1 /*
2  * Copyright © 2013 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Brad Volkin <bradley.d.volkin@intel.com>
25  *
26  */
27 
28 #include <drm/drm_cache.h>
29 
30 #include "gt/intel_engine.h"
31 #include "gt/intel_engine_regs.h"
32 #include "gt/intel_gpu_commands.h"
33 #include "gt/intel_gt_regs.h"
34 
35 #include "i915_cmd_parser.h"
36 #include "i915_drv.h"
37 #include "i915_memcpy.h"
38 #include "i915_reg.h"
39 
40 /**
41  * DOC: batch buffer command parser
42  *
43  * Motivation:
44  * Certain OpenGL features (e.g. transform feedback, performance monitoring)
45  * require userspace code to submit batches containing commands such as
46  * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
47  * generations of the hardware will noop these commands in "unsecure" batches
48  * (which includes all userspace batches submitted via i915) even though the
49  * commands may be safe and represent the intended programming model of the
50  * device.
51  *
52  * The software command parser is similar in operation to the command parsing
53  * done in hardware for unsecure batches. However, the software parser allows
54  * some operations that would be noop'd by hardware, if the parser determines
55  * the operation is safe, and submits the batch as "secure" to prevent hardware
56  * parsing.
57  *
58  * Threats:
59  * At a high level, the hardware (and software) checks attempt to prevent
60  * granting userspace undue privileges. There are three categories of privilege.
61  *
62  * First, commands which are explicitly defined as privileged or which should
63  * only be used by the kernel driver. The parser rejects such commands
64  *
65  * Second, commands which access registers. To support correct/enhanced
66  * userspace functionality, particularly certain OpenGL extensions, the parser
67  * provides a whitelist of registers which userspace may safely access
68  *
69  * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
70  * The parser always rejects such commands.
71  *
72  * The majority of the problematic commands fall in the MI_* range, with only a
73  * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW).
74  *
75  * Implementation:
76  * Each engine maintains tables of commands and registers which the parser
77  * uses in scanning batch buffers submitted to that engine.
78  *
79  * Since the set of commands that the parser must check for is significantly
80  * smaller than the number of commands supported, the parser tables contain only
81  * those commands required by the parser. This generally works because command
82  * opcode ranges have standard command length encodings. So for commands that
83  * the parser does not need to check, it can easily skip them. This is
84  * implemented via a per-engine length decoding vfunc.
85  *
86  * Unfortunately, there are a number of commands that do not follow the standard
87  * length encoding for their opcode range, primarily amongst the MI_* commands.
88  * To handle this, the parser provides a way to define explicit "skip" entries
89  * in the per-engine command tables.
90  *
91  * Other command table entries map fairly directly to high level categories
92  * mentioned above: rejected, register whitelist. The parser implements a number
93  * of checks, including the privileged memory checks, via a general bitmasking
94  * mechanism.
95  */
96 
97 /*
98  * A command that requires special handling by the command parser.
99  */
100 struct drm_i915_cmd_descriptor {
101 	/*
102 	 * Flags describing how the command parser processes the command.
103 	 *
104 	 * CMD_DESC_FIXED: The command has a fixed length if this is set,
105 	 *                 a length mask if not set
106 	 * CMD_DESC_SKIP: The command is allowed but does not follow the
107 	 *                standard length encoding for the opcode range in
108 	 *                which it falls
109 	 * CMD_DESC_REJECT: The command is never allowed
110 	 * CMD_DESC_REGISTER: The command should be checked against the
111 	 *                    register whitelist for the appropriate ring
112 	 */
113 	u32 flags;
114 #define CMD_DESC_FIXED    (1<<0)
115 #define CMD_DESC_SKIP     (1<<1)
116 #define CMD_DESC_REJECT   (1<<2)
117 #define CMD_DESC_REGISTER (1<<3)
118 #define CMD_DESC_BITMASK  (1<<4)
119 
120 	/*
121 	 * The command's unique identification bits and the bitmask to get them.
122 	 * This isn't strictly the opcode field as defined in the spec and may
123 	 * also include type, subtype, and/or subop fields.
124 	 */
125 	struct {
126 		u32 value;
127 		u32 mask;
128 	} cmd;
129 
130 	/*
131 	 * The command's length. The command is either fixed length (i.e. does
132 	 * not include a length field) or has a length field mask. The flag
133 	 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
134 	 * a length mask. All command entries in a command table must include
135 	 * length information.
136 	 */
137 	union {
138 		u32 fixed;
139 		u32 mask;
140 	} length;
141 
142 	/*
143 	 * Describes where to find a register address in the command to check
144 	 * against the ring's register whitelist. Only valid if flags has the
145 	 * CMD_DESC_REGISTER bit set.
146 	 *
147 	 * A non-zero step value implies that the command may access multiple
148 	 * registers in sequence (e.g. LRI), in that case step gives the
149 	 * distance in dwords between individual offset fields.
150 	 */
151 	struct {
152 		u32 offset;
153 		u32 mask;
154 		u32 step;
155 	} reg;
156 
157 #define MAX_CMD_DESC_BITMASKS 3
158 	/*
159 	 * Describes command checks where a particular dword is masked and
160 	 * compared against an expected value. If the command does not match
161 	 * the expected value, the parser rejects it. Only valid if flags has
162 	 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
163 	 * are valid.
164 	 *
165 	 * If the check specifies a non-zero condition_mask then the parser
166 	 * only performs the check when the bits specified by condition_mask
167 	 * are non-zero.
168 	 */
169 	struct {
170 		u32 offset;
171 		u32 mask;
172 		u32 expected;
173 		u32 condition_offset;
174 		u32 condition_mask;
175 	} bits[MAX_CMD_DESC_BITMASKS];
176 };
177 
178 /*
179  * A table of commands requiring special handling by the command parser.
180  *
181  * Each engine has an array of tables. Each table consists of an array of
182  * command descriptors, which must be sorted with command opcodes in
183  * ascending order.
