xref: /openbmc/linux/drivers/gpu/drm/i915/i915_active.c (revision f5ad1c74)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include <linux/debugobjects.h>
8 
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_heartbeat.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_ring.h"
13 
14 #include "i915_drv.h"
15 #include "i915_active.h"
16 #include "i915_globals.h"
17 
18 /*
19  * Active refs memory management
20  *
21  * To be more economical with memory, we reap all the i915_active trees as
22  * they idle (when we know the active requests are inactive) and allocate the
23  * nodes from a local slab cache to hopefully reduce the fragmentation.
24  */
25 static struct i915_global_active {
26 	struct i915_global base;
27 	struct kmem_cache *slab_cache;
28 } global;
29 
30 struct active_node {
31 	struct rb_node node;
32 	struct i915_active_fence base;
33 	struct i915_active *ref;
34 	u64 timeline;
35 };
36 
37 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
38 
39 static inline struct active_node *
40 node_from_active(struct i915_active_fence *active)
41 {
42 	return container_of(active, struct active_node, base);
43 }
44 
45 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
46 
47 static inline bool is_barrier(const struct i915_active_fence *active)
48 {
49 	return IS_ERR(rcu_access_pointer(active->fence));
50 }
51 
52 static inline struct llist_node *barrier_to_ll(struct active_node *node)
53 {
54 	GEM_BUG_ON(!is_barrier(&node->base));
55 	return (struct llist_node *)&node->base.cb.node;
56 }
57 
58 static inline struct intel_engine_cs *
59 __barrier_to_engine(struct active_node *node)
60 {
61 	return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
62 }
63 
64 static inline struct intel_engine_cs *
65 barrier_to_engine(struct active_node *node)
66 {
67 	GEM_BUG_ON(!is_barrier(&node->base));
68 	return __barrier_to_engine(node);
69 }
70 
71 static inline struct active_node *barrier_from_ll(struct llist_node *x)
72 {
73 	return container_of((struct list_head *)x,
74 			    struct active_node, base.cb.node);
75 }
76 
77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
78 
79 static void *active_debug_hint(void *addr)
80 {
81 	struct i915_active *ref = addr;
82 
83 	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
84 }
85 
86 static const struct debug_obj_descr active_debug_desc = {
87 	.name = "i915_active",
88 	.debug_hint = active_debug_hint,
89 };
90 
91 static void debug_active_init(struct i915_active *ref)
92 {
93 	debug_object_init(ref, &active_debug_desc);
94 }
95 
96 static void debug_active_activate(struct i915_active *ref)
97 {
98 	lockdep_assert_held(&ref->tree_lock);
99 	if (!atomic_read(&ref->count)) /* before the first inc */
100 		debug_object_activate(ref, &active_debug_desc);
101 }
102 
103 static void debug_active_deactivate(struct i915_active *ref)
104 {
105 	lockdep_assert_held(&ref->tree_lock);
106 	if (!atomic_read(&ref->count)) /* after the last dec */
107 		debug_object_deactivate(ref, &active_debug_desc);
108 }
109 
110 static void debug_active_fini(struct i915_active *ref)
111 {
112 	debug_object_free(ref, &active_debug_desc);
113 }
114 
115 static void debug_active_assert(struct i915_active *ref)
116 {
117 	debug_object_assert_init(ref, &active_debug_desc);
118 }
119 
120 #else
121 
122 static inline void debug_active_init(struct i915_active *ref) { }
123 static inline void debug_active_activate(struct i915_active *ref) { }
124 static inline void debug_active_deactivate(struct i915_active *ref) { }
125 static inline void debug_active_fini(struct i915_active *ref) { }
126 static inline void debug_active_assert(struct i915_active *ref) { }
127 
128 #endif
129 
130 static void
131 __active_retire(struct i915_active *ref)
132 {
133 	struct rb_root root = RB_ROOT;
134 	struct active_node *it, *n;
135 	unsigned long flags;
136 
137 	GEM_BUG_ON(i915_active_is_idle(ref));
138 
139 	/* return the unused nodes to our slabcache -- flushing the allocator */
140 	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
