xref: /openbmc/linux/drivers/gpu/drm/i915/i915_active.h (revision 46a73e9e)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #ifndef _I915_ACTIVE_H_
8 #define _I915_ACTIVE_H_
9 
10 #include <linux/lockdep.h>
11 
12 #include "i915_active_types.h"
13 #include "i915_request.h"
14 
15 /*
16  * We treat requests as fences. This is not be to confused with our
17  * "fence registers" but pipeline synchronisation objects ala GL_ARB_sync.
18  * We use the fences to synchronize access from the CPU with activity on the
19  * GPU, for example, we should not rewrite an object's PTE whilst the GPU
20  * is reading them. We also track fences at a higher level to provide
21  * implicit synchronisation around GEM objects, e.g. set-domain will wait
22  * for outstanding GPU rendering before marking the object ready for CPU
23  * access, or a pageflip will wait until the GPU is complete before showing
24  * the frame on the scanout.
25  *
26  * In order to use a fence, the object must track the fence it needs to
27  * serialise with. For example, GEM objects want to track both read and
28  * write access so that we can perform concurrent read operations between
29  * the CPU and GPU engines, as well as waiting for all rendering to
30  * complete, or waiting for the last GPU user of a "fence register". The
31  * object then embeds a #i915_active_request to track the most recent (in
32  * retirement order) request relevant for the desired mode of access.
33  * The #i915_active_request is updated with i915_active_request_set() to
34  * track the most recent fence request, typically this is done as part of
35  * i915_vma_move_to_active().
36  *
37  * When the #i915_active_request completes (is retired), it will
38  * signal its completion to the owner through a callback as well as mark
39  * itself as idle (i915_active_request.request == NULL). The owner
40  * can then perform any action, such as delayed freeing of an active
41  * resource including itself.
42  */
43 
44 void i915_active_retire_noop(struct i915_active_request *active,
45 			     struct i915_request *request);
46 
47 /**
48  * i915_active_request_init - prepares the activity tracker for use
49  * @active - the active tracker
50  * @rq - initial request to track, can be NULL
51  * @func - a callback when then the tracker is retired (becomes idle),
52  *         can be NULL
53  *
54  * i915_active_request_init() prepares the embedded @active struct for use as
55  * an activity tracker, that is for tracking the last known active request
56  * associated with it. When the last request becomes idle, when it is retired
57  * after completion, the optional callback @func is invoked.
58  */
59 static inline void
60 i915_active_request_init(struct i915_active_request *active,
61 			 struct mutex *lock,
62 			 struct i915_request *rq,
63 			 i915_active_retire_fn retire)
64 {
65 	RCU_INIT_POINTER(active->request, rq);
66 	INIT_LIST_HEAD(&active->link);
67 	active->retire = retire ?: i915_active_retire_noop;
68 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
69 	active->lock = lock;
70 #endif
71 }
72 
73 #define INIT_ACTIVE_REQUEST(name, lock) \
74 	i915_active_request_init((name), (lock), NULL, NULL)
75 
76 /**
77  * i915_active_request_set - updates the tracker to watch the current request
78  * @active - the active tracker
79  * @request - the request to watch
80  *
81  * __i915_active_request_set() watches the given @request for completion. Whilst
82  * that @request is busy, the @active reports busy. When that @request is
83  * retired, the @active tracker is updated to report idle.
84  */
85 static inline void
86 __i915_active_request_set(struct i915_active_request *active,
87 			  struct i915_request *request)
88 {
89 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
90 	lockdep_assert_held(active->lock);
91 #endif
92 	list_move(&active->link, &request->active_list);
93 	rcu_assign_pointer(active->request, request);
94 }
95 
96 int __must_check
97 i915_active_request_set(struct i915_active_request *active,
98 			struct i915_request *rq);
99 
100 /**
101  * i915_active_request_raw - return the active request
102  * @active - the active tracker
103  *
104  * i915_active_request_raw() returns the current request being tracked, or NULL.
