1 /* 2 * Copyright © 2013 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Brad Volkin <bradley.d.volkin@intel.com> 25 * 26 */ 27 28 #include "gt/intel_engine.h" 29 30 #include "i915_drv.h" 31 #include "i915_memcpy.h" 32 33 /** 34 * DOC: batch buffer command parser 35 * 36 * Motivation: 37 * Certain OpenGL features (e.g. transform feedback, performance monitoring) 38 * require userspace code to submit batches containing commands such as 39 * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some 40 * generations of the hardware will noop these commands in "unsecure" batches 41 * (which includes all userspace batches submitted via i915) even though the 42 * commands may be safe and represent the intended programming model of the 43 * device. 44 * 45 * The software command parser is similar in operation to the command parsing 46 * done in hardware for unsecure batches. However, the software parser allows 47 * some operations that would be noop'd by hardware, if the parser determines 48 * the operation is safe, and submits the batch as "secure" to prevent hardware 49 * parsing. 50 * 51 * Threats: 52 * At a high level, the hardware (and software) checks attempt to prevent 53 * granting userspace undue privileges. There are three categories of privilege. 54 * 55 * First, commands which are explicitly defined as privileged or which should 56 * only be used by the kernel driver. The parser rejects such commands 57 * 58 * Second, commands which access registers. To support correct/enhanced 59 * userspace functionality, particularly certain OpenGL extensions, the parser 60 * provides a whitelist of registers which userspace may safely access 61 * 62 * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc). 63 * The parser always rejects such commands. 64 * 65 * The majority of the problematic commands fall in the MI_* range, with only a 66 * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW). 67 * 68 * Implementation: 69 * Each engine maintains tables of commands and registers which the parser 70 * uses in scanning batch buffers submitted to that engine. 71 * 72 * Since the set of commands that the parser must check for is significantly 73 * smaller than the number of commands supported, the parser tables contain only 74 * those commands required by the parser. This generally works because command 75 * opcode ranges have standard command length encodings. So for commands that 76 * the parser does not need to check, it can easily skip them. This is 77 * implemented via a per-engine length decoding vfunc. 78 * 79 * Unfortunately, there are a number of commands that do not follow the standard 80 * length encoding for their opcode range, primarily amongst the MI_* commands. 81 * To handle this, the parser provides a way to define explicit "skip" entries 82 * in the per-engine command tables. 83 * 84 * Other command table entries map fairly directly to high level categories 85 * mentioned above: rejected, register whitelist. The parser implements a number 86 * of checks, including the privileged memory checks, via a general bitmasking 87 * mechanism. 88 */ 89 90 /* 91 * A command that requires special handling by the command parser. 92 */ 93 struct drm_i915_cmd_descriptor { 94 /* 95 * Flags describing how the command parser processes the command. 96 * 97 * CMD_DESC_FIXED: The command has a fixed length if this is set, 98 * a length mask if not set 99 * CMD_DESC_SKIP: The command is allowed but does not follow the 100 * standard length encoding for the opcode range in 101 * which it falls 102 * CMD_DESC_REJECT: The command is never allowed 103 * CMD_DESC_REGISTER: The command should be checked against the 104 * register whitelist for the appropriate ring 105 */ 106 u32 flags; 107 #define CMD_DESC_FIXED (1<<0) 108 #define CMD_DESC_SKIP (1<<1) 109 #define CMD_DESC_REJECT (1<<2) 110 #define CMD_DESC_REGISTER (1<<3) 111 #define CMD_DESC_BITMASK (1<<4) 112 113 /* 114 * The command's unique identification bits and the bitmask to get them. 115 * This isn't strictly the opcode field as defined in the spec and may 116 * also include type, subtype, and/or subop fields. 117 */ 118 struct { 119 u32 value; 120 u32 mask; 121 } cmd; 122 123 /* 124 * The command's length. The command is either fixed length (i.e. does 125 * not include a length field) or has a length field mask. The flag 126 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has 127 * a length mask. All command entries in a command table must include 128 * length information. 129 */ 130 union { 131 u32 fixed; 132 u32 mask; 133 } length; 134 135 /* 136 * Describes where to find a register address in the command to check 137 * against the ring's register whitelist. Only valid if flags has the 138 * CMD_DESC_REGISTER bit set. 139 * 140 * A non-zero step value implies that the command may access multiple 141 * registers in sequence (e.g. LRI), in that case step gives the 142 * distance in dwords between individual offset fields. 143 */ 144 struct { 145 u32 offset; 146 u32 mask; 147 u32 step; 148 } reg; 149 150 #define MAX_CMD_DESC_BITMASKS 3 151 /* 152 * Describes command checks where a particular dword is masked and 153 * compared against an expected value. If the command does not match 154 * the expected value, the parser rejects it. Only valid if flags has 155 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero 156 * are valid. 157 * 158 * If the check specifies a non-zero condition_mask then the parser 159 * only performs the check when the bits specified by condition_mask 160 * are non-zero. 161 */ 162 struct { 163 u32 offset; 164 u32 mask; 165 u32 expected; 166 u32 condition_offset; 167 u32 condition_mask; 168 } bits[MAX_CMD_DESC_BITMASKS]; 169 }; 170 171 /* 172 * A table of commands requiring special handling by the command parser. 173 * 174 * Each engine has an array of tables. Each table consists of an array of 175 * command descriptors, which must be sorted with command opcodes in 176 * ascending order. 