1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/list_sort.h>
31 #include "intel_drv.h"
32 
33 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
34 {
35 	return to_i915(node->minor->dev);
36 }
37 
38 /* As the drm_debugfs_init() routines are called before dev->dev_private is
39  * allocated we need to hook into the minor for release. */
40 static int
41 drm_add_fake_info_node(struct drm_minor *minor,
42 		       struct dentry *ent,
43 		       const void *key)
44 {
45 	struct drm_info_node *node;
46 
47 	node = kmalloc(sizeof(*node), GFP_KERNEL);
48 	if (node == NULL) {
49 		debugfs_remove(ent);
50 		return -ENOMEM;
51 	}
52 
53 	node->minor = minor;
54 	node->dent = ent;
55 	node->info_ent = (void *)key;
56 
57 	mutex_lock(&minor->debugfs_lock);
58 	list_add(&node->list, &minor->debugfs_list);
59 	mutex_unlock(&minor->debugfs_lock);
60 
61 	return 0;
62 }
63 
64 static int i915_capabilities(struct seq_file *m, void *data)
65 {
66 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
67 	const struct intel_device_info *info = INTEL_INFO(dev_priv);
68 
69 	seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
70 	seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
71 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
72 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
73 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
74 #undef PRINT_FLAG
75 
76 	return 0;
77 }
78 
79 static char get_active_flag(struct drm_i915_gem_object *obj)
80 {
81 	return i915_gem_object_is_active(obj) ? '*' : ' ';
82 }
83 
84 static char get_pin_flag(struct drm_i915_gem_object *obj)
85 {
86 	return obj->pin_display ? 'p' : ' ';
87 }
88 
89 static char get_tiling_flag(struct drm_i915_gem_object *obj)
90 {
91 	switch (i915_gem_object_get_tiling(obj)) {
92 	default:
93 	case I915_TILING_NONE: return ' ';
94 	case I915_TILING_X: return 'X';
95 	case I915_TILING_Y: return 'Y';
96 	}
97 }
98 
99 static char get_global_flag(struct drm_i915_gem_object *obj)
100 {
101 	return !list_empty(&obj->userfault_link) ? 'g' : ' ';
102 }
103 
104 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
105 {
106 	return obj->mm.mapping ? 'M' : ' ';
107 }
108 
109 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
110 {
111 	u64 size = 0;
112 	struct i915_vma *vma;
113 
114 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
115 		if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
116 			size += vma->node.size;
117 	}
118 
119 	return size;
120 }
121 
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
126 	struct intel_engine_cs *engine;
127 	struct i915_vma *vma;
128 	unsigned int frontbuffer_bits;
129 	int pin_count = 0;
130 
131 	lockdep_assert_held(&obj->base.dev->struct_mutex);
132 
133 	seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
134 		   &obj->base,
135 		   get_active_flag(obj),
136 		   get_pin_flag(obj),
137 		   get_tiling_flag(obj),
138 		   get_global_flag(obj),
139 		   get_pin_mapped_flag(obj),
140 		   obj->base.size / 1024,
141 		   obj->base.read_domains,
142 		   obj->base.write_domain,
143 		   i915_cache_level_str(dev_priv, obj->cache_level),
144 		   obj->mm.dirty ? " dirty" : "",
145 		   obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
146 	if (obj->base.name)
147 		seq_printf(m, " (name: %d)", obj->base.name);
148 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
149 		if (i915_vma_is_pinned(vma))
150 			pin_count++;
151 	}
152 	seq_printf(m, " (pinned x %d)", pin_count);
153 	if (obj->pin_display)
154 		seq_printf(m, " (display)");
155 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
156 		if (!drm_mm_node_allocated(&vma->node))
157 			continue;
158 
159 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
160 			   i915_vma_is_ggtt(vma) ? "g" : "pp",
161 			   vma->node.start, vma->node.size);
162 		if (i915_vma_is_ggtt(vma)) {
163 			switch (vma->ggtt_view.type) {
164 			case I915_GGTT_VIEW_NORMAL:
165 				seq_puts(m, ", normal");
166 				break;
167 
168 			case I915_GGTT_VIEW_PARTIAL:
169 				seq_printf(m, ", partial [%08llx+%x]",
170 					   vma->ggtt_view.partial.offset << PAGE_SHIFT,
171 					   vma->ggtt_view.partial.size << PAGE_SHIFT);
172 				break;
173 
174 			case I915_GGTT_VIEW_ROTATED:
175 				seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
176 					   vma->ggtt_view.rotated.plane[0].width,
177 					   vma->ggtt_view.rotated.plane[0].height,
178 					   vma->ggtt_view.rotated.plane[0].stride,
179 					   vma->ggtt_view.rotated.plane[0].offset,
180 					   vma->ggtt_view.rotated.plane[1].width,
181 					   vma->ggtt_view.rotated.plane[1].height,
182 					   vma->ggtt_view.rotated.plane[1].stride,
183 					   vma->ggtt_view.rotated.plane[1].offset);
184 				break;
185 
186 			default:
187 				MISSING_CASE(vma->ggtt_view.type);
188 				break;
189 			}
190 		}
191 		if (vma->fence)
192 			seq_printf(m, " , fence: %d%s",
193 				   vma->fence->id,
194 				   i915_gem_active_isset(&vma->last_fence) ? "*" : "");
195 		seq_puts(m, ")");
196 	}
197 	if (obj->stolen)
198 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
199 
200 	engine = i915_gem_object_last_write_engine(obj);
201 	if (engine)
202 		seq_printf(m, " (%s)", engine->name);
203 
204 	frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
205 	if (frontbuffer_bits)
206 		seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
207 }
208 
209 static int obj_rank_by_stolen(void *priv,
210 			      struct list_head *A, struct list_head *B)
211 {
212 	struct drm_i915_gem_object *a =
213 		container_of(A, struct drm_i915_gem_object, obj_exec_link);
214 	struct drm_i915_gem_object *b =
215 		container_of(B, struct drm_i915_gem_object, obj_exec_link);
216 
217 	if (a->stolen->start < b->stolen->start)
218 		return -1;
219 	if (a->stolen->start > b->stolen->start)
220 		return 1;
221 	return 0;
222 }
223 
224 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
225 {
226 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
227 	struct drm_device *dev = &dev_priv->drm;
228 	struct drm_i915_gem_object *obj;
229 	u64 total_obj_size, total_gtt_size;
230 	LIST_HEAD(stolen);
231 	int count, ret;
232 
233 	ret = mutex_lock_interruptible(&dev->struct_mutex);
234 	if (ret)
235 		return ret;
236 
237 	total_obj_size = total_gtt_size = count = 0;
238 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
239 		if (obj->stolen == NULL)
240 			continue;
241 
242 		list_add(&obj->obj_exec_link, &stolen);
243 
244 		total_obj_size += obj->base.size;
245 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
246 		count++;
247 	}
248 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
249 		if (obj->stolen == NULL)
250 			continue;
251 
252 		list_add(&obj->obj_exec_link, &stolen);
253 
254 		total_obj_size += obj->base.size;
255 		count++;
256 	}
257 	list_sort(NULL, &stolen, obj_rank_by_stolen);
258 	seq_puts(m, "Stolen:\n");
259 	while (!list_empty(&stolen)) {
260 		obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
261 		seq_puts(m, "   ");
262 		describe_obj(m, obj);
263 		seq_putc(m, '\n');
264 		list_del_init(&obj->obj_exec_link);
265 	}
266 	mutex_unlock(&dev->struct_mutex);
267 
268 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
269 		   count, total_obj_size, total_gtt_size);
270 	return 0;
271 }
272 
273 struct file_stats {
274 	struct drm_i915_file_private *file_priv;
275 	unsigned long count;
276 	u64 total, unbound;
277 	u64 global, shared;
278 	u64 active, inactive;
279 };
280 
281 static int per_file_stats(int id, void *ptr, void *data)
282 {
283 	struct drm_i915_gem_object *obj = ptr;
284 	struct file_stats *stats = data;
285 	struct i915_vma *vma;
286 
287 	stats->count++;
288 	stats->total += obj->base.size;
289 	if (!obj->bind_count)
290 		stats->unbound += obj->base.size;
291 	if (obj->base.name || obj->base.dma_buf)
292 		stats->shared += obj->base.size;
293 
294 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
295 		if (!drm_mm_node_allocated(&vma->node))
296 			continue;
297 
298 		if (i915_vma_is_ggtt(vma)) {
299 			stats->global += vma->node.size;
300 		} else {
301 			struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
302 
303 			if (ppgtt->base.file != stats->file_priv)
304 				continue;
305 		}
306 
307 		if (i915_vma_is_active(vma))
308 			stats->active += vma->node.size;
309 		else
310 			stats->inactive += vma->node.size;
311 	}
312 
313 	return 0;
314 }
315 
316 #define print_file_stats(m, name, stats) do { \
317 	if (stats.count) \
318 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
319 			   name, \
320 			   stats.count, \
321 			   stats.total, \
322 			   stats.active, \
323 			   stats.inactive, \
324 			   stats.global, \
325 			   stats.shared, \
326 			   stats.unbound); \
327 } while (0)
328 
329 static void print_batch_pool_stats(struct seq_file *m,
330 				   struct drm_i915_private *dev_priv)
331 {
332 	struct drm_i915_gem_object *obj;
333 	struct file_stats stats;
334 	struct intel_engine_cs *engine;
335 	enum intel_engine_id id;
336 	int j;
337 
338 	memset(&stats, 0, sizeof(stats));
339 
340 	for_each_engine(engine, dev_priv, id) {
341 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
342 			list_for_each_entry(obj,
343 					    &engine->batch_pool.cache_list[j],
344 					    batch_pool_link)
345 				per_file_stats(0, obj, &stats);
346 		}
347 	}
348 
349 	print_file_stats(m, "[k]batch pool", stats);
350 }
351 
352 static int per_file_ctx_stats(int id, void *ptr, void *data)
353 {
354 	struct i915_gem_context *ctx = ptr;
355 	int n;
356 
357 	for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
358 		if (ctx->engine[n].state)
359 			per_file_stats(0, ctx->engine[n].state->obj, data);
360 		if (ctx->engine[n].ring)
361 			per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
362 	}
363 
364 	return 0;
365 }
366 
367 static void print_context_stats(struct seq_file *m,
368 				struct drm_i915_private *dev_priv)
369 {
370 	struct drm_device *dev = &dev_priv->drm;
371 	struct file_stats stats;
372 	struct drm_file *file;
373 
374 	memset(&stats, 0, sizeof(stats));
375 
376 	mutex_lock(&dev->struct_mutex);
377 	if (dev_priv->kernel_context)
378 		per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
379 
380 	list_for_each_entry(file, &dev->filelist, lhead) {
381 		struct drm_i915_file_private *fpriv = file->driver_priv;
382 		idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
383 	}
384 	mutex_unlock(&dev->struct_mutex);
385 
386 	print_file_stats(m, "[k]contexts", stats);
387 }
388 
389 static int i915_gem_object_info(struct seq_file *m, void *data)
390 {
391 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
392 	struct drm_device *dev = &dev_priv->drm;
393 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
394 	u32 count, mapped_count, purgeable_count, dpy_count;
395 	u64 size, mapped_size, purgeable_size, dpy_size;
396 	struct drm_i915_gem_object *obj;
397 	struct drm_file *file;
398 	int ret;
399 
400 	ret = mutex_lock_interruptible(&dev->struct_mutex);
401 	if (ret)
402 		return ret;
403 
404 	seq_printf(m, "%u objects, %llu bytes\n",
405 		   dev_priv->mm.object_count,
406 		   dev_priv->mm.object_memory);
407 
408 	size = count = 0;
409 	mapped_size = mapped_count = 0;
410 	purgeable_size = purgeable_count = 0;
411 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
412 		size += obj->base.size;
413 		++count;
414 
415 		if (obj->mm.madv == I915_MADV_DONTNEED) {
416 			purgeable_size += obj->base.size;
417 			++purgeable_count;
418 		}
419 
420 		if (obj->mm.mapping) {
421 			mapped_count++;
422 			mapped_size += obj->base.size;
423 		}
424 	}
425 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
426 
427 	size = count = dpy_size = dpy_count = 0;
428 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
429 		size += obj->base.size;
430 		++count;
431 
432 		if (obj->pin_display) {
433 			dpy_size += obj->base.size;
434 			++dpy_count;
435 		}
436 
437 		if (obj->mm.madv == I915_MADV_DONTNEED) {
438 			purgeable_size += obj->base.size;
439 			++purgeable_count;
440 		}
441 
442 		if (obj->mm.mapping) {
443 			mapped_count++;
444 			mapped_size += obj->base.size;
445 		}
446 	}
447 	seq_printf(m, "%u bound objects, %llu bytes\n",
448 		   count, size);
449 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
450 		   purgeable_count, purgeable_size);
451 	seq_printf(m, "%u mapped objects, %llu bytes\n",
452 		   mapped_count, mapped_size);
453 	seq_printf(m, "%u display objects (pinned), %llu bytes\n",
454 		   dpy_count, dpy_size);
455 
456 	seq_printf(m, "%llu [%llu] gtt total\n",
457 		   ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
458 
459 	seq_putc(m, '\n');
460 	print_batch_pool_stats(m, dev_priv);
461 	mutex_unlock(&dev->struct_mutex);
462 
463 	mutex_lock(&dev->filelist_mutex);
464 	print_context_stats(m, dev_priv);
465 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
466 		struct file_stats stats;
467 		struct drm_i915_file_private *file_priv = file->driver_priv;
468 		struct drm_i915_gem_request *request;
469 		struct task_struct *task;
470 
471 		memset(&stats, 0, sizeof(stats));
472 		stats.file_priv = file->driver_priv;
473 		spin_lock(&file->table_lock);
474 		idr_for_each(&file->object_idr, per_file_stats, &stats);
475 		spin_unlock(&file->table_lock);
476 		/*
477 		 * Although we have a valid reference on file->pid, that does
478 		 * not guarantee that the task_struct who called get_pid() is
479 		 * still alive (e.g. get_pid(current) => fork() => exit()).
480 		 * Therefore, we need to protect this ->comm access using RCU.
481 		 */
482 		mutex_lock(&dev->struct_mutex);
483 		request = list_first_entry_or_null(&file_priv->mm.request_list,
484 						   struct drm_i915_gem_request,
485 						   client_list);
486 		rcu_read_lock();
487 		task = pid_task(request && request->ctx->pid ?
