xref: /openbmc/linux/drivers/gpu/drm/i915/i915_active.c (revision 7f877908)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include <linux/debugobjects.h>
8 
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_pm.h"
11 #include "gt/intel_ring.h"
12 
13 #include "i915_drv.h"
14 #include "i915_active.h"
15 #include "i915_globals.h"
16 
17 /*
18  * Active refs memory management
19  *
20  * To be more economical with memory, we reap all the i915_active trees as
21  * they idle (when we know the active requests are inactive) and allocate the
22  * nodes from a local slab cache to hopefully reduce the fragmentation.
23  */
24 static struct i915_global_active {
25 	struct i915_global base;
26 	struct kmem_cache *slab_cache;
27 } global;
28 
29 struct active_node {
30 	struct i915_active_fence base;
31 	struct i915_active *ref;
32 	struct rb_node node;
33 	u64 timeline;
34 };
35 
36 static inline struct active_node *
37 node_from_active(struct i915_active_fence *active)
38 {
39 	return container_of(active, struct active_node, base);
40 }
41 
42 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
43 
44 static inline bool is_barrier(const struct i915_active_fence *active)
45 {
46 	return IS_ERR(rcu_access_pointer(active->fence));
47 }
48 
49 static inline struct llist_node *barrier_to_ll(struct active_node *node)
50 {
51 	GEM_BUG_ON(!is_barrier(&node->base));
52 	return (struct llist_node *)&node->base.cb.node;
53 }
54 
55 static inline struct intel_engine_cs *
56 __barrier_to_engine(struct active_node *node)
57 {
58 	return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
59 }
60 
61 static inline struct intel_engine_cs *
62 barrier_to_engine(struct active_node *node)
63 {
64 	GEM_BUG_ON(!is_barrier(&node->base));
65 	return __barrier_to_engine(node);
66 }
67 
68 static inline struct active_node *barrier_from_ll(struct llist_node *x)
69 {
70 	return container_of((struct list_head *)x,
71 			    struct active_node, base.cb.node);
72 }
73 
74 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
75 
76 static void *active_debug_hint(void *addr)
77 {
78 	struct i915_active *ref = addr;
79 
80 	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
81 }
82 
83 static struct debug_obj_descr active_debug_desc = {
84 	.name = "i915_active",
85 	.debug_hint = active_debug_hint,
86 };
87 
88 static void debug_active_init(struct i915_active *ref)
89 {
90 	debug_object_init(ref, &active_debug_desc);
91 }
92 
93 static void debug_active_activate(struct i915_active *ref)
94 {
95 	lockdep_assert_held(&ref->tree_lock);
96 	if (!atomic_read(&ref->count)) /* before the first inc */
97 		debug_object_activate(ref, &active_debug_desc);
98 }
99 
100 static void debug_active_deactivate(struct i915_active *ref)
101 {
102 	lockdep_assert_held(&ref->tree_lock);
103 	if (!atomic_read(&ref->count)) /* after the last dec */
104 		debug_object_deactivate(ref, &active_debug_desc);
105 }
106 
107 static void debug_active_fini(struct i915_active *ref)
108 {
109 	debug_object_free(ref, &active_debug_desc);
110 }
111 
112 static void debug_active_assert(struct i915_active *ref)
113 {
114 	debug_object_assert_init(ref, &active_debug_desc);
115 }
116 
117 #else
118 
119 static inline void debug_active_init(struct i915_active *ref) { }
