xref: /openbmc/linux/drivers/gpu/drm/i915/i915_active.c (revision 55fd7e02)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include <linux/debugobjects.h>
8 
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_heartbeat.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_ring.h"
13 
14 #include "i915_drv.h"
15 #include "i915_active.h"
16 #include "i915_globals.h"
17 
18 /*
19  * Active refs memory management
20  *
21  * To be more economical with memory, we reap all the i915_active trees as
22  * they idle (when we know the active requests are inactive) and allocate the
23  * nodes from a local slab cache to hopefully reduce the fragmentation.
24  */
25 static struct i915_global_active {
26 	struct i915_global base;
27 	struct kmem_cache *slab_cache;
28 } global;
29 
30 struct active_node {
31 	struct i915_active_fence base;
32 	struct i915_active *ref;
33 	struct rb_node node;
34 	u64 timeline;
35 };
36 
37 static inline struct active_node *
38 node_from_active(struct i915_active_fence *active)
39 {
40 	return container_of(active, struct active_node, base);
41 }
42 
43 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
44 
45 static inline bool is_barrier(const struct i915_active_fence *active)
46 {
47 	return IS_ERR(rcu_access_pointer(active->fence));
48 }
49 
50 static inline struct llist_node *barrier_to_ll(struct active_node *node)
51 {
52 	GEM_BUG_ON(!is_barrier(&node->base));
53 	return (struct llist_node *)&node->base.cb.node;
54 }
55 
56 static inline struct intel_engine_cs *
57 __barrier_to_engine(struct active_node *node)
58 {
59 	return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
60 }
61 
62 static inline struct intel_engine_cs *
63 barrier_to_engine(struct active_node *node)
64 {
65 	GEM_BUG_ON(!is_barrier(&node->base));
66 	return __barrier_to_engine(node);
67 }
68 
69 static inline struct active_node *barrier_from_ll(struct llist_node *x)
70 {
71 	return container_of((struct list_head *)x,
72 			    struct active_node, base.cb.node);
73 }
74 
75 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
76 
77 static void *active_debug_hint(void *addr)
78 {
79 	struct i915_active *ref = addr;
80 
81 	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
82 }
83 
84 static struct debug_obj_descr active_debug_desc = {
85 	.name = "i915_active",
86 	.debug_hint = active_debug_hint,
87 };
88 
89 static void debug_active_init(struct i915_active *ref)
90 {
91 	debug_object_init(ref, &active_debug_desc);
92 }
93 
94 static void debug_active_activate(struct i915_active *ref)
95 {
96 	lockdep_assert_held(&ref->tree_lock);
97 	if (!atomic_read(&ref->count)) /* before the first inc */
98 		debug_object_activate(ref, &active_debug_desc);
99 }
100 
101 static void debug_active_deactivate(struct i915_active *ref)
102 {
103 	lockdep_assert_held(&ref->tree_lock);
104 	if (!atomic_read(&ref->count)) /* after the last dec */
105 		debug_object_deactivate(ref, &active_debug_desc);
106 }
107 
108 static void debug_active_fini(struct i915_active *ref)
109 {
110 	debug_object_free(ref, &active_debug_desc);
111 }
112 
113 static void debug_active_assert(struct i915_active *ref)
114 {
115 	debug_object_assert_init(ref, &active_debug_desc);
116 }
117 
118 #else
119 
120 static inline void debug_active_init(struct i915_active *ref) { }
121 static inline void debug_active_activate(struct i915_active *ref) { }
122 static inline void debug_active_deactivate(struct i915_active *ref) { }
123 static inline void debug_active_fini(struct i915_active *ref) { }
124 static inline void debug_active_assert(struct i915_active *ref) { }
125 
126 #endif
127 
128 static void
129 __active_retire(struct i915_active *ref)
