xref: /openbmc/linux/drivers/gpu/drm/i915/i915_active.c (revision 35267cea)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include <linux/debugobjects.h>
8 
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_heartbeat.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_ring.h"
13 
14 #include "i915_drv.h"
15 #include "i915_active.h"
16 #include "i915_globals.h"
17 
18 /*
19  * Active refs memory management
20  *
21  * To be more economical with memory, we reap all the i915_active trees as
22  * they idle (when we know the active requests are inactive) and allocate the
23  * nodes from a local slab cache to hopefully reduce the fragmentation.
24  */
25 static struct i915_global_active {
26 	struct i915_global base;
27 	struct kmem_cache *slab_cache;
28 } global;
29 
30 struct active_node {
31 	struct rb_node node;
32 	struct i915_active_fence base;
33 	struct i915_active *ref;
34 	u64 timeline;
35 };
36 
37 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
38 
39 static inline struct active_node *
40 node_from_active(struct i915_active_fence *active)
41 {
42 	return container_of(active, struct active_node, base);
43 }
44 
45 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
46 
47 static inline bool is_barrier(const struct i915_active_fence *active)
48 {
49 	return IS_ERR(rcu_access_pointer(active->fence));
50 }
51 
52 static inline struct llist_node *barrier_to_ll(struct active_node *node)
53 {
54 	GEM_BUG_ON(!is_barrier(&node->base));
55 	return (struct llist_node *)&node->base.cb.node;
56 }
57 
58 static inline struct intel_engine_cs *
59 __barrier_to_engine(struct active_node *node)
60 {
61 	return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
62 }
63 
64 static inline struct intel_engine_cs *
65 barrier_to_engine(struct active_node *node)
66 {
67 	GEM_BUG_ON(!is_barrier(&node->base));
68 	return __barrier_to_engine(node);
69 }
70 
71 static inline struct active_node *barrier_from_ll(struct llist_node *x)
72 {
73 	return container_of((struct list_head *)x,
74 			    struct active_node, base.cb.node);
75 }
76 
77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
78 
79 static void *active_debug_hint(void *addr)
80 {
81 	struct i915_active *ref = addr;
82 
83 	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
84 }
85 
86 static const struct debug_obj_descr active_debug_desc = {
87 	.name = "i915_active",
88 	.debug_hint = active_debug_hint,
89 };
90 
91 static void debug_active_init(struct i915_active *ref)
92 {
93 	debug_object_init(ref, &active_debug_desc);
94 }
95 
96 static void debug_active_activate(struct i915_active *ref)
97 {
98 	lockdep_assert_held(&ref->tree_lock);
99 	if (!atomic_read(&ref->count)) /* before the first inc */
100 		debug_object_activate(ref, &active_debug_desc);
101 }
102 
103 static void debug_active_deactivate(struct i915_active *ref)
104 {
105 	lockdep_assert_held(&ref->tree_lock);
106 	if (!atomic_read(&ref->count)) /* after the last dec */
107 		debug_object_deactivate(ref, &active_debug_desc);
108 }
109 
110 static void debug_active_fini(struct i915_active *ref)
111 {
112 	debug_object_free(ref, &active_debug_desc);
113 }
114 
115 static void debug_active_assert(struct i915_active *ref)
116 {
117 	debug_object_assert_init(ref, &active_debug_desc);
118 }
119 
120 #else
121 
122 static inline void debug_active_init(struct i915_active *ref) { }
123 static inline void debug_active_activate(struct i915_active *ref) { }
124 static inline void debug_active_deactivate(struct i915_active *ref) { }
125 static inline void debug_active_fini(struct i915_active *ref) { }
126 static inline void debug_active_assert(struct i915_active *ref) { }
127 
128 #endif
129 
130 static void
131 __active_retire(struct i915_active *ref)
132 {
133 	struct rb_root root = RB_ROOT;
134 	struct active_node *it, *n;
135 	unsigned long flags;
136 
137 	GEM_BUG_ON(i915_active_is_idle(ref));
138 
139 	/* return the unused nodes to our slabcache -- flushing the allocator */
140 	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
141 		return;
142 
143 	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
144 	debug_active_deactivate(ref);
145 
146 	/* Even if we have not used the cache, we may still have a barrier */
147 	if (!ref->cache)
148 		ref->cache = fetch_node(ref->tree.rb_node);
149 
150 	/* Keep the MRU cached node for reuse */
151 	if (ref->cache) {
152 		/* Discard all other nodes in the tree */
153 		rb_erase(&ref->cache->node, &ref->tree);
154 		root = ref->tree;
155 
156 		/* Rebuild the tree with only the cached node */
157 		rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
158 		rb_insert_color(&ref->cache->node, &ref->tree);
159 		GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
