1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2019 Intel Corporation 5 */ 6 7 #include <linux/debugobjects.h> 8 9 #include "gt/intel_context.h" 10 #include "gt/intel_engine_heartbeat.h" 11 #include "gt/intel_engine_pm.h" 12 #include "gt/intel_ring.h" 13 14 #include "i915_drv.h" 15 #include "i915_active.h" 16 #include "i915_globals.h" 17 18 /* 19 * Active refs memory management 20 * 21 * To be more economical with memory, we reap all the i915_active trees as 22 * they idle (when we know the active requests are inactive) and allocate the 23 * nodes from a local slab cache to hopefully reduce the fragmentation. 24 */ 25 static struct i915_global_active { 26 struct i915_global base; 27 struct kmem_cache *slab_cache; 28 } global; 29 30 struct active_node { 31 struct rb_node node; 32 struct i915_active_fence base; 33 struct i915_active *ref; 34 u64 timeline; 35 }; 36 37 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node) 38 39 static inline struct active_node * 40 node_from_active(struct i915_active_fence *active) 41 { 42 return container_of(active, struct active_node, base); 43 } 44 45 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers) 46 47 static inline bool is_barrier(const struct i915_active_fence *active) 48 { 49 return IS_ERR(rcu_access_pointer(active->fence)); 50 } 51 52 static inline struct llist_node *barrier_to_ll(struct active_node *node) 53 { 54 GEM_BUG_ON(!is_barrier(&node->base)); 55 return (struct llist_node *)&node->base.cb.node; 56 } 57 58 static inline struct intel_engine_cs * 59 __barrier_to_engine(struct active_node *node) 60 { 61 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev); 62 } 63 64 static inline struct intel_engine_cs * 65 barrier_to_engine(struct active_node *node) 66 { 67 GEM_BUG_ON(!is_barrier(&node->base)); 68 return __barrier_to_engine(node); 69 } 70 71 static inline struct active_node *barrier_from_ll(struct llist_node *x) 72 { 73 return container_of((struct list_head *)x, 74 struct active_node, base.cb.node); 75 } 76 77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS) 78 79 static void *active_debug_hint(void *addr) 80 { 81 struct i915_active *ref = addr; 82 83 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref; 84 } 85 86 static const struct debug_obj_descr active_debug_desc = { 87 .name = "i915_active", 88 .debug_hint = active_debug_hint, 89 }; 90 91 static void debug_active_init(struct i915_active *ref) 92 { 93 debug_object_init(ref, &active_debug_desc); 94 } 95 96 static void debug_active_activate(struct i915_active *ref) 97 { 98 lockdep_assert_held(&ref->tree_lock); 99 if (!atomic_read(&ref->count)) /* before the first inc */ 100 debug_object_activate(ref, &active_debug_desc); 101 } 102 103 static void debug_active_deactivate(struct i915_active *ref) 104 { 105 lockdep_assert_held(&ref->tree_lock); 106 if (!atomic_read(&ref->count)) /* after the last dec */ 107 debug_object_deactivate(ref, &active_debug_desc); 108 } 109 110 static void debug_active_fini(struct i915_active *ref) 111 { 112 debug_object_free(ref, &active_debug_desc); 113 } 114 115 static void debug_active_assert(struct i915_active *ref) 116 { 117 debug_object_assert_init(ref, &active_debug_desc); 118 } 119 120 #else 121 122 static inline void debug_active_init(struct i915_active *ref) { } 123 static inline void debug_active_activate(struct i915_active *ref) { } 124 static inline void debug_active_deactivate(struct i915_active *ref) { } 125 static inline void debug_active_fini(struct i915_active *ref) { } 126 static inline void debug_active_assert(struct i915_active *ref) { } 127 128 #endif 129 130 static void 131 __active_retire(struct i915_active *ref) 132 { 133 struct rb_root root = RB_ROOT; 134 struct active_node *it, *n; 135 unsigned long flags; 136 137 GEM_BUG_ON(i915_active_is_idle(ref)); 138 139 /* return the unused nodes to our slabcache -- flushing the allocator */ 140 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags)) 141 return; 142 143 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence)); 144 debug_active_deactivate(ref); 145 146 /* Even if we have not used the cache, we may still have a barrier */ 147 if (!ref->cache) 