1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2019 Intel Corporation 5 */ 6 7 #include <linux/debugobjects.h> 8 9 #include "gt/intel_context.h" 10 #include "gt/intel_engine_heartbeat.h" 11 #include "gt/intel_engine_pm.h" 12 #include "gt/intel_ring.h" 13 14 #include "i915_drv.h" 15 #include "i915_active.h" 16 17 /* 18 * Active refs memory management 19 * 20 * To be more economical with memory, we reap all the i915_active trees as 21 * they idle (when we know the active requests are inactive) and allocate the 22 * nodes from a local slab cache to hopefully reduce the fragmentation. 23 */ 24 static struct kmem_cache *slab_cache; 25 26 struct active_node { 27 struct rb_node node; 28 struct i915_active_fence base; 29 struct i915_active *ref; 30 u64 timeline; 31 }; 32 33 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node) 34 35 static inline struct active_node * 36 node_from_active(struct i915_active_fence *active) 37 { 38 return container_of(active, struct active_node, base); 39 } 40 41 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers) 42 43 static inline bool is_barrier(const struct i915_active_fence *active) 44 { 45 return IS_ERR(rcu_access_pointer(active->fence)); 46 } 47 48 static inline struct llist_node *barrier_to_ll(struct active_node *node) 49 { 50 GEM_BUG_ON(!is_barrier(&node->base)); 51 return (struct llist_node *)&node->base.cb.node; 52 } 53 54 static inline struct intel_engine_cs * 55 __barrier_to_engine(struct active_node *node) 56 { 57 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev); 58 } 59 60 static inline struct intel_engine_cs * 61 barrier_to_engine(struct active_node *node) 62 { 63 GEM_BUG_ON(!is_barrier(&node->base)); 64 return __barrier_to_engine(node); 65 } 66 67 static inline struct active_node *barrier_from_ll(struct llist_node *x) 68 { 69 return container_of((struct list_head *)x, 70 struct active_node, base.cb.node); 71 } 72 73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS) 74 75 static void *active_debug_hint(void *addr) 76 { 77 struct i915_active *ref = addr; 78 79 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref; 80 } 81 82 static const struct debug_obj_descr active_debug_desc = { 83 .name = "i915_active", 84 .debug_hint = active_debug_hint, 85 }; 86 87 static void debug_active_init(struct i915_active *ref) 88 { 89 debug_object_init(ref, &active_debug_desc); 90 } 91 92 static void debug_active_activate(struct i915_active *ref) 93 { 94 lockdep_assert_held(&ref->tree_lock); 95 if (!atomic_read(&ref->count)) /* before the first inc */ 96 debug_object_activate(ref, &active_debug_desc); 97 } 98 99 static void debug_active_deactivate(struct i915_active *ref) 100 { 101 lockdep_assert_held(&ref->tree_lock); 102 if (!atomic_read(&ref->count)) /* after the last dec */ 103 debug_object_deactivate(ref, &active_debug_desc); 104 } 105 106 static void debug_active_fini(struct i915_active *ref) 107 { 108 debug_object_free(ref, &active_debug_desc); 109 } 110 111 static void debug_active_assert(struct i915_active *ref) 112 { 113 debug_object_assert_init(ref, &active_debug_desc); 114 } 115 116 #else 117 118 static inline void debug_active_init(struct i915_active *ref) { } 119 static inline void debug_active_activate(struct i915_active *ref) { } 120 static inline void debug_active_deactivate(struct i915_active *ref) { } 121 static inline void debug_active_fini(struct i915_active *ref) { } 122 static inline void debug_active_assert(struct i915_active *ref) { } 123 124 #endif 125 126 static void 127 __active_retire(struct i915_active *ref) 128 { 129 struct rb_root root = RB_ROOT; 130 struct active_node *it, *n; 131 unsigned long flags; 132 133 GEM_BUG_ON(i915_active_is_idle(ref)); 134 135 /* return the unused nodes to our slabcache -- flushing the allocator */ 136 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags)) 137 return; 138 139 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence)); 140 debug_active_deactivate(ref); 141 142 /* Even if we have not used the cache, we may