184  */
185 struct drm_i915_cmd_table {
186 	const struct drm_i915_cmd_descriptor *table;
187 	int count;
188 };
189 
190 #define STD_MI_OPCODE_SHIFT  (32 - 9)
191 #define STD_3D_OPCODE_SHIFT  (32 - 16)
192 #define STD_2D_OPCODE_SHIFT  (32 - 10)
193 #define STD_MFX_OPCODE_SHIFT (32 - 16)
194 #define MIN_OPCODE_SHIFT 16
195 
196 #define CMD(op, opm, f, lm, fl, ...)				\
197 	{							\
198 		.flags = (fl) | ((f) ? CMD_DESC_FIXED : 0),	\
199 		.cmd = { (op & ~0u << (opm)), ~0u << (opm) },	\
200 		.length = { (lm) },				\
201 		__VA_ARGS__					\
202 	}
203 
204 /* Convenience macros to compress the tables */
205 #define SMI STD_MI_OPCODE_SHIFT
206 #define S3D STD_3D_OPCODE_SHIFT
207 #define S2D STD_2D_OPCODE_SHIFT
208 #define SMFX STD_MFX_OPCODE_SHIFT
209 #define F true
210 #define S CMD_DESC_SKIP
211 #define R CMD_DESC_REJECT
212 #define W CMD_DESC_REGISTER
213 #define B CMD_DESC_BITMASK
214 
215 /*            Command                          Mask   Fixed Len   Action
216 	      ---------------------------------------------------------- */
217 static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = {
218 	CMD(  MI_NOOP,                          SMI,    F,  1,      S  ),
219 	CMD(  MI_USER_INTERRUPT,                SMI,    F,  1,      R  ),
220 	CMD(  MI_WAIT_FOR_EVENT,                SMI,    F,  1,      R  ),
221 	CMD(  MI_ARB_CHECK,                     SMI,    F,  1,      S  ),
222 	CMD(  MI_REPORT_HEAD,                   SMI,    F,  1,      S  ),
223 	CMD(  MI_SUSPEND_FLUSH,                 SMI,    F,  1,      S  ),
224 	CMD(  MI_SEMAPHORE_MBOX,                SMI,   !F,  0xFF,   R  ),
225 	CMD(  MI_STORE_DWORD_INDEX,             SMI,   !F,  0xFF,   R  ),
226 	CMD(  MI_LOAD_REGISTER_IMM(1),          SMI,   !F,  0xFF,   W,
227 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 }    ),
228 	CMD(  MI_STORE_REGISTER_MEM,            SMI,    F,  3,     W | B,
229 	      .reg = { .offset = 1, .mask = 0x007FFFFC },
230 	      .bits = {{
231 			.offset = 0,
232 			.mask = MI_GLOBAL_GTT,
233 			.expected = 0,
234 	      }},						       ),
235 	CMD(  MI_LOAD_REGISTER_MEM,             SMI,    F,  3,     W | B,
236 	      .reg = { .offset = 1, .mask = 0x007FFFFC },
237 	      .bits = {{
238 			.offset = 0,
239 			.mask = MI_GLOBAL_GTT,
240 			.expected = 0,
241 	      }},						       ),
242 	/*
243 	 * MI_BATCH_BUFFER_START requires some special handling. It's not
244 	 * really a 'skip' action but it doesn't seem like it's worth adding
245 	 * a new action. See intel_engine_cmd_parser().
246 	 */
247 	CMD(  MI_BATCH_BUFFER_START,            SMI,   !F,  0xFF,   S  ),
248 };
249 
250 static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = {
251 	CMD(  MI_FLUSH,                         SMI,    F,  1,      S  ),
252 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
253 	CMD(  MI_PREDICATE,                     SMI,    F,  1,      S  ),
254 	CMD(  MI_TOPOLOGY_FILTER,               SMI,    F,  1,      S  ),
255 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
256 	CMD(  MI_DISPLAY_FLIP,                  SMI,   !F,  0xFF,   R  ),
257 	CMD(  MI_SET_CONTEXT,                   SMI,   !F,  0xFF,   R  ),
258 	CMD(  MI_URB_CLEAR,                     SMI,   !F,  0xFF,   S  ),
259 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3F,   B,
260 	      .bits = {{
261 			.offset = 0,
262 			.mask = MI_GLOBAL_GTT,
263 			.expected = 0,
264 	      }},						       ),
265 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0xFF,   R  ),
266 	CMD(  MI_CLFLUSH,                       SMI,   !F,  0x3FF,  B,
267 	      .bits = {{
268 			.offset = 0,
269 			.mask = MI_GLOBAL_GTT,
270 			.expected = 0,
271 	      }},						       ),
272 	CMD(  MI_REPORT_PERF_COUNT,             SMI,   !F,  0x3F,   B,
273 	      .bits = {{
274 			.offset = 1,
275 			.mask = MI_REPORT_PERF_COUNT_GGTT,
276 			.expected = 0,
277 	      }},						       ),
278 	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
279 	      .bits = {{
280 			.offset = 0,
281 			.mask = MI_GLOBAL_GTT,
282 			.expected = 0,
283 	      }},						       ),
284 	CMD(  GFX_OP_3DSTATE_VF_STATISTICS,     S3D,    F,  1,      S  ),
285 	CMD(  PIPELINE_SELECT,                  S3D,    F,  1,      S  ),
286 	CMD(  MEDIA_VFE_STATE,			S3D,   !F,  0xFFFF, B,
287 	      .bits = {{
288 			.offset = 2,
289 			.mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK,
290 			.expected = 0,
291 	      }},						       ),
292 	CMD(  GPGPU_OBJECT,                     S3D,   !F,  0xFF,   S  ),
293 	CMD(  GPGPU_WALKER,                     S3D,   !F,  0xFF,   S  ),
294 	CMD(  GFX_OP_3DSTATE_SO_DECL_LIST,      S3D,   !F,  0x1FF,  S  ),
295 	CMD(  GFX_OP_PIPE_CONTROL(5),           S3D,   !F,  0xFF,   B,
296 	      .bits = {{
297 			.offset = 1,
298 			.mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY),
299 			.expected = 0,
300 	      },
301 	      {
302 			.offset = 1,
303 		        .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB |
304 				 PIPE_CONTROL_STORE_DATA_INDEX),
305 			.expected = 0,
306 			.condition_offset = 1,
307 			.condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK,
308 	      }},						       ),
309 };
310 
311 static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
312 	CMD(  MI_SET_PREDICATE,                 SMI,    F,  1,      S  ),
313 	CMD(  MI_RS_CONTROL,                    SMI,    F,  1,      S  ),
314 	CMD(  MI_URB_ATOMIC_ALLOC,              SMI,    F,  1,      S  ),
315 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
316 	CMD(  MI_RS_CONTEXT,                    SMI,    F,  1,      S  ),
317 	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   R  ),
318 	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   R  ),
319 	CMD(  MI_LOAD_REGISTER_REG,             SMI,   !F,  0xFF,   W,
320 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 }    ),
321 	CMD(  MI_RS_STORE_DATA_IMM,             SMI,   !F,  0xFF,   S  ),
322 	CMD(  MI_LOAD_URB_MEM,                  SMI,   !F,  0xFF,   S  ),
323 	CMD(  MI_STORE_URB_MEM,                 SMI,   !F,  0xFF,   S  ),
324 	CMD(  GFX_OP_3DSTATE_DX9_CONSTANTF_VS,  S3D,   !F,  0x7FF,  S  ),
325 	CMD(  GFX_OP_3DSTATE_DX9_CONSTANTF_PS,  S3D,   !F,  0x7FF,  S  ),
326 
327 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS,  S3D,   !F,  0x1FF,  S  ),
328 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS,  S3D,   !F,  0x1FF,  S  ),
329 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS,  S3D,   !F,  0x1FF,  S  ),
330 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS,  S3D,   !F,  0x1FF,  S  ),
331 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS,  S3D,   !F,  0x1FF,  S  ),
332 };
333 
334 static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = {
335 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
336 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
337 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0xFF,   B,
338 	      .bits = {{
339 			.offset = 0,
340 			.mask = MI_GLOBAL_GTT,
341 			.expected = 0,
342 	      }},						       ),
343 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
344 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
345 	      .bits = {{
346 			.offset = 0,
347 			.mask = MI_FLUSH_DW_NOTIFY,
348 			.expected = 0,
349 	      },
350 	      {
351 			.offset = 1,
352 			.mask = MI_FLUSH_DW_USE_GTT,
353 			.expected = 0,
354 			.condition_offset = 0,
355 			.condition_mask = MI_FLUSH_DW_OP_MASK,
356 	      },
357 	      {
358 			.offset = 0,
359 			.mask = MI_FLUSH_DW_STORE_INDEX,
360 			.expected = 0,
361 			.condition_offset = 0,
362 			.condition_mask = MI_FLUSH_DW_OP_MASK,
363 	      }},						       ),
364 	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
365 	      .bits = {{
366 			.offset = 0,
367 			.mask = MI_GLOBAL_GTT,
368 			.expected = 0,
369 	      }},						       ),
370 	/*
371 	 * MFX_WAIT doesn't fit the way we handle length for most commands.