148 ref->cache = fetch_node(ref->tree.rb_node); 149 150 /* Keep the MRU cached node for reuse */ 151 if (ref->cache) { 152 /* Discard all other nodes in the tree */ 153 rb_erase(&ref->cache->node, &ref->tree); 154 root = ref->tree; 155 156 /* Rebuild the tree with only the cached node */ 157 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node); 158 rb_insert_color(&ref->cache->node, &ref->tree); 159 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node); 160 161 /* Make the cached node available for reuse with any timeline */ 162 if (IS_ENABLED(CONFIG_64BIT)) 163 ref->cache->timeline = 0; /* needs cmpxchg(u64) */ 164 } 165 166 spin_unlock_irqrestore(&ref->tree_lock, flags); 167 168 /* After the final retire, the entire struct may be freed */ 169 if (ref->retire) 170 ref->retire(ref); 171 172 /* ... except if you wait on it, you must manage your own references! */ 173 wake_up_var(ref); 174 175 /* Finally free the discarded timeline tree */ 176 rbtree_postorder_for_each_entry_safe(it, n, &root, node) { 177 GEM_BUG_ON(i915_active_fence_isset(&it->base)); 178 kmem_cache_free(global.slab_cache, it); 179 } 180 } 181 182 static void 183 active_work(struct work_struct *wrk) 184 { 185 struct i915_active *ref = container_of(wrk, typeof(*ref), work); 186 187 GEM_BUG_ON(!atomic_read(&ref->count)); 188 if (atomic_add_unless(&ref->count, -1, 1)) 189 return; 190 191 __active_retire(ref); 192 } 193 194 static void 195 active_retire(struct i915_active *ref) 196 { 197 GEM_BUG_ON(!atomic_read(&ref->count)); 198 if (atomic_add_unless(&ref->count, -1, 1)) 199 return; 200 201 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) { 202 queue_work(system_unbound_wq, &ref->work); 203 return; 204 } 205 206 __active_retire(ref); 207 } 208 209 static inline struct dma_fence ** 210 __active_fence_slot(struct i915_active_fence *active) 211 { 212 return (struct dma_fence ** __force)&active->fence; 213 } 214 215 static inline bool 216 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 217 { 218 struct i915_active_fence *active = 219 container_of(cb, typeof(*active), cb); 220 221 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence; 222 } 223 224 static void 225 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 226 { 227 if (active_fence_cb(fence, cb)) 228 active_retire(container_of(cb, struct active_node, base.cb)->ref); 229 } 230 231 static void 232 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 233 { 234 if (active_fence_cb(fence, cb)) 235 active_retire(container_of(cb, struct i915_active, excl.cb)); 236 } 237 238 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx) 239 { 240 struct active_node *it; 241 242 GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */ 243 244 /* 245 * We track the most recently used timeline to skip a rbtree search 246 * for the common case, under typical loads we never need the rbtree 247 * at all. We can reuse the last slot if it is empty, that is 248 * after the previous activity has been retired, or if it matches the 249 * current timeline. 250 */ 251 it = READ_ONCE(ref->cache); 252 if (it) { 253 u64 cached = READ_ONCE(it->timeline); 254 255 /* Once claimed, this slot will only belong to this idx */ 256 if (cached == idx) 257 return it; 258 259 #ifdef CONFIG_64BIT /* for cmpxchg(u64) */ 260 /* 261 * An unclaimed cache [.timeline=0] can only be claimed once. 262 * 263 * If the value is already non-zero, some other thread has 264 * claimed the cache and we know that is does not match our 265 * idx. If, and only if, the timeline is currently zero is it 266 * worth competing to claim it atomically for ourselves (for 267 * only the winner of that race will cmpxchg return the old 268 * value of 0). 