141 		return;
142 
143 	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
144 	debug_active_deactivate(ref);
145 
146 	/* Even if we have not used the cache, we may still have a barrier */
147 	if (!ref->cache)
148 		ref->cache = fetch_node(ref->tree.rb_node);
149 
150 	/* Keep the MRU cached node for reuse */
151 	if (ref->cache) {
152 		/* Discard all other nodes in the tree */
153 		rb_erase(&ref->cache->node, &ref->tree);
154 		root = ref->tree;
155 
156 		/* Rebuild the tree with only the cached node */
157 		rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
158 		rb_insert_color(&ref->cache->node, &ref->tree);
159 		GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
160 
161 		/* Make the cached node available for reuse with any timeline */
162 		if (IS_ENABLED(CONFIG_64BIT))
163 			ref->cache->timeline = 0; /* needs cmpxchg(u64) */
164 	}
165 
166 	spin_unlock_irqrestore(&ref->tree_lock, flags);
167 
168 	/* After the final retire, the entire struct may be freed */
169 	if (ref->retire)
170 		ref->retire(ref);
171 
172 	/* ... except if you wait on it, you must manage your own references! */
173 	wake_up_var(ref);
174 
175 	/* Finally free the discarded timeline tree  */
176 	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
177 		GEM_BUG_ON(i915_active_fence_isset(&it->base));
178 		kmem_cache_free(global.slab_cache, it);
179 	}
180 }
181 
182 static void
183 active_work(struct work_struct *wrk)
184 {
185 	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
186 
187 	GEM_BUG_ON(!atomic_read(&ref->count));
188 	if (atomic_add_unless(&ref->count, -1, 1))
189 		return;
190 
191 	__active_retire(ref);
192 }
193 
194 static void
195 active_retire(struct i915_active *ref)
196 {
197 	GEM_BUG_ON(!atomic_read(&ref->count));
198 	if (atomic_add_unless(&ref->count, -1, 1))
199 		return;
200 
201 	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
202 		queue_work(system_unbound_wq, &ref->work);
203 		return;
204 	}
205 
206 	__active_retire(ref);
207 }
208 
209 static inline struct dma_fence **
210 __active_fence_slot(struct i915_active_fence *active)
211 {
212 	return (struct dma_fence ** __force)&active->fence;
213 }
214 
215 static inline bool
216 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
217 {
218 	struct i915_active_fence *active =
219 		container_of(cb, typeof(*active), cb);
220 
221 	return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
222 }
223 
224 static void
225 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
226 {
227 	if (active_fence_cb(fence, cb))
228 		active_retire(container_of(cb, struct active_node, base.cb)->ref);
229 }
230 
231 static void
232 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
233 {
234 	if (active_fence_cb(fence, cb))
235 		active_retire(container_of(cb, struct i915_active, excl.cb));
236 }
237 
238 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
239 {
240 	struct active_node *it;
241 
242 	GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
243 
244 	/*
245 	 * We track the most recently used timeline to skip a rbtree search
246 	 * for the common case, under typical loads we never need the rbtree
247 	 * at all. We can reuse the last slot if it is empty, that is
248 	 * after the previous activity has been retired, or if it matches the
249 	 * current timeline.
250 	 */
251 	it = READ_ONCE(ref->cache);
252 	if (it) {
253 		u64 cached = READ_ONCE(it->timeline);
254 
255 		/* Once claimed, this slot will only belong to this idx */
256 		if (cached == idx)
257 			return it;
258 
259 #ifdef CONFIG_64BIT /* for cmpxchg(u64) */
260 		/*
261 		 * An unclaimed cache [.timeline=0] can only be claimed once.
262 		 *
263 		 * If the value is already non-zero, some other thread has
264 		 * claimed the cache and we know that is does not match our
265 		 * idx. If, and only if, the timeline is currently zero is it
266 		 * worth competing to claim it atomically for ourselves (for
267 		 * only the winner of that race will cmpxchg return the old
268 		 * value of 0).