177 */ 178 struct drm_i915_cmd_table { 179 const struct drm_i915_cmd_descriptor *table; 180 int count; 181 }; 182 183 #define STD_MI_OPCODE_SHIFT (32 - 9) 184 #define STD_3D_OPCODE_SHIFT (32 - 16) 185 #define STD_2D_OPCODE_SHIFT (32 - 10) 186 #define STD_MFX_OPCODE_SHIFT (32 - 16) 187 #define MIN_OPCODE_SHIFT 16 188 189 #define CMD(op, opm, f, lm, fl, ...) \ 190 { \ 191 .flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \ 192 .cmd = { (op & ~0u << (opm)), ~0u << (opm) }, \ 193 .length = { (lm) }, \ 194 __VA_ARGS__ \ 195 } 196 197 /* Convenience macros to compress the tables */ 198 #define SMI STD_MI_OPCODE_SHIFT 199 #define S3D STD_3D_OPCODE_SHIFT 200 #define S2D STD_2D_OPCODE_SHIFT 201 #define SMFX STD_MFX_OPCODE_SHIFT 202 #define F true 203 #define S CMD_DESC_SKIP 204 #define R CMD_DESC_REJECT 205 #define W CMD_DESC_REGISTER 206 #define B CMD_DESC_BITMASK 207 208 /* Command Mask Fixed Len Action 209 ---------------------------------------------------------- */ 210 static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = { 211 CMD( MI_NOOP, SMI, F, 1, S ), 212 CMD( MI_USER_INTERRUPT, SMI, F, 1, R ), 213 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, R ), 214 CMD( MI_ARB_CHECK, SMI, F, 1, S ), 215 CMD( MI_REPORT_HEAD, SMI, F, 1, S ), 216 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ), 217 CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ), 218 CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ), 219 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W, 220 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ), 221 CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B, 222 .reg = { .offset = 1, .mask = 0x007FFFFC }, 223 .bits = {{ 224 .offset = 0, 225 .mask = MI_GLOBAL_GTT, 226 .expected = 0, 227 }}, ), 228 CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B, 229 .reg = { .offset = 1, .mask = 0x007FFFFC }, 230 .bits = {{ 231 .offset = 0, 232 .mask = MI_GLOBAL_GTT, 233 .expected = 0, 234 }}, ), 235 /* 236 * MI_BATCH_BUFFER_START requires some special handling. It's not 237 * really a 'skip' action but it doesn't seem like it's worth adding 238 * a new action. See i915_parse_cmds(). 239 */ 240 CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ), 241 }; 242 243 static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = { 244 CMD( MI_FLUSH, SMI, F, 1, S ), 245 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), 246 CMD( MI_PREDICATE, SMI, F, 1, S ), 247 CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ), 248 CMD( MI_SET_APPID, SMI, F, 1, S ), 249 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ), 250 CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ), 251 CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ), 252 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B, 253 .bits = {{ 254 .offset = 0, 255 .mask = MI_GLOBAL_GTT, 256 .expected = 0, 257 }}, ), 258 CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ), 259 CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B, 260 .bits = {{ 261 .offset = 0, 262 .mask = MI_GLOBAL_GTT, 263 .expected = 0, 264 }}, ), 265 CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B, 266 .bits = {{ 267 .offset = 1, 268 .mask = MI_REPORT_PERF_COUNT_GGTT, 269 .expected = 0, 270 }}, ), 271 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, 272 .bits = {{ 273 .offset = 0, 274 .mask = MI_GLOBAL_GTT, 275 .expected = 0, 276 }}, ), 277 CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ), 278 CMD( PIPELINE_SELECT, S3D, F, 1, S ), 279 CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B, 280 .bits = {{ 281 .offset = 2, 282 .mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK, 283 .expected = 0, 284 }}, ), 285 CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ), 286 CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ), 287 CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ), 288 CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B, 289 .bits = {{ 290 .offset = 1, 291 .mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY), 292 .expected = 0, 293 }, 294 { 295 .offset = 1, 296 .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB | 297 PIPE_CONTROL_STORE_DATA_INDEX), 298 .expected = 0, 299 .condition_offset = 1, 300 .condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK, 301 }}, ), 302 }; 303 304 static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = { 305 CMD( MI_SET_PREDICATE, SMI, F, 1, S ), 306 CMD( MI_RS_CONTROL, SMI, F, 1, S ), 307 CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ), 308 CMD( MI_SET_APPID, SMI, F, 1, S ), 309 CMD( MI_RS_CONTEXT, SMI, F, 1, S ), 310 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ), 311 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ), 312 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W, 313 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ), 314 CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ), 315 CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ), 316 CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ), 317 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ), 318 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ), 319 320 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ), 321 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ), 322 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ), 323 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ), 324 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ), 325 }; 326 327 static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = { 328 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), 329 CMD( MI_SET_APPID, SMI, F, 1, S ), 330 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B, 331 .bits = {{ 332 .offset = 0, 333 .mask = MI_GLOBAL_GTT, 334 .expected = 0, 335 }}, ), 336 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), 337 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, 338 .bits = {{ 339 .offset = 0, 340 .mask = MI_FLUSH_DW_NOTIFY, 341 .expected = 0, 342 }, 343 { 344 .offset = 1, 345 .mask = MI_FLUSH_DW_USE_GTT, 346 .expected = 0, 347 .condition_offset = 0, 348 .condition_mask = MI_FLUSH_DW_OP_MASK, 349 }, 350 { 351 .offset = 0, 352 .mask = MI_FLUSH_DW_STORE_INDEX, 353 .expected = 0, 354 .condition_offset = 0, 355 .condition_mask = MI_FLUSH_DW_OP_MASK, 356 }}, ), 357 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, 358 .bits = {{ 359 .offset = 0, 360 .mask = MI_GLOBAL_GTT, 361 .expected = 0, 362 }}, ), 363 /* 364 * MFX_WAIT doesn't fit the way we handle length for most commands. 