xref: /openbmc/linux/drivers/gpu/drm/i915/i915_active.c (revision 8d81cd1a)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include <linux/debugobjects.h>
8 
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_heartbeat.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_ring.h"
13 
14 #include "i915_drv.h"
15 #include "i915_active.h"
16 
17 /*
18  * Active refs memory management
19  *
20  * To be more economical with memory, we reap all the i915_active trees as
21  * they idle (when we know the active requests are inactive) and allocate the
22  * nodes from a local slab cache to hopefully reduce the fragmentation.
23  */
24 static struct kmem_cache *slab_cache;
25 
26 struct active_node {
27 	struct rb_node node;
28 	struct i915_active_fence base;
29 	struct i915_active *ref;
30 	u64 timeline;
31 };
32 
33 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
34 
35 static inline struct active_node *
36 node_from_active(struct i915_active_fence *active)
37 {
38 	return container_of(active, struct active_node, base);
39 }
40 
41 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
42 
43 static inline bool is_barrier(const struct i915_active_fence *active)
44 {
45 	return IS_ERR(rcu_access_pointer(active->fence));
46 }
47 
48 static inline struct llist_node *barrier_to_ll(struct active_node *node)
49 {
50 	GEM_BUG_ON(!is_barrier(&node->base));
51 	return (struct llist_node *)&node->base.cb.node;
52 }
53 
54 static inline struct intel_engine_cs *
55 __barrier_to_engine(struct active_node *node)
56 {
57 	return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
58 }
59 
60 static inline struct intel_engine_cs *
61 barrier_to_engine(struct active_node *node)
62 {
63 	GEM_BUG_ON(!is_barrier(&node->base));
64 	return __barrier_to_engine(node);
65 }
66 
67 static inline struct active_node *barrier_from_ll(struct llist_node *x)
68 {
69 	return container_of((struct list_head *)x,
70 			    struct active_node, base.cb.node);
71 }
72 
73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
74 
75 static void *active_debug_hint(void *addr)
76 {
77 	struct i915_active *ref = addr;
78 
79 	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
80 }
81 
82 static const struct debug_obj_descr active_debug_desc = {
83 	.name = "i915_active",
84 	.debug_hint = active_debug_hint,
85 };
86 
87 static void debug_active_init(struct i915_active *ref)
88 {
89 	debug_object_init(ref, &active_debug_desc);
90 }
91 
92 static void debug_active_activate(struct i915_active *ref)
93 {
94 	lockdep_assert_held(&ref->tree_lock);
95 	debug_object_activate(ref, &active_debug_desc);
96 }
97 
98 static void debug_active_deactivate(struct i915_active *ref)
99 {
100 	lockdep_assert_held(&ref->tree_lock);
101 	if (!atomic_read(&ref->count)) /* after the last dec */
102 		debug_object_deactivate(ref, &active_debug_desc);
103 }
104 
105 static void debug_active_fini(struct i915_active *ref)
106 {
107 	debug_object_free(ref, &active_debug_desc);
108 }
109 
110 static void debug_active_assert(struct i915_active *ref)
111 {
112 	debug_object_assert_init(ref, &active_debug_desc);
113 }
114 
115 #else
116 
117 static inline void debug_active_init(struct i915_active *ref) { }
118 static inline void debug_active_activate(struct i915_active *ref) { }
119 static inline void debug_active_deactivate(struct i915_active *ref) { }
120 static inline void debug_active_fini(struct i915_active *ref) { }
121 static inline void debug_active_assert(struct i915_active *ref) { }
122 
123 #endif
124 
125 static void
126 __active_retire(struct i915_active *ref)
127 {
128 	struct rb_root root = RB_ROOT;
129 	struct active_node *it, *n;
130 	unsigned long flags;
131 
132 	GEM_BUG_ON(i915_active_is_idle(ref));
133 
134 	/* return the unused nodes to our slabcache -- flushing the allocator */
135 	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
136 		return;
137 
138 	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
139 	debug_active_deactivate(ref);
140 
141 	/* Even if we have not used the cache, we may still have a barrier */
142 	if (!ref->cache)
143 		ref->cache = fetch_node(ref->tree.rb_node);
144 
145 	/* Keep the MRU cached node for reuse */
146 	if (ref->cache) {
147 		/* Discard all other nodes in the tree */
148 		rb_erase(&ref->cache->node, &ref->tree);
149 		root = ref->tree;
150 
151 		/* Rebuild the tree with only the cached node */
152 		rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
153 		rb_insert_color(&ref->cache->node, &ref->tree);
154 		GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
155 
156 		/* Make the cached node available for reuse with any timeline */