130 {
131 	struct active_node *it, *n;
132 	struct rb_root root;
133 	unsigned long flags;
134 
135 	GEM_BUG_ON(i915_active_is_idle(ref));
136 
137 	/* return the unused nodes to our slabcache -- flushing the allocator */
138 	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
139 		return;
140 
141 	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
142 	debug_active_deactivate(ref);
143 
144 	root = ref->tree;
145 	ref->tree = RB_ROOT;
146 	ref->cache = NULL;
147 
148 	spin_unlock_irqrestore(&ref->tree_lock, flags);
149 
150 	/* After the final retire, the entire struct may be freed */
151 	if (ref->retire)
152 		ref->retire(ref);
153 
154 	/* ... except if you wait on it, you must manage your own references! */
155 	wake_up_var(ref);
156 
157 	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
158 		GEM_BUG_ON(i915_active_fence_isset(&it->base));
159 		kmem_cache_free(global.slab_cache, it);
160 	}
161 }
162 
163 static void
164 active_work(struct work_struct *wrk)
165 {
166 	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
167 
168 	GEM_BUG_ON(!atomic_read(&ref->count));
169 	if (atomic_add_unless(&ref->count, -1, 1))
170 		return;
171 
172 	__active_retire(ref);
173 }
174 
175 static void
176 active_retire(struct i915_active *ref)
177 {
178 	GEM_BUG_ON(!atomic_read(&ref->count));
179 	if (atomic_add_unless(&ref->count, -1, 1))
180 		return;
181 
182 	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
183 		queue_work(system_unbound_wq, &ref->work);
184 		return;
185 	}
186 
187 	__active_retire(ref);
188 }
189 
190 static inline struct dma_fence **
191 __active_fence_slot(struct i915_active_fence *active)
192 {
193 	return (struct dma_fence ** __force)&active->fence;
194 }
195 
196 static inline bool
197 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
198 {
199 	struct i915_active_fence *active =
200 		container_of(cb, typeof(*active), cb);
201 
202 	return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
203 }
204 
205 static void
206 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
207 {
208 	if (active_fence_cb(fence, cb))
209 		active_retire(container_of(cb, struct active_node, base.cb)->ref);
210 }
211 
212 static void
213 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
214 {
215 	if (active_fence_cb(fence, cb))
216 		active_retire(container_of(cb, struct i915_active, excl.cb));
217 }
218 
219 static struct i915_active_fence *
220 active_instance(struct i915_active *ref, struct intel_timeline *tl)
221 {
222 	struct active_node *node, *prealloc;
223 	struct rb_node **p, *parent;
224 	u64 idx = tl->fence_context;
225 
226 	/*
227 	 * We track the most recently used timeline to skip a rbtree search
228 	 * for the common case, under typical loads we never need the rbtree
229 	 * at all. We can reuse the last slot if it is empty, that is
230 	 * after the previous activity has been retired, or if it matches the
231 	 * current timeline.
232 	 */
233 	node = READ_ONCE(ref->cache);
234 	if (node && node->timeline == idx)
235 		return &node->base;
236 
237 	/* Preallocate a replacement, just in case */
238 	prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
239 	if (!prealloc)
240 		return NULL;
241 
242 	spin_lock_irq(&ref->tree_lock);
243 	GEM_BUG_ON(i915_active_is_idle(ref));
244 
245 	parent = NULL;
246 	p = &ref->tree.rb_node;
247 	while (*p) {
248 		parent = *p;
249 
250 		node = rb_entry(parent, struct active_node, node);
251 		if (node->timeline == idx) {
252 			kmem_cache_free(global.slab_cache, prealloc);
253 			goto out;
254 		}
255 
256 		if (node->timeline < idx)
257 			p = &parent->rb_right;
258 		else
259 			p = &parent->rb_left;
260 	}