269 */ 270 if (!cached && !cmpxchg(&it->timeline, 0, idx)) 271 return it; 272 #endif 273 } 274 275 BUILD_BUG_ON(offsetof(typeof(*it), node)); 276 277 /* While active, the tree can only be built; not destroyed */ 278 GEM_BUG_ON(i915_active_is_idle(ref)); 279 280 it = fetch_node(ref->tree.rb_node); 281 while (it) { 282 if (it->timeline < idx) { 283 it = fetch_node(it->node.rb_right); 284 } else if (it->timeline > idx) { 285 it = fetch_node(it->node.rb_left); 286 } else { 287 WRITE_ONCE(ref->cache, it); 288 break; 289 } 290 } 291 292 /* NB: If the tree rotated beneath us, we may miss our target. */ 293 return it; 294 } 295 296 static struct i915_active_fence * 297 active_instance(struct i915_active *ref, u64 idx) 298 { 299 struct active_node *node, *prealloc; 300 struct rb_node **p, *parent; 301 302 node = __active_lookup(ref, idx); 303 if (likely(node)) 304 return &node->base; 305 306 /* Preallocate a replacement, just in case */ 307 prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL); 308 if (!prealloc) 309 return NULL; 310 311 spin_lock_irq(&ref->tree_lock); 312 GEM_BUG_ON(i915_active_is_idle(ref)); 313 314 parent = NULL; 315 p = &ref->tree.rb_node; 316 while (*p) { 317 parent = *p; 318 319 node = rb_entry(parent, struct active_node, node); 320 if (node->timeline == idx) { 321 kmem_cache_free(global.slab_cache, prealloc); 322 goto out; 323 } 324 325 if (node->timeline < idx) 326 p = &parent->rb_right; 327 else 328 p = &parent->rb_left; 329 } 330 331 node = prealloc; 332 __i915_active_fence_init(&node->base, NULL, node_retire); 333 node->ref = ref; 334 node->timeline = idx; 335 336 rb_link_node(&node->node, parent, p); 337 rb_insert_color(&node->node, &ref->tree); 338 339 out: 340 WRITE_ONCE(ref->cache, node); 341 spin_unlock_irq(&ref->tree_lock); 342 343 return &node->base; 344 } 345 346 void __i915_active_init(struct i915_active *ref, 347 int (*active)(struct i915_active *ref), 348 void (*retire)(struct i915_active *ref), 349 struct lock_class_key *mkey, 350 struct lock_class_key *wkey) 351 { 352 unsigned long bits; 353 354 debug_active_init(ref); 355 356 ref->flags = 0; 357 ref->active = active; 358 ref->retire = ptr_unpack_bits(retire, &bits, 2); 359 if (bits & I915_ACTIVE_MAY_SLEEP) 360 ref->flags |= I915_ACTIVE_RETIRE_SLEEPS; 361 362 spin_lock_init(&ref->tree_lock); 363 ref->tree = RB_ROOT; 364 ref->cache = NULL; 365 366 init_llist_head(&ref->preallocated_barriers); 367 atomic_set(&ref->count, 0); 368 __mutex_init(&ref->mutex, "i915_active", mkey); 369 __i915_active_fence_init(&ref->excl, NULL, excl_retire); 370 INIT_WORK(&ref->work, active_work); 371 #if IS_ENABLED(CONFIG_LOCKDEP) 372 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0); 373 #endif 374 } 375 376 static bool ____active_del_barrier(struct i915_active *ref, 377 struct active_node *node, 378 struct intel_engine_cs *engine) 379 380 { 381 struct llist_node *head = NULL, *tail = NULL; 382 struct llist_node *pos, *next; 383 384 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context); 385 386 /* 387 * Rebuild the llist excluding our node. We may perform this 388 * outside of the kernel_context timeline mutex and so someone 389 * else may be manipulating the engine->barrier_tasks, in 390 * which case either we or they will be upset :) 391 * 392 * A second __active_del_barrier() will report failure to claim 393 * the active_node and the caller will just shrug and know not to 394 * claim ownership of its node. 395 * 396 * A concurrent i915_request_add_active_barriers() will miss adding 397 * any of the tasks, but we will try again on the next -- and since 398 * we are actively using the barrier, we know that there will be 399 * at least another opportunity when we idle. 400 */ 401 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) { 402 if (node == barrier_from_ll(pos)) { 403 node = NULL; 404 continue; 405 } 406 407 pos->next = head; 408 head = pos; 409 if (!tail) 410 tail = pos; 411 } 412 if (head) 413 llist_add_batch(head, tail, &engine->barrier_tasks); 414 415 return !node; 416 } 417 418 static bool 419 __active_del_barrier(struct i915_active *ref, struct active_node *node) 420 { 421 return ____active_del_barrier(ref, node, barrier_to_engine(node)); 422 } 423 424 static bool 425 replace_barrier(struct i915_active *ref, struct i915_active_fence *active) 426 { 427 if (!is_barrier(active)) /* proto-node used by our idle barrier? */ 428 return false; 429 430 /* 431 * This request is on the kernel_context timeline, and so 432 * we can use it to substitute for the pending idle-barrer 433 * request that we want to emit on the kernel_context. 