157 		ref->cache->timeline = 0; /* needs cmpxchg(u64) */
158 	}
159 
160 	spin_unlock_irqrestore(&ref->tree_lock, flags);
161 
162 	/* After the final retire, the entire struct may be freed */
163 	if (ref->retire)
164 		ref->retire(ref);
165 
166 	/* ... except if you wait on it, you must manage your own references! */
167 	wake_up_var(ref);
168 
169 	/* Finally free the discarded timeline tree  */
170 	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
171 		GEM_BUG_ON(i915_active_fence_isset(&it->base));
172 		kmem_cache_free(slab_cache, it);
173 	}
174 }
175 
176 static void
177 active_work(struct work_struct *wrk)
178 {
179 	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
180 
181 	GEM_BUG_ON(!atomic_read(&ref->count));
182 	if (atomic_add_unless(&ref->count, -1, 1))
183 		return;
184 
185 	__active_retire(ref);
186 }
187 
188 static void
189 active_retire(struct i915_active *ref)
190 {
191 	GEM_BUG_ON(!atomic_read(&ref->count));
192 	if (atomic_add_unless(&ref->count, -1, 1))
193 		return;
194 
195 	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
196 		queue_work(system_unbound_wq, &ref->work);
197 		return;
198 	}
199 
200 	__active_retire(ref);
201 }
202 
203 static inline struct dma_fence **
204 __active_fence_slot(struct i915_active_fence *active)
205 {
206 	return (struct dma_fence ** __force)&active->fence;
207 }
208 
209 static inline bool
210 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
211 {
212 	struct i915_active_fence *active =
213 		container_of(cb, typeof(*active), cb);
214 
215 	return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
216 }
217 
218 static void
219 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
220 {
221 	if (active_fence_cb(fence, cb))
222 		active_retire(container_of(cb, struct active_node, base.cb)->ref);
223 }
224 
225 static void
226 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
227 {
228 	if (active_fence_cb(fence, cb))
229 		active_retire(container_of(cb, struct i915_active, excl.cb));
230 }
231 
232 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
233 {
234 	struct active_node *it;
235 
236 	GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
237 
238 	/*
239 	 * We track the most recently used timeline to skip a rbtree search
240 	 * for the common case, under typical loads we never need the rbtree
241 	 * at all. We can reuse the last slot if it is empty, that is
242 	 * after the previous activity has been retired, or if it matches the
243 	 * current timeline.
244 	 */
245 	it = READ_ONCE(ref->cache);
246 	if (it) {
247 		u64 cached = READ_ONCE(it->timeline);
248 
249 		/* Once claimed, this slot will only belong to this idx */
250 		if (cached == idx)
251 			return it;
252 
253 		/*
254 		 * An unclaimed cache [.timeline=0] can only be claimed once.
255 		 *
256 		 * If the value is already non-zero, some other thread has
257 		 * claimed the cache and we know that is does not match our
258 		 * idx. If, and only if, the timeline is currently zero is it
259 		 * worth competing to claim it atomically for ourselves (for
260 		 * only the winner of that race will cmpxchg return the old
261 		 * value of 0).
262 		 */
263 		if (!cached && !cmpxchg64(&it->timeline, 0, idx))
264 			return it;
265 	}
266 
267 	BUILD_BUG_ON(offsetof(typeof(*it), node));
268 
269 	/* While active, the tree can only be built; not destroyed */
270 	GEM_BUG_ON(i915_active_is_idle(ref));
271 
272 	it = fetch_node(ref->tree.rb_node);
273 	while (it) {
274 		if (it->timeline < idx) {
275 			it = fetch_node(it->node.rb_right);
276 		} else if (it->timeline > idx) {
277 			it = fetch_node(it->node.rb_left);
278 		} else {
279 			WRITE_ONCE(ref->cache, it);
280 			break;
281 		}
282 	}
283 
284 	/* NB: If the tree rotated beneath us, we may miss our target. */
285 	return it;
286 }
287 
288 static struct i915_active_fence *
289 active_instance(struct i915_active *ref, u64 idx)
290 {
291 	struct active_node *node;
292 	struct rb_node **p, *parent;
293 
294 	node = __active_lookup(ref, idx);
295 	if (likely(node))
296 		return &node->base;
297 
298 	spin_lock_irq(&ref->tree_lock);
299 	GEM_BUG_ON(i915_active_is_idle(ref));
300 
301 	parent = NULL;
302 	p = &ref->tree.rb_node;
303 	while (*p) {
304 		parent = *p;
305 
306 		node = rb_entry(parent, struct active_node, node);
307 		if (node->timeline == idx)
308 			goto out;
309 
310 		if (node->timeline < idx)
311 			p = &parent->rb_right;
312 		else
313 			p = &parent->rb_left;
314 	}
315 
316 	/*
317 	 * XXX: We should preallocate this before i915_active_ref() is ever
318 	 *  called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC.