261 
262 	node = prealloc;
263 	__i915_active_fence_init(&node->base, NULL, node_retire);
264 	node->ref = ref;
265 	node->timeline = idx;
266 
267 	rb_link_node(&node->node, parent, p);
268 	rb_insert_color(&node->node, &ref->tree);
269 
270 out:
271 	ref->cache = node;
272 	spin_unlock_irq(&ref->tree_lock);
273 
274 	BUILD_BUG_ON(offsetof(typeof(*node), base));
275 	return &node->base;
276 }
277 
278 void __i915_active_init(struct i915_active *ref,
279 			int (*active)(struct i915_active *ref),
280 			void (*retire)(struct i915_active *ref),
281 			struct lock_class_key *mkey,
282 			struct lock_class_key *wkey)
283 {
284 	unsigned long bits;
285 
286 	debug_active_init(ref);
287 
288 	ref->flags = 0;
289 	ref->active = active;
290 	ref->retire = ptr_unpack_bits(retire, &bits, 2);
291 	if (bits & I915_ACTIVE_MAY_SLEEP)
292 		ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
293 
294 	spin_lock_init(&ref->tree_lock);
295 	ref->tree = RB_ROOT;
296 	ref->cache = NULL;
297 
298 	init_llist_head(&ref->preallocated_barriers);
299 	atomic_set(&ref->count, 0);
300 	__mutex_init(&ref->mutex, "i915_active", mkey);
301 	__i915_active_fence_init(&ref->excl, NULL, excl_retire);
302 	INIT_WORK(&ref->work, active_work);
303 #if IS_ENABLED(CONFIG_LOCKDEP)
304 	lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
305 #endif
306 }
307 
308 static bool ____active_del_barrier(struct i915_active *ref,
309 				   struct active_node *node,
310 				   struct intel_engine_cs *engine)
311 
312 {
313 	struct llist_node *head = NULL, *tail = NULL;
314 	struct llist_node *pos, *next;
315 
316 	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
317 
318 	/*
319 	 * Rebuild the llist excluding our node. We may perform this
320 	 * outside of the kernel_context timeline mutex and so someone
321 	 * else may be manipulating the engine->barrier_tasks, in
322 	 * which case either we or they will be upset :)
323 	 *
324 	 * A second __active_del_barrier() will report failure to claim
325 	 * the active_node and the caller will just shrug and know not to
326 	 * claim ownership of its node.
327 	 *
328 	 * A concurrent i915_request_add_active_barriers() will miss adding
329 	 * any of the tasks, but we will try again on the next -- and since
330 	 * we are actively using the barrier, we know that there will be
331 	 * at least another opportunity when we idle.
332 	 */
333 	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
334 		if (node == barrier_from_ll(pos)) {
335 			node = NULL;
336 			continue;
337 		}
338 
339 		pos->next = head;
340 		head = pos;
341 		if (!tail)
342 			tail = pos;
343 	}
344 	if (head)
345 		llist_add_batch(head, tail, &engine->barrier_tasks);
346 
347 	return !node;
348 }
349 
350 static bool
351 __active_del_barrier(struct i915_active *ref, struct active_node *node)
352 {
353 	return ____active_del_barrier(ref, node, barrier_to_engine(node));
354 }
355 
356 int i915_active_ref(struct i915_active *ref,
357 		    struct intel_timeline *tl,
358 		    struct dma_fence *fence)
359 {
360 	struct i915_active_fence *active;
361 	int err;
362 
363 	lockdep_assert_held(&tl->mutex);
364 
365 	/* Prevent reaping in case we malloc/wait while building the tree */
366 	err = i915_active_acquire(ref);
367 	if (err)
368 		return err;
369 
370 	active = active_instance(ref, tl);
371 	if (!active) {
372 		err = -ENOMEM;
373 		goto out;
374 	}
375 
376 	if (is_barrier(active)) { /* proto-node used by our idle barrier */
377 		/*
378 		 * This request is on the kernel_context timeline, and so
379 		 * we can use it to substitute for the pending idle-barrer
380 		 * request that we want to emit on the kernel_context.
