606 
4607 	if (INTEL_GEN(i915) < 6)
4608 		return 0;
4609 
4610 	intel_runtime_pm_get(i915);
4611 	intel_uncore_forcewake_user_get(i915);
4612 
4613 	return 0;
4614 }
4615 
4616 static int i915_forcewake_release(struct inode *inode, struct file *file)
4617 {
4618 	struct drm_i915_private *i915 = inode->i_private;
4619 
4620 	if (INTEL_GEN(i915) < 6)
4621 		return 0;
4622 
4623 	intel_uncore_forcewake_user_put(i915);
4624 	intel_runtime_pm_put(i915);
4625 
4626 	return 0;
4627 }
4628 
4629 static const struct file_operations i915_forcewake_fops = {
4630 	.owner = THIS_MODULE,
4631 	.open = i915_forcewake_open,
4632 	.release = i915_forcewake_release,
4633 };
4634 
4635 static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
4636 {
4637 	struct drm_i915_private *dev_priv = m->private;
4638 	struct i915_hotplug *hotplug = &dev_priv->hotplug;
4639 
4640 	seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
4641 	seq_printf(m, "Detected: %s\n",
4642 		   yesno(delayed_work_pending(&hotplug->reenable_work)));
4643 
4644 	return 0;
4645 }
4646 
4647 static ssize_t i915_hpd_storm_ctl_write(struct file *file,
4648 					const char __user *ubuf, size_t len,
4649 					loff_t *offp)
4650 {
4651 	struct seq_file *m = file->private_data;
4652 	struct drm_i915_private *dev_priv = m->private;
4653 	struct i915_hotplug *hotplug = &dev_priv->hotplug;
4654 	unsigned int new_threshold;
4655 	int i;
4656 	char *newline;
4657 	char tmp[16];
4658 
4659 	if (len >= sizeof(tmp))
4660 		return -EINVAL;
4661 
4662 	if (copy_from_user(tmp, ubuf, len))
4663 		return -EFAULT;
4664 
4665 	tmp[len] = '\0';
4666 
4667 	/* Strip newline, if any */
4668 	newline = strchr(tmp, '\n');
4669 	if (newline)
4670 		*newline = '\0';
4671 
4672 	if (strcmp(tmp, "reset") == 0)
4673 		new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4674 	else if (kstrtouint(tmp, 10, &new_threshold) != 0)
4675 		return -EINVAL;
4676 
4677 	if (new_threshold > 0)
4678 		DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
4679 			      new_threshold);
4680 	else
4681 		DRM_DEBUG_KMS("Disabling HPD storm detection\n");
4682 
4683 	spin_lock_irq(&dev_priv->irq_lock);
4684 	hotplug->hpd_storm_threshold = new_threshold;
4685 	/* Reset the HPD storm stats so we don't accidentally trigger a storm */
4686 	for_each_hpd_pin(i)
4687 		hotplug->stats[i].count = 0;
4688 	spin_unlock_irq(&dev_priv->irq_lock);
4689 
4690 	/* Re-enable hpd immediately if we were in an irq storm */
4691 	flush_delayed_work(&dev_priv->hotplug.reenable_work);
4692 
4693 	return len;
4694 }
4695 
4696 static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
4697 {
4698 	return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
4699 }
4700 
4701 static const struct file_operations i915_hpd_storm_ctl_fops = {
4702 	.owner = THIS_MODULE,
4703 	.open = i915_hpd_storm_ctl_open,
4704 	.read = seq_read,
4705 	.llseek = seq_lseek,
4706 	.release = single_release,
4707 	.write = i915_hpd_storm_ctl_write
4708 };
4709 
4710 static const struct drm_info_list i915_debugfs_list[] = {
4711 	{"i915_capabilities", i915_capabilities, 0},
4712 	{"i915_gem_objects", i915_gem_object_info, 0},
4713 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
4714 	{"i915_gem_stolen", i915_gem_stolen_list_info },
4715 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
4716 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4717 	{"i915_gem_interrupt", i915_interrupt_info, 0},
4718 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4719 	{"i915_guc_info", i915_guc_info, 0},
4720 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
4721 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
4722 	{"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
4723 	{"i915_guc_stage_pool", i915_guc_stage_pool, 0},
4724 	{"i915_huc_load_status", i915_huc_load_status_info, 0},
4725 	{"i915_frequency_info", i915_frequency_info, 0},
4726 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
4727 	{"i915_reset_info", i915_reset_info, 0},
4728 	{"i915_drpc_info", i915_drpc_info, 0},
4729 	{"i915_emon_status", i915_emon_status, 0},
4730 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