319 	 */
320 	node = kmem_cache_alloc(slab_cache, GFP_ATOMIC);
321 	if (!node)
322 		goto out;
323 
324 	__i915_active_fence_init(&node->base, NULL, node_retire);
325 	node->ref = ref;
326 	node->timeline = idx;
327 
328 	rb_link_node(&node->node, parent, p);
329 	rb_insert_color(&node->node, &ref->tree);
330 
331 out:
332 	WRITE_ONCE(ref->cache, node);
333 	spin_unlock_irq(&ref->tree_lock);
334 
335 	return &node->base;
336 }
337 
338 void __i915_active_init(struct i915_active *ref,
339 			int (*active)(struct i915_active *ref),
340 			void (*retire)(struct i915_active *ref),
341 			unsigned long flags,
342 			struct lock_class_key *mkey,
343 			struct lock_class_key *wkey)
344 {
345 	debug_active_init(ref);
346 
347 	ref->flags = flags;
348 	ref->active = active;
349 	ref->retire = retire;
350 
351 	spin_lock_init(&ref->tree_lock);
352 	ref->tree = RB_ROOT;
353 	ref->cache = NULL;
354 
355 	init_llist_head(&ref->preallocated_barriers);
356 	atomic_set(&ref->count, 0);
357 	__mutex_init(&ref->mutex, "i915_active", mkey);
358 	__i915_active_fence_init(&ref->excl, NULL, excl_retire);
359 	INIT_WORK(&ref->work, active_work);
360 #if IS_ENABLED(CONFIG_LOCKDEP)
361 	lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
362 #endif
363 }
364 
365 static bool ____active_del_barrier(struct i915_active *ref,
366 				   struct active_node *node,
367 				   struct intel_engine_cs *engine)
368 
369 {
370 	struct llist_node *head = NULL, *tail = NULL;
371 	struct llist_node *pos, *next;
372 
373 	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
374 
375 	/*
376 	 * Rebuild the llist excluding our node. We may perform this
377 	 * outside of the kernel_context timeline mutex and so someone
378 	 * else may be manipulating the engine->barrier_tasks, in
379 	 * which case either we or they will be upset :)
380 	 *
381 	 * A second __active_del_barrier() will report failure to claim
382 	 * the active_node and the caller will just shrug and know not to
383 	 * claim ownership of its node.
384 	 *
385 	 * A concurrent i915_request_add_active_barriers() will miss adding
386 	 * any of the tasks, but we will try again on the next -- and since
387 	 * we are actively using the barrier, we know that there will be
388 	 * at least another opportunity when we idle.
389 	 */
390 	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
391 		if (node == barrier_from_ll(pos)) {
392 			node = NULL;
393 			continue;
394 		}
395 
396 		pos->next = head;
397 		head = pos;
398 		if (!tail)
399 			tail = pos;
400 	}
401 	if (head)
402 		llist_add_batch(head, tail, &engine->barrier_tasks);
403 
404 	return !node;
405 }
406 
407 static bool
408 __active_del_barrier(struct i915_active *ref, struct active_node *node)
409 {
410 	return ____active_del_barrier(ref, node, barrier_to_engine(node));
411 }
412 
413 static bool
414 replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
415 {
416 	if (!is_barrier(active)) /* proto-node used by our idle barrier? */
417 		return false;
418 
419 	/*
420 	 * This request is on the kernel_context timeline, and so
421 	 * we can use it to substitute for the pending idle-barrer
422 	 * request that we want to emit on the kernel_context.