434 */ 435 __active_del_barrier(ref, node_from_active(active)); 436 return true; 437 } 438 439 int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) 440 { 441 struct i915_active_fence *active; 442 int err; 443 444 /* Prevent reaping in case we malloc/wait while building the tree */ 445 err = i915_active_acquire(ref); 446 if (err) 447 return err; 448 449 active = active_instance(ref, idx); 450 if (!active) { 451 err = -ENOMEM; 452 goto out; 453 } 454 455 if (replace_barrier(ref, active)) { 456 RCU_INIT_POINTER(active->fence, NULL); 457 atomic_dec(&ref->count); 458 } 459 if (!__i915_active_fence_set(active, fence)) 460 __i915_active_acquire(ref); 461 462 out: 463 i915_active_release(ref); 464 return err; 465 } 466 467 static struct dma_fence * 468 __i915_active_set_fence(struct i915_active *ref, 469 struct i915_active_fence *active, 470 struct dma_fence *fence) 471 { 472 struct dma_fence *prev; 473 474 if (replace_barrier(ref, active)) { 475 RCU_INIT_POINTER(active->fence, fence); 476 return NULL; 477 } 478 479 rcu_read_lock(); 480 prev = __i915_active_fence_set(active, fence); 481 if (prev) 482 prev = dma_fence_get_rcu(prev); 483 else 484 __i915_active_acquire(ref); 485 rcu_read_unlock(); 486 487 return prev; 488 } 489 490 static struct i915_active_fence * 491 __active_fence(struct i915_active *ref, u64 idx) 492 { 493 struct active_node *it; 494 495 it = __active_lookup(ref, idx); 496 if (unlikely(!it)) { /* Contention with parallel tree builders! */ 497 spin_lock_irq(&ref->tree_lock); 498 it = __active_lookup(ref, idx); 499 spin_unlock_irq(&ref->tree_lock); 500 } 501 GEM_BUG_ON(!it); /* slot must be preallocated */ 502 503 return &it->base; 504 } 505 506 struct dma_fence * 507 __i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) 508 { 509 /* Only valid while active, see i915_active_acquire_for_context() */ 510 return __i915_active_set_fence(ref, __active_fence(ref, idx), fence); 511 } 512 513 struct dma_fence * 514 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) 515 { 516 /* We expect the caller to manage the exclusive timeline ordering */ 517 return __i915_active_set_fence(ref, &ref->excl, f); 518 } 519 520 bool i915_active_acquire_if_busy(struct i915_active *ref) 521 { 522 debug_active_assert(ref); 523 return atomic_add_unless(&ref->count, 1, 0); 524 } 525 526 static void __i915_active_activate(struct i915_active *ref) 527 { 528 spin_lock_irq(&ref->tree_lock); /* __active_retire() */ 529 if (!atomic_fetch_inc(&ref->count)) 530 debug_active_activate(ref); 531 spin_unlock_irq(&ref->tree_lock); 532 } 533 534 int i915_active_acquire(struct i915_active *ref) 535 { 536 int err; 537 538 if (i915_active_acquire_if_busy(ref)) 539 return 0; 540 541 if (!ref->active) { 542 __i915_active_activate(ref); 543 return 0; 544 } 545 546 err = mutex_lock_interruptible(&ref->mutex); 547 if (err) 548 return err; 549 550 if (likely(!i915_active_acquire_if_busy(ref))) { 551 err = ref->active(ref); 552 if (!err) 553 __i915_active_activate(ref); 554 } 555 556 mutex_unlock(&ref->mutex); 557 558 return err; 559 } 560 561 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx) 562 { 563 struct i915_active_fence *active; 564 int err; 565 566 err = i915_active_acquire(ref); 567 if (err) 568 return err; 569 570 active = active_instance(ref, idx); 571 if (!active) { 572 i915_active_release(ref); 573 return -ENOMEM; 574 } 575 576 return 0; /* return with active ref */ 577 } 578 579 void i915_active_release(struct i915_active *ref) 580 { 581 debug_active_assert(ref); 582 active_retire(ref); 583 } 584 585 static void enable_signaling(struct i915_active_fence *active) 586 { 587 struct dma_fence *fence; 588 589 if (unlikely(is_barrier(active))) 590 return; 591 592 fence = i915_active_fence_get(active); 593 if (!fence) 594 return; 595 596 dma_fence_enable_sw_signaling(fence); 597 dma_fence_put(fence); 598 } 599 600 static int flush_barrier(struct active_node *it) 601 { 602 struct intel_engine_cs *engine; 603 604 if (likely(!is_barrier(&it->base))) 605 return 0; 606 607 engine = __barrier_to_engine(it); 608 smp_rmb(); /* serialise with add_active_barriers */ 609 if (!is_barrier(&it->base)) 610 return 0; 611 612 return