1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2019 Intel Corporation 5 */ 6 7 #include <linux/debugobjects.h> 8 9 #include "gt/intel_context.h" 10 #include "gt/intel_engine_heartbeat.h" 11 #include "gt/intel_engine_pm.h" 12 #include "gt/intel_ring.h" 13 14 #include "i915_drv.h" 15 #include "i915_active.h" 16 17 /* 18 * Active refs memory management 19 * 20 * To be more economical with memory, we reap all the i915_active trees as 21 * they idle (when we know the active requests are inactive) and allocate the 22 * nodes from a local slab cache to hopefully reduce the fragmentation. 23 */ 24 static struct kmem_cache *slab_cache; 25 26 struct active_node { 27 struct rb_node node; 28 struct i915_active_fence base; 29 struct i915_active *ref; 30 u64 timeline; 31 }; 32 33 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node) 34 35 static inline struct active_node * 36 node_from_active(struct i915_active_fence *active) 37 { 38 return container_of(active, struct active_node, base); 39 } 40 41 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers) 42 43 static inline bool is_barrier(const struct i915_active_fence *active) 44 { 45 return IS_ERR(rcu_access_pointer(active->fence)); 46 } 47 48 static inline struct llist_node *barrier_to_ll(struct active_node *node) 49 { 50 GEM_BUG_ON(!is_barrier(&node->base)); 51 return (struct llist_node *)&node->base.cb.node; 52 } 53 54 static inline struct intel_engine_cs * 55 __barrier_to_engine(struct active_node *node) 56 { 57 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev); 58 } 59 60 static inline struct intel_engine_cs * 61 barrier_to_engine(struct active_node *node) 62 { 63 GEM_BUG_ON(!is_barrier(&node->base)); 64 return __barrier_to_engine(node); 65 } 66 67 static inline struct active_node *barrier_from_ll(struct llist_node *x) 68 { 69 return container_of((struct list_head *)x, 70 struct active_node, base.cb.node); 71 } 72 73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS) 74 75 static void *active_debug_hint(void *addr) 76 { 77 struct i915_active *ref = addr; 78 79 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref; 80 } 81 82 static const struct debug_obj_descr active_debug_desc = { 83 .name = "i915_active", 84 .debug_hint = active_debug_hint, 85 }; 86 87 static void debug_active_init(struct i915_active *ref) 88 { 89 debug_object_init(ref, &active_debug_desc); 90 } 91 92 static void debug_active_activate(struct i915_active *ref) 93 { 94 lockdep_assert_held(&ref->tree_lock); 95 debug_object_activate(ref, &active_debug_desc); 96 } 97 98 static void debug_active_deactivate(struct i915_active *ref) 99 { 100 lockdep_assert_held(&ref->tree_lock); 101 if (!atomic_read(&ref->count)) /* after the last dec */ 102 debug_object_deactivate(ref, &active_debug_desc); 103 } 104 105 static void debug_active_fini(struct i915_active *ref) 106 { 107 debug_object_free(ref, &active_debug_desc); 108 } 109 110 static void debug_active_assert(struct i915_active *ref) 111 { 112 debug_object_assert_init(ref, &active_debug_desc); 113 } 114 115 #else 116 117 static inline void debug_active_init(struct i915_active *ref) { } 118 static inline void debug_active_activate(struct i915_active *ref) { } 119 static inline void debug_active_deactivate(struct i915_active *ref) { } 120 static inline void debug_active_fini(struct i915_active *ref) { } 121 static inline void debug_active_assert(struct i915_active *ref) { } 122 123 #endif 124 125 static void 126 __active_retire(struct i915_active *ref) 127 { 128 struct rb_root root = RB_ROOT; 129 struct active_node *it, *n; 130 unsigned long flags; 131 132 GEM_BUG_ON(i915_active_is_idle(ref)); 133 134 /* return the unused nodes to our slabcache -- flushing the allocator */ 135 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags)) 136 return; 137 138 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence)); 139 debug_active_deactivate(ref); 140 141 /* Even if we have not used the cache, we may still have a barrier */ 142 if (!ref->cache) 143 