1 /* 2 * Copyright © 2013 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Brad Volkin <bradley.d.volkin@intel.com> 25 * 26 */ 27 28 #include "gt/intel_engine.h" 29 #include "gt/intel_gpu_commands.h" 30 31 #include "i915_drv.h" 32 #include "i915_memcpy.h" 33 34 /** 35 * DOC: batch buffer command parser 36 * 37 * Motivation: 38 * Certain OpenGL features (e.g. transform feedback, performance monitoring) 39 * require userspace code to submit batches containing commands such as 40 * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some 41 * generations of the hardware will noop these commands in "unsecure" batches 42 * (which includes all userspace batches submitted via i915) even though the 43 * commands may be safe and represent the intended programming model of the 44 * device. 45 * 46 * The software command parser is similar in operation to the command parsing 47 * done in hardware for unsecure batches. However, the software parser allows 48 * some operations that would be noop'd by hardware, if the parser determines 49 * the operation is safe, and submits the batch as "secure" to prevent hardware 50 * parsing. 51 * 52 * Threats: 53 * At a high level, the hardware (and software) checks attempt to prevent 54 * granting userspace undue privileges. There are three categories of privilege. 55 * 56 * First, commands which are explicitly defined as privileged or which should 57 * only be used by the kernel driver. The parser rejects such commands 58 * 59 * Second, commands which access registers. To support correct/enhanced 60 * userspace functionality, particularly certain OpenGL extensions, the parser 61 * provides a whitelist of registers which userspace may safely access 62 * 63 * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc). 64 * The parser always rejects such commands. 65 * 66 * The majority of the problematic commands fall in the MI_* range, with only a 67 * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW). 68 * 69 * Implementation: 70 * Each engine maintains tables of commands and registers which the parser 71 * uses in scanning batch buffers submitted to that engine. 72 * 73 * Since the set of commands that the parser must check for is significantly 74 * smaller than the number of commands supported, the parser tables contain only 75 * those commands required by the parser. This generally works because command 76 * opcode ranges have standard command length encodings. So for commands that 77 * the parser does not need to check, it can easily skip them. This is 78 * implemented via a per-engine length decoding vfunc. 79 * 80 * Unfortunately, there are a number of commands that do not follow the standard 81 * length encoding for their opcode range, primarily amongst the MI_* commands. 82 * To handle this, the parser provides a way to define explicit "skip" entries 83 * in the per-engine command tables. 84 * 85 * Other command table entries map fairly directly to high level categories 86 * mentioned above: rejected, register whitelist. The parser implements a number 87 * of checks, including the privileged memory checks, via a general bitmasking 88 * mechanism. 89 */ 90 91 /* 92 * A command that requires special handling by the command parser. 93 */ 94 struct drm_i915_cmd_descriptor { 95 /* 96 * Flags describing how the command parser processes the command. 97 * 98 * CMD_DESC_FIXED: The command has a fixed length if this is set, 99 * a length mask if not set 100 * CMD_DESC_SKIP: The command is allowed but does not follow the 101 * standard length encoding for the opcode range in 102 * which it falls 103 * CMD_DESC_REJECT: The command is never allowed 104 * CMD_DESC_REGISTER: The command should be checked against the 105 * register whitelist for the appropriate ring 106 */ 107 u32 flags; 108 #define CMD_DESC_FIXED (1<<0) 109 #define CMD_DESC_SKIP (1<<1) 110 #define CMD_DESC_REJECT (1<<2) 111 #define CMD_DESC_REGISTER (1<<3) 112 #define CMD_DESC_BITMASK (1<<4) 113 114 /* 115 * The command's unique identification bits and the bitmask to get them. 116 * This isn't strictly the opcode field as defined in the spec and may 117 * also include type, subtype, and/or subop fields. 118 */ 119 struct { 120 u32 value; 121 u32 mask; 122 } cmd; 123 124 /* 125 * The command's length. The command is either fixed length (i.e. does 126 * not include a length field) or has a length field mask. The flag 127 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has 128 * a length mask. All command entries in a command table must include 129 * length information. 130 */ 131 union { 132 u32 fixed; 133 u32 mask; 134 } length; 135 136 /* 137 * Describes where to find a register address in the command to check 138 * against the ring's register whitelist. Only valid if flags has the 139 * CMD_DESC_REGISTER bit set. 140 * 141 * A non-zero step value implies that the command may access multiple 142 * registers in sequence (e.g. LRI), in that case step gives the 143 * distance in dwords between individual offset fields. 144 */ 145 struct { 146 u32 offset; 147 u32 mask; 148 u32 step; 149 } reg; 150 151 #define MAX_CMD_DESC_BITMASKS 3 152 /* 153 * Describes command checks where a particular dword is masked and 154 * compared against an expected value. If the command does not match 155 * the expected value, the parser rejects it. Only valid if flags has 156 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero 157 * are valid. 158 * 159 * If the check specifies a non-zero condition_mask then the parser 160 * only performs the check when the bits specified by condition_mask 161 * are non-zero. 162 */ 163 struct { 164 u32 offset; 165 u32 mask; 166 u32 expected; 167 u32 condition_offset; 168 u32 condition_mask; 169 } bits[MAX_CMD_DESC_BITMASKS]; 170 }; 171 172 /* 173 * A table of commands requiring special handling by the command parser. 174 * 175 * Each engine has an array of tables. Each table consists of an array of 176 * command descriptors, which must be sorted with command opcodes in 177 * ascending order. 