1 /* 2 * Copyright © 2013 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Brad Volkin <bradley.d.volkin@intel.com> 25 * 26 */ 27 28 #include <linux/highmem.h> 29 30 #include <drm/drm_cache.h> 31 32 #include "gt/intel_engine.h" 33 #include "gt/intel_engine_regs.h" 34 #include "gt/intel_gpu_commands.h" 35 #include "gt/intel_gt_regs.h" 36 37 #include "i915_cmd_parser.h" 38 #include "i915_drv.h" 39 #include "i915_memcpy.h" 40 #include "i915_reg.h" 41 42 /** 43 * DOC: batch buffer command parser 44 * 45 * Motivation: 46 * Certain OpenGL features (e.g. transform feedback, performance monitoring) 47 * require userspace code to submit batches containing commands such as 48 * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some 49 * generations of the hardware will noop these commands in "unsecure" batches 50 * (which includes all userspace batches submitted via i915) even though the 51 * commands may be safe and represent the intended programming model of the 52 * device. 53 * 54 * The software command parser is similar in operation to the command parsing 55 * done in hardware for unsecure batches. However, the software parser allows 56 * some operations that would be noop'd by hardware, if the parser determines 57 * the operation is safe, and submits the batch as "secure" to prevent hardware 58 * parsing. 59 * 60 * Threats: 61 * At a high level, the hardware (and software) checks attempt to prevent 62 * granting userspace undue privileges. There are three categories of privilege. 63 * 64 * First, commands which are explicitly defined as privileged or which should 65 * only be used by the kernel driver. The parser rejects such commands 66 * 67 * Second, commands which access registers. To support correct/enhanced 68 * userspace functionality, particularly certain OpenGL extensions, the parser 69 * provides a whitelist of registers which userspace may safely access 70 * 71 * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc). 72 * The parser always rejects such commands. 73 * 74 * The majority of the problematic commands fall in the MI_* range, with only a 75 * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW). 76 * 77 * Implementation: 78 * Each engine maintains tables of commands and registers which the parser 79 * uses in scanning batch buffers submitted to that engine. 80 * 81 * Since the set of commands that the parser must check for is significantly 82 * smaller than the number of commands supported, the parser tables contain only 83 * those commands required by the parser. This generally works because command 84 * opcode ranges have standard command length encodings. So for commands that 85 * the parser does not need to check, it can easily skip them. This is 86 * implemented via a per-engine length decoding vfunc. 87 * 88 * Unfortunately, there are a number of commands that do not follow the standard 89 * length encoding for their opcode range, primarily amongst the MI_* commands. 90 * To handle this, the parser provides a way to define explicit "skip" entries 91 * in the per-engine command tables. 92 * 93 * Other command table entries map fairly directly to high level categories 94 * mentioned above: rejected, register whitelist. The parser implements a number 95 * of checks, including the privileged memory checks, via a general bitmasking 96 * mechanism. 97 */ 98 99 /* 100 * A command that requires special handling by the command parser. 101 */ 102 struct drm_i915_cmd_descriptor { 103 /* 104 * Flags describing how the command parser processes the command. 105 * 106 * CMD_DESC_FIXED: The command has a fixed length if this is set, 107 * a length mask if not set 108 * CMD_DESC_SKIP: The command is allowed but does not follow the 109 * standard length encoding for the opcode range in 110 * which it falls 111 * CMD_DESC_REJECT: The command is never allowed 112 * CMD_DESC_REGISTER: The command should be checked against the 113 * register whitelist for the appropriate ring 114 */ 115 u32 flags; 116 #define CMD_DESC_FIXED (1<<0) 117 #define CMD_DESC_SKIP (1<<1) 118 #define CMD_DESC_REJECT (1<<2) 119 #define CMD_DESC_REGISTER (1<<3) 120 #define CMD_DESC_BITMASK (1<<4) 121 122 /* 123 * The command's unique identification bits and the bitmask to get them. 124 * This isn't strictly the opcode field as defined in the spec and may 125 * also include type, subtype, and/or subop fields. 126 */ 127 struct { 128 u32 value; 129 u32 mask; 130 } cmd; 131 132 /* 133 * The command's length. The command is either fixed length (i.e. does 134 * not include a length field) or has a length field mask. The flag 135 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has 136 * a length mask. All command entries in a command table must include 137 * length information. 138 */ 139 union { 140 u32 fixed; 141 u32 mask; 142 } length; 143 144 /* 145 * Describes where to find a register address in the command to check 146 * against the ring's register whitelist. Only valid if flags has the 147 * CMD_DESC_REGISTER bit set. 148 * 149 * A non-zero step value implies that the command may access multiple 150 * registers in sequence (e.g. LRI), in that case step gives the 151 * distance in dwords between individual offset fields. 152 */ 153 struct { 154 u32 offset; 155 u32 mask; 156 u32 step; 157 } reg; 158 159 #define MAX_CMD_DESC_BITMASKS 3 160 /* 161 * Describes command checks where a particular dword is masked and 162 * compared against an expected value. If the command does not match 163 * the expected value, the parser rejects it. Only valid if flags has 164 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero 165 * are valid. 166 * 167 * If the check specifies a non-zero condition_mask then the parser 168 * only performs the check when the bits specified by condition_mask 169 * are non-zero. 170 */ 171 struct { 172 u32 offset; 173 u32 mask; 174 u32 expected; 175 u32 condition_offset; 176 u32 condition_mask; 177 } bits[MAX_CMD_DESC_BITMASKS]; 178 }; 179 180 /* 181 * A table of commands requiring special handling by the command parser. 182 * 183 * Each engine has an array of tables. Each table consists of an array of 184 * command descriptors, which must be sorted with command opcodes in 185 * ascending order. 