1 /* 2 * Copyright © 2013 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Brad Volkin <bradley.d.volkin@intel.com> 25 * 26 */ 27 28 #include "gt/intel_engine.h" 29 30 #include "i915_drv.h" 31 #include "i915_memcpy.h" 32 33 /** 34 * DOC: batch buffer command parser 35 * 36 * Motivation: 37 * Certain OpenGL features (e.g. transform feedback, performance monitoring) 38 * require userspace code to submit batches containing commands such as 39 * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some 40 * generations of the hardware will noop these commands in "unsecure" batches 41 * (which includes all userspace batches submitted via i915) even though the 42 * commands may be safe and represent the intended programming model of the 43 * device. 44 * 45 * The software command parser is similar in operation to the command parsing 46 * done in hardware for unsecure batches. However, the software parser allows 47 * some operations that would be noop'd by hardware, if the parser determines 48 * the operation is safe, and submits the batch as "secure" to prevent hardware 49 * parsing. 50 * 51 * Threats: 52 * At a high level, the hardware (and software) checks attempt to prevent 53 * granting userspace undue privileges. There are three categories of privilege. 54 * 55 * First, commands which are explicitly defined as privileged or which should 56 * only be used by the kernel driver. The parser rejects such commands 57 * 58 * Second, commands which access registers. To support correct/enhanced 59 * userspace functionality, particularly certain OpenGL extensions, the parser 60 * provides a whitelist of registers which userspace may safely access 61 * 62 * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc). 63 * The parser always rejects such commands. 64 * 65 * The majority of the problematic commands fall in the MI_* range, with only a 66 * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW). 67 * 68 * Implementation: 69 * Each engine maintains tables of commands and registers which the parser 70 * uses in scanning batch buffers submitted to that engine. 71 * 72 * Since the set of commands that the parser must check for is significantly 73 * smaller than the number of commands supported, the parser tables contain only 74 * those commands required by the parser. This generally works because command 75 * opcode ranges have standard command length encodings. So for commands that 76 * the parser does not need to check, it can easily skip them. This is 77 * implemented via a per-engine length decoding vfunc. 78 * 79 * Unfortunately, there are a number of commands that do not follow the standard 80 * length encoding for their opcode range, primarily amongst the MI_* commands. 81 * To handle this, the parser provides a way to define explicit "skip" entries 82 * in the per-engine command tables. 83 * 84 * Other command table entries map fairly directly to high level categories 85 * mentioned above: rejected, register whitelist. The parser implements a number 86 * of checks, including the privileged memory checks, via a general bitmasking 87 * mechanism. 88 */ 89 90 /* 91 * A command that requires special handling by the command parser. 92 */ 93 struct drm_i915_cmd_descriptor { 94 /* 95 * Flags describing how the command parser processes the command. 96 * 97 * CMD_DESC_FIXED: The command has a fixed length if this is set, 98 * a length mask if not set 99 * CMD_DESC_SKIP: The command is allowed but does not follow the 100 * standard length encoding for the opcode range in 101 * which it falls 102 * CMD_DESC_REJECT: The command is never allowed 103 * CMD_DESC_REGISTER: The command should be checked against the 104 * register whitelist for the appropriate ring 105 */ 106 u32 flags; 107 #define CMD_DESC_FIXED (1<<0) 108 #define CMD_DESC_SKIP (1<<1) 109 #define CMD_DESC_REJECT (1<<2) 110 #define CMD_DESC_REGISTER (1<<3) 111 #define CMD_DESC_BITMASK (1<<4) 112 113 /* 114 * The command's unique identification bits and the bitmask to get them. 115 * This isn't strictly the opcode field as defined in the spec and may 116 * also include type, subtype, and/or subop fields. 117 */ 118 struct { 119 u32 value; 120 u32 mask; 121 } cmd; 122 123 /* 124 * The command's length. The command is either fixed length (i.e. does 125 * not include a length field) or has a length field mask. The flag 126 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has 127 * a length mask. All command entries in a command table must include 128 * length information. 129 */ 130 union { 131 u32 fixed; 132 u32 mask; 133 } length; 134 135 /* 136 * Describes where to find a register address in the command to check 137 * against the ring's register whitelist. Only valid if flags has the 138 * CMD_DESC_REGISTER bit set. 139 * 140 * A non-zero step value implies that the command may access multiple 141 * registers in sequence (e.g. LRI), in that case step gives the 142 * distance in dwords between individual offset fields. 143 */ 144 struct { 145 u32 offset; 146 u32 mask; 147 u32 step; 148 } reg; 149 150 #define MAX_CMD_DESC_BITMASKS 3 151 /* 152 * Describes command checks where a particular dword is masked and 153 * compared against an expected value. If the command does not match 154 * the expected value, the parser rejects it. Only valid if flags has 155 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero 156 * are valid. 157 * 158 * If the check specifies a non-zero condition_mask then the parser 159 * only performs the check when the bits specified by condition_mask 160 * are non-zero. 161 */ 162 struct { 163 u32 offset; 164 u32 mask; 165 u32 expected; 166 u32 condition_offset; 167 u32 condition_mask; 168 } bits[MAX_CMD_DESC_BITMASKS]; 169 }; 170 171 /* 172 * A table of commands requiring special handling by the command parser. 173 * 174 * Each engine has an array of tables. Each table consists of an array of 175 * command descriptors, which must be sorted with command opcodes in 176 * ascending order. 