365 * It has a length field but it uses a non-standard length bias. 366 * It is always 1 dword though, so just treat it as fixed length. 367 */ 368 CMD( MFX_WAIT, SMFX, F, 1, S ), 369 }; 370 371 static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = { 372 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), 373 CMD( MI_SET_APPID, SMI, F, 1, S ), 374 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B, 375 .bits = {{ 376 .offset = 0, 377 .mask = MI_GLOBAL_GTT, 378 .expected = 0, 379 }}, ), 380 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), 381 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, 382 .bits = {{ 383 .offset = 0, 384 .mask = MI_FLUSH_DW_NOTIFY, 385 .expected = 0, 386 }, 387 { 388 .offset = 1, 389 .mask = MI_FLUSH_DW_USE_GTT, 390 .expected = 0, 391 .condition_offset = 0, 392 .condition_mask = MI_FLUSH_DW_OP_MASK, 393 }, 394 { 395 .offset = 0, 396 .mask = MI_FLUSH_DW_STORE_INDEX, 397 .expected = 0, 398 .condition_offset = 0, 399 .condition_mask = MI_FLUSH_DW_OP_MASK, 400 }}, ), 401 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, 402 .bits = {{ 403 .offset = 0, 404 .mask = MI_GLOBAL_GTT, 405 .expected = 0, 406 }}, ), 407 }; 408 409 static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = { 410 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ), 411 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B, 412 .bits = {{ 413 .offset = 0, 414 .mask = MI_GLOBAL_GTT, 415 .expected = 0, 416 }}, ), 417 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), 418 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, 419 .bits = {{ 420 .offset = 0, 421 .mask = MI_FLUSH_DW_NOTIFY, 422 .expected = 0, 423 }, 424 { 425 .offset = 1, 426 .mask = MI_FLUSH_DW_USE_GTT, 427 .expected = 0, 428 .condition_offset = 0, 429 .condition_mask = MI_FLUSH_DW_OP_MASK, 430 }, 431 { 432 .offset = 0, 433 .mask = MI_FLUSH_DW_STORE_INDEX, 434 .expected = 0, 435 .condition_offset = 0, 436 .condition_mask = MI_FLUSH_DW_OP_MASK, 437 }}, ), 438 CMD( COLOR_BLT, S2D, !F, 0x3F, S ), 439 CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ), 440 }; 441 442 static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = { 443 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ), 444 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ), 445 }; 446 447 /* 448 * For Gen9 we can still rely on the h/w to enforce cmd security, and only 449 * need to re-enforce the register access checks. We therefore only need to 450 * teach the cmdparser how to find the end of each command, and identify 451 * register accesses. The table doesn't need to reject any commands, and so 452 * the only commands listed here are: 453 * 1) Those that touch registers 454 * 2) Those that do not have the default 8-bit length 455 * 456 * Note that the default MI length mask chosen for this table is 0xFF, not 457 * the 0x3F used on older devices. This is because the vast majority of MI 458 * cmds on Gen9 use a standard 8-bit Length field. 459 * All the Gen9 blitter instructions are standard 0xFF length mask, and 460 * none allow access to non-general registers, so in fact no BLT cmds are 461 * included in the table at all. 462 * 463 */ 464 static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = { 465 CMD( MI_NOOP, SMI, F, 1, S ), 466 CMD( MI_USER_INTERRUPT, SMI, F, 1, S ), 467 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, S ), 468 CMD( MI_FLUSH, SMI, F, 1, S ), 469 CMD( MI_ARB_CHECK, SMI, F, 1, S ), 470 CMD( MI_REPORT_HEAD, SMI, F, 1, S ), 471 CMD( MI_ARB_ON_OFF, SMI, F, 1, S ), 472 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ), 473 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, S ), 474 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, S ), 475 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, S ), 476 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W, 477 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ), 478 CMD( MI_UPDATE_GTT, SMI, !F, 0x3FF, S ), 479 CMD( MI_STORE_REGISTER_MEM_GEN8, SMI, F, 4, W, 480 .reg = { .offset = 1, .mask = 0x007FFFFC } ), 481 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, S ), 482 CMD( MI_LOAD_REGISTER_MEM_GEN8, SMI, F, 4, W, 483 .reg = { .offset = 1, .mask = 0x007FFFFC } ), 484 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W, 485 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ), 486 487 /* 488 * We allow BB_START but apply further checks. We just sanitize the 489 * basic fields here. 490 */ 491 #define MI_BB_START_OPERAND_MASK GENMASK(SMI-1, 0) 492 #define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1) 493 CMD( MI_BATCH_BUFFER_START_GEN8, SMI, !F, 0xFF, B, 494 .bits = {{ 495 .offset = 0, 496 .mask = MI_BB_START_OPERAND_MASK, 497 .expected = MI_BB_START_OPERAND_EXPECT, 498 }}, ), 499 }; 500 501 static const struct drm_i915_cmd_descriptor noop_desc = 502 CMD(MI_NOOP, SMI, F, 1, S); 503 504 #undef CMD 505 #undef SMI 506 #undef S3D 507 #undef S2D 508 #undef SMFX 509 #undef F 510 #undef S 511 #undef R 512 #undef W 513 #undef B 514 515 static const struct drm_i915_cmd_table gen7_render_cmd_table[] = { 516 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 517 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) }, 518 }; 519 520 static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = { 521 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 522 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) }, 523 { hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) }, 524 }; 525 526 static const struct drm_i915_cmd_table gen7_video_cmd_table[] = { 527 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 528 { gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) }, 529 }; 530 531 static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = { 532 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 533 { gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) }, 534 }; 535 536 static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = { 537 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 538 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) }, 539 }; 540 541 static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = { 542 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 543 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) }, 544 { hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) }, 545 }; 546 547 static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = { 548 { gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) }, 549 }; 550 551 552 /* 553 * Register whitelists, sorted by increasing register offset. 