178 */ 179 struct drm_i915_cmd_table { 180 const struct drm_i915_cmd_descriptor *table; 181 int count; 182 }; 183 184 #define STD_MI_OPCODE_SHIFT (32 - 9) 185 #define STD_3D_OPCODE_SHIFT (32 - 16) 186 #define STD_2D_OPCODE_SHIFT (32 - 10) 187 #define STD_MFX_OPCODE_SHIFT (32 - 16) 188 #define MIN_OPCODE_SHIFT 16 189 190 #define CMD(op, opm, f, lm, fl, ...) \ 191 { \ 192 .flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \ 193 .cmd = { (op & ~0u << (opm)), ~0u << (opm) }, \ 194 .length = { (lm) }, \ 195 __VA_ARGS__ \ 196 } 197 198 /* Convenience macros to compress the tables */ 199 #define SMI STD_MI_OPCODE_SHIFT 200 #define S3D STD_3D_OPCODE_SHIFT 201 #define S2D STD_2D_OPCODE_SHIFT 202 #define SMFX STD_MFX_OPCODE_SHIFT 203 #define F true 204 #define S CMD_DESC_SKIP 205 #define R CMD_DESC_REJECT 206 #define W CMD_DESC_REGISTER 207 #define B CMD_DESC_BITMASK 208 209 /* Command Mask Fixed Len Action 210 ---------------------------------------------------------- */ 211 static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = { 212 CMD( MI_NOOP, SMI, F, 1, S ), 213 CMD( MI_USER_INTERRUPT, SMI, F, 1, R ), 214 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, R ), 215 CMD( MI_ARB_CHECK, SMI, F, 1, S ), 216 CMD( MI_REPORT_HEAD, SMI, F, 1, S ), 217 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ), 218 CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ), 219 CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ), 220 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W, 221 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ), 222 CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B, 223 .reg = { .offset = 1, .mask = 0x007FFFFC }, 224 .bits = {{ 225 .offset = 0, 226 .mask = MI_GLOBAL_GTT, 227 .expected = 0, 228 }}, ), 229 CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B, 230 .reg = { .offset = 1, .mask = 0x007FFFFC }, 231 .bits = {{ 232 .offset = 0, 233 .mask = MI_GLOBAL_GTT, 234 .expected = 0, 235 }}, ), 236 /* 237 * MI_BATCH_BUFFER_START requires some special handling. It's not 238 * really a 'skip' action but it doesn't seem like it's worth adding 239 * a new action. See intel_engine_cmd_parser(). 240 */ 241 CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ), 242 }; 243 244 static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = { 245 CMD( MI_FLUSH, SMI, F, 1, S ), 246 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), 247 CMD( MI_PREDICATE, SMI, F, 1, S ), 248 CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ), 249 CMD( MI_SET_APPID, SMI, F, 1, S ), 250 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ), 251 CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ), 252 CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ), 253 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B, 254 .bits = {{ 255 .offset = 0, 256 .mask = MI_GLOBAL_GTT, 257 .expected = 0, 258 }}, ), 259 CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ), 260 CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B, 261 .bits = {{ 262 .offset = 0, 263 .mask = MI_GLOBAL_GTT, 264 .expected = 0, 265 }}, ), 266 CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B, 267 .bits = {{ 268 .offset = 1, 269 .mask = MI_REPORT_PERF_COUNT_GGTT, 270 .expected = 0, 271 }}, ), 272 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, 273 .bits = {{ 274 .offset = 0, 275 .mask = MI_GLOBAL_GTT, 276 .expected = 0, 277 }}, ), 278 CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ), 279 CMD( PIPELINE_SELECT, S3D, F, 1, S ), 280 CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B, 281 .bits = {{ 282 .offset = 2, 283 .mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK, 284 .expected = 0, 285 }}, ), 286 CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ), 287 CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ), 288 CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ), 289 CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B, 290 .bits = {{ 291 .offset = 1, 292 .mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY), 293 .expected = 0, 294 }, 295 { 296 .offset = 1, 297 .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB | 298 PIPE_CONTROL_STORE_DATA_INDEX), 299 .expected = 0, 300 .condition_offset = 1, 301 .condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK, 302 }}, ), 303 }; 304 305 static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = { 306 CMD( MI_SET_PREDICATE, SMI, F, 1, S ), 307 CMD( MI_RS_CONTROL, SMI, F, 1, S ), 308 CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ), 309 CMD( MI_SET_APPID, SMI, F, 1, S ), 310 CMD( MI_RS_CONTEXT, SMI, F, 1, S ), 311 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ), 312 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ), 313 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W, 314 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ), 315 CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ), 316 CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ), 317 CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ), 318 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ), 319 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ), 320 321 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ), 322 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ), 323 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ), 324 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ), 325 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ), 326 }; 327 328 static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = { 329 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), 330 CMD( MI_SET_APPID, SMI, F, 1, S ), 331 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B, 332 .bits = {{ 333 .offset = 0, 334 .mask = MI_GLOBAL_GTT, 335 .expected = 0, 336 }}, ), 337 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), 338 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, 339 .bits = {{ 340 .offset = 0, 341 .mask = MI_FLUSH_DW_NOTIFY, 342 .expected = 0, 343 }, 344 { 345 .offset = 1, 346 .mask = MI_FLUSH_DW_USE_GTT, 347 .expected = 0, 348 .condition_offset = 0, 349 .condition_mask = MI_FLUSH_DW_OP_MASK, 350 }, 351 { 352 .offset = 0, 353 .mask = MI_FLUSH_DW_STORE_INDEX, 354 .expected = 0, 355 .condition_offset = 0, 356 .condition_mask = MI_FLUSH_DW_OP_MASK, 357 }}, ), 358 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, 359 .bits = {{ 360 .offset = 0, 361 .mask = MI_GLOBAL_GTT, 362 .expected = 0, 363 }}, ), 364 /* 365 * MFX_WAIT doesn't fit the way we handle length for most commands. 366 * It has a length field but it uses a non-standard length bias. 367 * It is always 1 dword though, so just treat it as fixed length. 