177 */ 178 struct drm_i915_cmd_table { 179 const struct drm_i915_cmd_descriptor *table; 180 int count; 181 }; 182 183 #define STD_MI_OPCODE_SHIFT (32 - 9) 184 #define STD_3D_OPCODE_SHIFT (32 - 16) 185 #define STD_2D_OPCODE_SHIFT (32 - 10) 186 #define STD_MFX_OPCODE_SHIFT (32 - 16) 187 #define MIN_OPCODE_SHIFT 16 188 189 #define CMD(op, opm, f, lm, fl, ...) \ 190 { \ 191 .flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \ 192 .cmd = { (op & ~0u << (opm)), ~0u << (opm) }, \ 193 .length = { (lm) }, \ 194 __VA_ARGS__ \ 195 } 196 197 /* Convenience macros to compress the tables */ 198 #define SMI STD_MI_OPCODE_SHIFT 199 #define S3D STD_3D_OPCODE_SHIFT 200 #define S2D STD_2D_OPCODE_SHIFT 201 #define SMFX STD_MFX_OPCODE_SHIFT 202 #define F true 203 #define S CMD_DESC_SKIP 204 #define R CMD_DESC_REJECT 205 #define W CMD_DESC_REGISTER 206 #define B CMD_DESC_BITMASK 207 208 /* Command Mask Fixed Len Action 209 ---------------------------------------------------------- */ 210 static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = { 211 CMD( MI_NOOP, SMI, F, 1, S ), 212 CMD( MI_USER_INTERRUPT, SMI, F, 1, R ), 213 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, R ), 214 CMD( MI_ARB_CHECK, SMI, F, 1, S ), 215 CMD( MI_REPORT_HEAD, SMI, F, 1, S ), 216 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ), 217 CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ), 218 CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ), 219 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W, 220 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ), 221 CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B, 222 .reg = { .offset = 1, .mask = 0x007FFFFC }, 223 .bits = {{ 224 .offset = 0, 225 .mask = MI_GLOBAL_GTT, 226 .expected = 0, 227 }}, ), 228 CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B, 229 .reg = { .offset = 1, .mask = 0x007FFFFC }, 230 .bits = {{ 231 .offset = 0, 232 .mask = MI_GLOBAL_GTT, 233 .expected = 0, 234 }}, ), 235 /* 236 * MI_BATCH_BUFFER_START requires some special handling. It's not 237 * really a 'skip' action but it doesn't seem like it's worth adding 238 * a new action. See intel_engine_cmd_parser(). 239 */ 240 CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ), 241 }; 242 243 static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = { 244 CMD( MI_FLUSH, SMI, F, 1, S ), 245 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), 246 CMD( MI_PREDICATE, SMI, F, 1, S ), 247 CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ), 248 CMD( MI_SET_APPID, SMI, F, 1, S ), 249 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ), 250 CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ), 251 CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ), 252 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B, 253 .bits = {{ 254 .offset = 0, 255 .mask = MI_GLOBAL_GTT, 256 .expected = 0, 257 }}, ), 258 CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ), 259 CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B, 260 .bits = {{ 261 .offset = 0, 262 .mask = MI_GLOBAL_GTT, 263 .expected = 0, 264 }}, ), 265 CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B, 266 .bits = {{ 267 .offset = 1, 268 .mask = MI_REPORT_PERF_COUNT_GGTT, 269 .expected = 0, 270 }}, ), 271 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, 272 .bits = {{ 273 .offset = 0, 274 .mask = MI_GLOBAL_GTT, 275 .expected = 0, 276 }}, ), 277 CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ), 278 CMD( PIPELINE_SELECT, S3D, F, 1, S ), 279 CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B, 280 .bits = {{ 281 .offset = 2, 282 .mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK, 283 .expected = 0, 284 }}, ), 285 CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ), 286 CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ), 287 CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ), 288 CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B, 289 .bits = {{ 290 .offset = 1, 291 .mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY), 292 .expected = 0, 293 }, 294 { 295 .offset = 1, 296 .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB | 297 PIPE_CONTROL_STORE_DATA_INDEX), 298 .expected = 0, 299 .condition_offset = 1, 300 .condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK, 301 }}, ), 302 }; 303 304 static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = { 305 CMD( MI_SET_PREDICATE, SMI, F, 1, S ), 306 CMD( MI_RS_CONTROL, SMI, F, 1, S ), 307 CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ), 308 CMD( MI_SET_APPID, SMI, F, 1, S ), 309 CMD( MI_RS_CONTEXT, SMI, F, 1, S ), 310 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ), 311 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ), 312 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W, 313 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ), 314 CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ), 315 CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ), 316 CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ), 317 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ), 318 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ), 319 320 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ), 321 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ), 322 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ), 323 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ), 324 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ), 325 }; 326 327 static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = { 328 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), 329 CMD( MI_SET_APPID, SMI, F, 1, S ), 330 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B, 331 .bits = {{ 332 .offset = 0, 333 .mask = MI_GLOBAL_GTT, 334 .expected = 0, 335 }}, ), 336 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), 337 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, 338 .bits = {{ 339 .offset = 0, 340 .mask = MI_FLUSH_DW_NOTIFY, 341 .expected = 0, 342 }, 343 { 344 .offset = 1, 345 .mask = MI_FLUSH_DW_USE_GTT, 346 .expected = 0, 347 .condition_offset = 0, 348 .condition_mask = MI_FLUSH_DW_OP_MASK, 349 }, 350 { 351 .offset = 0, 352 .mask = MI_FLUSH_DW_STORE_INDEX, 353 .expected = 0, 354 .condition_offset = 0, 355 .condition_mask = MI_FLUSH_DW_OP_MASK, 356 }}, ), 357 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, 358 .bits = {{ 359 .offset = 0, 360 .mask = MI_GLOBAL_GTT, 361 .expected = 0, 362 }}, ), 363 /* 364 * MFX_WAIT doesn't fit the way we handle length for most commands. 365 * It has a length field but it uses a non-standard length bias. 366 * It is always 1 dword though, so just treat it as fixed length. 