120 static inline void debug_active_activate(struct i915_active *ref) { }
121 static inline void debug_active_deactivate(struct i915_active *ref) { }
122 static inline void debug_active_fini(struct i915_active *ref) { }
123 static inline void debug_active_assert(struct i915_active *ref) { }
124 
125 #endif
126 
127 static void
128 __active_retire(struct i915_active *ref)
129 {
130 	struct active_node *it, *n;
131 	struct rb_root root;
132 	unsigned long flags;
133 
134 	GEM_BUG_ON(i915_active_is_idle(ref));
135 
136 	/* return the unused nodes to our slabcache -- flushing the allocator */
137 	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
138 		return;
139 
140 	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
141 	debug_active_deactivate(ref);
142 
143 	root = ref->tree;
144 	ref->tree = RB_ROOT;
145 	ref->cache = NULL;
146 
147 	spin_unlock_irqrestore(&ref->tree_lock, flags);
148 
149 	/* After the final retire, the entire struct may be freed */
150 	if (ref->retire)
151 		ref->retire(ref);
152 
153 	/* ... except if you wait on it, you must manage your own references! */
154 	wake_up_var(ref);
155 
156 	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
157 		GEM_BUG_ON(i915_active_fence_isset(&it->base));
158 		kmem_cache_free(global.slab_cache, it);
159 	}
160 }
161 
162 static void
163 active_work(struct work_struct *wrk)
164 {
165 	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
166 
167 	GEM_BUG_ON(!atomic_read(&ref->count));
168 	if (atomic_add_unless(&ref->count, -1, 1))
169 		return;
170 
171 	__active_retire(ref);
172 }
173 
174 static void
175 active_retire(struct i915_active *ref)
176 {
177 	GEM_BUG_ON(!atomic_read(&ref->count));
178 	if (atomic_add_unless(&ref->count, -1, 1))
179 		return;
180 
181 	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
182 		queue_work(system_unbound_wq, &ref->work);
183 		return;
184 	}
185 
186 	__active_retire(ref);
187 }
188 
189 static inline struct dma_fence **
190 __active_fence_slot(struct i915_active_fence *active)
191 {
192 	return (struct dma_fence ** __force)&active->fence;
193 }
194 
195 static inline bool
196 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
197 {
198 	struct i915_active_fence *active =
199 		container_of(cb, typeof(*active), cb);
200 
201 	return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
202 }
203 
204 static void
205 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
206 {
207 	if (active_fence_cb(fence, cb))
208 		active_retire(container_of(cb, struct active_node, base.cb)->ref);
209 }
210 
211 static void
212 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
213 {
214 	if (active_fence_cb(fence, cb))
215 		active_retire(container_of(cb, struct i915_active, excl.cb));
216 }
217 
218 static struct i915_active_fence *
219 active_instance(struct i915_active *ref, struct intel_timeline *tl)
220 {
221 	struct active_node *node, *prealloc;
222 	struct rb_node **p, *parent;
223 	u64 idx = tl->fence_context;
224 
225 	/*
226 	 * We track the most recently used timeline to skip a rbtree search
227 	 * for the common case, under typical loads we never need the rbtree
228 	 * at all. We can reuse the last slot if it is empty, that is
229 	 * after the previous activity has been retired, or if it matches the
230 	 * current timeline.