160 
161 		/* Make the cached node available for reuse with any timeline */
162 		ref->cache->timeline = 0; /* needs cmpxchg(u64) */
163 	}
164 
165 	spin_unlock_irqrestore(&ref->tree_lock, flags);
166 
167 	/* After the final retire, the entire struct may be freed */
168 	if (ref->retire)
169 		ref->retire(ref);
170 
171 	/* ... except if you wait on it, you must manage your own references! */
172 	wake_up_var(ref);
173 
174 	/* Finally free the discarded timeline tree  */
175 	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
176 		GEM_BUG_ON(i915_active_fence_isset(&it->base));
177 		kmem_cache_free(global.slab_cache, it);
178 	}
179 }
180 
181 static void
182 active_work(struct work_struct *wrk)
183 {
184 	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
185 
186 	GEM_BUG_ON(!atomic_read(&ref->count));
187 	if (atomic_add_unless(&ref->count, -1, 1))
188 		return;
189 
190 	__active_retire(ref);
191 }
192 
193 static void
194 active_retire(struct i915_active *ref)
195 {
196 	GEM_BUG_ON(!atomic_read(&ref->count));
197 	if (atomic_add_unless(&ref->count, -1, 1))
198 		return;
199 
200 	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
201 		queue_work(system_unbound_wq, &ref->work);
202 		return;
203 	}
204 
205 	__active_retire(ref);
206 }
207 
208 static inline struct dma_fence **
209 __active_fence_slot(struct i915_active_fence *active)
210 {
211 	return (struct dma_fence ** __force)&active->fence;
212 }
213 
214 static inline bool
215 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
216 {
217 	struct i915_active_fence *active =
218 		container_of(cb, typeof(*active), cb);
219 
220 	return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
221 }
222 
223 static void
224 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
225 {
226 	if (active_fence_cb(fence, cb))
227 		active_retire(container_of(cb, struct active_node, base.cb)->ref);
228 }
229 
230 static void
231 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
232 {
233 	if (active_fence_cb(fence, cb))
234 		active_retire(container_of(cb, struct i915_active, excl.cb));
235 }
236 
237 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
238 {
239 	struct active_node *it;
240 
241 	GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
242 
243 	/*
244 	 * We track the most recently used timeline to skip a rbtree search
245 	 * for the common case, under typical loads we never need the rbtree
246 	 * at all. We can reuse the last slot if it is empty, that is
247 	 * after the previous activity has been retired, or if it matches the
248 	 * current timeline.
249 	 */
250 	it = READ_ONCE(ref->cache);
251 	if (it) {
252 		u64 cached = READ_ONCE(it->timeline);
253 
254 		/* Once claimed, this slot will only belong to this idx */
255 		if (cached == idx)
256 			return it;
257 
258 		/*
259 		 * An unclaimed cache [.timeline=0] can only be claimed once.
260 		 *
261 		 * If the value is already non-zero, some other thread has
262 		 * claimed the cache and we know that is does not match our
263 		 * idx. If, and only if, the timeline is currently zero is it
264 		 * worth competing to claim it atomically for ourselves (for
265 		 * only the winner of that race will cmpxchg return the old
266 		 * value of 0).
267 		 */
268 		if (!cached && !cmpxchg64(&it->timeline, 0, idx))
269 			return it;
270 	}
271 
272 	BUILD_BUG_ON(offsetof(typeof(*it), node));
273 
274 	/* While active, the tree can only be built; not destroyed */
275 	GEM_BUG_ON(i915_active_is_idle(ref));
276 
277 	it = fetch_node(ref->tree.rb_node);
278 	while (it) {
279 		if (it->timeline < idx) {
280 			it = fetch_node(it->node.rb_right);
281 		} else if (it->timeline > idx) {
282 			it = fetch_node(it->node.rb_left);
283 		} else {
284 			WRITE_ONCE(ref->cache, it);
285 			break;
286 		}
287 	}
288 
289 	/* NB: If the tree rotated beneath us, we may miss our target. */
290 	return it;
291 }
292 
293 static struct i915_active_fence *
294 active_instance(struct i915_active *ref, u64 idx)
295 {
296 	struct active_node *node;
297 	struct rb_node **p, *parent;
298 
299 	node = __active_lookup(ref, idx);
300 	if (likely(node))
301 		return &node->base;
302 
303 	spin_lock_irq(&ref->tree_lock);
304 	GEM_BUG_ON(i915_active_is_idle(ref));
305 
306 	parent = NULL;
307 	p = &ref->tree.rb_node;
308 	while (*p) {
309 		parent = *p;
310 
311 		node = rb_entry(parent, struct active_node, node);
312 		if (node->timeline == idx)
313 			goto out;
314 
315 		if (node->timeline < idx)
316 			p = &parent->rb_right;
317 		else
318 			p = &parent->rb_left;
319 	}
320 
321 	/*
322 	 * XXX: We should preallocate this before i915_active_ref() is ever
323 	 *  called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC.