367 */ 368 CMD( MFX_WAIT, SMFX, F, 1, S ), 369 }; 370 371 static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = { 372 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), 373 CMD( MI_SET_APPID, SMI, F, 1, S ), 374 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B, 375 .bits = {{ 376 .offset = 0, 377 .mask = MI_GLOBAL_GTT, 378 .expected = 0, 379 }}, ), 380 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), 381 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, 382 .bits = {{ 383 .offset = 0, 384 .mask = MI_FLUSH_DW_NOTIFY, 385 .expected = 0, 386 }, 387 { 388 .offset = 1, 389 .mask = MI_FLUSH_DW_USE_GTT, 390 .expected = 0, 391 .condition_offset = 0, 392 .condition_mask = MI_FLUSH_DW_OP_MASK, 393 }, 394 { 395 .offset = 0, 396 .mask = MI_FLUSH_DW_STORE_INDEX, 397 .expected = 0, 398 .condition_offset = 0, 399 .condition_mask = MI_FLUSH_DW_OP_MASK, 400 }}, ), 401 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, 402 .bits = {{ 403 .offset = 0, 404 .mask = MI_GLOBAL_GTT, 405 .expected = 0, 406 }}, ), 407 }; 408 409 static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = { 410 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ), 411 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B, 412 .bits = {{ 413 .offset = 0, 414 .mask = MI_GLOBAL_GTT, 415 .expected = 0, 416 }}, ), 417 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), 418 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, 419 .bits = {{ 420 .offset = 0, 421 .mask = MI_FLUSH_DW_NOTIFY, 422 .expected = 0, 423 }, 424 { 425 .offset = 1, 426 .mask = MI_FLUSH_DW_USE_GTT, 427 .expected = 0, 428 .condition_offset = 0, 429 .condition_mask = MI_FLUSH_DW_OP_MASK, 430 }, 431 { 432 .offset = 0, 433 .mask = MI_FLUSH_DW_STORE_INDEX, 434 .expected = 0, 435 .condition_offset = 0, 436 .condition_mask = MI_FLUSH_DW_OP_MASK, 437 }}, ), 438 CMD( COLOR_BLT, S2D, !F, 0x3F, S ), 439 CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ), 440 }; 441 442 static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = { 443 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ), 444 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ), 445 }; 446 447 /* 448 * For Gen9 we can still rely on the h/w to enforce cmd security, and only 449 * need to re-enforce the register access checks. We therefore only need to 450 * teach the cmdparser how to find the end of each command, and identify 451 * register accesses. The table doesn't need to reject any commands, and so 452 * the only commands listed here are: 453 * 1) Those that touch registers 454 * 2) Those that do not have the default 8-bit length 455 * 456 * Note that the default MI length mask chosen for this table is 0xFF, not 457 * the 0x3F used on older devices. This is because the vast majority of MI 458 * cmds on Gen9 use a standard 8-bit Length field. 459 * All the Gen9 blitter instructions are standard 0xFF length mask, and 460 * none allow access to non-general registers, so in fact no BLT cmds are 461 * included in the table at all. 462 * 463 */ 464 static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = { 465 CMD( MI_NOOP, SMI, F, 1, S ), 466 CMD( MI_USER_INTERRUPT, SMI, F, 1, S ), 467 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, S ), 468 CMD( MI_FLUSH, SMI, F, 1, S ), 469 CMD( MI_ARB_CHECK, SMI, F, 1, S ), 470 CMD( MI_REPORT_HEAD, SMI, F, 1, S ), 471 CMD( MI_ARB_ON_OFF, SMI, F, 1, S ), 472 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ), 473 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, S ), 474 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, S ), 475 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, S ), 476 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W, 477 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ), 478 CMD( MI_UPDATE_GTT, SMI, !F, 0x3FF, S ), 479 CMD( MI_STORE_REGISTER_MEM_GEN8, SMI, F, 4, W, 480 .reg = { .offset = 1, .mask = 0x007FFFFC } ), 481 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, S ), 482 CMD( MI_LOAD_REGISTER_MEM_GEN8, SMI, F, 4, W, 483 .reg = { .offset = 1, .mask = 0x007FFFFC } ), 484 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W, 485 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ), 486 487 /* 488 * We allow BB_START but apply further checks. We just sanitize the 489 * basic fields here. 490 */ 491 #define MI_BB_START_OPERAND_MASK GENMASK(SMI-1, 0) 492 #define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1) 493 CMD( MI_BATCH_BUFFER_START_GEN8, SMI, !F, 0xFF, B, 494 .bits = {{ 495 .offset = 0, 496 .mask = MI_BB_START_OPERAND_MASK, 497 .expected = MI_BB_START_OPERAND_EXPECT, 498 }}, ), 499 }; 500 501 static const struct drm_i915_cmd_descriptor noop_desc = 502 CMD(MI_NOOP, SMI, F, 1, S); 503 504 #undef CMD 505 #undef SMI 506 #undef S3D 507 #undef S2D 508 #undef SMFX 509 #undef F 510 #undef S 511 #undef R 512 #undef W 513 #undef B 514 515 static const struct drm_i915_cmd_table gen7_render_cmd_table[] = { 516 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 517 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) }, 518 }; 519 520 static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = { 521 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 522 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) }, 523 { hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) }, 524 }; 525 526 static const struct drm_i915_cmd_table gen7_video_cmd_table[] = { 527 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 528 { gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) }, 529 }; 530 531 static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = { 532 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 533 { gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) }, 534 }; 535 536 static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = { 537 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 538 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) }, 539 }; 540 541 static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = { 542 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 543 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) }, 544 { hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) }, 545 }; 546 547 static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = { 548 { gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) }, 549 }; 550 551 552 /* 553 * Register whitelists, sorted by increasing register offset. 