still have a barrier */ 143 if (!ref->cache) 144 ref->cache = fetch_node(ref->tree.rb_node); 145 146 /* Keep the MRU cached node for reuse */ 147 if (ref->cache) { 148 /* Discard all other nodes in the tree */ 149 rb_erase(&ref->cache->node, &ref->tree); 150 root = ref->tree; 151 152 /* Rebuild the tree with only the cached node */ 153 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node); 154 rb_insert_color(&ref->cache->node, &ref->tree); 155 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node); 156 157 /* Make the cached node available for reuse with any timeline */ 158 ref->cache->timeline = 0; /* needs cmpxchg(u64) */ 159 } 160 161 spin_unlock_irqrestore(&ref->tree_lock, flags); 162 163 /* After the final retire, the entire struct may be freed */ 164 if (ref->retire) 165 ref->retire(ref); 166 167 /* ... except if you wait on it, you must manage your own references! */ 168 wake_up_var(ref); 169 170 /* Finally free the discarded timeline tree */ 171 rbtree_postorder_for_each_entry_safe(it, n, &root, node) { 172 GEM_BUG_ON(i915_active_fence_isset(&it->base)); 173 kmem_cache_free(slab_cache, it); 174 } 175 } 176 177 static void 178 active_work(struct work_struct *wrk) 179 { 180 struct i915_active *ref = container_of(wrk, typeof(*ref), work); 181 182 GEM_BUG_ON(!atomic_read(&ref->count)); 183 if (atomic_add_unless(&ref->count, -1, 1)) 184 return; 185 186 __active_retire(ref); 187 } 188 189 static void 190 active_retire(struct i915_active *ref) 191 { 192 GEM_BUG_ON(!atomic_read(&ref->count)); 193 if (atomic_add_unless(&ref->count, -1, 1)) 194 return; 195 196 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) { 197 queue_work(system_unbound_wq, &ref->work); 198 return; 199 } 200 201 __active_retire(ref); 202 } 203 204 static inline struct dma_fence ** 205 __active_fence_slot(struct i915_active_fence *active) 206 { 207 return (struct dma_fence ** __force)&active->fence; 208 } 209 210 static inline bool 211 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 212 { 213 struct i915_active_fence *active = 214 container_of(cb, typeof(*active), cb); 215 216 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence; 217 } 218 219 static void 220 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 221 { 222 if (active_fence_cb(fence, cb)) 223 active_retire(container_of(cb, struct active_node, base.cb)->ref); 224 } 225 226 static void 227 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 228 { 229 if (active_fence_cb(fence, cb)) 230 active_retire(container_of(cb, struct i915_active, excl.cb)); 231 } 232 233 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx) 234 { 235 struct active_node *it; 236 237 GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */ 238 239 /* 240 * We track the most recently used timeline to skip a rbtree search 241 * for the common case, under typical loads we never need the rbtree 242 * at all. We can reuse the last slot if it is empty, that is 243 * after the previous activity has been retired, or if it matches the 244 * current timeline. 245 */ 246 it = READ_ONCE(ref->cache); 247 if (it) { 248 u64 cached = READ_ONCE(it->timeline); 249 250 /* Once claimed, this slot will only belong to this idx */ 251 if (cached == idx) 252 return it; 253 254 /* 255 * An unclaimed cache [.timeline=0] can only be claimed once. 256 * 257 * If the value is already non-zero, some other thread has 258 * claimed the cache and we know that is does not match our 259 * idx. If, and only if, the timeline is currently zero is it 260 * worth competing to claim it atomically for ourselves (for 261 * only the winner of that race will cmpxchg return the old 262 * value of 0). 