381 		 */
382 		__active_del_barrier(ref, node_from_active(active));
383 		RCU_INIT_POINTER(active->fence, NULL);
384 		atomic_dec(&ref->count);
385 	}
386 	if (!__i915_active_fence_set(active, fence))
387 		atomic_inc(&ref->count);
388 
389 out:
390 	i915_active_release(ref);
391 	return err;
392 }
393 
394 struct dma_fence *
395 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
396 {
397 	struct dma_fence *prev;
398 
399 	/* We expect the caller to manage the exclusive timeline ordering */
400 	GEM_BUG_ON(i915_active_is_idle(ref));
401 
402 	rcu_read_lock();
403 	prev = __i915_active_fence_set(&ref->excl, f);
404 	if (prev)
405 		prev = dma_fence_get_rcu(prev);
406 	else
407 		atomic_inc(&ref->count);
408 	rcu_read_unlock();
409 
410 	return prev;
411 }
412 
413 bool i915_active_acquire_if_busy(struct i915_active *ref)
414 {
415 	debug_active_assert(ref);
416 	return atomic_add_unless(&ref->count, 1, 0);
417 }
418 
419 int i915_active_acquire(struct i915_active *ref)
420 {
421 	int err;
422 
423 	if (i915_active_acquire_if_busy(ref))
424 		return 0;
425 
426 	err = mutex_lock_interruptible(&ref->mutex);
427 	if (err)
428 		return err;
429 
430 	if (likely(!i915_active_acquire_if_busy(ref))) {
431 		if (ref->active)
432 			err = ref->active(ref);
433 		if (!err) {
434 			spin_lock_irq(&ref->tree_lock); /* __active_retire() */
435 			debug_active_activate(ref);
436 			atomic_inc(&ref->count);
437 			spin_unlock_irq(&ref->tree_lock);
438 		}
439 	}
440 
441 	mutex_unlock(&ref->mutex);
442 
443 	return err;
444 }
445 
446 void i915_active_release(struct i915_active *ref)
447 {
448 	debug_active_assert(ref);
449 	active_retire(ref);
450 }
451 
452 static void enable_signaling(struct i915_active_fence *active)
453 {
454 	struct dma_fence *fence;
455 
456 	if (unlikely(is_barrier(active)))
457 		return;
458 
459 	fence = i915_active_fence_get(active);
460 	if (!fence)
461 		return;
462 
463 	dma_fence_enable_sw_signaling(fence);
464 	dma_fence_put(fence);
465 }
466 
467 static int flush_barrier(struct active_node *it)
468 {
469 	struct intel_engine_cs *engine;
470 
471 	if (likely(!is_barrier(&it->base)))
472 		return 0;
473 
474 	engine = __barrier_to_engine(it);
475 	smp_rmb(); /* serialise with add_active_barriers */
476 	if (!is_barrier(&it->base))
477 		return 0;
478 
479 	return intel_engine_flush_barriers(engine);
480 }
481 
482 static int flush_lazy_signals(struct i915_active *ref)
483 {
484 	struct active_node *it, *n;
485 	int err = 0;
486 
487 	enable_signaling(&ref->excl);
488 	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
489 		err = flush_barrier(it); /* unconnected idle barrier? */
490 		if (err)
491 			break;
492 
493 		enable_signaling(&it->base);
494 	}
495 
496 	return err;
497 }
498 
499 int __i915_active_wait(struct i915_active *ref, int state)
500 {
501 	int err;
502 
503 	might_sleep();
504 
505 	if (!i915_active_acquire_if_busy(ref))
506 		return 0;
507 
508 	/* Any fence added after the wait begins will not be auto-signaled */
509 	err = flush_lazy_signals(ref);
510 	i915_active_release(ref);
511 	if (err)
512 		return err;
513 
514 	if (!i915_active_is_idle(ref) &&
515 	    ___wait_var_event(ref, i915_active_is_idle(ref),
516 			      state, 0, 0, schedule()))
517 		return -EINTR;
518 
519 	flush_work(&ref->work);
520 	return 0;
521 }
522 
523 static int __await_active(struct i915_active_fence *active,
524 			  int (*fn)(void *arg, struct dma_fence *fence),
525 			  void *arg)
526 {
527 	struct dma_fence *fence;
528 
529 	if (is_barrier(active)) /* XXX flush the barrier? */
530 		return 0;
531 
532 	fence = i915_active_fence_get(active);
533 	if (fence) {
534 		int err;
535 
536 		err = fn(arg, fence);
537 		dma_fence_put(fence);
538 		if (err < 0)
539 			return err;
540 	}
541 