554 */ 555 556 /* 557 * An individual whitelist entry granting access to register addr. If 558 * mask is non-zero the argument of immediate register writes will be 559 * AND-ed with mask, and the command will be rejected if the result 560 * doesn't match value. 561 * 562 * Registers with non-zero mask are only allowed to be written using 563 * LRI. 564 */ 565 struct drm_i915_reg_descriptor { 566 i915_reg_t addr; 567 u32 mask; 568 u32 value; 569 }; 570 571 /* Convenience macro for adding 32-bit registers. */ 572 #define REG32(_reg, ...) \ 573 { .addr = (_reg), __VA_ARGS__ } 574 575 #define REG32_IDX(_reg, idx) \ 576 { .addr = _reg(idx) } 577 578 /* 579 * Convenience macro for adding 64-bit registers. 580 * 581 * Some registers that userspace accesses are 64 bits. The register 582 * access commands only allow 32-bit accesses. Hence, we have to include 583 * entries for both halves of the 64-bit registers. 584 */ 585 #define REG64(_reg) \ 586 { .addr = _reg }, \ 587 { .addr = _reg ## _UDW } 588 589 #define REG64_IDX(_reg, idx) \ 590 { .addr = _reg(idx) }, \ 591 { .addr = _reg ## _UDW(idx) } 592 593 static const struct drm_i915_reg_descriptor gen7_render_regs[] = { 594 REG64(GPGPU_THREADS_DISPATCHED), 595 REG64(HS_INVOCATION_COUNT), 596 REG64(DS_INVOCATION_COUNT), 597 REG64(IA_VERTICES_COUNT), 598 REG64(IA_PRIMITIVES_COUNT), 599 REG64(VS_INVOCATION_COUNT), 600 REG64(GS_INVOCATION_COUNT), 601 REG64(GS_PRIMITIVES_COUNT), 602 REG64(CL_INVOCATION_COUNT), 603 REG64(CL_PRIMITIVES_COUNT), 604 REG64(PS_INVOCATION_COUNT), 605 REG64(PS_DEPTH_COUNT), 606 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), 607 REG64(MI_PREDICATE_SRC0), 608 REG64(MI_PREDICATE_SRC1), 609 REG32(GEN7_3DPRIM_END_OFFSET), 610 REG32(GEN7_3DPRIM_START_VERTEX), 611 REG32(GEN7_3DPRIM_VERTEX_COUNT), 612 REG32(GEN7_3DPRIM_INSTANCE_COUNT), 613 REG32(GEN7_3DPRIM_START_INSTANCE), 614 REG32(GEN7_3DPRIM_BASE_VERTEX), 615 REG32(GEN7_GPGPU_DISPATCHDIMX), 616 REG32(GEN7_GPGPU_DISPATCHDIMY), 617 REG32(GEN7_GPGPU_DISPATCHDIMZ), 618 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), 619 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0), 620 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1), 621 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2), 622 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3), 623 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0), 624 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1), 625 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2), 626 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3), 627 REG32(GEN7_SO_WRITE_OFFSET(0)), 628 REG32(GEN7_SO_WRITE_OFFSET(1)), 629 REG32(GEN7_SO_WRITE_OFFSET(2)), 630 REG32(GEN7_SO_WRITE_OFFSET(3)), 631 REG32(GEN7_L3SQCREG1), 632 REG32(GEN7_L3CNTLREG2), 633 REG32(GEN7_L3CNTLREG3), 634 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), 635 }; 636 637 static const struct drm_i915_reg_descriptor hsw_render_regs[] = { 638 REG64_IDX(HSW_CS_GPR, 0), 639 REG64_IDX(HSW_CS_GPR, 1), 640 REG64_IDX(HSW_CS_GPR, 2), 641 REG64_IDX(HSW_CS_GPR, 3), 642 REG64_IDX(HSW_CS_GPR, 4), 643 REG64_IDX(HSW_CS_GPR, 5), 644 REG64_IDX(HSW_CS_GPR, 6), 645 REG64_IDX(HSW_CS_GPR, 7), 646 REG64_IDX(HSW_CS_GPR, 8), 647 REG64_IDX(HSW_CS_GPR, 9), 648 REG64_IDX(HSW_CS_GPR, 10), 649 REG64_IDX(HSW_CS_GPR, 11), 650 REG64_IDX(HSW_CS_GPR, 12), 651 REG64_IDX(HSW_CS_GPR, 13), 652 REG64_IDX(HSW_CS_GPR, 14), 653 REG64_IDX(HSW_CS_GPR, 15), 654 REG32(HSW_SCRATCH1, 655 .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE, 656 .value = 0), 657 REG32(HSW_ROW_CHICKEN3, 658 .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 | 659 HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE), 660 .value = 0), 661 }; 662 663 static const struct drm_i915_reg_descriptor gen7_blt_regs[] = { 664 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), 665 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), 666 REG32(BCS_SWCTRL), 667 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), 668 }; 669 670 static const struct drm_i915_reg_descriptor gen9_blt_regs[] = { 671 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), 672 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), 673 REG32(BCS_SWCTRL), 674 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), 675 REG32_IDX(RING_CTX_TIMESTAMP, BLT_RING_BASE), 676 REG64_IDX(BCS_GPR, 0), 677 REG64_IDX(BCS_GPR, 1), 678 REG64_IDX(BCS_GPR, 2), 679 REG64_IDX(BCS_GPR, 3), 680 REG64_IDX(BCS_GPR, 4), 681 REG64_IDX(BCS_GPR, 5), 682 REG64_IDX(BCS_GPR, 6), 683 REG64_IDX(BCS_GPR, 7), 684 REG64_IDX(BCS_GPR, 8), 685 REG64_IDX(BCS_GPR, 9), 686 REG64_IDX(BCS_GPR, 10), 687 REG64_IDX(BCS_GPR, 11), 688 REG64_IDX(BCS_GPR, 12), 689 REG64_IDX(BCS_GPR, 13), 690 REG64_IDX(BCS_GPR, 14), 691 REG64_IDX(BCS_GPR, 15), 692 }; 693 694 #undef REG64 695 #undef REG32 696 697 struct drm_i915_reg_table { 698 const struct drm_i915_reg_descriptor *regs; 699 int num_regs; 700 }; 701 702 static const struct drm_i915_reg_table ivb_render_reg_tables[] = { 703 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) }, 704 }; 705 706 static const struct drm_i915_reg_table ivb_blt_reg_tables[] = { 707 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) }, 708 }; 709 710 static const struct drm_i915_reg_table hsw_render_reg_tables[] = { 711 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) }, 712 { hsw_render_regs, ARRAY_SIZE(hsw_render_regs) }, 713 }; 714 715 static const struct drm_i915_reg_table hsw_blt_reg_tables[] = { 716 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) }, 717 }; 718 719 static const struct drm_i915_reg_table gen9_blt_reg_tables[] = { 720 { gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) }, 721 }; 722 723 static u32 gen7_render_get_cmd_length_mask(u32 cmd_header) 724 { 725 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 726 u32 subclient = 727 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT; 728 729 if (client == INSTR_MI_CLIENT) 730 return 0x3F; 731 else if (client == INSTR_RC_CLIENT) { 732 if (subclient == INSTR_MEDIA_SUBCLIENT) 733 return 0xFFFF; 734 else 735 return 0xFF; 736 } 737 738 DRM_DEBUG("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header); 739 return 0; 740 } 741 742 static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header) 743 { 744 