231 	 */
232 	node = READ_ONCE(ref->cache);
233 	if (node && node->timeline == idx)
234 		return &node->base;
235 
236 	/* Preallocate a replacement, just in case */
237 	prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
238 	if (!prealloc)
239 		return NULL;
240 
241 	spin_lock_irq(&ref->tree_lock);
242 	GEM_BUG_ON(i915_active_is_idle(ref));
243 
244 	parent = NULL;
245 	p = &ref->tree.rb_node;
246 	while (*p) {
247 		parent = *p;
248 
249 		node = rb_entry(parent, struct active_node, node);
250 		if (node->timeline == idx) {
251 			kmem_cache_free(global.slab_cache, prealloc);
252 			goto out;
253 		}
254 
255 		if (node->timeline < idx)
256 			p = &parent->rb_right;
257 		else
258 			p = &parent->rb_left;
259 	}
260 
261 	node = prealloc;
262 	__i915_active_fence_init(&node->base, NULL, node_retire);
263 	node->ref = ref;
264 	node->timeline = idx;
265 
266 	rb_link_node(&node->node, parent, p);
267 	rb_insert_color(&node->node, &ref->tree);
268 
269 out:
270 	ref->cache = node;
271 	spin_unlock_irq(&ref->tree_lock);
272 
273 	BUILD_BUG_ON(offsetof(typeof(*node), base));
274 	return &node->base;
275 }
276 
277 void __i915_active_init(struct i915_active *ref,
278 			int (*active)(struct i915_active *ref),
279 			void (*retire)(struct i915_active *ref),
280 			struct lock_class_key *mkey,
281 			struct lock_class_key *wkey)
282 {
283 	unsigned long bits;
284 
285 	debug_active_init(ref);
286 
287 	ref->flags = 0;
288 	ref->active = active;
289 	ref->retire = ptr_unpack_bits(retire, &bits, 2);
290 	if (bits & I915_ACTIVE_MAY_SLEEP)
291 		ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
292 
293 	spin_lock_init(&ref->tree_lock);
294 	ref->tree = RB_ROOT;
295 	ref->cache = NULL;
296 
297 	init_llist_head(&ref->preallocated_barriers);
298 	atomic_set(&ref->count, 0);
299 	__mutex_init(&ref->mutex, "i915_active", mkey);
300 	__i915_active_fence_init(&ref->excl, NULL, excl_retire);
301 	INIT_WORK(&ref->work, active_work);
302 #if IS_ENABLED(CONFIG_LOCKDEP)
303 	lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
304 #endif
305 }
306 
307 static bool ____active_del_barrier(struct i915_active *ref,
308 				   struct active_node *node,
309 				   struct intel_engine_cs *engine)
310 
311 {
312 	struct llist_node *head = NULL, *tail = NULL;
313 	struct llist_node *pos, *next;
314 
315 	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
316 
317 	/*
318 	 * Rebuild the llist excluding our node. We may perform this
319 	 * outside of the kernel_context timeline mutex and so someone
320 	 * else may be manipulating the engine->barrier_tasks, in
321 	 * which case either we or they will be upset :)
322 	 *
323 	 * A second __active_del_barrier() will report failure to claim
324 	 * the active_node and the caller will just shrug and know not to
325 	 * claim ownership of its node.
326 	 *
327 	 * A concurrent i915_request_add_active_barriers() will miss adding
328 	 * any of the tasks, but we will try again on the next -- and since
329 	 * we are actively using the barrier, we know that there will be
330 	 * at least another opportunity when we idle.
331 	 */
332 	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
333 		if (node == barrier_from_ll(pos)) {
334 			node = NULL;
335 			continue;
336 		}
337 
338 		pos->next = head;
339 		head = pos;
340 		if (!tail)
341 			tail = pos;
342 	}
343 	if (head)
344 		llist_add_batch(head, tail, &engine->barrier_tasks);
345 
346 	return !node;
347 }
348 
349 static bool
350 __active_del_barrier(struct i915_active *ref, struct active_node *node)
351 {
352 	return ____active_del_barrier(ref, node, barrier_to_engine(node));
353 }
354 
355 int i915_active_ref(struct i915_active *ref,
356 		    struct intel_timeline *tl,
357 		    struct dma_fence *fence)
358 {
359 	struct i915_active_fence *active;
360 	int err;
361 
362 	lockdep_assert_held(&tl->mutex);
363 
364 	/* Prevent reaping in case we malloc/wait while building the tree */
365 	err = i915_active_acquire(ref);
366 	if (err)
367 		return err;
368 
369 	active = active_instance(ref, tl);
370 	if (!active) {
371 		err = -ENOMEM;
372 		goto out;
373 	}
374 
375 	if (is_barrier(active)) { /* proto-node used by our idle barrier */
376 		/*
377 		 * This request is on the kernel_context timeline, and so
378 		 * we can use it to substitute for the pending idle-barrer
379 		 * request that we want to emit on the kernel_context.