269 		 */
270 		if (!cached && !cmpxchg(&it->timeline, 0, idx))
271 			return it;
272 #endif
273 	}
274 
275 	BUILD_BUG_ON(offsetof(typeof(*it), node));
276 
277 	/* While active, the tree can only be built; not destroyed */
278 	GEM_BUG_ON(i915_active_is_idle(ref));
279 
280 	it = fetch_node(ref->tree.rb_node);
281 	while (it) {
282 		if (it->timeline < idx) {
283 			it = fetch_node(it->node.rb_right);
284 		} else if (it->timeline > idx) {
285 			it = fetch_node(it->node.rb_left);
286 		} else {
287 			WRITE_ONCE(ref->cache, it);
288 			break;
289 		}
290 	}
291 
292 	/* NB: If the tree rotated beneath us, we may miss our target. */
293 	return it;
294 }
295 
296 static struct i915_active_fence *
297 active_instance(struct i915_active *ref, u64 idx)
298 {
299 	struct active_node *node, *prealloc;
300 	struct rb_node **p, *parent;
301 
302 	node = __active_lookup(ref, idx);
303 	if (likely(node))
304 		return &node->base;
305 
306 	/* Preallocate a replacement, just in case */
307 	prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
308 	if (!prealloc)
309 		return NULL;
310 
311 	spin_lock_irq(&ref->tree_lock);
312 	GEM_BUG_ON(i915_active_is_idle(ref));
313 
314 	parent = NULL;
315 	p = &ref->tree.rb_node;
316 	while (*p) {
317 		parent = *p;
318 
319 		node = rb_entry(parent, struct active_node, node);
320 		if (node->timeline == idx) {
321 			kmem_cache_free(global.slab_cache, prealloc);
322 			goto out;
323 		}
324 
325 		if (node->timeline < idx)
326 			p = &parent->rb_right;
327 		else
328 			p = &parent->rb_left;
329 	}
330 
331 	node = prealloc;
332 	__i915_active_fence_init(&node->base, NULL, node_retire);
333 	node->ref = ref;
334 	node->timeline = idx;
335 
336 	rb_link_node(&node->node, parent, p);
337 	rb_insert_color(&node->node, &ref->tree);
338 
339 out:
340 	WRITE_ONCE(ref->cache, node);
341 	spin_unlock_irq(&ref->tree_lock);
342 
343 	return &node->base;
344 }
345 
346 void __i915_active_init(struct i915_active *ref,
347 			int (*active)(struct i915_active *ref),
348 			void (*retire)(struct i915_active *ref),
349 			struct lock_class_key *mkey,
350 			struct lock_class_key *wkey)
351 {
352 	unsigned long bits;
353 
354 	debug_active_init(ref);
355 
356 	ref->flags = 0;
357 	ref->active = active;
358 	ref->retire = ptr_unpack_bits(retire, &bits, 2);
359 	if (bits & I915_ACTIVE_MAY_SLEEP)
360 		ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
361 
362 	spin_lock_init(&ref->tree_lock);
363 	ref->tree = RB_ROOT;
364 	ref->cache = NULL;
365 
366 	init_llist_head(&ref->preallocated_barriers);
367 	atomic_set(&ref->count, 0);
368 	__mutex_init(&ref->mutex, "i915_active", mkey);
369 	__i915_active_fence_init(&ref->excl, NULL, excl_retire);
370 	INIT_WORK(&ref->work, active_work);
371 #if IS_ENABLED(CONFIG_LOCKDEP)
372 	lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
373 #endif
374 }
375 
376 static bool ____active_del_barrier(struct i915_active *ref,
377 				   struct active_node *node,
378 				   struct intel_engine_cs *engine)
379 
380 {
381 	struct llist_node *head = NULL, *tail = NULL;
382 	struct llist_node *pos, *next;
383 
384 	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
385 
386 	/*
387 	 * Rebuild the llist excluding our node. We may perform this
388 	 * outside of the kernel_context timeline mutex and so someone
389 	 * else may be manipulating the engine->barrier_tasks, in
390 	 * which case either we or they will be upset :)
391 	 *
392 	 * A second __active_del_barrier() will report failure to claim
393 	 * the active_node and the caller will just shrug and know not to
394 	 * claim ownership of its node.
395 	 *
396 	 * A concurrent i915_request_add_active_barriers() will miss adding
397 	 * any of the tasks, but we will try again on the next -- and since
398 	 * we are actively using the barrier, we know that there will be
399 	 * at least another opportunity when we idle.
400 	 */
401 	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
402 		if (node == barrier_from_ll(pos)) {
403 			node = NULL;
404 			continue;
405 		}
406 
407 		pos->next = head;
408 		head = pos;
409 		if (!tail)
410 			tail = pos;
411 	}
412 	if (head)
413 		llist_add_batch(head, tail, &engine->barrier_tasks);
414 
415 	return !node;
416 }
417 
418 static bool
419 __active_del_barrier(struct i915_active *ref, struct active_node *node)
420 {
421 	return ____active_del_barrier(ref, node, barrier_to_engine(node));
422 }
423 
424 static bool
425 replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
426 {
427 	if (!is_barrier(active)) /* proto-node used by our idle barrier? */
428 		return false;
429 
430 	/*
431 	 * This request is on the kernel_context timeline, and so
432 	 * we can use it to substitute for the pending idle-barrer
433 	 * request that we want to emit on the kernel_context.