263 */ 264 if (!cached && !cmpxchg64(&it->timeline, 0, idx)) 265 return it; 266 } 267 268 BUILD_BUG_ON(offsetof(typeof(*it), node)); 269 270 /* While active, the tree can only be built; not destroyed */ 271 GEM_BUG_ON(i915_active_is_idle(ref)); 272 273 it = fetch_node(ref->tree.rb_node); 274 while (it) { 275 if (it->timeline < idx) { 276 it = fetch_node(it->node.rb_right); 277 } else if (it->timeline > idx) { 278 it = fetch_node(it->node.rb_left); 279 } else { 280 WRITE_ONCE(ref->cache, it); 281 break; 282 } 283 } 284 285 /* NB: If the tree rotated beneath us, we may miss our target. */ 286 return it; 287 } 288 289 static struct i915_active_fence * 290 active_instance(struct i915_active *ref, u64 idx) 291 { 292 struct active_node *node; 293 struct rb_node **p, *parent; 294 295 node = __active_lookup(ref, idx); 296 if (likely(node)) 297 return &node->base; 298 299 spin_lock_irq(&ref->tree_lock); 300 GEM_BUG_ON(i915_active_is_idle(ref)); 301 302 parent = NULL; 303 p = &ref->tree.rb_node; 304 while (*p) { 305 parent = *p; 306 307 node = rb_entry(parent, struct active_node, node); 308 if (node->timeline == idx) 309 goto out; 310 311 if (node->timeline < idx) 312 p = &parent->rb_right; 313 else 314 p = &parent->rb_left; 315 } 316 317 /* 318 * XXX: We should preallocate this before i915_active_ref() is ever 319 * called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC. 320 */ 321 node = kmem_cache_alloc(slab_cache, GFP_ATOMIC); 322 if (!node) 323 goto out; 324 325 __i915_active_fence_init(&node->base, NULL, node_retire); 326 node->ref = ref; 327 node->timeline = idx; 328 329 rb_link_node(&node->node, parent, p); 330 rb_insert_color(&node->node, &ref->tree); 331 332 out: 333 WRITE_ONCE(ref->cache, node); 334 spin_unlock_irq(&ref->tree_lock); 335 336 return &node->base; 337 } 338 339 void __i915_active_init(struct i915_active *ref, 340 int (*active)(struct i915_active *ref), 341 void (*retire)(struct i915_active *ref), 342 unsigned long flags, 343 struct lock_class_key *mkey, 344 struct lock_class_key *wkey) 345 { 346 debug_active_init(ref); 347 348 ref->flags = flags; 349 ref->active = active; 350 ref->retire = retire; 351 352 spin_lock_init(&ref->tree_lock); 353 ref->tree = RB_ROOT; 354 ref->cache = NULL; 355 356 init_llist_head(&ref->preallocated_barriers); 357 atomic_set(&ref->count, 0); 358 __mutex_init(&ref->mutex, "i915_active", mkey); 359 __i915_active_fence_init(&ref->excl, NULL, excl_retire); 360 INIT_WORK(&ref->work, active_work); 361 #if IS_ENABLED(CONFIG_LOCKDEP) 362 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0); 363 #endif 364 } 365 366 static bool ____active_del_barrier(struct i915_active *ref, 367 struct active_node *node, 368 struct intel_engine_cs *engine) 369 370 { 371 struct llist_node *head = NULL, *tail = NULL; 372 struct llist_node *pos, *next; 373 374 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context); 375 376 /* 377 * Rebuild the llist excluding our node. We may perform this 378 * outside of the kernel_context timeline mutex and so someone 379 * else may be manipulating the engine->barrier_tasks, in 380 * which case either we or they will be upset :) 381 * 382 * A second __active_del_barrier() will report failure to claim 383 * the active_node and the caller will just shrug and know not to 384 * claim ownership of its node. 385 * 386 * A concurrent i915_request_add_active_barriers() will miss adding 387 * any of the tasks, but we will try again on the next -- and since 388 * we are actively using the barrier, we know that there will be 389 * at least another opportunity when we idle. 390 */ 391 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) { 392 if (node == barrier_from_ll(pos)) { 393 node = NULL; 394 continue; 395 } 396 397 pos->next = head; 398 head = pos; 399 if (!tail) 400 tail = pos; 401 } 402 if (head) 403 llist_add_batch(head, tail, &engine->barrier_tasks); 404 405 return !node; 406 } 407 408 static bool 409 __active_del_barrier(struct i915_active *ref, struct active_node *node) 410 { 411 return ____active_del_barrier(ref, node, barrier_to_engine(node)); 412 } 413 414 static bool 415 replace_barrier(struct i915_active *ref, struct i915_active_fence *active) 416 { 417 if (!is_barrier(active)) /* proto-node used by our idle barrier? */ 418 return false; 419 420 /* 421 * This request is on the kernel_context timeline, and so 422 * we can use it to substitute for the pending idle-barrer 423 * request that we want to emit on the kernel_context. 