ref->cache = fetch_node(ref->tree.rb_node); 144 145 /* Keep the MRU cached node for reuse */ 146 if (ref->cache) { 147 /* Discard all other nodes in the tree */ 148 rb_erase(&ref->cache->node, &ref->tree); 149 root = ref->tree; 150 151 /* Rebuild the tree with only the cached node */ 152 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node); 153 rb_insert_color(&ref->cache->node, &ref->tree); 154 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node); 155 156 /* Make the cached node available for reuse with any timeline */ 157 ref->cache->timeline = 0; /* needs cmpxchg(u64) */ 158 } 159 160 spin_unlock_irqrestore(&ref->tree_lock, flags); 161 162 /* After the final retire, the entire struct may be freed */ 163 if (ref->retire) 164 ref->retire(ref); 165 166 /* ... except if you wait on it, you must manage your own references! */ 167 wake_up_var(ref); 168 169 /* Finally free the discarded timeline tree */ 170 rbtree_postorder_for_each_entry_safe(it, n, &root, node) { 171 GEM_BUG_ON(i915_active_fence_isset(&it->base)); 172 kmem_cache_free(slab_cache, it); 173 } 174 } 175 176 static void 177 active_work(struct work_struct *wrk) 178 { 179 struct i915_active *ref = container_of(wrk, typeof(*ref), work); 180 181 GEM_BUG_ON(!atomic_read(&ref->count)); 182 if (atomic_add_unless(&ref->count, -1, 1)) 183 return; 184 185 __active_retire(ref); 186 } 187 188 static void 189 active_retire(struct i915_active *ref) 190 { 191 GEM_BUG_ON(!atomic_read(&ref->count)); 192 if (atomic_add_unless(&ref->count, -1, 1)) 193 return; 194 195 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) { 196 queue_work(system_unbound_wq, &ref->work); 197 return; 198 } 199 200 __active_retire(ref); 201 } 202 203 static inline struct dma_fence ** 204 __active_fence_slot(struct i915_active_fence *active) 205 { 206 return (struct dma_fence ** __force)&active->fence; 207 } 208 209 static inline bool 210 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 211 { 212 struct i915_active_fence *active = 213 container_of(cb, typeof(*active), cb); 214 215 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence; 216 } 217 218 static void 219 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 220 { 221 if (active_fence_cb(fence, cb)) 222 active_retire(container_of(cb, struct active_node, base.cb)->ref); 223 } 224 225 static void 226 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 227 { 228 if (active_fence_cb(fence, cb)) 229 active_retire(container_of(cb, struct i915_active, excl.cb)); 230 } 231 232 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx) 233 { 234 struct active_node *it; 235 236 GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */ 237 238 /* 239 * We track the most recently used timeline to skip a rbtree search 240 * for the common case, under typical loads we never need the rbtree 241 * at all. We can reuse the last slot if it is empty, that is 242 * after the previous activity has been retired, or if it matches the 243 * current timeline. 244 */ 245 it = READ_ONCE(ref->cache); 246 if (it) { 247 u64 cached = READ_ONCE(it->timeline); 248 249 /* Once claimed, this slot will only belong to this idx */ 250 if (cached == idx) 251 return it; 252 253 /* 254 * An unclaimed cache [.timeline=0] can only be claimed once. 255 * 256 * If the value is already non-zero, some other thread has 257 * claimed the cache and we know that is does not match our 258 * idx. If, and only if, the timeline is currently zero is it 259 * worth competing to claim it atomically for ourselves (for 260 * only the winner of that race will cmpxchg return the old 261 * value of 0). 