380 		 */
381 		__active_del_barrier(ref, node_from_active(active));
382 		RCU_INIT_POINTER(active->fence, NULL);
383 		atomic_dec(&ref->count);
384 	}
385 	if (!__i915_active_fence_set(active, fence))
386 		atomic_inc(&ref->count);
387 
388 out:
389 	i915_active_release(ref);
390 	return err;
391 }
392 
393 void i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
394 {
395 	/* We expect the caller to manage the exclusive timeline ordering */
396 	GEM_BUG_ON(i915_active_is_idle(ref));
397 
398 	if (!__i915_active_fence_set(&ref->excl, f))
399 		atomic_inc(&ref->count);
400 }
401 
402 bool i915_active_acquire_if_busy(struct i915_active *ref)
403 {
404 	debug_active_assert(ref);
405 	return atomic_add_unless(&ref->count, 1, 0);
406 }
407 
408 int i915_active_acquire(struct i915_active *ref)
409 {
410 	int err;
411 
412 	if (i915_active_acquire_if_busy(ref))
413 		return 0;
414 
415 	err = mutex_lock_interruptible(&ref->mutex);
416 	if (err)
417 		return err;
418 
419 	if (!atomic_read(&ref->count) && ref->active)
420 		err = ref->active(ref);
421 	if (!err) {
422 		spin_lock_irq(&ref->tree_lock); /* vs __active_retire() */
423 		debug_active_activate(ref);
424 		atomic_inc(&ref->count);
425 		spin_unlock_irq(&ref->tree_lock);
426 	}
427 
428 	mutex_unlock(&ref->mutex);
429 
430 	return err;
431 }
432 
433 void i915_active_release(struct i915_active *ref)
434 {
435 	debug_active_assert(ref);
436 	active_retire(ref);
437 }
438 
439 static void enable_signaling(struct i915_active_fence *active)
440 {
441 	struct dma_fence *fence;
442 
443 	fence = i915_active_fence_get(active);
444 	if (!fence)
445 		return;
446 
447 	dma_fence_enable_sw_signaling(fence);
448 	dma_fence_put(fence);
449 }
450 
451 int i915_active_wait(struct i915_active *ref)
452 {
453 	struct active_node *it, *n;
454 	int err = 0;
455 
456 	might_sleep();
457 
458 	if (!i915_active_acquire_if_busy(ref))
459 		return 0;
460 
461 	/* Flush lazy signals */
462 	enable_signaling(&ref->excl);
463 	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
464 		if (is_barrier(&it->base)) /* unconnected idle barrier */
465 			continue;
466 
467 		enable_signaling(&it->base);
468 	}
469 	/* Any fence added after the wait begins will not be auto-signaled */
470 
471 	i915_active_release(ref);
472 	if (err)
473 		return err;
474 
475 	if (wait_var_event_interruptible(ref, i915_active_is_idle(ref)))
476 		return -EINTR;
477 
478 	flush_work(&ref->work);
479 	return 0;
480 }
481 
482 int i915_request_await_active(struct i915_request *rq, struct i915_active *ref)
483 {
484 	int err = 0;
485 
486 	if (rcu_access_pointer(ref->excl.fence)) {
487 		struct dma_fence *fence;
488 
489 		rcu_read_lock();
490 		fence = dma_fence_get_rcu_safe(&ref->excl.fence);
491 		rcu_read_unlock();
492 		if (fence) {
493 			err = i915_request_await_dma_fence(rq, fence);
494 			dma_fence_put(fence);
495 		}
496 	}
497 
498 	/* In the future we may choose to await on all fences */
499 
500 	return err;
501 }
502 
503 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
504 void i915_active_fini(struct i915_active *ref)
505 {
506 	debug_active_fini(ref);
507 	GEM_BUG_ON(atomic_read(&ref->count));
508 	GEM_BUG_ON(work_pending(&ref->work));
509 	GEM_BUG_ON(!RB_EMPTY_ROOT(&ref->tree));
510 	mutex_destroy(&ref->mutex);
511 }
512 #endif
513 
514 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
515 {
516 	return node->timeline == idx && !i915_active_fence_isset(&node->base);
517 }
518 
519 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
520 {
521 	struct rb_node *prev, *p;
522 
523 	if (RB_EMPTY_ROOT(&ref->tree))
524 		return NULL;
525 
526 	spin_lock_irq(&ref->tree_lock);
527 	GEM_BUG_ON(i915_active_is_idle(ref));
528 
529 	/*
530 	 * Try to reuse any existing barrier nodes already allocated for this
531 	 * i915_active, due to overlapping active phases there is likely a
532 	 * node kept alive (as we reuse before parking). We prefer to reuse
533 	 * completely idle barriers (less hassle in manipulating the llists),
534 	 * but otherwise any will do.