434 	 */
435 	__active_del_barrier(ref, node_from_active(active));
436 	return true;
437 }
438 
439 int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
440 {
441 	struct i915_active_fence *active;
442 	int err;
443 
444 	/* Prevent reaping in case we malloc/wait while building the tree */
445 	err = i915_active_acquire(ref);
446 	if (err)
447 		return err;
448 
449 	active = active_instance(ref, idx);
450 	if (!active) {
451 		err = -ENOMEM;
452 		goto out;
453 	}
454 
455 	if (replace_barrier(ref, active)) {
456 		RCU_INIT_POINTER(active->fence, NULL);
457 		atomic_dec(&ref->count);
458 	}
459 	if (!__i915_active_fence_set(active, fence))
460 		__i915_active_acquire(ref);
461 
462 out:
463 	i915_active_release(ref);
464 	return err;
465 }
466 
467 static struct dma_fence *
468 __i915_active_set_fence(struct i915_active *ref,
469 			struct i915_active_fence *active,
470 			struct dma_fence *fence)
471 {
472 	struct dma_fence *prev;
473 
474 	if (replace_barrier(ref, active)) {
475 		RCU_INIT_POINTER(active->fence, fence);
476 		return NULL;
477 	}
478 
479 	rcu_read_lock();
480 	prev = __i915_active_fence_set(active, fence);
481 	if (prev)
482 		prev = dma_fence_get_rcu(prev);
483 	else
484 		__i915_active_acquire(ref);
485 	rcu_read_unlock();
486 
487 	return prev;
488 }
489 
490 static struct i915_active_fence *
491 __active_fence(struct i915_active *ref, u64 idx)
492 {
493 	struct active_node *it;
494 
495 	it = __active_lookup(ref, idx);
496 	if (unlikely(!it)) { /* Contention with parallel tree builders! */
497 		spin_lock_irq(&ref->tree_lock);
498 		it = __active_lookup(ref, idx);
499 		spin_unlock_irq(&ref->tree_lock);
500 	}
501 	GEM_BUG_ON(!it); /* slot must be preallocated */
502 
503 	return &it->base;
504 }
505 
506 struct dma_fence *
507 __i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
508 {
509 	/* Only valid while active, see i915_active_acquire_for_context() */
510 	return __i915_active_set_fence(ref, __active_fence(ref, idx), fence);
511 }
512 
513 struct dma_fence *
514 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
515 {
516 	/* We expect the caller to manage the exclusive timeline ordering */
517 	return __i915_active_set_fence(ref, &ref->excl, f);
518 }
519 
520 bool i915_active_acquire_if_busy(struct i915_active *ref)
521 {
522 	debug_active_assert(ref);
523 	return atomic_add_unless(&ref->count, 1, 0);
524 }
525 
526 static void __i915_active_activate(struct i915_active *ref)
527 {
528 	spin_lock_irq(&ref->tree_lock); /* __active_retire() */
529 	if (!atomic_fetch_inc(&ref->count))
530 		debug_active_activate(ref);
531 	spin_unlock_irq(&ref->tree_lock);
532 }
533 
534 int i915_active_acquire(struct i915_active *ref)
535 {
536 	int err;
537 
538 	if (i915_active_acquire_if_busy(ref))
539 		return 0;
540 
541 	if (!ref->active) {
542 		__i915_active_activate(ref);
543 		return 0;
544 	}
545 
546 	err = mutex_lock_interruptible(&ref->mutex);
547 	if (err)
548 		return err;
549 
550 	if (likely(!i915_active_acquire_if_busy(ref))) {
551 		err = ref->active(ref);
552 		if (!err)
553 			__i915_active_activate(ref);
554 	}
555 
556 	mutex_unlock(&ref->mutex);
557 
558 	return err;
559 }
560 
561 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
562 {
563 	struct i915_active_fence *active;
564 	int err;
565 
566 	err = i915_active_acquire(ref);
567 	if (err)
568 		return err;
569 
570 	active = active_instance(ref, idx);
571 	if (!active) {
572 		i915_active_release(ref);
573 		return -ENOMEM;
574 	}
575 
576 	return 0; /* return with active ref */
577 }
578 
579 void i915_active_release(struct i915_active *ref)
580 {
581 	debug_active_assert(ref);
582 	active_retire(ref);
583 }
584 
585 static void enable_signaling(struct i915_active_fence *active)
586 {
587 	struct dma_fence *fence;
588 
589 	if (unlikely(is_barrier(active)))
590 		return;
591 
592 	fence = i915_active_fence_get(active);
593 	if (!fence)
594 		return;
595 
596 	dma_fence_enable_sw_signaling(fence);
597 	dma_fence_put(fence);
598 }
599 
600 static int flush_barrier(struct active_node *it)
601 {
602 	struct intel_engine_cs *engine;
603 
604 	if (likely(!is_barrier(&it->base)))
605 		return 0;
606 
607 	engine = __barrier_to_engine(it);
608 	smp_rmb(); /* serialise with add_active_barriers */
609 	if (!is_barrier(&it->base))
610 		return 0;
611 
612 	return intel_engine_flush_barriers(engine);
613 }
614 
615 static int flush_lazy_signals(struct i915_active *ref)
616 {
617 	struct active_node *it, *n;
618 	int err = 0;
619 
620 	enable_signaling(&ref->excl);
621 	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
622 		err = flush_barrier(it); /* unconnected idle barrier? */
623 		if (err)
624 			break;
625 
626 		enable_signaling(&it->base);
627 	}
628 