372 	 * It has a length field but it uses a non-standard length bias.
373 	 * It is always 1 dword though, so just treat it as fixed length.
374 	 */
375 	CMD(  MFX_WAIT,                         SMFX,   F,  1,      S  ),
376 };
377 
378 static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = {
379 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
380 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
381 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0xFF,   B,
382 	      .bits = {{
383 			.offset = 0,
384 			.mask = MI_GLOBAL_GTT,
385 			.expected = 0,
386 	      }},						       ),
387 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
388 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
389 	      .bits = {{
390 			.offset = 0,
391 			.mask = MI_FLUSH_DW_NOTIFY,
392 			.expected = 0,
393 	      },
394 	      {
395 			.offset = 1,
396 			.mask = MI_FLUSH_DW_USE_GTT,
397 			.expected = 0,
398 			.condition_offset = 0,
399 			.condition_mask = MI_FLUSH_DW_OP_MASK,
400 	      },
401 	      {
402 			.offset = 0,
403 			.mask = MI_FLUSH_DW_STORE_INDEX,
404 			.expected = 0,
405 			.condition_offset = 0,
406 			.condition_mask = MI_FLUSH_DW_OP_MASK,
407 	      }},						       ),
408 	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
409 	      .bits = {{
410 			.offset = 0,
411 			.mask = MI_GLOBAL_GTT,
412 			.expected = 0,
413 	      }},						       ),
414 };
415 
416 static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = {
417 	CMD(  MI_DISPLAY_FLIP,                  SMI,   !F,  0xFF,   R  ),
418 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3FF,  B,
419 	      .bits = {{
420 			.offset = 0,
421 			.mask = MI_GLOBAL_GTT,
422 			.expected = 0,
423 	      }},						       ),
424 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
425 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
426 	      .bits = {{
427 			.offset = 0,
428 			.mask = MI_FLUSH_DW_NOTIFY,
429 			.expected = 0,
430 	      },
431 	      {
432 			.offset = 1,
433 			.mask = MI_FLUSH_DW_USE_GTT,
434 			.expected = 0,
435 			.condition_offset = 0,
436 			.condition_mask = MI_FLUSH_DW_OP_MASK,
437 	      },
438 	      {
439 			.offset = 0,
440 			.mask = MI_FLUSH_DW_STORE_INDEX,
441 			.expected = 0,
442 			.condition_offset = 0,
443 			.condition_mask = MI_FLUSH_DW_OP_MASK,
444 	      }},						       ),
445 	CMD(  COLOR_BLT,                        S2D,   !F,  0x3F,   S  ),
446 	CMD(  SRC_COPY_BLT,                     S2D,   !F,  0x3F,   S  ),
447 };
448 
449 static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
450 	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   R  ),
451 	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   R  ),
452 };
453 
454 /*
455  * For Gen9 we can still rely on the h/w to enforce cmd security, and only
456  * need to re-enforce the register access checks. We therefore only need to
457  * teach the cmdparser how to find the end of each command, and identify
458  * register accesses. The table doesn't need to reject any commands, and so
459  * the only commands listed here are:
460  *   1) Those that touch registers
461  *   2) Those that do not have the default 8-bit length
462  *
463  * Note that the default MI length mask chosen for this table is 0xFF, not
464  * the 0x3F used on older devices. This is because the vast majority of MI
465  * cmds on Gen9 use a standard 8-bit Length field.
466  * All the Gen9 blitter instructions are standard 0xFF length mask, and
467  * none allow access to non-general registers, so in fact no BLT cmds are
468  * included in the table at all.
469  *
470  */
471 static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = {
472 	CMD(  MI_NOOP,                          SMI,    F,  1,      S  ),
473 	CMD(  MI_USER_INTERRUPT,                SMI,    F,  1,      S  ),
474 	CMD(  MI_WAIT_FOR_EVENT,                SMI,    F,  1,      S  ),
475 	CMD(  MI_FLUSH,                         SMI,    F,  1,      S  ),
476 	CMD(  MI_ARB_CHECK,                     SMI,    F,  1,      S  ),
477 	CMD(  MI_REPORT_HEAD,                   SMI,    F,  1,      S  ),
478 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      S  ),
479 	CMD(  MI_SUSPEND_FLUSH,                 SMI,    F,  1,      S  ),
480 	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   S  ),
481 	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   S  ),
482 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3FF,  S  ),
483 	CMD(  MI_LOAD_REGISTER_IMM(1),          SMI,   !F,  0xFF,   W,
484 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 }    ),
485 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3FF,  S  ),
486 	CMD(  MI_STORE_REGISTER_MEM_GEN8,       SMI,    F,  4,      W,
487 	      .reg = { .offset = 1, .mask = 0x007FFFFC }               ),
488 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   S  ),
489 	CMD(  MI_LOAD_REGISTER_MEM_GEN8,        SMI,    F,  4,      W,
490 	      .reg = { .offset = 1, .mask = 0x007FFFFC }               ),
491 	CMD(  MI_LOAD_REGISTER_REG,             SMI,    !F,  0xFF,  W,
492 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 }    ),
493 
494 	/*
495 	 * We allow BB_START but apply further checks. We just sanitize the
496 	 * basic fields here.
497 	 */
498 #define MI_BB_START_OPERAND_MASK   GENMASK(SMI-1, 0)
499 #define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1)
500 	CMD(  MI_BATCH_BUFFER_START_GEN8,       SMI,    !F,  0xFF,  B,
501 	      .bits = {{
502 			.offset = 0,
503 			.mask = MI_BB_START_OPERAND_MASK,
504 			.expected = MI_BB_START_OPERAND_EXPECT,
505 	      }},						       ),
506 };
507 
508 static const struct drm_i915_cmd_descriptor noop_desc =
509 	CMD(MI_NOOP, SMI, F, 1, S);
510 
511 #undef CMD
512 #undef SMI
513 #undef S3D
514 #undef S2D
515 #undef SMFX
516 #undef F
517 #undef S
518 #undef R
519 #undef W
520 #undef B
521 
522 static const struct drm_i915_cmd_table gen7_render_cmd_table[] = {
523 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
524 	{ gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
525 };
526 
527 static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = {
528 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
529 	{ gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
530 	{ hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
531 };
532 
533 static const struct drm_i915_cmd_table gen7_video_cmd_table[] = {
534 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
535 	{ gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) },
536 };
537 
538 static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = {
539 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
540 	{ gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) },
541 };
542 
543 static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = {
544 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
545 	{ gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
546 };
547 
548 static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = {
549 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
550 	{ gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
551 	{ hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
552 };
553 
554 static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = {
555 	{ gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) },
556 };
557 
558 
559 /*
560  * Register whitelists, sorted by increasing register offset.
561  */
562 
563 /*
564  * An individual whitelist entry granting access to register addr.  If
565  * mask is non-zero the argument of immediate register writes will be
566  * AND-ed with mask, and the command will be rejected if the result
567  * doesn't match value.
568  *
569  * Registers with non-zero mask are only allowed to be written using
570  * LRI.