262 */ 263 if (!cached && !cmpxchg64(&it->timeline, 0, idx)) 264 return it; 265 } 266 267 BUILD_BUG_ON(offsetof(typeof(*it), node)); 268 269 /* While active, the tree can only be built; not destroyed */ 270 GEM_BUG_ON(i915_active_is_idle(ref)); 271 272 it = fetch_node(ref->tree.rb_node); 273 while (it) { 274 if (it->timeline < idx) { 275 it = fetch_node(it->node.rb_right); 276 } else if (it->timeline > idx) { 277 it = fetch_node(it->node.rb_left); 278 } else { 279 WRITE_ONCE(ref->cache, it); 280 break; 281 } 282 } 283 284 /* NB: If the tree rotated beneath us, we may miss our target. */ 285 return it; 286 } 287 288 static struct i915_active_fence * 289 active_instance(struct i915_active *ref, u64 idx) 290 { 291 struct active_node *node; 292 struct rb_node **p, *parent; 293 294 node = __active_lookup(ref, idx); 295 if (likely(node)) 296 return &node->base; 297 298 spin_lock_irq(&ref->tree_lock); 299 GEM_BUG_ON(i915_active_is_idle(ref)); 300 301 parent = NULL; 302 p = &ref->tree.rb_node; 303 while (*p) { 304 parent = *p; 305 306 node = rb_entry(parent, struct active_node, node); 307 if (node->timeline == idx) 308 goto out; 309 310 if (node->timeline < idx) 311 p = &parent->rb_right; 312 else 313 p = &parent->rb_left; 314 } 315 316 /* 317 * XXX: We should preallocate this before i915_active_ref() is ever 318 * called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC. 319 */ 320 node = kmem_cache_alloc(slab_cache, GFP_ATOMIC); 321 if (!node) 322 goto out; 323 324 __i915_active_fence_init(&node->base, NULL, node_retire); 325 node->ref = ref; 326 node->timeline = idx; 327 328 rb_link_node(&node->node, parent, p); 329 rb_insert_color(&node->node, &ref->tree); 330 331 out: 332 WRITE_ONCE(ref->cache, node); 333 spin_unlock_irq(&ref->tree_lock); 334 335 return &node->base; 336 } 337 338 void __i915_active_init(struct i915_active *ref, 339 int (*active)(struct i915_active *ref), 340 void (*retire)(struct i915_active *ref), 341 unsigned long flags, 342 struct lock_class_key *mkey, 343 struct lock_class_key *wkey) 344 { 345 debug_active_init(ref); 346 347 ref->flags = flags; 348 ref->active = active; 349 ref->retire = retire; 350 351 spin_lock_init(&ref->tree_lock); 352 ref->tree = RB_ROOT; 353 ref->cache = NULL; 354 355 init_llist_head(&ref->preallocated_barriers); 356 atomic_set(&ref->count, 0); 357 __mutex_init(&ref->mutex, "i915_active", mkey); 358 __i915_active_fence_init(&ref->excl, NULL, excl_retire); 359 INIT_WORK(&ref->work, active_work); 360 #if IS_ENABLED(CONFIG_LOCKDEP) 361 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0); 362 #endif 363 } 364 365 static bool ____active_del_barrier(struct i915_active *ref, 366 struct active_node *node, 367 struct intel_engine_cs *engine) 368 369 { 370 struct llist_node *head = NULL, *tail = NULL; 371 struct llist_node *pos, *next; 372 373 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context); 374 375 /* 376 * Rebuild the llist excluding our node. We may perform this 377 * outside of the kernel_context timeline mutex and so someone 378 * else may be manipulating the engine->barrier_tasks, in 379 * which case either we or they will be upset :) 380 * 381 * A second __active_del_barrier() will report failure to claim 382 * the active_node and the caller will just shrug and know not to 383 * claim ownership of its node. 384 * 385 * A concurrent i915_request_add_active_barriers() will miss adding 386 * any of the tasks, but we will try again on the next -- and since 387 * we are actively using the barrier, we know that there will be 388 * at least another opportunity when we idle. 389 */ 390 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) { 391 if (node == barrier_from_ll(pos)) { 392 node = NULL; 393 continue; 394 } 395 396 pos->next = head; 397 head = pos; 398 if (!tail) 399 tail = pos; 400 } 401 if (head) 402 llist_add_batch(head, tail, &engine->barrier_tasks); 403 404 return !node; 405 } 406 407 static bool 408 __active_del_barrier(struct i915_active *ref, struct active_node *node) 409 { 410 return ____active_del_barrier(ref, node, barrier_to_engine(node)); 411 } 412 413 static bool 414 replace_barrier(struct i915_active *ref, struct i915_active_fence *active) 415 { 416 if (!is_barrier(active)) /* proto-node used by our idle barrier? */ 417 return false; 418 419 /* 420 * This request is on the kernel_context timeline, and so 421 * we can use it to substitute for the pending idle-barrer 422 * request that we want to emit on the kernel_context. 