629 	return err;
630 }
631 
632 int __i915_active_wait(struct i915_active *ref, int state)
633 {
634 	int err;
635 
636 	might_sleep();
637 
638 	if (!i915_active_acquire_if_busy(ref))
639 		return 0;
640 
641 	/* Any fence added after the wait begins will not be auto-signaled */
642 	err = flush_lazy_signals(ref);
643 	i915_active_release(ref);
644 	if (err)
645 		return err;
646 
647 	if (!i915_active_is_idle(ref) &&
648 	    ___wait_var_event(ref, i915_active_is_idle(ref),
649 			      state, 0, 0, schedule()))
650 		return -EINTR;
651 
652 	flush_work(&ref->work);
653 	return 0;
654 }
655 
656 static int __await_active(struct i915_active_fence *active,
657 			  int (*fn)(void *arg, struct dma_fence *fence),
658 			  void *arg)
659 {
660 	struct dma_fence *fence;
661 
662 	if (is_barrier(active)) /* XXX flush the barrier? */
663 		return 0;
664 
665 	fence = i915_active_fence_get(active);
666 	if (fence) {
667 		int err;
668 
669 		err = fn(arg, fence);
670 		dma_fence_put(fence);
671 		if (err < 0)
672 			return err;
673 	}
674 
675 	return 0;
676 }
677 
678 struct wait_barrier {
679 	struct wait_queue_entry base;
680 	struct i915_active *ref;
681 };
682 
683 static int
684 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
685 {
686 	struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
687 
688 	if (i915_active_is_idle(wb->ref)) {
689 		list_del(&wq->entry);
690 		i915_sw_fence_complete(wq->private);
691 		kfree(wq);
692 	}
693 
694 	return 0;
695 }
696 
697 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
698 {
699 	struct wait_barrier *wb;
700 
701 	wb = kmalloc(sizeof(*wb), GFP_KERNEL);
702 	if (unlikely(!wb))
703 		return -ENOMEM;
704 
705 	GEM_BUG_ON(i915_active_is_idle(ref));
706 	if (!i915_sw_fence_await(fence)) {
707 		kfree(wb);
708 		return -EINVAL;
709 	}
710 
711 	wb->base.flags = 0;
712 	wb->base.func = barrier_wake;
713 	wb->base.private = fence;
714 	wb->ref = ref;
715 
716 	add_wait_queue(__var_waitqueue(ref), &wb->base);
717 	return 0;
718 }
719 
720 static int await_active(struct i915_active *ref,
721 			unsigned int flags,
722 			int (*fn)(void *arg, struct dma_fence *fence),
723 			void *arg, struct i915_sw_fence *barrier)
724 {
725 	int err = 0;
726 
727 	if (!i915_active_acquire_if_busy(ref))
728 		return 0;
729 
730 	if (flags & I915_ACTIVE_AWAIT_EXCL &&
731 	    rcu_access_pointer(ref->excl.fence)) {
732 		err = __await_active(&ref->excl, fn, arg);
733 		if (err)
734 			goto out;
735 	}
736 
737 	if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
738 		struct active_node *it, *n;
739 
740 		rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
741 			err = __await_active(&it->base, fn, arg);
742 			if (err)
743 				goto out;
744 		}
745 	}
746 
747 	if (flags & I915_ACTIVE_AWAIT_BARRIER) {
748 		err = flush_lazy_signals(ref);
749 		if (err)
750 			goto out;
751 
752 		err = __await_barrier(ref, barrier);
753 		if (err)
754 			goto out;
755 	}
756 
757 out:
758 	i915_active_release(ref);
759 	return err;
760 }
761 
762 static int rq_await_fence(void *arg, struct dma_fence *fence)
763 {
764 	return i915_request_await_dma_fence(arg, fence);
765 }
766 
767 int i915_request_await_active(struct i915_request *rq,
768 			      struct i915_active *ref,
769 			      unsigned int flags)
770 {
771 	return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
772 }
773 
774 static int sw_await_fence(void *arg, struct dma_fence *fence)
775 {
776 	return i915_sw_fence_await_dma_fence(arg, fence, 0,
777 					     GFP_NOWAIT | __GFP_NOWARN);
778 }
779 
780 int i915_sw_fence_await_active(struct i915_sw_fence *fence,
781 			       struct i915_active *ref,
782 			       unsigned int flags)
783 {
784 	return await_active(ref, flags, sw_await_fence, fence, fence);
785 }
786 
787 void i915_active_fini(struct i915_active *ref)
788 {
789 	debug_active_fini(ref);
790 	GEM_BUG_ON(atomic_read(&ref->count));
791 	GEM_BUG_ON(work_pending(&ref->work));
792 	mutex_destroy(&ref->mutex);
793 
794 	if (ref->cache)
795 		kmem_cache_free(global.slab_cache, ref->cache);
796 }
797 
798 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
799 {
800 	return node->timeline == idx && !i915_active_fence_isset(&node->base);
801 }
802 
803 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
804 {
805 	struct rb_node *prev, *p;
806 
807 	if (RB_EMPTY_ROOT(&ref->tree))
808 		return NULL;
809 
810 	GEM_BUG_ON(i915_active_is_idle(ref));
811 
812 	/*
813 	 * Try to reuse any existing barrier nodes already allocated for this
814 	 * i915_active, due to overlapping active phases there is likely a
815 	 * node kept alive (as we reuse before parking). We prefer to reuse
816 	 * completely idle barriers (less hassle in manipulating the llists),
817 	 * but otherwise any will do.