186 */ 187 struct drm_i915_cmd_table { 188 const struct drm_i915_cmd_descriptor *table; 189 int count; 190 }; 191 192 #define STD_MI_OPCODE_SHIFT (32 - 9) 193 #define STD_3D_OPCODE_SHIFT (32 - 16) 194 #define STD_2D_OPCODE_SHIFT (32 - 10) 195 #define STD_MFX_OPCODE_SHIFT (32 - 16) 196 #define MIN_OPCODE_SHIFT 16 197 198 #define CMD(op, opm, f, lm, fl, ...) \ 199 { \ 200 .flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \ 201 .cmd = { (op & ~0u << (opm)), ~0u << (opm) }, \ 202 .length = { (lm) }, \ 203 __VA_ARGS__ \ 204 } 205 206 /* Convenience macros to compress the tables */ 207 #define SMI STD_MI_OPCODE_SHIFT 208 #define S3D STD_3D_OPCODE_SHIFT 209 #define S2D STD_2D_OPCODE_SHIFT 210 #define SMFX STD_MFX_OPCODE_SHIFT 211 #define F true 212 #define S CMD_DESC_SKIP 213 #define R CMD_DESC_REJECT 214 #define W CMD_DESC_REGISTER 215 #define B CMD_DESC_BITMASK 216 217 /* Command Mask Fixed Len Action 218 ---------------------------------------------------------- */ 219 static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = { 220 CMD( MI_NOOP, SMI, F, 1, S ), 221 CMD( MI_USER_INTERRUPT, SMI, F, 1, R ), 222 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, R ), 223 CMD( MI_ARB_CHECK, SMI, F, 1, S ), 224 CMD( MI_REPORT_HEAD, SMI, F, 1, S ), 225 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ), 226 CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ), 227 CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ), 228 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W, 229 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ), 230 CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B, 231 .reg = { .offset = 1, .mask = 0x007FFFFC }, 232 .bits = {{ 233 .offset = 0, 234 .mask = MI_GLOBAL_GTT, 235 .expected = 0, 236 }}, ), 237 CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B, 238 .reg = { .offset = 1, .mask = 0x007FFFFC }, 239 .bits = {{ 240 .offset = 0, 241 .mask = MI_GLOBAL_GTT, 242 .expected = 0, 243 }}, ), 244 /* 245 * MI_BATCH_BUFFER_START requires some special handling. It's not 246 * really a 'skip' action but it doesn't seem like it's worth adding 247 * a new action. See intel_engine_cmd_parser(). 248 */ 249 CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ), 250 }; 251 252 static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = { 253 CMD( MI_FLUSH, SMI, F, 1, S ), 254 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), 255 CMD( MI_PREDICATE, SMI, F, 1, S ), 256 CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ), 257 CMD( MI_SET_APPID, SMI, F, 1, S ), 258 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ), 259 CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ), 260 CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ), 261 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B, 262 .bits = {{ 263 .offset = 0, 264 .mask = MI_GLOBAL_GTT, 265 .expected = 0, 266 }}, ), 267 CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ), 268 CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B, 269 .bits = {{ 270 .offset = 0, 271 .mask = MI_GLOBAL_GTT, 272 .expected = 0, 273 }}, ), 274 CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B, 275 .bits = {{ 276 .offset = 1, 277 .mask = MI_REPORT_PERF_COUNT_GGTT, 278 .expected = 0, 279 }}, ), 280 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, 281 .bits = {{ 282 .offset = 0, 283 .mask = MI_GLOBAL_GTT, 284 .expected = 0, 285 }}, ), 286 CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ), 287 CMD( PIPELINE_SELECT, S3D, F, 1, S ), 288 CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B, 289 .bits = {{ 290 .offset = 2, 291 .mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK, 292 .expected = 0, 293 }}, ), 294 CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ), 295 CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ), 296 CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ), 297 CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B, 298 .bits = {{ 299 .offset = 1, 300 .mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY), 301 .expected = 0, 302 }, 303 { 304 .offset = 1, 305 .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB | 306 PIPE_CONTROL_STORE_DATA_INDEX), 307 .expected = 0, 308 .condition_offset = 1, 309 .condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK, 310 }}, ), 311 }; 312 313 static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = { 314 CMD( MI_SET_PREDICATE, SMI, F, 1, S ), 315 CMD( MI_RS_CONTROL, SMI, F, 1, S ), 316 CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ), 317 CMD( MI_SET_APPID, SMI, F, 1, S ), 318 CMD( MI_RS_CONTEXT, SMI, F, 1, S ), 319 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ), 320 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ), 321 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W, 322 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ), 323 CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ), 324 CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ), 325 CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ), 326 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ), 327 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ), 328 329 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ), 330 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ), 331 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ), 332 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ), 333 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ), 334 }; 335 336 static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = { 337 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), 338 CMD( MI_SET_APPID, SMI, F, 1, S ), 339 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B, 340 .bits = {{ 341 .offset = 0, 342 .mask = MI_GLOBAL_GTT, 343 .expected = 0, 344 }}, ), 345 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), 346 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, 347 .bits = {{ 348 .offset = 0, 349 .mask = MI_FLUSH_DW_NOTIFY, 350 .expected = 0, 351 }, 352 { 353 .offset = 1, 354 .mask = MI_FLUSH_DW_USE_GTT, 355 .expected = 0, 356 .condition_offset = 0, 357 .condition_mask = MI_FLUSH_DW_OP_MASK, 358 }, 359 { 360 .offset = 0, 361 .mask = MI_FLUSH_DW_STORE_INDEX, 362 .expected = 0, 363 .condition_offset = 0, 364 .condition_mask = MI_FLUSH_DW_OP_MASK, 365 }}, ), 366 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, 367 .bits = {{ 368 .offset = 0, 369 .mask = MI_GLOBAL_GTT, 370 .expected = 0, 371 }}, ), 372 /* 373 * MFX_WAIT doesn't fit the way we handle length for most commands. 374 * It has a length field but it uses a non-standard length bias. 375 * It is always 1 dword though, so just treat it as fixed length. 