intel_engine_flush_barriers(engine); 613 } 614 615 static int flush_lazy_signals(struct i915_active *ref) 616 { 617 struct active_node *it, *n; 618 int err = 0; 619 620 enable_signaling(&ref->excl); 621 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 622 err = flush_barrier(it); /* unconnected idle barrier? */ 623 if (err) 624 break; 625 626 enable_signaling(&it->base); 627 } 628 629 return err; 630 } 631 632 int __i915_active_wait(struct i915_active *ref, int state) 633 { 634 might_sleep(); 635 636 /* Any fence added after the wait begins will not be auto-signaled */ 637 if (i915_active_acquire_if_busy(ref)) { 638 int err; 639 640 err = flush_lazy_signals(ref); 641 i915_active_release(ref); 642 if (err) 643 return err; 644 645 if (___wait_var_event(ref, i915_active_is_idle(ref), 646 state, 0, 0, schedule())) 647 return -EINTR; 648 } 649 650 /* 651 * After the wait is complete, the caller may free the active. 652 * We have to flush any concurrent retirement before returning. 653 */ 654 flush_work(&ref->work); 655 return 0; 656 } 657 658 static int __await_active(struct i915_active_fence *active, 659 int (*fn)(void *arg, struct dma_fence *fence), 660 void *arg) 661 { 662 struct dma_fence *fence; 663 664 if (is_barrier(active)) /* XXX flush the barrier? */ 665 return 0; 666 667 fence = i915_active_fence_get(active); 668 if (fence) { 669 int err; 670 671 err = fn(arg, fence); 672 dma_fence_put(fence); 673 if (err < 0) 674 return err; 675 } 676 677 return 0; 678 } 679 680 struct wait_barrier { 681 struct wait_queue_entry base; 682 struct i915_active *ref; 683 }; 684 685 static int 686 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key) 687 { 688 struct wait_barrier *wb = container_of(wq, typeof(*wb), base); 689 690 if (i915_active_is_idle(wb->ref)) { 691 list_del(&wq->entry); 692 i915_sw_fence_complete(wq->private); 693 kfree(wq); 694 } 695 696 return 0; 697 } 698 699 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence) 700 { 701 struct wait_barrier *wb; 702 703 wb = kmalloc(sizeof(*wb), GFP_KERNEL); 704 if (unlikely(!wb)) 705 return -ENOMEM; 706 707 GEM_BUG_ON(i915_active_is_idle(ref)); 708 if (!i915_sw_fence_await(fence)) { 709 kfree(wb); 710 return -EINVAL; 711 } 712 713 wb->base.flags = 0; 714 wb->base.func = barrier_wake; 715 wb->base.private = fence; 716 wb->ref = ref; 717 718 add_wait_queue(__var_waitqueue(ref), &wb->base); 719 return 0; 720 } 721 722 static int await_active(struct i915_active *ref, 723 unsigned int flags, 724 int (*fn)(void *arg, struct dma_fence *fence), 725 void *arg, struct i915_sw_fence *barrier) 726 { 727 int err = 0; 728 729 if (!i915_active_acquire_if_busy(ref)) 730 return 0; 731 732 if (flags & I915_ACTIVE_AWAIT_EXCL && 733 rcu_access_pointer(ref->excl.fence)) { 734 err = __await_active(&ref->excl, fn, arg); 735 if (err) 736 goto out; 737 } 738 739 if (flags & I915_ACTIVE_AWAIT_ACTIVE) { 740 struct active_node *it, *n; 741 742 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 743 err = __await_active(&it->base, fn, arg); 744 if (err) 745 goto out; 746 } 747 } 748 749 if (flags & I915_ACTIVE_AWAIT_BARRIER) { 750 err = flush_lazy_signals(ref); 751 if (err) 752 goto out; 753 754 err = __await_barrier(ref, barrier); 755 if (err) 756 goto out; 757 } 758 759 out: 760 i915_active_release(ref); 761 return err; 762 } 763 764 static int rq_await_fence(void *arg, struct dma_fence *fence) 765 { 766 return i915_request_await_dma_fence(arg, fence); 767 } 768 769 int i915_request_await_active(struct i915_request *rq, 770 struct i915_active *ref, 771 unsigned int flags) 772 { 773 return await_active(ref, flags, rq_await_fence, rq, &rq->submit); 774 } 775 776 static int sw_await_fence(void *arg, struct dma_fence *fence) 777 { 778 return i915_sw_fence_await_dma_fence(arg, fence, 0, 779 GFP_NOWAIT | __GFP_NOWARN); 780 } 781 782 int i915_sw_fence_await_active(struct i915_sw_fence *fence, 783 struct i915_active *ref, 784 unsigned int flags) 785 { 786 return await_active(ref, flags, sw_await_fence, fence, fence); 787 } 788 789 void i915_active_fini(struct i915_active *ref) 790 { 791 debug_active_fini(ref); 792 GEM_BUG_ON(atomic_read(&ref->count)); 793 