423 	 */
424 	return __active_del_barrier(ref, node_from_active(active));
425 }
426 
427 int i915_active_add_request(struct i915_active *ref, struct i915_request *rq)
428 {
429 	u64 idx = i915_request_timeline(rq)->fence_context;
430 	struct dma_fence *fence = &rq->fence;
431 	struct i915_active_fence *active;
432 	int err;
433 
434 	/* Prevent reaping in case we malloc/wait while building the tree */
435 	err = i915_active_acquire(ref);
436 	if (err)
437 		return err;
438 
439 	do {
440 		active = active_instance(ref, idx);
441 		if (!active) {
442 			err = -ENOMEM;
443 			goto out;
444 		}
445 
446 		if (replace_barrier(ref, active)) {
447 			RCU_INIT_POINTER(active->fence, NULL);
448 			atomic_dec(&ref->count);
449 		}
450 	} while (unlikely(is_barrier(active)));
451 
452 	fence = __i915_active_fence_set(active, fence);
453 	if (!fence)
454 		__i915_active_acquire(ref);
455 	else
456 		dma_fence_put(fence);
457 
458 out:
459 	i915_active_release(ref);
460 	return err;
461 }
462 
463 static struct dma_fence *
464 __i915_active_set_fence(struct i915_active *ref,
465 			struct i915_active_fence *active,
466 			struct dma_fence *fence)
467 {
468 	struct dma_fence *prev;
469 
470 	if (replace_barrier(ref, active)) {
471 		RCU_INIT_POINTER(active->fence, fence);
472 		return NULL;
473 	}
474 
475 	prev = __i915_active_fence_set(active, fence);
476 	if (!prev)
477 		__i915_active_acquire(ref);
478 
479 	return prev;
480 }
481 
482 struct dma_fence *
483 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
484 {
485 	/* We expect the caller to manage the exclusive timeline ordering */
486 	return __i915_active_set_fence(ref, &ref->excl, f);
487 }
488 
489 bool i915_active_acquire_if_busy(struct i915_active *ref)
490 {
491 	debug_active_assert(ref);
492 	return atomic_add_unless(&ref->count, 1, 0);
493 }
494 
495 static void __i915_active_activate(struct i915_active *ref)
496 {
497 	spin_lock_irq(&ref->tree_lock); /* __active_retire() */
498 	if (!atomic_fetch_inc(&ref->count))
499 		debug_active_activate(ref);
500 	spin_unlock_irq(&ref->tree_lock);
501 }
502 
503 int i915_active_acquire(struct i915_active *ref)
504 {
505 	int err;
506 
507 	if (i915_active_acquire_if_busy(ref))
508 		return 0;
509 
510 	if (!ref->active) {
511 		__i915_active_activate(ref);
512 		return 0;
513 	}
514 
515 	err = mutex_lock_interruptible(&ref->mutex);
516 	if (err)
517 		return err;
518 
519 	if (likely(!i915_active_acquire_if_busy(ref))) {
520 		err = ref->active(ref);
521 		if (!err)
522 			__i915_active_activate(ref);
523 	}
524 
525 	mutex_unlock(&ref->mutex);
526 
527 	return err;
528 }
529 
530 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
531 {
532 	struct i915_active_fence *active;
533 	int err;
534 
535 	err = i915_active_acquire(ref);
536 	if (err)
537 		return err;
538 
539 	active = active_instance(ref, idx);
540 	if (!active) {
541 		i915_active_release(ref);
542 		return -ENOMEM;
543 	}
544 
545 	return 0; /* return with active ref */
546 }
547 
548 void i915_active_release(struct i915_active *ref)
549 {
550 	debug_active_assert(ref);
551 	active_retire(ref);
552 }
553 
554 static void enable_signaling(struct i915_active_fence *active)
555 {
556 	struct dma_fence *fence;
557 
558 	if (unlikely(is_barrier(active)))
559 		return;
560 
561 	fence = i915_active_fence_get(active);
562 	if (!fence)
563 		return;
564 
565 	dma_fence_enable_sw_signaling(fence);
566 	dma_fence_put(fence);
567 }
568 
569 static int flush_barrier(struct active_node *it)
570 {
571 	struct intel_engine_cs *engine;
572 
573 	if (likely(!is_barrier(&it->base)))
574 		return 0;
575 
576 	engine = __barrier_to_engine(it);
577 	smp_rmb(); /* serialise with add_active_barriers */
578 	if (!is_barrier(&it->base))
579 		return 0;
580 
581 	return intel_engine_flush_barriers(engine);
582 }
583 
584 static int flush_lazy_signals(struct i915_active *ref)
585 {
586 	struct active_node *it, *n;
587 	int err = 0;
588 
589 	enable_signaling(&ref->excl);
590 	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
591 		err = flush_barrier(it); /* unconnected idle barrier? */
592 		if (err)
593 			break;
594 
595 		enable_signaling(&it->base);
596 	}
597 
598 	return err;
599 }
600 
601 int __i915_active_wait(struct i915_active *ref, int state)
602 {
603 	might_sleep();
604 
605 	/* Any fence added after the wait begins will not be auto-signaled */
606 	if (i915_active_acquire_if_busy(ref)) {
607 		int err;
608 
609 		err = flush_lazy_signals(ref);
610 		i915_active_release(ref);
611 		if (err)
612 			return err;
613 
614 		if (___wait_var_event(ref, i915_active_is_idle(ref),
615 				      state, 0, 0, schedule()))
616 			return -EINTR;
617 	}
618 
619 	/*
620 	 * After the wait is complete, the caller may free the active.
621 	 * We have to flush any concurrent retirement before returning.