105  * It does not obtain a reference on the request for the caller, so the caller
106  * must hold struct_mutex.
107  */
108 static inline struct i915_request *
109 i915_active_request_raw(const struct i915_active_request *active,
110 			struct mutex *mutex)
111 {
112 	return rcu_dereference_protected(active->request,
113 					 lockdep_is_held(mutex));
114 }
115 
116 /**
117  * i915_active_request_peek - report the active request being monitored
118  * @active - the active tracker
119  *
120  * i915_active_request_peek() returns the current request being tracked if
121  * still active, or NULL. It does not obtain a reference on the request
122  * for the caller, so the caller must hold struct_mutex.
123  */
124 static inline struct i915_request *
125 i915_active_request_peek(const struct i915_active_request *active,
126 			 struct mutex *mutex)
127 {
128 	struct i915_request *request;
129 
130 	request = i915_active_request_raw(active, mutex);
131 	if (!request || i915_request_completed(request))
132 		return NULL;
133 
134 	return request;
135 }
136 
137 /**
138  * i915_active_request_get - return a reference to the active request
139  * @active - the active tracker
140  *
141  * i915_active_request_get() returns a reference to the active request, or NULL
142  * if the active tracker is idle. The caller must hold struct_mutex.
143  */
144 static inline struct i915_request *
145 i915_active_request_get(const struct i915_active_request *active,
146 			struct mutex *mutex)
147 {
148 	return i915_request_get(i915_active_request_peek(active, mutex));
149 }
150 
151 /**
152  * __i915_active_request_get_rcu - return a reference to the active request
153  * @active - the active tracker
154  *
155  * __i915_active_request_get() returns a reference to the active request,
156  * or NULL if the active tracker is idle. The caller must hold the RCU read
157  * lock, but the returned pointer is safe to use outside of RCU.
158  */
159 static inline struct i915_request *
160 __i915_active_request_get_rcu(const struct i915_active_request *active)
161 {
162 	/*
163 	 * Performing a lockless retrieval of the active request is super
164 	 * tricky. SLAB_TYPESAFE_BY_RCU merely guarantees that the backing
165 	 * slab of request objects will not be freed whilst we hold the
166 	 * RCU read lock. It does not guarantee that the request itself
167 	 * will not be freed and then *reused*. Viz,
168 	 *
169 	 * Thread A			Thread B
170 	 *
171 	 * rq = active.request
172 	 *				retire(rq) -> free(rq);
173 	 *				(rq is now first on the slab freelist)
174 	 *				active.request = NULL
175 	 *
176 	 *				rq = new submission on a new object
177 	 * ref(rq)
178 	 *
179 	 * To prevent the request from being reused whilst the caller
180 	 * uses it, we take a reference like normal. Whilst acquiring
181 	 * the reference we check that it is not in a destroyed state
182 	 * (refcnt == 0). That prevents the request being reallocated
183 	 * whilst the caller holds on to it. To check that the request
184 	 * was not reallocated as we acquired the reference we have to
185 	 * check that our request remains the active request across
186 	 * the lookup, in the same manner as a seqlock. The visibility
187 	 * of the pointer versus the reference counting is controlled
188 	 * by using RCU barriers (rcu_dereference and rcu_assign_pointer).
189 	 *
190 	 * In the middle of all that, we inspect whether the request is
191 	 * complete. Retiring is lazy so the request may be completed long
192 	 * before the active tracker is updated. Querying whether the
193 	 * request is complete is far cheaper (as it involves no locked
194 	 * instructions setting cachelines to exclusive) than acquiring
195 	 * the reference, so we do it first. The RCU read lock ensures the
196 	 * pointer dereference is valid, but does not ensure that the
197 	 * seqno nor HWS is the right one! However, if the request was
198 	 * reallocated, that means the active tracker's request was complete.