376 */ 377 CMD( MFX_WAIT, SMFX, F, 1, S ), 378 }; 379 380 static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = { 381 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), 382 CMD( MI_SET_APPID, SMI, F, 1, S ), 383 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B, 384 .bits = {{ 385 .offset = 0, 386 .mask = MI_GLOBAL_GTT, 387 .expected = 0, 388 }}, ), 389 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), 390 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, 391 .bits = {{ 392 .offset = 0, 393 .mask = MI_FLUSH_DW_NOTIFY, 394 .expected = 0, 395 }, 396 { 397 .offset = 1, 398 .mask = MI_FLUSH_DW_USE_GTT, 399 .expected = 0, 400 .condition_offset = 0, 401 .condition_mask = MI_FLUSH_DW_OP_MASK, 402 }, 403 { 404 .offset = 0, 405 .mask = MI_FLUSH_DW_STORE_INDEX, 406 .expected = 0, 407 .condition_offset = 0, 408 .condition_mask = MI_FLUSH_DW_OP_MASK, 409 }}, ), 410 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, 411 .bits = {{ 412 .offset = 0, 413 .mask = MI_GLOBAL_GTT, 414 .expected = 0, 415 }}, ), 416 }; 417 418 static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = { 419 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ), 420 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B, 421 .bits = {{ 422 .offset = 0, 423 .mask = MI_GLOBAL_GTT, 424 .expected = 0, 425 }}, ), 426 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), 427 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, 428 .bits = {{ 429 .offset = 0, 430 .mask = MI_FLUSH_DW_NOTIFY, 431 .expected = 0, 432 }, 433 { 434 .offset = 1, 435 .mask = MI_FLUSH_DW_USE_GTT, 436 .expected = 0, 437 .condition_offset = 0, 438 .condition_mask = MI_FLUSH_DW_OP_MASK, 439 }, 440 { 441 .offset = 0, 442 .mask = MI_FLUSH_DW_STORE_INDEX, 443 .expected = 0, 444 .condition_offset = 0, 445 .condition_mask = MI_FLUSH_DW_OP_MASK, 446 }}, ), 447 CMD( COLOR_BLT, S2D, !F, 0x3F, S ), 448 CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ), 449 }; 450 451 static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = { 452 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ), 453 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ), 454 }; 455 456 /* 457 * For Gen9 we can still rely on the h/w to enforce cmd security, and only 458 * need to re-enforce the register access checks. We therefore only need to 459 * teach the cmdparser how to find the end of each command, and identify 460 * register accesses. The table doesn't need to reject any commands, and so 461 * the only commands listed here are: 462 * 1) Those that touch registers 463 * 2) Those that do not have the default 8-bit length 464 * 465 * Note that the default MI length mask chosen for this table is 0xFF, not 466 * the 0x3F used on older devices. This is because the vast majority of MI 467 * cmds on Gen9 use a standard 8-bit Length field. 468 * All the Gen9 blitter instructions are standard 0xFF length mask, and 469 * none allow access to non-general registers, so in fact no BLT cmds are 470 * included in the table at all. 471 * 472 */ 473 static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = { 474 CMD( MI_NOOP, SMI, F, 1, S ), 475 CMD( MI_USER_INTERRUPT, SMI, F, 1, S ), 476 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, S ), 477 CMD( MI_FLUSH, SMI, F, 1, S ), 478 CMD( MI_ARB_CHECK, SMI, F, 1, S ), 479 CMD( MI_REPORT_HEAD, SMI, F, 1, S ), 480 CMD( MI_ARB_ON_OFF, SMI, F, 1, S ), 481 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ), 482 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, S ), 483 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, S ), 484 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, S ), 485 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W, 486 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ), 487 CMD( MI_UPDATE_GTT, SMI, !F, 0x3FF, S ), 488 CMD( MI_STORE_REGISTER_MEM_GEN8, SMI, F, 4, W, 489 .reg = { .offset = 1, .mask = 0x007FFFFC } ), 490 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, S ), 491 CMD( MI_LOAD_REGISTER_MEM_GEN8, SMI, F, 4, W, 492 .reg = { .offset = 1, .mask = 0x007FFFFC } ), 493 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W, 494 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ), 495 496 /* 497 * We allow BB_START but apply further checks. We just sanitize the 498 * basic fields here. 499 */ 500 #define MI_BB_START_OPERAND_MASK GENMASK(SMI-1, 0) 501 #define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1) 502 CMD( MI_BATCH_BUFFER_START_GEN8, SMI, !F, 0xFF, B, 503 .bits = {{ 504 .offset = 0, 505 .mask = MI_BB_START_OPERAND_MASK, 506 .expected = MI_BB_START_OPERAND_EXPECT, 507 }}, ), 508 }; 509 510 static const struct drm_i915_cmd_descriptor noop_desc = 511 CMD(MI_NOOP, SMI, F, 1, S); 512 513 #undef CMD 514 #undef SMI 515 #undef S3D 516 #undef S2D 517 #undef SMFX 518 #undef F 519 #undef S 520 #undef R 521 #undef W 522 #undef B 523 524 static const struct drm_i915_cmd_table gen7_render_cmd_table[] = { 525 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 526 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) }, 527 }; 528 529 static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = { 530 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 531 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) }, 532 { hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) }, 533 }; 534 535 static const struct drm_i915_cmd_table gen7_video_cmd_table[] = { 536 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 537 { gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) }, 538 }; 539 540 static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = { 541 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 542 { gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) }, 543 }; 544 545 static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = { 546 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 547 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) }, 548 }; 549 550 static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = { 551 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 552 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) }, 553 { hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) }, 554 }; 555 556 static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = { 557 { gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) }, 558 }; 559 560 561 /* 562 * Register whitelists, sorted by increasing register offset. 563 */ 564 565 /* 566 * An individual whitelist entry granting access to register addr. If 567 * mask is non-zero the argument of immediate register writes will be 568 * AND-ed with mask, and the command will be rejected if the result 569 * doesn't match value. 