424 */ 425 return __active_del_barrier(ref, node_from_active(active)); 426 } 427 428 int i915_active_add_request(struct i915_active *ref, struct i915_request *rq) 429 { 430 u64 idx = i915_request_timeline(rq)->fence_context; 431 struct dma_fence *fence = &rq->fence; 432 struct i915_active_fence *active; 433 int err; 434 435 /* Prevent reaping in case we malloc/wait while building the tree */ 436 err = i915_active_acquire(ref); 437 if (err) 438 return err; 439 440 do { 441 active = active_instance(ref, idx); 442 if (!active) { 443 err = -ENOMEM; 444 goto out; 445 } 446 447 if (replace_barrier(ref, active)) { 448 RCU_INIT_POINTER(active->fence, NULL); 449 atomic_dec(&ref->count); 450 } 451 } while (unlikely(is_barrier(active))); 452 453 if (!__i915_active_fence_set(active, fence)) 454 __i915_active_acquire(ref); 455 456 out: 457 i915_active_release(ref); 458 return err; 459 } 460 461 static struct dma_fence * 462 __i915_active_set_fence(struct i915_active *ref, 463 struct i915_active_fence *active, 464 struct dma_fence *fence) 465 { 466 struct dma_fence *prev; 467 468 if (replace_barrier(ref, active)) { 469 RCU_INIT_POINTER(active->fence, fence); 470 return NULL; 471 } 472 473 rcu_read_lock(); 474 prev = __i915_active_fence_set(active, fence); 475 if (prev) 476 prev = dma_fence_get_rcu(prev); 477 else 478 __i915_active_acquire(ref); 479 rcu_read_unlock(); 480 481 return prev; 482 } 483 484 struct dma_fence * 485 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) 486 { 487 /* We expect the caller to manage the exclusive timeline ordering */ 488 return __i915_active_set_fence(ref, &ref->excl, f); 489 } 490 491 bool i915_active_acquire_if_busy(struct i915_active *ref) 492 { 493 debug_active_assert(ref); 494 return atomic_add_unless(&ref->count, 1, 0); 495 } 496 497 static void __i915_active_activate(struct i915_active *ref) 498 { 499 spin_lock_irq(&ref->tree_lock); /* __active_retire() */ 500 if (!atomic_fetch_inc(&ref->count)) 501 debug_active_activate(ref); 502 spin_unlock_irq(&ref->tree_lock); 503 } 504 505 int i915_active_acquire(struct i915_active *ref) 506 { 507 int err; 508 509 if (i915_active_acquire_if_busy(ref)) 510 return 0; 511 512 if (!ref->active) { 513 __i915_active_activate(ref); 514 return 0; 515 } 516 517 err = mutex_lock_interruptible(&ref->mutex); 518 if (err) 519 return err; 520 521 if (likely(!i915_active_acquire_if_busy(ref))) { 522 err = ref->active(ref); 523 if (!err) 524 __i915_active_activate(ref); 525 } 526 527 mutex_unlock(&ref->mutex); 528 529 return err; 530 } 531 532 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx) 533 { 534 struct i915_active_fence *active; 535 int err; 536 537 err = i915_active_acquire(ref); 538 if (err) 539 return err; 540 541 active = active_instance(ref, idx); 542 if (!active) { 543 i915_active_release(ref); 544 return -ENOMEM; 545 } 546 547 return 0; /* return with active ref */ 548 } 549 550 void i915_active_release(struct i915_active *ref) 551 { 552 debug_active_assert(ref); 553 active_retire(ref); 554 } 555 556 static void enable_signaling(struct i915_active_fence *active) 557 { 558 struct dma_fence *fence; 559 560 if (unlikely(is_barrier(active))) 561 return; 562 563 fence = i915_active_fence_get(active); 564 if (!fence) 565 return; 566 567 dma_fence_enable_sw_signaling(fence); 568 dma_fence_put(fence); 569 } 570 571 static int flush_barrier(struct active_node *it) 572 { 573 struct intel_engine_cs *engine; 574 575 if (likely(!is_barrier(&it->base))) 576 return 0; 577 578 engine = __barrier_to_engine(it); 579 smp_rmb(); /* serialise with add_active_barriers */ 580 if (!is_barrier(&it->base)) 581 return 0; 582 583 return intel_engine_flush_barriers(engine); 584 } 585 586 static int flush_lazy_signals(struct i915_active *ref) 587 { 588 struct active_node *it, *n; 589 int err = 0; 590 591 enable_signaling(&ref->excl); 592 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 