488 				request->ctx->pid : file->pid,
489 				PIDTYPE_PID);
490 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
491 		rcu_read_unlock();
492 		mutex_unlock(&dev->struct_mutex);
493 	}
494 	mutex_unlock(&dev->filelist_mutex);
495 
496 	return 0;
497 }
498 
499 static int i915_gem_gtt_info(struct seq_file *m, void *data)
500 {
501 	struct drm_info_node *node = m->private;
502 	struct drm_i915_private *dev_priv = node_to_i915(node);
503 	struct drm_device *dev = &dev_priv->drm;
504 	bool show_pin_display_only = !!node->info_ent->data;
505 	struct drm_i915_gem_object *obj;
506 	u64 total_obj_size, total_gtt_size;
507 	int count, ret;
508 
509 	ret = mutex_lock_interruptible(&dev->struct_mutex);
510 	if (ret)
511 		return ret;
512 
513 	total_obj_size = total_gtt_size = count = 0;
514 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
515 		if (show_pin_display_only && !obj->pin_display)
516 			continue;
517 
518 		seq_puts(m, "   ");
519 		describe_obj(m, obj);
520 		seq_putc(m, '\n');
521 		total_obj_size += obj->base.size;
522 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
523 		count++;
524 	}
525 
526 	mutex_unlock(&dev->struct_mutex);
527 
528 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
529 		   count, total_obj_size, total_gtt_size);
530 
531 	return 0;
532 }
533 
534 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
535 {
536 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
537 	struct drm_device *dev = &dev_priv->drm;
538 	struct intel_crtc *crtc;
539 	int ret;
540 
541 	ret = mutex_lock_interruptible(&dev->struct_mutex);
542 	if (ret)
543 		return ret;
544 
545 	for_each_intel_crtc(dev, crtc) {
546 		const char pipe = pipe_name(crtc->pipe);
547 		const char plane = plane_name(crtc->plane);
548 		struct intel_flip_work *work;
549 
550 		spin_lock_irq(&dev->event_lock);
551 		work = crtc->flip_work;
552 		if (work == NULL) {
553 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
554 				   pipe, plane);
555 		} else {
556 			u32 pending;
557 			u32 addr;
558 
559 			pending = atomic_read(&work->pending);
560 			if (pending) {
561 				seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
562 					   pipe, plane);
563 			} else {
564 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
565 					   pipe, plane);
566 			}
567 			if (work->flip_queued_req) {
568 				struct intel_engine_cs *engine = work->flip_queued_req->engine;
569 
570 				seq_printf(m, "Flip queued on %s at seqno %x, last submitted seqno %x [current breadcrumb %x], completed? %d\n",
571 					   engine->name,
572 					   work->flip_queued_req->global_seqno,
573 					   intel_engine_last_submit(engine),
574 					   intel_engine_get_seqno(engine),
575 					   i915_gem_request_completed(work->flip_queued_req));
576 			} else
577 				seq_printf(m, "Flip not associated with any ring\n");
578 			seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
579 				   work->flip_queued_vblank,
580 				   work->flip_ready_vblank,
581 				   intel_crtc_get_vblank_counter(crtc));
582 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
583 
584 			if (INTEL_GEN(dev_priv) >= 4)
585 				addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
586 			else
587 				addr = I915_READ(DSPADDR(crtc->plane));
588 			seq_printf(m, "Current scanout address 0x%08x\n", addr);
589 
590 			if (work->pending_flip_obj) {
591 				seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
592 				seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
593 			}
594 		}
595 		spin_unlock_irq(&dev->event_lock);
596 	}
597 
598 	mutex_unlock(&dev->struct_mutex);
599 
600 	return 0;
601 }
602 
603 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
604 {
605 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
606 	struct drm_device *dev = &dev_priv->drm;
607 	struct drm_i915_gem_object *obj;
608 	struct intel_engine_cs *engine;
609 	enum intel_engine_id id;
610 	int total = 0;
611 	int ret, j;
612 
613 	ret = mutex_lock_interruptible(&dev->struct_mutex);
614 	if (ret)
615 		return ret;
616 
617 	for_each_engine(engine, dev_priv, id) {
618 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
619 			int count;
620 
621 			count = 0;
622 			list_for_each_entry(obj,
623 					    &engine->batch_pool.cache_list[j],
624 					    batch_pool_link)
625 				count++;
626 			seq_printf(m, "%s cache[%d]: %d objects\n",
627 				   engine->name, j, count);
628 
629 			list_for_each_entry(obj,
630 					    &engine->batch_pool.cache_list[j],
631 					    batch_pool_link) {
632 				seq_puts(m, "   ");
633 				describe_obj(m, obj);
634 				seq_putc(m, '\n');
635 			}
636 
637 			total += count;
638 		}
639 	}
640 
641 	seq_printf(m, "total: %d\n", total);
642 
643 	mutex_unlock(&dev->struct_mutex);
644 
645 	return 0;
646 }
647 
648 static void print_request(struct seq_file *m,
649 			  struct drm_i915_gem_request *rq,
650 			  const char *prefix)
651 {
652 	seq_printf(m, "%s%x [%x:%x] prio=%d @ %dms: %s\n", prefix,
653 		   rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
654 		   rq->priotree.priority,
655 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
656 		   rq->timeline->common->name);
657 }
658 
659 static int i915_gem_request_info(struct seq_file *m, void *data)
660 {
661 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
662 	struct drm_device *dev = &dev_priv->drm;
663 	struct drm_i915_gem_request *req;
664 	struct intel_engine_cs *engine;
665 	enum intel_engine_id id;
666 	int ret, any;
667 
668 	ret = mutex_lock_interruptible(&dev->struct_mutex);
669 	if (ret)
670 		return ret;
671 
672 	any = 0;
673 	for_each_engine(engine, dev_priv, id) {
674 		int count;
675 
676 		count = 0;
677 		list_for_each_entry(req, &engine->timeline->requests, link)
678 			count++;
679 		if (count == 0)
680 			continue;
681 
682 		seq_printf(m, "%s requests: %d\n", engine->name, count);
683 		list_for_each_entry(req, &engine->timeline->requests, link)
684 			print_request(m, req, "    ");
685 
686 		any++;
687 	}
688 	mutex_unlock(&dev->struct_mutex);
689 
690 	if (any == 0)
691 		seq_puts(m, "No requests\n");
692 
693 	return 0;
694 }
695 
696 static void i915_ring_seqno_info(struct seq_file *m,
697 				 struct intel_engine_cs *engine)
698 {
699 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
700 	struct rb_node *rb;
701 
702 	seq_printf(m, "Current sequence (%s): %x\n",
703 		   engine->name, intel_engine_get_seqno(engine));
704 
705 	spin_lock_irq(&b->lock);
706 	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
707 		struct intel_wait *w = rb_entry(rb, typeof(*w), node);
708 
709 		seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
710 			   engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
711 	}
712 	spin_unlock_irq(&b->lock);
713 }
714 
715 static int i915_gem_seqno_info(struct seq_file *m, void *data)
716 {
717 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
718 	struct intel_engine_cs *engine;
719 	enum intel_engine_id id;
720 
721 	for_each_engine(engine, dev_priv, id)
722 		i915_ring_seqno_info(m, engine);
723 
724 	return 0;
725 }
726 
727 
728 static int i915_interrupt_info(struct seq_file *m, void *data)
729 {
730 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
731 	struct intel_engine_cs *engine;
732 	enum intel_engine_id id;
733 	int i, pipe;
734 
735 	intel_runtime_pm_get(dev_priv);
736 
737 	if (IS_CHERRYVIEW(dev_priv)) {
738 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
739 			   I915_READ(GEN8_MASTER_IRQ));
740 
741 		seq_printf(m, "Display IER:\t%08x\n",
742 			   I915_READ(VLV_IER));
743 		seq_printf(m, "Display IIR:\t%08x\n",
744 			   I915_READ(VLV_IIR));
745 		seq_printf(m, "Display IIR_RW:\t%08x\n",
746 			   I915_READ(VLV_IIR_RW));
747 		seq_printf(m, "Display IMR:\t%08x\n",
748 			   I915_READ(VLV_IMR));
749 		for_each_pipe(dev_priv, pipe) {
750 			enum intel_display_power_domain power_domain;
751 
752 			power_domain = POWER_DOMAIN_PIPE(pipe);
753 			if (!intel_display_power_get_if_enabled(dev_priv,
754 								power_domain)) {
755 				seq_printf(m, "Pipe %c power disabled\n",
756 					   pipe_name(pipe));
757 				continue;
758 			}
759 
760 			seq_printf(m, "Pipe %c stat:\t%08x\n",
761 				   pipe_name(pipe),
762 				   I915_READ(PIPESTAT(pipe)));
763 
764 			intel_display_power_put(dev_priv, power_domain);
765 		}
766 
767 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
768 		seq_printf(m, "Port hotplug:\t%08x\n",
769 			   I915_READ(PORT_HOTPLUG_EN));
770 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
771 			   I915_READ(VLV_DPFLIPSTAT));
772 		seq_printf(m, "DPINVGTT:\t%08x\n",
773 			   I915_READ(DPINVGTT));
774 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
775 
776 		for (i = 0; i < 4; i++) {
777 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
778 				   i, I915_READ(GEN8_GT_IMR(i)));
779 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
780 				   i, I915_READ(GEN8_GT_IIR(i)));
781 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
782 				   i, I915_READ(GEN8_GT_IER(i)));
783 		}
784 
785 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
786 			   I915_READ(GEN8_PCU_IMR));
787 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
788 			   I915_READ(GEN8_PCU_IIR));
789 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
790 			   I915_READ(GEN8_PCU_IER));
791 	} else if (INTEL_GEN(dev_priv) >= 8) {
792 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
793 			   I915_READ(GEN8_MASTER_IRQ));
794 
795 		for (i = 0; i < 4; i++) {
796 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
797 				   i, I915_READ(GEN8_GT_IMR(i)));
798 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
799 				   i, I915_READ(GEN8_GT_IIR(i)));
800 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
801 				   i, I915_READ(GEN8_GT_IER(i)));
802 		}
803 
804 		for_each_pipe(dev_priv, pipe) {
805 			enum intel_display_power_domain power_domain;
806 
807 			power_domain = POWER_DOMAIN_PIPE(pipe);
808 			if (!intel_display_power_get_if_enabled(dev_priv,
809 								power_domain)) {
810 				seq_printf(m, "Pipe %c power disabled\n",
811 					   pipe_name(pipe));
812 				continue;
813 			}
814 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
815 				   pipe_name(pipe),
816 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
817 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
818 				   pipe_name(pipe),
819 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
820 			seq_printf(m, "Pipe %c IER:\t%08x\n",
821 				   pipe_name(pipe),
822 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
823 
824 			intel_display_power_put(dev_priv, power_domain);
825 		}
826 
827 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
828 			   I915_READ(GEN8_DE_PORT_IMR));
829 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
830 			   I915_READ(GEN8_DE_PORT_IIR));
831 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
832 			   I915_READ(GEN8_DE_PORT_IER));
833 
834 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
835 			   I915_READ(GEN8_DE_MISC_IMR));
836 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
837 			   I915_READ(GEN8_DE_MISC_IIR));
838 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
839 			   I915_READ(GEN8_DE_MISC_IER));
840 
841 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
842 			   I915_READ(GEN8_PCU_IMR));
843 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
844 			   I915_READ(GEN8_PCU_IIR));
845 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
846 			   I915_READ(GEN8_PCU_IER));
847 	} else if (IS_VALLEYVIEW(dev_priv)) {
848 		seq_printf(m, "Display IER:\t%08x\n",
849 			   I915_READ(VLV_IER));
850 		seq_printf(m, "Display IIR:\t%08x\n",
851 			   I915_READ(VLV_IIR));
852 		seq_printf(m, "Display IIR_RW:\t%08x\n",
853 			   I915_READ(VLV_IIR_RW));
854 		seq_printf(m, "Display IMR:\t%08x\n",
855 			   I915_READ(VLV_IMR));
856 		for_each_pipe(dev_priv, pipe)
857 			seq_printf(m, "Pipe %c stat:\t%08x\n",
858 				   pipe_name(pipe),
859 				   I915_READ(PIPESTAT(pipe)));
860 
861 		seq_printf(m, "Master IER:\t%08x\n",
862 			   I915_READ(VLV_MASTER_IER));
863 
864 		seq_printf(m, "Render IER:\t%08x\n",
865 			   I915_READ(GTIER));
866 		seq_printf(m, "Render IIR:\t%08x\n",
867 			   I915_READ(GTIIR));
868 		seq_printf(m, "Render IMR:\t%08x\n",
869 			   I915_READ(GTIMR));
870 
871 		seq_printf(m, "PM IER:\t\t%08x\n",
872 			   I915_READ(GEN6_PMIER));
873 		seq_printf(m, "PM IIR:\t\t%08x\n",
874 			   I915_READ(GEN6_PMIIR));
875 		seq_printf(m, "PM IMR:\t\t%08x\n",
876 			   I915_READ(GEN6_PMIMR));
877 
878 		seq_printf(m, "Port hotplug:\t%08x\n",
879 			   I915_READ(PORT_HOTPLUG_EN));
880 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
881 			   I915_READ(VLV_DPFLIPSTAT));
882 		seq_printf(m, "DPINVGTT:\t%08x\n",
883 			   I915_READ(DPINVGTT));
884 
885 	} else if (!HAS_PCH_SPLIT(dev_priv)) {
886 		seq_printf(m, "Interrupt enable:    %08x\n",
887 			   I915_READ(IER));
888 		seq_printf(m, "Interrupt identity:  %08x\n",
889 			   I915_READ(IIR));
890 		seq_printf(m, "Interrupt mask:      %08x\n",
891 			   I915_READ(IMR));
892 		for_each_pipe(dev_priv, pipe)
893 			seq_printf(m, "Pipe %c stat:         %08x\n",
894 				   pipe_name(pipe),
895 				   I915_READ(PIPESTAT(pipe)));
896 	} else {
897 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
898 			   I915_READ(DEIER));
899 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
900 			   I915_READ(DEIIR));
901 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
902 			   I915_READ(DEIMR));
903 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
904 			   I915_READ(SDEIER));
905 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
906 			   I915_READ(SDEIIR));
907 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
908 			   I915_READ(SDEIMR));
909 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
910 			   I915_READ(GTIER));
911 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
912 			   I915_READ(GTIIR));
913 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
914 			   I915_READ(GTIMR));
915 	}
916 	for_each_engine(engine, dev_priv, id) {
917 		if (INTEL_GEN(dev_priv) >= 6) {
918 			seq_printf(m,
919 				   "Graphics Interrupt mask (%s):	%08x\n",
920 				   engine->name, I915_READ_IMR(engine));
921 		}
922 		i915_ring_seqno_info(m, engine);
923 	}
924 	intel_runtime_pm_put(dev_priv);
925 
926 	return 0;
927 }
928 
929 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
930 {
931 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
932 	struct drm_device *dev = &dev_priv->drm;
933 	int i, ret;
934 
935 	ret = mutex_lock_interruptible(&dev->struct_mutex);
936 	if (ret)
937 		return ret;
938 
939 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
940 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
941 		struct i915_vma *vma = dev_priv->fence_regs[i].vma;
942 
943 		seq_printf(m, "Fence %d, pin count = %d, object = ",
944 			   i, dev_priv->fence_regs[i].pin_count);
945 		if (!vma)
946 			seq_puts(m, "unused");
947 		else
948 			describe_obj(m, vma->obj);
949 		seq_putc(m, '\n');
950 	}
951 
952 	mutex_unlock(&dev->struct_mutex);
953 	return 0;
954 }
955 
956 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
957 
958 static ssize_t
959 i915_error_state_write(struct file *filp,
960 		       const char __user *ubuf,
961 		       size_t cnt,
962 		       loff_t *ppos)
963 {
964 	struct i915_error_state_file_priv *error_priv = filp->private_data;
965 
966 	DRM_DEBUG_DRIVER("Resetting error state\n");
967 	i915_destroy_error_state(error_priv->i915);
968 
969 	return cnt;
970 }
971 
972 static int i915_error_state_open(struct inode *inode, struct file *file)
973 {
974 	struct drm_i915_private *dev_priv = inode->i_private;
975 	struct i915_error_state_file_priv *error_priv;
976 
977 	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
978 	if (!error_priv)
979 		return -ENOMEM;
980 
981 	error_priv->i915 = dev_priv;
982 
983 	i915_error_state_get(&dev_priv->drm, error_priv);
984 
985 	file->private_data = error_priv;
986 
987 	return 0;
988 }
989 
990 static int i915_error_state_release(struct inode *inode, struct file *file)
991 {
992 	struct i915_error_state_file_priv *error_priv = file->private_data;
993 
994 	i915_error_state_put(error_priv);
995 	kfree(error_priv);
996 
997 	return 0;
998 }
999 
1000 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1001 				     size_t count, loff_t *pos)
1002 {
1003 	struct i915_error_state_file_priv *error_priv = file->private_data;
1004 	struct drm_i915_error_state_buf error_str;
1005 	loff_t tmp_pos = 0;
1006 	ssize_t ret_count = 0;
1007 	int ret;
1008 
1009 	ret = i915_error_state_buf_init(&error_str, error_priv->i915,
1010 					count, *pos);
1011 	if (ret)
1012 		return ret;
1013 
1014 	ret = i915_error_state_to_str(&error_str, error_priv);
1015 	if (ret)
1016 		goto out;
1017 
1018 	ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1019 					    error_str.buf,
1020 					    error_str.bytes);
1021 
1022 	if (ret_count < 0)
1023 		ret = ret_count;
1024 	else
1025 		*pos = error_str.start + ret_count;
1026 out:
1027 	i915_error_state_buf_release(&error_str);
1028 	return ret ?: ret_count;
1029 }
1030 
1031 static const struct file_operations i915_error_state_fops = {
1032 	.owner = THIS_MODULE,
1033 	.open = i915_error_state_open,
1034 	.read = i915_error_state_read,
1035 	.write = i915_error_state_write,
1036 	.llseek = default_llseek,
1037 	.release = i915_error_state_release,
1038 };
1039 
1040 #endif
1041 
1042 static int
1043 i915_next_seqno_get(void *data, u64 *val)
1044 {
1045 	struct drm_i915_private *dev_priv = data;
1046 
1047 	*val = 1 + atomic_read(&dev_priv->gt.global_timeline.seqno);
1048 	return 0;
1049 }
1050 
1051 static int
1052 i915_next_seqno_set(void *data, u64 val)
1053 {
1054 	struct drm_i915_private *dev_priv = data;
1055 	struct drm_device *dev = &dev_priv->drm;
1056 	int ret;
1057 
1058 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1059 	if (ret)
1060 		return ret;
1061 
1062 	ret = i915_gem_set_global_seqno(dev, val);
1063 	mutex_unlock(&dev->struct_mutex);
1064 
1065 	return ret;
1066 }
1067 
1068 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1069 			i915_next_seqno_get, i915_next_seqno_set,
1070 			"0x%llx\n");
1071 
1072 static int i915_frequency_info(struct seq_file *m, void *unused)
1073 {
1074 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1075 	struct drm_device *dev = &dev_priv->drm;
1076 	int ret = 0;
1077 
1078 	intel_runtime_pm_get(dev_priv);
1079 
1080 	if (IS_GEN5(dev_priv)) {
1081 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1082 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1083 
1084 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1085 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1086 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1087 			   MEMSTAT_VID_SHIFT);
1088 		seq_printf(m, "Current P-state: %d\n",
1089 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1090 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1091 		u32 freq_sts;
1092 
1093 		mutex_lock(&dev_priv->rps.hw_lock);
1094 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1095 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1096 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1097 
1098 		seq_printf(m, "actual GPU freq: %d MHz\n",
1099 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1100 
1101 		seq_printf(m, "current GPU freq: %d MHz\n",
1102 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1103 
1104 		seq_printf(m, "max GPU freq: %d MHz\n",
1105 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1106 
1107 		seq_printf(m, "min GPU freq: %d MHz\n",
1108 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1109 
1110 		seq_printf(m, "idle GPU freq: %d MHz\n",
1111 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1112 
1113 		seq_printf(m,
1114 			   "efficient (RPe) frequency: %d MHz\n",
1115 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1116 		mutex_unlock(&dev_priv->rps.hw_lock);
1117 	} else if (INTEL_GEN(dev_priv) >= 6) {
1118 		u32 rp_state_limits;
1119 		u32 gt_perf_status;
1120 		u32 rp_state_cap;
1121 		u32 rpmodectl, rpinclimit, rpdeclimit;
1122 		u32 rpstat, cagf, reqf;
1123 		u32 rpupei, rpcurup, rpprevup;
1124 		u32 rpdownei, rpcurdown, rpprevdown;
1125 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1126 		int max_freq;
1127 
1128 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1129 		if (IS_GEN9_LP(dev_priv)) {
1130 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1131 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1132 		} else {
1133 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1134 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1135 		}
1136 
1137 		/* RPSTAT1 is in the GT power well */
1138 		ret = mutex_lock_interruptible(&dev->struct_mutex);
1139 		if (ret)
1140 			goto out;
1141 
1142 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1143 
1144 		reqf = I915_READ(GEN6_RPNSWREQ);
1145 		if (IS_GEN9(dev_priv))
1146 			reqf >>= 23;
1147 		else {
1148 			reqf &= ~GEN6_TURBO_DISABLE;
1149 			if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1150 				reqf >>= 24;
1151 			else
1152 				reqf >>= 25;
1153 		}
1154 		reqf = intel_gpu_freq(dev_priv, reqf);
1155 
1156 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1157 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1158 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1159 
1160 		rpstat = I915_READ(GEN6_RPSTAT1);
1161 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1162 		rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1163 		rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1164 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1165 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1166 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1167 		if (IS_GEN9(dev_priv))
1168 			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1169 		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1170 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1171 		else
1172 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1173 		cagf = intel_gpu_freq(dev_priv, cagf);
1174 
1175 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1176 		mutex_unlock(&dev->struct_mutex);
1177 
1178 		if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1179 			pm_ier = I915_READ(GEN6_PMIER);
1180 			pm_imr = I915_READ(GEN6_PMIMR);
1181 			pm_isr = I915_READ(GEN6_PMISR);