GEM_BUG_ON(work_pending(&ref->work)); 794 mutex_destroy(&ref->mutex); 795 796 if (ref->cache) 797 kmem_cache_free(global.slab_cache, ref->cache); 798 } 799 800 static inline bool is_idle_barrier(struct active_node *node, u64 idx) 801 { 802 return node->timeline == idx && !i915_active_fence_isset(&node->base); 803 } 804 805 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) 806 { 807 struct rb_node *prev, *p; 808 809 if (RB_EMPTY_ROOT(&ref->tree)) 810 return NULL; 811 812 GEM_BUG_ON(i915_active_is_idle(ref)); 813 814 /* 815 * Try to reuse any existing barrier nodes already allocated for this 816 * i915_active, due to overlapping active phases there is likely a 817 * node kept alive (as we reuse before parking). We prefer to reuse 818 * completely idle barriers (less hassle in manipulating the llists), 819 * but otherwise any will do. 820 */ 821 if (ref->cache && is_idle_barrier(ref->cache, idx)) { 822 p = &ref->cache->node; 823 goto match; 824 } 825 826 prev = NULL; 827 p = ref->tree.rb_node; 828 while (p) { 829 struct active_node *node = 830 rb_entry(p, struct active_node, node); 831 832 if (is_idle_barrier(node, idx)) 833 goto match; 834 835 prev = p; 836 if (node->timeline < idx) 837 p = READ_ONCE(p->rb_right); 838 else 839 p = READ_ONCE(p->rb_left); 840 } 841 842 /* 843 * No quick match, but we did find the leftmost rb_node for the 844 * kernel_context. Walk the rb_tree in-order to see if there were 845 * any idle-barriers on this timeline that we missed, or just use 846 * the first pending barrier. 847 */ 848 for (p = prev; p; p = rb_next(p)) { 849 struct active_node *node = 850 rb_entry(p, struct active_node, node); 851 struct intel_engine_cs *engine; 852 853 if (node->timeline > idx) 854 break; 855 856 if (node->timeline < idx) 857 continue; 858 859 if (is_idle_barrier(node, idx)) 860 goto match; 861 862 /* 863 * The list of pending barriers is protected by the 864 * kernel_context timeline, which notably we do not hold 865 * here. i915_request_add_active_barriers() may consume 866 * the barrier before we claim it, so we have to check 867 * for success. 868 */ 869 engine = __barrier_to_engine(node); 870 smp_rmb(); /* serialise with add_active_barriers */ 871 if (is_barrier(&node->base) && 872 ____active_del_barrier(ref, node, engine)) 873 goto match; 874 } 875 876 return NULL; 877 878 match: 879 spin_lock_irq(&ref->tree_lock); 880 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */ 881 if (p == &ref->cache->node) 882 WRITE_ONCE(ref->cache, NULL); 883 spin_unlock_irq(&ref->tree_lock); 884 885 return rb_entry(p, struct active_node, node); 886 } 887 888 int i915_active_acquire_preallocate_barrier(struct i915_active *ref, 889 struct intel_engine_cs *engine) 890 { 891 intel_engine_mask_t tmp, mask = engine->mask; 892 struct llist_node *first = NULL, *last = NULL; 893 struct intel_gt *gt = engine->gt; 894 895 GEM_BUG_ON(i915_active_is_idle(ref)); 896 897 /* Wait until the previous preallocation is completed */ 898 while (!llist_empty(&ref->preallocated_barriers)) 899 cond_resched(); 900 901 /* 902 * Preallocate a node for each physical engine supporting the target 903 * engine (remember virtual engines have more than one sibling). 904 * We can then use the preallocated nodes in 905 * i915_active_acquire_barrier() 906 */ 907 GEM_BUG_ON(!mask); 908 for_each_engine_masked(engine, gt, mask, tmp) { 909 u64 idx = engine->kernel_context->timeline->fence_context; 910 struct llist_node *prev = first; 911 struct active_node *node; 912 913 rcu_read_lock(); 914 node = reuse_idle_barrier(ref, idx); 915 rcu_read_unlock(); 916 if (!node) { 917 node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL); 918 if (!node) 919 goto unwind; 920 921 RCU_INIT_POINTER(node->base.fence, NULL); 922 node->base.cb.func = node_retire; 923 node->timeline = idx; 924 node->ref = ref; 925 } 926 927 if (!i915_active_fence_isset(&node->base)) { 928 /* 929 * Mark this as being *our* unconnected proto-node. 930 * 931 * Since this node is not in any list, and we have 932 * decoupled it from the rbtree, we can reuse the 933 * request to indicate this is an idle-barrier node 934 * and then we can use the rb_node and list pointers 935 * for our tracking of the pending barrier. 