593 err = flush_barrier(it); /* unconnected idle barrier? */ 594 if (err) 595 break; 596 597 enable_signaling(&it->base); 598 } 599 600 return err; 601 } 602 603 int __i915_active_wait(struct i915_active *ref, int state) 604 { 605 might_sleep(); 606 607 /* Any fence added after the wait begins will not be auto-signaled */ 608 if (i915_active_acquire_if_busy(ref)) { 609 int err; 610 611 err = flush_lazy_signals(ref); 612 i915_active_release(ref); 613 if (err) 614 return err; 615 616 if (___wait_var_event(ref, i915_active_is_idle(ref), 617 state, 0, 0, schedule())) 618 return -EINTR; 619 } 620 621 /* 622 * After the wait is complete, the caller may free the active. 623 * We have to flush any concurrent retirement before returning. 624 */ 625 flush_work(&ref->work); 626 return 0; 627 } 628 629 static int __await_active(struct i915_active_fence *active, 630 int (*fn)(void *arg, struct dma_fence *fence), 631 void *arg) 632 { 633 struct dma_fence *fence; 634 635 if (is_barrier(active)) /* XXX flush the barrier? */ 636 return 0; 637 638 fence = i915_active_fence_get(active); 639 if (fence) { 640 int err; 641 642 err = fn(arg, fence); 643 dma_fence_put(fence); 644 if (err < 0) 645 return err; 646 } 647 648 return 0; 649 } 650 651 struct wait_barrier { 652 struct wait_queue_entry base; 653 struct i915_active *ref; 654 }; 655 656 static int 657 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key) 658 { 659 struct wait_barrier *wb = container_of(wq, typeof(*wb), base); 660 661 if (i915_active_is_idle(wb->ref)) { 662 list_del(&wq->entry); 663 i915_sw_fence_complete(wq->private); 664 kfree(wq); 665 } 666 667 return 0; 668 } 669 670 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence) 671 { 672 struct wait_barrier *wb; 673 674 wb = kmalloc(sizeof(*wb), GFP_KERNEL); 675 if (unlikely(!wb)) 676 return -ENOMEM; 677 678 GEM_BUG_ON(i915_active_is_idle(ref)); 679 if (!i915_sw_fence_await(fence)) { 680 kfree(wb); 681 return -EINVAL; 682 } 683 684 wb->base.flags = 0; 685 wb->base.func = barrier_wake; 686 wb->base.private = fence; 687 wb->ref = ref; 688 689 add_wait_queue(__var_waitqueue(ref), &wb->base); 690 return 0; 691 } 692 693 static int await_active(struct i915_active *ref, 694 unsigned int flags, 695 int (*fn)(void *arg, struct dma_fence *fence), 696 void *arg, struct i915_sw_fence *barrier) 697 { 698 int err = 0; 699 700 if (!i915_active_acquire_if_busy(ref)) 701 return 0; 702 703 if (flags & I915_ACTIVE_AWAIT_EXCL && 704 rcu_access_pointer(ref->excl.fence)) { 705 err = __await_active(&ref->excl, fn, arg); 706 if (err) 707 goto out; 708 } 709 710 if (flags & I915_ACTIVE_AWAIT_ACTIVE) { 711 struct active_node *it, *n; 712 713 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 714 err = __await_active(&it->base, fn, arg); 715 if (err) 716 goto out; 717 } 718 } 719 720 if (flags & I915_ACTIVE_AWAIT_BARRIER) { 721 err = flush_lazy_signals(ref); 722 if (err) 723 goto out; 724 725 err = __await_barrier(ref, barrier); 726 if (err) 727 goto out; 728 } 729 730 out: 731 i915_active_release(ref); 732 return err; 733 } 734 735 static int rq_await_fence(void *arg, struct dma_fence *fence) 736 { 737 return i915_request_await_dma_fence(arg, fence); 738 } 739 740 int i915_request_await_active(struct i915_request *rq, 741 struct i915_active *ref, 742 unsigned int flags) 743 { 744 return await_active(ref, flags, rq_await_fence, rq, &rq->submit); 745 } 746 747 static int sw_await_fence(void *arg, struct dma_fence *fence) 748 { 749 return i915_sw_fence_await_dma_fence(arg, fence, 0, 750 GFP_NOWAIT | __GFP_NOWARN); 751 } 752 753 int i915_sw_fence_await_active(struct i915_sw_fence *fence, 754 struct i915_active *ref, 755 unsigned int flags) 756 { 757 return await_active(ref, flags, sw_await_fence, fence, fence); 758 } 759 760 void i915_active_fini(struct i915_active *ref) 761 { 762 debug_active_fini(ref); 763 GEM_BUG_ON(atomic_read(&ref->count)); 764 GEM_BUG_ON(work_pending(&ref->work)); 765 mutex_destroy(&ref->mutex); 766 767 if (ref->cache) 768 