622 	 */
623 	flush_work(&ref->work);
624 	return 0;
625 }
626 
627 static int __await_active(struct i915_active_fence *active,
628 			  int (*fn)(void *arg, struct dma_fence *fence),
629 			  void *arg)
630 {
631 	struct dma_fence *fence;
632 
633 	if (is_barrier(active)) /* XXX flush the barrier? */
634 		return 0;
635 
636 	fence = i915_active_fence_get(active);
637 	if (fence) {
638 		int err;
639 
640 		err = fn(arg, fence);
641 		dma_fence_put(fence);
642 		if (err < 0)
643 			return err;
644 	}
645 
646 	return 0;
647 }
648 
649 struct wait_barrier {
650 	struct wait_queue_entry base;
651 	struct i915_active *ref;
652 };
653 
654 static int
655 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
656 {
657 	struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
658 
659 	if (i915_active_is_idle(wb->ref)) {
660 		list_del(&wq->entry);
661 		i915_sw_fence_complete(wq->private);
662 		kfree(wq);
663 	}
664 
665 	return 0;
666 }
667 
668 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
669 {
670 	struct wait_barrier *wb;
671 
672 	wb = kmalloc(sizeof(*wb), GFP_KERNEL);
673 	if (unlikely(!wb))
674 		return -ENOMEM;
675 
676 	GEM_BUG_ON(i915_active_is_idle(ref));
677 	if (!i915_sw_fence_await(fence)) {
678 		kfree(wb);
679 		return -EINVAL;
680 	}
681 
682 	wb->base.flags = 0;
683 	wb->base.func = barrier_wake;
684 	wb->base.private = fence;
685 	wb->ref = ref;
686 
687 	add_wait_queue(__var_waitqueue(ref), &wb->base);
688 	return 0;
689 }
690 
691 static int await_active(struct i915_active *ref,
692 			unsigned int flags,
693 			int (*fn)(void *arg, struct dma_fence *fence),
694 			void *arg, struct i915_sw_fence *barrier)
695 {
696 	int err = 0;
697 
698 	if (!i915_active_acquire_if_busy(ref))
699 		return 0;
700 
701 	if (flags & I915_ACTIVE_AWAIT_EXCL &&
702 	    rcu_access_pointer(ref->excl.fence)) {
703 		err = __await_active(&ref->excl, fn, arg);
704 		if (err)
705 			goto out;
706 	}
707 
708 	if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
709 		struct active_node *it, *n;
710 
711 		rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
712 			err = __await_active(&it->base, fn, arg);
713 			if (err)
714 				goto out;
715 		}
716 	}
717 
718 	if (flags & I915_ACTIVE_AWAIT_BARRIER) {
719 		err = flush_lazy_signals(ref);
720 		if (err)
721 			goto out;
722 
723 		err = __await_barrier(ref, barrier);
724 		if (err)
725 			goto out;
726 	}
727 
728 out:
729 	i915_active_release(ref);
730 	return err;
731 }
732 
733 static int rq_await_fence(void *arg, struct dma_fence *fence)
734 {
735 	return i915_request_await_dma_fence(arg, fence);
736 }
737 
738 int i915_request_await_active(struct i915_request *rq,
739 			      struct i915_active *ref,
740 			      unsigned int flags)
741 {
742 	return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
743 }
744 
745 static int sw_await_fence(void *arg, struct dma_fence *fence)
746 {
747 	return i915_sw_fence_await_dma_fence(arg, fence, 0,
748 					     GFP_NOWAIT | __GFP_NOWARN);
749 }
750 
751 int i915_sw_fence_await_active(struct i915_sw_fence *fence,
752 			       struct i915_active *ref,
753 			       unsigned int flags)
754 {
755 	return await_active(ref, flags, sw_await_fence, fence, fence);
756 }
757 
758 void i915_active_fini(struct i915_active *ref)
759 {
760 	debug_active_fini(ref);
761 	GEM_BUG_ON(atomic_read(&ref->count));
762 	GEM_BUG_ON(work_pending(&ref->work));
763 	mutex_destroy(&ref->mutex);
764 
765 	if (ref->cache)
766 		kmem_cache_free(slab_cache, ref->cache);
767 }
768 
769 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
770 {
771 	return node->timeline == idx && !i915_active_fence_isset(&node->base);
772 }
773 
774 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
775 {
776 	struct rb_node *prev, *p;
777 
778 	if (RB_EMPTY_ROOT(&ref->tree))
779 		return NULL;
780 
781 	GEM_BUG_ON(i915_active_is_idle(ref));
782 
783 	/*
784 	 * Try to reuse any existing barrier nodes already allocated for this
785 	 * i915_active, due to overlapping active phases there is likely a
786 	 * node kept alive (as we reuse before parking). We prefer to reuse
787 	 * completely idle barriers (less hassle in manipulating the llists),
788 	 * but otherwise any will do.