570 * 571 * Registers with non-zero mask are only allowed to be written using 572 * LRI. 573 */ 574 struct drm_i915_reg_descriptor { 575 i915_reg_t addr; 576 u32 mask; 577 u32 value; 578 }; 579 580 /* Convenience macro for adding 32-bit registers. */ 581 #define REG32(_reg, ...) \ 582 { .addr = (_reg), __VA_ARGS__ } 583 584 #define REG32_IDX(_reg, idx) \ 585 { .addr = _reg(idx) } 586 587 /* 588 * Convenience macro for adding 64-bit registers. 589 * 590 * Some registers that userspace accesses are 64 bits. The register 591 * access commands only allow 32-bit accesses. Hence, we have to include 592 * entries for both halves of the 64-bit registers. 593 */ 594 #define REG64(_reg) \ 595 { .addr = _reg }, \ 596 { .addr = _reg ## _UDW } 597 598 #define REG64_IDX(_reg, idx) \ 599 { .addr = _reg(idx) }, \ 600 { .addr = _reg ## _UDW(idx) } 601 602 #define REG64_BASE_IDX(_reg, base, idx) \ 603 { .addr = _reg(base, idx) }, \ 604 { .addr = _reg ## _UDW(base, idx) } 605 606 static const struct drm_i915_reg_descriptor gen7_render_regs[] = { 607 REG64(GPGPU_THREADS_DISPATCHED), 608 REG64(HS_INVOCATION_COUNT), 609 REG64(DS_INVOCATION_COUNT), 610 REG64(IA_VERTICES_COUNT), 611 REG64(IA_PRIMITIVES_COUNT), 612 REG64(VS_INVOCATION_COUNT), 613 REG64(GS_INVOCATION_COUNT), 614 REG64(GS_PRIMITIVES_COUNT), 615 REG64(CL_INVOCATION_COUNT), 616 REG64(CL_PRIMITIVES_COUNT), 617 REG64(PS_INVOCATION_COUNT), 618 REG64(PS_DEPTH_COUNT), 619 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), 620 REG64_IDX(MI_PREDICATE_SRC0, RENDER_RING_BASE), 621 REG64_IDX(MI_PREDICATE_SRC1, RENDER_RING_BASE), 622 REG32(GEN7_3DPRIM_END_OFFSET), 623 REG32(GEN7_3DPRIM_START_VERTEX), 624 REG32(GEN7_3DPRIM_VERTEX_COUNT), 625 REG32(GEN7_3DPRIM_INSTANCE_COUNT), 626 REG32(GEN7_3DPRIM_START_INSTANCE), 627 REG32(GEN7_3DPRIM_BASE_VERTEX), 628 REG32(GEN7_GPGPU_DISPATCHDIMX), 629 REG32(GEN7_GPGPU_DISPATCHDIMY), 630 REG32(GEN7_GPGPU_DISPATCHDIMZ), 631 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), 632 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0), 633 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1), 634 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2), 635 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3), 636 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0), 637 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1), 638 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2), 639 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3), 640 REG32(GEN7_SO_WRITE_OFFSET(0)), 641 REG32(GEN7_SO_WRITE_OFFSET(1)), 642 REG32(GEN7_SO_WRITE_OFFSET(2)), 643 REG32(GEN7_SO_WRITE_OFFSET(3)), 644 REG32(GEN7_L3SQCREG1), 645 REG32(GEN7_L3CNTLREG2), 646 REG32(GEN7_L3CNTLREG3), 647 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), 648 }; 649 650 static const struct drm_i915_reg_descriptor hsw_render_regs[] = { 651 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 0), 652 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 1), 653 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 2), 654 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 3), 655 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 4), 656 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 5), 657 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 6), 658 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 7), 659 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 8), 660 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 9), 661 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 10), 662 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 11), 663 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 12), 664 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 13), 665 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 14), 666 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 15), 667 REG32(HSW_SCRATCH1, 668 .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE, 669 .value = 0), 670 REG32(HSW_ROW_CHICKEN3, 671 .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 | 672 HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE), 673 .value = 0), 674 }; 675 676 static const struct drm_i915_reg_descriptor gen7_blt_regs[] = { 677 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), 678 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), 679 REG32(BCS_SWCTRL), 680 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), 681 }; 682 683 static const struct drm_i915_reg_descriptor gen9_blt_regs[] = { 684 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), 685 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), 686 REG32(BCS_SWCTRL), 687 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), 688 REG32_IDX(RING_CTX_TIMESTAMP, BLT_RING_BASE), 689 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 0), 690 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 1), 691 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 2), 692 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 3), 693 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 4), 694 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 5), 695 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 6), 696 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 7), 697 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 8), 698 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 9), 699 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 10), 700 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 11), 701 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 12), 702 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 13), 703 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 14), 704 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 15), 705 }; 706 707 #undef REG64 708 #undef REG32 709 710 struct drm_i915_reg_table { 711 const struct drm_i915_reg_descriptor *regs; 712 int num_regs; 713 }; 714 715 static const struct drm_i915_reg_table ivb_render_reg_tables[] = { 716 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) }, 717 }; 718 719 static const struct drm_i915_reg_table ivb_blt_reg_tables[] = { 720 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) }, 721 }; 722 723 static const struct drm_i915_reg_table hsw_render_reg_tables[] = { 724 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) }, 725 { hsw_render_regs, ARRAY_SIZE(hsw_render_regs) }, 726 }; 727 728 static const struct drm_i915_reg_table hsw_blt_reg_tables[] = { 729 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) }, 730 }; 731 732 static const struct drm_i915_reg_table gen9_blt_reg_tables[] = { 733 { gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) }, 734 }; 735 736 static u32 gen7_render_get_cmd_length_mask(u32 cmd_header) 737 { 738 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 