4731 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
4732 	{"i915_fbc_status", i915_fbc_status, 0},
4733 	{"i915_ips_status", i915_ips_status, 0},
4734 	{"i915_sr_status", i915_sr_status, 0},
4735 	{"i915_opregion", i915_opregion, 0},
4736 	{"i915_vbt", i915_vbt, 0},
4737 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4738 	{"i915_context_status", i915_context_status, 0},
4739 	{"i915_dump_lrc", i915_dump_lrc, 0},
4740 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
4741 	{"i915_swizzle_info", i915_swizzle_info, 0},
4742 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
4743 	{"i915_llc", i915_llc, 0},
4744 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
4745 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
4746 	{"i915_energy_uJ", i915_energy_uJ, 0},
4747 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
4748 	{"i915_power_domain_info", i915_power_domain_info, 0},
4749 	{"i915_dmc_info", i915_dmc_info, 0},
4750 	{"i915_display_info", i915_display_info, 0},
4751 	{"i915_engine_info", i915_engine_info, 0},
4752 	{"i915_shrinker_info", i915_shrinker_info, 0},
4753 	{"i915_semaphore_status", i915_semaphore_status, 0},
4754 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4755 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
4756 	{"i915_wa_registers", i915_wa_registers, 0},
4757 	{"i915_ddb_info", i915_ddb_info, 0},
4758 	{"i915_sseu_status", i915_sseu_status, 0},
4759 	{"i915_drrs_status", i915_drrs_status, 0},
4760 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
4761 };
4762 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4763 
4764 static const struct i915_debugfs_files {
4765 	const char *name;
4766 	const struct file_operations *fops;
4767 } i915_debugfs_files[] = {
4768 	{"i915_wedged", &i915_wedged_fops},
4769 	{"i915_max_freq", &i915_max_freq_fops},
4770 	{"i915_min_freq", &i915_min_freq_fops},
4771 	{"i915_cache_sharing", &i915_cache_sharing_fops},
4772 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4773 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
4774 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
4775 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
4776 	{"i915_error_state", &i915_error_state_fops},
4777 	{"i915_gpu_info", &i915_gpu_info_fops},
4778 #endif
4779 	{"i915_next_seqno", &i915_next_seqno_fops},
4780 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4781 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4782 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4783 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4784 	{"i915_fbc_false_color", &i915_fbc_false_color_fops},
4785 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
4786 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
4787 	{"i915_dp_test_active", &i915_displayport_test_active_fops},
4788 	{"i915_guc_log_control", &i915_guc_log_control_fops},
4789 	{"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops},
4790 	{"i915_ipc_status", &i915_ipc_status_fops}
4791 };
4792 
4793 int i915_debugfs_register(struct drm_i915_private *dev_priv)
4794 {
4795 	struct drm_minor *minor = dev_priv->drm.primary;
4796 	struct dentry *ent;
4797 	int ret, i;
4798 
4799 	ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
4800 				  minor->debugfs_root, to_i915(minor->dev),
4801 				  &i915_forcewake_fops);
4802 	if (!ent)
4803 		return -ENOMEM;
4804 
4805 	ret = intel_pipe_crc_create(minor);
4806 	if (ret)
4807 		return ret;
4808 
4809 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4810 		ent = debugfs_create_file(i915_debugfs_files[i].name,
4811 					  S_IRUGO | S_IWUSR,
4812 					  minor->debugfs_root,
4813 					  to_i915(minor->dev),
4814 					  i915_debugfs_files[i].fops);
4815 		if (!ent)
4816 			return -ENOMEM;
4817 	}
4818 
4819 	return drm_debugfs_create_files(i915_debugfs_list,
4820 					I915_DEBUGFS_ENTRIES,
4821 					minor->debugfs_root, minor);
4822 }
4823 
4824 struct dpcd_block {
4825 	/* DPCD dump start address. */
4826 	unsigned int offset;
4827 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
4828 	unsigned int end;
4829 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
4830 	size_t size;
4831 	/* Only valid for eDP. */