571  */
572 struct drm_i915_reg_descriptor {
573 	i915_reg_t addr;
574 	u32 mask;
575 	u32 value;
576 };
577 
578 /* Convenience macro for adding 32-bit registers. */
579 #define REG32(_reg, ...) \
580 	{ .addr = (_reg), __VA_ARGS__ }
581 
582 #define REG32_IDX(_reg, idx) \
583 	{ .addr = _reg(idx) }
584 
585 /*
586  * Convenience macro for adding 64-bit registers.
587  *
588  * Some registers that userspace accesses are 64 bits. The register
589  * access commands only allow 32-bit accesses. Hence, we have to include
590  * entries for both halves of the 64-bit registers.
591  */
592 #define REG64(_reg) \
593 	{ .addr = _reg }, \
594 	{ .addr = _reg ## _UDW }
595 
596 #define REG64_IDX(_reg, idx) \
597 	{ .addr = _reg(idx) }, \
598 	{ .addr = _reg ## _UDW(idx) }
599 
600 #define REG64_BASE_IDX(_reg, base, idx) \
601 	{ .addr = _reg(base, idx) }, \
602 	{ .addr = _reg ## _UDW(base, idx) }
603 
604 static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
605 	REG64(GPGPU_THREADS_DISPATCHED),
606 	REG64(HS_INVOCATION_COUNT),
607 	REG64(DS_INVOCATION_COUNT),
608 	REG64(IA_VERTICES_COUNT),
609 	REG64(IA_PRIMITIVES_COUNT),
610 	REG64(VS_INVOCATION_COUNT),
611 	REG64(GS_INVOCATION_COUNT),
612 	REG64(GS_PRIMITIVES_COUNT),
613 	REG64(CL_INVOCATION_COUNT),
614 	REG64(CL_PRIMITIVES_COUNT),
615 	REG64(PS_INVOCATION_COUNT),
616 	REG64(PS_DEPTH_COUNT),
617 	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
618 	REG64_IDX(MI_PREDICATE_SRC0, RENDER_RING_BASE),
619 	REG64_IDX(MI_PREDICATE_SRC1, RENDER_RING_BASE),
620 	REG32(GEN7_3DPRIM_END_OFFSET),
621 	REG32(GEN7_3DPRIM_START_VERTEX),
622 	REG32(GEN7_3DPRIM_VERTEX_COUNT),
623 	REG32(GEN7_3DPRIM_INSTANCE_COUNT),
624 	REG32(GEN7_3DPRIM_START_INSTANCE),
625 	REG32(GEN7_3DPRIM_BASE_VERTEX),
626 	REG32(GEN7_GPGPU_DISPATCHDIMX),
627 	REG32(GEN7_GPGPU_DISPATCHDIMY),
628 	REG32(GEN7_GPGPU_DISPATCHDIMZ),
629 	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
630 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0),
631 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1),
632 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2),
633 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3),
634 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0),
635 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1),
636 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2),
637 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3),
638 	REG32(GEN7_SO_WRITE_OFFSET(0)),
639 	REG32(GEN7_SO_WRITE_OFFSET(1)),
640 	REG32(GEN7_SO_WRITE_OFFSET(2)),
641 	REG32(GEN7_SO_WRITE_OFFSET(3)),
642 	REG32(GEN7_L3SQCREG1),
643 	REG32(GEN7_L3CNTLREG2),
644 	REG32(GEN7_L3CNTLREG3),
645 	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
646 };
647 
648 static const struct drm_i915_reg_descriptor hsw_render_regs[] = {
649 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 0),
650 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 1),
651 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 2),
652 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 3),
653 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 4),
654 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 5),
655 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 6),
656 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 7),
657 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 8),
658 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 9),
659 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 10),
660 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 11),
661 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 12),
662 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 13),
663 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 14),
664 	REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 15),
665 	REG32(HSW_SCRATCH1,
666 	      .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
667 	      .value = 0),
668 	REG32(HSW_ROW_CHICKEN3,
669 	      .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 |
670                         HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
671 	      .value = 0),
672 };
673 
674 static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
675 	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
676 	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
677 	REG32(BCS_SWCTRL),
678 	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
679 };
680 
681 static const struct drm_i915_reg_descriptor gen9_blt_regs[] = {
682 	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
683 	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
684 	REG32(BCS_SWCTRL),
685 	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
686 	REG32_IDX(RING_CTX_TIMESTAMP, BLT_RING_BASE),
687 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 0),
688 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 1),
689 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 2),
690 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 3),
691 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 4),
692 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 5),
693 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 6),
694 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 7),
695 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 8),
696 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 9),
697 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 10),
698 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 11),
699 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 12),
700 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 13),
701 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 14),
702 	REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 15),
703 };
704 
705 #undef REG64
706 #undef REG32
707 
708 struct drm_i915_reg_table {
709 	const struct drm_i915_reg_descriptor *regs;
710 	int num_regs;
711 };
712 
713 static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
714 	{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
715 };
716 
717 static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
718 	{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
719 };
720 
721 static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
722 	{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
723 	{ hsw_render_regs, ARRAY_SIZE(hsw_render_regs) },
724 };
725 
726 static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
727 	{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
728 };
729 
730 static const struct drm_i915_reg_table gen9_blt_reg_tables[] = {
731 	{ gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) },
732 };
733 
734 static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
735 {
736 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
737 	u32 subclient =
738 		(cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
739 
740 	if (client == INSTR_MI_CLIENT)
741 		return 0x3F;
742 	else if (client == INSTR_RC_CLIENT) {
743 		if (subclient == INSTR_MEDIA_SUBCLIENT)
744 			return 0xFFFF;
745 		else
746 			return 0xFF;
747 	}
748 
749 	DRM_DEBUG("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header);
750 	return 0;
751 }
752 
753 static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header)
754 {
755 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
756 	u32 subclient =
757 		(cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
758 	u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT;
759 
760 	if (client == INSTR_MI_CLIENT)
761 		return 0x3F;
762 	else if (client == INSTR_RC_CLIENT) {
763 		if (subclient == INSTR_MEDIA_SUBCLIENT) {
764 			if (op == 6)
765 				return 0xFFFF;
766 			else
767 				return 0xFFF;
768 		} else
769 			return 0xFF;
770 	}
771 
772 	DRM_DEBUG("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header);
773 	return 0;
774 }
775 
776 static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
777 {
778 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
779 
780 	if (client == INSTR_MI_CLIENT)
781 		return 0x3F;
782 	else if (client == INSTR_BC_CLIENT)
783 		return 0xFF;
784 
785 	DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
786 	return 0;
787 }
788 
789 static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header)
790 {
791 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
792 
793 	if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT)
794 		return 0xFF;
795 