739 u32 subclient = 740 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT; 741 742 if (client == INSTR_MI_CLIENT) 743 return 0x3F; 744 else if (client == INSTR_RC_CLIENT) { 745 if (subclient == INSTR_MEDIA_SUBCLIENT) 746 return 0xFFFF; 747 else 748 return 0xFF; 749 } 750 751 DRM_DEBUG("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header); 752 return 0; 753 } 754 755 static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header) 756 { 757 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 758 u32 subclient = 759 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT; 760 u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT; 761 762 if (client == INSTR_MI_CLIENT) 763 return 0x3F; 764 else if (client == INSTR_RC_CLIENT) { 765 if (subclient == INSTR_MEDIA_SUBCLIENT) { 766 if (op == 6) 767 return 0xFFFF; 768 else 769 return 0xFFF; 770 } else 771 return 0xFF; 772 } 773 774 DRM_DEBUG("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header); 775 return 0; 776 } 777 778 static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header) 779 { 780 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 781 782 if (client == INSTR_MI_CLIENT) 783 return 0x3F; 784 else if (client == INSTR_BC_CLIENT) 785 return 0xFF; 786 787 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header); 788 return 0; 789 } 790 791 static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header) 792 { 793 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 794 795 if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT) 796 return 0xFF; 797 798 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header); 799 return 0; 800 } 801 802 static bool validate_cmds_sorted(const struct intel_engine_cs *engine, 803 const struct drm_i915_cmd_table *cmd_tables, 804 int cmd_table_count) 805 { 806 int i; 807 bool ret = true; 808 809 if (!cmd_tables || cmd_table_count == 0) 810 return true; 811 812 for (i = 0; i < cmd_table_count; i++) { 813 const struct drm_i915_cmd_table *table = &cmd_tables[i]; 814 u32 previous = 0; 815 int j; 816 817 for (j = 0; j < table->count; j++) { 818 const struct drm_i915_cmd_descriptor *desc = 819 &table->table[j]; 820 u32 curr = desc->cmd.value & desc->cmd.mask; 821 822 if (curr < previous) { 823 drm_err(&engine->i915->drm, 824 "CMD: %s [%d] command table not sorted: " 825 "table=%d entry=%d cmd=0x%08X prev=0x%08X\n", 826 engine->name, engine->id, 827 i, j, curr, previous); 828 ret = false; 829 } 830 831 previous = curr; 832 } 833 } 834 835 return ret; 836 } 837 838 static bool check_sorted(const struct intel_engine_cs *engine, 839 const struct drm_i915_reg_descriptor *reg_table, 840 int reg_count) 841 { 842 int i; 843 u32 previous = 0; 844 bool ret = true; 845 846 for (i = 0; i < reg_count; i++) { 847 u32 curr = i915_mmio_reg_offset(reg_table[i].addr); 848 849 if (curr < previous) { 850 drm_err(&engine->i915->drm, 851 "CMD: %s [%d] register table not sorted: " 852 "entry=%d reg=0x%08X prev=0x%08X\n", 853 engine->name, engine->id, 854 i, curr, previous); 855 ret = false; 856 } 857 858 previous = curr; 859 } 860 861 return ret; 862 } 863 864 static bool validate_regs_sorted(struct intel_engine_cs *engine) 865 { 866 int i; 867 const struct drm_i915_reg_table *table; 868 869 for (i = 0; i < engine->reg_table_count; i++) { 870 table = &engine->reg_tables[i]; 871 if (!check_sorted(engine, table->regs, table->num_regs)) 872 return false; 873 } 874 875 return true; 876 } 877 878 struct cmd_node { 879 const struct drm_i915_cmd_descriptor *desc; 880 struct hlist_node node; 881 }; 882 883 /* 884 * Different command ranges have different numbers of bits for the opcode. For 885 * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The 886 * problem is that, for example, MI commands use bits 22:16 for other fields 887 * such as GGTT vs PPGTT bits. If we include those bits in the mask then when 888 * we mask a command from a batch it could hash to the wrong bucket due to 889 * non-opcode bits being set. But if we don't include those bits, some 3D 890 * commands may hash to the same bucket due to not including opcode bits that 891 * make the command unique. For now, we will risk hashing to the same bucket. 892 */ 893 static inline u32 cmd_header_key(u32 x) 894 { 895 switch (x >> INSTR_CLIENT_SHIFT) { 896 default: 897 case INSTR_MI_CLIENT: 898 return x >> STD_MI_OPCODE_SHIFT; 899 case INSTR_RC_CLIENT: 900 return x >> STD_3D_OPCODE_SHIFT; 901 case INSTR_BC_CLIENT: 902 return x >> STD_2D_OPCODE_SHIFT; 903 } 904 } 905 906 static int init_hash_table(struct intel_engine_cs *engine, 907 const struct drm_i915_cmd_table *cmd_tables, 908 int cmd_table_count) 909 { 910 int i, j; 911 912 hash_init(engine->cmd_hash); 913 914 for (i = 0; i < cmd_table_count; i++) { 915 const struct drm_i915_cmd_table *table = &cmd_tables[i]; 916 917 for (j = 0; j < table->count; j++) { 918 const struct drm_i915_cmd_descriptor *desc = 919 &table->table[j]; 920 struct cmd_node *desc_node = 921 kmalloc(sizeof(*desc_node), GFP_KERNEL); 922 923 if (!desc_node) 924 return -ENOMEM; 925 926 desc_node->desc = desc; 927 hash_add(engine->cmd_hash, &desc_node->node, 928 cmd_header_key(desc->cmd.value)); 929 } 930 } 931 932 return 0; 933 } 934 935 static void fini_hash_table(struct intel_engine_cs *engine) 936 { 937 struct hlist_node *tmp; 938 struct cmd_node *desc_node; 939 int i; 940 941 hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) { 942 hash_del(&desc_node->node); 943 kfree(desc_node); 944 } 945 } 946 947 /** 948 * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine 949 * @engine: the engine to initialize 950 * 951 * Optionally initializes fields related to batch buffer command parsing in the 952 * struct intel_engine_cs based on whether the platform requires software 953 * command parsing. 954 */ 955 int intel_engine_init_cmd_parser(struct intel_engine_cs *engine) 956 { 957 const struct drm_i915_cmd_table *cmd_tables; 958 int cmd_table_count; 959 int ret; 960 961 if (GRAPHICS_VER(engine->i915) != 7 && !