554 */ 555 556 /* 557 * An individual whitelist entry granting access to register addr. If 558 * mask is non-zero the argument of immediate register writes will be 559 * AND-ed with mask, and the command will be rejected if the result 560 * doesn't match value. 561 * 562 * Registers with non-zero mask are only allowed to be written using 563 * LRI. 564 */ 565 struct drm_i915_reg_descriptor { 566 i915_reg_t addr; 567 u32 mask; 568 u32 value; 569 }; 570 571 /* Convenience macro for adding 32-bit registers. */ 572 #define REG32(_reg, ...) \ 573 { .addr = (_reg), __VA_ARGS__ } 574 575 /* 576 * Convenience macro for adding 64-bit registers. 577 * 578 * Some registers that userspace accesses are 64 bits. The register 579 * access commands only allow 32-bit accesses. Hence, we have to include 580 * entries for both halves of the 64-bit registers. 581 */ 582 #define REG64(_reg) \ 583 { .addr = _reg }, \ 584 { .addr = _reg ## _UDW } 585 586 #define REG64_IDX(_reg, idx) \ 587 { .addr = _reg(idx) }, \ 588 { .addr = _reg ## _UDW(idx) } 589 590 static const struct drm_i915_reg_descriptor gen7_render_regs[] = { 591 REG64(GPGPU_THREADS_DISPATCHED), 592 REG64(HS_INVOCATION_COUNT), 593 REG64(DS_INVOCATION_COUNT), 594 REG64(IA_VERTICES_COUNT), 595 REG64(IA_PRIMITIVES_COUNT), 596 REG64(VS_INVOCATION_COUNT), 597 REG64(GS_INVOCATION_COUNT), 598 REG64(GS_PRIMITIVES_COUNT), 599 REG64(CL_INVOCATION_COUNT), 600 REG64(CL_PRIMITIVES_COUNT), 601 REG64(PS_INVOCATION_COUNT), 602 REG64(PS_DEPTH_COUNT), 603 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), 604 REG64(MI_PREDICATE_SRC0), 605 REG64(MI_PREDICATE_SRC1), 606 REG32(GEN7_3DPRIM_END_OFFSET), 607 REG32(GEN7_3DPRIM_START_VERTEX), 608 REG32(GEN7_3DPRIM_VERTEX_COUNT), 609 REG32(GEN7_3DPRIM_INSTANCE_COUNT), 610 REG32(GEN7_3DPRIM_START_INSTANCE), 611 REG32(GEN7_3DPRIM_BASE_VERTEX), 612 REG32(GEN7_GPGPU_DISPATCHDIMX), 613 REG32(GEN7_GPGPU_DISPATCHDIMY), 614 REG32(GEN7_GPGPU_DISPATCHDIMZ), 615 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), 616 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0), 617 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1), 618 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2), 619 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3), 620 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0), 621 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1), 622 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2), 623 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3), 624 REG32(GEN7_SO_WRITE_OFFSET(0)), 625 REG32(GEN7_SO_WRITE_OFFSET(1)), 626 REG32(GEN7_SO_WRITE_OFFSET(2)), 627 REG32(GEN7_SO_WRITE_OFFSET(3)), 628 REG32(GEN7_L3SQCREG1), 629 REG32(GEN7_L3CNTLREG2), 630 REG32(GEN7_L3CNTLREG3), 631 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), 632 }; 633 634 static const struct drm_i915_reg_descriptor hsw_render_regs[] = { 635 REG64_IDX(HSW_CS_GPR, 0), 636 REG64_IDX(HSW_CS_GPR, 1), 637 REG64_IDX(HSW_CS_GPR, 2), 638 REG64_IDX(HSW_CS_GPR, 3), 639 REG64_IDX(HSW_CS_GPR, 4), 640 REG64_IDX(HSW_CS_GPR, 5), 641 REG64_IDX(HSW_CS_GPR, 6), 642 REG64_IDX(HSW_CS_GPR, 7), 643 REG64_IDX(HSW_CS_GPR, 8), 644 REG64_IDX(HSW_CS_GPR, 9), 645 REG64_IDX(HSW_CS_GPR, 10), 646 REG64_IDX(HSW_CS_GPR, 11), 647 REG64_IDX(HSW_CS_GPR, 12), 648 REG64_IDX(HSW_CS_GPR, 13), 649 REG64_IDX(HSW_CS_GPR, 14), 650 REG64_IDX(HSW_CS_GPR, 15), 651 REG32(HSW_SCRATCH1, 652 .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE, 653 .value = 0), 654 REG32(HSW_ROW_CHICKEN3, 655 .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 | 656 HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE), 657 .value = 0), 658 }; 659 660 static const struct drm_i915_reg_descriptor gen7_blt_regs[] = { 661 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), 662 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), 663 REG32(BCS_SWCTRL), 664 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), 665 }; 666 667 static const struct drm_i915_reg_descriptor gen9_blt_regs[] = { 668 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), 669 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), 670 REG32(BCS_SWCTRL), 671 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), 672 REG64_IDX(BCS_GPR, 0), 673 REG64_IDX(BCS_GPR, 1), 674 REG64_IDX(BCS_GPR, 2), 675 REG64_IDX(BCS_GPR, 3), 676 REG64_IDX(BCS_GPR, 4), 677 REG64_IDX(BCS_GPR, 5), 678 REG64_IDX(BCS_GPR, 6), 679 REG64_IDX(BCS_GPR, 7), 680 REG64_IDX(BCS_GPR, 8), 681 REG64_IDX(BCS_GPR, 9), 682 REG64_IDX(BCS_GPR, 10), 683 REG64_IDX(BCS_GPR, 11), 684 REG64_IDX(BCS_GPR, 12), 685 REG64_IDX(BCS_GPR, 13), 686 REG64_IDX(BCS_GPR, 14), 687 REG64_IDX(BCS_GPR, 15), 688 }; 689 690 #undef REG64 691 #undef REG32 692 693 struct drm_i915_reg_table { 694 const struct drm_i915_reg_descriptor *regs; 695 int num_regs; 696 }; 697 698 static const struct drm_i915_reg_table ivb_render_reg_tables[] = { 699 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) }, 700 }; 701 702 static const struct drm_i915_reg_table ivb_blt_reg_tables[] = { 703 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) }, 704 }; 705 706 static const struct drm_i915_reg_table hsw_render_reg_tables[] = { 707 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) }, 708 { hsw_render_regs, ARRAY_SIZE(hsw_render_regs) }, 709 }; 710 711 static const struct drm_i915_reg_table hsw_blt_reg_tables[] = { 712 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) }, 713 }; 714 715 static const struct drm_i915_reg_table gen9_blt_reg_tables[] = { 716 { gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) }, 717 }; 718 719 static u32 gen7_render_get_cmd_length_mask(u32 cmd_header) 720 { 721 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 722 u32 subclient = 723 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT; 724 725 if (client == INSTR_MI_CLIENT) 726 return 0x3F; 727 else if (client == INSTR_RC_CLIENT) { 728 