936 */ 937 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN)); 938 node->base.cb.node.prev = (void *)engine; 939 __i915_active_acquire(ref); 940 } 941 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN)); 942 943 GEM_BUG_ON(barrier_to_engine(node) != engine); 944 first = barrier_to_ll(node); 945 first->next = prev; 946 if (!last) 947 last = first; 948 intel_engine_pm_get(engine); 949 } 950 951 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers)); 952 llist_add_batch(first, last, &ref->preallocated_barriers); 953 954 return 0; 955 956 unwind: 957 while (first) { 958 struct active_node *node = barrier_from_ll(first); 959 960 first = first->next; 961 962 atomic_dec(&ref->count); 963 intel_engine_pm_put(barrier_to_engine(node)); 964 965 kmem_cache_free(global.slab_cache, node); 966 } 967 return -ENOMEM; 968 } 969 970 void i915_active_acquire_barrier(struct i915_active *ref) 971 { 972 struct llist_node *pos, *next; 973 unsigned long flags; 974 975 GEM_BUG_ON(i915_active_is_idle(ref)); 976 977 /* 978 * Transfer the list of preallocated barriers into the 979 * i915_active rbtree, but only as proto-nodes. They will be 980 * populated by i915_request_add_active_barriers() to point to the 981 * request that will eventually release them. 982 */ 983 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) { 984 struct active_node *node = barrier_from_ll(pos); 985 struct intel_engine_cs *engine = barrier_to_engine(node); 986 struct rb_node **p, *parent; 987 988 spin_lock_irqsave_nested(&ref->tree_lock, flags, 989 SINGLE_DEPTH_NESTING); 990 parent = NULL; 991 p = &ref->tree.rb_node; 992 while (*p) { 993 struct active_node *it; 994 995 parent = *p; 996 997 it = rb_entry(parent, struct active_node, node); 998 if (it->timeline < node->timeline) 999 p = &parent->rb_right; 1000 else 1001 p = &parent->rb_left; 1002 } 1003 rb_link_node(&node->node, parent, p); 1004 rb_insert_color(&node->node, &ref->tree); 1005 spin_unlock_irqrestore(&ref->tree_lock, flags); 1006 1007 GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); 1008 llist_add(barrier_to_ll(node), &engine->barrier_tasks); 1009 intel_engine_pm_put_delay(engine, 1); 1010 } 1011 } 1012 1013 static struct dma_fence **ll_to_fence_slot(struct llist_node *node) 1014 { 1015 return __active_fence_slot(&barrier_from_ll(node)->base); 1016 } 1017 1018 void i915_request_add_active_barriers(struct i915_request *rq) 1019 { 1020 struct intel_engine_cs *engine = rq->engine; 1021 struct llist_node *node, *next; 1022 unsigned long flags; 1023 1024 GEM_BUG_ON(!intel_context_is_barrier(rq->context)); 1025 GEM_BUG_ON(intel_engine_is_virtual(engine)); 1026 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline); 1027 1028 node = llist_del_all(&engine->barrier_tasks); 1029 if (!node) 1030 return; 1031 /* 1032 * Attach the list of proto-fences to the in-flight request such 1033 * that the parent i915_active will be released when this request 1034 * is retired. 1035 */ 1036 spin_lock_irqsave(&rq->lock, flags); 1037 llist_for_each_safe(node, next, node) { 1038 /* serialise with reuse_idle_barrier */ 1039 smp_store_mb(*ll_to_fence_slot(node), &rq->fence); 1040 list_add_tail((struct list_head *)node, &rq->fence.cb_list); 1041 } 1042 spin_unlock_irqrestore(&rq->lock, flags); 1043 } 1044 1045 /* 1046 * __i915_active_fence_set: Update the last active fence along its timeline 1047 * @active: the active tracker 1048 * @fence: the new fence (under construction) 1049 * 1050 * Records the new @fence as the last active fence along its timeline in 1051 * this active tracker, moving the tracking callbacks from the previous 1052 * fence onto this one. Returns the previous fence (if not already completed), 1053 * which the caller must ensure is executed before the new fence. To ensure 1054 * that the order of fences within the timeline of the i915_active_fence is 1055 * understood, it should be locked by the caller. 