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 745 u32 subclient = 746 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT; 747 u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT; 748 749 if (client == INSTR_MI_CLIENT) 750 return 0x3F; 751 else if (client == INSTR_RC_CLIENT) { 752 if (subclient == INSTR_MEDIA_SUBCLIENT) { 753 if (op == 6) 754 return 0xFFFF; 755 else 756 return 0xFFF; 757 } else 758 return 0xFF; 759 } 760 761 DRM_DEBUG("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header); 762 return 0; 763 } 764 765 static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header) 766 { 767 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 768 769 if (client == INSTR_MI_CLIENT) 770 return 0x3F; 771 else if (client == INSTR_BC_CLIENT) 772 return 0xFF; 773 774 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header); 775 return 0; 776 } 777 778 static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header) 779 { 780 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 781 782 if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT) 783 return 0xFF; 784 785 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header); 786 return 0; 787 } 788 789 static bool validate_cmds_sorted(const struct intel_engine_cs *engine, 790 const struct drm_i915_cmd_table *cmd_tables, 791 int cmd_table_count) 792 { 793 int i; 794 bool ret = true; 795 796 if (!cmd_tables || cmd_table_count == 0) 797 return true; 798 799 for (i = 0; i < cmd_table_count; i++) { 800 const struct drm_i915_cmd_table *table = &cmd_tables[i]; 801 u32 previous = 0; 802 int j; 803 804 for (j = 0; j < table->count; j++) { 805 const struct drm_i915_cmd_descriptor *desc = 806 &table->table[j]; 807 u32 curr = desc->cmd.value & desc->cmd.mask; 808 809 if (curr < previous) { 810 drm_err(&engine->i915->drm, 811 "CMD: %s [%d] command table not sorted: " 812 "table=%d entry=%d cmd=0x%08X prev=0x%08X\n", 813 engine->name, engine->id, 814 i, j, curr, previous); 815 ret = false; 816 } 817 818 previous = curr; 819 } 820 } 821 822 return ret; 823 } 824 825 static bool check_sorted(const struct intel_engine_cs *engine, 826 const struct drm_i915_reg_descriptor *reg_table, 827 int reg_count) 828 { 829 int i; 830 u32 previous = 0; 831 bool ret = true; 832 833 for (i = 0; i < reg_count; i++) { 834 u32 curr = i915_mmio_reg_offset(reg_table[i].addr); 835 836 if (curr < previous) { 837 drm_err(&engine->i915->drm, 838 "CMD: %s [%d] register table not sorted: " 839 "entry=%d reg=0x%08X prev=0x%08X\n", 840 engine->name, engine->id, 841 i, curr, previous); 842 ret = false; 843 } 844 845 previous = curr; 846 } 847 848 return ret; 849 } 850 851 static bool validate_regs_sorted(struct intel_engine_cs *engine) 852 { 853 int i; 854 const struct drm_i915_reg_table *table; 855 856 for (i = 0; i < engine->reg_table_count; i++) { 857 table = &engine->reg_tables[i]; 858 if (!check_sorted(engine, table->regs, table->num_regs)) 859 return false; 860 } 861 862 return true; 863 } 864 865 struct cmd_node { 866 const struct drm_i915_cmd_descriptor *desc; 867 struct hlist_node node; 868 }; 869 870 /* 871 * Different command ranges have different numbers of bits for the opcode. For 872 * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The 873 * problem is that, for example, MI commands use bits 22:16 for other fields 874 * such as GGTT vs PPGTT bits. If we include those bits in the mask then when 875 * we mask a command from a batch it could hash to the wrong bucket due to 876 * non-opcode bits being set. But if we don't include those bits, some 3D 877 * commands may hash to the same bucket due to not including opcode bits that 878 * make the command unique. For now, we will risk hashing to the same bucket. 879 */ 880 static inline u32 cmd_header_key(u32 x) 881 { 882 switch (x >> INSTR_CLIENT_SHIFT) { 883 default: 884 case INSTR_MI_CLIENT: 885 return x >> STD_MI_OPCODE_SHIFT; 886 case INSTR_RC_CLIENT: 887 return x >> STD_3D_OPCODE_SHIFT; 888 case INSTR_BC_CLIENT: 889 return x >> STD_2D_OPCODE_SHIFT; 890 } 891 } 892 893 static int init_hash_table(struct intel_engine_cs *engine, 894 const struct drm_i915_cmd_table *cmd_tables, 895 int cmd_table_count) 896 { 897 int i, j; 898 899 hash_init(engine->cmd_hash); 900 901 for (i = 0; i < cmd_table_count; i++) { 902 const struct drm_i915_cmd_table *table = &cmd_tables[i]; 903 904 for (j = 0; j < table->count; j++) { 905 const struct drm_i915_cmd_descriptor *desc = 906 &table->table[j]; 907 struct cmd_node *desc_node = 908 kmalloc(sizeof(*desc_node), GFP_KERNEL); 909 910 if (!desc_node) 911 return -ENOMEM; 912 913 desc_node->desc = desc; 914 hash_add(engine->cmd_hash, &desc_node->node, 915 cmd_header_key(desc->cmd.value)); 916 } 917 } 918 919 return 0; 920 } 921 922 static void fini_hash_table(struct intel_engine_cs *engine) 923 { 924 struct hlist_node *tmp; 925 struct cmd_node *desc_node; 926 int i; 927 928 hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) { 929 hash_del(&desc_node->node); 930 kfree(desc_node); 931 } 932 } 933 934 /** 935 * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine 936 * @engine: the engine to initialize 937 * 938 * Optionally initializes fields related to batch buffer command parsing in the 939 * struct intel_engine_cs based on whether the platform requires software 940 * command parsing. 941 */ 942 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine) 943 { 944 const struct drm_i915_cmd_table *cmd_tables; 945 int cmd_table_count; 946 int ret; 947 948 if (!IS_GEN(engine->i915, 7) && !