796 	DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
797 	return 0;
798 }
799 
800 static bool validate_cmds_sorted(const struct intel_engine_cs *engine,
801 				 const struct drm_i915_cmd_table *cmd_tables,
802 				 int cmd_table_count)
803 {
804 	int i;
805 	bool ret = true;
806 
807 	if (!cmd_tables || cmd_table_count == 0)
808 		return true;
809 
810 	for (i = 0; i < cmd_table_count; i++) {
811 		const struct drm_i915_cmd_table *table = &cmd_tables[i];
812 		u32 previous = 0;
813 		int j;
814 
815 		for (j = 0; j < table->count; j++) {
816 			const struct drm_i915_cmd_descriptor *desc =
817 				&table->table[j];
818 			u32 curr = desc->cmd.value & desc->cmd.mask;
819 
820 			if (curr < previous) {
821 				drm_err(&engine->i915->drm,
822 					"CMD: %s [%d] command table not sorted: "
823 					"table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
824 					engine->name, engine->id,
825 					i, j, curr, previous);
826 				ret = false;
827 			}
828 
829 			previous = curr;
830 		}
831 	}
832 
833 	return ret;
834 }
835 
836 static bool check_sorted(const struct intel_engine_cs *engine,
837 			 const struct drm_i915_reg_descriptor *reg_table,
838 			 int reg_count)
839 {
840 	int i;
841 	u32 previous = 0;
842 	bool ret = true;
843 
844 	for (i = 0; i < reg_count; i++) {
845 		u32 curr = i915_mmio_reg_offset(reg_table[i].addr);
846 
847 		if (curr < previous) {
848 			drm_err(&engine->i915->drm,
849 				"CMD: %s [%d] register table not sorted: "
850 				"entry=%d reg=0x%08X prev=0x%08X\n",
851 				engine->name, engine->id,
852 				i, curr, previous);
853 			ret = false;
854 		}
855 
856 		previous = curr;
857 	}
858 
859 	return ret;
860 }
861 
862 static bool validate_regs_sorted(struct intel_engine_cs *engine)
863 {
864 	int i;
865 	const struct drm_i915_reg_table *table;
866 
867 	for (i = 0; i < engine->reg_table_count; i++) {
868 		table = &engine->reg_tables[i];
869 		if (!check_sorted(engine, table->regs, table->num_regs))
870 			return false;
871 	}
872 
873 	return true;
874 }
875 
876 struct cmd_node {
877 	const struct drm_i915_cmd_descriptor *desc;
878 	struct hlist_node node;
879 };
880 
881 /*
882  * Different command ranges have different numbers of bits for the opcode. For
883  * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The
884  * problem is that, for example, MI commands use bits 22:16 for other fields
885  * such as GGTT vs PPGTT bits. If we include those bits in the mask then when
886  * we mask a command from a batch it could hash to the wrong bucket due to
887  * non-opcode bits being set. But if we don't include those bits, some 3D
888  * commands may hash to the same bucket due to not including opcode bits that
889  * make the command unique. For now, we will risk hashing to the same bucket.
890  */
891 static inline u32 cmd_header_key(u32 x)
892 {
893 	switch (x >> INSTR_CLIENT_SHIFT) {
894 	default:
895 	case INSTR_MI_CLIENT:
896 		return x >> STD_MI_OPCODE_SHIFT;
897 	case INSTR_RC_CLIENT:
898 		return x >> STD_3D_OPCODE_SHIFT;
899 	case INSTR_BC_CLIENT:
900 		return x >> STD_2D_OPCODE_SHIFT;
901 	}
902 }
903 
904 static int init_hash_table(struct intel_engine_cs *engine,
905 			   const struct drm_i915_cmd_table *cmd_tables,
906 			   int cmd_table_count)
907 {
908 	int i, j;
909 
910 	hash_init(engine->cmd_hash);
911 
912 	for (i = 0; i < cmd_table_count; i++) {
913 		const struct drm_i915_cmd_table *table = &cmd_tables[i];
914 
915 		for (j = 0; j < table->count; j++) {
916 			const struct drm_i915_cmd_descriptor *desc =
917 				&table->table[j];
918 			struct cmd_node *desc_node =
919 				kmalloc(sizeof(*desc_node), GFP_KERNEL);
920 
921 			if (!desc_node)
922 				return -ENOMEM;
923 
924 			desc_node->desc = desc;
925 			hash_add(engine->cmd_hash, &desc_node->node,
926 				 cmd_header_key(desc->cmd.value));
927 		}
928 	}
929 
930 	return 0;
931 }
932 
933 static void fini_hash_table(struct intel_engine_cs *engine)
934 {
935 	struct hlist_node *tmp;
936 	struct cmd_node *desc_node;
937 	int i;
938 
939 	hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) {
940 		hash_del(&desc_node->node);
941 		kfree(desc_node);
942 	}
943 }
944 
945 /**
946  * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine
947  * @engine: the engine to initialize
948  *
949  * Optionally initializes fields related to batch buffer command parsing in the
950  * struct intel_engine_cs based on whether the platform requires software
951  * command parsing.
952  */
953 int intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
954 {
955 	const struct drm_i915_cmd_table *cmd_tables;
956 	int cmd_table_count;
957 	int ret;
958 
959 	if (GRAPHICS_VER(engine->i915) != 7 && !(GRAPHICS_VER(engine->i915) == 9 &&
960 						 engine->class == COPY_ENGINE_CLASS))
961 		return 0;
962 
963 	switch (engine->class) {
964 	case RENDER_CLASS:
965 		if (IS_HASWELL(engine->i915)) {
966 			cmd_tables = hsw_render_ring_cmd_table;
967 			cmd_table_count =
968 				ARRAY_SIZE(hsw_render_ring_cmd_table);
969 		} else {
970 			cmd_tables = gen7_render_cmd_table;
971 			cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table);
972 		}
973 
974 		if (IS_HASWELL(engine->i915)) {
975 			engine->reg_tables = hsw_render_reg_tables;
976 			engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables);
977 		} else {
978 			engine->reg_tables = ivb_render_reg_tables;
979 			engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
980 		}
981 		engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
982 		break;
983 	case VIDEO_DECODE_CLASS:
984 		cmd_tables = gen7_video_cmd_table;
985 		cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table);
986 		engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
987 		break;
988 	case COPY_ENGINE_CLASS:
989 		engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
990 		if (GRAPHICS_VER(engine->i915) == 9) {
991 			cmd_tables = gen9_blt_cmd_table;
992 			cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table);
993 			engine->get_cmd_length_mask =
994 				gen9_blt_get_cmd_length_mask;
995 
996 			/* BCS Engine unsafe without parser */
997 			engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER;
998 		} else if (IS_HASWELL(engine->i915)) {
999 			cmd_tables = hsw_blt_ring_cmd_table;
1000 			cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table);
1001 		} else {
1002 			cmd_tables = gen7_blt_cmd_table;
1003 			cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table);
1004 		}
1005 
1006 		if (GRAPHICS_VER(engine->i915) == 9) {
1007 			engine->reg_tables = gen9_blt_reg_tables;
1008 			engine->reg_table_count =
1009 				ARRAY_SIZE(gen9_blt_reg_tables);
1010 		} else if (IS_HASWELL(engine->i915)) {
1011 			engine->reg_tables = hsw_blt_reg_tables;
1012 			engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
1013 		} else {
1014 			engine->reg_tables = ivb_blt_reg_tables;
1015 			engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
1016 		}
1017 		break;
1018 	case VIDEO_ENHANCEMENT_CLASS:
1019 		cmd_tables = hsw_vebox_cmd_table;
1020 		cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table);
1021 		/* VECS can use the same length_mask function as VCS */
1022 		engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
1023 		break;
1024 	default:
1025 		MISSING_CASE(engine->class);
1026 		goto out;
1027 	}
1028 
1029 	if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) {
1030 		drm_err(&engine->i915->drm,
1031 			"%s: command descriptions are not sorted\n",
1032 			engine->name);
1033 		goto out;
1034 	}
1035 	if (!validate_regs_sorted(engine)) {
1036 		drm_err(&engine->i915->drm,
1037 			"%s: registers are not sorted\n", engine->name);
1038 		goto out;
1039 	}
1040 
1041 	ret = init_hash_table(engine, cmd_tables, cmd_table_count);
1042 	if (ret) {
1043 		drm_err(&engine->i915->drm,
1044 			"%s: initialised failed!\n", engine->name);
1045 		fini_hash_table(engine);
1046 		goto out;
1047 	}
1048 
1049 	engine->flags |= I915_ENGINE_USING_CMD_PARSER;
1050 
1051 out:
1052 	if (intel_engine_requires_cmd_parser(engine) &&
1053 	    !intel_engine_using_cmd_parser(engine))
1054 		return -EINVAL;
1055 
1056 	return 0;
1057 }
1058 
1059 /**
1060  * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields
1061  * @engine: the engine to clean up
1062  *
1063  * Releases any resources related to command parsing that may have been
1064  * initialized for the specified engine.
