xref: /openbmc/linux/drivers/gpu/drm/i915/i915_active.h (revision fb574682)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #ifndef _I915_ACTIVE_H_
8 #define _I915_ACTIVE_H_
9 
10 #include <linux/lockdep.h>
11 
12 #include "i915_active_types.h"
13 #include "i915_request.h"
14 
15 struct i915_request;
16 struct intel_engine_cs;
17 struct intel_timeline;
18 
19 /*
20  * We treat requests as fences. This is not be to confused with our
21  * "fence registers" but pipeline synchronisation objects ala GL_ARB_sync.
22  * We use the fences to synchronize access from the CPU with activity on the
23  * GPU, for example, we should not rewrite an object's PTE whilst the GPU
24  * is reading them. We also track fences at a higher level to provide
25  * implicit synchronisation around GEM objects, e.g. set-domain will wait
26  * for outstanding GPU rendering before marking the object ready for CPU
27  * access, or a pageflip will wait until the GPU is complete before showing
28  * the frame on the scanout.
29  *
30  * In order to use a fence, the object must track the fence it needs to
31  * serialise with. For example, GEM objects want to track both read and
32  * write access so that we can perform concurrent read operations between
33  * the CPU and GPU engines, as well as waiting for all rendering to
34  * complete, or waiting for the last GPU user of a "fence register". The
35  * object then embeds a #i915_active_fence to track the most recent (in
36  * retirement order) request relevant for the desired mode of access.
37  * The #i915_active_fence is updated with i915_active_fence_set() to
38  * track the most recent fence request, typically this is done as part of
39  * i915_vma_move_to_active().
40  *
41  * When the #i915_active_fence completes (is retired), it will
42  * signal its completion to the owner through a callback as well as mark
43  * itself as idle (i915_active_fence.request == NULL). The owner
44  * can then perform any action, such as delayed freeing of an active
45  * resource including itself.
46  */
47 
48 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb);
49 
50 /**
51  * __i915_active_fence_init - prepares the activity tracker for use
52  * @active - the active tracker
53  * @fence - initial fence to track, can be NULL
54  * @func - a callback when then the tracker is retired (becomes idle),
55  *         can be NULL
56  *
57  * i915_active_fence_init() prepares the embedded @active struct for use as
58  * an activity tracker, that is for tracking the last known active fence
59  * associated with it. When the last fence becomes idle, when it is retired
60  * after completion, the optional callback @func is invoked.
61  */
62 static inline void
63 __i915_active_fence_init(struct i915_active_fence *active,
64 			 void *fence,
65 			 dma_fence_func_t fn)
66 {
67 	RCU_INIT_POINTER(active->fence, fence);
68 	active->cb.func = fn ?: i915_active_noop;
69 }
70 
71 #define INIT_ACTIVE_FENCE(A) \
72 	__i915_active_fence_init((A), NULL, NULL)
73 
74 struct dma_fence *
75 __i915_active_fence_set(struct i915_active_fence *active,
76 			struct dma_fence *fence);
77 
78 /**
79  * i915_active_fence_set - updates the tracker to watch the current fence
80  * @active - the active tracker
81  * @rq - the request to watch
82  *
83  * i915_active_fence_set() watches the given @rq for completion. While
84  * that @rq is busy, the @active reports busy. When that @rq is signaled
85  * (or else retired) the @active tracker is updated to report idle.
86  */
87 int __must_check
88 i915_active_fence_set(struct i915_active_fence *active,
89 		      struct i915_request *rq);
90 /**
91  * i915_active_fence_get - return a reference to the active fence
92  * @active - the active tracker
93  *
94  * i915_active_fence_get() returns a reference to the active fence,
95  * or NULL if the active tracker is idle. The reference is obtained under RCU,
96  * so no locking is required by the caller.
97  *
98  * The reference should be freed with dma_fence_put().
99  */
100 static inline struct dma_fence *
101 i915_active_fence_get(struct i915_active_fence *active)
102 {
103 	struct dma_fence *fence;
104 
105 	rcu_read_lock();
106 	fence = dma_fence_get_rcu_safe(&active->fence);
107 	rcu_read_unlock();
108 
109 	return fence;
110 }
111 
112 /**
113  * i915_active_fence_isset - report whether the active tracker is assigned
114  * @active - the active tracker
115  *
116  * i915_active_fence_isset() returns true if the active tracker is currently
117  * assigned to a fence. Due to the lazy retiring, that fence may be idle
118  * and this may report stale information.