324 	 */
325 	node = kmem_cache_alloc(global.slab_cache, GFP_ATOMIC);
326 	if (!node)
327 		goto out;
328 
329 	__i915_active_fence_init(&node->base, NULL, node_retire);
330 	node->ref = ref;
331 	node->timeline = idx;
332 
333 	rb_link_node(&node->node, parent, p);
334 	rb_insert_color(&node->node, &ref->tree);
335 
336 out:
337 	WRITE_ONCE(ref->cache, node);
338 	spin_unlock_irq(&ref->tree_lock);
339 
340 	return &node->base;
341 }
342 
343 void __i915_active_init(struct i915_active *ref,
344 			int (*active)(struct i915_active *ref),
345 			void (*retire)(struct i915_active *ref),
346 			unsigned long flags,
347 			struct lock_class_key *mkey,
348 			struct lock_class_key *wkey)
349 {
350 	debug_active_init(ref);
351 
352 	ref->flags = flags;
353 	ref->active = active;
354 	ref->retire = retire;
355 
356 	spin_lock_init(&ref->tree_lock);
357 	ref->tree = RB_ROOT;
358 	ref->cache = NULL;
359 
360 	init_llist_head(&ref->preallocated_barriers);
361 	atomic_set(&ref->count, 0);
362 	__mutex_init(&ref->mutex, "i915_active", mkey);
363 	__i915_active_fence_init(&ref->excl, NULL, excl_retire);
364 	INIT_WORK(&ref->work, active_work);
365 #if IS_ENABLED(CONFIG_LOCKDEP)
366 	lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
367 #endif
368 }
369 
370 static bool ____active_del_barrier(struct i915_active *ref,
371 				   struct active_node *node,
372 				   struct intel_engine_cs *engine)
373 
374 {
375 	struct llist_node *head = NULL, *tail = NULL;
376 	struct llist_node *pos, *next;
377 
378 	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
379 
380 	/*
381 	 * Rebuild the llist excluding our node. We may perform this
382 	 * outside of the kernel_context timeline mutex and so someone
383 	 * else may be manipulating the engine->barrier_tasks, in
384 	 * which case either we or they will be upset :)
385 	 *
386 	 * A second __active_del_barrier() will report failure to claim
387 	 * the active_node and the caller will just shrug and know not to
388 	 * claim ownership of its node.
389 	 *
390 	 * A concurrent i915_request_add_active_barriers() will miss adding
391 	 * any of the tasks, but we will try again on the next -- and since
392 	 * we are actively using the barrier, we know that there will be
393 	 * at least another opportunity when we idle.
394 	 */
395 	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
396 		if (node == barrier_from_ll(pos)) {
397 			node = NULL;
398 			continue;
399 		}
400 
401 		pos->next = head;
402 		head = pos;
403 		if (!tail)
404 			tail = pos;
405 	}
406 	if (head)
407 		llist_add_batch(head, tail, &engine->barrier_tasks);
408 
409 	return !node;
410 }
411 
412 static bool
413 __active_del_barrier(struct i915_active *ref, struct active_node *node)
414 {
415 	return ____active_del_barrier(ref, node, barrier_to_engine(node));
416 }
417 
418 static bool
419 replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
420 {
421 	if (!is_barrier(active)) /* proto-node used by our idle barrier? */
422 		return false;
423 
424 	/*
425 	 * This request is on the kernel_context timeline, and so
426 	 * we can use it to substitute for the pending idle-barrer
427 	 * request that we want to emit on the kernel_context.