1182 			pm_iir = I915_READ(GEN6_PMIIR);
1183 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1184 		} else {
1185 			pm_ier = I915_READ(GEN8_GT_IER(2));
1186 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1187 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1188 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1189 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1190 		}
1191 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1192 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1193 		seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
1194 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1195 		seq_printf(m, "Render p-state ratio: %d\n",
1196 			   (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
1197 		seq_printf(m, "Render p-state VID: %d\n",
1198 			   gt_perf_status & 0xff);
1199 		seq_printf(m, "Render p-state limit: %d\n",
1200 			   rp_state_limits & 0xff);
1201 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1202 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1203 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1204 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1205 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1206 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1207 		seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1208 			   rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1209 		seq_printf(m, "RP CUR UP: %d (%dus)\n",
1210 			   rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1211 		seq_printf(m, "RP PREV UP: %d (%dus)\n",
1212 			   rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1213 		seq_printf(m, "Up threshold: %d%%\n",
1214 			   dev_priv->rps.up_threshold);
1215 
1216 		seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1217 			   rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1218 		seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1219 			   rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1220 		seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1221 			   rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1222 		seq_printf(m, "Down threshold: %d%%\n",
1223 			   dev_priv->rps.down_threshold);
1224 
1225 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
1226 			    rp_state_cap >> 16) & 0xff;
1227 		max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1228 			     GEN9_FREQ_SCALER : 1);
1229 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1230 			   intel_gpu_freq(dev_priv, max_freq));
1231 
1232 		max_freq = (rp_state_cap & 0xff00) >> 8;
1233 		max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1234 			     GEN9_FREQ_SCALER : 1);
1235 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1236 			   intel_gpu_freq(dev_priv, max_freq));
1237 
1238 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
1239 			    rp_state_cap >> 0) & 0xff;
1240 		max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1241 			     GEN9_FREQ_SCALER : 1);
1242 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1243 			   intel_gpu_freq(dev_priv, max_freq));
1244 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1245 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1246 
1247 		seq_printf(m, "Current freq: %d MHz\n",
1248 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1249 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1250 		seq_printf(m, "Idle freq: %d MHz\n",
1251 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1252 		seq_printf(m, "Min freq: %d MHz\n",
1253 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1254 		seq_printf(m, "Boost freq: %d MHz\n",
1255 			   intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1256 		seq_printf(m, "Max freq: %d MHz\n",
1257 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1258 		seq_printf(m,
1259 			   "efficient (RPe) frequency: %d MHz\n",
1260 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1261 	} else {
1262 		seq_puts(m, "no P-state info available\n");
1263 	}
1264 
1265 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1266 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1267 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1268 
1269 out:
1270 	intel_runtime_pm_put(dev_priv);
1271 	return ret;
1272 }
1273 
1274 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1275 			       struct seq_file *m,
1276 			       struct intel_instdone *instdone)
1277 {
1278 	int slice;
1279 	int subslice;
1280 
1281 	seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1282 		   instdone->instdone);
1283 
1284 	if (INTEL_GEN(dev_priv) <= 3)
1285 		return;
1286 
1287 	seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1288 		   instdone->slice_common);
1289 
1290 	if (INTEL_GEN(dev_priv) <= 6)
1291 		return;
1292 
1293 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1294 		seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1295 			   slice, subslice, instdone->sampler[slice][subslice]);
1296 
1297 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1298 		seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1299 			   slice, subslice, instdone->row[slice][subslice]);
1300 }
1301 
1302 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1303 {
1304 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1305 	struct intel_engine_cs *engine;
1306 	u64 acthd[I915_NUM_ENGINES];
1307 	u32 seqno[I915_NUM_ENGINES];
1308 	struct intel_instdone instdone;
1309 	enum intel_engine_id id;
1310 
1311 	if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1312 		seq_printf(m, "Wedged\n");
1313 	if (test_bit(I915_RESET_IN_PROGRESS, &dev_priv->gpu_error.flags))
1314 		seq_printf(m, "Reset in progress\n");
1315 	if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1316 		seq_printf(m, "Waiter holding struct mutex\n");
1317 	if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1318 		seq_printf(m, "struct_mutex blocked for reset\n");
1319 
1320 	if (!i915.enable_hangcheck) {
1321 		seq_printf(m, "Hangcheck disabled\n");
1322 		return 0;
1323 	}
1324 
1325 	intel_runtime_pm_get(dev_priv);
1326 
1327 	for_each_engine(engine, dev_priv, id) {
1328 		acthd[id] = intel_engine_get_active_head(engine);
1329 		seqno[id] = intel_engine_get_seqno(engine);
1330 	}
1331 
1332 	intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1333 
1334 	intel_runtime_pm_put(dev_priv);
1335 
1336 	if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1337 		seq_printf(m, "Hangcheck active, fires in %dms\n",
1338 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1339 					    jiffies));
1340 	} else
1341 		seq_printf(m, "Hangcheck inactive\n");
1342 
1343 	for_each_engine(engine, dev_priv, id) {
1344 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
1345 		struct rb_node *rb;
1346 
1347 		seq_printf(m, "%s:\n", engine->name);
1348 		seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1349 			   engine->hangcheck.seqno, seqno[id],
1350 			   intel_engine_last_submit(engine));
1351 		seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
1352 			   yesno(intel_engine_has_waiter(engine)),
1353 			   yesno(test_bit(engine->id,
1354 					  &dev_priv->gpu_error.missed_irq_rings)),
1355 			   yesno(engine->hangcheck.stalled));
1356 
1357 		spin_lock_irq(&b->lock);
1358 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1359 			struct intel_wait *w = rb_entry(rb, typeof(*w), node);
1360 
1361 			seq_printf(m, "\t%s [%d] waiting for %x\n",
1362 				   w->tsk->comm, w->tsk->pid, w->seqno);
1363 		}
1364 		spin_unlock_irq(&b->lock);
1365 
1366 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1367 			   (long long)engine->hangcheck.acthd,
1368 			   (long long)acthd[id]);
1369 		seq_printf(m, "\taction = %s(%d) %d ms ago\n",
1370 			   hangcheck_action_to_str(engine->hangcheck.action),
1371 			   engine->hangcheck.action,
1372 			   jiffies_to_msecs(jiffies -
1373 					    engine->hangcheck.action_timestamp));
1374 
1375 		if (engine->id == RCS) {
1376 			seq_puts(m, "\tinstdone read =\n");
1377 
1378 			i915_instdone_info(dev_priv, m, &instdone);
1379 
1380 			seq_puts(m, "\tinstdone accu =\n");
1381 
1382 			i915_instdone_info(dev_priv, m,
1383 					   &engine->hangcheck.instdone);
1384 		}
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 static int ironlake_drpc_info(struct seq_file *m)
1391 {
1392 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1393 	u32 rgvmodectl, rstdbyctl;
1394 	u16 crstandvid;
1395 
1396 	intel_runtime_pm_get(dev_priv);
1397 
1398 	rgvmodectl = I915_READ(MEMMODECTL);
1399 	rstdbyctl = I915_READ(RSTDBYCTL);
1400 	crstandvid = I915_READ16(CRSTANDVID);
1401 
1402 	intel_runtime_pm_put(dev_priv);
1403 
1404 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1405 	seq_printf(m, "Boost freq: %d\n",
1406 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1407 		   MEMMODE_BOOST_FREQ_SHIFT);
1408 	seq_printf(m, "HW control enabled: %s\n",
1409 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1410 	seq_printf(m, "SW control enabled: %s\n",
1411 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1412 	seq_printf(m, "Gated voltage change: %s\n",
1413 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1414 	seq_printf(m, "Starting frequency: P%d\n",
1415 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1416 	seq_printf(m, "Max P-state: P%d\n",
1417 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1418 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1419 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1420 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1421 	seq_printf(m, "Render standby enabled: %s\n",
1422 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1423 	seq_puts(m, "Current RS state: ");
1424 	switch (rstdbyctl & RSX_STATUS_MASK) {
1425 	case RSX_STATUS_ON:
1426 		seq_puts(m, "on\n");
1427 		break;
1428 	case RSX_STATUS_RC1:
1429 		seq_puts(m, "RC1\n");
1430 		break;
1431 	case RSX_STATUS_RC1E:
1432 		seq_puts(m, "RC1E\n");
1433 		break;
1434 	case RSX_STATUS_RS1:
1435 		seq_puts(m, "RS1\n");
1436 		break;
1437 	case RSX_STATUS_RS2:
1438 		seq_puts(m, "RS2 (RC6)\n");
1439 		break;
1440 	case RSX_STATUS_RS3:
1441 		seq_puts(m, "RC3 (RC6+)\n");
1442 		break;
1443 	default:
1444 		seq_puts(m, "unknown\n");
1445 		break;
1446 	}
1447 
1448 	return 0;
1449 }
1450 
1451 static int i915_forcewake_domains(struct seq_file *m, void *data)
1452 {
1453 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1454 	struct intel_uncore_forcewake_domain *fw_domain;
1455 
1456 	spin_lock_irq(&dev_priv->uncore.lock);
1457 	for_each_fw_domain(fw_domain, dev_priv) {
1458 		seq_printf(m, "%s.wake_count = %u\n",
1459 			   intel_uncore_forcewake_domain_to_str(fw_domain->id),
1460 			   fw_domain->wake_count);
1461 	}
1462 	spin_unlock_irq(&dev_priv->uncore.lock);
1463 
1464 	return 0;
1465 }
1466 
1467 static int vlv_drpc_info(struct seq_file *m)
1468 {
1469 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1470 	u32 rpmodectl1, rcctl1, pw_status;
1471 
1472 	intel_runtime_pm_get(dev_priv);
1473 
1474 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1475 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1476 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1477 
1478 	intel_runtime_pm_put(dev_priv);
1479 
1480 	seq_printf(m, "Video Turbo Mode: %s\n",
1481 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1482 	seq_printf(m, "Turbo enabled: %s\n",
1483 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1484 	seq_printf(m, "HW control enabled: %s\n",
1485 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1486 	seq_printf(m, "SW control enabled: %s\n",
1487 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1488 			  GEN6_RP_MEDIA_SW_MODE));
1489 	seq_printf(m, "RC6 Enabled: %s\n",
1490 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1491 					GEN6_RC_CTL_EI_MODE(1))));
1492 	seq_printf(m, "Render Power Well: %s\n",
1493 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1494 	seq_printf(m, "Media Power Well: %s\n",
1495 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1496 
1497 	seq_printf(m, "Render RC6 residency since boot: %u\n",
1498 		   I915_READ(VLV_GT_RENDER_RC6));
1499 	seq_printf(m, "Media RC6 residency since boot: %u\n",
1500 		   I915_READ(VLV_GT_MEDIA_RC6));
1501 
1502 	return i915_forcewake_domains(m, NULL);
1503 }
1504 
1505 static int gen6_drpc_info(struct seq_file *m)
1506 {
1507 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1508 	struct drm_device *dev = &dev_priv->drm;
1509 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1510 	u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1511 	unsigned forcewake_count;
1512 	int count = 0, ret;
1513 
1514 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1515 	if (ret)
1516 		return ret;
1517 	intel_runtime_pm_get(dev_priv);
1518 
1519 	spin_lock_irq(&dev_priv->uncore.lock);
1520 	forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1521 	spin_unlock_irq(&dev_priv->uncore.lock);
1522 
1523 	if (forcewake_count) {
1524 		seq_puts(m, "RC information inaccurate because somebody "
1525 			    "holds a forcewake reference \n");
1526 	} else {
1527 		/* NB: we cannot use forcewake, else we read the wrong values */
1528 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1529 			udelay(10);
1530 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1531 	}
1532 
1533 	gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1534 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1535 
1536 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1537 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1538 	if (INTEL_GEN(dev_priv) >= 9) {
1539 		gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1540 		gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1541 	}
1542 	mutex_unlock(&dev->struct_mutex);
1543 	mutex_lock(&dev_priv->rps.hw_lock);
1544 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1545 	mutex_unlock(&dev_priv->rps.hw_lock);
1546 
1547 	intel_runtime_pm_put(dev_priv);
1548 
1549 	seq_printf(m, "Video Turbo Mode: %s\n",
1550 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1551 	seq_printf(m, "HW control enabled: %s\n",
1552 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1553 	seq_printf(m, "SW control enabled: %s\n",
1554 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1555 			  GEN6_RP_MEDIA_SW_MODE));
1556 	seq_printf(m, "RC1e Enabled: %s\n",
1557 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1558 	seq_printf(m, "RC6 Enabled: %s\n",
1559 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1560 	if (INTEL_GEN(dev_priv) >= 9) {
1561 		seq_printf(m, "Render Well Gating Enabled: %s\n",
1562 			yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1563 		seq_printf(m, "Media Well Gating Enabled: %s\n",
1564 			yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1565 	}
1566 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1567 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1568 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1569 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1570 	seq_puts(m, "Current RC state: ");
1571 	switch (gt_core_status & GEN6_RCn_MASK) {
1572 	case GEN6_RC0:
1573 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1574 			seq_puts(m, "Core Power Down\n");
1575 		else
1576 			seq_puts(m, "on\n");
1577 		break;
1578 	case GEN6_RC3:
1579 		seq_puts(m, "RC3\n");
1580 		break;
1581 	case GEN6_RC6:
1582 		seq_puts(m, "RC6\n");
1583 		break;
1584 	case GEN6_RC7:
1585 		seq_puts(m, "RC7\n");
1586 		break;
1587 	default:
1588 		seq_puts(m, "Unknown\n");
1589 		break;
1590 	}
1591 
1592 	seq_printf(m, "Core Power Down: %s\n",
1593 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1594 	if (INTEL_GEN(dev_priv) >= 9) {
1595 		seq_printf(m, "Render Power Well: %s\n",
1596 			(gen9_powergate_status &
1597 			 GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1598 		seq_printf(m, "Media Power Well: %s\n",
1599 			(gen9_powergate_status &
1600 			 GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1601 	}
1602 
1603 	/* Not exactly sure what this is */
1604 	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1605 		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1606 	seq_printf(m, "RC6 residency since boot: %u\n",
1607 		   I915_READ(GEN6_GT_GFX_RC6));
1608 	seq_printf(m, "RC6+ residency since boot: %u\n",
1609 		   I915_READ(GEN6_GT_GFX_RC6p));
1610 	seq_printf(m, "RC6++ residency since boot: %u\n",
1611 		   I915_READ(GEN6_GT_GFX_RC6pp));
1612 
1613 	seq_printf(m, "RC6   voltage: %dmV\n",
1614 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1615 	seq_printf(m, "RC6+  voltage: %dmV\n",
1616 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1617 	seq_printf(m, "RC6++ voltage: %dmV\n",
1618 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1619 	return i915_forcewake_domains(m, NULL);
1620 }
1621 
1622 static int i915_drpc_info(struct seq_file *m, void *unused)
1623 {
1624 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1625 
1626 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1627 		return vlv_drpc_info(m);
1628 	else if (INTEL_GEN(dev_priv) >= 6)
1629 		return gen6_drpc_info(m);
1630 	else
1631 		return ironlake_drpc_info(m);
1632 }
1633 
1634 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1635 {
1636 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1637 
1638 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1639 		   dev_priv->fb_tracking.busy_bits);
1640 
1641 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1642 		   dev_priv->fb_tracking.flip_bits);
1643 
1644 	return 0;
1645 }
1646 
1647 static int i915_fbc_status(struct seq_file *m, void *unused)
1648 {
1649 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1650 
1651 	if (!HAS_FBC(dev_priv)) {
1652 		seq_puts(m, "FBC unsupported on this chipset\n");
1653 		return 0;
1654 	}
1655 
1656 	intel_runtime_pm_get(dev_priv);
1657 	mutex_lock(&dev_priv->fbc.lock);
1658 
1659 	if (intel_fbc_is_active(dev_priv))
1660 		seq_puts(m, "FBC enabled\n");
1661 	else
1662 		seq_printf(m, "FBC disabled: %s\n",
1663 			   dev_priv->fbc.no_fbc_reason);
1664 
1665 	if (intel_fbc_is_active(dev_priv) && INTEL_GEN(dev_priv) >= 7) {
1666 		uint32_t mask = INTEL_GEN(dev_priv) >= 8 ?
1667 				BDW_FBC_COMPRESSION_MASK :
1668 				IVB_FBC_COMPRESSION_MASK;
1669 		seq_printf(m, "Compressing: %s\n",
1670 			   yesno(I915_READ(FBC_STATUS2) & mask));
1671 	}
1672 
1673 	mutex_unlock(&dev_priv->fbc.lock);
1674 	intel_runtime_pm_put(dev_priv);
1675 
1676 	return 0;
1677 }
1678 
1679 static int i915_fbc_fc_get(void *data, u64 *val)
1680 {
1681 	struct drm_i915_private *dev_priv = data;
1682 
1683 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1684 		return -ENODEV;
1685 
1686 	*val = dev_priv->fbc.false_color;
1687 
1688 	return 0;
1689 }
1690 
1691 static int i915_fbc_fc_set(void *data, u64 val)
1692 {
1693 	struct drm_i915_private *dev_priv = data;
1694 	u32 reg;
1695 
1696 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1697 		return -ENODEV;
1698 
1699 	mutex_lock(&dev_priv->fbc.lock);
1700 
1701 	reg = I915_READ(ILK_DPFC_CONTROL);
1702 	dev_priv->fbc.false_color = val;
1703 
1704 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1705 		   (reg | FBC_CTL_FALSE_COLOR) :
1706 		   (reg & ~FBC_CTL_FALSE_COLOR));
1707 
1708 	mutex_unlock(&dev_priv->fbc.lock);
1709 	return 0;
1710 }
1711 
1712 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1713 			i915_fbc_fc_get, i915_fbc_fc_set,
1714 			"%llu\n");
1715 
1716 static int i915_ips_status(struct seq_file *m, void *unused)
1717 {
1718 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1719 
1720 	if (!HAS_IPS(dev_priv)) {
1721 		seq_puts(m, "not supported\n");
1722 		return 0;
1723 	}
1724 
1725 	intel_runtime_pm_get(dev_priv);
1726 
1727 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1728 		   yesno(i915.enable_ips));
1729 
1730 	if (INTEL_GEN(dev_priv) >= 8) {
1731 		seq_puts(m, "Currently: unknown\n");
1732 	} else {
1733 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1734 			seq_puts(m, "Currently: enabled\n");
1735 		else
1736 			seq_puts(m, "Currently: disabled\n");
1737 	}
1738 
1739 	intel_runtime_pm_put(dev_priv);
1740 
1741 	return 0;
1742 }
1743 
1744 static int i915_sr_status(struct seq_file *m, void *unused)
1745 {
1746 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1747 	bool sr_enabled = false;
1748 
1749 	intel_runtime_pm_get(dev_priv);
1750 	intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1751 
1752 	if (HAS_PCH_SPLIT(dev_priv))
1753 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1754 	else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
1755 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1756 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1757 	else if (IS_I915GM(dev_priv))
1758 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1759 	else if (IS_PINEVIEW(dev_priv))
1760 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1761 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1762 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1763 
1764 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1765 	intel_runtime_pm_put(dev_priv);
1766 
1767 	seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
1768 
1769 	return 0;
1770 }
1771 
1772 static int i915_emon_status(struct seq_file *m, void *unused)
1773 {
1774 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1775 	struct drm_device *dev = &dev_priv->drm;
1776 	unsigned long temp, chipset, gfx;
1777 	int ret;
1778 
1779 	if (!IS_GEN5(dev_priv))
1780 		return -ENODEV;
1781 
1782 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1783 	if (ret)
1784 		return ret;
1785 
1786 	temp = i915_mch_val(dev_priv);
1787 	chipset = i915_chipset_val(dev_priv);
1788 	gfx = i915_gfx_val(dev_priv);
1789 	mutex_unlock(&dev->struct_mutex);
1790 
1791 	seq_printf(m, "GMCH temp: %ld\n", temp);
1792 	seq_printf(m, "Chipset power: %ld\n", chipset);
1793 	seq_printf(m, "GFX power: %ld\n", gfx);
1794 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1795 
1796 	return 0;
1797 }
1798 
1799 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1800 {
1801 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1802 	int ret = 0;
1803 	int gpu_freq, ia_freq;
1804 	unsigned int max_gpu_freq, min_gpu_freq;
1805 
1806 	if (!HAS_LLC(dev_priv)) {
1807 		seq_puts(m, "unsupported on this chipset\n");
1808 		return 0;
1809 	}
1810 
1811 	intel_runtime_pm_get(dev_priv);
1812 
1813 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1814 	if (ret)