368 */ 369 CMD( MFX_WAIT, SMFX, F, 1, S ), 370 }; 371 372 static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = { 373 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), 374 CMD( MI_SET_APPID, SMI, F, 1, S ), 375 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B, 376 .bits = {{ 377 .offset = 0, 378 .mask = MI_GLOBAL_GTT, 379 .expected = 0, 380 }}, ), 381 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), 382 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, 383 .bits = {{ 384 .offset = 0, 385 .mask = MI_FLUSH_DW_NOTIFY, 386 .expected = 0, 387 }, 388 { 389 .offset = 1, 390 .mask = MI_FLUSH_DW_USE_GTT, 391 .expected = 0, 392 .condition_offset = 0, 393 .condition_mask = MI_FLUSH_DW_OP_MASK, 394 }, 395 { 396 .offset = 0, 397 .mask = MI_FLUSH_DW_STORE_INDEX, 398 .expected = 0, 399 .condition_offset = 0, 400 .condition_mask = MI_FLUSH_DW_OP_MASK, 401 }}, ), 402 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, 403 .bits = {{ 404 .offset = 0, 405 .mask = MI_GLOBAL_GTT, 406 .expected = 0, 407 }}, ), 408 }; 409 410 static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = { 411 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ), 412 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B, 413 .bits = {{ 414 .offset = 0, 415 .mask = MI_GLOBAL_GTT, 416 .expected = 0, 417 }}, ), 418 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), 419 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, 420 .bits = {{ 421 .offset = 0, 422 .mask = MI_FLUSH_DW_NOTIFY, 423 .expected = 0, 424 }, 425 { 426 .offset = 1, 427 .mask = MI_FLUSH_DW_USE_GTT, 428 .expected = 0, 429 .condition_offset = 0, 430 .condition_mask = MI_FLUSH_DW_OP_MASK, 431 }, 432 { 433 .offset = 0, 434 .mask = MI_FLUSH_DW_STORE_INDEX, 435 .expected = 0, 436 .condition_offset = 0, 437 .condition_mask = MI_FLUSH_DW_OP_MASK, 438 }}, ), 439 CMD( COLOR_BLT, S2D, !F, 0x3F, S ), 440 CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ), 441 }; 442 443 static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = { 444 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ), 445 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ), 446 }; 447 448 /* 449 * For Gen9 we can still rely on the h/w to enforce cmd security, and only 450 * need to re-enforce the register access checks. We therefore only need to 451 * teach the cmdparser how to find the end of each command, and identify 452 * register accesses. The table doesn't need to reject any commands, and so 453 * the only commands listed here are: 454 * 1) Those that touch registers 455 * 2) Those that do not have the default 8-bit length 456 * 457 * Note that the default MI length mask chosen for this table is 0xFF, not 458 * the 0x3F used on older devices. This is because the vast majority of MI 459 * cmds on Gen9 use a standard 8-bit Length field. 460 * All the Gen9 blitter instructions are standard 0xFF length mask, and 461 * none allow access to non-general registers, so in fact no BLT cmds are 462 * included in the table at all. 463 * 464 */ 465 static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = { 466 CMD( MI_NOOP, SMI, F, 1, S ), 467 CMD( MI_USER_INTERRUPT, SMI, F, 1, S ), 468 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, S ), 469 CMD( MI_FLUSH, SMI, F, 1, S ), 470 CMD( MI_ARB_CHECK, SMI, F, 1, S ), 471 CMD( MI_REPORT_HEAD, SMI, F, 1, S ), 472 CMD( MI_ARB_ON_OFF, SMI, F, 1, S ), 473 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ), 474 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, S ), 475 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, S ), 476 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, S ), 477 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W, 478 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ), 479 CMD( MI_UPDATE_GTT, SMI, !F, 0x3FF, S ), 480 CMD( MI_STORE_REGISTER_MEM_GEN8, SMI, F, 4, W, 481 .reg = { .offset = 1, .mask = 0x007FFFFC } ), 482 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, S ), 483 CMD( MI_LOAD_REGISTER_MEM_GEN8, SMI, F, 4, W, 484 .reg = { .offset = 1, .mask = 0x007FFFFC } ), 485 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W, 486 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ), 487 488 /* 489 * We allow BB_START but apply further checks. We just sanitize the 490 * basic fields here. 491 */ 492 #define MI_BB_START_OPERAND_MASK GENMASK(SMI-1, 0) 493 #define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1) 494 CMD( MI_BATCH_BUFFER_START_GEN8, SMI, !F, 0xFF, B, 495 .bits = {{ 496 .offset = 0, 497 .mask = MI_BB_START_OPERAND_MASK, 498 .expected = MI_BB_START_OPERAND_EXPECT, 499 }}, ), 500 }; 501 502 static const struct drm_i915_cmd_descriptor noop_desc = 503 CMD(MI_NOOP, SMI, F, 1, S); 504 505 #undef CMD 506 #undef SMI 507 #undef S3D 508 #undef S2D 509 #undef SMFX 510 #undef F 511 #undef S 512 #undef R 513 #undef W 514 #undef B 515 516 static const struct drm_i915_cmd_table gen7_render_cmd_table[] = { 517 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 518 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) }, 519 }; 520 521 static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = { 522 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 523 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) }, 524 { hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) }, 525 }; 526 527 static const struct drm_i915_cmd_table gen7_video_cmd_table[] = { 528 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 529 { gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) }, 530 }; 531 532 static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = { 533 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 534 { gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) }, 535 }; 536 537 static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = { 538 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 539 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) }, 540 }; 541 542 static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = { 543 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 544 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) }, 545 { hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) }, 546 }; 547 548 static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = { 549 { gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) }, 550 }; 551 552 553 /* 554 * Register whitelists, sorted by increasing register offset. 