if (subclient == INSTR_MEDIA_SUBCLIENT) 729 return 0xFFFF; 730 else 731 return 0xFF; 732 } 733 734 DRM_DEBUG_DRIVER("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header); 735 return 0; 736 } 737 738 static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header) 739 { 740 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 741 u32 subclient = 742 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT; 743 u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT; 744 745 if (client == INSTR_MI_CLIENT) 746 return 0x3F; 747 else if (client == INSTR_RC_CLIENT) { 748 if (subclient == INSTR_MEDIA_SUBCLIENT) { 749 if (op == 6) 750 return 0xFFFF; 751 else 752 return 0xFFF; 753 } else 754 return 0xFF; 755 } 756 757 DRM_DEBUG_DRIVER("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header); 758 return 0; 759 } 760 761 static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header) 762 { 763 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 764 765 if (client == INSTR_MI_CLIENT) 766 return 0x3F; 767 else if (client == INSTR_BC_CLIENT) 768 return 0xFF; 769 770 DRM_DEBUG_DRIVER("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header); 771 return 0; 772 } 773 774 static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header) 775 { 776 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 777 778 if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT) 779 return 0xFF; 780 781 DRM_DEBUG_DRIVER("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header); 782 return 0; 783 } 784 785 static bool validate_cmds_sorted(const struct intel_engine_cs *engine, 786 const struct drm_i915_cmd_table *cmd_tables, 787 int cmd_table_count) 788 { 789 int i; 790 bool ret = true; 791 792 if (!cmd_tables || cmd_table_count == 0) 793 return true; 794 795 for (i = 0; i < cmd_table_count; i++) { 796 const struct drm_i915_cmd_table *table = &cmd_tables[i]; 797 u32 previous = 0; 798 int j; 799 800 for (j = 0; j < table->count; j++) { 801 const struct drm_i915_cmd_descriptor *desc = 802 &table->table[j]; 803 u32 curr = desc->cmd.value & desc->cmd.mask; 804 805 if (curr < previous) { 806 DRM_ERROR("CMD: %s [%d] command table not sorted: " 807 "table=%d entry=%d cmd=0x%08X prev=0x%08X\n", 808 engine->name, engine->id, 809 i, j, curr, previous); 810 ret = false; 811 } 812 813 previous = curr; 814 } 815 } 816 817 return ret; 818 } 819 820 static bool check_sorted(const struct intel_engine_cs *engine, 821 const struct drm_i915_reg_descriptor *reg_table, 822 int reg_count) 823 { 824 int i; 825 u32 previous = 0; 826 bool ret = true; 827 828 for (i = 0; i < reg_count; i++) { 829 u32 curr = i915_mmio_reg_offset(reg_table[i].addr); 830 831 if (curr < previous) { 832 DRM_ERROR("CMD: %s [%d] register table not sorted: " 833 "entry=%d reg=0x%08X prev=0x%08X\n", 834 engine->name, engine->id, 835 i, curr, previous); 836 ret = false; 837 } 838 839 previous = curr; 840 } 841 842 return ret; 843 } 844 845 static bool validate_regs_sorted(struct intel_engine_cs *engine) 846 { 847 int i; 848 const struct drm_i915_reg_table *table; 849 850 for (i = 0; i < engine->reg_table_count; i++) { 851 table = &engine->reg_tables[i]; 852 if (!check_sorted(engine, table->regs, table->num_regs)) 853 return false; 854 } 855 856 return true; 857 } 858 859 struct cmd_node { 860 const struct drm_i915_cmd_descriptor *desc; 861 struct hlist_node node; 862 }; 863 864 /* 865 * Different command ranges have different numbers of bits for the opcode. For 866 * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The 867 * problem is that, for example, MI commands use bits 22:16 for other fields 868 * such as GGTT vs PPGTT bits. If we include those bits in the mask then when 869 * we mask a command from a batch it could hash to the wrong bucket due to 870 * non-opcode bits being set. But if we don't include those bits, some 3D 871 * commands may hash to the same bucket due to not including opcode bits that 872 * make the command unique. For now, we will risk hashing to the same bucket. 873 */ 874 static inline u32 cmd_header_key(u32 x) 875 { 876 switch (x >> INSTR_CLIENT_SHIFT) { 877 default: 878 case INSTR_MI_CLIENT: 879 return x >> STD_MI_OPCODE_SHIFT; 880 case INSTR_RC_CLIENT: 881 return x >> STD_3D_OPCODE_SHIFT; 882 case INSTR_BC_CLIENT: 883 return x >> STD_2D_OPCODE_SHIFT; 884 } 885 } 886 887 static int init_hash_table(struct intel_engine_cs *engine, 888 const struct drm_i915_cmd_table *cmd_tables, 889 int cmd_table_count) 890 { 891 int i, j; 892 893 hash_init(engine->cmd_hash); 894 895 for (i = 0; i < cmd_table_count; i++) { 896 const struct drm_i915_cmd_table *table = &cmd_tables[i]; 897 898 for (j = 0; j < table->count; j++) { 899 const struct drm_i915_cmd_descriptor *desc = 900 &table->table[j]; 901 struct cmd_node *desc_node = 902 kmalloc(sizeof(*desc_node), GFP_KERNEL); 903 904 if (!desc_node) 905 return -ENOMEM; 906 907 desc_node->desc = desc; 908 hash_add(engine->cmd_hash, &desc_node->node, 909 cmd_header_key(desc->cmd.value)); 910 } 911 } 912 913 return 0; 914 } 915 916 static void fini_hash_table(struct intel_engine_cs *engine) 917 { 918 struct hlist_node *tmp; 919 struct cmd_node *desc_node; 920 int i; 921 922 hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) { 923 hash_del(&desc_node->node); 924 kfree(desc_node); 925 } 926 } 927 928 /** 929 * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine 930 * @engine: the engine to initialize 931 * 932 * Optionally initializes fields related to batch buffer command parsing in the 933 * struct intel_engine_cs based on whether the platform requires software 934 * command parsing. 935 */ 936 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine) 937 { 938 const struct drm_i915_cmd_table *cmd_tables; 939 int cmd_table_count; 940 int ret; 941 942 if (!IS_GEN(engine->i915, 7) && !