1815 		goto out;
1816 
1817 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1818 		/* Convert GT frequency to 50 HZ units */
1819 		min_gpu_freq =
1820 			dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1821 		max_gpu_freq =
1822 			dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1823 	} else {
1824 		min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1825 		max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1826 	}
1827 
1828 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1829 
1830 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1831 		ia_freq = gpu_freq;
1832 		sandybridge_pcode_read(dev_priv,
1833 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1834 				       &ia_freq);
1835 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1836 			   intel_gpu_freq(dev_priv, (gpu_freq *
1837 				(IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1838 				 GEN9_FREQ_SCALER : 1))),
1839 			   ((ia_freq >> 0) & 0xff) * 100,
1840 			   ((ia_freq >> 8) & 0xff) * 100);
1841 	}
1842 
1843 	mutex_unlock(&dev_priv->rps.hw_lock);
1844 
1845 out:
1846 	intel_runtime_pm_put(dev_priv);
1847 	return ret;
1848 }
1849 
1850 static int i915_opregion(struct seq_file *m, void *unused)
1851 {
1852 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1853 	struct drm_device *dev = &dev_priv->drm;
1854 	struct intel_opregion *opregion = &dev_priv->opregion;
1855 	int ret;
1856 
1857 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1858 	if (ret)
1859 		goto out;
1860 
1861 	if (opregion->header)
1862 		seq_write(m, opregion->header, OPREGION_SIZE);
1863 
1864 	mutex_unlock(&dev->struct_mutex);
1865 
1866 out:
1867 	return 0;
1868 }
1869 
1870 static int i915_vbt(struct seq_file *m, void *unused)
1871 {
1872 	struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1873 
1874 	if (opregion->vbt)
1875 		seq_write(m, opregion->vbt, opregion->vbt_size);
1876 
1877 	return 0;
1878 }
1879 
1880 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1881 {
1882 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1883 	struct drm_device *dev = &dev_priv->drm;
1884 	struct intel_framebuffer *fbdev_fb = NULL;
1885 	struct drm_framebuffer *drm_fb;
1886 	int ret;
1887 
1888 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1889 	if (ret)
1890 		return ret;
1891 
1892 #ifdef CONFIG_DRM_FBDEV_EMULATION
1893 	if (dev_priv->fbdev) {
1894 		fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1895 
1896 		seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1897 			   fbdev_fb->base.width,
1898 			   fbdev_fb->base.height,
1899 			   fbdev_fb->base.format->depth,
1900 			   fbdev_fb->base.format->cpp[0] * 8,
1901 			   fbdev_fb->base.modifier,
1902 			   drm_framebuffer_read_refcount(&fbdev_fb->base));
1903 		describe_obj(m, fbdev_fb->obj);
1904 		seq_putc(m, '\n');
1905 	}
1906 #endif
1907 
1908 	mutex_lock(&dev->mode_config.fb_lock);
1909 	drm_for_each_fb(drm_fb, dev) {
1910 		struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1911 		if (fb == fbdev_fb)
1912 			continue;
1913 
1914 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1915 			   fb->base.width,
1916 			   fb->base.height,
1917 			   fb->base.format->depth,
1918 			   fb->base.format->cpp[0] * 8,
1919 			   fb->base.modifier,
1920 			   drm_framebuffer_read_refcount(&fb->base));
1921 		describe_obj(m, fb->obj);
1922 		seq_putc(m, '\n');
1923 	}
1924 	mutex_unlock(&dev->mode_config.fb_lock);
1925 	mutex_unlock(&dev->struct_mutex);
1926 
1927 	return 0;
1928 }
1929 
1930 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1931 {
1932 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1933 		   ring->space, ring->head, ring->tail,
1934 		   ring->last_retired_head);
1935 }
1936 
1937 static int i915_context_status(struct seq_file *m, void *unused)
1938 {
1939 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1940 	struct drm_device *dev = &dev_priv->drm;
1941 	struct intel_engine_cs *engine;
1942 	struct i915_gem_context *ctx;
1943 	enum intel_engine_id id;
1944 	int ret;
1945 
1946 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1947 	if (ret)
1948 		return ret;
1949 
1950 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1951 		seq_printf(m, "HW context %u ", ctx->hw_id);
1952 		if (ctx->pid) {
1953 			struct task_struct *task;
1954 
1955 			task = get_pid_task(ctx->pid, PIDTYPE_PID);
1956 			if (task) {
1957 				seq_printf(m, "(%s [%d]) ",
1958 					   task->comm, task->pid);
1959 				put_task_struct(task);
1960 			}
1961 		} else if (IS_ERR(ctx->file_priv)) {
1962 			seq_puts(m, "(deleted) ");
1963 		} else {
1964 			seq_puts(m, "(kernel) ");
1965 		}
1966 
1967 		seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1968 		seq_putc(m, '\n');
1969 
1970 		for_each_engine(engine, dev_priv, id) {
1971 			struct intel_context *ce = &ctx->engine[engine->id];
1972 
1973 			seq_printf(m, "%s: ", engine->name);
1974 			seq_putc(m, ce->initialised ? 'I' : 'i');
1975 			if (ce->state)
1976 				describe_obj(m, ce->state->obj);
1977 			if (ce->ring)
1978 				describe_ctx_ring(m, ce->ring);
1979 			seq_putc(m, '\n');
1980 		}
1981 
1982 		seq_putc(m, '\n');
1983 	}
1984 
1985 	mutex_unlock(&dev->struct_mutex);
1986 
1987 	return 0;
1988 }
1989 
1990 static void i915_dump_lrc_obj(struct seq_file *m,
1991 			      struct i915_gem_context *ctx,
1992 			      struct intel_engine_cs *engine)
1993 {
1994 	struct i915_vma *vma = ctx->engine[engine->id].state;
1995 	struct page *page;
1996 	int j;
1997 
1998 	seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
1999 
2000 	if (!vma) {
2001 		seq_puts(m, "\tFake context\n");
2002 		return;
2003 	}
2004 
2005 	if (vma->flags & I915_VMA_GLOBAL_BIND)
2006 		seq_printf(m, "\tBound in GGTT at 0x%08x\n",
2007 			   i915_ggtt_offset(vma));
2008 
2009 	if (i915_gem_object_pin_pages(vma->obj)) {
2010 		seq_puts(m, "\tFailed to get pages for context object\n\n");
2011 		return;
2012 	}
2013 
2014 	page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
2015 	if (page) {
2016 		u32 *reg_state = kmap_atomic(page);
2017 
2018 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2019 			seq_printf(m,
2020 				   "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2021 				   j * 4,
2022 				   reg_state[j], reg_state[j + 1],
2023 				   reg_state[j + 2], reg_state[j + 3]);
2024 		}
2025 		kunmap_atomic(reg_state);
2026 	}
2027 
2028 	i915_gem_object_unpin_pages(vma->obj);
2029 	seq_putc(m, '\n');
2030 }
2031 
2032 static int i915_dump_lrc(struct seq_file *m, void *unused)
2033 {
2034 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2035 	struct drm_device *dev = &dev_priv->drm;
2036 	struct intel_engine_cs *engine;
2037 	struct i915_gem_context *ctx;
2038 	enum intel_engine_id id;
2039 	int ret;
2040 
2041 	if (!i915.enable_execlists) {
2042 		seq_printf(m, "Logical Ring Contexts are disabled\n");
2043 		return 0;
2044 	}
2045 
2046 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2047 	if (ret)
2048 		return ret;
2049 
2050 	list_for_each_entry(ctx, &dev_priv->context_list, link)
2051 		for_each_engine(engine, dev_priv, id)
2052 			i915_dump_lrc_obj(m, ctx, engine);
2053 
2054 	mutex_unlock(&dev->struct_mutex);
2055 
2056 	return 0;
2057 }
2058 
2059 static const char *swizzle_string(unsigned swizzle)
2060 {
2061 	switch (swizzle) {
2062 	case I915_BIT_6_SWIZZLE_NONE:
2063 		return "none";
2064 	case I915_BIT_6_SWIZZLE_9:
2065 		return "bit9";
2066 	case I915_BIT_6_SWIZZLE_9_10:
2067 		return "bit9/bit10";
2068 	case I915_BIT_6_SWIZZLE_9_11:
2069 		return "bit9/bit11";
2070 	case I915_BIT_6_SWIZZLE_9_10_11:
2071 		return "bit9/bit10/bit11";
2072 	case I915_BIT_6_SWIZZLE_9_17:
2073 		return "bit9/bit17";
2074 	case I915_BIT_6_SWIZZLE_9_10_17:
2075 		return "bit9/bit10/bit17";
2076 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2077 		return "unknown";
2078 	}
2079 
2080 	return "bug";
2081 }
2082 
2083 static int i915_swizzle_info(struct seq_file *m, void *data)
2084 {
2085 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2086 
2087 	intel_runtime_pm_get(dev_priv);
2088 
2089 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2090 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2091 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2092 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2093 
2094 	if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2095 		seq_printf(m, "DDC = 0x%08x\n",
2096 			   I915_READ(DCC));
2097 		seq_printf(m, "DDC2 = 0x%08x\n",
2098 			   I915_READ(DCC2));
2099 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2100 			   I915_READ16(C0DRB3));
2101 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2102 			   I915_READ16(C1DRB3));
2103 	} else if (INTEL_GEN(dev_priv) >= 6) {
2104 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2105 			   I915_READ(MAD_DIMM_C0));
2106 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2107 			   I915_READ(MAD_DIMM_C1));
2108 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2109 			   I915_READ(MAD_DIMM_C2));
2110 		seq_printf(m, "TILECTL = 0x%08x\n",
2111 			   I915_READ(TILECTL));
2112 		if (INTEL_GEN(dev_priv) >= 8)
2113 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2114 				   I915_READ(GAMTARBMODE));
2115 		else
2116 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2117 				   I915_READ(ARB_MODE));
2118 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2119 			   I915_READ(DISP_ARB_CTL));
2120 	}
2121 
2122 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2123 		seq_puts(m, "L-shaped memory detected\n");
2124 
2125 	intel_runtime_pm_put(dev_priv);
2126 
2127 	return 0;
2128 }
2129 
2130 static int per_file_ctx(int id, void *ptr, void *data)
2131 {
2132 	struct i915_gem_context *ctx = ptr;
2133 	struct seq_file *m = data;
2134 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2135 
2136 	if (!ppgtt) {
2137 		seq_printf(m, "  no ppgtt for context %d\n",
2138 			   ctx->user_handle);
2139 		return 0;
2140 	}
2141 
2142 	if (i915_gem_context_is_default(ctx))
2143 		seq_puts(m, "  default context:\n");
2144 	else
2145 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2146 	ppgtt->debug_dump(ppgtt, m);
2147 
2148 	return 0;
2149 }
2150 
2151 static void gen8_ppgtt_info(struct seq_file *m,
2152 			    struct drm_i915_private *dev_priv)
2153 {
2154 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2155 	struct intel_engine_cs *engine;
2156 	enum intel_engine_id id;
2157 	int i;
2158 
2159 	if (!ppgtt)
2160 		return;
2161 
2162 	for_each_engine(engine, dev_priv, id) {
2163 		seq_printf(m, "%s\n", engine->name);
2164 		for (i = 0; i < 4; i++) {
2165 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2166 			pdp <<= 32;
2167 			pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2168 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2169 		}
2170 	}
2171 }
2172 
2173 static void gen6_ppgtt_info(struct seq_file *m,
2174 			    struct drm_i915_private *dev_priv)
2175 {
2176 	struct intel_engine_cs *engine;
2177 	enum intel_engine_id id;
2178 
2179 	if (IS_GEN6(dev_priv))
2180 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2181 
2182 	for_each_engine(engine, dev_priv, id) {
2183 		seq_printf(m, "%s\n", engine->name);
2184 		if (IS_GEN7(dev_priv))
2185 			seq_printf(m, "GFX_MODE: 0x%08x\n",
2186 				   I915_READ(RING_MODE_GEN7(engine)));
2187 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2188 			   I915_READ(RING_PP_DIR_BASE(engine)));
2189 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2190 			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
2191 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2192 			   I915_READ(RING_PP_DIR_DCLV(engine)));
2193 	}
2194 	if (dev_priv->mm.aliasing_ppgtt) {
2195 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2196 
2197 		seq_puts(m, "aliasing PPGTT:\n");
2198 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2199 
2200 		ppgtt->debug_dump(ppgtt, m);
2201 	}
2202 
2203 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2204 }
2205 
2206 static int i915_ppgtt_info(struct seq_file *m, void *data)
2207 {
2208 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2209 	struct drm_device *dev = &dev_priv->drm;
2210 	struct drm_file *file;
2211 	int ret;
2212 
2213 	mutex_lock(&dev->filelist_mutex);
2214 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2215 	if (ret)
2216 		goto out_unlock;
2217 
2218 	intel_runtime_pm_get(dev_priv);
2219 
2220 	if (INTEL_GEN(dev_priv) >= 8)
2221 		gen8_ppgtt_info(m, dev_priv);
2222 	else if (INTEL_GEN(dev_priv) >= 6)
2223 		gen6_ppgtt_info(m, dev_priv);
2224 
2225 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2226 		struct drm_i915_file_private *file_priv = file->driver_priv;
2227 		struct task_struct *task;
2228 
2229 		task = get_pid_task(file->pid, PIDTYPE_PID);
2230 		if (!task) {
2231 			ret = -ESRCH;
2232 			goto out_rpm;
2233 		}
2234 		seq_printf(m, "\nproc: %s\n", task->comm);
2235 		put_task_struct(task);
2236 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2237 			     (void *)(unsigned long)m);
2238 	}
2239 
2240 out_rpm:
2241 	intel_runtime_pm_put(dev_priv);
2242 	mutex_unlock(&dev->struct_mutex);
2243 out_unlock:
2244 	mutex_unlock(&dev->filelist_mutex);
2245 	return ret;
2246 }
2247 
2248 static int count_irq_waiters(struct drm_i915_private *i915)
2249 {
2250 	struct intel_engine_cs *engine;
2251 	enum intel_engine_id id;
2252 	int count = 0;
2253 
2254 	for_each_engine(engine, i915, id)
2255 		count += intel_engine_has_waiter(engine);
2256 
2257 	return count;
2258 }
2259 
2260 static const char *rps_power_to_str(unsigned int power)
2261 {
2262 	static const char * const strings[] = {
2263 		[LOW_POWER] = "low power",
2264 		[BETWEEN] = "mixed",
2265 		[HIGH_POWER] = "high power",
2266 	};
2267 
2268 	if (power >= ARRAY_SIZE(strings) || !strings[power])
2269 		return "unknown";
2270 
2271 	return strings[power];
2272 }
2273 
2274 static int i915_rps_boost_info(struct seq_file *m, void *data)
2275 {
2276 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2277 	struct drm_device *dev = &dev_priv->drm;
2278 	struct drm_file *file;
2279 
2280 	seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2281 	seq_printf(m, "GPU busy? %s [%d requests]\n",
2282 		   yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
2283 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2284 	seq_printf(m, "Frequency requested %d\n",
2285 		   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
2286 	seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2287 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2288 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2289 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2290 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2291 	seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2292 		   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
2293 		   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2294 		   intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
2295 
2296 	mutex_lock(&dev->filelist_mutex);
2297 	spin_lock(&dev_priv->rps.client_lock);
2298 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2299 		struct drm_i915_file_private *file_priv = file->driver_priv;
2300 		struct task_struct *task;
2301 
2302 		rcu_read_lock();
2303 		task = pid_task(file->pid, PIDTYPE_PID);
2304 		seq_printf(m, "%s [%d]: %d boosts%s\n",
2305 			   task ? task->comm : "<unknown>",
2306 			   task ? task->pid : -1,
2307 			   file_priv->rps.boosts,
2308 			   list_empty(&file_priv->rps.link) ? "" : ", active");
2309 		rcu_read_unlock();
2310 	}
2311 	seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2312 	spin_unlock(&dev_priv->rps.client_lock);
2313 	mutex_unlock(&dev->filelist_mutex);
2314 
2315 	if (INTEL_GEN(dev_priv) >= 6 &&
2316 	    dev_priv->rps.enabled &&
2317 	    dev_priv->gt.active_requests) {
2318 		u32 rpup, rpupei;
2319 		u32 rpdown, rpdownei;
2320 
2321 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2322 		rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2323 		rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2324 		rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2325 		rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2326 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2327 
2328 		seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2329 			   rps_power_to_str(dev_priv->rps.power));
2330 		seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2331 			   100 * rpup / rpupei,
2332 			   dev_priv->rps.up_threshold);
2333 		seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2334 			   100 * rpdown / rpdownei,
2335 			   dev_priv->rps.down_threshold);
2336 	} else {
2337 		seq_puts(m, "\nRPS Autotuning inactive\n");
2338 	}
2339 
2340 	return 0;
2341 }
2342 
2343 static int i915_llc(struct seq_file *m, void *data)
2344 {
2345 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2346 	const bool edram = INTEL_GEN(dev_priv) > 8;
2347 
2348 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2349 	seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2350 		   intel_uncore_edram_size(dev_priv)/1024/1024);
2351 
2352 	return 0;
2353 }
2354 
2355 static int i915_huc_load_status_info(struct seq_file *m, void *data)
2356 {
2357 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2358 	struct intel_uc_fw *huc_fw = &dev_priv->huc.fw;
2359 
2360 	if (!HAS_HUC_UCODE(dev_priv))
2361 		return 0;
2362 
2363 	seq_puts(m, "HuC firmware status:\n");
2364 	seq_printf(m, "\tpath: %s\n", huc_fw->path);
2365 	seq_printf(m, "\tfetch: %s\n",
2366 		intel_uc_fw_status_repr(huc_fw->fetch_status));
2367 	seq_printf(m, "\tload: %s\n",
2368 		intel_uc_fw_status_repr(huc_fw->load_status));
2369 	seq_printf(m, "\tversion wanted: %d.%d\n",
2370 		huc_fw->major_ver_wanted, huc_fw->minor_ver_wanted);
2371 	seq_printf(m, "\tversion found: %d.%d\n",
2372 		huc_fw->major_ver_found, huc_fw->minor_ver_found);
2373 	seq_printf(m, "\theader: offset is %d; size = %d\n",
2374 		huc_fw->header_offset, huc_fw->header_size);
2375 	seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2376 		huc_fw->ucode_offset, huc_fw->ucode_size);
2377 	seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2378 		huc_fw->rsa_offset, huc_fw->rsa_size);
2379 
2380 	seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
2381 
2382 	return 0;
2383 }
2384 
2385 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2386 {
2387 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2388 	struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
2389 	u32 tmp, i;
2390 
2391 	if (!HAS_GUC_UCODE(dev_priv))
2392 		return 0;
2393 
2394 	seq_printf(m, "GuC firmware status:\n");
2395 	seq_printf(m, "\tpath: %s\n",
2396 		guc_fw->path);
2397 	seq_printf(m, "\tfetch: %s\n",
2398 		intel_uc_fw_status_repr(guc_fw->fetch_status));
2399 	seq_printf(m, "\tload: %s\n",
2400 		intel_uc_fw_status_repr(guc_fw->load_status));
2401 	seq_printf(m, "\tversion wanted: %d.%d\n",
2402 		guc_fw->major_ver_wanted, guc_fw->minor_ver_wanted);
2403 	seq_printf(m, "\tversion found: %d.%d\n",
2404 		guc_fw->major_ver_found, guc_fw->minor_ver_found);
2405 	seq_printf(m, "\theader: offset is %d; size = %d\n",
2406 		guc_fw->header_offset, guc_fw->header_size);
2407 	seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2408 		guc_fw->ucode_offset, guc_fw->ucode_size);
2409 	seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2410 		guc_fw->rsa_offset, guc_fw->rsa_size);
2411 
2412 	tmp = I915_READ(GUC_STATUS);
2413 
2414 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2415 	seq_printf(m, "\tBootrom status = 0x%x\n",
2416 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2417 	seq_printf(m, "\tuKernel status = 0x%x\n",
2418 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2419 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2420 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2421 	seq_puts(m, "\nScratch registers:\n");
2422 	for (i = 0; i < 16; i++)
2423 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2424 
2425 	return 0;
2426 }
2427 
2428 static void i915_guc_log_info(struct seq_file *m,
2429 			      struct drm_i915_private *dev_priv)
2430 {
2431 	struct intel_guc *guc = &dev_priv->guc;
2432 
2433 	seq_puts(m, "\nGuC logging stats:\n");
2434 
2435 	seq_printf(m, "\tISR:   flush count %10u, overflow count %10u\n",
2436 		   guc->log.flush_count[GUC_ISR_LOG_BUFFER],
2437 		   guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
2438 
2439 	seq_printf(m, "\tDPC:   flush count %10u, overflow count %10u\n",
2440 		   guc->log.flush_count[GUC_DPC_LOG_BUFFER],
2441 		   guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
2442 
2443 	seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
2444 		   guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
2445 		   guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
2446 
2447 	seq_printf(m, "\tTotal flush interrupt count: %u\n",
2448 		   guc->log.flush_interrupt_count);
2449 
2450 	seq_printf(m, "\tCapture miss count: %u\n",
2451 		   guc->log.capture_miss_count);
2452 }
2453 
2454 static void i915_guc_client_info(struct seq_file *m,
2455 				 struct drm_i915_private *dev_priv,
2456 				 struct i915_guc_client *client)
2457 {
2458 	struct intel_engine_cs *engine;
2459 	enum intel_engine_id id;
2460 	uint64_t tot = 0;
2461 
2462 	seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2463 		client->priority, client->ctx_index, client->proc_desc_offset);
2464 	seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2465 		client->doorbell_id, client->doorbell_offset, client->doorbell_cookie);
2466 	seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2467 		client->wq_size, client->wq_offset, client->wq_tail);
2468 
2469 	seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2470 	seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2471 	seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2472 
2473 	for_each_engine(engine, dev_priv, id) {
2474 		u64 submissions = client->submissions[id];
2475 		tot += submissions;
2476 		seq_printf(m, "\tSubmissions: %llu %s\n",
2477 				submissions, engine->name);
2478 	}
2479 	seq_printf(m, "\tTotal: %llu\n", tot);
2480 }
2481 
2482 static int i915_guc_info(struct seq_file *m, void *data)
2483 {
2484 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2485 	const struct intel_guc *guc = &dev_priv->guc;
2486 	struct intel_engine_cs *engine;
2487 	enum intel_engine_id id;
2488 	u64 total;