423 */ 424 return __active_del_barrier(ref, node_from_active(active)); 425 } 426 427 int i915_active_add_request(struct i915_active *ref, struct i915_request *rq) 428 { 429 u64 idx = i915_request_timeline(rq)->fence_context; 430 struct dma_fence *fence = &rq->fence; 431 struct i915_active_fence *active; 432 int err; 433 434 /* Prevent reaping in case we malloc/wait while building the tree */ 435 err = i915_active_acquire(ref); 436 if (err) 437 return err; 438 439 do { 440 active = active_instance(ref, idx); 441 if (!active) { 442 err = -ENOMEM; 443 goto out; 444 } 445 446 if (replace_barrier(ref, active)) { 447 RCU_INIT_POINTER(active->fence, NULL); 448 atomic_dec(&ref->count); 449 } 450 } while (unlikely(is_barrier(active))); 451 452 if (!__i915_active_fence_set(active, fence)) 453 __i915_active_acquire(ref); 454 455 out: 456 i915_active_release(ref); 457 return err; 458 } 459 460 static struct dma_fence * 461 __i915_active_set_fence(struct i915_active *ref, 462 struct i915_active_fence *active, 463 struct dma_fence *fence) 464 { 465 struct dma_fence *prev; 466 467 if (replace_barrier(ref, active)) { 468 RCU_INIT_POINTER(active->fence, fence); 469 return NULL; 470 } 471 472 rcu_read_lock(); 473 prev = __i915_active_fence_set(active, fence); 474 if (prev) 475 prev = dma_fence_get_rcu(prev); 476 else 477 __i915_active_acquire(ref); 478 rcu_read_unlock(); 479 480 return prev; 481 } 482 483 struct dma_fence * 484 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) 485 { 486 /* We expect the caller to manage the exclusive timeline ordering */ 487 return __i915_active_set_fence(ref, &ref->excl, f); 488 } 489 490 bool i915_active_acquire_if_busy(struct i915_active *ref) 491 { 492 debug_active_assert(ref); 493 return atomic_add_unless(&ref->count, 1, 0); 494 } 495 496 static void __i915_active_activate(struct i915_active *ref) 497 { 498 spin_lock_irq(&ref->tree_lock); /* __active_retire() */ 499 if (!atomic_fetch_inc(&ref->count)) 500 debug_active_activate(ref); 501 spin_unlock_irq(&ref->tree_lock); 502 } 503 504 int i915_active_acquire(struct i915_active *ref) 505 { 506 int err; 507 508 if (i915_active_acquire_if_busy(ref)) 509 return 0; 510 511 if (!ref->active) { 512 __i915_active_activate(ref); 513 return 0; 514 } 515 516 err = mutex_lock_interruptible(&ref->mutex); 517 if (err) 518 return err; 519 520 if (likely(!i915_active_acquire_if_busy(ref))) { 521 err = ref->active(ref); 522 if (!err) 523 __i915_active_activate(ref); 524 } 525 526 mutex_unlock(&ref->mutex); 527 528 return err; 529 } 530 531 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx) 532 { 533 struct i915_active_fence *active; 534 int err; 535 536 err = i915_active_acquire(ref); 537 if (err) 538 return err; 539 540 active = active_instance(ref, idx); 541 if (!active) { 542 i915_active_release(ref); 543 return -ENOMEM; 544 } 545 546 return 0; /* return with active ref */ 547 } 548 549 void i915_active_release(struct i915_active *ref) 550 { 551 debug_active_assert(ref); 552 active_retire(ref); 553 } 554 555 static void enable_signaling(struct i915_active_fence *active) 556 { 557 struct dma_fence *fence; 558 559 if (unlikely(is_barrier(active))) 560 return; 561 562 fence = i915_active_fence_get(active); 563 if (!fence) 564 return; 565 566 dma_fence_enable_sw_signaling(fence); 567 dma_fence_put(fence); 568 } 569 570 static int flush_barrier(struct active_node *it) 571 { 572 struct intel_engine_cs *engine; 573 574 if (likely(!is_barrier(&it->base))) 575 return 0; 576 577 engine = __barrier_to_engine(it); 578 smp_rmb(); /* serialise with add_active_barriers */ 579 if (!is_barrier(&it->base)) 580 return 0; 581 582 return intel_engine_flush_barriers(engine); 583 } 584 585 static int flush_lazy_signals(struct i915_active *ref) 586 { 587 struct active_node *it, *n; 588 int err = 0; 589 590 enable_signaling(&ref->excl); 591 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 592 err = flush_barrier(it); /* unconnected idle barrier? */ 593 if (err) 594 break; 595 596 enable_signaling(&it->base); 597 } 598 599 return err; 600 } 601 602 int __i915_active_wait(struct i915_active *ref, int state) 603 { 604 might_sleep(); 605 606 /* Any fence added after the wait begins will not be auto-signaled */ 607 if (i915_active_acquire_if_busy(ref)) { 608 int err; 609 610 err = flush_lazy_signals(ref); 611 i915_active_release(ref); 612 if (err) 613 return err; 614 615 if (___wait_var_event(ref, i915_active_is_idle(ref), 616 state, 0, 0, schedule())) 617 return -EINTR; 618 } 619 620 /* 621 * After the wait is complete, the caller may free the active. 622 * We have to flush any concurrent retirement before returning. 623 */ 624 flush_work(&ref->work); 625 return 0; 626 } 627 628 static int __await_active(struct i915_active_fence *active, 629 int (*fn)(void *arg, struct dma_fence *fence), 630 void *arg) 631 { 632 struct dma_fence *fence; 633 634 if (is_barrier(active)) /* XXX flush the barrier? */ 635 return 0; 636 637 fence = i915_active_fence_get(active); 638 if (fence) { 639 int err; 640 641 err = fn(arg, fence); 642 dma_fence_put(fence); 643 if (err < 0) 644 return err; 645 } 646 647 return 0; 648 } 649 650 struct wait_barrier { 651 struct wait_queue_entry base; 652 struct i915_active *ref; 653 }; 654 655 static int 656 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key) 657 { 658 struct wait_barrier *wb = container_of(wq, typeof(*wb), base); 659 660 if (i915_active_is_idle(wb->ref)) { 661 list_del(&wq->entry); 662 i915_sw_fence_complete(wq->private); 663 kfree(wq); 664 } 665 666 return 0; 667 } 668 669 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence) 670 { 671 struct wait_barrier *wb; 672 673 wb = kmalloc(sizeof(*wb), GFP_KERNEL); 674 if (unlikely(!wb)) 675 return -ENOMEM; 676 677 GEM_BUG_ON(i915_active_is_idle(ref)); 678 if (!i915_sw_fence_await(fence)) { 679 kfree(wb); 680 return -EINVAL; 681 } 682 683 wb->base.flags = 0; 684 wb->base.func = barrier_wake; 685 wb->base.private = fence; 686 wb->ref = ref; 687 688 add_wait_queue(__var_waitqueue(ref), &wb->base); 689 return 0; 690 } 691 692 static int await_active(struct i915_active *ref, 693 unsigned int flags, 694 int (*fn)(void *arg, struct dma_fence *fence), 695 void *arg, struct i915_sw_fence *barrier) 696 { 697 int err = 0; 698 699 if (!i915_active_acquire_if_busy(ref)) 700 return 0; 701 702 if (flags & I915_ACTIVE_AWAIT_EXCL && 703 rcu_access_pointer(ref->excl.fence)) { 704 err = __await_active(&ref->excl, fn, arg); 705 if (err) 706 goto out; 707 } 708 709 if (flags & I915_ACTIVE_AWAIT_ACTIVE) { 710 struct active_node *it, *n; 711 712 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 713 err = __await_active(&it->base, fn, arg); 714 if (err) 715 goto out; 716 } 717 } 718 719 if (flags & I915_ACTIVE_AWAIT_BARRIER) { 720 err = flush_lazy_signals(ref); 721 if (err) 722 goto out; 723 724 err = __await_barrier(ref, barrier); 725 if (err) 726 goto out; 727 } 728 729 out: 730 i915_active_release(ref); 731 return err; 732 } 733 734 static int rq_await_fence(void *arg, struct dma_fence *fence) 735 { 736 return i915_request_await_dma_fence(arg, fence); 737 } 738 739 int i915_request_await_active(struct i915_request *rq, 740 struct i915_active *ref, 741 unsigned int flags) 742 { 743 return await_active(ref, flags, rq_await_fence, rq, &rq->submit); 744 } 745 746 static int sw_await_fence(void *arg, struct dma_fence *fence) 747 { 748 return i915_sw_fence_await_dma_fence(arg, fence, 0, 749 GFP_NOWAIT | __GFP_NOWARN); 750 } 751 752 int i915_sw_fence_await_active(struct i915_sw_fence *fence, 753 struct i915_active *ref, 754 unsigned int flags) 755 { 756 return await_active(ref, flags, sw_await_fence, fence, fence); 757 } 758 759 void i915_active_fini(struct i915_active *ref) 760 { 761 debug_active_fini(ref); 762 GEM_BUG_ON(atomic_read(&ref->count)); 763 GEM_BUG_ON(work_pending(&ref->work)); 764 mutex_destroy(&ref->mutex); 765 766 if (ref->cache) 767 kmem_cache_free(slab_cache, ref->cache); 