(GRAPHICS_VER(engine->i915) == 9 && 962 engine->class == COPY_ENGINE_CLASS)) 963 return 0; 964 965 switch (engine->class) { 966 case RENDER_CLASS: 967 if (IS_HASWELL(engine->i915)) { 968 cmd_tables = hsw_render_ring_cmd_table; 969 cmd_table_count = 970 ARRAY_SIZE(hsw_render_ring_cmd_table); 971 } else { 972 cmd_tables = gen7_render_cmd_table; 973 cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table); 974 } 975 976 if (IS_HASWELL(engine->i915)) { 977 engine->reg_tables = hsw_render_reg_tables; 978 engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables); 979 } else { 980 engine->reg_tables = ivb_render_reg_tables; 981 engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables); 982 } 983 engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask; 984 break; 985 case VIDEO_DECODE_CLASS: 986 cmd_tables = gen7_video_cmd_table; 987 cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table); 988 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; 989 break; 990 case COPY_ENGINE_CLASS: 991 engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask; 992 if (GRAPHICS_VER(engine->i915) == 9) { 993 cmd_tables = gen9_blt_cmd_table; 994 cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table); 995 engine->get_cmd_length_mask = 996 gen9_blt_get_cmd_length_mask; 997 998 /* BCS Engine unsafe without parser */ 999 engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER; 1000 } else if (IS_HASWELL(engine->i915)) { 1001 cmd_tables = hsw_blt_ring_cmd_table; 1002 cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table); 1003 } else { 1004 cmd_tables = gen7_blt_cmd_table; 1005 cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table); 1006 } 1007 1008 if (GRAPHICS_VER(engine->i915) == 9) { 1009 engine->reg_tables = gen9_blt_reg_tables; 1010 engine->reg_table_count = 1011 ARRAY_SIZE(gen9_blt_reg_tables); 1012 } else if (IS_HASWELL(engine->i915)) { 1013 engine->reg_tables = hsw_blt_reg_tables; 1014 engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables); 1015 } else { 1016 engine->reg_tables = ivb_blt_reg_tables; 1017 engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables); 1018 } 1019 break; 1020 case VIDEO_ENHANCEMENT_CLASS: 1021 cmd_tables = hsw_vebox_cmd_table; 1022 cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table); 1023 /* VECS can use the same length_mask function as VCS */ 1024 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; 1025 break; 1026 default: 1027 MISSING_CASE(engine->class); 1028 goto out; 1029 } 1030 1031 if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) { 1032 drm_err(&engine->i915->drm, 1033 "%s: command descriptions are not sorted\n", 1034 engine->name); 1035 goto out; 1036 } 1037 if (!validate_regs_sorted(engine)) { 1038 drm_err(&engine->i915->drm, 1039 "%s: registers are not sorted\n", engine->name); 1040 goto out; 1041 } 1042 1043 ret = init_hash_table(engine, cmd_tables, cmd_table_count); 1044 if (ret) { 1045 drm_err(&engine->i915->drm, 1046 "%s: initialised failed!\n", engine->name); 1047 fini_hash_table(engine); 1048 goto out; 1049 } 1050 1051 engine->flags |= I915_ENGINE_USING_CMD_PARSER; 1052 1053 out: 1054 if (intel_engine_requires_cmd_parser(engine) && 1055 !intel_engine_using_cmd_parser(engine)) 1056 return -EINVAL; 1057 1058 return 0; 1059 } 1060 1061 /** 1062 * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields 1063 * @engine: the engine to clean up 1064 * 1065 * Releases any resources related to command parsing that may have been 1066 * initialized for the specified engine. 1067 */ 1068 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine) 1069 { 1070 if (!intel_engine_using_cmd_parser(engine)) 1071 return; 1072 1073 fini_hash_table(engine); 1074 } 1075 1076 static const struct drm_i915_cmd_descriptor* 1077 find_cmd_in_table(struct intel_engine_cs *engine, 1078 u32 cmd_header) 1079 { 1080 struct cmd_node *desc_node; 1081 1082 hash_for_each_possible(engine->cmd_hash, desc_node, node, 1083 cmd_header_key(cmd_header)) { 1084 const struct drm_i915_cmd_descriptor *desc = desc_node->desc; 1085 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0) 1086 return desc; 1087 } 1088 1089 return NULL; 1090 } 1091 1092 /* 1093 * Returns a pointer to a descriptor for the command specified by cmd_header. 1094 * 1095 * The caller must supply space for a default descriptor via the default_desc 1096 * parameter. If no descriptor for the specified command exists in the engine's 1097 * command parser tables, this function fills in default_desc based on the 1098 * engine's default length encoding and returns default_desc. 1099 */ 1100 static const struct drm_i915_cmd_descriptor* 1101 find_cmd(struct intel_engine_cs *engine, 1102 u32 cmd_header, 1103 const struct drm_i915_cmd_descriptor *desc, 1104 struct drm_i915_cmd_descriptor *default_desc) 1105 { 1106 u32 mask; 1107 1108 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0) 1109 return desc; 1110 1111 desc = find_cmd_in_table(engine, cmd_header); 1112 if (desc) 1113 return desc; 1114 1115 mask = engine->get_cmd_length_mask(cmd_header); 1116 if (!mask) 1117 return NULL; 1118 1119 default_desc->cmd.value = cmd_header; 1120 default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT; 1121 default_desc->length.mask = mask; 1122 default_desc->flags = CMD_DESC_SKIP; 1123 return default_desc; 1124 } 1125 1126 static const struct drm_i915_reg_descriptor * 1127 __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr) 1128 { 1129 int start = 0, end = count; 1130 while (start < end) { 1131 int mid = start + (end - start) / 2; 1132 int ret = addr - i915_mmio_reg_offset(table[mid].addr); 1133 if (ret < 0) 1134 end = mid; 1135 else if (ret > 0) 1136 start = mid + 1; 1137 else 1138 return &table[mid]; 1139 } 1140 return NULL; 1141 } 1142 1143 static const struct drm_i915_reg_descriptor * 1144 find_reg(const struct intel_engine_cs *engine, u32 addr) 1145 { 1146 const struct drm_i915_reg_table *table = engine->reg_tables; 1147 const struct drm_i915_reg_descriptor *reg = NULL; 1148 int count = engine->reg_table_count; 1149 1150 for (; !reg && (count > 0); ++table, --count) 1151 reg = __find_reg(table->regs, table->num_regs, addr); 1152 1153 return reg; 1154 } 1155 1156 /* Returns a vmap'd pointer to dst_obj, which the caller must unmap */ 1157 static u32 *copy_batch(struct drm_i915_gem_object *dst_obj, 1158 struct drm_i915_gem_object *src_obj, 1159 unsigned long offset, unsigned long length, 1160 bool *needs_clflush_after) 1161 { 1162 unsigned int src_needs_clflush; 1163 unsigned int dst_needs_clflush; 1164 void *dst, *src; 1165 int ret; 1166 1167 ret = i915_gem_object_prepare_write(dst_obj, &dst_needs_clflush); 1168 if (ret) 1169 return ERR_PTR(ret); 1170 1171 dst = i915_gem_object_pin_map(dst_obj, I915_MAP_WB); 1172 i915_gem_object_finish_access(dst_obj); 1173 if (IS_ERR(dst)) 1174 return dst; 1175 1176 ret = i915_gem_object_prepare_read(src_obj, &src_needs_clflush); 1177 if (ret) { 1178 i915_gem_object_unpin_map(dst_obj); 1179 return ERR_PTR(ret); 1180 } 1181 1182 src = ERR_PTR(-ENODEV); 1183 if (src_needs_clflush && i915_has_memcpy_from_wc()) { 1184 src = i915_gem_object_pin_map(src_obj, I915_MAP_WC); 1185 if (!IS_ERR(src)) { 1186 i915_unaligned_memcpy_from_wc(dst, 1187 src + offset, 1188 length); 1189 i915_gem_object_unpin_map(src_obj); 1190 } 1191 } 1192 if (IS_ERR(src)) { 1193 unsigned long x, n, remain; 1194 void *ptr; 1195 1196 /* 1197 * We can avoid clflushing partial cachelines before the write 1198 * if we only every write full cache-lines. Since we know that 1199 * both the source and destination are in multiples of 1200 * PAGE_SIZE, we can simply round up to the next cacheline. 