555 */ 556 557 /* 558 * An individual whitelist entry granting access to register addr. If 559 * mask is non-zero the argument of immediate register writes will be 560 * AND-ed with mask, and the command will be rejected if the result 561 * doesn't match value. 562 * 563 * Registers with non-zero mask are only allowed to be written using 564 * LRI. 565 */ 566 struct drm_i915_reg_descriptor { 567 i915_reg_t addr; 568 u32 mask; 569 u32 value; 570 }; 571 572 /* Convenience macro for adding 32-bit registers. */ 573 #define REG32(_reg, ...) \ 574 { .addr = (_reg), __VA_ARGS__ } 575 576 #define REG32_IDX(_reg, idx) \ 577 { .addr = _reg(idx) } 578 579 /* 580 * Convenience macro for adding 64-bit registers. 581 * 582 * Some registers that userspace accesses are 64 bits. The register 583 * access commands only allow 32-bit accesses. Hence, we have to include 584 * entries for both halves of the 64-bit registers. 585 */ 586 #define REG64(_reg) \ 587 { .addr = _reg }, \ 588 { .addr = _reg ## _UDW } 589 590 #define REG64_IDX(_reg, idx) \ 591 { .addr = _reg(idx) }, \ 592 { .addr = _reg ## _UDW(idx) } 593 594 static const struct drm_i915_reg_descriptor gen7_render_regs[] = { 595 REG64(GPGPU_THREADS_DISPATCHED), 596 REG64(HS_INVOCATION_COUNT), 597 REG64(DS_INVOCATION_COUNT), 598 REG64(IA_VERTICES_COUNT), 599 REG64(IA_PRIMITIVES_COUNT), 600 REG64(VS_INVOCATION_COUNT), 601 REG64(GS_INVOCATION_COUNT), 602 REG64(GS_PRIMITIVES_COUNT), 603 REG64(CL_INVOCATION_COUNT), 604 REG64(CL_PRIMITIVES_COUNT), 605 REG64(PS_INVOCATION_COUNT), 606 REG64(PS_DEPTH_COUNT), 607 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), 608 REG64(MI_PREDICATE_SRC0), 609 REG64(MI_PREDICATE_SRC1), 610 REG32(GEN7_3DPRIM_END_OFFSET), 611 REG32(GEN7_3DPRIM_START_VERTEX), 612 REG32(GEN7_3DPRIM_VERTEX_COUNT), 613 REG32(GEN7_3DPRIM_INSTANCE_COUNT), 614 REG32(GEN7_3DPRIM_START_INSTANCE), 615 REG32(GEN7_3DPRIM_BASE_VERTEX), 616 REG32(GEN7_GPGPU_DISPATCHDIMX), 617 REG32(GEN7_GPGPU_DISPATCHDIMY), 618 REG32(GEN7_GPGPU_DISPATCHDIMZ), 619 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), 620 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0), 621 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1), 622 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2), 623 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3), 624 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0), 625 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1), 626 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2), 627 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3), 628 REG32(GEN7_SO_WRITE_OFFSET(0)), 629 REG32(GEN7_SO_WRITE_OFFSET(1)), 630 REG32(GEN7_SO_WRITE_OFFSET(2)), 631 REG32(GEN7_SO_WRITE_OFFSET(3)), 632 REG32(GEN7_L3SQCREG1), 633 REG32(GEN7_L3CNTLREG2), 634 REG32(GEN7_L3CNTLREG3), 635 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), 636 }; 637 638 static const struct drm_i915_reg_descriptor hsw_render_regs[] = { 639 REG64_IDX(HSW_CS_GPR, 0), 640 REG64_IDX(HSW_CS_GPR, 1), 641 REG64_IDX(HSW_CS_GPR, 2), 642 REG64_IDX(HSW_CS_GPR, 3), 643 REG64_IDX(HSW_CS_GPR, 4), 644 REG64_IDX(HSW_CS_GPR, 5), 645 REG64_IDX(HSW_CS_GPR, 6), 646 REG64_IDX(HSW_CS_GPR, 7), 647 REG64_IDX(HSW_CS_GPR, 8), 648 REG64_IDX(HSW_CS_GPR, 9), 649 REG64_IDX(HSW_CS_GPR, 10), 650 REG64_IDX(HSW_CS_GPR, 11), 651 REG64_IDX(HSW_CS_GPR, 12), 652 REG64_IDX(HSW_CS_GPR, 13), 653 REG64_IDX(HSW_CS_GPR, 14), 654 REG64_IDX(HSW_CS_GPR, 15), 655 REG32(HSW_SCRATCH1, 656 .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE, 657 .value = 0), 658 REG32(HSW_ROW_CHICKEN3, 659 .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 | 660 HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE), 661 .value = 0), 662 }; 663 664 static const struct drm_i915_reg_descriptor gen7_blt_regs[] = { 665 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), 666 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), 667 REG32(BCS_SWCTRL), 668 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), 669 }; 670 671 static const struct drm_i915_reg_descriptor gen9_blt_regs[] = { 672 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), 673 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), 674 REG32(BCS_SWCTRL), 675 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), 676 REG32_IDX(RING_CTX_TIMESTAMP, BLT_RING_BASE), 677 REG64_IDX(BCS_GPR, 0), 678 REG64_IDX(BCS_GPR, 1), 679 REG64_IDX(BCS_GPR, 2), 680 REG64_IDX(BCS_GPR, 3), 681 REG64_IDX(BCS_GPR, 4), 682 REG64_IDX(BCS_GPR, 5), 683 REG64_IDX(BCS_GPR, 6), 684 REG64_IDX(BCS_GPR, 7), 685 REG64_IDX(BCS_GPR, 8), 686 REG64_IDX(BCS_GPR, 9), 687 REG64_IDX(BCS_GPR, 10), 688 REG64_IDX(BCS_GPR, 11), 689 REG64_IDX(BCS_GPR, 12), 690 REG64_IDX(BCS_GPR, 13), 691 REG64_IDX(BCS_GPR, 14), 692 REG64_IDX(BCS_GPR, 15), 693 }; 694 695 #undef REG64 696 #undef REG32 697 698 struct drm_i915_reg_table { 699 const struct drm_i915_reg_descriptor *regs; 700 int num_regs; 701 }; 702 703 static const struct drm_i915_reg_table ivb_render_reg_tables[] = { 704 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) }, 705 }; 706 707 static const struct drm_i915_reg_table ivb_blt_reg_tables[] = { 708 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) }, 709 }; 710 711 static const struct drm_i915_reg_table hsw_render_reg_tables[] = { 712 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) }, 713 { hsw_render_regs, ARRAY_SIZE(hsw_render_regs) }, 714 }; 715 716 static const struct drm_i915_reg_table hsw_blt_reg_tables[] = { 717 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) }, 718 }; 719 720 static const struct drm_i915_reg_table gen9_blt_reg_tables[] = { 721 { gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) }, 722 }; 723 724 static u32 gen7_render_get_cmd_length_mask(u32 cmd_header) 725 { 726 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 727 u32 subclient = 728 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT; 729 730 if (client == INSTR_MI_CLIENT) 731 return 0x3F; 732 else if (client == INSTR_RC_CLIENT) { 733 if (subclient == INSTR_MEDIA_SUBCLIENT) 734 return 0xFFFF; 735 else 736 return 0xFF; 737 } 738 739 DRM_DEBUG("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header); 740 return 0; 741 } 742 743 static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header) 744 { 745 