542 	return 0;
543 }
544 
545 struct wait_barrier {
546 	struct wait_queue_entry base;
547 	struct i915_active *ref;
548 };
549 
550 static int
551 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
552 {
553 	struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
554 
555 	if (i915_active_is_idle(wb->ref)) {
556 		list_del(&wq->entry);
557 		i915_sw_fence_complete(wq->private);
558 		kfree(wq);
559 	}
560 
561 	return 0;
562 }
563 
564 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
565 {
566 	struct wait_barrier *wb;
567 
568 	wb = kmalloc(sizeof(*wb), GFP_KERNEL);
569 	if (unlikely(!wb))
570 		return -ENOMEM;
571 
572 	GEM_BUG_ON(i915_active_is_idle(ref));
573 	if (!i915_sw_fence_await(fence)) {
574 		kfree(wb);
575 		return -EINVAL;
576 	}
577 
578 	wb->base.flags = 0;
579 	wb->base.func = barrier_wake;
580 	wb->base.private = fence;
581 	wb->ref = ref;
582 
583 	add_wait_queue(__var_waitqueue(ref), &wb->base);
584 	return 0;
585 }
586 
587 static int await_active(struct i915_active *ref,
588 			unsigned int flags,
589 			int (*fn)(void *arg, struct dma_fence *fence),
590 			void *arg, struct i915_sw_fence *barrier)
591 {
592 	int err = 0;
593 
594 	if (!i915_active_acquire_if_busy(ref))
595 		return 0;
596 
597 	if (flags & I915_ACTIVE_AWAIT_EXCL &&
598 	    rcu_access_pointer(ref->excl.fence)) {
599 		err = __await_active(&ref->excl, fn, arg);
600 		if (err)
601 			goto out;
602 	}
603 
604 	if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
605 		struct active_node *it, *n;
606 
607 		rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
608 			err = __await_active(&it->base, fn, arg);
609 			if (err)
610 				goto out;
611 		}
612 	}
613 
614 	if (flags & I915_ACTIVE_AWAIT_BARRIER) {
615 		err = flush_lazy_signals(ref);
616 		if (err)
617 			goto out;
618 
619 		err = __await_barrier(ref, barrier);
620 		if (err)
621 			goto out;
622 	}
623 
624 out:
625 	i915_active_release(ref);
626 	return err;
627 }
628 
629 static int rq_await_fence(void *arg, struct dma_fence *fence)
630 {
631 	return i915_request_await_dma_fence(arg, fence);
632 }
633 
634 int i915_request_await_active(struct i915_request *rq,
635 			      struct i915_active *ref,
636 			      unsigned int flags)
637 {
638 	return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
639 }
640 
641 static int sw_await_fence(void *arg, struct dma_fence *fence)
642 {
643 	return i915_sw_fence_await_dma_fence(arg, fence, 0,
644 					     GFP_NOWAIT | __GFP_NOWARN);
645 }
646 
647 int i915_sw_fence_await_active(struct i915_sw_fence *fence,
648 			       struct i915_active *ref,
649 			       unsigned int flags)
650 {
651 	return await_active(ref, flags, sw_await_fence, fence, fence);
652 }
653 
654 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
655 void i915_active_fini(struct i915_active *ref)
656 {
657 	debug_active_fini(ref);
658 	GEM_BUG_ON(atomic_read(&ref->count));
659 	GEM_BUG_ON(work_pending(&ref->work));
660 	GEM_BUG_ON(!RB_EMPTY_ROOT(&ref->tree));
661 	mutex_destroy(&ref->mutex);
662 }
663 #endif
664 
665 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
666 {
667 	return node->timeline == idx && !i915_active_fence_isset(&node->base);
668 }
669 
670 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
671 {
672 	struct rb_node *prev, *p;
673 
674 	if (RB_EMPTY_ROOT(&ref->tree))
675 		return NULL;
676 
677 	spin_lock_irq(&ref->tree_lock);
678 	GEM_BUG_ON(i915_active_is_idle(ref));
679 
680 	/*
681 	 * Try to reuse any existing barrier nodes already allocated for this
682 	 * i915_active, due to overlapping active phases there is likely a
683 	 * node kept alive (as we reuse before parking). We prefer to reuse
684 	 * completely idle barriers (less hassle in manipulating the llists),
685 	 * but otherwise any will do.