428 	 */
429 	__active_del_barrier(ref, node_from_active(active));
430 	return true;
431 }
432 
433 int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
434 {
435 	struct i915_active_fence *active;
436 	int err;
437 
438 	/* Prevent reaping in case we malloc/wait while building the tree */
439 	err = i915_active_acquire(ref);
440 	if (err)
441 		return err;
442 
443 	active = active_instance(ref, idx);
444 	if (!active) {
445 		err = -ENOMEM;
446 		goto out;
447 	}
448 
449 	if (replace_barrier(ref, active)) {
450 		RCU_INIT_POINTER(active->fence, NULL);
451 		atomic_dec(&ref->count);
452 	}
453 	if (!__i915_active_fence_set(active, fence))
454 		__i915_active_acquire(ref);
455 
456 out:
457 	i915_active_release(ref);
458 	return err;
459 }
460 
461 static struct dma_fence *
462 __i915_active_set_fence(struct i915_active *ref,
463 			struct i915_active_fence *active,
464 			struct dma_fence *fence)
465 {
466 	struct dma_fence *prev;
467 
468 	if (replace_barrier(ref, active)) {
469 		RCU_INIT_POINTER(active->fence, fence);
470 		return NULL;
471 	}
472 
473 	rcu_read_lock();
474 	prev = __i915_active_fence_set(active, fence);
475 	if (prev)
476 		prev = dma_fence_get_rcu(prev);
477 	else
478 		__i915_active_acquire(ref);
479 	rcu_read_unlock();
480 
481 	return prev;
482 }
483 
484 static struct i915_active_fence *
485 __active_fence(struct i915_active *ref, u64 idx)
486 {
487 	struct active_node *it;
488 
489 	it = __active_lookup(ref, idx);
490 	if (unlikely(!it)) { /* Contention with parallel tree builders! */
491 		spin_lock_irq(&ref->tree_lock);
492 		it = __active_lookup(ref, idx);
493 		spin_unlock_irq(&ref->tree_lock);
494 	}
495 	GEM_BUG_ON(!it); /* slot must be preallocated */
496 
497 	return &it->base;
498 }
499 
500 struct dma_fence *
501 __i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
502 {
503 	/* Only valid while active, see i915_active_acquire_for_context() */
504 	return __i915_active_set_fence(ref, __active_fence(ref, idx), fence);
505 }
506 
507 struct dma_fence *
508 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
509 {
510 	/* We expect the caller to manage the exclusive timeline ordering */
511 	return __i915_active_set_fence(ref, &ref->excl, f);
512 }
513 
514 bool i915_active_acquire_if_busy(struct i915_active *ref)
515 {
516 	debug_active_assert(ref);
517 	return atomic_add_unless(&ref->count, 1, 0);
518 }
519 
520 static void __i915_active_activate(struct i915_active *ref)
521 {
522 	spin_lock_irq(&ref->tree_lock); /* __active_retire() */
523 	if (!atomic_fetch_inc(&ref->count))
524 		debug_active_activate(ref);
525 	spin_unlock_irq(&ref->tree_lock);
526 }
527 
528 int i915_active_acquire(struct i915_active *ref)
529 {
530 	int err;
531 
532 	if (i915_active_acquire_if_busy(ref))
533 		return 0;
534 
535 	if (!ref->active) {
536 		__i915_active_activate(ref);
537 		return 0;
538 	}
539 
540 	err = mutex_lock_interruptible(&ref->mutex);
541 	if (err)
542 		return err;
543 
544 	if (likely(!i915_active_acquire_if_busy(ref))) {
545 		err = ref->active(ref);
546 		if (!err)
547 			__i915_active_activate(ref);
548 	}
549 
550 	mutex_unlock(&ref->mutex);
551 
552 	return err;
553 }
554 
555 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
556 {
557 	struct i915_active_fence *active;
558 	int err;
559 
560 	err = i915_active_acquire(ref);
561 	if (err)
562 		return err;
563 
564 	active = active_instance(ref, idx);
565 	if (!active) {
566 		i915_active_release(ref);
567 		return -ENOMEM;
568 	}
569 
570 	return 0; /* return with active ref */
571 }
572 
573 void i915_active_release(struct i915_active *ref)
574 {
575 	debug_active_assert(ref);
576 	active_retire(ref);
577 }
578 
579 static void enable_signaling(struct i915_active_fence *active)
580 {
581 	struct dma_fence *fence;
582 
583 	if (unlikely(is_barrier(active)))
584 		return;
585 
586 	fence = i915_active_fence_get(active);
587 	if (!fence)
588 		return;
589 
590 	dma_fence_enable_sw_signaling(fence);
591 	dma_fence_put(fence);
592 }
593 
594 static int flush_barrier(struct active_node *it)
595 {
596 	struct intel_engine_cs *engine;
597 
598 	if (likely(!is_barrier(&it->base)))
599 		return 0;
600 
601 	engine = __barrier_to_engine(it);
602 	smp_rmb(); /* serialise with add_active_barriers */
603 	if (!is_barrier(&it->base))
604 		return 0;
605 
606 	return intel_engine_flush_barriers(engine);
607 }
608 
609 static int flush_lazy_signals(struct i915_active *ref)
610 {
611 	struct active_node *it, *n;
612 	int err = 0;
613 
614 	enable_signaling(&ref->excl);
615 	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
616 		err = flush_barrier(it); /* unconnected idle barrier? */
617 		if (err)
618 			break;
619 
620 		enable_signaling(&it->base);
621 	}
622 
623 	return err;
624 }
625 
626 int __i915_active_wait(struct i915_active *ref, int state)
627 {
628 	might_sleep();
629 
630 	/* Any fence added after the wait begins will not be auto-signaled */
631 	if (i915_active_acquire_if_busy(ref)) {
632 		int err;
633 
634 		err = flush_lazy_signals(ref);
635 		i915_active_release(ref);
636 		if (err)
637 			return err;
638 
639 		if (___wait_var_event(ref, i915_active_is_idle(ref),
640 				      state, 0, 0, schedule()))
641 			return -EINTR;
642 	}
643 
644 	/*
645 	 * After the wait is complete, the caller may free the active.