199 	 * If the new request is also complete, then both are and we can
200 	 * just report the active tracker is idle. If the new request is
201 	 * incomplete, then we acquire a reference on it and check that
202 	 * it remained the active request.
203 	 *
204 	 * It is then imperative that we do not zero the request on
205 	 * reallocation, so that we can chase the dangling pointers!
206 	 * See i915_request_alloc().
207 	 */
208 	do {
209 		struct i915_request *request;
210 
211 		request = rcu_dereference(active->request);
212 		if (!request || i915_request_completed(request))
213 			return NULL;
214 
215 		/*
216 		 * An especially silly compiler could decide to recompute the
217 		 * result of i915_request_completed, more specifically
218 		 * re-emit the load for request->fence.seqno. A race would catch
219 		 * a later seqno value, which could flip the result from true to
220 		 * false. Which means part of the instructions below might not
221 		 * be executed, while later on instructions are executed. Due to
222 		 * barriers within the refcounting the inconsistency can't reach
223 		 * past the call to i915_request_get_rcu, but not executing
224 		 * that while still executing i915_request_put() creates
225 		 * havoc enough.  Prevent this with a compiler barrier.
226 		 */
227 		barrier();
228 
229 		request = i915_request_get_rcu(request);
230 
231 		/*
232 		 * What stops the following rcu_access_pointer() from occurring
233 		 * before the above i915_request_get_rcu()? If we were
234 		 * to read the value before pausing to get the reference to
235 		 * the request, we may not notice a change in the active
236 		 * tracker.
237 		 *
238 		 * The rcu_access_pointer() is a mere compiler barrier, which
239 		 * means both the CPU and compiler are free to perform the
240 		 * memory read without constraint. The compiler only has to
241 		 * ensure that any operations after the rcu_access_pointer()
242 		 * occur afterwards in program order. This means the read may
243 		 * be performed earlier by an out-of-order CPU, or adventurous
244 		 * compiler.
245 		 *
246 		 * The atomic operation at the heart of
247 		 * i915_request_get_rcu(), see dma_fence_get_rcu(), is
248 		 * atomic_inc_not_zero() which is only a full memory barrier
249 		 * when successful. That is, if i915_request_get_rcu()
250 		 * returns the request (and so with the reference counted
251 		 * incremented) then the following read for rcu_access_pointer()
252 		 * must occur after the atomic operation and so confirm
253 		 * that this request is the one currently being tracked.
254 		 *
255 		 * The corresponding write barrier is part of
256 		 * rcu_assign_pointer().
257 		 */
258 		if (!request || request == rcu_access_pointer(active->request))
259 			return rcu_pointer_handoff(request);
260 
261 		i915_request_put(request);
262 	} while (1);
263 }
264 
265 /**
266  * i915_active_request_get_unlocked - return a reference to the active request
267  * @active - the active tracker
268  *
269  * i915_active_request_get_unlocked() returns a reference to the active request,
270  * or NULL if the active tracker is idle. The reference is obtained under RCU,
271  * so no locking is required by the caller.
272  *
273  * The reference should be freed with i915_request_put().
274  */
275 static inline struct i915_request *
276 i915_active_request_get_unlocked(const struct i915_active_request *active)
277 {
278 	struct i915_request *request;
279 
280 	rcu_read_lock();
281 	request = __i915_active_request_get_rcu(active);
282 	rcu_read_unlock();
283 
284 	return request;
285 }
286 
287 /**
288  * i915_active_request_isset - report whether the active tracker is assigned
289  * @active - the active tracker
290  *
291  * i915_active_request_isset() returns true if the active tracker is currently
292  * assigned to a request. Due to the lazy retiring, that request may be idle
293  * and this may report stale information.
294  */
295 static inline bool
296 i915_active_request_isset(const struct i915_active_request *active)
297 {
298 	return rcu_access_pointer(active->request);
299 }
300 
301 /**
302  * i915_active_request_retire - waits until the request is retired
303  * @active - the active request on which to wait
304  *
305  * i915_active_request_retire() waits until the request is completed,
306  * and then ensures that at least the retirement handler for this
307  * @active tracker is called before returning. If the @active
308  * tracker is idle, the function returns immediately.