768 } 769 770 static inline bool is_idle_barrier(struct active_node *node, u64 idx) 771 { 772 return node->timeline == idx && !i915_active_fence_isset(&node->base); 773 } 774 775 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) 776 { 777 struct rb_node *prev, *p; 778 779 if (RB_EMPTY_ROOT(&ref->tree)) 780 return NULL; 781 782 GEM_BUG_ON(i915_active_is_idle(ref)); 783 784 /* 785 * Try to reuse any existing barrier nodes already allocated for this 786 * i915_active, due to overlapping active phases there is likely a 787 * node kept alive (as we reuse before parking). We prefer to reuse 788 * completely idle barriers (less hassle in manipulating the llists), 789 * but otherwise any will do. 790 */ 791 if (ref->cache && is_idle_barrier(ref->cache, idx)) { 792 p = &ref->cache->node; 793 goto match; 794 } 795 796 prev = NULL; 797 p = ref->tree.rb_node; 798 while (p) { 799 struct active_node *node = 800 rb_entry(p, struct active_node, node); 801 802 if (is_idle_barrier(node, idx)) 803 goto match; 804 805 prev = p; 806 if (node->timeline < idx) 807 p = READ_ONCE(p->rb_right); 808 else 809 p = READ_ONCE(p->rb_left); 810 } 811 812 /* 813 * No quick match, but we did find the leftmost rb_node for the 814 * kernel_context. Walk the rb_tree in-order to see if there were 815 * any idle-barriers on this timeline that we missed, or just use 816 * the first pending barrier. 817 */ 818 for (p = prev; p; p = rb_next(p)) { 819 struct active_node *node = 820 rb_entry(p, struct active_node, node); 821 struct intel_engine_cs *engine; 822 823 if (node->timeline > idx) 824 break; 825 826 if (node->timeline < idx) 827 continue; 828 829 if (is_idle_barrier(node, idx)) 830 goto match; 831 832 /* 833 * The list of pending barriers is protected by the 834 * kernel_context timeline, which notably we do not hold 835 * here. i915_request_add_active_barriers() may consume 836 * the barrier before we claim it, so we have to check 837 * for success. 838 */ 839 engine = __barrier_to_engine(node); 840 smp_rmb(); /* serialise with add_active_barriers */ 841 if (is_barrier(&node->base) && 842 ____active_del_barrier(ref, node, engine)) 843 goto match; 844 } 845 846 return NULL; 847 848 match: 849 spin_lock_irq(&ref->tree_lock); 850 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */ 851 if (p == &ref->cache->node) 852 WRITE_ONCE(ref->cache, NULL); 853 spin_unlock_irq(&ref->tree_lock); 854 855 return rb_entry(p, struct active_node, node); 856 } 857 858 int i915_active_acquire_preallocate_barrier(struct i915_active *ref, 859 struct intel_engine_cs *engine) 860 { 861 intel_engine_mask_t tmp, mask = engine->mask; 862 struct llist_node *first = NULL, *last = NULL; 863 struct intel_gt *gt = engine->gt; 864 865 GEM_BUG_ON(i915_active_is_idle(ref)); 866 867 /* Wait until the previous preallocation is completed */ 868 while (!llist_empty(&ref->preallocated_barriers)) 869 cond_resched(); 870 871 /* 872 * Preallocate a node for each physical engine supporting the target 873 * engine (remember virtual engines have more than one sibling). 874 * We can then use the preallocated nodes in 875 * i915_active_acquire_barrier() 876 */ 877 GEM_BUG_ON(!mask); 878 for_each_engine_masked(engine, gt, mask, tmp) { 879 u64 idx = engine->kernel_context->timeline->fence_context; 880 struct llist_node *prev = first; 881 struct active_node *node; 882 883 rcu_read_lock(); 884 node = reuse_idle_barrier(ref, idx); 885 rcu_read_unlock(); 886 if (!node) { 887 node = kmem_cache_alloc(slab_cache, GFP_KERNEL); 888 if (!node) 889 goto unwind; 890 891 RCU_INIT_POINTER(node->base.fence, NULL); 892 node->base.cb.func = node_retire; 893 node->timeline = idx; 894 node->ref = ref; 895 } 896 897 if (!i915_active_fence_isset(&node->base)) { 898 /* 899 * Mark this as being *our* unconnected proto-node. 900 * 901 * Since this node is not in any list, and we have 902 * decoupled it from the rbtree, we can reuse the 903 * request to indicate this is an idle-barrier node 904 * and then we can use the rb_node and list pointers 905 * for our tracking of the pending barrier. 