646 	 * We have to flush any concurrent retirement before returning.
647 	 */
648 	flush_work(&ref->work);
649 	return 0;
650 }
651 
652 static int __await_active(struct i915_active_fence *active,
653 			  int (*fn)(void *arg, struct dma_fence *fence),
654 			  void *arg)
655 {
656 	struct dma_fence *fence;
657 
658 	if (is_barrier(active)) /* XXX flush the barrier? */
659 		return 0;
660 
661 	fence = i915_active_fence_get(active);
662 	if (fence) {
663 		int err;
664 
665 		err = fn(arg, fence);
666 		dma_fence_put(fence);
667 		if (err < 0)
668 			return err;
669 	}
670 
671 	return 0;
672 }
673 
674 struct wait_barrier {
675 	struct wait_queue_entry base;
676 	struct i915_active *ref;
677 };
678 
679 static int
680 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
681 {
682 	struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
683 
684 	if (i915_active_is_idle(wb->ref)) {
685 		list_del(&wq->entry);
686 		i915_sw_fence_complete(wq->private);
687 		kfree(wq);
688 	}
689 
690 	return 0;
691 }
692 
693 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
694 {
695 	struct wait_barrier *wb;
696 
697 	wb = kmalloc(sizeof(*wb), GFP_KERNEL);
698 	if (unlikely(!wb))
699 		return -ENOMEM;
700 
701 	GEM_BUG_ON(i915_active_is_idle(ref));
702 	if (!i915_sw_fence_await(fence)) {
703 		kfree(wb);
704 		return -EINVAL;
705 	}
706 
707 	wb->base.flags = 0;
708 	wb->base.func = barrier_wake;
709 	wb->base.private = fence;
710 	wb->ref = ref;
711 
712 	add_wait_queue(__var_waitqueue(ref), &wb->base);
713 	return 0;
714 }
715 
716 static int await_active(struct i915_active *ref,
717 			unsigned int flags,
718 			int (*fn)(void *arg, struct dma_fence *fence),
719 			void *arg, struct i915_sw_fence *barrier)
720 {
721 	int err = 0;
722 
723 	if (!i915_active_acquire_if_busy(ref))
724 		return 0;
725 
726 	if (flags & I915_ACTIVE_AWAIT_EXCL &&
727 	    rcu_access_pointer(ref->excl.fence)) {
728 		err = __await_active(&ref->excl, fn, arg);
729 		if (err)
730 			goto out;
731 	}
732 
733 	if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
734 		struct active_node *it, *n;
735 
736 		rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
737 			err = __await_active(&it->base, fn, arg);
738 			if (err)
739 				goto out;
740 		}
741 	}
742 
743 	if (flags & I915_ACTIVE_AWAIT_BARRIER) {
744 		err = flush_lazy_signals(ref);
745 		if (err)
746 			goto out;
747 
748 		err = __await_barrier(ref, barrier);
749 		if (err)
750 			goto out;
751 	}
752 
753 out:
754 	i915_active_release(ref);
755 	return err;
756 }
757 
758 static int rq_await_fence(void *arg, struct dma_fence *fence)
759 {
760 	return i915_request_await_dma_fence(arg, fence);
761 }
762 
763 int i915_request_await_active(struct i915_request *rq,
764 			      struct i915_active *ref,
765 			      unsigned int flags)
766 {
767 	return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
768 }
769 
770 static int sw_await_fence(void *arg, struct dma_fence *fence)
771 {
772 	return i915_sw_fence_await_dma_fence(arg, fence, 0,
773 					     GFP_NOWAIT | __GFP_NOWARN);
774 }
775 
776 int i915_sw_fence_await_active(struct i915_sw_fence *fence,
777 			       struct i915_active *ref,
778 			       unsigned int flags)
779 {
780 	return await_active(ref, flags, sw_await_fence, fence, fence);
781 }
782 
783 void i915_active_fini(struct i915_active *ref)
784 {
785 	debug_active_fini(ref);
786 	GEM_BUG_ON(atomic_read(&ref->count));
787 	GEM_BUG_ON(work_pending(&ref->work));
788 	mutex_destroy(&ref->mutex);
789 
790 	if (ref->cache)
791 		kmem_cache_free(global.slab_cache, ref->cache);
792 }
793 
794 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
795 {
796 	return node->timeline == idx && !i915_active_fence_isset(&node->base);
797 }
798 
799 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
800 {
801 	struct rb_node *prev, *p;
802 
803 	if (RB_EMPTY_ROOT(&ref->tree))
804 		return NULL;
805 
806 	GEM_BUG_ON(i915_active_is_idle(ref));
807 
808 	/*
809 	 * Try to reuse any existing barrier nodes already allocated for this
810 	 * i915_active, due to overlapping active phases there is likely a
811 	 * node kept alive (as we reuse before parking). We prefer to reuse
812 	 * completely idle barriers (less hassle in manipulating the llists),
813 	 * but otherwise any will do.