1201 * We don't care about copying too much here as we only 1202 * validate up to the end of the batch. 1203 */ 1204 remain = length; 1205 if (dst_needs_clflush & CLFLUSH_BEFORE) 1206 remain = round_up(remain, 1207 boot_cpu_data.x86_clflush_size); 1208 1209 ptr = dst; 1210 x = offset_in_page(offset); 1211 for (n = offset >> PAGE_SHIFT; remain; n++) { 1212 int len = min(remain, PAGE_SIZE - x); 1213 1214 src = kmap_atomic(i915_gem_object_get_page(src_obj, n)); 1215 if (src_needs_clflush) 1216 drm_clflush_virt_range(src + x, len); 1217 memcpy(ptr, src + x, len); 1218 kunmap_atomic(src); 1219 1220 ptr += len; 1221 remain -= len; 1222 x = 0; 1223 } 1224 } 1225 1226 i915_gem_object_finish_access(src_obj); 1227 1228 memset32(dst + length, 0, (dst_obj->base.size - length) / sizeof(u32)); 1229 1230 /* dst_obj is returned with vmap pinned */ 1231 *needs_clflush_after = dst_needs_clflush & CLFLUSH_AFTER; 1232 1233 return dst; 1234 } 1235 1236 static inline bool cmd_desc_is(const struct drm_i915_cmd_descriptor * const desc, 1237 const u32 cmd) 1238 { 1239 return desc->cmd.value == (cmd & desc->cmd.mask); 1240 } 1241 1242 static bool check_cmd(const struct intel_engine_cs *engine, 1243 const struct drm_i915_cmd_descriptor *desc, 1244 const u32 *cmd, u32 length) 1245 { 1246 if (desc->flags & CMD_DESC_SKIP) 1247 return true; 1248 1249 if (desc->flags & CMD_DESC_REJECT) { 1250 DRM_DEBUG("CMD: Rejected command: 0x%08X\n", *cmd); 1251 return false; 1252 } 1253 1254 if (desc->flags & CMD_DESC_REGISTER) { 1255 /* 1256 * Get the distance between individual register offset 1257 * fields if the command can perform more than one 1258 * access at a time. 1259 */ 1260 const u32 step = desc->reg.step ? desc->reg.step : length; 1261 u32 offset; 1262 1263 for (offset = desc->reg.offset; offset < length; 1264 offset += step) { 1265 const u32 reg_addr = cmd[offset] & desc->reg.mask; 1266 const struct drm_i915_reg_descriptor *reg = 1267 find_reg(engine, reg_addr); 1268 1269 if (!reg) { 1270 DRM_DEBUG("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n", 1271 reg_addr, *cmd, engine->name); 1272 return false; 1273 } 1274 1275 /* 1276 * Check the value written to the register against the 1277 * allowed mask/value pair given in the whitelist entry. 1278 */ 1279 if (reg->mask) { 1280 if (cmd_desc_is(desc, MI_LOAD_REGISTER_MEM)) { 1281 DRM_DEBUG("CMD: Rejected LRM to masked register 0x%08X\n", 1282 reg_addr); 1283 return false; 1284 } 1285 1286 if (cmd_desc_is(desc, MI_LOAD_REGISTER_REG)) { 1287 DRM_DEBUG("CMD: Rejected LRR to masked register 0x%08X\n", 1288 reg_addr); 1289 return false; 1290 } 1291 1292 if (cmd_desc_is(desc, MI_LOAD_REGISTER_IMM(1)) && 1293 (offset + 2 > length || 1294 (cmd[offset + 1] & reg->mask) != reg->value)) { 1295 DRM_DEBUG("CMD: Rejected LRI to masked register 0x%08X\n", 1296 reg_addr); 1297 return false; 1298 } 1299 } 1300 } 1301 } 1302 1303 if (desc->flags & CMD_DESC_BITMASK) { 1304 int i; 1305 1306 for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) { 1307 u32 dword; 1308 1309 if (desc->bits[i].mask == 0) 1310 break; 1311 1312 if (desc->bits[i].condition_mask != 0) { 1313 u32 offset = 1314 desc->bits[i].condition_offset; 1315 u32 condition = cmd[offset] & 1316 desc->bits[i].condition_mask; 1317 1318 if (condition == 0) 1319 continue; 1320 } 1321 1322 if (desc->bits[i].offset >= length) { 1323 DRM_DEBUG("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n", 1324 *cmd, engine->name); 1325 return false; 1326 } 1327 1328 dword = cmd[desc->bits[i].offset] & 1329 desc->bits[i].mask; 1330 1331 if (dword != desc->bits[i].expected) { 1332 DRM_DEBUG("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n", 1333 *cmd, 1334 desc->bits[i].mask, 1335 desc->bits[i].expected, 1336 dword, engine->name); 1337 return false; 1338 } 1339 } 1340 } 1341 1342 return true; 1343 } 1344 1345 static int check_bbstart(u32 *cmd, u32 offset, u32 length, 1346 u32 batch_length, 1347 u64 batch_addr, 1348 u64 shadow_addr, 1349 const unsigned long *jump_whitelist) 1350 { 1351 u64 jump_offset, jump_target; 1352 u32 target_cmd_offset, target_cmd_index; 1353 1354 /* For igt compatibility on older platforms */ 1355 if (!jump_whitelist) { 1356 DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n"); 1357 return -EACCES; 1358 } 1359 1360 if (length != 3) { 1361 DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n", 1362 length); 1363 return -EINVAL; 1364 } 1365 1366 jump_target = *(u64 *)(cmd + 1); 1367 jump_offset = jump_target - batch_addr; 1368 1369 /* 1370 * Any underflow of jump_target is guaranteed to be outside the range 1371 * of a u32, so >= test catches both too large and too small 1372 */ 1373 if (jump_offset >= batch_length) { 1374 DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n", 1375 jump_target); 1376 return -EINVAL; 1377 } 1378 1379 /* 1380 * This cannot overflow a u32 because we already checked jump_offset 1381 * is within the BB, and the batch_length is a u32 1382 */ 1383 target_cmd_offset = lower_32_bits(jump_offset); 1384 target_cmd_index = target_cmd_offset / sizeof(u32); 1385 1386 *(u64 *)(cmd + 1) = shadow_addr + target_cmd_offset; 1387 1388 if (target_cmd_index == offset) 1389 return 0; 1390 1391 if (IS_ERR(jump_whitelist)) 1392 return PTR_ERR(jump_whitelist); 1393 1394 if (!test_bit(target_cmd_index, jump_whitelist)) { 1395 DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n", 1396 jump_target); 1397 return -EINVAL; 1398 } 1399 1400 return 0; 1401 } 1402 1403 static unsigned long *alloc_whitelist(u32 batch_length) 1404 { 1405 unsigned long *jmp; 1406 1407 /* 1408 * We expect batch_length to be less than 256KiB for known users, 1409 * i.e. we need at most an 8KiB bitmap allocation which should be 1410 * reasonably cheap due to kmalloc caches. 