(IS_GEN(engine->i915, 9) && 949 engine->class == COPY_ENGINE_CLASS)) 950 return; 951 952 switch (engine->class) { 953 case RENDER_CLASS: 954 if (IS_HASWELL(engine->i915)) { 955 cmd_tables = hsw_render_ring_cmd_table; 956 cmd_table_count = 957 ARRAY_SIZE(hsw_render_ring_cmd_table); 958 } else { 959 cmd_tables = gen7_render_cmd_table; 960 cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table); 961 } 962 963 if (IS_HASWELL(engine->i915)) { 964 engine->reg_tables = hsw_render_reg_tables; 965 engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables); 966 } else { 967 engine->reg_tables = ivb_render_reg_tables; 968 engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables); 969 } 970 engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask; 971 break; 972 case VIDEO_DECODE_CLASS: 973 cmd_tables = gen7_video_cmd_table; 974 cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table); 975 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; 976 break; 977 case COPY_ENGINE_CLASS: 978 engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask; 979 if (IS_GEN(engine->i915, 9)) { 980 cmd_tables = gen9_blt_cmd_table; 981 cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table); 982 engine->get_cmd_length_mask = 983 gen9_blt_get_cmd_length_mask; 984 985 /* BCS Engine unsafe without parser */ 986 engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER; 987 } else if (IS_HASWELL(engine->i915)) { 988 cmd_tables = hsw_blt_ring_cmd_table; 989 cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table); 990 } else { 991 cmd_tables = gen7_blt_cmd_table; 992 cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table); 993 } 994 995 if (IS_GEN(engine->i915, 9)) { 996 engine->reg_tables = gen9_blt_reg_tables; 997 engine->reg_table_count = 998 ARRAY_SIZE(gen9_blt_reg_tables); 999 } else if (IS_HASWELL(engine->i915)) { 1000 engine->reg_tables = hsw_blt_reg_tables; 1001 engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables); 1002 } else { 1003 engine->reg_tables = ivb_blt_reg_tables; 1004 engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables); 1005 } 1006 break; 1007 case VIDEO_ENHANCEMENT_CLASS: 1008 cmd_tables = hsw_vebox_cmd_table; 1009 cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table); 1010 /* VECS can use the same length_mask function as VCS */ 1011 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; 1012 break; 1013 default: 1014 MISSING_CASE(engine->class); 1015 return; 1016 } 1017 1018 if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) { 1019 drm_err(&engine->i915->drm, 1020 "%s: command descriptions are not sorted\n", 1021 engine->name); 1022 return; 1023 } 1024 if (!validate_regs_sorted(engine)) { 1025 drm_err(&engine->i915->drm, 1026 "%s: registers are not sorted\n", engine->name); 1027 return; 1028 } 1029 1030 ret = init_hash_table(engine, cmd_tables, cmd_table_count); 1031 if (ret) { 1032 drm_err(&engine->i915->drm, 1033 "%s: initialised failed!\n", engine->name); 1034 fini_hash_table(engine); 1035 return; 1036 } 1037 1038 engine->flags |= I915_ENGINE_USING_CMD_PARSER; 1039 } 1040 1041 /** 1042 * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields 1043 * @engine: the engine to clean up 1044 * 1045 * Releases any resources related to command parsing that may have been 1046 * initialized for the specified engine. 1047 */ 1048 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine) 1049 { 1050 if (!intel_engine_using_cmd_parser(engine)) 1051 return; 1052 1053 fini_hash_table(engine); 1054 } 1055 1056 static const struct drm_i915_cmd_descriptor* 1057 find_cmd_in_table(struct intel_engine_cs *engine, 1058 u32 cmd_header) 1059 { 1060 struct cmd_node *desc_node; 1061 1062 hash_for_each_possible(engine->cmd_hash, desc_node, node, 1063 cmd_header_key(cmd_header)) { 1064 const struct drm_i915_cmd_descriptor *desc = desc_node->desc; 1065 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0) 1066 return desc; 1067 } 1068 1069 return NULL; 1070 } 1071 1072 /* 1073 * Returns a pointer to a descriptor for the command specified by cmd_header. 1074 * 1075 * The caller must supply space for a default descriptor via the default_desc 1076 * parameter. If no descriptor for the specified command exists in the engine's 1077 * command parser tables, this function fills in default_desc based on the 1078 * engine's default length encoding and returns default_desc. 1079 */ 1080 static const struct drm_i915_cmd_descriptor* 1081 find_cmd(struct intel_engine_cs *engine, 1082 u32 cmd_header, 1083 const struct drm_i915_cmd_descriptor *desc, 1084 struct drm_i915_cmd_descriptor *default_desc) 1085 { 1086 u32 mask; 1087 1088 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0) 1089 return desc; 1090 1091 desc = find_cmd_in_table(engine, cmd_header); 1092 if (desc) 1093 return desc; 1094 1095 mask = engine->get_cmd_length_mask(cmd_header); 1096 if (!mask) 1097 return NULL; 1098 1099 default_desc->cmd.value = cmd_header; 1100 default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT; 1101 default_desc->length.mask = mask; 1102 default_desc->flags = CMD_DESC_SKIP; 1103 return default_desc; 1104 } 1105 1106 static const struct drm_i915_reg_descriptor * 1107 __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr) 1108 { 1109 int start = 0, end = count; 1110 while (start < end) { 1111 int mid = start + (end - start) / 2; 1112 int ret = addr - i915_mmio_reg_offset(table[mid].addr); 1113 if (ret < 0) 1114 end = mid; 1115 else if (ret > 0) 1116 start = mid + 1; 1117 else 1118 return &table[mid]; 1119 } 1120 return NULL; 1121 } 1122 1123 static const struct drm_i915_reg_descriptor * 1124 find_reg(const struct intel_engine_cs *engine, u32 addr) 1125 { 1126 const struct drm_i915_reg_table *table = engine->reg_tables; 1127 const struct drm_i915_reg_descriptor *reg = NULL; 1128 int count = engine->reg_table_count; 1129 1130 for (; !reg && (count > 0); ++table, --count) 1131 reg = __find_reg(table->regs, table->num_regs, addr); 1132 1133 return reg; 1134 } 1135 1136 /* Returns a vmap'd pointer to dst_obj, which the caller must unmap */ 1137 static u32 *copy_batch(struct drm_i915_gem_object *dst_obj, 1138 struct drm_i915_gem_object *src_obj, 1139 unsigned long offset, unsigned long length) 1140 { 1141 bool needs_clflush; 1142 void *dst, *src; 1143 int ret; 1144 1145 dst = i915_gem_object_pin_map(dst_obj, I915_MAP_FORCE_WB); 1146 if (IS_ERR(dst)) 1147 return dst; 1148 1149 ret = i915_gem_object_pin_pages(src_obj); 1150 if (ret) { 1151 i915_gem_object_unpin_map(dst_obj); 1152 return ERR_PTR(ret); 1153 } 1154 1155 needs_clflush = 1156 !(src_obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ); 1157 1158 src = ERR_PTR(-ENODEV); 1159 if (needs_clflush && i915_has_memcpy_from_wc()) { 1160 src = i915_gem_object_pin_map(src_obj, I915_MAP_WC); 1161 if (!IS_ERR(src)) { 1162 i915_unaligned_memcpy_from_wc(dst, 1163 src + offset, 1164 length); 1165 i915_gem_object_unpin_map(src_obj); 1166 } 1167 } 1168 if (IS_ERR(src)) { 1169 unsigned long x, n, remain; 1170 void *ptr; 1171 1172 /* 1173 * We can avoid clflushing partial cachelines before the write 1174 * if we only every write full cache-lines. Since we know that 1175 * both the source and destination are in multiples of 1176 * PAGE_SIZE, we can simply round up to the next cacheline. 