1056 */ 1057 struct dma_fence * 1058 __i915_active_fence_set(struct i915_active_fence *active, 1059 struct dma_fence *fence) 1060 { 1061 struct dma_fence *prev; 1062 unsigned long flags; 1063 1064 if (fence == rcu_access_pointer(active->fence)) 1065 return fence; 1066 1067 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)); 1068 1069 /* 1070 * Consider that we have two threads arriving (A and B), with 1071 * C already resident as the active->fence. 1072 * 1073 * A does the xchg first, and so it sees C or NULL depending 1074 * on the timing of the interrupt handler. If it is NULL, the 1075 * previous fence must have been signaled and we know that 1076 * we are first on the timeline. If it is still present, 1077 * we acquire the lock on that fence and serialise with the interrupt 1078 * handler, in the process removing it from any future interrupt 1079 * callback. A will then wait on C before executing (if present). 1080 * 1081 * As B is second, it sees A as the previous fence and so waits for 1082 * it to complete its transition and takes over the occupancy for 1083 * itself -- remembering that it needs to wait on A before executing. 1084 * 1085 * Note the strong ordering of the timeline also provides consistent 1086 * nesting rules for the fence->lock; the inner lock is always the 1087 * older lock. 1088 */ 1089 spin_lock_irqsave(fence->lock, flags); 1090 prev = xchg(__active_fence_slot(active), fence); 1091 if (prev) { 1092 GEM_BUG_ON(prev == fence); 1093 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); 1094 __list_del_entry(&active->cb.node); 1095 spin_unlock(prev->lock); /* serialise with prev->cb_list */ 1096 } 1097 list_add_tail(&active->cb.node, &fence->cb_list); 1098 spin_unlock_irqrestore(fence->lock, flags); 1099 1100 return prev; 1101 } 1102 1103 int i915_active_fence_set(struct i915_active_fence *active, 1104 struct i915_request *rq) 1105 { 1106 struct dma_fence *fence; 1107 int err = 0; 1108 1109 /* Must maintain timeline ordering wrt previous active requests */ 1110 rcu_read_lock(); 1111 fence = __i915_active_fence_set(active, &rq->fence); 1112 if (fence) /* but the previous fence may not belong to that timeline! */ 1113 fence = dma_fence_get_rcu(fence); 1114 rcu_read_unlock(); 1115 if (fence) { 1116 err = i915_request_await_dma_fence(rq, fence); 1117 dma_fence_put(fence); 1118 } 1119 1120 return err; 1121 } 1122 1123 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb) 1124 { 1125 active_fence_cb(fence, cb); 1126 } 1127 1128 struct auto_active { 1129 struct i915_active base; 1130 struct kref ref; 1131 }; 1132 1133 struct i915_active *i915_active_get(struct i915_active *ref) 1134 { 1135 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1136 1137 kref_get(&aa->ref); 1138 return &aa->base; 1139 } 1140 1141 static void auto_release(struct kref *ref) 1142 { 1143 struct auto_active *aa = container_of(ref, typeof(*aa), ref); 1144 1145 i915_active_fini(&aa->base); 1146 kfree(aa); 1147 } 1148 1149 void i915_active_put(struct i915_active *ref) 1150 { 1151 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1152 1153 kref_put(&aa->ref, auto_release); 1154 } 1155 1156 static int auto_active(struct i915_active *ref) 1157 { 1158 i915_active_get(ref); 1159 return 0; 1160 } 1161 1162 static void auto_retire(struct i915_active *ref) 1163 { 1164 i915_active_put(ref); 1165 } 1166 1167 struct i915_active *i915_active_create(void) 1168 { 1169 struct auto_active *aa; 1170 1171 aa = kmalloc(sizeof(*aa), GFP_KERNEL); 1172 if (!aa) 1173 return NULL; 1174 1175 kref_init(&aa->ref); 1176 i915_active_init(&aa->base, auto_active, auto_retire); 1177 1178 return &aa->base; 1179 } 1180 1181 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1182 #include "selftests/i915_active.c" 1183 #endif 1184 1185 static void i915_global_active_shrink(void) 1186 { 1187 kmem_cache_shrink(global.slab_cache); 1188 } 1189 1190 static void i915_global_active_exit(void) 1191 { 1192 kmem_cache_destroy(global.slab_cache); 1193 } 1194 1195 static struct i915_global_active global = { { 1196 .shrink = i915_global_active_shrink, 1197 .exit = i915_global_active_exit, 1198 } }; 1199 1200 int __init i915_global_active_init(void) 1201 { 1202 global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); 1203 if (!global.slab_cache) 1204 return -ENOMEM; 1205 1206 i915_global_register(&global.base); 1207 return 0; 1208 } 1209