818 	 */
819 	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
820 		p = &ref->cache->node;
821 		goto match;
822 	}
823 
824 	prev = NULL;
825 	p = ref->tree.rb_node;
826 	while (p) {
827 		struct active_node *node =
828 			rb_entry(p, struct active_node, node);
829 
830 		if (is_idle_barrier(node, idx))
831 			goto match;
832 
833 		prev = p;
834 		if (node->timeline < idx)
835 			p = READ_ONCE(p->rb_right);
836 		else
837 			p = READ_ONCE(p->rb_left);
838 	}
839 
840 	/*
841 	 * No quick match, but we did find the leftmost rb_node for the
842 	 * kernel_context. Walk the rb_tree in-order to see if there were
843 	 * any idle-barriers on this timeline that we missed, or just use
844 	 * the first pending barrier.
845 	 */
846 	for (p = prev; p; p = rb_next(p)) {
847 		struct active_node *node =
848 			rb_entry(p, struct active_node, node);
849 		struct intel_engine_cs *engine;
850 
851 		if (node->timeline > idx)
852 			break;
853 
854 		if (node->timeline < idx)
855 			continue;
856 
857 		if (is_idle_barrier(node, idx))
858 			goto match;
859 
860 		/*
861 		 * The list of pending barriers is protected by the
862 		 * kernel_context timeline, which notably we do not hold
863 		 * here. i915_request_add_active_barriers() may consume
864 		 * the barrier before we claim it, so we have to check
865 		 * for success.
866 		 */
867 		engine = __barrier_to_engine(node);
868 		smp_rmb(); /* serialise with add_active_barriers */
869 		if (is_barrier(&node->base) &&
870 		    ____active_del_barrier(ref, node, engine))
871 			goto match;
872 	}
873 
874 	return NULL;
875 
876 match:
877 	spin_lock_irq(&ref->tree_lock);
878 	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
879 	if (p == &ref->cache->node)
880 		WRITE_ONCE(ref->cache, NULL);
881 	spin_unlock_irq(&ref->tree_lock);
882 
883 	return rb_entry(p, struct active_node, node);
884 }
885 
886 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
887 					    struct intel_engine_cs *engine)
888 {
889 	intel_engine_mask_t tmp, mask = engine->mask;
890 	struct llist_node *first = NULL, *last = NULL;
891 	struct intel_gt *gt = engine->gt;
892 
893 	GEM_BUG_ON(i915_active_is_idle(ref));
894 
895 	/* Wait until the previous preallocation is completed */
896 	while (!llist_empty(&ref->preallocated_barriers))
897 		cond_resched();
898 
899 	/*
900 	 * Preallocate a node for each physical engine supporting the target
901 	 * engine (remember virtual engines have more than one sibling).
902 	 * We can then use the preallocated nodes in
903 	 * i915_active_acquire_barrier()
904 	 */
905 	GEM_BUG_ON(!mask);
906 	for_each_engine_masked(engine, gt, mask, tmp) {
907 		u64 idx = engine->kernel_context->timeline->fence_context;
908 		struct llist_node *prev = first;
909 		struct active_node *node;
910 
911 		rcu_read_lock();
912 		node = reuse_idle_barrier(ref, idx);
913 		rcu_read_unlock();
914 		if (!node) {
915 			node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
916 			if (!node)
917 				goto unwind;
918 
919 			RCU_INIT_POINTER(node->base.fence, NULL);
920 			node->base.cb.func = node_retire;
921 			node->timeline = idx;
922 			node->ref = ref;
923 		}
924 
925 		if (!i915_active_fence_isset(&node->base)) {
926 			/*
927 			 * Mark this as being *our* unconnected proto-node.