1177 * We don't care about copying too much here as we only 1178 * validate up to the end of the batch. 1179 */ 1180 remain = length; 1181 if (!(dst_obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) 1182 remain = round_up(remain, 1183 boot_cpu_data.x86_clflush_size); 1184 1185 ptr = dst; 1186 x = offset_in_page(offset); 1187 for (n = offset >> PAGE_SHIFT; remain; n++) { 1188 int len = min(remain, PAGE_SIZE - x); 1189 1190 src = kmap_atomic(i915_gem_object_get_page(src_obj, n)); 1191 if (needs_clflush) 1192 drm_clflush_virt_range(src + x, len); 1193 memcpy(ptr, src + x, len); 1194 kunmap_atomic(src); 1195 1196 ptr += len; 1197 remain -= len; 1198 x = 0; 1199 } 1200 } 1201 1202 i915_gem_object_unpin_pages(src_obj); 1203 1204 memset32(dst + length, 0, (dst_obj->base.size - length) / sizeof(u32)); 1205 1206 /* dst_obj is returned with vmap pinned */ 1207 return dst; 1208 } 1209 1210 static inline bool cmd_desc_is(const struct drm_i915_cmd_descriptor * const desc, 1211 const u32 cmd) 1212 { 1213 return desc->cmd.value == (cmd & desc->cmd.mask); 1214 } 1215 1216 static bool check_cmd(const struct intel_engine_cs *engine, 1217 const struct drm_i915_cmd_descriptor *desc, 1218 const u32 *cmd, u32 length) 1219 { 1220 if (desc->flags & CMD_DESC_SKIP) 1221 return true; 1222 1223 if (desc->flags & CMD_DESC_REJECT) { 1224 DRM_DEBUG("CMD: Rejected command: 0x%08X\n", *cmd); 1225 return false; 1226 } 1227 1228 if (desc->flags & CMD_DESC_REGISTER) { 1229 /* 1230 * Get the distance between individual register offset 1231 * fields if the command can perform more than one 1232 * access at a time. 1233 */ 1234 const u32 step = desc->reg.step ? desc->reg.step : length; 1235 u32 offset; 1236 1237 for (offset = desc->reg.offset; offset < length; 1238 offset += step) { 1239 const u32 reg_addr = cmd[offset] & desc->reg.mask; 1240 const struct drm_i915_reg_descriptor *reg = 1241 find_reg(engine, reg_addr); 1242 1243 if (!reg) { 1244 DRM_DEBUG("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n", 1245 reg_addr, *cmd, engine->name); 1246 return false; 1247 } 1248 1249 /* 1250 * Check the value written to the register against the 1251 * allowed mask/value pair given in the whitelist entry. 1252 */ 1253 if (reg->mask) { 1254 if (cmd_desc_is(desc, MI_LOAD_REGISTER_MEM)) { 1255 DRM_DEBUG("CMD: Rejected LRM to masked register 0x%08X\n", 1256 reg_addr); 1257 return false; 1258 } 1259 1260 if (cmd_desc_is(desc, MI_LOAD_REGISTER_REG)) { 1261 DRM_DEBUG("CMD: Rejected LRR to masked register 0x%08X\n", 1262 reg_addr); 1263 return false; 1264 } 1265 1266 if (cmd_desc_is(desc, MI_LOAD_REGISTER_IMM(1)) && 1267 (offset + 2 > length || 1268 (cmd[offset + 1] & reg->mask) != reg->value)) { 1269 DRM_DEBUG("CMD: Rejected LRI to masked register 0x%08X\n", 1270 reg_addr); 1271 return false; 1272 } 1273 } 1274 } 1275 } 1276 1277 if (desc->flags & CMD_DESC_BITMASK) { 1278 int i; 1279 1280 for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) { 1281 u32 dword; 1282 1283 if (desc->bits[i].mask == 0) 1284 break; 1285 1286 if (desc->bits[i].condition_mask != 0) { 1287 u32 offset = 1288 desc->bits[i].condition_offset; 1289 u32 condition = cmd[offset] & 1290 desc->bits[i].condition_mask; 1291 1292 if (condition == 0) 1293 continue; 1294 } 1295 1296 if (desc->bits[i].offset >= length) { 1297 DRM_DEBUG("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n", 1298 *cmd, engine->name); 1299 return false; 1300 } 1301 1302 dword = cmd[desc->bits[i].offset] & 1303 desc->bits[i].mask; 1304 1305 if (dword != desc->bits[i].expected) { 1306 DRM_DEBUG("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n", 1307 *cmd, 1308 desc->bits[i].mask, 1309 desc->bits[i].expected, 1310 dword, engine->name); 1311 return false; 1312 } 1313 } 1314 } 1315 1316 return true; 1317 } 1318 1319 static int check_bbstart(u32 *cmd, u32 offset, u32 length, 1320 u32 batch_length, 1321 u64 batch_addr, 1322 u64 shadow_addr, 1323 const unsigned long *jump_whitelist) 1324 { 1325 u64 jump_offset, jump_target; 1326 u32 target_cmd_offset, target_cmd_index; 1327 1328 /* For igt compatibility on older platforms */ 1329 if (!jump_whitelist) { 1330 DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n"); 1331 return -EACCES; 1332 } 1333 1334 if (length != 3) { 1335 DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n", 1336 length); 1337 return -EINVAL; 1338 } 1339 1340 jump_target = *(u64 *)(cmd + 1); 1341 jump_offset = jump_target - batch_addr; 1342 1343 /* 1344 * Any underflow of jump_target is guaranteed to be outside the range 1345 * of a u32, so >= test catches both too large and too small 1346 */ 1347 if (jump_offset >= batch_length) { 1348 DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n", 1349 jump_target); 1350 return -EINVAL; 1351 } 1352 1353 /* 1354 * This cannot overflow a u32 because we already checked jump_offset 1355 * is within the BB, and the batch_length is a u32 1356 */ 1357 target_cmd_offset = lower_32_bits(jump_offset); 1358 target_cmd_index = target_cmd_offset / sizeof(u32); 1359 1360 *(u64 *)(cmd + 1) = shadow_addr + target_cmd_offset; 1361 1362 if (target_cmd_index == offset) 1363 return 0; 1364 1365 if (IS_ERR(jump_whitelist)) 1366 return PTR_ERR(jump_whitelist); 1367 1368 if (!test_bit(target_cmd_index, jump_whitelist)) { 1369 DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n", 1370 jump_target); 1371 return -EINVAL; 1372 } 1373 1374 return 0; 1375 } 1376 1377 static unsigned long *alloc_whitelist(u32 batch_length) 1378 { 1379 unsigned long *jmp; 1380 1381 /* 1382 * We expect batch_length to be less than 256KiB for known users, 1383 * i.e. we need at most an 8KiB bitmap allocation which should be 1384 * reasonably cheap due to kmalloc caches. 1385 */ 1386 1387 /* Prefer to report transient allocation failure rather than hit oom */ 1388 jmp = bitmap_zalloc(DIV_ROUND_UP(batch_length, sizeof(u32)), 1389 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 1390 if (!jmp) 1391 return ERR_PTR(-ENOMEM); 1392 1393 return jmp; 1394 } 1395 1396 #define LENGTH_BIAS 2 1397 1398 /** 1399 * intel_engine_cmd_parser() - parse a batch buffer for privilege violations 1400 * @engine: the engine on which the batch is to execute 1401 * @batch: the batch buffer in question 1402 * @batch_offset: byte offset in the batch at which execution starts 1403 * @batch_length: length of the commands in batch_obj 1404 * @shadow: validated copy of the batch buffer in question 1405 * @trampoline: whether to emit a conditional trampoline at the end of the batch 1406 * 1407 * Parses the specified batch buffer looking for privilege violations as 1408 * described in the overview. 