906 */ 907 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN)); 908 node->base.cb.node.prev = (void *)engine; 909 __i915_active_acquire(ref); 910 } 911 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN)); 912 913 GEM_BUG_ON(barrier_to_engine(node) != engine); 914 first = barrier_to_ll(node); 915 first->next = prev; 916 if (!last) 917 last = first; 918 intel_engine_pm_get(engine); 919 } 920 921 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers)); 922 llist_add_batch(first, last, &ref->preallocated_barriers); 923 924 return 0; 925 926 unwind: 927 while (first) { 928 struct active_node *node = barrier_from_ll(first); 929 930 first = first->next; 931 932 atomic_dec(&ref->count); 933 intel_engine_pm_put(barrier_to_engine(node)); 934 935 kmem_cache_free(slab_cache, node); 936 } 937 return -ENOMEM; 938 } 939 940 void i915_active_acquire_barrier(struct i915_active *ref) 941 { 942 struct llist_node *pos, *next; 943 unsigned long flags; 944 945 GEM_BUG_ON(i915_active_is_idle(ref)); 946 947 /* 948 * Transfer the list of preallocated barriers into the 949 * i915_active rbtree, but only as proto-nodes. They will be 950 * populated by i915_request_add_active_barriers() to point to the 951 * request that will eventually release them. 952 */ 953 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) { 954 struct active_node *node = barrier_from_ll(pos); 955 struct intel_engine_cs *engine = barrier_to_engine(node); 956 struct rb_node **p, *parent; 957 958 spin_lock_irqsave_nested(&ref->tree_lock, flags, 959 SINGLE_DEPTH_NESTING); 960 parent = NULL; 961 p = &ref->tree.rb_node; 962 while (*p) { 963 struct active_node *it; 964 965 parent = *p; 966 967 it = rb_entry(parent, struct active_node, node); 968 if (it->timeline < node->timeline) 969 p = &parent->rb_right; 970 else 971 p = &parent->rb_left; 972 } 973 rb_link_node(&node->node, parent, p); 974 rb_insert_color(&node->node, &ref->tree); 975 spin_unlock_irqrestore(&ref->tree_lock, flags); 976 977 GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); 978 llist_add(barrier_to_ll(node), &engine->barrier_tasks); 979 intel_engine_pm_put_delay(engine, 2); 980 } 981 } 982 983 static struct dma_fence **ll_to_fence_slot(struct llist_node *node) 984 { 985 return __active_fence_slot(&barrier_from_ll(node)->base); 986 } 987 988 void i915_request_add_active_barriers(struct i915_request *rq) 989 { 990 struct intel_engine_cs *engine = rq->engine; 991 struct llist_node *node, *next; 992 unsigned long flags; 993 994 GEM_BUG_ON(!intel_context_is_barrier(rq->context)); 995 GEM_BUG_ON(intel_engine_is_virtual(engine)); 996 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline); 997 998 node = llist_del_all(&engine->barrier_tasks); 999 if (!node) 1000 return; 1001 /* 1002 * Attach the list of proto-fences to the in-flight request such 1003 * that the parent i915_active will be released when this request 1004 * is retired. 1005 */ 1006 spin_lock_irqsave(&rq->lock, flags); 1007 llist_for_each_safe(node, next, node) { 1008 /* serialise with reuse_idle_barrier */ 1009 smp_store_mb(*ll_to_fence_slot(node), &rq->fence); 1010 list_add_tail((struct list_head *)node, &rq->fence.cb_list); 1011 } 1012 spin_unlock_irqrestore(&rq->lock, flags); 1013 } 1014 1015 /* 1016 * __i915_active_fence_set: Update the last active fence along its timeline 1017 * @active: the active tracker 1018 * @fence: the new fence (under construction) 1019 * 1020 * Records the new @fence as the last active fence along its timeline in 1021 * this active tracker, moving the tracking callbacks from the previous 1022 * fence onto this one. Returns the previous fence (if not already completed), 1023 * which the caller must ensure is executed before the new fence. To ensure 1024 * that the order of fences within the timeline of the i915_active_fence is 1025 * understood, it should be locked by the caller. 