1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2019 Intel Corporation 5 */ 6 7 #include <linux/debugobjects.h> 8 9 #include "gt/intel_context.h" 10 #include "gt/intel_engine_heartbeat.h" 11 #include "gt/intel_engine_pm.h" 12 #include "gt/intel_ring.h" 13 14 #include "i915_drv.h" 15 #include "i915_active.h" 16 #include "i915_globals.h" 17 18 /* 19 * Active refs memory management 20 * 21 * To be more economical with memory, we reap all the i915_active trees as 22 * they idle (when we know the active requests are inactive) and allocate the 23 * nodes from a local slab cache to hopefully reduce the fragmentation. 24 */ 25 static struct i915_global_active { 26 struct i915_global base; 27 struct kmem_cache *slab_cache; 28 } global; 29 30 struct active_node { 31 struct rb_node node; 32 struct i915_active_fence base; 33 struct i915_active *ref; 34 u64 timeline; 35 }; 36 37 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node) 38 39 static inline struct active_node * 40 node_from_active(struct i915_active_fence *active) 41 { 42 return container_of(active, struct active_node, base); 43 } 44 45 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers) 46 47 static inline bool is_barrier(const struct i915_active_fence *active) 48 { 49 return IS_ERR(rcu_access_pointer(active->fence)); 50 } 51 52 static inline struct llist_node *barrier_to_ll(struct active_node *node) 53 { 54 GEM_BUG_ON(!is_barrier(&node->base)); 55 return (struct llist_node *)&node->base.cb.node; 56 } 57 58 static inline struct intel_engine_cs * 59 __barrier_to_engine(struct active_node *node) 60 { 61 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev); 62 } 63 64 static inline struct intel_engine_cs * 65 barrier_to_engine(struct active_node *node) 66 { 67 GEM_BUG_ON(!is_barrier(&node->base)); 68 return __barrier_to_engine(node); 69 } 70 71 static inline struct active_node *barrier_from_ll(struct llist_node *x) 72 { 73 return container_of((struct list_head *)x, 74 struct active_node, base.cb.node); 75 } 76 77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS) 78 79 static void *active_debug_hint(void *addr) 80 { 81 struct i915_active *ref = addr; 82 83 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref; 84 } 85 86 static const struct debug_obj_descr active_debug_desc = { 87 .name = "i915_active", 88 .debug_hint = active_debug_hint, 89 }; 90 91 static void debug_active_init(struct i915_active *ref) 92 { 93 debug_object_init(ref, &active_debug_desc); 94 } 95 96 static void debug_active_activate(struct i915_active *ref) 97 { 98 lockdep_assert_held(&ref->tree_lock); 99 if (!atomic_read(&ref->count)) /* before the first inc */ 100 debug_object_activate(ref, &active_debug_desc); 101 } 102 103 static void debug_active_deactivate(struct i915_active *ref) 104 { 105 lockdep_assert_held(&ref->tree_lock); 106 if (!atomic_read(&ref->count)) /* after the last dec */ 107 debug_object_deactivate(ref, &active_debug_desc); 108 } 109 110 static void debug_active_fini(struct i915_active *ref) 111 { 112 debug_object_free(ref, &active_debug_desc); 113 } 114 115 static void debug_active_assert(struct i915_active *ref) 116 { 117 debug_object_assert_init(ref, &active_debug_desc); 118 } 119 120 #else 121 122 static inline void debug_active_init(struct i915_active *ref) { } 123 static inline void debug_active_activate(struct i915_active *ref) { } 124 static inline void debug_active_deactivate(struct i915_active *ref) { } 125 static inline void debug_active_fini(struct i915_active *ref) { } 126 static inline void debug_active_assert(struct i915_active *ref) { } 127 128 #endif 129 130 static void 131 __active_retire(struct i915_active *ref) 132 { 133 struct rb_root root = RB_ROOT; 134 struct active_node *it, *n; 135 unsigned long flags; 136 137 GEM_BUG_ON(i915_active_is_idle(ref)); 138 139 /* return the unused nodes to our slabcache -- flushing the allocator */ 140 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags)) 141 return; 142 143 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence)); 144 debug_active_deactivate(ref); 145 146 /* Even if we have not used the cache, we may still have a barrier */ 147 if (!ref->cache) 148 ref->cache = fetch_node(ref->tree.rb_node); 149 150 /* Keep the MRU cached node for reuse */ 151 if (ref->cache) { 152 /* Discard all other nodes in the tree */ 153 rb_erase(&ref->cache->node, &ref->tree); 154 root = ref->tree; 155 156 /* Rebuild the tree with only the cached node */ 157 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node); 158 rb_insert_color(&ref->cache->node, &ref->tree); 159 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node); 160 161 /* Make the cached node available for reuse with any timeline */ 162 ref->cache->timeline = 0; /* needs cmpxchg(u64) */ 163 } 164 165 spin_unlock_irqrestore(&ref->tree_lock, flags); 166 167 /* After the final retire, the entire struct may be freed */ 168 if (ref->retire) 169 ref->retire(ref); 170 171 /* ... except if you wait on it, you must manage your own references! */ 172 wake_up_var(ref); 173 174 /* Finally free the discarded