1409 * 1410 * Return: non-zero if the parser finds violations or otherwise fails; -EACCES 1411 * if the batch appears legal but should use hardware parsing 1412 */ 1413 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 1414 struct i915_vma *batch, 1415 unsigned long batch_offset, 1416 unsigned long batch_length, 1417 struct i915_vma *shadow, 1418 bool trampoline) 1419 { 1420 u32 *cmd, *batch_end, offset = 0; 1421 struct drm_i915_cmd_descriptor default_desc = noop_desc; 1422 const struct drm_i915_cmd_descriptor *desc = &default_desc; 1423 unsigned long *jump_whitelist; 1424 u64 batch_addr, shadow_addr; 1425 int ret = 0; 1426 1427 GEM_BUG_ON(!IS_ALIGNED(batch_offset, sizeof(*cmd))); 1428 GEM_BUG_ON(!IS_ALIGNED(batch_length, sizeof(*cmd))); 1429 GEM_BUG_ON(range_overflows_t(u64, batch_offset, batch_length, 1430 batch->size)); 1431 GEM_BUG_ON(!batch_length); 1432 1433 cmd = copy_batch(shadow->obj, batch->obj, batch_offset, batch_length); 1434 if (IS_ERR(cmd)) { 1435 DRM_DEBUG("CMD: Failed to copy batch\n"); 1436 return PTR_ERR(cmd); 1437 } 1438 1439 jump_whitelist = NULL; 1440 if (!trampoline) 1441 /* Defer failure until attempted use */ 1442 jump_whitelist = alloc_whitelist(batch_length); 1443 1444 shadow_addr = gen8_canonical_addr(shadow->node.start); 1445 batch_addr = gen8_canonical_addr(batch->node.start + batch_offset); 1446 1447 /* 1448 * We use the batch length as size because the shadow object is as 1449 * large or larger and copy_batch() will write MI_NOPs to the extra 1450 * space. Parsing should be faster in some cases this way. 1451 */ 1452 batch_end = cmd + batch_length / sizeof(*batch_end); 1453 while (*cmd != MI_BATCH_BUFFER_END) { 1454 u32 length = 1; 1455 1456 if (*cmd != MI_NOOP) { /* MI_NOOP == 0 */ 1457 desc = find_cmd(engine, *cmd, desc, &default_desc); 1458 if (!desc) { 1459 DRM_DEBUG("CMD: Unrecognized command: 0x%08X\n", *cmd); 1460 ret = -EINVAL; 1461 break; 1462 } 1463 1464 if (desc->flags & CMD_DESC_FIXED) 1465 length = desc->length.fixed; 1466 else 1467 length = (*cmd & desc->length.mask) + LENGTH_BIAS; 1468 1469 if ((batch_end - cmd) < length) { 1470 DRM_DEBUG("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n", 1471 *cmd, 1472 length, 1473 batch_end - cmd); 1474 ret = -EINVAL; 1475 break; 1476 } 1477 1478 if (!check_cmd(engine, desc, cmd, length)) { 1479 ret = -EACCES; 1480 break; 1481 } 1482 1483 if (cmd_desc_is(desc, MI_BATCH_BUFFER_START)) { 1484 ret = check_bbstart(cmd, offset, length, batch_length, 1485 batch_addr, shadow_addr, 1486 jump_whitelist); 1487 break; 1488 } 1489 } 1490 1491 if (!IS_ERR_OR_NULL(jump_whitelist)) 1492 __set_bit(offset, jump_whitelist); 1493 1494 cmd += length; 1495 offset += length; 1496 if (cmd >= batch_end) { 1497 DRM_DEBUG("CMD: Got to the end of the buffer w/o a BBE cmd!\n"); 1498 ret = -EINVAL; 1499 break; 1500 } 1501 } 1502 1503 if (trampoline) { 1504 /* 1505 * With the trampoline, the shadow is executed twice. 1506 * 1507 * 1 - starting at offset 0, in privileged mode 1508 * 2 - starting at offset batch_len, as non-privileged 1509 * 1510 * Only if the batch is valid and safe to execute, do we 1511 * allow the first privileged execution to proceed. If not, 1512 * we terminate the first batch and use the second batchbuffer 1513 * entry to chain to the original unsafe non-privileged batch, 1514 * leaving it to the HW to validate. 1515 */ 1516 *batch_end = MI_BATCH_BUFFER_END; 1517 1518 if (ret) { 1519 /* Batch unsafe to execute with privileges, cancel! */ 1520 cmd = page_mask_bits(shadow->obj->mm.mapping); 1521 *cmd = MI_BATCH_BUFFER_END; 1522 1523 /* If batch is unsafe but valid, jump to the original */ 1524 if (ret == -EACCES) { 1525 unsigned int flags; 1526 1527 flags = MI_BATCH_NON_SECURE_I965; 1528 if (IS_HASWELL(engine->i915)) 1529 flags = MI_BATCH_NON_SECURE_HSW; 1530 1531 GEM_BUG_ON(!IS_GEN_RANGE(engine->i915, 6, 7)); 1532 __gen6_emit_bb_start(batch_end, 1533 batch_addr, 1534 flags); 1535 1536 ret = 0; /* allow execution */ 1537 } 1538 } 1539 } 1540 1541 i915_gem_object_flush_map(shadow->obj); 1542 1543 if (!IS_ERR_OR_NULL(jump_whitelist)) 1544 kfree(jump_whitelist); 1545 i915_gem_object_unpin_map(shadow->obj); 1546 return ret; 1547 } 1548 1549 /** 1550 * i915_cmd_parser_get_version() - get the cmd parser version number 1551 * @dev_priv: i915 device private 1552 * 1553 * The cmd parser maintains a simple increasing integer version number suitable 1554 * for passing to userspace clients to determine what operations are permitted. 1555 * 1556 * Return: the current version number of the cmd parser 1557 */ 1558 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv) 1559 { 1560 struct intel_engine_cs *engine; 1561 bool active = false; 1562 1563 /* If the command parser is not enabled, report 0 - unsupported */ 1564 for_each_uabi_engine(engine, dev_priv) { 1565 if (intel_engine_using_cmd_parser(engine)) { 1566 active = true; 1567 break; 1568 } 1569 } 1570 if (!active) 1571 return 0; 1572 1573 /* 1574 * Command parser version history 1575 * 1576 * 1. Initial version. Checks batches and reports violations, but leaves 1577 * hardware parsing enabled (so does not allow new use cases). 1578 * 2. Allow access to the MI_PREDICATE_SRC0 and 1579 * MI_PREDICATE_SRC1 registers. 1580 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register. 1581 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3. 1582 * 5. GPGPU dispatch compute indirect registers. 1583 * 6. TIMESTAMP register and Haswell CS GPR registers 1584 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers. 1585 * 8. Don't report cmd_check() failures as EINVAL errors to userspace; 1586 * rely on the HW to NOOP disallowed commands as it would without 1587 * the parser enabled. 1588 * 9. Don't whitelist or handle oacontrol specially, as ownership 1589 * for oacontrol state is moving to i915-perf. 1590 * 10. Support for Gen9 BCS Parsing 1591 */ 1592 return 10; 1593 } 1594