119  */
120 static inline bool
121 i915_active_fence_isset(const struct i915_active_fence *active)
122 {
123 	return rcu_access_pointer(active->fence);
124 }
125 
126 /*
127  * GPU activity tracking
128  *
129  * Each set of commands submitted to the GPU compromises a single request that
130  * signals a fence upon completion. struct i915_request combines the
131  * command submission, scheduling and fence signaling roles. If we want to see
132  * if a particular task is complete, we need to grab the fence (struct
133  * i915_request) for that task and check or wait for it to be signaled. More
134  * often though we want to track the status of a bunch of tasks, for example
135  * to wait for the GPU to finish accessing some memory across a variety of
136  * different command pipelines from different clients. We could choose to
137  * track every single request associated with the task, but knowing that
138  * each request belongs to an ordered timeline (later requests within a
139  * timeline must wait for earlier requests), we need only track the
140  * latest request in each timeline to determine the overall status of the
141  * task.
142  *
143  * struct i915_active provides this tracking across timelines. It builds a
144  * composite shared-fence, and is updated as new work is submitted to the task,
145  * forming a snapshot of the current status. It should be embedded into the
146  * different resources that need to track their associated GPU activity to
147  * provide a callback when that GPU activity has ceased, or otherwise to
148  * provide a serialisation point either for request submission or for CPU
149  * synchronisation.
150  */
151 
152 void __i915_active_init(struct i915_active *ref,
153 			int (*active)(struct i915_active *ref),
154 			void (*retire)(struct i915_active *ref),
155 			struct lock_class_key *mkey,
156 			struct lock_class_key *wkey);
157 
158 /* Specialise each class of i915_active to avoid impossible lockdep cycles. */
159 #define i915_active_init(ref, active, retire) do {		\
160 	static struct lock_class_key __mkey;				\
161 	static struct lock_class_key __wkey;				\
162 									\
163 	__i915_active_init(ref, active, retire, &__mkey, &__wkey);	\
164 } while (0)
165 
166 int i915_active_ref(struct i915_active *ref,
167 		    struct intel_timeline *tl,
168 		    struct dma_fence *fence);
169 
170 static inline int
171 i915_active_add_request(struct i915_active *ref, struct i915_request *rq)
172 {
173 	return i915_active_ref(ref, i915_request_timeline(rq), &rq->fence);
174 }
175 
176 struct dma_fence *
177 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f);
178 
179 static inline bool i915_active_has_exclusive(struct i915_active *ref)
180 {
181 	return rcu_access_pointer(ref->excl.fence);
182 }
183 
184 int __i915_active_wait(struct i915_active *ref, int state);
185 static inline int i915_active_wait(struct i915_active *ref)
186 {
187 	return __i915_active_wait(ref, TASK_INTERRUPTIBLE);
188 }
189 
190 int i915_sw_fence_await_active(struct i915_sw_fence *fence,
191 			       struct i915_active *ref,
192 			       unsigned int flags);
193 int i915_request_await_active(struct i915_request *rq,
194 			      struct i915_active *ref,
195 			      unsigned int flags);
196 #define I915_ACTIVE_AWAIT_EXCL BIT(0)
197 #define I915_ACTIVE_AWAIT_ACTIVE BIT(1)
198 #define I915_ACTIVE_AWAIT_BARRIER BIT(2)
199 
200 int i915_active_acquire(struct i915_active *ref);
201 bool i915_active_acquire_if_busy(struct i915_active *ref);
202 void i915_active_release(struct i915_active *ref);
203 
204 static inline void __i915_active_acquire(struct i915_active *ref)
205 {
206 	GEM_BUG_ON(!atomic_read(&ref->count));
207 	atomic_inc(&ref->count);
208 }
209 
210 static inline bool
211 i915_active_is_idle(const struct i915_active *ref)
212 {
213 	return !atomic_read(&ref->count);
214 }
215 
216 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
217 void i915_active_fini(struct i915_active *ref);
218 #else
219 static inline void i915_active_fini(struct i915_active *ref) { }
220 #endif
221 
222 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
223 					    struct intel_engine_cs *engine);
224 void i915_active_acquire_barrier(struct i915_active *ref);
225 void i915_request_add_active_barriers(struct i915_request *rq);
226 
227 void i915_active_print(struct i915_active *ref, struct drm_printer *m);
228 void i915_active_unlock_wait(struct i915_active *ref);
229 
230 struct i915_active *i915_active_create(void);
231 struct i915_active *i915_active_get(struct i915_active *ref);
232 void i915_active_put(struct i915_active *ref);
233 
234 #endif /* _I915_ACTIVE_H_ */
235