kmem_cache_free(slab_cache, ref->cache); 769 } 770 771 static inline bool is_idle_barrier(struct active_node *node, u64 idx) 772 { 773 return node->timeline == idx && !i915_active_fence_isset(&node->base); 774 } 775 776 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) 777 { 778 struct rb_node *prev, *p; 779 780 if (RB_EMPTY_ROOT(&ref->tree)) 781 return NULL; 782 783 GEM_BUG_ON(i915_active_is_idle(ref)); 784 785 /* 786 * Try to reuse any existing barrier nodes already allocated for this 787 * i915_active, due to overlapping active phases there is likely a 788 * node kept alive (as we reuse before parking). We prefer to reuse 789 * completely idle barriers (less hassle in manipulating the llists), 790 * but otherwise any will do. 791 */ 792 if (ref->cache && is_idle_barrier(ref->cache, idx)) { 793 p = &ref->cache->node; 794 goto match; 795 } 796 797 prev = NULL; 798 p = ref->tree.rb_node; 799 while (p) { 800 struct active_node *node = 801 rb_entry(p, struct active_node, node); 802 803 if (is_idle_barrier(node, idx)) 804 goto match; 805 806 prev = p; 807 if (node->timeline < idx) 808 p = READ_ONCE(p->rb_right); 809 else 810 p = READ_ONCE(p->rb_left); 811 } 812 813 /* 814 * No quick match, but we did find the leftmost rb_node for the 815 * kernel_context. Walk the rb_tree in-order to see if there were 816 * any idle-barriers on this timeline that we missed, or just use 817 * the first pending barrier. 818 */ 819 for (p = prev; p; p = rb_next(p)) { 820 struct active_node *node = 821 rb_entry(p, struct active_node, node); 822 struct intel_engine_cs *engine; 823 824 if (node->timeline > idx) 825 break; 826 827 if (node->timeline < idx) 828 continue; 829 830 if (is_idle_barrier(node, idx)) 831 goto match; 832 833 /* 834 * The list of pending barriers is protected by the 835 * kernel_context timeline, which notably we do not hold 836 * here. i915_request_add_active_barriers() may consume 837 * the barrier before we claim it, so we have to check 838 * for success. 839 */ 840 engine = __barrier_to_engine(node); 841 smp_rmb(); /* serialise with add_active_barriers */ 842 if (is_barrier(&node->base) && 843 ____active_del_barrier(ref, node, engine)) 844 goto match; 845 } 846 847 return NULL; 848 849 match: 850 spin_lock_irq(&ref->tree_lock); 851 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */ 852 if (p == &ref->cache->node) 853 WRITE_ONCE(ref->cache, NULL); 854 spin_unlock_irq(&ref->tree_lock); 855 856 return rb_entry(p, struct active_node, node); 857 } 858 859 int i915_active_acquire_preallocate_barrier(struct i915_active *ref, 860 struct intel_engine_cs *engine) 861 { 862 intel_engine_mask_t tmp, mask = engine->mask; 863 struct llist_node *first = NULL, *last = NULL; 864 struct intel_gt *gt = engine->gt; 865 866 GEM_BUG_ON(i915_active_is_idle(ref)); 867 868 /* Wait until the previous preallocation is completed */ 869 while (!llist_empty(&ref->preallocated_barriers)) 870 cond_resched(); 871 872 /* 873 * Preallocate a node for each physical engine supporting the target 874 * engine (remember virtual engines have more than one sibling). 875 * We can then use the preallocated nodes in 876 * i915_active_acquire_barrier() 877 */ 878 GEM_BUG_ON(!mask); 879 for_each_engine_masked(engine, gt, mask, tmp) { 880 u64 idx = engine->kernel_context->timeline->fence_context; 881 struct llist_node *prev = first; 882 struct active_node *node; 883 884 rcu_read_lock(); 885 node = reuse_idle_barrier(ref, idx); 886 rcu_read_unlock(); 887 if (!node) { 888 node = kmem_cache_alloc(slab_cache, GFP_KERNEL); 889 if (!node) 890 goto unwind; 891 892 RCU_INIT_POINTER(node->base.fence, NULL); 893 node->base.cb.func = node_retire; 894 node->timeline = idx; 895 node->ref = ref; 896 } 897 898 if (!i915_active_fence_isset(&node->base)) { 899 /* 900 * Mark this as being *our* unconnected proto-node. 901 * 902 * Since this node is not in any list, and we have 903 * decoupled it from the rbtree, we can reuse the 904 * request to indicate this is an idle-barrier node 905 * and then we can use the rb_node and list pointers 906 * for our tracking of the pending barrier. 