789 	 */
790 	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
791 		p = &ref->cache->node;
792 		goto match;
793 	}
794 
795 	prev = NULL;
796 	p = ref->tree.rb_node;
797 	while (p) {
798 		struct active_node *node =
799 			rb_entry(p, struct active_node, node);
800 
801 		if (is_idle_barrier(node, idx))
802 			goto match;
803 
804 		prev = p;
805 		if (node->timeline < idx)
806 			p = READ_ONCE(p->rb_right);
807 		else
808 			p = READ_ONCE(p->rb_left);
809 	}
810 
811 	/*
812 	 * No quick match, but we did find the leftmost rb_node for the
813 	 * kernel_context. Walk the rb_tree in-order to see if there were
814 	 * any idle-barriers on this timeline that we missed, or just use
815 	 * the first pending barrier.
816 	 */
817 	for (p = prev; p; p = rb_next(p)) {
818 		struct active_node *node =
819 			rb_entry(p, struct active_node, node);
820 		struct intel_engine_cs *engine;
821 
822 		if (node->timeline > idx)
823 			break;
824 
825 		if (node->timeline < idx)
826 			continue;
827 
828 		if (is_idle_barrier(node, idx))
829 			goto match;
830 
831 		/*
832 		 * The list of pending barriers is protected by the
833 		 * kernel_context timeline, which notably we do not hold
834 		 * here. i915_request_add_active_barriers() may consume
835 		 * the barrier before we claim it, so we have to check
836 		 * for success.
837 		 */
838 		engine = __barrier_to_engine(node);
839 		smp_rmb(); /* serialise with add_active_barriers */
840 		if (is_barrier(&node->base) &&
841 		    ____active_del_barrier(ref, node, engine))
842 			goto match;
843 	}
844 
845 	return NULL;
846 
847 match:
848 	spin_lock_irq(&ref->tree_lock);
849 	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
850 	if (p == &ref->cache->node)
851 		WRITE_ONCE(ref->cache, NULL);
852 	spin_unlock_irq(&ref->tree_lock);
853 
854 	return rb_entry(p, struct active_node, node);
855 }
856 
857 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
858 					    struct intel_engine_cs *engine)
859 {
860 	intel_engine_mask_t tmp, mask = engine->mask;
861 	struct llist_node *first = NULL, *last = NULL;
862 	struct intel_gt *gt = engine->gt;
863 
864 	GEM_BUG_ON(i915_active_is_idle(ref));
865 
866 	/* Wait until the previous preallocation is completed */
867 	while (!llist_empty(&ref->preallocated_barriers))
868 		cond_resched();
869 
870 	/*
871 	 * Preallocate a node for each physical engine supporting the target
872 	 * engine (remember virtual engines have more than one sibling).
873 	 * We can then use the preallocated nodes in
874 	 * i915_active_acquire_barrier()
875 	 */
876 	GEM_BUG_ON(!mask);
877 	for_each_engine_masked(engine, gt, mask, tmp) {
878 		u64 idx = engine->kernel_context->timeline->fence_context;
879 		struct llist_node *prev = first;
880 		struct active_node *node;
881 
882 		rcu_read_lock();
883 		node = reuse_idle_barrier(ref, idx);
884 		rcu_read_unlock();
885 		if (!node) {
886 			node = kmem_cache_alloc(slab_cache, GFP_KERNEL);
887 			if (!node)
888 				goto unwind;
889 
890 			RCU_INIT_POINTER(node->base.fence, NULL);
891 			node->base.cb.func = node_retire;
892 			node->timeline = idx;
893 			node->ref = ref;
894 		}
895 
896 		if (!i915_active_fence_isset(&node->base)) {
897 			/*
898 			 * Mark this as being *our* unconnected proto-node.
899 			 *
900 			 * Since this node is not in any list, and we have
901 			 * decoupled it from the rbtree, we can reuse the
902 			 * request to indicate this is an idle-barrier node
903 			 * and then we can use the rb_node and list pointers
904 			 * for our tracking of the pending barrier.
905 			 */
906 			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
907 			node->base.cb.node.prev = (void *)engine;
908 			__i915_active_acquire(ref);
909 		}
910 		GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
911 
912 		GEM_BUG_ON(barrier_to_engine(node) != engine);
913 		first = barrier_to_ll(node);
914 		first->next = prev;
915 		if (!last)
916 			last = first;
917 		intel_engine_pm_get(engine);
918 	}
919 
920 	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
921 	llist_add_batch(first, last, &ref->preallocated_barriers);
922 
923 	return 0;
924 
925 unwind:
926 	while (first) {
927 		struct active_node *node = barrier_from_ll(first);
928 
929 		first = first->next;
930 
931 		atomic_dec(&ref->count);
932 		intel_engine_pm_put(barrier_to_engine(node));
933 
934 		kmem_cache_free(slab_cache, node);
935 	}
936 	return -ENOMEM;
937 }
938 
939 void i915_active_acquire_barrier(struct i915_active *ref)
940 {
941 	struct llist_node *pos, *next;
942 	unsigned long flags;
943 
944 	GEM_BUG_ON(i915_active_is_idle(ref));
945 
946 	/*
947 	 * Transfer the list of preallocated barriers into the
948 	 * i915_active rbtree, but only as proto-nodes. They will be
949 	 * populated by i915_request_add_active_barriers() to point to the
950 	 * request that will eventually release them.