814 	 */
815 	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
816 		p = &ref->cache->node;
817 		goto match;
818 	}
819 
820 	prev = NULL;
821 	p = ref->tree.rb_node;
822 	while (p) {
823 		struct active_node *node =
824 			rb_entry(p, struct active_node, node);
825 
826 		if (is_idle_barrier(node, idx))
827 			goto match;
828 
829 		prev = p;
830 		if (node->timeline < idx)
831 			p = READ_ONCE(p->rb_right);
832 		else
833 			p = READ_ONCE(p->rb_left);
834 	}
835 
836 	/*
837 	 * No quick match, but we did find the leftmost rb_node for the
838 	 * kernel_context. Walk the rb_tree in-order to see if there were
839 	 * any idle-barriers on this timeline that we missed, or just use
840 	 * the first pending barrier.
841 	 */
842 	for (p = prev; p; p = rb_next(p)) {
843 		struct active_node *node =
844 			rb_entry(p, struct active_node, node);
845 		struct intel_engine_cs *engine;
846 
847 		if (node->timeline > idx)
848 			break;
849 
850 		if (node->timeline < idx)
851 			continue;
852 
853 		if (is_idle_barrier(node, idx))
854 			goto match;
855 
856 		/*
857 		 * The list of pending barriers is protected by the
858 		 * kernel_context timeline, which notably we do not hold
859 		 * here. i915_request_add_active_barriers() may consume
860 		 * the barrier before we claim it, so we have to check
861 		 * for success.
862 		 */
863 		engine = __barrier_to_engine(node);
864 		smp_rmb(); /* serialise with add_active_barriers */
865 		if (is_barrier(&node->base) &&
866 		    ____active_del_barrier(ref, node, engine))
867 			goto match;
868 	}
869 
870 	return NULL;
871 
872 match:
873 	spin_lock_irq(&ref->tree_lock);
874 	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
875 	if (p == &ref->cache->node)
876 		WRITE_ONCE(ref->cache, NULL);
877 	spin_unlock_irq(&ref->tree_lock);
878 
879 	return rb_entry(p, struct active_node, node);
880 }
881 
882 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
883 					    struct intel_engine_cs *engine)
884 {
885 	intel_engine_mask_t tmp, mask = engine->mask;
886 	struct llist_node *first = NULL, *last = NULL;
887 	struct intel_gt *gt = engine->gt;
888 
889 	GEM_BUG_ON(i915_active_is_idle(ref));
890 
891 	/* Wait until the previous preallocation is completed */
892 	while (!llist_empty(&ref->preallocated_barriers))
893 		cond_resched();
894 
895 	/*
896 	 * Preallocate a node for each physical engine supporting the target
897 	 * engine (remember virtual engines have more than one sibling).
898 	 * We can then use the preallocated nodes in
899 	 * i915_active_acquire_barrier()
900 	 */
901 	GEM_BUG_ON(!mask);
902 	for_each_engine_masked(engine, gt, mask, tmp) {
903 		u64 idx = engine->kernel_context->timeline->fence_context;
904 		struct llist_node *prev = first;
905 		struct active_node *node;
906 
907 		rcu_read_lock();
908 		node = reuse_idle_barrier(ref, idx);
909 		rcu_read_unlock();
910 		if (!node) {
911 			node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
912 			if (!node)
913 				goto unwind;
914 
915 			RCU_INIT_POINTER(node->base.fence, NULL);
916 			node->base.cb.func = node_retire;
917 			node->timeline = idx;
918 			node->ref = ref;
919 		}
920 
921 		if (!i915_active_fence_isset(&node->base)) {
922 			/*
923 			 * Mark this as being *our* unconnected proto-node.