928 			 *
929 			 * Since this node is not in any list, and we have
930 			 * decoupled it from the rbtree, we can reuse the
931 			 * request to indicate this is an idle-barrier node
932 			 * and then we can use the rb_node and list pointers
933 			 * for our tracking of the pending barrier.
934 			 */
935 			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
936 			node->base.cb.node.prev = (void *)engine;
937 			__i915_active_acquire(ref);
938 		}
939 		GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
940 
941 		GEM_BUG_ON(barrier_to_engine(node) != engine);
942 		first = barrier_to_ll(node);
943 		first->next = prev;
944 		if (!last)
945 			last = first;
946 		intel_engine_pm_get(engine);
947 	}
948 
949 	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
950 	llist_add_batch(first, last, &ref->preallocated_barriers);
951 
952 	return 0;
953 
954 unwind:
955 	while (first) {
956 		struct active_node *node = barrier_from_ll(first);
957 
958 		first = first->next;
959 
960 		atomic_dec(&ref->count);
961 		intel_engine_pm_put(barrier_to_engine(node));
962 
963 		kmem_cache_free(global.slab_cache, node);
964 	}
965 	return -ENOMEM;
966 }
967 
968 void i915_active_acquire_barrier(struct i915_active *ref)
969 {
970 	struct llist_node *pos, *next;
971 	unsigned long flags;
972 
973 	GEM_BUG_ON(i915_active_is_idle(ref));
974 
975 	/*
976 	 * Transfer the list of preallocated barriers into the
977 	 * i915_active rbtree, but only as proto-nodes. They will be
978 	 * populated by i915_request_add_active_barriers() to point to the
979 	 * request that will eventually release them.
980 	 */
981 	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
982 		struct active_node *node = barrier_from_ll(pos);
983 		struct intel_engine_cs *engine = barrier_to_engine(node);
984 		struct rb_node **p, *parent;
985 
986 		spin_lock_irqsave_nested(&ref->tree_lock, flags,
987 					 SINGLE_DEPTH_NESTING);
988 		parent = NULL;
989 		p = &ref->tree.rb_node;
990 		while (*p) {
991 			struct active_node *it;
992 
993 			parent = *p;
994 
995 			it = rb_entry(parent, struct active_node, node);
996 			if (it->timeline < node->timeline)
997 				p = &parent->rb_right;
998 			else
999 				p = &parent->rb_left;
1000 		}
1001 		rb_link_node(&node->node, parent, p);
1002 		rb_insert_color(&node->node, &ref->tree);
1003 		spin_unlock_irqrestore(&ref->tree_lock, flags);
1004 
1005 		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1006 		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
1007 		intel_engine_pm_put_delay(engine, 1);
1008 	}
1009 }
1010 
1011 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
1012 {
1013 	return __active_fence_slot(&barrier_from_ll(node)->base);
1014 }
1015 
1016 void i915_request_add_active_barriers(struct i915_request *rq)
1017 {
1018 	struct intel_engine_cs *engine = rq->engine;
1019 	struct llist_node *node, *next;
1020 	unsigned long flags;
1021 
1022 	GEM_BUG_ON(!intel_context_is_barrier(rq->context));
1023 	GEM_BUG_ON(intel_engine_is_virtual(engine));
1024 	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
1025 
1026 	node = llist_del_all(&engine->barrier_tasks);
1027 	if (!node)
1028 		return;
1029 	/*
1030 	 * Attach the list of proto-fences to the in-flight request such
1031 	 * that the parent i915_active will be released when this request
1032 	 * is retired.
1033 	 */
1034 	spin_lock_irqsave(&rq->lock, flags);
1035 	llist_for_each_safe(node, next, node) {
1036 		/* serialise with reuse_idle_barrier */
1037 		smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1038 		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1039 	}
1040 	spin_unlock_irqrestore(&rq->lock, flags);
1041 }
1042 
1043 /*
1044  * __i915_active_fence_set: Update the last active fence along its timeline
1045  * @active: the active tracker
1046  * @fence: the new fence (under construction)
1047  *
1048  * Records the new @fence as the last active fence along its timeline in
1049  * this active tracker, moving the tracking callbacks from the previous
1050  * fence onto this one. Returns the previous fence (if not already completed),
1051  * which the caller must ensure is executed before the new fence. To ensure
1052  * that the order of fences within the timeline of the i915_active_fence is
1053  * understood, it should be locked by the caller.