951 	 */
952 	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
953 		struct active_node *node = barrier_from_ll(pos);
954 		struct intel_engine_cs *engine = barrier_to_engine(node);
955 		struct rb_node **p, *parent;
956 
957 		spin_lock_irqsave_nested(&ref->tree_lock, flags,
958 					 SINGLE_DEPTH_NESTING);
959 		parent = NULL;
960 		p = &ref->tree.rb_node;
961 		while (*p) {
962 			struct active_node *it;
963 
964 			parent = *p;
965 
966 			it = rb_entry(parent, struct active_node, node);
967 			if (it->timeline < node->timeline)
968 				p = &parent->rb_right;
969 			else
970 				p = &parent->rb_left;
971 		}
972 		rb_link_node(&node->node, parent, p);
973 		rb_insert_color(&node->node, &ref->tree);
974 		spin_unlock_irqrestore(&ref->tree_lock, flags);
975 
976 		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
977 		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
978 		intel_engine_pm_put_delay(engine, 2);
979 	}
980 }
981 
982 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
983 {
984 	return __active_fence_slot(&barrier_from_ll(node)->base);
985 }
986 
987 void i915_request_add_active_barriers(struct i915_request *rq)
988 {
989 	struct intel_engine_cs *engine = rq->engine;
990 	struct llist_node *node, *next;
991 	unsigned long flags;
992 
993 	GEM_BUG_ON(!intel_context_is_barrier(rq->context));
994 	GEM_BUG_ON(intel_engine_is_virtual(engine));
995 	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
996 
997 	node = llist_del_all(&engine->barrier_tasks);
998 	if (!node)
999 		return;
1000 	/*
1001 	 * Attach the list of proto-fences to the in-flight request such
1002 	 * that the parent i915_active will be released when this request
1003 	 * is retired.
1004 	 */
1005 	spin_lock_irqsave(&rq->lock, flags);
1006 	llist_for_each_safe(node, next, node) {
1007 		/* serialise with reuse_idle_barrier */
1008 		smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1009 		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1010 	}
1011 	spin_unlock_irqrestore(&rq->lock, flags);
1012 }
1013 
1014 /*
1015  * __i915_active_fence_set: Update the last active fence along its timeline
1016  * @active: the active tracker
1017  * @fence: the new fence (under construction)
1018  *
1019  * Records the new @fence as the last active fence along its timeline in
1020  * this active tracker, moving the tracking callbacks from the previous
1021  * fence onto this one. Gets and returns a reference to the previous fence
1022  * (if not already completed), which the caller must put after making sure
1023  * that it is executed before the new fence. To ensure that the order of
1024  * fences within the timeline of the i915_active_fence is understood, it
1025  * should be locked by the caller.
1026  */
1027 struct dma_fence *
1028 __i915_active_fence_set(struct i915_active_fence *active,
1029 			struct dma_fence *fence)
1030 {
1031 	struct dma_fence *prev;
1032 	unsigned long flags;
1033 
1034 	/*
1035 	 * In case of fences embedded in i915_requests, their memory is
1036 	 * SLAB_FAILSAFE_BY_RCU, then it can be reused right after release
1037 	 * by new requests.  Then, there is a risk of passing back a pointer
1038 	 * to a new, completely unrelated fence that reuses the same memory
1039 	 * while tracked under a different active tracker.  Combined with i915
1040 	 * perf open/close operations that build await dependencies between
1041 	 * engine kernel context requests and user requests from different
1042 	 * timelines, this can lead to dependency loops and infinite waits.
1043 	 *
1044 	 * As a countermeasure, we try to get a reference to the active->fence
1045 	 * first, so if we succeed and pass it back to our user then it is not
1046 	 * released and potentially reused by an unrelated request before the
1047 	 * user has a chance to set up an await dependency on it.
1048 	 */
1049 	prev = i915_active_fence_get(active);
1050 	if (fence == prev)
1051 		return fence;
1052 
1053 	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1054 
1055 	/*
1056 	 * Consider that we have two threads arriving (A and B), with
1057 	 * C already resident as the active->fence.
1058 	 *
1059 	 * Both A and B have got a reference to C or NULL, depending on the
1060 	 * timing of the interrupt handler.  Let's assume that if A has got C
1061 	 * then it has locked C first (before B).