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 746 u32 subclient = 747 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT; 748 u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT; 749 750 if (client == INSTR_MI_CLIENT) 751 return 0x3F; 752 else if (client == INSTR_RC_CLIENT) { 753 if (subclient == INSTR_MEDIA_SUBCLIENT) { 754 if (op == 6) 755 return 0xFFFF; 756 else 757 return 0xFFF; 758 } else 759 return 0xFF; 760 } 761 762 DRM_DEBUG("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header); 763 return 0; 764 } 765 766 static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header) 767 { 768 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 769 770 if (client == INSTR_MI_CLIENT) 771 return 0x3F; 772 else if (client == INSTR_BC_CLIENT) 773 return 0xFF; 774 775 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header); 776 return 0; 777 } 778 779 static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header) 780 { 781 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 782 783 if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT) 784 return 0xFF; 785 786 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header); 787 return 0; 788 } 789 790 static bool validate_cmds_sorted(const struct intel_engine_cs *engine, 791 const struct drm_i915_cmd_table *cmd_tables, 792 int cmd_table_count) 793 { 794 int i; 795 bool ret = true; 796 797 if (!cmd_tables || cmd_table_count == 0) 798 return true; 799 800 for (i = 0; i < cmd_table_count; i++) { 801 const struct drm_i915_cmd_table *table = &cmd_tables[i]; 802 u32 previous = 0; 803 int j; 804 805 for (j = 0; j < table->count; j++) { 806 const struct drm_i915_cmd_descriptor *desc = 807 &table->table[j]; 808 u32 curr = desc->cmd.value & desc->cmd.mask; 809 810 if (curr < previous) { 811 drm_err(&engine->i915->drm, 812 "CMD: %s [%d] command table not sorted: " 813 "table=%d entry=%d cmd=0x%08X prev=0x%08X\n", 814 engine->name, engine->id, 815 i, j, curr, previous); 816 ret = false; 817 } 818 819 previous = curr; 820 } 821 } 822 823 return ret; 824 } 825 826 static bool check_sorted(const struct intel_engine_cs *engine, 827 const struct drm_i915_reg_descriptor *reg_table, 828 int reg_count) 829 { 830 int i; 831 u32 previous = 0; 832 bool ret = true; 833 834 for (i = 0; i < reg_count; i++) { 835 u32 curr = i915_mmio_reg_offset(reg_table[i].addr); 836 837 if (curr < previous) { 838 drm_err(&engine->i915->drm, 839 "CMD: %s [%d] register table not sorted: " 840 "entry=%d reg=0x%08X prev=0x%08X\n", 841 engine->name, engine->id, 842 i, curr, previous); 843 ret = false; 844 } 845 846 previous = curr; 847 } 848 849 return ret; 850 } 851 852 static bool validate_regs_sorted(struct intel_engine_cs *engine) 853 { 854 int i; 855 const struct drm_i915_reg_table *table; 856 857 for (i = 0; i < engine->reg_table_count; i++) { 858 table = &engine->reg_tables[i]; 859 if (!check_sorted(engine, table->regs, table->num_regs)) 860 return false; 861 } 862 863 return true; 864 } 865 866 struct cmd_node { 867 const struct drm_i915_cmd_descriptor *desc; 868 struct hlist_node node; 869 }; 870 871 /* 872 * Different command ranges have different numbers of bits for the opcode. For 873 * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The 874 * problem is that, for example, MI commands use bits 22:16 for other fields 875 * such as GGTT vs PPGTT bits. If we include those bits in the mask then when 876 * we mask a command from a batch it could hash to the wrong bucket due to 877 * non-opcode bits being set. But if we don't include those bits, some 3D 878 * commands may hash to the same bucket due to not including opcode bits that 879 * make the command unique. For now, we will risk hashing to the same bucket. 880 */ 881 static inline u32 cmd_header_key(u32 x) 882 { 883 switch (x >> INSTR_CLIENT_SHIFT) { 884 default: 885 case INSTR_MI_CLIENT: 886 return x >> STD_MI_OPCODE_SHIFT; 887 case INSTR_RC_CLIENT: 888 return x >> STD_3D_OPCODE_SHIFT; 889 case INSTR_BC_CLIENT: 890 return x >> STD_2D_OPCODE_SHIFT; 891 } 892 } 893 894 static int init_hash_table(struct intel_engine_cs *engine, 895 const struct drm_i915_cmd_table *cmd_tables, 896 int cmd_table_count) 897 { 898 int i, j; 899 900 hash_init(engine->cmd_hash); 901 902 for (i = 0; i < cmd_table_count; i++) { 903 const struct drm_i915_cmd_table *table = &cmd_tables[i]; 904 905 for (j = 0; j < table->count; j++) { 906 const struct drm_i915_cmd_descriptor *desc = 907 &table->table[j]; 908 struct cmd_node *desc_node = 909 kmalloc(sizeof(*desc_node), GFP_KERNEL); 910 911 if (!desc_node) 912 return -ENOMEM; 913 914 desc_node->desc = desc; 915 hash_add(engine->cmd_hash, &desc_node->node, 916 cmd_header_key(desc->cmd.value)); 917 } 918 } 919 920 return 0; 921 } 922 923 static void fini_hash_table(struct intel_engine_cs *engine) 924 { 925 struct hlist_node *tmp; 926 struct cmd_node *desc_node; 927 int i; 928 929 hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) { 930 hash_del(&desc_node->node); 931 kfree(desc_node); 932 } 933 } 934 935 /** 936 * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine 937 * @engine: the engine to initialize 938 * 939 * Optionally initializes fields related to batch buffer command parsing in the 940 * struct intel_engine_cs based on whether the platform requires software 941 * command parsing. 942 */ 943 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine) 944 { 945 const struct drm_i915_cmd_table *cmd_tables; 946 int cmd_table_count; 947 int ret; 948 949 if (!IS_GEN(engine->i915, 7) && !