907 */ 908 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN)); 909 node->base.cb.node.prev = (void *)engine; 910 __i915_active_acquire(ref); 911 } 912 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN)); 913 914 GEM_BUG_ON(barrier_to_engine(node) != engine); 915 first = barrier_to_ll(node); 916 first->next = prev; 917 if (!last) 918 last = first; 919 intel_engine_pm_get(engine); 920 } 921 922 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers)); 923 llist_add_batch(first, last, &ref->preallocated_barriers); 924 925 return 0; 926 927 unwind: 928 while (first) { 929 struct active_node *node = barrier_from_ll(first); 930 931 first = first->next; 932 933 atomic_dec(&ref->count); 934 intel_engine_pm_put(barrier_to_engine(node)); 935 936 kmem_cache_free(slab_cache, node); 937 } 938 return -ENOMEM; 939 } 940 941 void i915_active_acquire_barrier(struct i915_active *ref) 942 { 943 struct llist_node *pos, *next; 944 unsigned long flags; 945 946 GEM_BUG_ON(i915_active_is_idle(ref)); 947 948 /* 949 * Transfer the list of preallocated barriers into the 950 * i915_active rbtree, but only as proto-nodes. They will be 951 * populated by i915_request_add_active_barriers() to point to the 952 * request that will eventually release them. 953 */ 954 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) { 955 struct active_node *node = barrier_from_ll(pos); 956 struct intel_engine_cs *engine = barrier_to_engine(node); 957 struct rb_node **p, *parent; 958 959 spin_lock_irqsave_nested(&ref->tree_lock, flags, 960 SINGLE_DEPTH_NESTING); 961 parent = NULL; 962 p = &ref->tree.rb_node; 963 while (*p) { 964 struct active_node *it; 965 966 parent = *p; 967 968 it = rb_entry(parent, struct active_node, node); 969 if (it->timeline < node->timeline) 970 p = &parent->rb_right; 971 else 972 p = &parent->rb_left; 973 } 974 rb_link_node(&node->node, parent, p); 975 rb_insert_color(&node->node, &ref->tree); 976 spin_unlock_irqrestore(&ref->tree_lock, flags); 977 978 GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); 979 llist_add(barrier_to_ll(node), &engine->barrier_tasks); 980 intel_engine_pm_put_delay(engine, 2); 981 } 982 } 983 984 static struct dma_fence **ll_to_fence_slot(struct llist_node *node) 985 { 986 return __active_fence_slot(&barrier_from_ll(node)->base); 987 } 988 989 void i915_request_add_active_barriers(struct i915_request *rq) 990 { 991 struct intel_engine_cs *engine = rq->engine; 992 struct llist_node *node, *next; 993 unsigned long flags; 994 995 GEM_BUG_ON(!intel_context_is_barrier(rq->context)); 996 GEM_BUG_ON(intel_engine_is_virtual(engine)); 997 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline); 998 999 node = llist_del_all(&engine->barrier_tasks); 1000 if (!node) 1001 return; 1002 /* 1003 * Attach the list of proto-fences to the in-flight request such 1004 * that the parent i915_active will be released when this request 1005 * is retired. 1006 */ 1007 spin_lock_irqsave(&rq->lock, flags); 1008 llist_for_each_safe(node, next, node) { 1009 /* serialise with reuse_idle_barrier */ 1010 smp_store_mb(*ll_to_fence_slot(node), &rq->fence); 1011 list_add_tail((struct list_head *)node, &rq->fence.cb_list); 1012 } 1013 spin_unlock_irqrestore(&rq->lock, flags); 1014 } 1015 1016 /* 1017 * __i915_active_fence_set: Update the last active fence along its timeline 1018 * @active: the active tracker 1019 * @fence: the new fence (under construction) 1020 * 1021 * Records the new @fence as the last active fence along its timeline in 1022 * this active tracker, moving the tracking callbacks from the previous 1023 * fence onto this one. Returns the previous fence (if not already completed), 1024 * which the caller must ensure is executed before the new fence. To ensure 1025 * that the order of fences within the timeline of the i915_active_fence is 1026 * understood, it should be locked by the caller. 