2489 
2490 	if (!guc->execbuf_client) {
2491 		seq_printf(m, "GuC submission %s\n",
2492 			   HAS_GUC_SCHED(dev_priv) ?
2493 			   "disabled" :
2494 			   "not supported");
2495 		return 0;
2496 	}
2497 
2498 	seq_printf(m, "Doorbell map:\n");
2499 	seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc->doorbell_bitmap);
2500 	seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
2501 
2502 	seq_printf(m, "GuC total action count: %llu\n", guc->action_count);
2503 	seq_printf(m, "GuC action failure count: %u\n", guc->action_fail);
2504 	seq_printf(m, "GuC last action command: 0x%x\n", guc->action_cmd);
2505 	seq_printf(m, "GuC last action status: 0x%x\n", guc->action_status);
2506 	seq_printf(m, "GuC last action error code: %d\n", guc->action_err);
2507 
2508 	total = 0;
2509 	seq_printf(m, "\nGuC submissions:\n");
2510 	for_each_engine(engine, dev_priv, id) {
2511 		u64 submissions = guc->submissions[id];
2512 		total += submissions;
2513 		seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2514 			engine->name, submissions, guc->last_seqno[id]);
2515 	}
2516 	seq_printf(m, "\t%s: %llu\n", "Total", total);
2517 
2518 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
2519 	i915_guc_client_info(m, dev_priv, guc->execbuf_client);
2520 
2521 	i915_guc_log_info(m, dev_priv);
2522 
2523 	/* Add more as required ... */
2524 
2525 	return 0;
2526 }
2527 
2528 static int i915_guc_log_dump(struct seq_file *m, void *data)
2529 {
2530 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2531 	struct drm_i915_gem_object *obj;
2532 	int i = 0, pg;
2533 
2534 	if (!dev_priv->guc.log.vma)
2535 		return 0;
2536 
2537 	obj = dev_priv->guc.log.vma->obj;
2538 	for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
2539 		u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
2540 
2541 		for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2542 			seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2543 				   *(log + i), *(log + i + 1),
2544 				   *(log + i + 2), *(log + i + 3));
2545 
2546 		kunmap_atomic(log);
2547 	}
2548 
2549 	seq_putc(m, '\n');
2550 
2551 	return 0;
2552 }
2553 
2554 static int i915_guc_log_control_get(void *data, u64 *val)
2555 {
2556 	struct drm_device *dev = data;
2557 	struct drm_i915_private *dev_priv = to_i915(dev);
2558 
2559 	if (!dev_priv->guc.log.vma)
2560 		return -EINVAL;
2561 
2562 	*val = i915.guc_log_level;
2563 
2564 	return 0;
2565 }
2566 
2567 static int i915_guc_log_control_set(void *data, u64 val)
2568 {
2569 	struct drm_device *dev = data;
2570 	struct drm_i915_private *dev_priv = to_i915(dev);
2571 	int ret;
2572 
2573 	if (!dev_priv->guc.log.vma)
2574 		return -EINVAL;
2575 
2576 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2577 	if (ret)
2578 		return ret;
2579 
2580 	intel_runtime_pm_get(dev_priv);
2581 	ret = i915_guc_log_control(dev_priv, val);
2582 	intel_runtime_pm_put(dev_priv);
2583 
2584 	mutex_unlock(&dev->struct_mutex);
2585 	return ret;
2586 }
2587 
2588 DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
2589 			i915_guc_log_control_get, i915_guc_log_control_set,
2590 			"%lld\n");
2591 
2592 static const char *psr2_live_status(u32 val)
2593 {
2594 	static const char * const live_status[] = {
2595 		"IDLE",
2596 		"CAPTURE",
2597 		"CAPTURE_FS",
2598 		"SLEEP",
2599 		"BUFON_FW",
2600 		"ML_UP",
2601 		"SU_STANDBY",
2602 		"FAST_SLEEP",
2603 		"DEEP_SLEEP",
2604 		"BUF_ON",
2605 		"TG_ON"
2606 	};
2607 
2608 	val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
2609 	if (val < ARRAY_SIZE(live_status))
2610 		return live_status[val];
2611 
2612 	return "unknown";
2613 }
2614 
2615 static int i915_edp_psr_status(struct seq_file *m, void *data)
2616 {
2617 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2618 	u32 psrperf = 0;
2619 	u32 stat[3];
2620 	enum pipe pipe;
2621 	bool enabled = false;
2622 
2623 	if (!HAS_PSR(dev_priv)) {
2624 		seq_puts(m, "PSR not supported\n");
2625 		return 0;
2626 	}
2627 
2628 	intel_runtime_pm_get(dev_priv);
2629 
2630 	mutex_lock(&dev_priv->psr.lock);
2631 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2632 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2633 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2634 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2635 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2636 		   dev_priv->psr.busy_frontbuffer_bits);
2637 	seq_printf(m, "Re-enable work scheduled: %s\n",
2638 		   yesno(work_busy(&dev_priv->psr.work.work)));
2639 
2640 	if (HAS_DDI(dev_priv)) {
2641 		if (dev_priv->psr.psr2_support)
2642 			enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
2643 		else
2644 			enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2645 	} else {
2646 		for_each_pipe(dev_priv, pipe) {
2647 			enum transcoder cpu_transcoder =
2648 				intel_pipe_to_cpu_transcoder(dev_priv, pipe);
2649 			enum intel_display_power_domain power_domain;
2650 
2651 			power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
2652 			if (!intel_display_power_get_if_enabled(dev_priv,
2653 								power_domain))
2654 				continue;
2655 
2656 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2657 				VLV_EDP_PSR_CURR_STATE_MASK;
2658 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2659 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2660 				enabled = true;
2661 
2662 			intel_display_power_put(dev_priv, power_domain);
2663 		}
2664 	}
2665 
2666 	seq_printf(m, "Main link in standby mode: %s\n",
2667 		   yesno(dev_priv->psr.link_standby));
2668 
2669 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2670 
2671 	if (!HAS_DDI(dev_priv))
2672 		for_each_pipe(dev_priv, pipe) {
2673 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2674 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2675 				seq_printf(m, " pipe %c", pipe_name(pipe));
2676 		}
2677 	seq_puts(m, "\n");
2678 
2679 	/*
2680 	 * VLV/CHV PSR has no kind of performance counter
2681 	 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2682 	 */
2683 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2684 		psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2685 			EDP_PSR_PERF_CNT_MASK;
2686 
2687 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2688 	}
2689 	if (dev_priv->psr.psr2_support) {
2690 		u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
2691 
2692 		seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
2693 			   psr2, psr2_live_status(psr2));
2694 	}
2695 	mutex_unlock(&dev_priv->psr.lock);
2696 
2697 	intel_runtime_pm_put(dev_priv);
2698 	return 0;
2699 }
2700 
2701 static int i915_sink_crc(struct seq_file *m, void *data)
2702 {
2703 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2704 	struct drm_device *dev = &dev_priv->drm;
2705 	struct intel_connector *connector;
2706 	struct intel_dp *intel_dp = NULL;
2707 	int ret;
2708 	u8 crc[6];
2709 
2710 	drm_modeset_lock_all(dev);
2711 	for_each_intel_connector(dev, connector) {
2712 		struct drm_crtc *crtc;
2713 
2714 		if (!connector->base.state->best_encoder)
2715 			continue;
2716 
2717 		crtc = connector->base.state->crtc;
2718 		if (!crtc->state->active)
2719 			continue;
2720 
2721 		if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2722 			continue;
2723 
2724 		intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2725 
2726 		ret = intel_dp_sink_crc(intel_dp, crc);
2727 		if (ret)
2728 			goto out;
2729 
2730 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2731 			   crc[0], crc[1], crc[2],
2732 			   crc[3], crc[4], crc[5]);
2733 		goto out;
2734 	}
2735 	ret = -ENODEV;
2736 out:
2737 	drm_modeset_unlock_all(dev);
2738 	return ret;
2739 }
2740 
2741 static int i915_energy_uJ(struct seq_file *m, void *data)
2742 {
2743 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2744 	u64 power;
2745 	u32 units;
2746 
2747 	if (INTEL_GEN(dev_priv) < 6)
2748 		return -ENODEV;
2749 
2750 	intel_runtime_pm_get(dev_priv);
2751 
2752 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2753 	power = (power & 0x1f00) >> 8;
2754 	units = 1000000 / (1 << power); /* convert to uJ */
2755 	power = I915_READ(MCH_SECP_NRG_STTS);
2756 	power *= units;
2757 
2758 	intel_runtime_pm_put(dev_priv);
2759 
2760 	seq_printf(m, "%llu", (long long unsigned)power);
2761 
2762 	return 0;
2763 }
2764 
2765 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2766 {
2767 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2768 	struct pci_dev *pdev = dev_priv->drm.pdev;
2769 
2770 	if (!HAS_RUNTIME_PM(dev_priv))
2771 		seq_puts(m, "Runtime power management not supported\n");
2772 
2773 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2774 	seq_printf(m, "IRQs disabled: %s\n",
2775 		   yesno(!intel_irqs_enabled(dev_priv)));
2776 #ifdef CONFIG_PM
2777 	seq_printf(m, "Usage count: %d\n",
2778 		   atomic_read(&dev_priv->drm.dev->power.usage_count));
2779 #else
2780 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2781 #endif
2782 	seq_printf(m, "PCI device power state: %s [%d]\n",
2783 		   pci_power_name(pdev->current_state),
2784 		   pdev->current_state);
2785 
2786 	return 0;
2787 }
2788 
2789 static int i915_power_domain_info(struct seq_file *m, void *unused)
2790 {
2791 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2792 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2793 	int i;
2794 
2795 	mutex_lock(&power_domains->lock);
2796 
2797 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2798 	for (i = 0; i < power_domains->power_well_count; i++) {
2799 		struct i915_power_well *power_well;
2800 		enum intel_display_power_domain power_domain;
2801 
2802 		power_well = &power_domains->power_wells[i];
2803 		seq_printf(m, "%-25s %d\n", power_well->name,
2804 			   power_well->count);
2805 
2806 		for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2807 		     power_domain++) {
2808 			if (!(BIT(power_domain) & power_well->domains))
2809 				continue;
2810 
2811 			seq_printf(m, "  %-23s %d\n",
2812 				 intel_display_power_domain_str(power_domain),
2813 				 power_domains->domain_use_count[power_domain]);
2814 		}
2815 	}
2816 
2817 	mutex_unlock(&power_domains->lock);
2818 
2819 	return 0;
2820 }
2821 
2822 static int i915_dmc_info(struct seq_file *m, void *unused)
2823 {
2824 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2825 	struct intel_csr *csr;
2826 
2827 	if (!HAS_CSR(dev_priv)) {
2828 		seq_puts(m, "not supported\n");
2829 		return 0;
2830 	}
2831 
2832 	csr = &dev_priv->csr;
2833 
2834 	intel_runtime_pm_get(dev_priv);
2835 
2836 	seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2837 	seq_printf(m, "path: %s\n", csr->fw_path);
2838 
2839 	if (!csr->dmc_payload)
2840 		goto out;
2841 
2842 	seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2843 		   CSR_VERSION_MINOR(csr->version));
2844 
2845 	if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
2846 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2847 			   I915_READ(SKL_CSR_DC3_DC5_COUNT));
2848 		seq_printf(m, "DC5 -> DC6 count: %d\n",
2849 			   I915_READ(SKL_CSR_DC5_DC6_COUNT));
2850 	} else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2851 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2852 			   I915_READ(BXT_CSR_DC3_DC5_COUNT));
2853 	}
2854 
2855 out:
2856 	seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2857 	seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2858 	seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2859 
2860 	intel_runtime_pm_put(dev_priv);
2861 
2862 	return 0;
2863 }
2864 
2865 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2866 				 struct drm_display_mode *mode)
2867 {
2868 	int i;
2869 
2870 	for (i = 0; i < tabs; i++)
2871 		seq_putc(m, '\t');
2872 
2873 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2874 		   mode->base.id, mode->name,
2875 		   mode->vrefresh, mode->clock,
2876 		   mode->hdisplay, mode->hsync_start,
2877 		   mode->hsync_end, mode->htotal,
2878 		   mode->vdisplay, mode->vsync_start,
2879 		   mode->vsync_end, mode->vtotal,
2880 		   mode->type, mode->flags);
2881 }
2882 
2883 static void intel_encoder_info(struct seq_file *m,
2884 			       struct intel_crtc *intel_crtc,
2885 			       struct intel_encoder *intel_encoder)
2886 {
2887 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2888 	struct drm_device *dev = &dev_priv->drm;
2889 	struct drm_crtc *crtc = &intel_crtc->base;
2890 	struct intel_connector *intel_connector;
2891 	struct drm_encoder *encoder;
2892 
2893 	encoder = &intel_encoder->base;
2894 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2895 		   encoder->base.id, encoder->name);
2896 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2897 		struct drm_connector *connector = &intel_connector->base;
2898 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2899 			   connector->base.id,
2900 			   connector->name,
2901 			   drm_get_connector_status_name(connector->status));
2902 		if (connector->status == connector_status_connected) {
2903 			struct drm_display_mode *mode = &crtc->mode;
2904 			seq_printf(m, ", mode:\n");
2905 			intel_seq_print_mode(m, 2, mode);
2906 		} else {
2907 			seq_putc(m, '\n');
2908 		}
2909 	}
2910 }
2911 
2912 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2913 {
2914 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2915 	struct drm_device *dev = &dev_priv->drm;
2916 	struct drm_crtc *crtc = &intel_crtc->base;
2917 	struct intel_encoder *intel_encoder;
2918 	struct drm_plane_state *plane_state = crtc->primary->state;
2919 	struct drm_framebuffer *fb = plane_state->fb;
2920 
2921 	if (fb)
2922 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2923 			   fb->base.id, plane_state->src_x >> 16,
2924 			   plane_state->src_y >> 16, fb->width, fb->height);
2925 	else
2926 		seq_puts(m, "\tprimary plane disabled\n");
2927 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2928 		intel_encoder_info(m, intel_crtc, intel_encoder);
2929 }
2930 
2931 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2932 {
2933 	struct drm_display_mode *mode = panel->fixed_mode;
2934 
2935 	seq_printf(m, "\tfixed mode:\n");
2936 	intel_seq_print_mode(m, 2, mode);
2937 }
2938 
2939 static void intel_dp_info(struct seq_file *m,
2940 			  struct intel_connector *intel_connector)
2941 {
2942 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2943 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2944 
2945 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2946 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2947 	if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2948 		intel_panel_info(m, &intel_connector->panel);
2949 
2950 	drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2951 				&intel_dp->aux);
2952 }
2953 
2954 static void intel_dp_mst_info(struct seq_file *m,
2955 			  struct intel_connector *intel_connector)
2956 {
2957 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2958 	struct intel_dp_mst_encoder *intel_mst =
2959 		enc_to_mst(&intel_encoder->base);
2960 	struct intel_digital_port *intel_dig_port = intel_mst->primary;
2961 	struct intel_dp *intel_dp = &intel_dig_port->dp;
2962 	bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2963 					intel_connector->port);
2964 
2965 	seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2966 }
2967 
2968 static void intel_hdmi_info(struct seq_file *m,
2969 			    struct intel_connector *intel_connector)
2970 {
2971 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2972 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2973 
2974 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2975 }
2976 
2977 static void intel_lvds_info(struct seq_file *m,
2978 			    struct intel_connector *intel_connector)
2979 {
2980 	intel_panel_info(m, &intel_connector->panel);
2981 }
2982 
2983 static void intel_connector_info(struct seq_file *m,
2984 				 struct drm_connector *connector)
2985 {
2986 	struct intel_connector *intel_connector = to_intel_connector(connector);
2987 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2988 	struct drm_display_mode *mode;
2989 
2990 	seq_printf(m, "connector %d: type %s, status: %s\n",
2991 		   connector->base.id, connector->name,
2992 		   drm_get_connector_status_name(connector->status));
2993 	if (connector->status == connector_status_connected) {
2994 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
2995 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2996 			   connector->display_info.width_mm,
2997 			   connector->display_info.height_mm);
2998 		seq_printf(m, "\tsubpixel order: %s\n",
2999 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
3000 		seq_printf(m, "\tCEA rev: %d\n",
3001 			   connector->display_info.cea_rev);
3002 	}
3003 
3004 	if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3005 		return;
3006 
3007 	switch (connector->connector_type) {
3008 	case DRM_MODE_CONNECTOR_DisplayPort:
3009 	case DRM_MODE_CONNECTOR_eDP:
3010 		if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
3011 			intel_dp_mst_info(m, intel_connector);
3012 		else
3013 			intel_dp_info(m, intel_connector);
3014 		break;
3015 	case DRM_MODE_CONNECTOR_LVDS:
3016 		if (intel_encoder->type == INTEL_OUTPUT_LVDS)
3017 			intel_lvds_info(m, intel_connector);
3018 		break;
3019 	case DRM_MODE_CONNECTOR_HDMIA:
3020 		if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
3021 		    intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
3022 			intel_hdmi_info(m, intel_connector);
3023 		break;
3024 	default:
3025 		break;
3026 	}
3027 
3028 	seq_printf(m, "\tmodes:\n");
3029 	list_for_each_entry(mode, &connector->modes, head)
3030 		intel_seq_print_mode(m, 2, mode);
3031 }
3032 
3033 static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
3034 {
3035 	u32 state;
3036 
3037 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
3038 		state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
3039 	else
3040 		state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
3041 
3042 	return state;
3043 }
3044 
3045 static bool cursor_position(struct drm_i915_private *dev_priv,
3046 			    int pipe, int *x, int *y)
3047 {
3048 	u32 pos;
3049 
3050 	pos = I915_READ(CURPOS(pipe));
3051 
3052 	*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
3053 	if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
3054 		*x = -*x;
3055 
3056 	*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
3057 	if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
3058 		*y = -*y;
3059 
3060 	return cursor_active(dev_priv, pipe);
3061 }
3062 
3063 static const char *plane_type(enum drm_plane_type type)
3064 {
3065 	switch (type) {
3066 	case DRM_PLANE_TYPE_OVERLAY:
3067 		return "OVL";
3068 	case DRM_PLANE_TYPE_PRIMARY:
3069 		return "PRI";
3070 	case DRM_PLANE_TYPE_CURSOR:
3071 		return "CUR";
3072 	/*
3073 	 * Deliberately omitting default: to generate compiler warnings
3074 	 * when a new drm_plane_type gets added.