(IS_GEN(engine->i915, 9) && 950 engine->class == COPY_ENGINE_CLASS)) 951 return; 952 953 switch (engine->class) { 954 case RENDER_CLASS: 955 if (IS_HASWELL(engine->i915)) { 956 cmd_tables = hsw_render_ring_cmd_table; 957 cmd_table_count = 958 ARRAY_SIZE(hsw_render_ring_cmd_table); 959 } else { 960 cmd_tables = gen7_render_cmd_table; 961 cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table); 962 } 963 964 if (IS_HASWELL(engine->i915)) { 965 engine->reg_tables = hsw_render_reg_tables; 966 engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables); 967 } else { 968 engine->reg_tables = ivb_render_reg_tables; 969 engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables); 970 } 971 engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask; 972 break; 973 case VIDEO_DECODE_CLASS: 974 cmd_tables = gen7_video_cmd_table; 975 cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table); 976 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; 977 break; 978 case COPY_ENGINE_CLASS: 979 engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask; 980 if (IS_GEN(engine->i915, 9)) { 981 cmd_tables = gen9_blt_cmd_table; 982 cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table); 983 engine->get_cmd_length_mask = 984 gen9_blt_get_cmd_length_mask; 985 986 /* BCS Engine unsafe without parser */ 987 engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER; 988 } else if (IS_HASWELL(engine->i915)) { 989 cmd_tables = hsw_blt_ring_cmd_table; 990 cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table); 991 } else { 992 cmd_tables = gen7_blt_cmd_table; 993 cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table); 994 } 995 996 if (IS_GEN(engine->i915, 9)) { 997 engine->reg_tables = gen9_blt_reg_tables; 998 engine->reg_table_count = 999 ARRAY_SIZE(gen9_blt_reg_tables); 1000 } else if (IS_HASWELL(engine->i915)) { 1001 engine->reg_tables = hsw_blt_reg_tables; 1002 engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables); 1003 } else { 1004 engine->reg_tables = ivb_blt_reg_tables; 1005 engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables); 1006 } 1007 break; 1008 case VIDEO_ENHANCEMENT_CLASS: 1009 cmd_tables = hsw_vebox_cmd_table; 1010 cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table); 1011 /* VECS can use the same length_mask function as VCS */ 1012 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; 1013 break; 1014 default: 1015 MISSING_CASE(engine->class); 1016 return; 1017 } 1018 1019 if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) { 1020 drm_err(&engine->i915->drm, 1021 "%s: command descriptions are not sorted\n", 1022 engine->name); 1023 return; 1024 } 1025 if (!validate_regs_sorted(engine)) { 1026 drm_err(&engine->i915->drm, 1027 "%s: registers are not sorted\n", engine->name); 1028 return; 1029 } 1030 1031 ret = init_hash_table(engine, cmd_tables, cmd_table_count); 1032 if (ret) { 1033 drm_err(&engine->i915->drm, 1034 "%s: initialised failed!\n", engine->name); 1035 fini_hash_table(engine); 1036 return; 1037 } 1038 1039 engine->flags |= I915_ENGINE_USING_CMD_PARSER; 1040 } 1041 1042 /** 1043 * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields 1044 * @engine: the engine to clean up 1045 * 1046 * Releases any resources related to command parsing that may have been 1047 * initialized for the specified engine. 1048 */ 1049 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine) 1050 { 1051 if (!intel_engine_using_cmd_parser(engine)) 1052 return; 1053 1054 fini_hash_table(engine); 1055 } 1056 1057 static const struct drm_i915_cmd_descriptor* 1058 find_cmd_in_table(struct intel_engine_cs *engine, 1059 u32 cmd_header) 1060 { 1061 struct cmd_node *desc_node; 1062 1063 hash_for_each_possible(engine->cmd_hash, desc_node, node, 1064 cmd_header_key(cmd_header)) { 1065 const struct drm_i915_cmd_descriptor *desc = desc_node->desc; 1066 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0) 1067 return desc; 1068 } 1069 1070 return NULL; 1071 } 1072 1073 /* 1074 * Returns a pointer to a descriptor for the command specified by cmd_header. 1075 * 1076 * The caller must supply space for a default descriptor via the default_desc 1077 * parameter. If no descriptor for the specified command exists in the engine's 1078 * command parser tables, this function fills in default_desc based on the 1079 * engine's default length encoding and returns default_desc. 1080 */ 1081 static const struct drm_i915_cmd_descriptor* 1082 find_cmd(struct intel_engine_cs *engine, 1083 u32 cmd_header, 1084 const struct drm_i915_cmd_descriptor *desc, 1085 struct drm_i915_cmd_descriptor *default_desc) 1086 { 1087 u32 mask; 1088 1089 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0) 1090 return desc; 1091 1092 desc = find_cmd_in_table(engine, cmd_header); 1093 if (desc) 1094 return desc; 1095 1096 mask = engine->get_cmd_length_mask(cmd_header); 1097 if (!mask) 1098 return NULL; 1099 1100 default_desc->cmd.value = cmd_header; 1101 default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT; 1102 default_desc->length.mask = mask; 1103 default_desc->flags = CMD_DESC_SKIP; 1104 return default_desc; 1105 } 1106 1107 static const struct drm_i915_reg_descriptor * 1108 __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr) 1109 { 1110 int start = 0, end = count; 1111 while (start < end) { 1112 int mid = start + (end - start) / 2; 1113 int ret = addr - i915_mmio_reg_offset(table[mid].addr); 1114 if (ret < 0) 1115 end = mid; 1116 else if (ret > 0) 1117 start = mid + 1; 1118 else 1119 return &table[mid]; 1120 } 1121 return NULL; 1122 } 1123 1124 static const struct drm_i915_reg_descriptor * 1125 find_reg(const struct intel_engine_cs *engine, u32 addr) 1126 { 1127 const struct drm_i915_reg_table *table = engine->reg_tables; 1128 const struct drm_i915_reg_descriptor *reg = NULL; 1129 int count = engine->reg_table_count; 1130 1131 for (; !reg && (count > 0); ++table, --count) 1132 reg = __find_reg(table->regs, table->num_regs, addr); 1133 1134 return reg; 1135 } 1136 1137 /* Returns a vmap'd pointer to dst_obj, which the caller must unmap */ 1138 static u32 *copy_batch(struct drm_i915_gem_object *dst_obj, 1139 struct drm_i915_gem_object *src_obj, 1140 unsigned long offset, unsigned long length) 1141 { 1142 bool needs_clflush; 1143 void *dst, *src; 1144 int ret; 1145 1146 dst = i915_gem_object_pin_map(dst_obj, I915_MAP_WB); 1147 if (IS_ERR(dst)) 1148 return dst; 1149 1150 ret = i915_gem_object_pin_pages(src_obj); 1151 if (ret) { 1152 i915_gem_object_unpin_map(dst_obj); 1153 return ERR_PTR(ret); 1154 } 1155 1156 needs_clflush = 1157 !(src_obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ); 1158 1159 src = ERR_PTR(-ENODEV); 1160 if (needs_clflush && i915_has_memcpy_from_wc()) { 1161 src = i915_gem_object_pin_map(src_obj, I915_MAP_WC); 1162 if (!IS_ERR(src)) { 1163 i915_unaligned_memcpy_from_wc(dst, 1164 src + offset, 1165 length); 1166 i915_gem_object_unpin_map(src_obj); 1167 } 1168 } 1169 if (IS_ERR(src)) { 1170 unsigned long x, n, remain; 1171 void *ptr; 1172 1173 /* 1174 * We can avoid clflushing partial cachelines before the write 1175 * if we only every write full cache-lines. Since we know that 1176 * both the source and destination are in multiples of 1177 * PAGE_SIZE, we can simply round up to the next cacheline. 