686 	 */
687 	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
688 		p = &ref->cache->node;
689 		goto match;
690 	}
691 
692 	prev = NULL;
693 	p = ref->tree.rb_node;
694 	while (p) {
695 		struct active_node *node =
696 			rb_entry(p, struct active_node, node);
697 
698 		if (is_idle_barrier(node, idx))
699 			goto match;
700 
701 		prev = p;
702 		if (node->timeline < idx)
703 			p = p->rb_right;
704 		else
705 			p = p->rb_left;
706 	}
707 
708 	/*
709 	 * No quick match, but we did find the leftmost rb_node for the
710 	 * kernel_context. Walk the rb_tree in-order to see if there were
711 	 * any idle-barriers on this timeline that we missed, or just use
712 	 * the first pending barrier.
713 	 */
714 	for (p = prev; p; p = rb_next(p)) {
715 		struct active_node *node =
716 			rb_entry(p, struct active_node, node);
717 		struct intel_engine_cs *engine;
718 
719 		if (node->timeline > idx)
720 			break;
721 
722 		if (node->timeline < idx)
723 			continue;
724 
725 		if (is_idle_barrier(node, idx))
726 			goto match;
727 
728 		/*
729 		 * The list of pending barriers is protected by the
730 		 * kernel_context timeline, which notably we do not hold
731 		 * here. i915_request_add_active_barriers() may consume
732 		 * the barrier before we claim it, so we have to check
733 		 * for success.
734 		 */
735 		engine = __barrier_to_engine(node);
736 		smp_rmb(); /* serialise with add_active_barriers */
737 		if (is_barrier(&node->base) &&
738 		    ____active_del_barrier(ref, node, engine))
739 			goto match;
740 	}
741 
742 	spin_unlock_irq(&ref->tree_lock);
743 
744 	return NULL;
745 
746 match:
747 	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
748 	if (p == &ref->cache->node)
749 		ref->cache = NULL;
750 	spin_unlock_irq(&ref->tree_lock);
751 
752 	return rb_entry(p, struct active_node, node);
753 }
754 
755 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
756 					    struct intel_engine_cs *engine)
757 {
758 	intel_engine_mask_t tmp, mask = engine->mask;
759 	struct llist_node *first = NULL, *last = NULL;
760 	struct intel_gt *gt = engine->gt;
761 	int err;
762 
763 	GEM_BUG_ON(i915_active_is_idle(ref));
764 
765 	/* Wait until the previous preallocation is completed */
766 	while (!llist_empty(&ref->preallocated_barriers))
767 		cond_resched();
768 
769 	/*
770 	 * Preallocate a node for each physical engine supporting the target
771 	 * engine (remember virtual engines have more than one sibling).
772 	 * We can then use the preallocated nodes in
773 	 * i915_active_acquire_barrier()
774 	 */
775 	GEM_BUG_ON(!mask);
776 	for_each_engine_masked(engine, gt, mask, tmp) {
777 		u64 idx = engine->kernel_context->timeline->fence_context;
778 		struct llist_node *prev = first;
779 		struct active_node *node;
780 
781 		node = reuse_idle_barrier(ref, idx);
782 		if (!node) {
783 			node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
784 			if (!node) {
785 				err = ENOMEM;
786 				goto unwind;
787 			}
788 
789 			RCU_INIT_POINTER(node->base.fence, NULL);
790 			node->base.cb.func = node_retire;
791 			node->timeline = idx;
792 			node->ref = ref;
793 		}
794 
795 		if (!i915_active_fence_isset(&node->base)) {
796 			/*
797 			 * Mark this as being *our* unconnected proto-node.
798 			 *
799 			 * Since this node is not in any list, and we have
800 			 * decoupled it from the rbtree, we can reuse the
801 			 * request to indicate this is an idle-barrier node
802 			 * and then we can use the rb_node and list pointers
803 			 * for our tracking of the pending barrier.