535 	 */
536 	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
537 		p = &ref->cache->node;
538 		goto match;
539 	}
540 
541 	prev = NULL;
542 	p = ref->tree.rb_node;
543 	while (p) {
544 		struct active_node *node =
545 			rb_entry(p, struct active_node, node);
546 
547 		if (is_idle_barrier(node, idx))
548 			goto match;
549 
550 		prev = p;
551 		if (node->timeline < idx)
552 			p = p->rb_right;
553 		else
554 			p = p->rb_left;
555 	}
556 
557 	/*
558 	 * No quick match, but we did find the leftmost rb_node for the
559 	 * kernel_context. Walk the rb_tree in-order to see if there were
560 	 * any idle-barriers on this timeline that we missed, or just use
561 	 * the first pending barrier.
562 	 */
563 	for (p = prev; p; p = rb_next(p)) {
564 		struct active_node *node =
565 			rb_entry(p, struct active_node, node);
566 		struct intel_engine_cs *engine;
567 
568 		if (node->timeline > idx)
569 			break;
570 
571 		if (node->timeline < idx)
572 			continue;
573 
574 		if (is_idle_barrier(node, idx))
575 			goto match;
576 
577 		/*
578 		 * The list of pending barriers is protected by the
579 		 * kernel_context timeline, which notably we do not hold
580 		 * here. i915_request_add_active_barriers() may consume
581 		 * the barrier before we claim it, so we have to check
582 		 * for success.
583 		 */
584 		engine = __barrier_to_engine(node);
585 		smp_rmb(); /* serialise with add_active_barriers */
586 		if (is_barrier(&node->base) &&
587 		    ____active_del_barrier(ref, node, engine))
588 			goto match;
589 	}
590 
591 	spin_unlock_irq(&ref->tree_lock);
592 
593 	return NULL;
594 
595 match:
596 	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
597 	if (p == &ref->cache->node)
598 		ref->cache = NULL;
599 	spin_unlock_irq(&ref->tree_lock);
600 
601 	return rb_entry(p, struct active_node, node);
602 }
603 
604 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
605 					    struct intel_engine_cs *engine)
606 {
607 	intel_engine_mask_t tmp, mask = engine->mask;
608 	struct llist_node *pos = NULL, *next;
609 	struct intel_gt *gt = engine->gt;
610 	int err;
611 
612 	GEM_BUG_ON(i915_active_is_idle(ref));
613 
614 	/* Wait until the previous preallocation is completed */
615 	while (!llist_empty(&ref->preallocated_barriers))
616 		cond_resched();
617 
618 	/*
619 	 * Preallocate a node for each physical engine supporting the target
620 	 * engine (remember virtual engines have more than one sibling).
621 	 * We can then use the preallocated nodes in
622 	 * i915_active_acquire_barrier()
623 	 */
624 	for_each_engine_masked(engine, gt, mask, tmp) {
625 		u64 idx = engine->kernel_context->timeline->fence_context;
626 		struct active_node *node;
627 
628 		node = reuse_idle_barrier(ref, idx);
629 		if (!node) {
630 			node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
631 			if (!node) {
632 				err = ENOMEM;
633 				goto unwind;
634 			}
635 
636 			RCU_INIT_POINTER(node->base.fence, NULL);
637 			node->base.cb.func = node_retire;
638 			node->timeline = idx;
639 			node->ref = ref;
640 		}
641 
642 		if (!i915_active_fence_isset(&node->base)) {
643 			/*
644 			 * Mark this as being *our* unconnected proto-node.