924 			 *
925 			 * Since this node is not in any list, and we have
926 			 * decoupled it from the rbtree, we can reuse the
927 			 * request to indicate this is an idle-barrier node
928 			 * and then we can use the rb_node and list pointers
929 			 * for our tracking of the pending barrier.
930 			 */
931 			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
932 			node->base.cb.node.prev = (void *)engine;
933 			__i915_active_acquire(ref);
934 		}
935 		GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
936 
937 		GEM_BUG_ON(barrier_to_engine(node) != engine);
938 		first = barrier_to_ll(node);
939 		first->next = prev;
940 		if (!last)
941 			last = first;
942 		intel_engine_pm_get(engine);
943 	}
944 
945 	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
946 	llist_add_batch(first, last, &ref->preallocated_barriers);
947 
948 	return 0;
949 
950 unwind:
951 	while (first) {
952 		struct active_node *node = barrier_from_ll(first);
953 
954 		first = first->next;
955 
956 		atomic_dec(&ref->count);
957 		intel_engine_pm_put(barrier_to_engine(node));
958 
959 		kmem_cache_free(global.slab_cache, node);
960 	}
961 	return -ENOMEM;
962 }
963 
964 void i915_active_acquire_barrier(struct i915_active *ref)
965 {
966 	struct llist_node *pos, *next;
967 	unsigned long flags;
968 
969 	GEM_BUG_ON(i915_active_is_idle(ref));
970 
971 	/*
972 	 * Transfer the list of preallocated barriers into the
973 	 * i915_active rbtree, but only as proto-nodes. They will be
974 	 * populated by i915_request_add_active_barriers() to point to the
975 	 * request that will eventually release them.
976 	 */
977 	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
978 		struct active_node *node = barrier_from_ll(pos);
979 		struct intel_engine_cs *engine = barrier_to_engine(node);
980 		struct rb_node **p, *parent;
981 
982 		spin_lock_irqsave_nested(&ref->tree_lock, flags,
983 					 SINGLE_DEPTH_NESTING);
984 		parent = NULL;
985 		p = &ref->tree.rb_node;
986 		while (*p) {
987 			struct active_node *it;
988 
989 			parent = *p;
990 
991 			it = rb_entry(parent, struct active_node, node);
992 			if (it->timeline < node->timeline)
993 				p = &parent->rb_right;
994 			else
995 				p = &parent->rb_left;
996 		}
997 		rb_link_node(&node->node, parent, p);
998 		rb_insert_color(&node->node, &ref->tree);
999 		spin_unlock_irqrestore(&ref->tree_lock, flags);
1000 
1001 		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1002 		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
1003 		intel_engine_pm_put_delay(engine, 1);
1004 	}
1005 }
1006 
1007 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
1008 {
1009 	return __active_fence_slot(&barrier_from_ll(node)->base);
1010 }
1011 
1012 void i915_request_add_active_barriers(struct i915_request *rq)
1013 {
1014 	struct intel_engine_cs *engine = rq->engine;
1015 	struct llist_node *node, *next;
1016 	unsigned long flags;
1017 
1018 	GEM_BUG_ON(!intel_context_is_barrier(rq->context));
1019 	GEM_BUG_ON(intel_engine_is_virtual(engine));
1020 	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
1021 
1022 	node = llist_del_all(&engine->barrier_tasks);
1023 	if (!node)
1024 		return;
1025 	/*
1026 	 * Attach the list of proto-fences to the in-flight request such
1027 	 * that the parent i915_active will be released when this request
1028 	 * is retired.
1029 	 */
1030 	spin_lock_irqsave(&rq->lock, flags);
1031 	llist_for_each_safe(node, next, node) {
1032 		/* serialise with reuse_idle_barrier */
1033 		smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1034 		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1035 	}
1036 	spin_unlock_irqrestore(&rq->lock, flags);
1037 }
1038 
1039 /*
1040  * __i915_active_fence_set: Update the last active fence along its timeline
1041  * @active: the active tracker
1042  * @fence: the new fence (under construction)
1043  *
1044  * Records the new @fence as the last active fence along its timeline in
1045  * this active tracker, moving the tracking callbacks from the previous
1046  * fence onto this one. Returns the previous fence (if not already completed),
1047  * which the caller must ensure is executed before the new fence. To ensure
1048  * that the order of fences within the timeline of the i915_active_fence is
1049  * understood, it should be locked by the caller.