804 			 */
805 			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
806 			node->base.cb.node.prev = (void *)engine;
807 			atomic_inc(&ref->count);
808 		}
809 		GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
810 
811 		GEM_BUG_ON(barrier_to_engine(node) != engine);
812 		first = barrier_to_ll(node);
813 		first->next = prev;
814 		if (!last)
815 			last = first;
816 		intel_engine_pm_get(engine);
817 	}
818 
819 	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
820 	llist_add_batch(first, last, &ref->preallocated_barriers);
821 
822 	return 0;
823 
824 unwind:
825 	while (first) {
826 		struct active_node *node = barrier_from_ll(first);
827 
828 		first = first->next;
829 
830 		atomic_dec(&ref->count);
831 		intel_engine_pm_put(barrier_to_engine(node));
832 
833 		kmem_cache_free(global.slab_cache, node);
834 	}
835 	return err;
836 }
837 
838 void i915_active_acquire_barrier(struct i915_active *ref)
839 {
840 	struct llist_node *pos, *next;
841 	unsigned long flags;
842 
843 	GEM_BUG_ON(i915_active_is_idle(ref));
844 
845 	/*
846 	 * Transfer the list of preallocated barriers into the
847 	 * i915_active rbtree, but only as proto-nodes. They will be
848 	 * populated by i915_request_add_active_barriers() to point to the
849 	 * request that will eventually release them.
850 	 */
851 	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
852 		struct active_node *node = barrier_from_ll(pos);
853 		struct intel_engine_cs *engine = barrier_to_engine(node);
854 		struct rb_node **p, *parent;
855 
856 		spin_lock_irqsave_nested(&ref->tree_lock, flags,
857 					 SINGLE_DEPTH_NESTING);
858 		parent = NULL;
859 		p = &ref->tree.rb_node;
860 		while (*p) {
861 			struct active_node *it;
862 
863 			parent = *p;
864 
865 			it = rb_entry(parent, struct active_node, node);
866 			if (it->timeline < node->timeline)
867 				p = &parent->rb_right;
868 			else
869 				p = &parent->rb_left;
870 		}
871 		rb_link_node(&node->node, parent, p);
872 		rb_insert_color(&node->node, &ref->tree);
873 		spin_unlock_irqrestore(&ref->tree_lock, flags);
874 
875 		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
876 		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
877 		intel_engine_pm_put_delay(engine, 1);
878 	}
879 }
880 
881 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
882 {
883 	return __active_fence_slot(&barrier_from_ll(node)->base);
884 }
885 
886 void i915_request_add_active_barriers(struct i915_request *rq)
887 {
888 	struct intel_engine_cs *engine = rq->engine;
889 	struct llist_node *node, *next;
890 	unsigned long flags;
891 
892 	GEM_BUG_ON(!intel_context_is_barrier(rq->context));
893 	GEM_BUG_ON(intel_engine_is_virtual(engine));
894 	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
895 
896 	node = llist_del_all(&engine->barrier_tasks);
897 	if (!node)
898 		return;
899 	/*
900 	 * Attach the list of proto-fences to the in-flight request such
901 	 * that the parent i915_active will be released when this request
902 	 * is retired.
903 	 */
904 	spin_lock_irqsave(&rq->lock, flags);
905 	llist_for_each_safe(node, next, node) {
906 		/* serialise with reuse_idle_barrier */
907 		smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
908 		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
909 	}
910 	spin_unlock_irqrestore(&rq->lock, flags);
911 }
912 
913 /*
914  * __i915_active_fence_set: Update the last active fence along its timeline
915  * @active: the active tracker
916  * @fence: the new fence (under construction)
917  *
918  * Records the new @fence as the last active fence along its timeline in
919  * this active tracker, moving the tracking callbacks from the previous
920  * fence onto this one. Returns the previous fence (if not already completed),
921  * which the caller must ensure is executed before the new fence. To ensure
922  * that the order of fences within the timeline of the i915_active_fence is
923  * understood, it should be locked by the caller.
924  */
925 struct dma_fence *
926 __i915_active_fence_set(struct i915_active_fence *active,
927 			struct dma_fence *fence)
928 {
929 	struct dma_fence *prev;
930 	unsigned long flags;
931 
932 	if (fence == rcu_access_pointer(active->fence))
933 		return fence;
934 
935 	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
936 
937 	/*
938 	 * Consider that we have two threads arriving (A and B), with
939 	 * C already resident as the active->fence.