1027 */ 1028 struct dma_fence * 1029 __i915_active_fence_set(struct i915_active_fence *active, 1030 struct dma_fence *fence) 1031 { 1032 struct dma_fence *prev; 1033 unsigned long flags; 1034 1035 if (fence == rcu_access_pointer(active->fence)) 1036 return fence; 1037 1038 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)); 1039 1040 /* 1041 * Consider that we have two threads arriving (A and B), with 1042 * C already resident as the active->fence. 1043 * 1044 * A does the xchg first, and so it sees C or NULL depending 1045 * on the timing of the interrupt handler. If it is NULL, the 1046 * previous fence must have been signaled and we know that 1047 * we are first on the timeline. If it is still present, 1048 * we acquire the lock on that fence and serialise with the interrupt 1049 * handler, in the process removing it from any future interrupt 1050 * callback. A will then wait on C before executing (if present). 1051 * 1052 * As B is second, it sees A as the previous fence and so waits for 1053 * it to complete its transition and takes over the occupancy for 1054 * itself -- remembering that it needs to wait on A before executing. 1055 * 1056 * Note the strong ordering of the timeline also provides consistent 1057 * nesting rules for the fence->lock; the inner lock is always the 1058 * older lock. 1059 */ 1060 spin_lock_irqsave(fence->lock, flags); 1061 prev = xchg(__active_fence_slot(active), fence); 1062 if (prev) { 1063 GEM_BUG_ON(prev == fence); 1064 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); 1065 __list_del_entry(&active->cb.node); 1066 spin_unlock(prev->lock); /* serialise with prev->cb_list */ 1067 } 1068 list_add_tail(&active->cb.node, &fence->cb_list); 1069 spin_unlock_irqrestore(fence->lock, flags); 1070 1071 return prev; 1072 } 1073 1074 int i915_active_fence_set(struct i915_active_fence *active, 1075 struct i915_request *rq) 1076 { 1077 struct dma_fence *fence; 1078 int err = 0; 1079 1080 /* Must maintain timeline ordering wrt previous active requests */ 1081 rcu_read_lock(); 1082 fence = __i915_active_fence_set(active, &rq->fence); 1083 if (fence) /* but the previous fence may not belong to that timeline! */ 1084 fence = dma_fence_get_rcu(fence); 1085 rcu_read_unlock(); 1086 if (fence) { 1087 err = i915_request_await_dma_fence(rq, fence); 1088 dma_fence_put(fence); 1089 } 1090 1091 return err; 1092 } 1093 1094 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb) 1095 { 1096 active_fence_cb(fence, cb); 1097 } 1098 1099 struct auto_active { 1100 struct i915_active base; 1101 struct kref ref; 1102 }; 1103 1104 struct i915_active *i915_active_get(struct i915_active *ref) 1105 { 1106 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1107 1108 kref_get(&aa->ref); 1109 return &aa->base; 1110 } 1111 1112 static void auto_release(struct kref *ref) 1113 { 1114 struct auto_active *aa = container_of(ref, typeof(*aa), ref); 1115 1116 i915_active_fini(&aa->base); 1117 kfree(aa); 1118 } 1119 1120 void i915_active_put(struct i915_active *ref) 1121 { 1122 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1123 1124 kref_put(&aa->ref, auto_release); 1125 } 1126 1127 static int auto_active(struct i915_active *ref) 1128 { 1129 i915_active_get(ref); 1130 return 0; 1131 } 1132 1133 static void auto_retire(struct i915_active *ref) 1134 { 1135 i915_active_put(ref); 1136 } 1137 1138 struct i915_active *i915_active_create(void) 1139 { 1140 struct auto_active *aa; 1141 1142 aa = kmalloc(sizeof(*aa), GFP_KERNEL); 1143 if (!aa) 1144 return NULL; 1145 1146 kref_init(&aa->ref); 1147 i915_active_init(&aa->base, auto_active, auto_retire, 0); 1148 1149 return &aa->base; 1150 } 1151 1152 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1153 #include "selftests/i915_active.c" 1154 #endif 1155 1156 void i915_active_module_exit(void) 1157 { 1158 kmem_cache_destroy(slab_cache); 1159 } 1160 1161 int __init i915_active_module_init(void) 1162 { 1163 slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); 1164 if (!slab_cache) 1165 return -ENOMEM; 1166 1167 return 0; 1168 } 1169