1050  */
1051 struct dma_fence *
1052 __i915_active_fence_set(struct i915_active_fence *active,
1053 			struct dma_fence *fence)
1054 {
1055 	struct dma_fence *prev;
1056 	unsigned long flags;
1057 
1058 	if (fence == rcu_access_pointer(active->fence))
1059 		return fence;
1060 
1061 	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1062 
1063 	/*
1064 	 * Consider that we have two threads arriving (A and B), with
1065 	 * C already resident as the active->fence.
1066 	 *
1067 	 * A does the xchg first, and so it sees C or NULL depending
1068 	 * on the timing of the interrupt handler. If it is NULL, the
1069 	 * previous fence must have been signaled and we know that
1070 	 * we are first on the timeline. If it is still present,
1071 	 * we acquire the lock on that fence and serialise with the interrupt
1072 	 * handler, in the process removing it from any future interrupt
1073 	 * callback. A will then wait on C before executing (if present).
1074 	 *
1075 	 * As B is second, it sees A as the previous fence and so waits for
1076 	 * it to complete its transition and takes over the occupancy for
1077 	 * itself -- remembering that it needs to wait on A before executing.
1078 	 *
1079 	 * Note the strong ordering of the timeline also provides consistent
1080 	 * nesting rules for the fence->lock; the inner lock is always the
1081 	 * older lock.
1082 	 */
1083 	spin_lock_irqsave(fence->lock, flags);
1084 	prev = xchg(__active_fence_slot(active), fence);
1085 	if (prev) {
1086 		GEM_BUG_ON(prev == fence);
1087 		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1088 		__list_del_entry(&active->cb.node);
1089 		spin_unlock(prev->lock); /* serialise with prev->cb_list */
1090 	}
1091 	list_add_tail(&active->cb.node, &fence->cb_list);
1092 	spin_unlock_irqrestore(fence->lock, flags);
1093 
1094 	return prev;
1095 }
1096 
1097 int i915_active_fence_set(struct i915_active_fence *active,
1098 			  struct i915_request *rq)
1099 {
1100 	struct dma_fence *fence;
1101 	int err = 0;
1102 
1103 	/* Must maintain timeline ordering wrt previous active requests */
1104 	rcu_read_lock();
1105 	fence = __i915_active_fence_set(active, &rq->fence);
1106 	if (fence) /* but the previous fence may not belong to that timeline! */
1107 		fence = dma_fence_get_rcu(fence);
1108 	rcu_read_unlock();
1109 	if (fence) {
1110 		err = i915_request_await_dma_fence(rq, fence);
1111 		dma_fence_put(fence);
1112 	}
1113 
1114 	return err;
1115 }
1116 
1117 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1118 {
1119 	active_fence_cb(fence, cb);
1120 }
1121 
1122 struct auto_active {
1123 	struct i915_active base;
1124 	struct kref ref;
1125 };
1126 
1127 struct i915_active *i915_active_get(struct i915_active *ref)
1128 {
1129 	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1130 
1131 	kref_get(&aa->ref);
1132 	return &aa->base;
1133 }
1134 
1135 static void auto_release(struct kref *ref)
1136 {
1137 	struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1138 
1139 	i915_active_fini(&aa->base);
1140 	kfree(aa);
1141 }
1142 
1143 void i915_active_put(struct i915_active *ref)
1144 {
1145 	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1146 
1147 	kref_put(&aa->ref, auto_release);
1148 }
1149 
1150 static int auto_active(struct i915_active *ref)
1151 {
1152 	i915_active_get(ref);
1153 	return 0;
1154 }
1155 
1156 static void auto_retire(struct i915_active *ref)
1157 {
1158 	i915_active_put(ref);
1159 }
1160 
1161 struct i915_active *i915_active_create(void)
1162 {
1163 	struct auto_active *aa;
1164 
1165 	aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1166 	if (!aa)
1167 		return NULL;
1168 
1169 	kref_init(&aa->ref);
1170 	i915_active_init(&aa->base, auto_active, auto_retire, 0);
1171 
1172 	return &aa->base;
1173 }
1174 
1175 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1176 #include "selftests/i915_active.c"
1177 #endif
1178 
1179 static void i915_global_active_shrink(void)
1180 {
1181 	kmem_cache_shrink(global.slab_cache);
1182 }
1183 
1184 static void i915_global_active_exit(void)
1185 {
1186 	kmem_cache_destroy(global.slab_cache);
1187 }
1188 
1189 static struct i915_global_active global = { {
1190 	.shrink = i915_global_active_shrink,
1191 	.exit = i915_global_active_exit,
1192 } };
1193 
1194 int __init i915_global_active_init(void)
1195 {
1196 	global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1197 	if (!global.slab_cache)
1198 		return -ENOMEM;
1199 
1200 	i915_global_register(&global.base);
1201 	return 0;
1202 }
1203