1411 */ 1412 1413 /* Prefer to report transient allocation failure rather than hit oom */ 1414 jmp = bitmap_zalloc(DIV_ROUND_UP(batch_length, sizeof(u32)), 1415 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 1416 if (!jmp) 1417 return ERR_PTR(-ENOMEM); 1418 1419 return jmp; 1420 } 1421 1422 #define LENGTH_BIAS 2 1423 1424 /** 1425 * intel_engine_cmd_parser() - parse a batch buffer for privilege violations 1426 * @engine: the engine on which the batch is to execute 1427 * @batch: the batch buffer in question 1428 * @batch_offset: byte offset in the batch at which execution starts 1429 * @batch_length: length of the commands in batch_obj 1430 * @shadow: validated copy of the batch buffer in question 1431 * @trampoline: true if we need to trampoline into privileged execution 1432 * 1433 * Parses the specified batch buffer looking for privilege violations as 1434 * described in the overview. 1435 * 1436 * Return: non-zero if the parser finds violations or otherwise fails; -EACCES 1437 * if the batch appears legal but should use hardware parsing 1438 */ 1439 1440 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 1441 struct i915_vma *batch, 1442 unsigned long batch_offset, 1443 unsigned long batch_length, 1444 struct i915_vma *shadow, 1445 bool trampoline) 1446 { 1447 u32 *cmd, *batch_end, offset = 0; 1448 struct drm_i915_cmd_descriptor default_desc = noop_desc; 1449 const struct drm_i915_cmd_descriptor *desc = &default_desc; 1450 bool needs_clflush_after = false; 1451 unsigned long *jump_whitelist; 1452 u64 batch_addr, shadow_addr; 1453 int ret = 0; 1454 1455 GEM_BUG_ON(!IS_ALIGNED(batch_offset, sizeof(*cmd))); 1456 GEM_BUG_ON(!IS_ALIGNED(batch_length, sizeof(*cmd))); 1457 GEM_BUG_ON(range_overflows_t(u64, batch_offset, batch_length, 1458 batch->size)); 1459 GEM_BUG_ON(!batch_length); 1460 1461 cmd = copy_batch(shadow->obj, batch->obj, 1462 batch_offset, batch_length, 1463 &needs_clflush_after); 1464 if (IS_ERR(cmd)) { 1465 DRM_DEBUG("CMD: Failed to copy batch\n"); 1466 return PTR_ERR(cmd); 1467 } 1468 1469 jump_whitelist = NULL; 1470 if (!trampoline) 1471 /* Defer failure until attempted use */ 1472 jump_whitelist = alloc_whitelist(batch_length); 1473 1474 shadow_addr = gen8_canonical_addr(shadow->node.start); 1475 batch_addr = gen8_canonical_addr(batch->node.start + batch_offset); 1476 1477 /* 1478 * We use the batch length as size because the shadow object is as 1479 * large or larger and copy_batch() will write MI_NOPs to the extra 1480 * space. Parsing should be faster in some cases this way. 1481 */ 1482 batch_end = cmd + batch_length / sizeof(*batch_end); 1483 do { 1484 u32 length; 1485 1486 if (*cmd == MI_BATCH_BUFFER_END) 1487 break; 1488 1489 desc = find_cmd(engine, *cmd, desc, &default_desc); 1490 if (!desc) { 1491 DRM_DEBUG("CMD: Unrecognized command: 0x%08X\n", *cmd); 1492 ret = -EINVAL; 1493 break; 1494 } 1495 1496 if (desc->flags & CMD_DESC_FIXED) 1497 length = desc->length.fixed; 1498 else 1499 length = (*cmd & desc->length.mask) + LENGTH_BIAS; 1500 1501 if ((batch_end - cmd) < length) { 1502 DRM_DEBUG("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n", 1503 *cmd, 1504 length, 1505 batch_end - cmd); 1506 ret = -EINVAL; 1507 break; 1508 } 1509 1510 if (!check_cmd(engine, desc, cmd, length)) { 1511 ret = -EACCES; 1512 break; 1513 } 1514 1515 if (cmd_desc_is(desc, MI_BATCH_BUFFER_START)) { 1516 ret = check_bbstart(cmd, offset, length, batch_length, 1517 batch_addr, shadow_addr, 1518 jump_whitelist); 1519 break; 1520 } 1521 1522 if (!IS_ERR_OR_NULL(jump_whitelist)) 1523 __set_bit(offset, jump_whitelist); 1524 1525 cmd += length; 1526 offset += length; 1527 if (cmd >= batch_end) { 1528 DRM_DEBUG("CMD: Got to the end of the buffer w/o a BBE cmd!\n"); 1529 ret = -EINVAL; 1530 break; 1531 } 1532 } while (1); 1533 1534 if (trampoline) { 1535 /* 1536 * With the trampoline, the shadow is executed twice. 1537 * 1538 * 1 - starting at offset 0, in privileged mode 1539 * 2 - starting at offset batch_len, as non-privileged 1540 * 1541 * Only if the batch is valid and safe to execute, do we 1542 * allow the first privileged execution to proceed. If not, 1543 * we terminate the first batch and use the second batchbuffer 1544 * entry to chain to the original unsafe non-privileged batch, 1545 * leaving it to the HW to validate. 1546 */ 1547 *batch_end = MI_BATCH_BUFFER_END; 1548 1549 if (ret) { 1550 /* Batch unsafe to execute with privileges, cancel! */ 1551 cmd = page_mask_bits(shadow->obj->mm.mapping); 1552 *cmd = MI_BATCH_BUFFER_END; 1553 1554 /* If batch is unsafe but valid, jump to the original */ 1555 if (ret == -EACCES) { 1556 unsigned int flags; 1557 1558 flags = MI_BATCH_NON_SECURE_I965; 1559 if (IS_HASWELL(engine->i915)) 1560 flags = MI_BATCH_NON_SECURE_HSW; 1561 1562 GEM_BUG_ON(!IS_GRAPHICS_VER(engine->i915, 6, 7)); 1563 __gen6_emit_bb_start(batch_end, 1564 batch_addr, 1565 flags); 1566 1567 ret = 0; /* allow execution */ 1568 } 1569 } 1570 } 1571 1572 i915_gem_object_flush_map(shadow->obj); 1573 1574 if (!IS_ERR_OR_NULL(jump_whitelist)) 1575 kfree(jump_whitelist); 1576 i915_gem_object_unpin_map(shadow->obj); 1577 return ret; 1578 } 1579 1580 /** 1581 * i915_cmd_parser_get_version() - get the cmd parser version number 1582 * @dev_priv: i915 device private 1583 * 1584 * The cmd parser maintains a simple increasing integer version number suitable 1585 * for passing to userspace clients to determine what operations are permitted. 1586 * 1587 * Return: the current version number of the cmd parser 1588 */ 1589 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv) 1590 { 1591 struct intel_engine_cs *engine; 1592 bool active = false; 1593 1594 /* If the command parser is not enabled, report 0 - unsupported */ 1595 for_each_uabi_engine(engine, dev_priv) { 1596 if (intel_engine_using_cmd_parser(engine)) { 1597 active = true; 1598 break; 1599 } 1600 } 1601 if (!active) 1602 return 0; 1603 1604 /* 1605 * Command parser version history 1606 * 1607 * 1. Initial version. Checks batches and reports violations, but leaves 1608 * hardware parsing enabled (so does not allow new use cases). 1609 * 2. Allow access to the MI_PREDICATE_SRC0 and 1610 * MI_PREDICATE_SRC1 registers. 1611 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register. 1612 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3. 1613 * 5. GPGPU dispatch compute indirect registers. 1614 * 6. TIMESTAMP register and Haswell CS GPR registers 1615 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers. 1616 * 8. Don't report cmd_check() failures as EINVAL errors to userspace; 1617 * rely on the HW to NOOP disallowed commands as it would without 1618 * the parser enabled. 1619 * 9. Don't whitelist or handle oacontrol specially, as ownership 1620 * for oacontrol state is moving to i915-perf. 1621 * 10. Support for Gen9 BCS Parsing 1622 */ 1623 return 10; 1624 } 1625