1065  */
1066 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine)
1067 {
1068 	if (!intel_engine_using_cmd_parser(engine))
1069 		return;
1070 
1071 	fini_hash_table(engine);
1072 }
1073 
1074 static const struct drm_i915_cmd_descriptor*
1075 find_cmd_in_table(struct intel_engine_cs *engine,
1076 		  u32 cmd_header)
1077 {
1078 	struct cmd_node *desc_node;
1079 
1080 	hash_for_each_possible(engine->cmd_hash, desc_node, node,
1081 			       cmd_header_key(cmd_header)) {
1082 		const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
1083 		if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1084 			return desc;
1085 	}
1086 
1087 	return NULL;
1088 }
1089 
1090 /*
1091  * Returns a pointer to a descriptor for the command specified by cmd_header.
1092  *
1093  * The caller must supply space for a default descriptor via the default_desc
1094  * parameter. If no descriptor for the specified command exists in the engine's
1095  * command parser tables, this function fills in default_desc based on the
1096  * engine's default length encoding and returns default_desc.
1097  */
1098 static const struct drm_i915_cmd_descriptor*
1099 find_cmd(struct intel_engine_cs *engine,
1100 	 u32 cmd_header,
1101 	 const struct drm_i915_cmd_descriptor *desc,
1102 	 struct drm_i915_cmd_descriptor *default_desc)
1103 {
1104 	u32 mask;
1105 
1106 	if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1107 		return desc;
1108 
1109 	desc = find_cmd_in_table(engine, cmd_header);
1110 	if (desc)
1111 		return desc;
1112 
1113 	mask = engine->get_cmd_length_mask(cmd_header);
1114 	if (!mask)
1115 		return NULL;
1116 
1117 	default_desc->cmd.value = cmd_header;
1118 	default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT;
1119 	default_desc->length.mask = mask;
1120 	default_desc->flags = CMD_DESC_SKIP;
1121 	return default_desc;
1122 }
1123 
1124 static const struct drm_i915_reg_descriptor *
1125 __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr)
1126 {
1127 	int start = 0, end = count;
1128 	while (start < end) {
1129 		int mid = start + (end - start) / 2;
1130 		int ret = addr - i915_mmio_reg_offset(table[mid].addr);
1131 		if (ret < 0)
1132 			end = mid;
1133 		else if (ret > 0)
1134 			start = mid + 1;
1135 		else
1136 			return &table[mid];
1137 	}
1138 	return NULL;
1139 }
1140 
1141 static const struct drm_i915_reg_descriptor *
1142 find_reg(const struct intel_engine_cs *engine, u32 addr)
1143 {
1144 	const struct drm_i915_reg_table *table = engine->reg_tables;
1145 	const struct drm_i915_reg_descriptor *reg = NULL;
1146 	int count = engine->reg_table_count;
1147 
1148 	for (; !reg && (count > 0); ++table, --count)
1149 		reg = __find_reg(table->regs, table->num_regs, addr);
1150 
1151 	return reg;
1152 }
1153 
1154 /* Returns a vmap'd pointer to dst_obj, which the caller must unmap */
1155 static u32 *copy_batch(struct drm_i915_gem_object *dst_obj,
1156 		       struct drm_i915_gem_object *src_obj,
1157 		       unsigned long offset, unsigned long length,
1158 		       bool *needs_clflush_after)
1159 {
1160 	unsigned int src_needs_clflush;
1161 	unsigned int dst_needs_clflush;
1162 	void *dst, *src;
1163 	int ret;
1164 
1165 	ret = i915_gem_object_prepare_write(dst_obj, &dst_needs_clflush);
1166 	if (ret)
1167 		return ERR_PTR(ret);
1168 
1169 	dst = i915_gem_object_pin_map(dst_obj, I915_MAP_WB);
1170 	i915_gem_object_finish_access(dst_obj);
1171 	if (IS_ERR(dst))
1172 		return dst;
1173 
1174 	ret = i915_gem_object_prepare_read(src_obj, &src_needs_clflush);
1175 	if (ret) {
1176 		i915_gem_object_unpin_map(dst_obj);
1177 		return ERR_PTR(ret);
1178 	}
1179 
1180 	src = ERR_PTR(-ENODEV);
1181 	if (src_needs_clflush && i915_has_memcpy_from_wc()) {
1182 		src = i915_gem_object_pin_map(src_obj, I915_MAP_WC);
1183 		if (!IS_ERR(src)) {
1184 			i915_unaligned_memcpy_from_wc(dst,
1185 						      src + offset,
1186 						      length);
1187 			i915_gem_object_unpin_map(src_obj);
1188 		}
1189 	}
1190 	if (IS_ERR(src)) {
1191 		unsigned long x, n, remain;
1192 		void *ptr;
1193 
1194 		/*
1195 		 * We can avoid clflushing partial cachelines before the write
1196 		 * if we only every write full cache-lines. Since we know that
1197 		 * both the source and destination are in multiples of
1198 		 * PAGE_SIZE, we can simply round up to the next cacheline.
1199 		 * We don't care about copying too much here as we only
1200 		 * validate up to the end of the batch.
1201 		 */
1202 		remain = length;
1203 		if (dst_needs_clflush & CLFLUSH_BEFORE)
1204 			remain = round_up(remain,
1205 					  boot_cpu_data.x86_clflush_size);
1206 
1207 		ptr = dst;
1208 		x = offset_in_page(offset);
1209 		for (n = offset >> PAGE_SHIFT; remain; n++) {
1210 			int len = min(remain, PAGE_SIZE - x);
1211 
1212 			src = kmap_atomic(i915_gem_object_get_page(src_obj, n));
1213 			if (src_needs_clflush)
1214 				drm_clflush_virt_range(src + x, len);
1215 			memcpy(ptr, src + x, len);
1216 			kunmap_atomic(src);
1217 
1218 			ptr += len;
1219 			remain -= len;
1220 			x = 0;
1221 		}
1222 	}
1223 
1224 	i915_gem_object_finish_access(src_obj);
1225 
1226 	memset32(dst + length, 0, (dst_obj->base.size - length) / sizeof(u32));
1227 
1228 	/* dst_obj is returned with vmap pinned */
1229 	*needs_clflush_after = dst_needs_clflush & CLFLUSH_AFTER;
1230 
1231 	return dst;
1232 }
1233 
1234 static inline bool cmd_desc_is(const struct drm_i915_cmd_descriptor * const desc,
1235 			       const u32 cmd)
1236 {
1237 	return desc->cmd.value == (cmd & desc->cmd.mask);
1238 }
1239 
1240 static bool check_cmd(const struct intel_engine_cs *engine,
1241 		      const struct drm_i915_cmd_descriptor *desc,
1242 		      const u32 *cmd, u32 length)
1243 {
1244 	if (desc->flags & CMD_DESC_SKIP)
1245 		return true;
1246 
1247 	if (desc->flags & CMD_DESC_REJECT) {
1248 		DRM_DEBUG("CMD: Rejected command: 0x%08X\n", *cmd);
1249 		return false;
1250 	}
1251 
1252 	if (desc->flags & CMD_DESC_REGISTER) {
1253 		/*
1254 		 * Get the distance between individual register offset
1255 		 * fields if the command can perform more than one
1256 		 * access at a time.