4832 	bool edp;
4833 };
4834 
4835 static const struct dpcd_block i915_dpcd_debug[] = {
4836 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
4837 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
4838 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
4839 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
4840 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
4841 	{ .offset = DP_SET_POWER },
4842 	{ .offset = DP_EDP_DPCD_REV },
4843 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
4844 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
4845 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
4846 };
4847 
4848 static int i915_dpcd_show(struct seq_file *m, void *data)
4849 {
4850 	struct drm_connector *connector = m->private;
4851 	struct intel_dp *intel_dp =
4852 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4853 	uint8_t buf[16];
4854 	ssize_t err;
4855 	int i;
4856 
4857 	if (connector->status != connector_status_connected)
4858 		return -ENODEV;
4859 
4860 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
4861 		const struct dpcd_block *b = &i915_dpcd_debug[i];
4862 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
4863 
4864 		if (b->edp &&
4865 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
4866 			continue;
4867 
4868 		/* low tech for now */
4869 		if (WARN_ON(size > sizeof(buf)))
4870 			continue;
4871 
4872 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
4873 		if (err <= 0) {
4874 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
4875 				  size, b->offset, err);
4876 			continue;
4877 		}
4878 
4879 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
4880 	}
4881 
4882 	return 0;
4883 }
4884 
4885 static int i915_dpcd_open(struct inode *inode, struct file *file)
4886 {
4887 	return single_open(file, i915_dpcd_show, inode->i_private);
4888 }
4889 
4890 static const struct file_operations i915_dpcd_fops = {
4891 	.owner = THIS_MODULE,
4892 	.open = i915_dpcd_open,
4893 	.read = seq_read,
4894 	.llseek = seq_lseek,
4895 	.release = single_release,
4896 };
4897 
4898 static int i915_panel_show(struct seq_file *m, void *data)
4899 {
4900 	struct drm_connector *connector = m->private;
4901 	struct intel_dp *intel_dp =
4902 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4903 
4904 	if (connector->status != connector_status_connected)
4905 		return -ENODEV;
4906 
4907 	seq_printf(m, "Panel power up delay: %d\n",
4908 		   intel_dp->panel_power_up_delay);
4909 	seq_printf(m, "Panel power down delay: %d\n",
4910 		   intel_dp->panel_power_down_delay);
4911 	seq_printf(m, "Backlight on delay: %d\n",
4912 		   intel_dp->backlight_on_delay);
4913 	seq_printf(m, "Backlight off delay: %d\n",
4914 		   intel_dp->backlight_off_delay);
4915 
4916 	return 0;
4917 }
4918 
4919 static int i915_panel_open(struct inode *inode, struct file *file)
4920 {
4921 	return single_open(file, i915_panel_show, inode->i_private);
4922 }
4923 
4924 static const struct file_operations i915_panel_fops = {
4925 	.owner = THIS_MODULE,
4926 	.open = i915_panel_open,
4927 	.read = seq_read,
4928 	.llseek = seq_lseek,
4929 	.release = single_release,
4930 };
4931 
4932 /**
4933  * i915_debugfs_connector_add - add i915 specific connector debugfs files
4934  * @connector: pointer to a registered drm_connector
4935  *
4936  * Cleanup will be done by drm_connector_unregister() through a call to
4937  * drm_debugfs_connector_remove().
4938  *
4939  * Returns 0 on success, negative error codes on error.
4940  */
4941 int i915_debugfs_connector_add(struct drm_connector *connector)
4942 {
4943 	struct dentry *root = connector->debugfs_entry;
4944 
4945 	/* The connector must have been registered beforehands. */
4946 	if (!root)
4947 		return -ENODEV;
4948 
4949 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
4950 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4951 		debugfs_create_file("i915_dpcd", S_IRUGO, root,
4952 				    connector, &i915_dpcd_fops);
4953 
4954 	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4955 		debugfs_create_file("i915_panel_timings", S_IRUGO, root,
4956 				    connector, &i915_panel_fops);
4957 
4958 	return 0;
4959 }
4960