1026 */ 1027 struct dma_fence * 1028 __i915_active_fence_set(struct i915_active_fence *active, 1029 struct dma_fence *fence) 1030 { 1031 struct dma_fence *prev; 1032 unsigned long flags; 1033 1034 if (fence == rcu_access_pointer(active->fence)) 1035 return fence; 1036 1037 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)); 1038 1039 /* 1040 * Consider that we have two threads arriving (A and B), with 1041 * C already resident as the active->fence. 1042 * 1043 * A does the xchg first, and so it sees C or NULL depending 1044 * on the timing of the interrupt handler. If it is NULL, the 1045 * previous fence must have been signaled and we know that 1046 * we are first on the timeline. If it is still present, 1047 * we acquire the lock on that fence and serialise with the interrupt 1048 * handler, in the process removing it from any future interrupt 1049 * callback. A will then wait on C before executing (if present). 1050 * 1051 * As B is second, it sees A as the previous fence and so waits for 1052 * it to complete its transition and takes over the occupancy for 1053 * itself -- remembering that it needs to wait on A before executing. 1054 * 1055 * Note the strong ordering of the timeline also provides consistent 1056 * nesting rules for the fence->lock; the inner lock is always the 1057 * older lock. 1058 */ 1059 spin_lock_irqsave(fence->lock, flags); 1060 prev = xchg(__active_fence_slot(active), fence); 1061 if (prev) { 1062 GEM_BUG_ON(prev == fence); 1063 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); 1064 __list_del_entry(&active->cb.node); 1065 spin_unlock(prev->lock); /* serialise with prev->cb_list */ 1066 } 1067 list_add_tail(&active->cb.node, &fence->cb_list); 1068 spin_unlock_irqrestore(fence->lock, flags); 1069 1070 return prev; 1071 } 1072 1073 int i915_active_fence_set(struct i915_active_fence *active, 1074 struct i915_request *rq) 1075 { 1076 struct dma_fence *fence; 1077 int err = 0; 1078 1079 /* Must maintain timeline ordering wrt previous active requests */ 1080 rcu_read_lock(); 1081 fence = __i915_active_fence_set(active, &rq->fence); 1082 if (fence) /* but the previous fence may not belong to that timeline! */ 1083 fence = dma_fence_get_rcu(fence); 1084 rcu_read_unlock(); 1085 if (fence) { 1086 err = i915_request_await_dma_fence(rq, fence); 1087 dma_fence_put(fence); 1088 } 1089 1090 return err; 1091 } 1092 1093 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb) 1094 { 1095 active_fence_cb(fence, cb); 1096 } 1097 1098 struct auto_active { 1099 struct i915_active base; 1100 struct kref ref; 1101 }; 1102 1103 struct i915_active *i915_active_get(struct i915_active *ref) 1104 { 1105 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1106 1107 kref_get(&aa->ref); 1108 return &aa->base; 1109 } 1110 1111 static void auto_release(struct kref *ref) 1112 { 1113 struct auto_active *aa = container_of(ref, typeof(*aa), ref); 1114 1115 i915_active_fini(&aa->base); 1116 kfree(aa); 1117 } 1118 1119 void i915_active_put(struct i915_active *ref) 1120 { 1121 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1122 1123 kref_put(&aa->ref, auto_release); 1124 } 1125 1126 static int auto_active(struct i915_active *ref) 1127 { 1128 i915_active_get(ref); 1129 return 0; 1130 } 1131 1132 static void auto_retire(struct i915_active *ref) 1133 { 1134 i915_active_put(ref); 1135 } 1136 1137 struct i915_active *i915_active_create(void) 1138 { 1139 struct auto_active *aa; 1140 1141 aa = kmalloc(sizeof(*aa), GFP_KERNEL); 1142 if (!aa) 1143 return NULL; 1144 1145 kref_init(&aa->ref); 1146 i915_active_init(&aa->base, auto_active, auto_retire, 0); 1147 1148 return &aa->base; 1149 } 1150 1151 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1152 #include "selftests/i915_active.c" 1153 #endif 1154 1155 void i915_active_module_exit(void) 1156 { 1157 kmem_cache_destroy(slab_cache); 1158 } 1159 1160 int __init i915_active_module_init(void) 1161 { 1162 slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); 1163 if (!slab_cache) 1164 return -ENOMEM; 1165 1166 return 0; 1167 } 1168