1257 		 */
1258 		const u32 step = desc->reg.step ? desc->reg.step : length;
1259 		u32 offset;
1260 
1261 		for (offset = desc->reg.offset; offset < length;
1262 		     offset += step) {
1263 			const u32 reg_addr = cmd[offset] & desc->reg.mask;
1264 			const struct drm_i915_reg_descriptor *reg =
1265 				find_reg(engine, reg_addr);
1266 
1267 			if (!reg) {
1268 				DRM_DEBUG("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n",
1269 					  reg_addr, *cmd, engine->name);
1270 				return false;
1271 			}
1272 
1273 			/*
1274 			 * Check the value written to the register against the
1275 			 * allowed mask/value pair given in the whitelist entry.
1276 			 */
1277 			if (reg->mask) {
1278 				if (cmd_desc_is(desc, MI_LOAD_REGISTER_MEM)) {
1279 					DRM_DEBUG("CMD: Rejected LRM to masked register 0x%08X\n",
1280 						  reg_addr);
1281 					return false;
1282 				}
1283 
1284 				if (cmd_desc_is(desc, MI_LOAD_REGISTER_REG)) {
1285 					DRM_DEBUG("CMD: Rejected LRR to masked register 0x%08X\n",
1286 						  reg_addr);
1287 					return false;
1288 				}
1289 
1290 				if (cmd_desc_is(desc, MI_LOAD_REGISTER_IMM(1)) &&
1291 				    (offset + 2 > length ||
1292 				     (cmd[offset + 1] & reg->mask) != reg->value)) {
1293 					DRM_DEBUG("CMD: Rejected LRI to masked register 0x%08X\n",
1294 						  reg_addr);
1295 					return false;
1296 				}
1297 			}
1298 		}
1299 	}
1300 
1301 	if (desc->flags & CMD_DESC_BITMASK) {
1302 		int i;
1303 
1304 		for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) {
1305 			u32 dword;
1306 
1307 			if (desc->bits[i].mask == 0)
1308 				break;
1309 
1310 			if (desc->bits[i].condition_mask != 0) {
1311 				u32 offset =
1312 					desc->bits[i].condition_offset;
1313 				u32 condition = cmd[offset] &
1314 					desc->bits[i].condition_mask;
1315 
1316 				if (condition == 0)
1317 					continue;
1318 			}
1319 
1320 			if (desc->bits[i].offset >= length) {
1321 				DRM_DEBUG("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n",
1322 					  *cmd, engine->name);
1323 				return false;
1324 			}
1325 
1326 			dword = cmd[desc->bits[i].offset] &
1327 				desc->bits[i].mask;
1328 
1329 			if (dword != desc->bits[i].expected) {
1330 				DRM_DEBUG("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n",
1331 					  *cmd,
1332 					  desc->bits[i].mask,
1333 					  desc->bits[i].expected,
1334 					  dword, engine->name);
1335 				return false;
1336 			}
1337 		}
1338 	}
1339 
1340 	return true;
1341 }
1342 
1343 static int check_bbstart(u32 *cmd, u32 offset, u32 length,
1344 			 u32 batch_length,
1345 			 u64 batch_addr,
1346 			 u64 shadow_addr,
1347 			 const unsigned long *jump_whitelist)
1348 {
1349 	u64 jump_offset, jump_target;
1350 	u32 target_cmd_offset, target_cmd_index;
1351 
1352 	/* For igt compatibility on older platforms */
1353 	if (!jump_whitelist) {
1354 		DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n");
1355 		return -EACCES;
1356 	}
1357 
1358 	if (length != 3) {
1359 		DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n",
1360 			  length);
1361 		return -EINVAL;
1362 	}
1363 
1364 	jump_target = *(u64 *)(cmd + 1);
1365 	jump_offset = jump_target - batch_addr;
1366 
1367 	/*
1368 	 * Any underflow of jump_target is guaranteed to be outside the range
1369 	 * of a u32, so >= test catches both too large and too small
1370 	 */
1371 	if (jump_offset >= batch_length) {
1372 		DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n",
1373 			  jump_target);
1374 		return -EINVAL;
1375 	}
1376 
1377 	/*
1378 	 * This cannot overflow a u32 because we already checked jump_offset
1379 	 * is within the BB, and the batch_length is a u32
1380 	 */
1381 	target_cmd_offset = lower_32_bits(jump_offset);
1382 	target_cmd_index = target_cmd_offset / sizeof(u32);
1383 
1384 	*(u64 *)(cmd + 1) = shadow_addr + target_cmd_offset;
1385 
1386 	if (target_cmd_index == offset)
1387 		return 0;
1388 
1389 	if (IS_ERR(jump_whitelist))
1390 		return PTR_ERR(jump_whitelist);
1391 
1392 	if (!test_bit(target_cmd_index, jump_whitelist)) {
1393 		DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n",
1394 			  jump_target);
1395 		return -EINVAL;
1396 	}
1397 
1398 	return 0;
1399 }
1400 
1401 static unsigned long *alloc_whitelist(u32 batch_length)
1402 {
1403 	unsigned long *jmp;
1404 
1405 	/*
1406 	 * We expect batch_length to be less than 256KiB for known users,
1407 	 * i.e. we need at most an 8KiB bitmap allocation which should be
1408 	 * reasonably cheap due to kmalloc caches.
1409 	 */
1410 
1411 	/* Prefer to report transient allocation failure rather than hit oom */
1412 	jmp = bitmap_zalloc(DIV_ROUND_UP(batch_length, sizeof(u32)),
1413 			    GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
1414 	if (!jmp)
1415 		return ERR_PTR(-ENOMEM);
1416 
1417 	return jmp;
1418 }
1419 
1420 #define LENGTH_BIAS 2
1421 
1422 /**
1423  * intel_engine_cmd_parser() - parse a batch buffer for privilege violations
1424  * @engine: the engine on which the batch is to execute
1425  * @batch: the batch buffer in question
1426  * @batch_offset: byte offset in the batch at which execution starts
1427  * @batch_length: length of the commands in batch_obj
1428  * @shadow: validated copy of the batch buffer in question
1429  * @trampoline: true if we need to trampoline into privileged execution
1430  *
1431  * Parses the specified batch buffer looking for privilege violations as
1432  * described in the overview.