(IS_GEN(engine->i915, 9) && 943 engine->class == COPY_ENGINE_CLASS)) 944 return; 945 946 switch (engine->class) { 947 case RENDER_CLASS: 948 if (IS_HASWELL(engine->i915)) { 949 cmd_tables = hsw_render_ring_cmd_table; 950 cmd_table_count = 951 ARRAY_SIZE(hsw_render_ring_cmd_table); 952 } else { 953 cmd_tables = gen7_render_cmd_table; 954 cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table); 955 } 956 957 if (IS_HASWELL(engine->i915)) { 958 engine->reg_tables = hsw_render_reg_tables; 959 engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables); 960 } else { 961 engine->reg_tables = ivb_render_reg_tables; 962 engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables); 963 } 964 engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask; 965 break; 966 case VIDEO_DECODE_CLASS: 967 cmd_tables = gen7_video_cmd_table; 968 cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table); 969 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; 970 break; 971 case COPY_ENGINE_CLASS: 972 engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask; 973 if (IS_GEN(engine->i915, 9)) { 974 cmd_tables = gen9_blt_cmd_table; 975 cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table); 976 engine->get_cmd_length_mask = 977 gen9_blt_get_cmd_length_mask; 978 979 /* BCS Engine unsafe without parser */ 980 engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER; 981 } else if (IS_HASWELL(engine->i915)) { 982 cmd_tables = hsw_blt_ring_cmd_table; 983 cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table); 984 } else { 985 cmd_tables = gen7_blt_cmd_table; 986 cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table); 987 } 988 989 if (IS_GEN(engine->i915, 9)) { 990 engine->reg_tables = gen9_blt_reg_tables; 991 engine->reg_table_count = 992 ARRAY_SIZE(gen9_blt_reg_tables); 993 } else if (IS_HASWELL(engine->i915)) { 994 engine->reg_tables = hsw_blt_reg_tables; 995 engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables); 996 } else { 997 engine->reg_tables = ivb_blt_reg_tables; 998 engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables); 999 } 1000 break; 1001 case VIDEO_ENHANCEMENT_CLASS: 1002 cmd_tables = hsw_vebox_cmd_table; 1003 cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table); 1004 /* VECS can use the same length_mask function as VCS */ 1005 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; 1006 break; 1007 default: 1008 MISSING_CASE(engine->class); 1009 return; 1010 } 1011 1012 if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) { 1013 DRM_ERROR("%s: command descriptions are not sorted\n", 1014 engine->name); 1015 return; 1016 } 1017 if (!validate_regs_sorted(engine)) { 1018 DRM_ERROR("%s: registers are not sorted\n", engine->name); 1019 return; 1020 } 1021 1022 ret = init_hash_table(engine, cmd_tables, cmd_table_count); 1023 if (ret) { 1024 DRM_ERROR("%s: initialised failed!\n", engine->name); 1025 fini_hash_table(engine); 1026 return; 1027 } 1028 1029 engine->flags |= I915_ENGINE_USING_CMD_PARSER; 1030 } 1031 1032 /** 1033 * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields 1034 * @engine: the engine to clean up 1035 * 1036 * Releases any resources related to command parsing that may have been 1037 * initialized for the specified engine. 1038 */ 1039 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine) 1040 { 1041 if (!intel_engine_using_cmd_parser(engine)) 1042 return; 1043 1044 fini_hash_table(engine); 1045 } 1046 1047 static const struct drm_i915_cmd_descriptor* 1048 find_cmd_in_table(struct intel_engine_cs *engine, 1049 u32 cmd_header) 1050 { 1051 struct cmd_node *desc_node; 1052 1053 hash_for_each_possible(engine->cmd_hash, desc_node, node, 1054 cmd_header_key(cmd_header)) { 1055 const struct drm_i915_cmd_descriptor *desc = desc_node->desc; 1056 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0) 1057 return desc; 1058 } 1059 1060 return NULL; 1061 } 1062 1063 /* 1064 * Returns a pointer to a descriptor for the command specified by cmd_header. 1065 * 1066 * The caller must supply space for a default descriptor via the default_desc 1067 * parameter. If no descriptor for the specified command exists in the engine's 1068 * command parser tables, this function fills in default_desc based on the 1069 * engine's default length encoding and returns default_desc. 1070 */ 1071 static const struct drm_i915_cmd_descriptor* 1072 find_cmd(struct intel_engine_cs *engine, 1073 u32 cmd_header, 1074 const struct drm_i915_cmd_descriptor *desc, 1075 struct drm_i915_cmd_descriptor *default_desc) 1076 { 1077 u32 mask; 1078 1079 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0) 1080 return desc; 1081 1082 desc = find_cmd_in_table(engine, cmd_header); 1083 if (desc) 1084 return desc; 1085 1086 mask = engine->get_cmd_length_mask(cmd_header); 1087 if (!mask) 1088 return NULL; 1089 1090 default_desc->cmd.value = cmd_header; 1091 default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT; 1092 default_desc->length.mask = mask; 1093 default_desc->flags = CMD_DESC_SKIP; 1094 return default_desc; 1095 } 1096 1097 static const struct drm_i915_reg_descriptor * 1098 __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr) 1099 { 1100 int start = 0, end = count; 1101 while (start < end) { 1102 int mid = start + (end - start) / 2; 1103 int ret = addr - i915_mmio_reg_offset(table[mid].addr); 1104 if (ret < 0) 1105 end = mid; 1106 else if (ret > 0) 1107 start = mid + 1; 1108 else 1109 return &table[mid]; 1110 } 1111 return NULL; 1112 } 1113 1114 static const struct drm_i915_reg_descriptor * 1115 find_reg(const struct intel_engine_cs *engine, u32 addr) 1116 { 1117 const struct drm_i915_reg_table *table = engine->reg_tables; 1118 const struct drm_i915_reg_descriptor *reg = NULL; 1119 int count = engine->reg_table_count; 1120 1121 for (; !reg && (count > 0); ++table, --count) 1122 reg = __find_reg(table->regs, table->num_regs, addr); 1123 1124 return reg; 1125 } 1126 1127 /* Returns a vmap'd pointer to dst_obj, which the caller must unmap */ 1128 static u32 *copy_batch(struct drm_i915_gem_object *dst_obj, 1129 struct drm_i915_gem_object *src_obj, 1130 u32 batch_start_offset, 1131 u32 batch_len, 1132 bool *needs_clflush_after) 1133 { 1134 unsigned int src_needs_clflush; 1135 unsigned int dst_needs_clflush; 1136 void *dst, *src; 1137 int ret; 1138 1139 ret = i915_gem_object_prepare_write(dst_obj, &dst_needs_clflush); 1140 if (ret) 1141 return ERR_PTR(ret); 1142 1143 dst = i915_gem_object_pin_map(dst_obj, I915_MAP_FORCE_WB); 1144 i915_gem_object_finish_access(dst_obj); 1145 if (IS_ERR(dst)) 1146 return dst; 1147 1148 ret = i915_gem_object_prepare_read(src_obj, &src_needs_clflush); 1149 if (ret) { 1150 i915_gem_object_unpin_map(dst_obj); 1151 return ERR_PTR(ret); 1152 } 1153 1154 src = ERR_PTR(-ENODEV); 1155 if (src_needs_clflush && 1156 i915_can_memcpy_from_wc(NULL, batch_start_offset, 0)) { 1157 src = i915_gem_object_pin_map(src_obj, I915_MAP_WC); 1158 if (!IS_ERR(src)) { 1159 i915_memcpy_from_wc(dst, 1160 src + batch_start_offset, 1161 ALIGN(batch_len, 16)); 1162 i915_gem_object_unpin_map(src_obj); 1163 } 1164 } 1165 if (IS_ERR(src)) { 1166 void *ptr; 1167 int offset, n; 1168 1169 offset = offset_in_page(batch_start_offset); 1170 1171 /* We can avoid clflushing partial cachelines before the write 1172 * if we only every write full cache-lines. Since we know that 1173 * both the source and destination are in multiples of 1174 * PAGE_SIZE, we can simply round up to the next cacheline. 