645 			 *
646 			 * Since this node is not in any list, and we have
647 			 * decoupled it from the rbtree, we can reuse the
648 			 * request to indicate this is an idle-barrier node
649 			 * and then we can use the rb_node and list pointers
650 			 * for our tracking of the pending barrier.
651 			 */
652 			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
653 			node->base.cb.node.prev = (void *)engine;
654 			atomic_inc(&ref->count);
655 		}
656 		GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
657 
658 		GEM_BUG_ON(barrier_to_engine(node) != engine);
659 		next = barrier_to_ll(node);
660 		next->next = pos;
661 		if (!pos)
662 			pos = next;
663 		intel_engine_pm_get(engine);
664 	}
665 
666 	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
667 	llist_add_batch(next, pos, &ref->preallocated_barriers);
668 
669 	return 0;
670 
671 unwind:
672 	while (pos) {
673 		struct active_node *node = barrier_from_ll(pos);
674 
675 		pos = pos->next;
676 
677 		atomic_dec(&ref->count);
678 		intel_engine_pm_put(barrier_to_engine(node));
679 
680 		kmem_cache_free(global.slab_cache, node);
681 	}
682 	return err;
683 }
684 
685 void i915_active_acquire_barrier(struct i915_active *ref)
686 {
687 	struct llist_node *pos, *next;
688 	unsigned long flags;
689 
690 	GEM_BUG_ON(i915_active_is_idle(ref));
691 
692 	/*
693 	 * Transfer the list of preallocated barriers into the
694 	 * i915_active rbtree, but only as proto-nodes. They will be
695 	 * populated by i915_request_add_active_barriers() to point to the
696 	 * request that will eventually release them.
697 	 */
698 	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
699 		struct active_node *node = barrier_from_ll(pos);
700 		struct intel_engine_cs *engine = barrier_to_engine(node);
701 		struct rb_node **p, *parent;
702 
703 		spin_lock_irqsave_nested(&ref->tree_lock, flags,
704 					 SINGLE_DEPTH_NESTING);
705 		parent = NULL;
706 		p = &ref->tree.rb_node;
707 		while (*p) {
708 			struct active_node *it;
709 
710 			parent = *p;
711 
712 			it = rb_entry(parent, struct active_node, node);
713 			if (it->timeline < node->timeline)
714 				p = &parent->rb_right;
715 			else
716 				p = &parent->rb_left;
717 		}
718 		rb_link_node(&node->node, parent, p);
719 		rb_insert_color(&node->node, &ref->tree);
720 		spin_unlock_irqrestore(&ref->tree_lock, flags);
721 
722 		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
723 		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
724 		intel_engine_pm_put(engine);
725 	}
726 }
727 
728 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
729 {
730 	return __active_fence_slot(&barrier_from_ll(node)->base);
731 }
732 
733 void i915_request_add_active_barriers(struct i915_request *rq)
734 {
735 	struct intel_engine_cs *engine = rq->engine;
736 	struct llist_node *node, *next;
737 	unsigned long flags;
738 
739 	GEM_BUG_ON(!intel_context_is_barrier(rq->context));
740 	GEM_BUG_ON(intel_engine_is_virtual(engine));
741 	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
742 
743 	node = llist_del_all(&engine->barrier_tasks);
744 	if (!node)
745 		return;
746 	/*
747 	 * Attach the list of proto-fences to the in-flight request such
748 	 * that the parent i915_active will be released when this request
749 	 * is retired.