3075 	 */
3076 	}
3077 
3078 	return "unknown";
3079 }
3080 
3081 static const char *plane_rotation(unsigned int rotation)
3082 {
3083 	static char buf[48];
3084 	/*
3085 	 * According to doc only one DRM_ROTATE_ is allowed but this
3086 	 * will print them all to visualize if the values are misused
3087 	 */
3088 	snprintf(buf, sizeof(buf),
3089 		 "%s%s%s%s%s%s(0x%08x)",
3090 		 (rotation & DRM_ROTATE_0) ? "0 " : "",
3091 		 (rotation & DRM_ROTATE_90) ? "90 " : "",
3092 		 (rotation & DRM_ROTATE_180) ? "180 " : "",
3093 		 (rotation & DRM_ROTATE_270) ? "270 " : "",
3094 		 (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
3095 		 (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
3096 		 rotation);
3097 
3098 	return buf;
3099 }
3100 
3101 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3102 {
3103 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3104 	struct drm_device *dev = &dev_priv->drm;
3105 	struct intel_plane *intel_plane;
3106 
3107 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3108 		struct drm_plane_state *state;
3109 		struct drm_plane *plane = &intel_plane->base;
3110 		struct drm_format_name_buf format_name;
3111 
3112 		if (!plane->state) {
3113 			seq_puts(m, "plane->state is NULL!\n");
3114 			continue;
3115 		}
3116 
3117 		state = plane->state;
3118 
3119 		if (state->fb) {
3120 			drm_get_format_name(state->fb->format->format,
3121 					    &format_name);
3122 		} else {
3123 			sprintf(format_name.str, "N/A");
3124 		}
3125 
3126 		seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3127 			   plane->base.id,
3128 			   plane_type(intel_plane->base.type),
3129 			   state->crtc_x, state->crtc_y,
3130 			   state->crtc_w, state->crtc_h,
3131 			   (state->src_x >> 16),
3132 			   ((state->src_x & 0xffff) * 15625) >> 10,
3133 			   (state->src_y >> 16),
3134 			   ((state->src_y & 0xffff) * 15625) >> 10,
3135 			   (state->src_w >> 16),
3136 			   ((state->src_w & 0xffff) * 15625) >> 10,
3137 			   (state->src_h >> 16),
3138 			   ((state->src_h & 0xffff) * 15625) >> 10,
3139 			   format_name.str,
3140 			   plane_rotation(state->rotation));
3141 	}
3142 }
3143 
3144 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3145 {
3146 	struct intel_crtc_state *pipe_config;
3147 	int num_scalers = intel_crtc->num_scalers;
3148 	int i;
3149 
3150 	pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3151 
3152 	/* Not all platformas have a scaler */
3153 	if (num_scalers) {
3154 		seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3155 			   num_scalers,
3156 			   pipe_config->scaler_state.scaler_users,
3157 			   pipe_config->scaler_state.scaler_id);
3158 
3159 		for (i = 0; i < num_scalers; i++) {
3160 			struct intel_scaler *sc =
3161 					&pipe_config->scaler_state.scalers[i];
3162 
3163 			seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3164 				   i, yesno(sc->in_use), sc->mode);
3165 		}
3166 		seq_puts(m, "\n");
3167 	} else {
3168 		seq_puts(m, "\tNo scalers available on this platform\n");
3169 	}
3170 }
3171 
3172 static int i915_display_info(struct seq_file *m, void *unused)
3173 {
3174 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3175 	struct drm_device *dev = &dev_priv->drm;
3176 	struct intel_crtc *crtc;
3177 	struct drm_connector *connector;
3178 
3179 	intel_runtime_pm_get(dev_priv);
3180 	drm_modeset_lock_all(dev);
3181 	seq_printf(m, "CRTC info\n");
3182 	seq_printf(m, "---------\n");
3183 	for_each_intel_crtc(dev, crtc) {
3184 		bool active;
3185 		struct intel_crtc_state *pipe_config;
3186 		int x, y;
3187 
3188 		pipe_config = to_intel_crtc_state(crtc->base.state);
3189 
3190 		seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3191 			   crtc->base.base.id, pipe_name(crtc->pipe),
3192 			   yesno(pipe_config->base.active),
3193 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3194 			   yesno(pipe_config->dither), pipe_config->pipe_bpp);
3195 
3196 		if (pipe_config->base.active) {
3197 			intel_crtc_info(m, crtc);
3198 
3199 			active = cursor_position(dev_priv, crtc->pipe, &x, &y);
3200 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3201 				   yesno(crtc->cursor_base),
3202 				   x, y, crtc->base.cursor->state->crtc_w,
3203 				   crtc->base.cursor->state->crtc_h,
3204 				   crtc->cursor_addr, yesno(active));
3205 			intel_scaler_info(m, crtc);
3206 			intel_plane_info(m, crtc);
3207 		}
3208 
3209 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3210 			   yesno(!crtc->cpu_fifo_underrun_disabled),
3211 			   yesno(!crtc->pch_fifo_underrun_disabled));
3212 	}
3213 
3214 	seq_printf(m, "\n");
3215 	seq_printf(m, "Connector info\n");
3216 	seq_printf(m, "--------------\n");
3217 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3218 		intel_connector_info(m, connector);
3219 	}
3220 	drm_modeset_unlock_all(dev);
3221 	intel_runtime_pm_put(dev_priv);
3222 
3223 	return 0;
3224 }
3225 
3226 static int i915_engine_info(struct seq_file *m, void *unused)
3227 {
3228 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3229 	struct intel_engine_cs *engine;
3230 	enum intel_engine_id id;
3231 
3232 	intel_runtime_pm_get(dev_priv);
3233 
3234 	for_each_engine(engine, dev_priv, id) {
3235 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
3236 		struct drm_i915_gem_request *rq;
3237 		struct rb_node *rb;
3238 		u64 addr;
3239 
3240 		seq_printf(m, "%s\n", engine->name);
3241 		seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms]\n",
3242 			   intel_engine_get_seqno(engine),
3243 			   intel_engine_last_submit(engine),
3244 			   engine->hangcheck.seqno,
3245 			   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
3246 
3247 		rcu_read_lock();
3248 
3249 		seq_printf(m, "\tRequests:\n");
3250 
3251 		rq = list_first_entry(&engine->timeline->requests,
3252 				      struct drm_i915_gem_request, link);
3253 		if (&rq->link != &engine->timeline->requests)
3254 			print_request(m, rq, "\t\tfirst  ");
3255 
3256 		rq = list_last_entry(&engine->timeline->requests,
3257 				     struct drm_i915_gem_request, link);
3258 		if (&rq->link != &engine->timeline->requests)
3259 			print_request(m, rq, "\t\tlast   ");
3260 
3261 		rq = i915_gem_find_active_request(engine);
3262 		if (rq) {
3263 			print_request(m, rq, "\t\tactive ");
3264 			seq_printf(m,
3265 				   "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
3266 				   rq->head, rq->postfix, rq->tail,
3267 				   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
3268 				   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
3269 		}
3270 
3271 		seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
3272 			   I915_READ(RING_START(engine->mmio_base)),
3273 			   rq ? i915_ggtt_offset(rq->ring->vma) : 0);
3274 		seq_printf(m, "\tRING_HEAD:  0x%08x [0x%08x]\n",
3275 			   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
3276 			   rq ? rq->ring->head : 0);
3277 		seq_printf(m, "\tRING_TAIL:  0x%08x [0x%08x]\n",
3278 			   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
3279 			   rq ? rq->ring->tail : 0);
3280 		seq_printf(m, "\tRING_CTL:   0x%08x [%s]\n",
3281 			   I915_READ(RING_CTL(engine->mmio_base)),
3282 			   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
3283 
3284 		rcu_read_unlock();
3285 
3286 		addr = intel_engine_get_active_head(engine);
3287 		seq_printf(m, "\tACTHD:  0x%08x_%08x\n",
3288 			   upper_32_bits(addr), lower_32_bits(addr));
3289 		addr = intel_engine_get_last_batch_head(engine);
3290 		seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
3291 			   upper_32_bits(addr), lower_32_bits(addr));
3292 
3293 		if (i915.enable_execlists) {
3294 			u32 ptr, read, write;
3295 			struct rb_node *rb;
3296 
3297 			seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
3298 				   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
3299 				   I915_READ(RING_EXECLIST_STATUS_HI(engine)));
3300 
3301 			ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
3302 			read = GEN8_CSB_READ_PTR(ptr);
3303 			write = GEN8_CSB_WRITE_PTR(ptr);
3304 			seq_printf(m, "\tExeclist CSB read %d, write %d\n",
3305 				   read, write);
3306 			if (read >= GEN8_CSB_ENTRIES)
3307 				read = 0;
3308 			if (write >= GEN8_CSB_ENTRIES)
3309 				write = 0;
3310 			if (read > write)
3311 				write += GEN8_CSB_ENTRIES;
3312 			while (read < write) {
3313 				unsigned int idx = ++read % GEN8_CSB_ENTRIES;
3314 
3315 				seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
3316 					   idx,
3317 					   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
3318 					   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
3319 			}
3320 
3321 			rcu_read_lock();
3322 			rq = READ_ONCE(engine->execlist_port[0].request);
3323 			if (rq)
3324 				print_request(m, rq, "\t\tELSP[0] ");
3325 			else
3326 				seq_printf(m, "\t\tELSP[0] idle\n");
3327 			rq = READ_ONCE(engine->execlist_port[1].request);
3328 			if (rq)
3329 				print_request(m, rq, "\t\tELSP[1] ");
3330 			else
3331 				seq_printf(m, "\t\tELSP[1] idle\n");
3332 			rcu_read_unlock();
3333 
3334 			spin_lock_irq(&engine->timeline->lock);
3335 			for (rb = engine->execlist_first; rb; rb = rb_next(rb)) {
3336 				rq = rb_entry(rb, typeof(*rq), priotree.node);
3337 				print_request(m, rq, "\t\tQ ");
3338 			}
3339 			spin_unlock_irq(&engine->timeline->lock);
3340 		} else if (INTEL_GEN(dev_priv) > 6) {
3341 			seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
3342 				   I915_READ(RING_PP_DIR_BASE(engine)));
3343 			seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
3344 				   I915_READ(RING_PP_DIR_BASE_READ(engine)));
3345 			seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
3346 				   I915_READ(RING_PP_DIR_DCLV(engine)));
3347 		}
3348 
3349 		spin_lock_irq(&b->lock);
3350 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
3351 			struct intel_wait *w = rb_entry(rb, typeof(*w), node);
3352 
3353 			seq_printf(m, "\t%s [%d] waiting for %x\n",
3354 				   w->tsk->comm, w->tsk->pid, w->seqno);
3355 		}
3356 		spin_unlock_irq(&b->lock);
3357 
3358 		seq_puts(m, "\n");
3359 	}
3360 
3361 	intel_runtime_pm_put(dev_priv);
3362 
3363 	return 0;
3364 }
3365 
3366 static int i915_semaphore_status(struct seq_file *m, void *unused)
3367 {
3368 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3369 	struct drm_device *dev = &dev_priv->drm;
3370 	struct intel_engine_cs *engine;
3371 	int num_rings = INTEL_INFO(dev_priv)->num_rings;
3372 	enum intel_engine_id id;
3373 	int j, ret;
3374 
3375 	if (!i915.semaphores) {
3376 		seq_puts(m, "Semaphores are disabled\n");
3377 		return 0;
3378 	}
3379 
3380 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3381 	if (ret)
3382 		return ret;
3383 	intel_runtime_pm_get(dev_priv);
3384 
3385 	if (IS_BROADWELL(dev_priv)) {
3386 		struct page *page;
3387 		uint64_t *seqno;
3388 
3389 		page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3390 
3391 		seqno = (uint64_t *)kmap_atomic(page);
3392 		for_each_engine(engine, dev_priv, id) {
3393 			uint64_t offset;
3394 
3395 			seq_printf(m, "%s\n", engine->name);
3396 
3397 			seq_puts(m, "  Last signal:");
3398 			for (j = 0; j < num_rings; j++) {
3399 				offset = id * I915_NUM_ENGINES + j;
3400 				seq_printf(m, "0x%08llx (0x%02llx) ",
3401 					   seqno[offset], offset * 8);
3402 			}
3403 			seq_putc(m, '\n');
3404 
3405 			seq_puts(m, "  Last wait:  ");
3406 			for (j = 0; j < num_rings; j++) {
3407 				offset = id + (j * I915_NUM_ENGINES);
3408 				seq_printf(m, "0x%08llx (0x%02llx) ",
3409 					   seqno[offset], offset * 8);
3410 			}
3411 			seq_putc(m, '\n');
3412 
3413 		}
3414 		kunmap_atomic(seqno);
3415 	} else {
3416 		seq_puts(m, "  Last signal:");
3417 		for_each_engine(engine, dev_priv, id)
3418 			for (j = 0; j < num_rings; j++)
3419 				seq_printf(m, "0x%08x\n",
3420 					   I915_READ(engine->semaphore.mbox.signal[j]));
3421 		seq_putc(m, '\n');
3422 	}
3423 
3424 	intel_runtime_pm_put(dev_priv);
3425 	mutex_unlock(&dev->struct_mutex);
3426 	return 0;
3427 }
3428 
3429 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3430 {
3431 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3432 	struct drm_device *dev = &dev_priv->drm;
3433 	int i;
3434 
3435 	drm_modeset_lock_all(dev);
3436 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3437 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3438 
3439 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3440 		seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3441 			   pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
3442 		seq_printf(m, " tracked hardware state:\n");
3443 		seq_printf(m, " dpll:    0x%08x\n", pll->state.hw_state.dpll);
3444 		seq_printf(m, " dpll_md: 0x%08x\n",
3445 			   pll->state.hw_state.dpll_md);
3446 		seq_printf(m, " fp0:     0x%08x\n", pll->state.hw_state.fp0);
3447 		seq_printf(m, " fp1:     0x%08x\n", pll->state.hw_state.fp1);
3448 		seq_printf(m, " wrpll:   0x%08x\n", pll->state.hw_state.wrpll);
3449 	}
3450 	drm_modeset_unlock_all(dev);
3451 
3452 	return 0;
3453 }
3454 
3455 static int i915_wa_registers(struct seq_file *m, void *unused)
3456 {
3457 	int i;
3458 	int ret;
3459 	struct intel_engine_cs *engine;
3460 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3461 	struct drm_device *dev = &dev_priv->drm;
3462 	struct i915_workarounds *workarounds = &dev_priv->workarounds;
3463 	enum intel_engine_id id;
3464 
3465 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3466 	if (ret)
3467 		return ret;
3468 
3469 	intel_runtime_pm_get(dev_priv);
3470 
3471 	seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3472 	for_each_engine(engine, dev_priv, id)
3473 		seq_printf(m, "HW whitelist count for %s: %d\n",
3474 			   engine->name, workarounds->hw_whitelist_count[id]);
3475 	for (i = 0; i < workarounds->count; ++i) {
3476 		i915_reg_t addr;
3477 		u32 mask, value, read;
3478 		bool ok;
3479 
3480 		addr = workarounds->reg[i].addr;
3481 		mask = workarounds->reg[i].mask;
3482 		value = workarounds->reg[i].value;
3483 		read = I915_READ(addr);
3484 		ok = (value & mask) == (read & mask);
3485 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3486 			   i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3487 	}
3488 
3489 	intel_runtime_pm_put(dev_priv);
3490 	mutex_unlock(&dev->struct_mutex);
3491 
3492 	return 0;
3493 }
3494 
3495 static int i915_ddb_info(struct seq_file *m, void *unused)
3496 {
3497 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3498 	struct drm_device *dev = &dev_priv->drm;
3499 	struct skl_ddb_allocation *ddb;
3500 	struct skl_ddb_entry *entry;
3501 	enum pipe pipe;
3502 	int plane;
3503 
3504 	if (INTEL_GEN(dev_priv) < 9)
3505 		return 0;
3506 
3507 	drm_modeset_lock_all(dev);
3508 
3509 	ddb = &dev_priv->wm.skl_hw.ddb;
3510 
3511 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3512 
3513 	for_each_pipe(dev_priv, pipe) {
3514 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3515 
3516 		for_each_universal_plane(dev_priv, pipe, plane) {
3517 			entry = &ddb->plane[pipe][plane];
3518 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3519 				   entry->start, entry->end,
3520 				   skl_ddb_entry_size(entry));
3521 		}
3522 
3523 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3524 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3525 			   entry->end, skl_ddb_entry_size(entry));
3526 	}
3527 
3528 	drm_modeset_unlock_all(dev);
3529 
3530 	return 0;
3531 }
3532 
3533 static void drrs_status_per_crtc(struct seq_file *m,
3534 				 struct drm_device *dev,
3535 				 struct intel_crtc *intel_crtc)
3536 {
3537 	struct drm_i915_private *dev_priv = to_i915(dev);
3538 	struct i915_drrs *drrs = &dev_priv->drrs;
3539 	int vrefresh = 0;
3540 	struct drm_connector *connector;
3541 
3542 	drm_for_each_connector(connector, dev) {
3543 		if (connector->state->crtc != &intel_crtc->base)
3544 			continue;
3545 
3546 		seq_printf(m, "%s:\n", connector->name);
3547 	}
3548 
3549 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3550 		seq_puts(m, "\tVBT: DRRS_type: Static");
3551 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3552 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3553 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3554 		seq_puts(m, "\tVBT: DRRS_type: None");
3555 	else
3556 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3557 
3558 	seq_puts(m, "\n\n");
3559 
3560 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3561 		struct intel_panel *panel;
3562 
3563 		mutex_lock(&drrs->mutex);
3564 		/* DRRS Supported */
3565 		seq_puts(m, "\tDRRS Supported: Yes\n");
3566 
3567 		/* disable_drrs() will make drrs->dp NULL */
3568 		if (!drrs->dp) {
3569 			seq_puts(m, "Idleness DRRS: Disabled");
3570 			mutex_unlock(&drrs->mutex);
3571 			return;
3572 		}
3573 
3574 		panel = &drrs->dp->attached_connector->panel;
3575 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3576 					drrs->busy_frontbuffer_bits);
3577 
3578 		seq_puts(m, "\n\t\t");
3579 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3580 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3581 			vrefresh = panel->fixed_mode->vrefresh;
3582 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3583 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3584 			vrefresh = panel->downclock_mode->vrefresh;
3585 		} else {
3586 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3587 						drrs->refresh_rate_type);
3588 			mutex_unlock(&drrs->mutex);
3589 			return;
3590 		}
3591 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3592 
3593 		seq_puts(m, "\n\t\t");
3594 		mutex_unlock(&drrs->mutex);
3595 	} else {
3596 		/* DRRS not supported. Print the VBT parameter*/
3597 		seq_puts(m, "\tDRRS Supported : No");
3598 	}
3599 	seq_puts(m, "\n");
3600 }
3601 
3602 static int i915_drrs_status(struct seq_file *m, void *unused)
3603 {
3604 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3605 	struct drm_device *dev = &dev_priv->drm;
3606 	struct intel_crtc *intel_crtc;
3607 	int active_crtc_cnt = 0;
3608 
3609 	drm_modeset_lock_all(dev);
3610 	for_each_intel_crtc(dev, intel_crtc) {
3611 		if (intel_crtc->base.state->active) {
3612 			active_crtc_cnt++;