309  */
310 static inline int __must_check
311 i915_active_request_retire(struct i915_active_request *active,
312 			   struct mutex *mutex)
313 {
314 	struct i915_request *request;
315 	long ret;
316 
317 	request = i915_active_request_raw(active, mutex);
318 	if (!request)
319 		return 0;
320 
321 	ret = i915_request_wait(request,
322 				I915_WAIT_INTERRUPTIBLE,
323 				MAX_SCHEDULE_TIMEOUT);
324 	if (ret < 0)
325 		return ret;
326 
327 	list_del_init(&active->link);
328 	RCU_INIT_POINTER(active->request, NULL);
329 
330 	active->retire(active, request);
331 
332 	return 0;
333 }
334 
335 /*
336  * GPU activity tracking
337  *
338  * Each set of commands submitted to the GPU compromises a single request that
339  * signals a fence upon completion. struct i915_request combines the
340  * command submission, scheduling and fence signaling roles. If we want to see
341  * if a particular task is complete, we need to grab the fence (struct
342  * i915_request) for that task and check or wait for it to be signaled. More
343  * often though we want to track the status of a bunch of tasks, for example
344  * to wait for the GPU to finish accessing some memory across a variety of
345  * different command pipelines from different clients. We could choose to
346  * track every single request associated with the task, but knowing that
347  * each request belongs to an ordered timeline (later requests within a
348  * timeline must wait for earlier requests), we need only track the
349  * latest request in each timeline to determine the overall status of the
350  * task.
351  *
352  * struct i915_active provides this tracking across timelines. It builds a
353  * composite shared-fence, and is updated as new work is submitted to the task,
354  * forming a snapshot of the current status. It should be embedded into the
355  * different resources that need to track their associated GPU activity to
356  * provide a callback when that GPU activity has ceased, or otherwise to
357  * provide a serialisation point either for request submission or for CPU
358  * synchronisation.
359  */
360 
361 void __i915_active_init(struct drm_i915_private *i915,
362 			struct i915_active *ref,
363 			int (*active)(struct i915_active *ref),
364 			void (*retire)(struct i915_active *ref),
365 			struct lock_class_key *key);
366 #define i915_active_init(i915, ref, active, retire) do {		\
367 	static struct lock_class_key __key;				\
368 									\
369 	__i915_active_init(i915, ref, active, retire, &__key);		\
370 } while (0)
371 
372 int i915_active_ref(struct i915_active *ref,
373 		    struct intel_timeline *tl,
374 		    struct i915_request *rq);
375 
376 int i915_active_wait(struct i915_active *ref);
377 
378 int i915_request_await_active(struct i915_request *rq,
379 			      struct i915_active *ref);
380 int i915_request_await_active_request(struct i915_request *rq,
381 				      struct i915_active_request *active);
382 
383 int i915_active_acquire(struct i915_active *ref);
384 void i915_active_release(struct i915_active *ref);
385 void __i915_active_release_nested(struct i915_active *ref, int subclass);
386 
387 bool i915_active_trygrab(struct i915_active *ref);
388 void i915_active_ungrab(struct i915_active *ref);
389 
390 static inline bool
391 i915_active_is_idle(const struct i915_active *ref)
392 {
393 	return !atomic_read(&ref->count);
394 }
395 
396 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
397 void i915_active_fini(struct i915_active *ref);
398 #else
399 static inline void i915_active_fini(struct i915_active *ref) { }
400 #endif
401 
402 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
403 					    struct intel_engine_cs *engine);
404 void i915_active_acquire_barrier(struct i915_active *ref);
405 void i915_request_add_active_barriers(struct i915_request *rq);
406 
407 #endif /* _I915_ACTIVE_H_ */
408