750 	 */
751 	spin_lock_irqsave(&rq->lock, flags);
752 	llist_for_each_safe(node, next, node) {
753 		/* serialise with reuse_idle_barrier */
754 		smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
755 		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
756 	}
757 	spin_unlock_irqrestore(&rq->lock, flags);
758 }
759 
760 /*
761  * __i915_active_fence_set: Update the last active fence along its timeline
762  * @active: the active tracker
763  * @fence: the new fence (under construction)
764  *
765  * Records the new @fence as the last active fence along its timeline in
766  * this active tracker, moving the tracking callbacks from the previous
767  * fence onto this one. Returns the previous fence (if not already completed),
768  * which the caller must ensure is executed before the new fence. To ensure
769  * that the order of fences within the timeline of the i915_active_fence is
770  * understood, it should be locked by the caller.
771  */
772 struct dma_fence *
773 __i915_active_fence_set(struct i915_active_fence *active,
774 			struct dma_fence *fence)
775 {
776 	struct dma_fence *prev;
777 	unsigned long flags;
778 
779 	if (fence == rcu_access_pointer(active->fence))
780 		return fence;
781 
782 	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
783 
784 	/*
785 	 * Consider that we have two threads arriving (A and B), with
786 	 * C already resident as the active->fence.
787 	 *
788 	 * A does the xchg first, and so it sees C or NULL depending
789 	 * on the timing of the interrupt handler. If it is NULL, the
790 	 * previous fence must have been signaled and we know that
791 	 * we are first on the timeline. If it is still present,
792 	 * we acquire the lock on that fence and serialise with the interrupt
793 	 * handler, in the process removing it from any future interrupt
794 	 * callback. A will then wait on C before executing (if present).
795 	 *
796 	 * As B is second, it sees A as the previous fence and so waits for
797 	 * it to complete its transition and takes over the occupancy for
798 	 * itself -- remembering that it needs to wait on A before executing.
799 	 *
800 	 * Note the strong ordering of the timeline also provides consistent
801 	 * nesting rules for the fence->lock; the inner lock is always the
802 	 * older lock.
803 	 */
804 	spin_lock_irqsave(fence->lock, flags);
805 	prev = xchg(__active_fence_slot(active), fence);
806 	if (prev) {
807 		GEM_BUG_ON(prev == fence);
808 		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
809 		__list_del_entry(&active->cb.node);
810 		spin_unlock(prev->lock); /* serialise with prev->cb_list */
811 	}
812 	GEM_BUG_ON(rcu_access_pointer(active->fence) != fence);
813 	list_add_tail(&active->cb.node, &fence->cb_list);
814 	spin_unlock_irqrestore(fence->lock, flags);
815 
816 	return prev;
817 }
818 
819 int i915_active_fence_set(struct i915_active_fence *active,
820 			  struct i915_request *rq)
821 {
822 	struct dma_fence *fence;
823 	int err = 0;
824 
825 	/* Must maintain timeline ordering wrt previous active requests */
826 	rcu_read_lock();
827 	fence = __i915_active_fence_set(active, &rq->fence);
828 	if (fence) /* but the previous fence may not belong to that timeline! */
829 		fence = dma_fence_get_rcu(fence);
830 	rcu_read_unlock();
831 	if (fence) {
832 		err = i915_request_await_dma_fence(rq, fence);
833 		dma_fence_put(fence);
834 	}
835 
836 	return err;
837 }
838 
839 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
840 {
841 	active_fence_cb(fence, cb);
842 }
843 
844 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
845 #include "selftests/i915_active.c"
846 #endif
847 
848 static void i915_global_active_shrink(void)
849 {
850 	kmem_cache_shrink(global.slab_cache);
851 }
852 
853 static void i915_global_active_exit(void)
854 {
855 	kmem_cache_destroy(global.slab_cache);
856 }
857 
858 static struct i915_global_active global = { {
859 	.shrink = i915_global_active_shrink,
860 	.exit = i915_global_active_exit,
861 } };
862 
863 int __init i915_global_active_init(void)
864 {
865 	global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
866 	if (!global.slab_cache)
867 		return -ENOMEM;
868 
869 	i915_global_register(&global.base);
870 	return 0;
871 }
872