3613 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3614 
3615 			drrs_status_per_crtc(m, dev, intel_crtc);
3616 		}
3617 	}
3618 	drm_modeset_unlock_all(dev);
3619 
3620 	if (!active_crtc_cnt)
3621 		seq_puts(m, "No active crtc found\n");
3622 
3623 	return 0;
3624 }
3625 
3626 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3627 {
3628 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3629 	struct drm_device *dev = &dev_priv->drm;
3630 	struct intel_encoder *intel_encoder;
3631 	struct intel_digital_port *intel_dig_port;
3632 	struct drm_connector *connector;
3633 
3634 	drm_modeset_lock_all(dev);
3635 	drm_for_each_connector(connector, dev) {
3636 		if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3637 			continue;
3638 
3639 		intel_encoder = intel_attached_encoder(connector);
3640 		if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3641 			continue;
3642 
3643 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3644 		if (!intel_dig_port->dp.can_mst)
3645 			continue;
3646 
3647 		seq_printf(m, "MST Source Port %c\n",
3648 			   port_name(intel_dig_port->port));
3649 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3650 	}
3651 	drm_modeset_unlock_all(dev);
3652 	return 0;
3653 }
3654 
3655 static ssize_t i915_displayport_test_active_write(struct file *file,
3656 						  const char __user *ubuf,
3657 						  size_t len, loff_t *offp)
3658 {
3659 	char *input_buffer;
3660 	int status = 0;
3661 	struct drm_device *dev;
3662 	struct drm_connector *connector;
3663 	struct list_head *connector_list;
3664 	struct intel_dp *intel_dp;
3665 	int val = 0;
3666 
3667 	dev = ((struct seq_file *)file->private_data)->private;
3668 
3669 	connector_list = &dev->mode_config.connector_list;
3670 
3671 	if (len == 0)
3672 		return 0;
3673 
3674 	input_buffer = kmalloc(len + 1, GFP_KERNEL);
3675 	if (!input_buffer)
3676 		return -ENOMEM;
3677 
3678 	if (copy_from_user(input_buffer, ubuf, len)) {
3679 		status = -EFAULT;
3680 		goto out;
3681 	}
3682 
3683 	input_buffer[len] = '\0';
3684 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
3685 
3686 	list_for_each_entry(connector, connector_list, head) {
3687 		if (connector->connector_type !=
3688 		    DRM_MODE_CONNECTOR_DisplayPort)
3689 			continue;
3690 
3691 		if (connector->status == connector_status_connected &&
3692 		    connector->encoder != NULL) {
3693 			intel_dp = enc_to_intel_dp(connector->encoder);
3694 			status = kstrtoint(input_buffer, 10, &val);
3695 			if (status < 0)
3696 				goto out;
3697 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
3698 			/* To prevent erroneous activation of the compliance
3699 			 * testing code, only accept an actual value of 1 here
3700 			 */
3701 			if (val == 1)
3702 				intel_dp->compliance.test_active = 1;
3703 			else
3704 				intel_dp->compliance.test_active = 0;
3705 		}
3706 	}
3707 out:
3708 	kfree(input_buffer);
3709 	if (status < 0)
3710 		return status;
3711 
3712 	*offp += len;
3713 	return len;
3714 }
3715 
3716 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
3717 {
3718 	struct drm_device *dev = m->private;
3719 	struct drm_connector *connector;
3720 	struct list_head *connector_list = &dev->mode_config.connector_list;
3721 	struct intel_dp *intel_dp;
3722 
3723 	list_for_each_entry(connector, connector_list, head) {
3724 		if (connector->connector_type !=
3725 		    DRM_MODE_CONNECTOR_DisplayPort)
3726 			continue;
3727 
3728 		if (connector->status == connector_status_connected &&
3729 		    connector->encoder != NULL) {
3730 			intel_dp = enc_to_intel_dp(connector->encoder);
3731 			if (intel_dp->compliance.test_active)
3732 				seq_puts(m, "1");
3733 			else
3734 				seq_puts(m, "0");
3735 		} else
3736 			seq_puts(m, "0");
3737 	}
3738 
3739 	return 0;
3740 }
3741 
3742 static int i915_displayport_test_active_open(struct inode *inode,
3743 					     struct file *file)
3744 {
3745 	struct drm_i915_private *dev_priv = inode->i_private;
3746 
3747 	return single_open(file, i915_displayport_test_active_show,
3748 			   &dev_priv->drm);
3749 }
3750 
3751 static const struct file_operations i915_displayport_test_active_fops = {
3752 	.owner = THIS_MODULE,
3753 	.open = i915_displayport_test_active_open,
3754 	.read = seq_read,
3755 	.llseek = seq_lseek,
3756 	.release = single_release,
3757 	.write = i915_displayport_test_active_write
3758 };
3759 
3760 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
3761 {
3762 	struct drm_device *dev = m->private;
3763 	struct drm_connector *connector;
3764 	struct list_head *connector_list = &dev->mode_config.connector_list;
3765 	struct intel_dp *intel_dp;
3766 
3767 	list_for_each_entry(connector, connector_list, head) {
3768 		if (connector->connector_type !=
3769 		    DRM_MODE_CONNECTOR_DisplayPort)
3770 			continue;
3771 
3772 		if (connector->status == connector_status_connected &&
3773 		    connector->encoder != NULL) {
3774 			intel_dp = enc_to_intel_dp(connector->encoder);
3775 			seq_printf(m, "%lx", intel_dp->compliance.test_data.edid);
3776 		} else
3777 			seq_puts(m, "0");
3778 	}
3779 
3780 	return 0;
3781 }
3782 static int i915_displayport_test_data_open(struct inode *inode,
3783 					   struct file *file)
3784 {
3785 	struct drm_i915_private *dev_priv = inode->i_private;
3786 
3787 	return single_open(file, i915_displayport_test_data_show,
3788 			   &dev_priv->drm);
3789 }
3790 
3791 static const struct file_operations i915_displayport_test_data_fops = {
3792 	.owner = THIS_MODULE,
3793 	.open = i915_displayport_test_data_open,
3794 	.read = seq_read,
3795 	.llseek = seq_lseek,
3796 	.release = single_release
3797 };
3798 
3799 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
3800 {
3801 	struct drm_device *dev = m->private;
3802 	struct drm_connector *connector;
3803 	struct list_head *connector_list = &dev->mode_config.connector_list;
3804 	struct intel_dp *intel_dp;
3805 
3806 	list_for_each_entry(connector, connector_list, head) {
3807 		if (connector->connector_type !=
3808 		    DRM_MODE_CONNECTOR_DisplayPort)
3809 			continue;
3810 
3811 		if (connector->status == connector_status_connected &&
3812 		    connector->encoder != NULL) {
3813 			intel_dp = enc_to_intel_dp(connector->encoder);
3814 			seq_printf(m, "%02lx", intel_dp->compliance.test_type);
3815 		} else
3816 			seq_puts(m, "0");
3817 	}
3818 
3819 	return 0;
3820 }
3821 
3822 static int i915_displayport_test_type_open(struct inode *inode,
3823 				       struct file *file)
3824 {
3825 	struct drm_i915_private *dev_priv = inode->i_private;
3826 
3827 	return single_open(file, i915_displayport_test_type_show,
3828 			   &dev_priv->drm);
3829 }
3830 
3831 static const struct file_operations i915_displayport_test_type_fops = {
3832 	.owner = THIS_MODULE,
3833 	.open = i915_displayport_test_type_open,
3834 	.read = seq_read,
3835 	.llseek = seq_lseek,
3836 	.release = single_release
3837 };
3838 
3839 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3840 {
3841 	struct drm_i915_private *dev_priv = m->private;
3842 	struct drm_device *dev = &dev_priv->drm;
3843 	int level;
3844 	int num_levels;
3845 
3846 	if (IS_CHERRYVIEW(dev_priv))
3847 		num_levels = 3;
3848 	else if (IS_VALLEYVIEW(dev_priv))
3849 		num_levels = 1;
3850 	else
3851 		num_levels = ilk_wm_max_level(dev_priv) + 1;
3852 
3853 	drm_modeset_lock_all(dev);
3854 
3855 	for (level = 0; level < num_levels; level++) {
3856 		unsigned int latency = wm[level];
3857 
3858 		/*
3859 		 * - WM1+ latency values in 0.5us units
3860 		 * - latencies are in us on gen9/vlv/chv
3861 		 */
3862 		if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
3863 		    IS_CHERRYVIEW(dev_priv))
3864 			latency *= 10;
3865 		else if (level > 0)
3866 			latency *= 5;
3867 
3868 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
3869 			   level, wm[level], latency / 10, latency % 10);
3870 	}
3871 
3872 	drm_modeset_unlock_all(dev);
3873 }
3874 
3875 static int pri_wm_latency_show(struct seq_file *m, void *data)
3876 {
3877 	struct drm_i915_private *dev_priv = m->private;
3878 	const uint16_t *latencies;
3879 
3880 	if (INTEL_GEN(dev_priv) >= 9)
3881 		latencies = dev_priv->wm.skl_latency;
3882 	else
3883 		latencies = dev_priv->wm.pri_latency;
3884 
3885 	wm_latency_show(m, latencies);
3886 
3887 	return 0;
3888 }
3889 
3890 static int spr_wm_latency_show(struct seq_file *m, void *data)
3891 {
3892 	struct drm_i915_private *dev_priv = m->private;
3893 	const uint16_t *latencies;
3894 
3895 	if (INTEL_GEN(dev_priv) >= 9)
3896 		latencies = dev_priv->wm.skl_latency;
3897 	else
3898 		latencies = dev_priv->wm.spr_latency;
3899 
3900 	wm_latency_show(m, latencies);
3901 
3902 	return 0;
3903 }
3904 
3905 static int cur_wm_latency_show(struct seq_file *m, void *data)
3906 {
3907 	struct drm_i915_private *dev_priv = m->private;
3908 	const uint16_t *latencies;
3909 
3910 	if (INTEL_GEN(dev_priv) >= 9)
3911 		latencies = dev_priv->wm.skl_latency;
3912 	else
3913 		latencies = dev_priv->wm.cur_latency;
3914 
3915 	wm_latency_show(m, latencies);
3916 
3917 	return 0;
3918 }
3919 
3920 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3921 {
3922 	struct drm_i915_private *dev_priv = inode->i_private;
3923 
3924 	if (INTEL_GEN(dev_priv) < 5)
3925 		return -ENODEV;
3926 
3927 	return single_open(file, pri_wm_latency_show, dev_priv);
3928 }
3929 
3930 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3931 {
3932 	struct drm_i915_private *dev_priv = inode->i_private;
3933 
3934 	if (HAS_GMCH_DISPLAY(dev_priv))
3935 		return -ENODEV;
3936 
3937 	return single_open(file, spr_wm_latency_show, dev_priv);
3938 }
3939 
3940 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3941 {
3942 	struct drm_i915_private *dev_priv = inode->i_private;
3943 
3944 	if (HAS_GMCH_DISPLAY(dev_priv))
3945 		return -ENODEV;
3946 
3947 	return single_open(file, cur_wm_latency_show, dev_priv);
3948 }
3949 
3950 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3951 				size_t len, loff_t *offp, uint16_t wm[8])
3952 {
3953 	struct seq_file *m = file->private_data;
3954 	struct drm_i915_private *dev_priv = m->private;
3955 	struct drm_device *dev = &dev_priv->drm;
3956 	uint16_t new[8] = { 0 };
3957 	int num_levels;
3958 	int level;
3959 	int ret;
3960 	char tmp[32];
3961 
3962 	if (IS_CHERRYVIEW(dev_priv))
3963 		num_levels = 3;
3964 	else if (IS_VALLEYVIEW(dev_priv))
3965 		num_levels = 1;
3966 	else
3967 		num_levels = ilk_wm_max_level(dev_priv) + 1;
3968 
3969 	if (len >= sizeof(tmp))
3970 		return -EINVAL;
3971 
3972 	if (copy_from_user(tmp, ubuf, len))
3973 		return -EFAULT;
3974 
3975 	tmp[len] = '\0';
3976 
3977 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
3978 		     &new[0], &new[1], &new[2], &new[3],
3979 		     &new[4], &new[5], &new[6], &new[7]);
3980 	if (ret != num_levels)
3981 		return -EINVAL;
3982 
3983 	drm_modeset_lock_all(dev);
3984 
3985 	for (level = 0; level < num_levels; level++)
3986 		wm[level] = new[level];
3987 
3988 	drm_modeset_unlock_all(dev);
3989 
3990 	return len;
3991 }
3992 
3993 
3994 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3995 				    size_t len, loff_t *offp)
3996 {
3997 	struct seq_file *m = file->private_data;
3998 	struct drm_i915_private *dev_priv = m->private;
3999 	uint16_t *latencies;
4000 
4001 	if (INTEL_GEN(dev_priv) >= 9)
4002 		latencies = dev_priv->wm.skl_latency;
4003 	else
4004 		latencies = dev_priv->wm.pri_latency;
4005 
4006 	return wm_latency_write(file, ubuf, len, offp, latencies);
4007 }
4008 
4009 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4010 				    size_t len, loff_t *offp)
4011 {
4012 	struct seq_file *m = file->private_data;
4013 	struct drm_i915_private *dev_priv = m->private;
4014 	uint16_t *latencies;
4015 
4016 	if (INTEL_GEN(dev_priv) >= 9)
4017 		latencies = dev_priv->wm.skl_latency;
4018 	else
4019 		latencies = dev_priv->wm.spr_latency;
4020 
4021 	return wm_latency_write(file, ubuf, len, offp, latencies);
4022 }
4023 
4024 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4025 				    size_t len, loff_t *offp)
4026 {
4027 	struct seq_file *m = file->private_data;
4028 	struct drm_i915_private *dev_priv = m->private;
4029 	uint16_t *latencies;
4030 
4031 	if (INTEL_GEN(dev_priv) >= 9)
4032 		latencies = dev_priv->wm.skl_latency;
4033 	else
4034 		latencies = dev_priv->wm.cur_latency;
4035 
4036 	return wm_latency_write(file, ubuf, len, offp, latencies);
4037 }
4038 
4039 static const struct file_operations i915_pri_wm_latency_fops = {
4040 	.owner = THIS_MODULE,
4041 	.open = pri_wm_latency_open,
4042 	.read = seq_read,
4043 	.llseek = seq_lseek,
4044 	.release = single_release,
4045 	.write = pri_wm_latency_write
4046 };
4047 
4048 static const struct file_operations i915_spr_wm_latency_fops = {
4049 	.owner = THIS_MODULE,
4050 	.open = spr_wm_latency_open,
4051 	.read = seq_read,
4052 	.llseek = seq_lseek,
4053 	.release = single_release,
4054 	.write = spr_wm_latency_write
4055 };
4056 
4057 static const struct file_operations i915_cur_wm_latency_fops = {
4058 	.owner = THIS_MODULE,
4059 	.open = cur_wm_latency_open,
4060 	.read = seq_read,
4061 	.llseek = seq_lseek,
4062 	.release = single_release,
4063 	.write = cur_wm_latency_write
4064 };
4065 
4066 static int
4067 i915_wedged_get(void *data, u64 *val)
4068 {
4069 	struct drm_i915_private *dev_priv = data;
4070 
4071 	*val = i915_terminally_wedged(&dev_priv->gpu_error);
4072 
4073 	return 0;
4074 }
4075 
4076 static int
4077 i915_wedged_set(void *data, u64 val)
4078 {
4079 	struct drm_i915_private *dev_priv = data;
4080 
4081 	/*
4082 	 * There is no safeguard against this debugfs entry colliding
4083 	 * with the hangcheck calling same i915_handle_error() in
4084 	 * parallel, causing an explosion. For now we assume that the
4085 	 * test harness is responsible enough not to inject gpu hangs
4086 	 * while it is writing to 'i915_wedged'
4087 	 */
4088 
4089 	if (i915_reset_in_progress(&dev_priv->gpu_error))
4090 		return -EAGAIN;
4091 
4092 	i915_handle_error(dev_priv, val,
4093 			  "Manually setting wedged to %llu", val);
4094 
4095 	return 0;
4096 }
4097 
4098 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4099 			i915_wedged_get, i915_wedged_set,
4100 			"%llu\n");
4101 
4102 static int
4103 i915_ring_missed_irq_get(void *data, u64 *val)
4104 {
4105 	struct drm_i915_private *dev_priv = data;
4106 
4107 	*val = dev_priv->gpu_error.missed_irq_rings;
4108 	return 0;
4109 }
4110 
4111 static int
4112 i915_ring_missed_irq_set(void *data, u64 val)
4113 {
4114 	struct drm_i915_private *dev_priv = data;
4115 	struct drm_device *dev = &dev_priv->drm;
4116 	int ret;
4117 
4118 	/* Lock against concurrent debugfs callers */
4119 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4120 	if (ret)
4121 		return ret;
4122 	dev_priv->gpu_error.missed_irq_rings = val;
4123 	mutex_unlock(&dev->struct_mutex);
4124 
4125 	return 0;
4126 }
4127 
4128 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4129 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4130 			"0x%08llx\n");
4131 
4132 static int
4133 i915_ring_test_irq_get(void *data, u64 *val)
4134 {
4135 	struct drm_i915_private *dev_priv = data;
4136 
4137 	*val = dev_priv->gpu_error.test_irq_rings;
4138 
4139 	return 0;
4140 }
4141 
4142 static int
4143 i915_ring_test_irq_set(void *data, u64 val)
4144 {
4145 	struct drm_i915_private *dev_priv = data;
4146 
4147 	val &= INTEL_INFO(dev_priv)->ring_mask;
4148 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4149 	dev_priv->gpu_error.test_irq_rings = val;
4150 
4151 	return 0;
4152 }
4153 
4154 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4155 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4156 			"0x%08llx\n");
4157 
4158 #define DROP_UNBOUND 0x1
4159 #define DROP_BOUND 0x2
4160 #define DROP_RETIRE 0x4
4161 #define DROP_ACTIVE 0x8
4162 #define DROP_FREED 0x10
4163 #define DROP_ALL (DROP_UNBOUND	| \
4164 		  DROP_BOUND	| \
4165 		  DROP_RETIRE	| \
4166 		  DROP_ACTIVE	| \
4167 		  DROP_FREED)
4168 static int
4169 i915_drop_caches_get(void *data, u64 *val)
4170 {
4171 	*val = DROP_ALL;
4172 
4173 	return 0;
4174 }
4175 
4176 static int
4177 i915_drop_caches_set(void *data, u64 val)
4178 {
4179 	struct drm_i915_private *dev_priv = data;
4180 	struct drm_device *dev = &dev_priv->drm;
4181 	int ret;
4182 
4183 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4184 
4185 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4186 	 * on ioctls on -EAGAIN. */
4187 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4188 	if (ret)
4189 		return ret;
4190 
4191 	if (val & DROP_ACTIVE) {
4192 		ret = i915_gem_wait_for_idle(dev_priv,
4193 					     I915_WAIT_INTERRUPTIBLE |
4194 					     I915_WAIT_LOCKED);
4195 		if (ret)
4196 			goto unlock;
4197 	}
4198 
4199 	if (val & (DROP_RETIRE | DROP_ACTIVE))
4200 		i915_gem_retire_requests(dev_priv);
4201 
4202 	if (val & DROP_BOUND)
4203 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4204 
4205 	if (val & DROP_UNBOUND)
4206 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4207 
4208 unlock:
4209 	mutex_unlock(&dev->struct_mutex);
4210 
4211 	if (val & DROP_FREED) {
4212 		synchronize_rcu();
4213 		i915_gem_drain_freed_objects(dev_priv);
4214 	}
4215 
4216 	return ret;
4217 }
4218 
4219 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4220 			i915_drop_caches_get, i915_drop_caches_set,
4221 			"0x%08llx\n");
4222 
4223 static int
4224 i915_max_freq_get(void *data, u64 *val)
4225 {
4226 	struct drm_i915_private *dev_priv = data;
4227 
4228 	if (INTEL_GEN(dev_priv) < 6)
4229 		return -ENODEV;
4230 
4231 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4232 	return 0;
4233 }
4234 
4235 static int
4236 i915_max_freq_set(void *data, u64 val)
4237 {
4238 	struct drm_i915_private *dev_priv = data;
4239 	u32 hw_max, hw_min;
4240 	int ret;
4241 
4242 	if (INTEL_GEN(dev_priv) < 6)
4243 		return -ENODEV;
4244 
4245 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4246 
4247 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4248 	if (ret)
4249 		return ret;
4250 
4251 	/*
4252 	 * Turbo will still be enabled, but won't go above the set value.