1433  *
1434  * Return: non-zero if the parser finds violations or otherwise fails; -EACCES
1435  * if the batch appears legal but should use hardware parsing
1436  */
1437 
1438 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
1439 			    struct i915_vma *batch,
1440 			    unsigned long batch_offset,
1441 			    unsigned long batch_length,
1442 			    struct i915_vma *shadow,
1443 			    bool trampoline)
1444 {
1445 	u32 *cmd, *batch_end, offset = 0;
1446 	struct drm_i915_cmd_descriptor default_desc = noop_desc;
1447 	const struct drm_i915_cmd_descriptor *desc = &default_desc;
1448 	bool needs_clflush_after = false;
1449 	unsigned long *jump_whitelist;
1450 	u64 batch_addr, shadow_addr;
1451 	int ret = 0;
1452 
1453 	GEM_BUG_ON(!IS_ALIGNED(batch_offset, sizeof(*cmd)));
1454 	GEM_BUG_ON(!IS_ALIGNED(batch_length, sizeof(*cmd)));
1455 	GEM_BUG_ON(range_overflows_t(u64, batch_offset, batch_length,
1456 				     batch->size));
1457 	GEM_BUG_ON(!batch_length);
1458 
1459 	cmd = copy_batch(shadow->obj, batch->obj,
1460 			 batch_offset, batch_length,
1461 			 &needs_clflush_after);
1462 	if (IS_ERR(cmd)) {
1463 		DRM_DEBUG("CMD: Failed to copy batch\n");
1464 		return PTR_ERR(cmd);
1465 	}
1466 
1467 	jump_whitelist = NULL;
1468 	if (!trampoline)
1469 		/* Defer failure until attempted use */
1470 		jump_whitelist = alloc_whitelist(batch_length);
1471 
1472 	shadow_addr = gen8_canonical_addr(shadow->node.start);
1473 	batch_addr = gen8_canonical_addr(batch->node.start + batch_offset);
1474 
1475 	/*
1476 	 * We use the batch length as size because the shadow object is as
1477 	 * large or larger and copy_batch() will write MI_NOPs to the extra
1478 	 * space. Parsing should be faster in some cases this way.
1479 	 */
1480 	batch_end = cmd + batch_length / sizeof(*batch_end);
1481 	do {
1482 		u32 length;
1483 
1484 		if (*cmd == MI_BATCH_BUFFER_END)
1485 			break;
1486 
1487 		desc = find_cmd(engine, *cmd, desc, &default_desc);
1488 		if (!desc) {
1489 			DRM_DEBUG("CMD: Unrecognized command: 0x%08X\n", *cmd);
1490 			ret = -EINVAL;
1491 			break;
1492 		}
1493 
1494 		if (desc->flags & CMD_DESC_FIXED)
1495 			length = desc->length.fixed;
1496 		else
1497 			length = (*cmd & desc->length.mask) + LENGTH_BIAS;
1498 
1499 		if ((batch_end - cmd) < length) {
1500 			DRM_DEBUG("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n",
1501 				  *cmd,
1502 				  length,
1503 				  batch_end - cmd);
1504 			ret = -EINVAL;
1505 			break;
1506 		}
1507 
1508 		if (!check_cmd(engine, desc, cmd, length)) {
1509 			ret = -EACCES;
1510 			break;
1511 		}
1512 
1513 		if (cmd_desc_is(desc, MI_BATCH_BUFFER_START)) {
1514 			ret = check_bbstart(cmd, offset, length, batch_length,
1515 					    batch_addr, shadow_addr,
1516 					    jump_whitelist);
1517 			break;
1518 		}
1519 
1520 		if (!IS_ERR_OR_NULL(jump_whitelist))
1521 			__set_bit(offset, jump_whitelist);
1522 
1523 		cmd += length;
1524 		offset += length;
1525 		if  (cmd >= batch_end) {
1526 			DRM_DEBUG("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
1527 			ret = -EINVAL;
1528 			break;
1529 		}
1530 	} while (1);
1531 
1532 	if (trampoline) {
1533 		/*
1534 		 * With the trampoline, the shadow is executed twice.
1535 		 *
1536 		 *   1 - starting at offset 0, in privileged mode
1537 		 *   2 - starting at offset batch_len, as non-privileged
1538 		 *
1539 		 * Only if the batch is valid and safe to execute, do we
1540 		 * allow the first privileged execution to proceed. If not,
1541 		 * we terminate the first batch and use the second batchbuffer
1542 		 * entry to chain to the original unsafe non-privileged batch,
1543 		 * leaving it to the HW to validate.
1544 		 */
1545 		*batch_end = MI_BATCH_BUFFER_END;
1546 
1547 		if (ret) {
1548 			/* Batch unsafe to execute with privileges, cancel! */
1549 			cmd = page_mask_bits(shadow->obj->mm.mapping);
1550 			*cmd = MI_BATCH_BUFFER_END;
1551 
1552 			/* If batch is unsafe but valid, jump to the original */
1553 			if (ret == -EACCES) {
1554 				unsigned int flags;
1555 
1556 				flags = MI_BATCH_NON_SECURE_I965;
1557 				if (IS_HASWELL(engine->i915))
1558 					flags = MI_BATCH_NON_SECURE_HSW;
1559 
1560 				GEM_BUG_ON(!IS_GRAPHICS_VER(engine->i915, 6, 7));
1561 				__gen6_emit_bb_start(batch_end,
1562 						     batch_addr,
1563 						     flags);
1564 
1565 				ret = 0; /* allow execution */
1566 			}
1567 		}
1568 	}
1569 
1570 	i915_gem_object_flush_map(shadow->obj);
1571 
1572 	if (!IS_ERR_OR_NULL(jump_whitelist))
1573 		kfree(jump_whitelist);
1574 	i915_gem_object_unpin_map(shadow->obj);
1575 	return ret;
1576 }
1577 
1578 /**
1579  * i915_cmd_parser_get_version() - get the cmd parser version number
1580  * @dev_priv: i915 device private
1581  *
1582  * The cmd parser maintains a simple increasing integer version number suitable
1583  * for passing to userspace clients to determine what operations are permitted.
1584  *
1585  * Return: the current version number of the cmd parser
1586  */
1587 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
1588 {
1589 	struct intel_engine_cs *engine;
1590 	bool active = false;
1591 
1592 	/* If the command parser is not enabled, report 0 - unsupported */
1593 	for_each_uabi_engine(engine, dev_priv) {
1594 		if (intel_engine_using_cmd_parser(engine)) {
1595 			active = true;
1596 			break;
1597 		}
1598 	}
1599 	if (!active)
1600 		return 0;
1601 
1602 	/*
1603 	 * Command parser version history
1604 	 *
1605 	 * 1. Initial version. Checks batches and reports violations, but leaves
1606 	 *    hardware parsing enabled (so does not allow new use cases).
1607 	 * 2. Allow access to the MI_PREDICATE_SRC0 and
1608 	 *    MI_PREDICATE_SRC1 registers.
1609 	 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
1610 	 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
1611 	 * 5. GPGPU dispatch compute indirect registers.
1612 	 * 6. TIMESTAMP register and Haswell CS GPR registers
1613 	 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers.
1614 	 * 8. Don't report cmd_check() failures as EINVAL errors to userspace;
1615 	 *    rely on the HW to NOOP disallowed commands as it would without
1616 	 *    the parser enabled.
1617 	 * 9. Don't whitelist or handle oacontrol specially, as ownership
1618 	 *    for oacontrol state is moving to i915-perf.
1619 	 * 10. Support for Gen9 BCS Parsing
1620 	 */
1621 	return 10;
1622 }
1623