1178 * We don't care about copying too much here as we only 1179 * validate up to the end of the batch. 1180 */ 1181 remain = length; 1182 if (!(dst_obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) 1183 remain = round_up(remain, 1184 boot_cpu_data.x86_clflush_size); 1185 1186 ptr = dst; 1187 x = offset_in_page(offset); 1188 for (n = offset >> PAGE_SHIFT; remain; n++) { 1189 int len = min(remain, PAGE_SIZE - x); 1190 1191 src = kmap_atomic(i915_gem_object_get_page(src_obj, n)); 1192 if (needs_clflush) 1193 drm_clflush_virt_range(src + x, len); 1194 memcpy(ptr, src + x, len); 1195 kunmap_atomic(src); 1196 1197 ptr += len; 1198 remain -= len; 1199 x = 0; 1200 } 1201 } 1202 1203 i915_gem_object_unpin_pages(src_obj); 1204 1205 memset32(dst + length, 0, (dst_obj->base.size - length) / sizeof(u32)); 1206 1207 /* dst_obj is returned with vmap pinned */ 1208 return dst; 1209 } 1210 1211 static inline bool cmd_desc_is(const struct drm_i915_cmd_descriptor * const desc, 1212 const u32 cmd) 1213 { 1214 return desc->cmd.value == (cmd & desc->cmd.mask); 1215 } 1216 1217 static bool check_cmd(const struct intel_engine_cs *engine, 1218 const struct drm_i915_cmd_descriptor *desc, 1219 const u32 *cmd, u32 length) 1220 { 1221 if (desc->flags & CMD_DESC_SKIP) 1222 return true; 1223 1224 if (desc->flags & CMD_DESC_REJECT) { 1225 DRM_DEBUG("CMD: Rejected command: 0x%08X\n", *cmd); 1226 return false; 1227 } 1228 1229 if (desc->flags & CMD_DESC_REGISTER) { 1230 /* 1231 * Get the distance between individual register offset 1232 * fields if the command can perform more than one 1233 * access at a time. 1234 */ 1235 const u32 step = desc->reg.step ? desc->reg.step : length; 1236 u32 offset; 1237 1238 for (offset = desc->reg.offset; offset < length; 1239 offset += step) { 1240 const u32 reg_addr = cmd[offset] & desc->reg.mask; 1241 const struct drm_i915_reg_descriptor *reg = 1242 find_reg(engine, reg_addr); 1243 1244 if (!reg) { 1245 DRM_DEBUG("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n", 1246 reg_addr, *cmd, engine->name); 1247 return false; 1248 } 1249 1250 /* 1251 * Check the value written to the register against the 1252 * allowed mask/value pair given in the whitelist entry. 1253 */ 1254 if (reg->mask) { 1255 if (cmd_desc_is(desc, MI_LOAD_REGISTER_MEM)) { 1256 DRM_DEBUG("CMD: Rejected LRM to masked register 0x%08X\n", 1257 reg_addr); 1258 return false; 1259 } 1260 1261 if (cmd_desc_is(desc, MI_LOAD_REGISTER_REG)) { 1262 DRM_DEBUG("CMD: Rejected LRR to masked register 0x%08X\n", 1263 reg_addr); 1264 return false; 1265 } 1266 1267 if (cmd_desc_is(desc, MI_LOAD_REGISTER_IMM(1)) && 1268 (offset + 2 > length || 1269 (cmd[offset + 1] & reg->mask) != reg->value)) { 1270 DRM_DEBUG("CMD: Rejected LRI to masked register 0x%08X\n", 1271 reg_addr); 1272 return false; 1273 } 1274 } 1275 } 1276 } 1277 1278 if (desc->flags & CMD_DESC_BITMASK) { 1279 int i; 1280 1281 for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) { 1282 u32 dword; 1283 1284 if (desc->bits[i].mask == 0) 1285 break; 1286 1287 if (desc->bits[i].condition_mask != 0) { 1288 u32 offset = 1289 desc->bits[i].condition_offset; 1290 u32 condition = cmd[offset] & 1291 desc->bits[i].condition_mask; 1292 1293 if (condition == 0) 1294 continue; 1295 } 1296 1297 if (desc->bits[i].offset >= length) { 1298 DRM_DEBUG("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n", 1299 *cmd, engine->name); 1300 return false; 1301 } 1302 1303 dword = cmd[desc->bits[i].offset] & 1304 desc->bits[i].mask; 1305 1306 if (dword != desc->bits[i].expected) { 1307 DRM_DEBUG("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n", 1308 *cmd, 1309 desc->bits[i].mask, 1310 desc->bits[i].expected, 1311 dword, engine->name); 1312 return false; 1313 } 1314 } 1315 } 1316 1317 return true; 1318 } 1319 1320 static int check_bbstart(u32 *cmd, u32 offset, u32 length, 1321 u32 batch_length, 1322 u64 batch_addr, 1323 u64 shadow_addr, 1324 const unsigned long *jump_whitelist) 1325 { 1326 u64 jump_offset, jump_target; 1327 u32 target_cmd_offset, target_cmd_index; 1328 1329 /* For igt compatibility on older platforms */ 1330 if (!jump_whitelist) { 1331 DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n"); 1332 return -EACCES; 1333 } 1334 1335 if (length != 3) { 1336 DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n", 1337 length); 1338 return -EINVAL; 1339 } 1340 1341 jump_target = *(u64 *)(cmd + 1); 1342 jump_offset = jump_target - batch_addr; 1343 1344 /* 1345 * Any underflow of jump_target is guaranteed to be outside the range 1346 * of a u32, so >= test catches both too large and too small 1347 */ 1348 if (jump_offset >= batch_length) { 1349 DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n", 1350 jump_target); 1351 return -EINVAL; 1352 } 1353 1354 /* 1355 * This cannot overflow a u32 because we already checked jump_offset 1356 * is within the BB, and the batch_length is a u32 1357 */ 1358 target_cmd_offset = lower_32_bits(jump_offset); 1359 target_cmd_index = target_cmd_offset / sizeof(u32); 1360 1361 *(u64 *)(cmd + 1) = shadow_addr + target_cmd_offset; 1362 1363 if (target_cmd_index == offset) 1364 return 0; 1365 1366 if (IS_ERR(jump_whitelist)) 1367 return PTR_ERR(jump_whitelist); 1368 1369 if (!test_bit(target_cmd_index, jump_whitelist)) { 1370 DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n", 1371 jump_target); 1372 return -EINVAL; 1373 } 1374 1375 return 0; 1376 } 1377 1378 static unsigned long *alloc_whitelist(u32 batch_length) 1379 { 1380 unsigned long *jmp; 1381 1382 /* 1383 * We expect batch_length to be less than 256KiB for known users, 1384 * i.e. we need at most an 8KiB bitmap allocation which should be 1385 * reasonably cheap due to kmalloc caches. 1386 */ 1387 1388 /* Prefer to report transient allocation failure rather than hit oom */ 1389 jmp = bitmap_zalloc(DIV_ROUND_UP(batch_length, sizeof(u32)), 1390 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 1391 if (!jmp) 1392 return ERR_PTR(-ENOMEM); 1393 1394 return jmp; 1395 } 1396 1397 #define LENGTH_BIAS 2 1398 1399 /** 1400 * intel_engine_cmd_parser() - parse a batch buffer for privilege violations 1401 * @engine: the engine on which the batch is to execute 1402 * @batch: the batch buffer in question 1403 * @batch_offset: byte offset in the batch at which execution starts 1404 * @batch_length: length of the commands in batch_obj 1405 * @shadow: validated copy of the batch buffer in question 1406 * @trampoline: whether to emit a conditional trampoline at the end of the batch 1407 * 1408 * Parses the specified batch buffer looking for privilege violations as 1409 * described in the overview. 