4253 	 */
4254 	val = intel_freq_opcode(dev_priv, val);
4255 
4256 	hw_max = dev_priv->rps.max_freq;
4257 	hw_min = dev_priv->rps.min_freq;
4258 
4259 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4260 		mutex_unlock(&dev_priv->rps.hw_lock);
4261 		return -EINVAL;
4262 	}
4263 
4264 	dev_priv->rps.max_freq_softlimit = val;
4265 
4266 	intel_set_rps(dev_priv, val);
4267 
4268 	mutex_unlock(&dev_priv->rps.hw_lock);
4269 
4270 	return 0;
4271 }
4272 
4273 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4274 			i915_max_freq_get, i915_max_freq_set,
4275 			"%llu\n");
4276 
4277 static int
4278 i915_min_freq_get(void *data, u64 *val)
4279 {
4280 	struct drm_i915_private *dev_priv = data;
4281 
4282 	if (INTEL_GEN(dev_priv) < 6)
4283 		return -ENODEV;
4284 
4285 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4286 	return 0;
4287 }
4288 
4289 static int
4290 i915_min_freq_set(void *data, u64 val)
4291 {
4292 	struct drm_i915_private *dev_priv = data;
4293 	u32 hw_max, hw_min;
4294 	int ret;
4295 
4296 	if (INTEL_GEN(dev_priv) < 6)
4297 		return -ENODEV;
4298 
4299 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4300 
4301 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4302 	if (ret)
4303 		return ret;
4304 
4305 	/*
4306 	 * Turbo will still be enabled, but won't go below the set value.
4307 	 */
4308 	val = intel_freq_opcode(dev_priv, val);
4309 
4310 	hw_max = dev_priv->rps.max_freq;
4311 	hw_min = dev_priv->rps.min_freq;
4312 
4313 	if (val < hw_min ||
4314 	    val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4315 		mutex_unlock(&dev_priv->rps.hw_lock);
4316 		return -EINVAL;
4317 	}
4318 
4319 	dev_priv->rps.min_freq_softlimit = val;
4320 
4321 	intel_set_rps(dev_priv, val);
4322 
4323 	mutex_unlock(&dev_priv->rps.hw_lock);
4324 
4325 	return 0;
4326 }
4327 
4328 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4329 			i915_min_freq_get, i915_min_freq_set,
4330 			"%llu\n");
4331 
4332 static int
4333 i915_cache_sharing_get(void *data, u64 *val)
4334 {
4335 	struct drm_i915_private *dev_priv = data;
4336 	u32 snpcr;
4337 
4338 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4339 		return -ENODEV;
4340 
4341 	intel_runtime_pm_get(dev_priv);
4342 
4343 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4344 
4345 	intel_runtime_pm_put(dev_priv);
4346 
4347 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4348 
4349 	return 0;
4350 }
4351 
4352 static int
4353 i915_cache_sharing_set(void *data, u64 val)
4354 {
4355 	struct drm_i915_private *dev_priv = data;
4356 	u32 snpcr;
4357 
4358 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4359 		return -ENODEV;
4360 
4361 	if (val > 3)
4362 		return -EINVAL;
4363 
4364 	intel_runtime_pm_get(dev_priv);
4365 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4366 
4367 	/* Update the cache sharing policy here as well */
4368 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4369 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
4370 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4371 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4372 
4373 	intel_runtime_pm_put(dev_priv);
4374 	return 0;
4375 }
4376 
4377 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4378 			i915_cache_sharing_get, i915_cache_sharing_set,
4379 			"%llu\n");
4380 
4381 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
4382 					  struct sseu_dev_info *sseu)
4383 {
4384 	int ss_max = 2;
4385 	int ss;
4386 	u32 sig1[ss_max], sig2[ss_max];
4387 
4388 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4389 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4390 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4391 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4392 
4393 	for (ss = 0; ss < ss_max; ss++) {
4394 		unsigned int eu_cnt;
4395 
4396 		if (sig1[ss] & CHV_SS_PG_ENABLE)
4397 			/* skip disabled subslice */
4398 			continue;
4399 
4400 		sseu->slice_mask = BIT(0);
4401 		sseu->subslice_mask |= BIT(ss);
4402 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4403 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4404 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4405 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4406 		sseu->eu_total += eu_cnt;
4407 		sseu->eu_per_subslice = max_t(unsigned int,
4408 					      sseu->eu_per_subslice, eu_cnt);
4409 	}
4410 }
4411 
4412 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
4413 				    struct sseu_dev_info *sseu)
4414 {
4415 	int s_max = 3, ss_max = 4;
4416 	int s, ss;
4417 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4418 
4419 	/* BXT has a single slice and at most 3 subslices. */
4420 	if (IS_GEN9_LP(dev_priv)) {
4421 		s_max = 1;
4422 		ss_max = 3;
4423 	}
4424 
4425 	for (s = 0; s < s_max; s++) {
4426 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4427 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4428 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4429 	}
4430 
4431 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4432 		     GEN9_PGCTL_SSA_EU19_ACK |
4433 		     GEN9_PGCTL_SSA_EU210_ACK |
4434 		     GEN9_PGCTL_SSA_EU311_ACK;
4435 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4436 		     GEN9_PGCTL_SSB_EU19_ACK |
4437 		     GEN9_PGCTL_SSB_EU210_ACK |
4438 		     GEN9_PGCTL_SSB_EU311_ACK;
4439 
4440 	for (s = 0; s < s_max; s++) {
4441 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4442 			/* skip disabled slice */
4443 			continue;
4444 
4445 		sseu->slice_mask |= BIT(s);
4446 
4447 		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
4448 			sseu->subslice_mask =
4449 				INTEL_INFO(dev_priv)->sseu.subslice_mask;
4450 
4451 		for (ss = 0; ss < ss_max; ss++) {
4452 			unsigned int eu_cnt;
4453 
4454 			if (IS_GEN9_LP(dev_priv)) {
4455 				if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4456 					/* skip disabled subslice */
4457 					continue;
4458 
4459 				sseu->subslice_mask |= BIT(ss);
4460 			}
4461 
4462 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4463 					       eu_mask[ss%2]);
4464 			sseu->eu_total += eu_cnt;
4465 			sseu->eu_per_subslice = max_t(unsigned int,
4466 						      sseu->eu_per_subslice,
4467 						      eu_cnt);
4468 		}
4469 	}
4470 }
4471 
4472 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
4473 					 struct sseu_dev_info *sseu)
4474 {
4475 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
4476 	int s;
4477 
4478 	sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
4479 
4480 	if (sseu->slice_mask) {
4481 		sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
4482 		sseu->eu_per_subslice =
4483 				INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
4484 		sseu->eu_total = sseu->eu_per_subslice *
4485 				 sseu_subslice_total(sseu);
4486 
4487 		/* subtract fused off EU(s) from enabled slice(s) */
4488 		for (s = 0; s < fls(sseu->slice_mask); s++) {
4489 			u8 subslice_7eu =
4490 				INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
4491 
4492 			sseu->eu_total -= hweight8(subslice_7eu);
4493 		}
4494 	}
4495 }
4496 
4497 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
4498 				 const struct sseu_dev_info *sseu)
4499 {
4500 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4501 	const char *type = is_available_info ? "Available" : "Enabled";
4502 
4503 	seq_printf(m, "  %s Slice Mask: %04x\n", type,
4504 		   sseu->slice_mask);
4505 	seq_printf(m, "  %s Slice Total: %u\n", type,
4506 		   hweight8(sseu->slice_mask));
4507 	seq_printf(m, "  %s Subslice Total: %u\n", type,
4508 		   sseu_subslice_total(sseu));
4509 	seq_printf(m, "  %s Subslice Mask: %04x\n", type,
4510 		   sseu->subslice_mask);
4511 	seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
4512 		   hweight8(sseu->subslice_mask));
4513 	seq_printf(m, "  %s EU Total: %u\n", type,
4514 		   sseu->eu_total);
4515 	seq_printf(m, "  %s EU Per Subslice: %u\n", type,
4516 		   sseu->eu_per_subslice);
4517 
4518 	if (!is_available_info)
4519 		return;
4520 
4521 	seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
4522 	if (HAS_POOLED_EU(dev_priv))
4523 		seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
4524 
4525 	seq_printf(m, "  Has Slice Power Gating: %s\n",
4526 		   yesno(sseu->has_slice_pg));
4527 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
4528 		   yesno(sseu->has_subslice_pg));
4529 	seq_printf(m, "  Has EU Power Gating: %s\n",
4530 		   yesno(sseu->has_eu_pg));
4531 }
4532 
4533 static int i915_sseu_status(struct seq_file *m, void *unused)
4534 {
4535 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4536 	struct sseu_dev_info sseu;
4537 
4538 	if (INTEL_GEN(dev_priv) < 8)
4539 		return -ENODEV;
4540 
4541 	seq_puts(m, "SSEU Device Info\n");
4542 	i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
4543 
4544 	seq_puts(m, "SSEU Device Status\n");
4545 	memset(&sseu, 0, sizeof(sseu));
4546 
4547 	intel_runtime_pm_get(dev_priv);
4548 
4549 	if (IS_CHERRYVIEW(dev_priv)) {
4550 		cherryview_sseu_device_status(dev_priv, &sseu);
4551 	} else if (IS_BROADWELL(dev_priv)) {
4552 		broadwell_sseu_device_status(dev_priv, &sseu);
4553 	} else if (INTEL_GEN(dev_priv) >= 9) {
4554 		gen9_sseu_device_status(dev_priv, &sseu);
4555 	}
4556 
4557 	intel_runtime_pm_put(dev_priv);
4558 
4559 	i915_print_sseu_info(m, false, &sseu);
4560 
4561 	return 0;
4562 }
4563 
4564 static int i915_forcewake_open(struct inode *inode, struct file *file)
4565 {
4566 	struct drm_i915_private *dev_priv = inode->i_private;
4567 
4568 	if (INTEL_GEN(dev_priv) < 6)
4569 		return 0;
4570 
4571 	intel_runtime_pm_get(dev_priv);
4572 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4573 
4574 	return 0;
4575 }
4576 
4577 static int i915_forcewake_release(struct inode *inode, struct file *file)
4578 {
4579 	struct drm_i915_private *dev_priv = inode->i_private;
4580 
4581 	if (INTEL_GEN(dev_priv) < 6)
4582 		return 0;
4583 
4584 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4585 	intel_runtime_pm_put(dev_priv);
4586 
4587 	return 0;
4588 }
4589 
4590 static const struct file_operations i915_forcewake_fops = {
4591 	.owner = THIS_MODULE,
4592 	.open = i915_forcewake_open,
4593 	.release = i915_forcewake_release,
4594 };
4595 
4596 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4597 {
4598 	struct dentry *ent;
4599 
4600 	ent = debugfs_create_file("i915_forcewake_user",
4601 				  S_IRUSR,
4602 				  root, to_i915(minor->dev),
4603 				  &i915_forcewake_fops);
4604 	if (!ent)
4605 		return -ENOMEM;
4606 
4607 	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4608 }
4609 
4610 static int i915_debugfs_create(struct dentry *root,
4611 			       struct drm_minor *minor,
4612 			       const char *name,
4613 			       const struct file_operations *fops)
4614 {
4615 	struct dentry *ent;
4616 
4617 	ent = debugfs_create_file(name,
4618 				  S_IRUGO | S_IWUSR,
4619 				  root, to_i915(minor->dev),
4620 				  fops);
4621 	if (!ent)
4622 		return -ENOMEM;
4623 
4624 	return drm_add_fake_info_node(minor, ent, fops);
4625 }
4626 
4627 static const struct drm_info_list i915_debugfs_list[] = {
4628 	{"i915_capabilities", i915_capabilities, 0},
4629 	{"i915_gem_objects", i915_gem_object_info, 0},
4630 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
4631 	{"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
4632 	{"i915_gem_stolen", i915_gem_stolen_list_info },
4633 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4634 	{"i915_gem_request", i915_gem_request_info, 0},
4635 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
4636 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4637 	{"i915_gem_interrupt", i915_interrupt_info, 0},
4638 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4639 	{"i915_guc_info", i915_guc_info, 0},
4640 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
4641 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
4642 	{"i915_huc_load_status", i915_huc_load_status_info, 0},
4643 	{"i915_frequency_info", i915_frequency_info, 0},
4644 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
4645 	{"i915_drpc_info", i915_drpc_info, 0},
4646 	{"i915_emon_status", i915_emon_status, 0},
4647 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
4648 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
4649 	{"i915_fbc_status", i915_fbc_status, 0},
4650 	{"i915_ips_status", i915_ips_status, 0},
4651 	{"i915_sr_status", i915_sr_status, 0},
4652 	{"i915_opregion", i915_opregion, 0},
4653 	{"i915_vbt", i915_vbt, 0},
4654 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4655 	{"i915_context_status", i915_context_status, 0},
4656 	{"i915_dump_lrc", i915_dump_lrc, 0},
4657 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
4658 	{"i915_swizzle_info", i915_swizzle_info, 0},
4659 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
4660 	{"i915_llc", i915_llc, 0},
4661 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
4662 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
4663 	{"i915_energy_uJ", i915_energy_uJ, 0},
4664 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
4665 	{"i915_power_domain_info", i915_power_domain_info, 0},
4666 	{"i915_dmc_info", i915_dmc_info, 0},
4667 	{"i915_display_info", i915_display_info, 0},
4668 	{"i915_engine_info", i915_engine_info, 0},
4669 	{"i915_semaphore_status", i915_semaphore_status, 0},
4670 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4671 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
4672 	{"i915_wa_registers", i915_wa_registers, 0},
4673 	{"i915_ddb_info", i915_ddb_info, 0},
4674 	{"i915_sseu_status", i915_sseu_status, 0},
4675 	{"i915_drrs_status", i915_drrs_status, 0},
4676 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
4677 };
4678 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4679 
4680 static const struct i915_debugfs_files {
4681 	const char *name;
4682 	const struct file_operations *fops;
4683 } i915_debugfs_files[] = {
4684 	{"i915_wedged", &i915_wedged_fops},
4685 	{"i915_max_freq", &i915_max_freq_fops},
4686 	{"i915_min_freq", &i915_min_freq_fops},
4687 	{"i915_cache_sharing", &i915_cache_sharing_fops},
4688 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4689 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
4690 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
4691 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
4692 	{"i915_error_state", &i915_error_state_fops},
4693 #endif
4694 	{"i915_next_seqno", &i915_next_seqno_fops},
4695 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4696 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4697 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4698 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4699 	{"i915_fbc_false_color", &i915_fbc_fc_fops},
4700 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
4701 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
4702 	{"i915_dp_test_active", &i915_displayport_test_active_fops},
4703 	{"i915_guc_log_control", &i915_guc_log_control_fops}
4704 };
4705 
4706 int i915_debugfs_register(struct drm_i915_private *dev_priv)
4707 {
4708 	struct drm_minor *minor = dev_priv->drm.primary;
4709 	int ret, i;
4710 
4711 	ret = i915_forcewake_create(minor->debugfs_root, minor);
4712 	if (ret)
4713 		return ret;
4714 
4715 	ret = intel_pipe_crc_create(minor);
4716 	if (ret)
4717 		return ret;
4718 
4719 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4720 		ret = i915_debugfs_create(minor->debugfs_root, minor,
4721 					  i915_debugfs_files[i].name,
4722 					  i915_debugfs_files[i].fops);
4723 		if (ret)
4724 			return ret;
4725 	}
4726 
4727 	return drm_debugfs_create_files(i915_debugfs_list,
4728 					I915_DEBUGFS_ENTRIES,
4729 					minor->debugfs_root, minor);
4730 }
4731 
4732 void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
4733 {
4734 	struct drm_minor *minor = dev_priv->drm.primary;
4735 	int i;
4736 
4737 	drm_debugfs_remove_files(i915_debugfs_list,
4738 				 I915_DEBUGFS_ENTRIES, minor);
4739 
4740 	drm_debugfs_remove_files((struct drm_info_list *)&i915_forcewake_fops,
4741 				 1, minor);
4742 
4743 	intel_pipe_crc_cleanup(minor);
4744 
4745 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4746 		struct drm_info_list *info_list =
4747 			(struct drm_info_list *)i915_debugfs_files[i].fops;
4748 
4749 		drm_debugfs_remove_files(info_list, 1, minor);
4750 	}
4751 }
4752 
4753 struct dpcd_block {
4754 	/* DPCD dump start address. */
4755 	unsigned int offset;
4756 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
4757 	unsigned int end;
4758 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
4759 	size_t size;
4760 	/* Only valid for eDP. */
4761 	bool edp;
4762 };
4763 
4764 static const struct dpcd_block i915_dpcd_debug[] = {
4765 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
4766 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
4767 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
4768 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
4769 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
4770 	{ .offset = DP_SET_POWER },
4771 	{ .offset = DP_EDP_DPCD_REV },
4772 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
4773 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
4774 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
4775 };
4776 
4777 static int i915_dpcd_show(struct seq_file *m, void *data)
4778 {
4779 	struct drm_connector *connector = m->private;
4780 	struct intel_dp *intel_dp =
4781 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4782 	uint8_t buf[16];
4783 	ssize_t err;
4784 	int i;
4785 
4786 	if (connector->status != connector_status_connected)
4787 		return -ENODEV;
4788 
4789 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
4790 		const struct dpcd_block *b = &i915_dpcd_debug[i];
4791 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
4792 
4793 		if (b->edp &&
4794 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
4795 			continue;
4796 
4797 		/* low tech for now */
4798 		if (WARN_ON(size > sizeof(buf)))
4799 			continue;
4800 
4801 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
4802 		if (err <= 0) {
4803 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
4804 				  size, b->offset, err);
4805 			continue;
4806 		}
4807 
4808 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
4809 	}
4810 
4811 	return 0;
4812 }
4813 
4814 static int i915_dpcd_open(struct inode *inode, struct file *file)
4815 {
4816 	return single_open(file, i915_dpcd_show, inode->i_private);
4817 }
4818 
4819 static const struct file_operations i915_dpcd_fops = {
4820 	.owner = THIS_MODULE,
4821 	.open = i915_dpcd_open,
4822 	.read = seq_read,
4823 	.llseek = seq_lseek,
4824 	.release = single_release,
4825 };
4826 
4827 static int i915_panel_show(struct seq_file *m, void *data)
4828 {
4829 	struct drm_connector *connector = m->private;
4830 	struct intel_dp *intel_dp =
4831 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4832 
4833 	if (connector->status != connector_status_connected)
4834 		return -ENODEV;
4835 
4836 	seq_printf(m, "Panel power up delay: %d\n",
4837 		   intel_dp->panel_power_up_delay);
4838 	seq_printf(m, "Panel power down delay: %d\n",
4839 		   intel_dp->panel_power_down_delay);
4840 	seq_printf(m, "Backlight on delay: %d\n",
4841 		   intel_dp->backlight_on_delay);
4842 	seq_printf(m, "Backlight off delay: %d\n",
4843 		   intel_dp->backlight_off_delay);
4844 
4845 	return 0;
4846 }
4847 
4848 static int i915_panel_open(struct inode *inode, struct file *file)
4849 {
4850 	return single_open(file, i915_panel_show, inode->i_private);
4851 }
4852 
4853 static const struct file_operations i915_panel_fops = {
4854 	.owner = THIS_MODULE,
4855 	.open = i915_panel_open,
4856 	.read = seq_read,
4857 	.llseek = seq_lseek,
4858 	.release = single_release,
4859 };
4860 
4861 /**
4862  * i915_debugfs_connector_add - add i915 specific connector debugfs files
4863  * @connector: pointer to a registered drm_connector
4864  *
4865  * Cleanup will be done by drm_connector_unregister() through a call to
4866  * drm_debugfs_connector_remove().
4867  *
4868  * Returns 0 on success, negative error codes on error.
4869  */
4870 int i915_debugfs_connector_add(struct drm_connector *connector)
4871 {
4872 	struct dentry *root = connector->debugfs_entry;
4873 
4874 	/* The connector must have been registered beforehands. */
4875 	if (!root)
4876 		return -ENODEV;
4877 
4878 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
4879 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4880 		debugfs_create_file("i915_dpcd", S_IRUGO, root,
4881 				    connector, &i915_dpcd_fops);
4882 
4883 	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4884 		debugfs_create_file("i915_panel_timings", S_IRUGO, root,
4885 				    connector, &i915_panel_fops);
4886 
4887 	return 0;
4888 }
4889