1175 * We don't care about copying too much here as we only 1176 * validate up to the end of the batch. 1177 */ 1178 if (dst_needs_clflush & CLFLUSH_BEFORE) 1179 batch_len = roundup(batch_len, 1180 boot_cpu_data.x86_clflush_size); 1181 1182 ptr = dst; 1183 for (n = batch_start_offset >> PAGE_SHIFT; batch_len; n++) { 1184 int len = min_t(int, batch_len, PAGE_SIZE - offset); 1185 1186 src = kmap_atomic(i915_gem_object_get_page(src_obj, n)); 1187 if (src_needs_clflush) 1188 drm_clflush_virt_range(src + offset, len); 1189 memcpy(ptr, src + offset, len); 1190 kunmap_atomic(src); 1191 1192 ptr += len; 1193 batch_len -= len; 1194 offset = 0; 1195 } 1196 } 1197 1198 i915_gem_object_finish_access(src_obj); 1199 1200 /* dst_obj is returned with vmap pinned */ 1201 *needs_clflush_after = dst_needs_clflush & CLFLUSH_AFTER; 1202 1203 return dst; 1204 } 1205 1206 static bool check_cmd(const struct intel_engine_cs *engine, 1207 const struct drm_i915_cmd_descriptor *desc, 1208 const u32 *cmd, u32 length) 1209 { 1210 if (desc->flags & CMD_DESC_SKIP) 1211 return true; 1212 1213 if (desc->flags & CMD_DESC_REJECT) { 1214 DRM_DEBUG_DRIVER("CMD: Rejected command: 0x%08X\n", *cmd); 1215 return false; 1216 } 1217 1218 if (desc->flags & CMD_DESC_REGISTER) { 1219 /* 1220 * Get the distance between individual register offset 1221 * fields if the command can perform more than one 1222 * access at a time. 1223 */ 1224 const u32 step = desc->reg.step ? desc->reg.step : length; 1225 u32 offset; 1226 1227 for (offset = desc->reg.offset; offset < length; 1228 offset += step) { 1229 const u32 reg_addr = cmd[offset] & desc->reg.mask; 1230 const struct drm_i915_reg_descriptor *reg = 1231 find_reg(engine, reg_addr); 1232 1233 if (!reg) { 1234 DRM_DEBUG_DRIVER("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n", 1235 reg_addr, *cmd, engine->name); 1236 return false; 1237 } 1238 1239 /* 1240 * Check the value written to the register against the 1241 * allowed mask/value pair given in the whitelist entry. 1242 */ 1243 if (reg->mask) { 1244 if (desc->cmd.value == MI_LOAD_REGISTER_MEM) { 1245 DRM_DEBUG_DRIVER("CMD: Rejected LRM to masked register 0x%08X\n", 1246 reg_addr); 1247 return false; 1248 } 1249 1250 if (desc->cmd.value == MI_LOAD_REGISTER_REG) { 1251 DRM_DEBUG_DRIVER("CMD: Rejected LRR to masked register 0x%08X\n", 1252 reg_addr); 1253 return false; 1254 } 1255 1256 if (desc->cmd.value == MI_LOAD_REGISTER_IMM(1) && 1257 (offset + 2 > length || 1258 (cmd[offset + 1] & reg->mask) != reg->value)) { 1259 DRM_DEBUG_DRIVER("CMD: Rejected LRI to masked register 0x%08X\n", 1260 reg_addr); 1261 return false; 1262 } 1263 } 1264 } 1265 } 1266 1267 if (desc->flags & CMD_DESC_BITMASK) { 1268 int i; 1269 1270 for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) { 1271 u32 dword; 1272 1273 if (desc->bits[i].mask == 0) 1274 break; 1275 1276 if (desc->bits[i].condition_mask != 0) { 1277 u32 offset = 1278 desc->bits[i].condition_offset; 1279 u32 condition = cmd[offset] & 1280 desc->bits[i].condition_mask; 1281 1282 if (condition == 0) 1283 continue; 1284 } 1285 1286 if (desc->bits[i].offset >= length) { 1287 DRM_DEBUG_DRIVER("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n", 1288 *cmd, engine->name); 1289 return false; 1290 } 1291 1292 dword = cmd[desc->bits[i].offset] & 1293 desc->bits[i].mask; 1294 1295 if (dword != desc->bits[i].expected) { 1296 DRM_DEBUG_DRIVER("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n", 1297 *cmd, 1298 desc->bits[i].mask, 1299 desc->bits[i].expected, 1300 dword, engine->name); 1301 return false; 1302 } 1303 } 1304 } 1305 1306 return true; 1307 } 1308 1309 static int check_bbstart(const struct i915_gem_context *ctx, 1310 u32 *cmd, u32 offset, u32 length, 1311 u32 batch_len, 1312 u64 batch_start, 1313 u64 shadow_batch_start) 1314 { 1315 u64 jump_offset, jump_target; 1316 u32 target_cmd_offset, target_cmd_index; 1317 1318 /* For igt compatibility on older platforms */ 1319 if (CMDPARSER_USES_GGTT(ctx->i915)) { 1320 DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n"); 1321 return -EACCES; 1322 } 1323 1324 if (length != 3) { 1325 DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n", 1326 length); 1327 return -EINVAL; 1328 } 1329 1330 jump_target = *(u64*)(cmd+1); 1331 jump_offset = jump_target - batch_start; 1332 1333 /* 1334 * Any underflow of jump_target is guaranteed to be outside the range 1335 * of a u32, so >= test catches both too large and too small 1336 */ 1337 if (jump_offset >= batch_len) { 1338 DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n", 1339 jump_target); 1340 return -EINVAL; 1341 } 1342 1343 /* 1344 * This cannot overflow a u32 because we already checked jump_offset 1345 * is within the BB, and the batch_len is a u32 1346 */ 1347 target_cmd_offset = lower_32_bits(jump_offset); 1348 target_cmd_index = target_cmd_offset / sizeof(u32); 1349 1350 *(u64*)(cmd + 1) = shadow_batch_start + target_cmd_offset; 1351 1352 if (target_cmd_index == offset) 1353 return 0; 1354 1355 if (ctx->jump_whitelist_cmds <= target_cmd_index) { 1356 DRM_DEBUG("CMD: Rejecting BB_START - truncated whitelist array\n"); 1357 return -EINVAL; 1358 } else if (!test_bit(target_cmd_index, ctx->jump_whitelist)) { 1359 DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n", 1360 jump_target); 1361 return -EINVAL; 1362 } 1363 1364 return 0; 1365 } 1366 1367 static void init_whitelist(struct i915_gem_context *ctx, u32 batch_len) 1368 { 1369 const u32 batch_cmds = DIV_ROUND_UP(batch_len, sizeof(u32)); 1370 const u32 exact_size = BITS_TO_LONGS(batch_cmds); 1371 u32 next_size = BITS_TO_LONGS(roundup_pow_of_two(batch_cmds)); 1372 unsigned long *next_whitelist; 1373 1374 if (CMDPARSER_USES_GGTT(ctx->i915)) 1375 return; 1376 1377 if (batch_cmds <= ctx->jump_whitelist_cmds) { 1378 bitmap_zero(ctx->jump_whitelist, batch_cmds); 1379 return; 1380 } 1381 1382 again: 1383 next_whitelist = kcalloc(next_size, sizeof(long), GFP_KERNEL); 1384 if (next_whitelist) { 1385 kfree(ctx->jump_whitelist); 1386 ctx->jump_whitelist = next_whitelist; 1387 ctx->jump_whitelist_cmds = 1388 next_size * BITS_PER_BYTE * sizeof(long); 1389 return; 1390 } 1391 1392 if (next_size > exact_size) { 1393 next_size = exact_size; 1394 goto again; 1395 } 1396 1397 DRM_DEBUG("CMD: Failed to extend whitelist. BB_START may be disallowed\n"); 1398 bitmap_zero(ctx->jump_whitelist, ctx->jump_whitelist_cmds); 1399 1400 return; 1401 } 1402 1403 #define LENGTH_BIAS 2 1404 1405 /** 1406 * i915_parse_cmds() - parse a submitted batch buffer for privilege violations 1407 * @ctx: the context in which the batch is to execute 1408 * @engine: the engine on which the batch is to execute 1409 * @batch_obj: the batch buffer in question 1410 * @batch_start: Canonical base address of batch 1411 * @batch_start_offset: byte offset in the batch at which execution starts 1412 * @batch_len: length of the commands in batch_obj 1413 * @shadow_batch_obj: copy of the batch buffer in question 1414 * @shadow_batch_start: Canonical base address of shadow_batch_obj 1415 * 1416 * Parses the specified batch buffer looking for privilege violations as 1417 * described in the overview. 1418 * 1419 * Return: non-zero if the parser finds violations or otherwise fails; -EACCES 1420 * if the batch appears legal but should use hardware parsing 1421 */ 1422 1423 int intel_engine_cmd_parser(struct i915_gem_context *ctx, 1424 struct intel_engine_cs *engine, 1425 struct drm_i915_gem_object *batch_obj, 1426 u64 batch_start, 1427 u32 batch_start_offset, 1428 u32 batch_len, 1429 struct drm_i915_gem_object *shadow_batch_obj, 1430 u64 shadow_batch_start) 1431 { 1432 u32 *cmd, *batch_end, offset = 0; 1433 struct drm_i915_cmd_descriptor default_desc = noop_desc; 1434 const struct drm_i915_cmd_descriptor *desc = &default_desc; 1435 bool needs_clflush_after = false; 1436 int ret = 0; 1437 1438 cmd = copy_batch(shadow_batch_obj, batch_obj, 1439 batch_start_offset, batch_len, 1440 &needs_clflush_after); 1441 if (IS_ERR(cmd)) { 1442 DRM_DEBUG_DRIVER("CMD: Failed to copy batch\n"); 1443 return PTR_ERR(cmd); 1444 } 1445 1446 init_whitelist(ctx, batch_len); 1447 1448 /* 1449 * We use the batch length as size because the shadow object is as 1450 * large or larger and copy_batch() will write MI_NOPs to the extra 1451 * space. Parsing should be faster in some cases this way. 1452 */ 1453 batch_end = cmd + (batch_len / sizeof(*batch_end)); 1454 do { 1455 u32 length; 1456 1457 if (*cmd == MI_BATCH_BUFFER_END) 1458 break; 1459 1460 desc = find_cmd(engine, *cmd, desc, &default_desc); 1461 if (!desc) { 1462 DRM_DEBUG_DRIVER("CMD: Unrecognized command: 0x%08X\n", 1463 *cmd); 1464 ret = -EINVAL; 1465 goto err; 1466 } 1467 1468 if (desc->flags & CMD_DESC_FIXED) 1469 length = desc->length.fixed; 1470 else 1471 length = ((*cmd & desc->length.mask) + LENGTH_BIAS); 1472 1473 if ((batch_end - cmd) < length) { 1474 DRM_DEBUG_DRIVER("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n", 1475 *cmd, 1476 length, 1477 batch_end - cmd); 1478 ret = -EINVAL; 1479 goto err; 1480 } 1481 1482 if (!check_cmd(engine, desc, cmd, length)) { 1483 ret = -EACCES; 1484 goto err; 1485 } 1486 1487 if (desc->cmd.value == MI_BATCH_BUFFER_START) { 1488 ret = check_bbstart(ctx, cmd, offset, length, 1489 batch_len, batch_start, 1490 shadow_batch_start); 1491 1492 if (ret) 1493 goto err; 1494 break; 1495 } 1496 1497 if (ctx->jump_whitelist_cmds > offset) 1498 set_bit(offset, ctx->jump_whitelist); 1499 1500 cmd += length; 1501 offset += length; 1502 if (cmd >= batch_end) { 1503 DRM_DEBUG_DRIVER("CMD: Got to the end of the buffer w/o a BBE cmd!\n"); 1504 ret = -EINVAL; 1505 goto err; 1506 } 1507 } while (1); 1508 1509 if (needs_clflush_after) { 1510 void *ptr = page_mask_bits(shadow_batch_obj->mm.mapping); 1511 1512 drm_clflush_virt_range(ptr, (void *)(cmd + 1) - ptr); 1513 } 1514 1515 err: 1516 i915_gem_object_unpin_map(shadow_batch_obj); 1517 return ret; 1518 } 1519 1520 /** 1521 * i915_cmd_parser_get_version() - get the cmd parser version number 1522 * @dev_priv: i915 device private 1523 * 1524 * The cmd parser maintains a simple increasing integer version number suitable 1525 * for passing to userspace clients to determine what operations are permitted. 1526 * 1527 * Return: the current version number of the cmd parser 1528 */ 1529 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv) 1530 { 1531 struct intel_engine_cs *engine; 1532 bool active = false; 1533 1534 /* If the command parser is not enabled, report 0 - unsupported */ 1535 for_each_uabi_engine(engine, dev_priv) { 1536 if (intel_engine_using_cmd_parser(engine)) { 1537 active = true; 1538 break; 1539 } 1540 } 1541 if (!active) 1542 return 0; 1543 1544 /* 1545 * Command parser version history 1546 * 1547 * 1. Initial version. Checks batches and reports violations, but leaves 1548 * hardware parsing enabled (so does not allow new use cases). 1549 * 2. Allow access to the MI_PREDICATE_SRC0 and 1550 * MI_PREDICATE_SRC1 registers. 1551 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register. 1552 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3. 1553 * 5. GPGPU dispatch compute indirect registers. 1554 * 6. TIMESTAMP register and Haswell CS GPR registers 1555 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers. 1556 * 8. Don't report cmd_check() failures as EINVAL errors to userspace; 1557 * rely on the HW to NOOP disallowed commands as it would without 1558 * the parser enabled. 1559 * 9. Don't whitelist or handle oacontrol specially, as ownership 1560 * for oacontrol state is moving to i915-perf. 1561 * 10. Support for Gen9 BCS Parsing 1562 */ 1563 return 10; 1564 } 1565