1062 	 *
1063 	 * Note the strong ordering of the timeline also provides consistent
1064 	 * nesting rules for the fence->lock; the inner lock is always the
1065 	 * older lock.
1066 	 */
1067 	spin_lock_irqsave(fence->lock, flags);
1068 	if (prev)
1069 		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1070 
1071 	/*
1072 	 * A does the cmpxchg first, and so it sees C or NULL, as before, or
1073 	 * something else, depending on the timing of other threads and/or
1074 	 * interrupt handler.  If not the same as before then A unlocks C if
1075 	 * applicable and retries, starting from an attempt to get a new
1076 	 * active->fence.  Meanwhile, B follows the same path as A.
1077 	 * Once A succeeds with cmpxch, B fails again, retires, gets A from
1078 	 * active->fence, locks it as soon as A completes, and possibly
1079 	 * succeeds with cmpxchg.
1080 	 */
1081 	while (cmpxchg(__active_fence_slot(active), prev, fence) != prev) {
1082 		if (prev) {
1083 			spin_unlock(prev->lock);
1084 			dma_fence_put(prev);
1085 		}
1086 		spin_unlock_irqrestore(fence->lock, flags);
1087 
1088 		prev = i915_active_fence_get(active);
1089 		GEM_BUG_ON(prev == fence);
1090 
1091 		spin_lock_irqsave(fence->lock, flags);
1092 		if (prev)
1093 			spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1094 	}
1095 
1096 	/*
1097 	 * If prev is NULL then the previous fence must have been signaled
1098 	 * and we know that we are first on the timeline.  If it is still
1099 	 * present then, having the lock on that fence already acquired, we
1100 	 * serialise with the interrupt handler, in the process of removing it
1101 	 * from any future interrupt callback.  A will then wait on C before
1102 	 * executing (if present).
1103 	 *
1104 	 * As B is second, it sees A as the previous fence and so waits for
1105 	 * it to complete its transition and takes over the occupancy for
1106 	 * itself -- remembering that it needs to wait on A before executing.
1107 	 */
1108 	if (prev) {
1109 		__list_del_entry(&active->cb.node);
1110 		spin_unlock(prev->lock); /* serialise with prev->cb_list */
1111 	}
1112 	list_add_tail(&active->cb.node, &fence->cb_list);
1113 	spin_unlock_irqrestore(fence->lock, flags);
1114 
1115 	return prev;
1116 }
1117 
1118 int i915_active_fence_set(struct i915_active_fence *active,
1119 			  struct i915_request *rq)
1120 {
1121 	struct dma_fence *fence;
1122 	int err = 0;
1123 
1124 	/* Must maintain timeline ordering wrt previous active requests */
1125 	fence = __i915_active_fence_set(active, &rq->fence);
1126 	if (fence) {
1127 		err = i915_request_await_dma_fence(rq, fence);
1128 		dma_fence_put(fence);
1129 	}
1130 
1131 	return err;
1132 }
1133 
1134 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1135 {
1136 	active_fence_cb(fence, cb);
1137 }
1138 
1139 struct auto_active {
1140 	struct i915_active base;
1141 	struct kref ref;
1142 };
1143 
1144 struct i915_active *i915_active_get(struct i915_active *ref)
1145 {
1146 	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1147 
1148 	kref_get(&aa->ref);
1149 	return &aa->base;
1150 }
1151 
1152 static void auto_release(struct kref *ref)
1153 {
1154 	struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1155 
1156 	i915_active_fini(&aa->base);
1157 	kfree(aa);
1158 }
1159 
1160 void i915_active_put(struct i915_active *ref)
1161 {
1162 	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1163 
1164 	kref_put(&aa->ref, auto_release);
1165 }
1166 
1167 static int auto_active(struct i915_active *ref)
1168 {
1169 	i915_active_get(ref);
1170 	return 0;
1171 }
1172 
1173 static void auto_retire(struct i915_active *ref)
1174 {
1175 	i915_active_put(ref);
1176 }
1177 
1178 struct i915_active *i915_active_create(void)
1179 {
1180 	struct auto_active *aa;
1181 
1182 	aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1183 	if (!aa)
1184 		return NULL;
1185 
1186 	kref_init(&aa->ref);
1187 	i915_active_init(&aa->base, auto_active, auto_retire, 0);
1188 
1189 	return &aa->base;
1190 }
1191 
1192 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1193 #include "selftests/i915_active.c"
1194 #endif
1195 
1196 void i915_active_module_exit(void)
1197 {
1198 	kmem_cache_destroy(slab_cache);
1199 }
1200 
1201 int __init i915_active_module_init(void)
1202 {
1203 	slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1204 	if (!slab_cache)
1205 		return -ENOMEM;
1206 
1207 	return 0;
1208 }
1209