1054  */
1055 struct dma_fence *
1056 __i915_active_fence_set(struct i915_active_fence *active,
1057 			struct dma_fence *fence)
1058 {
1059 	struct dma_fence *prev;
1060 	unsigned long flags;
1061 
1062 	if (fence == rcu_access_pointer(active->fence))
1063 		return fence;
1064 
1065 	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1066 
1067 	/*
1068 	 * Consider that we have two threads arriving (A and B), with
1069 	 * C already resident as the active->fence.
1070 	 *
1071 	 * A does the xchg first, and so it sees C or NULL depending
1072 	 * on the timing of the interrupt handler. If it is NULL, the
1073 	 * previous fence must have been signaled and we know that
1074 	 * we are first on the timeline. If it is still present,
1075 	 * we acquire the lock on that fence and serialise with the interrupt
1076 	 * handler, in the process removing it from any future interrupt
1077 	 * callback. A will then wait on C before executing (if present).
1078 	 *
1079 	 * As B is second, it sees A as the previous fence and so waits for
1080 	 * it to complete its transition and takes over the occupancy for
1081 	 * itself -- remembering that it needs to wait on A before executing.
1082 	 *
1083 	 * Note the strong ordering of the timeline also provides consistent
1084 	 * nesting rules for the fence->lock; the inner lock is always the
1085 	 * older lock.
1086 	 */
1087 	spin_lock_irqsave(fence->lock, flags);
1088 	prev = xchg(__active_fence_slot(active), fence);
1089 	if (prev) {
1090 		GEM_BUG_ON(prev == fence);
1091 		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1092 		__list_del_entry(&active->cb.node);
1093 		spin_unlock(prev->lock); /* serialise with prev->cb_list */
1094 	}
1095 	list_add_tail(&active->cb.node, &fence->cb_list);
1096 	spin_unlock_irqrestore(fence->lock, flags);
1097 
1098 	return prev;
1099 }
1100 
1101 int i915_active_fence_set(struct i915_active_fence *active,
1102 			  struct i915_request *rq)
1103 {
1104 	struct dma_fence *fence;
1105 	int err = 0;
1106 
1107 	/* Must maintain timeline ordering wrt previous active requests */
1108 	rcu_read_lock();
1109 	fence = __i915_active_fence_set(active, &rq->fence);
1110 	if (fence) /* but the previous fence may not belong to that timeline! */
1111 		fence = dma_fence_get_rcu(fence);
1112 	rcu_read_unlock();
1113 	if (fence) {
1114 		err = i915_request_await_dma_fence(rq, fence);
1115 		dma_fence_put(fence);
1116 	}
1117 
1118 	return err;
1119 }
1120 
1121 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1122 {
1123 	active_fence_cb(fence, cb);
1124 }
1125 
1126 struct auto_active {
1127 	struct i915_active base;
1128 	struct kref ref;
1129 };
1130 
1131 struct i915_active *i915_active_get(struct i915_active *ref)
1132 {
1133 	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1134 
1135 	kref_get(&aa->ref);
1136 	return &aa->base;
1137 }
1138 
1139 static void auto_release(struct kref *ref)
1140 {
1141 	struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1142 
1143 	i915_active_fini(&aa->base);
1144 	kfree(aa);
1145 }
1146 
1147 void i915_active_put(struct i915_active *ref)
1148 {
1149 	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1150 
1151 	kref_put(&aa->ref, auto_release);
1152 }
1153 
1154 static int auto_active(struct i915_active *ref)
1155 {
1156 	i915_active_get(ref);
1157 	return 0;
1158 }
1159 
1160 static void auto_retire(struct i915_active *ref)
1161 {
1162 	i915_active_put(ref);
1163 }
1164 
1165 struct i915_active *i915_active_create(void)
1166 {
1167 	struct auto_active *aa;
1168 
1169 	aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1170 	if (!aa)
1171 		return NULL;
1172 
1173 	kref_init(&aa->ref);
1174 	i915_active_init(&aa->base, auto_active, auto_retire);
1175 
1176 	return &aa->base;
1177 }
1178 
1179 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1180 #include "selftests/i915_active.c"
1181 #endif
1182 
1183 static void i915_global_active_shrink(void)
1184 {
1185 	kmem_cache_shrink(global.slab_cache);
1186 }
1187 
1188 static void i915_global_active_exit(void)
1189 {
1190 	kmem_cache_destroy(global.slab_cache);
1191 }
1192 
1193 static struct i915_global_active global = { {
1194 	.shrink = i915_global_active_shrink,
1195 	.exit = i915_global_active_exit,
1196 } };
1197 
1198 int __init i915_global_active_init(void)
1199 {
1200 	global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1201 	if (!global.slab_cache)
1202 		return -ENOMEM;
1203 
1204 	i915_global_register(&global.base);
1205 	return 0;
1206 }
1207