940 	 *
941 	 * A does the xchg first, and so it sees C or NULL depending
942 	 * on the timing of the interrupt handler. If it is NULL, the
943 	 * previous fence must have been signaled and we know that
944 	 * we are first on the timeline. If it is still present,
945 	 * we acquire the lock on that fence and serialise with the interrupt
946 	 * handler, in the process removing it from any future interrupt
947 	 * callback. A will then wait on C before executing (if present).
948 	 *
949 	 * As B is second, it sees A as the previous fence and so waits for
950 	 * it to complete its transition and takes over the occupancy for
951 	 * itself -- remembering that it needs to wait on A before executing.
952 	 *
953 	 * Note the strong ordering of the timeline also provides consistent
954 	 * nesting rules for the fence->lock; the inner lock is always the
955 	 * older lock.
956 	 */
957 	spin_lock_irqsave(fence->lock, flags);
958 	prev = xchg(__active_fence_slot(active), fence);
959 	if (prev) {
960 		GEM_BUG_ON(prev == fence);
961 		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
962 		__list_del_entry(&active->cb.node);
963 		spin_unlock(prev->lock); /* serialise with prev->cb_list */
964 	}
965 	list_add_tail(&active->cb.node, &fence->cb_list);
966 	spin_unlock_irqrestore(fence->lock, flags);
967 
968 	return prev;
969 }
970 
971 int i915_active_fence_set(struct i915_active_fence *active,
972 			  struct i915_request *rq)
973 {
974 	struct dma_fence *fence;
975 	int err = 0;
976 
977 	/* Must maintain timeline ordering wrt previous active requests */
978 	rcu_read_lock();
979 	fence = __i915_active_fence_set(active, &rq->fence);
980 	if (fence) /* but the previous fence may not belong to that timeline! */
981 		fence = dma_fence_get_rcu(fence);
982 	rcu_read_unlock();
983 	if (fence) {
984 		err = i915_request_await_dma_fence(rq, fence);
985 		dma_fence_put(fence);
986 	}
987 
988 	return err;
989 }
990 
991 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
992 {
993 	active_fence_cb(fence, cb);
994 }
995 
996 struct auto_active {
997 	struct i915_active base;
998 	struct kref ref;
999 };
1000 
1001 struct i915_active *i915_active_get(struct i915_active *ref)
1002 {
1003 	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1004 
1005 	kref_get(&aa->ref);
1006 	return &aa->base;
1007 }
1008 
1009 static void auto_release(struct kref *ref)
1010 {
1011 	struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1012 
1013 	i915_active_fini(&aa->base);
1014 	kfree(aa);
1015 }
1016 
1017 void i915_active_put(struct i915_active *ref)
1018 {
1019 	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1020 
1021 	kref_put(&aa->ref, auto_release);
1022 }
1023 
1024 static int auto_active(struct i915_active *ref)
1025 {
1026 	i915_active_get(ref);
1027 	return 0;
1028 }
1029 
1030 static void auto_retire(struct i915_active *ref)
1031 {
1032 	i915_active_put(ref);
1033 }
1034 
1035 struct i915_active *i915_active_create(void)
1036 {
1037 	struct auto_active *aa;
1038 
1039 	aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1040 	if (!aa)
1041 		return NULL;
1042 
1043 	kref_init(&aa->ref);
1044 	i915_active_init(&aa->base, auto_active, auto_retire);
1045 
1046 	return &aa->base;
1047 }
1048 
1049 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1050 #include "selftests/i915_active.c"
1051 #endif
1052 
1053 static void i915_global_active_shrink(void)
1054 {
1055 	kmem_cache_shrink(global.slab_cache);
1056 }
1057 
1058 static void i915_global_active_exit(void)
1059 {
1060 	kmem_cache_destroy(global.slab_cache);
1061 }
1062 
1063 static struct i915_global_active global = { {
1064 	.shrink = i915_global_active_shrink,
1065 	.exit = i915_global_active_exit,
1066 } };
1067 
1068 int __init i915_global_active_init(void)
1069 {
1070 	global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1071 	if (!global.slab_cache)
1072 		return -ENOMEM;
1073 
1074 	i915_global_register(&global.base);
1075 	return 0;
1076 }
1077