1410 * 1411 * Return: non-zero if the parser finds violations or otherwise fails; -EACCES 1412 * if the batch appears legal but should use hardware parsing 1413 */ 1414 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 1415 struct i915_vma *batch, 1416 unsigned long batch_offset, 1417 unsigned long batch_length, 1418 struct i915_vma *shadow, 1419 bool trampoline) 1420 { 1421 u32 *cmd, *batch_end, offset = 0; 1422 struct drm_i915_cmd_descriptor default_desc = noop_desc; 1423 const struct drm_i915_cmd_descriptor *desc = &default_desc; 1424 unsigned long *jump_whitelist; 1425 u64 batch_addr, shadow_addr; 1426 int ret = 0; 1427 1428 GEM_BUG_ON(!IS_ALIGNED(batch_offset, sizeof(*cmd))); 1429 GEM_BUG_ON(!IS_ALIGNED(batch_length, sizeof(*cmd))); 1430 GEM_BUG_ON(range_overflows_t(u64, batch_offset, batch_length, 1431 batch->size)); 1432 GEM_BUG_ON(!batch_length); 1433 1434 cmd = copy_batch(shadow->obj, batch->obj, batch_offset, batch_length); 1435 if (IS_ERR(cmd)) { 1436 DRM_DEBUG("CMD: Failed to copy batch\n"); 1437 return PTR_ERR(cmd); 1438 } 1439 1440 jump_whitelist = NULL; 1441 if (!trampoline) 1442 /* Defer failure until attempted use */ 1443 jump_whitelist = alloc_whitelist(batch_length); 1444 1445 shadow_addr = gen8_canonical_addr(shadow->node.start); 1446 batch_addr = gen8_canonical_addr(batch->node.start + batch_offset); 1447 1448 /* 1449 * We use the batch length as size because the shadow object is as 1450 * large or larger and copy_batch() will write MI_NOPs to the extra 1451 * space. Parsing should be faster in some cases this way. 1452 */ 1453 batch_end = cmd + batch_length / sizeof(*batch_end); 1454 while (*cmd != MI_BATCH_BUFFER_END) { 1455 u32 length = 1; 1456 1457 if (*cmd != MI_NOOP) { /* MI_NOOP == 0 */ 1458 desc = find_cmd(engine, *cmd, desc, &default_desc); 1459 if (!desc) { 1460 DRM_DEBUG("CMD: Unrecognized command: 0x%08X\n", *cmd); 1461 ret = -EINVAL; 1462 break; 1463 } 1464 1465 if (desc->flags & CMD_DESC_FIXED) 1466 length = desc->length.fixed; 1467 else 1468 length = (*cmd & desc->length.mask) + LENGTH_BIAS; 1469 1470 if ((batch_end - cmd) < length) { 1471 DRM_DEBUG("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n", 1472 *cmd, 1473 length, 1474 batch_end - cmd); 1475 ret = -EINVAL; 1476 break; 1477 } 1478 1479 if (!check_cmd(engine, desc, cmd, length)) { 1480 ret = -EACCES; 1481 break; 1482 } 1483 1484 if (cmd_desc_is(desc, MI_BATCH_BUFFER_START)) { 1485 ret = check_bbstart(cmd, offset, length, batch_length, 1486 batch_addr, shadow_addr, 1487 jump_whitelist); 1488 break; 1489 } 1490 } 1491 1492 if (!IS_ERR_OR_NULL(jump_whitelist)) 1493 __set_bit(offset, jump_whitelist); 1494 1495 cmd += length; 1496 offset += length; 1497 if (cmd >= batch_end) { 1498 DRM_DEBUG("CMD: Got to the end of the buffer w/o a BBE cmd!\n"); 1499 ret = -EINVAL; 1500 break; 1501 } 1502 } 1503 1504 if (trampoline) { 1505 /* 1506 * With the trampoline, the shadow is executed twice. 1507 * 1508 * 1 - starting at offset 0, in privileged mode 1509 * 2 - starting at offset batch_len, as non-privileged 1510 * 1511 * Only if the batch is valid and safe to execute, do we 1512 * allow the first privileged execution to proceed. If not, 1513 * we terminate the first batch and use the second batchbuffer 1514 * entry to chain to the original unsafe non-privileged batch, 1515 * leaving it to the HW to validate. 1516 */ 1517 *batch_end = MI_BATCH_BUFFER_END; 1518 1519 if (ret) { 1520 /* Batch unsafe to execute with privileges, cancel! */ 1521 cmd = page_mask_bits(shadow->obj->mm.mapping); 1522 *cmd = MI_BATCH_BUFFER_END; 1523 1524 /* If batch is unsafe but valid, jump to the original */ 1525 if (ret == -EACCES) { 1526 unsigned int flags; 1527 1528 flags = MI_BATCH_NON_SECURE_I965; 1529 if (IS_HASWELL(engine->i915)) 1530 flags = MI_BATCH_NON_SECURE_HSW; 1531 1532 GEM_BUG_ON(!IS_GEN_RANGE(engine->i915, 6, 7)); 1533 __gen6_emit_bb_start(batch_end, 1534 batch_addr, 1535 flags); 1536 1537 ret = 0; /* allow execution */ 1538 } 1539 } 1540 } 1541 1542 i915_gem_object_flush_map(shadow->obj); 1543 1544 if (!IS_ERR_OR_NULL(jump_whitelist)) 1545 kfree(jump_whitelist); 1546 i915_gem_object_unpin_map(shadow->obj); 1547 return ret; 1548 } 1549 1550 /** 1551 * i915_cmd_parser_get_version() - get the cmd parser version number 1552 * @dev_priv: i915 device private 1553 * 1554 * The cmd parser maintains a simple increasing integer version number suitable 1555 * for passing to userspace clients to determine what operations are permitted. 1556 * 1557 * Return: the current version number of the cmd parser 1558 */ 1559 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv) 1560 { 1561 struct intel_engine_cs *engine; 1562 bool active = false; 1563 1564 /* If the command parser is not enabled, report 0 - unsupported */ 1565 for_each_uabi_engine(engine, dev_priv) { 1566 if (intel_engine_using_cmd_parser(engine)) { 1567 active = true; 1568 break; 1569 } 1570 } 1571 if (!active) 1572 return 0; 1573 1574 /* 1575 * Command parser version history 1576 * 1577 * 1. Initial version. Checks batches and reports violations, but leaves 1578 * hardware parsing enabled (so does not allow new use cases). 1579 * 2. Allow access to the MI_PREDICATE_SRC0 and 1580 * MI_PREDICATE_SRC1 registers. 1581 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register. 1582 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3. 1583 * 5. GPGPU dispatch compute indirect registers. 1584 * 6. TIMESTAMP register and Haswell CS GPR registers 1585 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers. 1586 * 8. Don't report cmd_check() failures as EINVAL errors to userspace; 1587 * rely on the HW to NOOP disallowed commands as it would without 1588 * the parser enabled. 1589 * 9. Don't whitelist or handle oacontrol specially, as ownership 1590 * for oacontrol state is moving to i915-perf. 1591 * 10. Support for Gen9 BCS Parsing 1592 */ 1593 return 10; 1594 } 1595