timeline tree */ 175 rbtree_postorder_for_each_entry_safe(it, n, &root, node) { 176 GEM_BUG_ON(i915_active_fence_isset(&it->base)); 177 kmem_cache_free(global.slab_cache, it); 178 } 179 } 180 181 static void 182 active_work(struct work_struct *wrk) 183 { 184 struct i915_active *ref = container_of(wrk, typeof(*ref), work); 185 186 GEM_BUG_ON(!atomic_read(&ref->count)); 187 if (atomic_add_unless(&ref->count, -1, 1)) 188 return; 189 190 __active_retire(ref); 191 } 192 193 static void 194 active_retire(struct i915_active *ref) 195 { 196 GEM_BUG_ON(!atomic_read(&ref->count)); 197 if (atomic_add_unless(&ref->count, -1, 1)) 198 return; 199 200 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) { 201 queue_work(system_unbound_wq, &ref->work); 202 return; 203 } 204 205 __active_retire(ref); 206 } 207 208 static inline struct dma_fence ** 209 __active_fence_slot(struct i915_active_fence *active) 210 { 211 return (struct dma_fence ** __force)&active->fence; 212 } 213 214 static inline bool 215 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 216 { 217 struct i915_active_fence *active = 218 container_of(cb, typeof(*active), cb); 219 220 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence; 221 } 222 223 static void 224 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 225 { 226 if (active_fence_cb(fence, cb)) 227 active_retire(container_of(cb, struct active_node, base.cb)->ref); 228 } 229 230 static void 231 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 232 { 233 if (active_fence_cb(fence, cb)) 234 active_retire(container_of(cb, struct i915_active, excl.cb)); 235 } 236 237 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx) 238 { 239 struct active_node *it; 240 241 GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */ 242 243 /* 244 * We track the most recently used timeline to skip a rbtree search 245 * for the common case, under typical loads we never need the rbtree 246 * at all. We can reuse the last slot if it is empty, that is 247 * after the previous activity has been retired, or if it matches the 248 * current timeline. 249 */ 250 it = READ_ONCE(ref->cache); 251 if (it) { 252 u64 cached = READ_ONCE(it->timeline); 253 254 /* Once claimed, this slot will only belong to this idx */ 255 if (cached == idx) 256 return it; 257 258 /* 259 * An unclaimed cache [.timeline=0] can only be claimed once. 260 * 261 * If the value is already non-zero, some other thread has 262 * claimed the cache and we know that is does not match our 263 * idx. If, and only if, the timeline is currently zero is it 264 * worth competing to claim it atomically for ourselves (for 265 * only the winner of that race will cmpxchg return the old 266 * value of 0). 267 */ 268 if (!cached && !cmpxchg64(&it->timeline, 0, idx)) 269 return it; 270 } 271 272 BUILD_BUG_ON(offsetof(typeof(*it), node)); 273 274 /* While active, the tree can only be built; not destroyed */ 275 GEM_BUG_ON(i915_active_is_idle(ref)); 276 277 it = fetch_node(ref->tree.rb_node); 278 while (it) { 279 if (it->timeline < idx) { 280 it = fetch_node(it->node.rb_right); 281 } else if (it->timeline > idx) { 282 it = fetch_node(it->node.rb_left); 283 } else { 284 WRITE_ONCE(ref->cache, it); 285 break; 286 } 287 } 288 289 /* NB: If the tree rotated beneath us, we may miss our target. */ 290 return it; 291 } 292 293 static struct i915_active_fence * 294 active_instance(struct i915_active *ref, u64 idx) 295 { 296 struct active_node *node; 297 struct rb_node **p, *parent; 298 299 node = __active_lookup(ref, idx); 300 if (likely(node)) 301 return &node->base; 302 303 spin_lock_irq(&ref->tree_lock); 304 GEM_BUG_ON(i915_active_is_idle(ref)); 305 306 parent = NULL; 307 p = &ref->tree.rb_node; 308 while (*p) { 309 parent = *p; 310 311 node = rb_entry(parent, struct active_node, node); 312 if (node->timeline == idx) 313 goto out; 314 315 if (node->timeline < idx) 316 p = &parent->rb_right; 317 else 318 p = &parent->rb_left; 319 } 320 321 /* 322 * XXX: We should preallocate this before i915_active_ref() is ever 323 * called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC. 324 */ 325 node = kmem_cache_alloc(global.slab_cache, GFP_ATOMIC); 326 if (!node) 327 goto out; 328 329 __i915_active_fence_init(&node->base, NULL, node_retire); 330 node->ref = ref; 331 node->timeline = idx; 332 333 rb_link_node(&node->node, parent, p); 334 rb_insert_color(&node->node, &ref->tree); 335 336 out: 337 WRITE_ONCE(ref->cache, node); 338 spin_unlock_irq(&ref->tree_lock); 339 340 return &node->base; 341 } 342 343 void __i915_active_init(struct i915_active *ref, 344 int (*active)(struct i915_active *ref), 345 void (*retire)(struct i915_active *ref), 346 unsigned long flags, 347 struct lock_class_key *mkey, 348 struct lock_class_key *wkey) 349 { 350 debug_active_init(ref); 351 352 ref->flags = flags; 353 ref->active = active; 354 ref->retire = retire; 355 356 spin_lock_init(&ref->tree_lock); 357 ref->tree = RB_ROOT; 358 ref->cache = NULL; 359 360 init_llist_head(&ref->preallocated_barriers); 361 atomic_set(&ref->count, 0); 362 __mutex_init(&ref->mutex, "i915_active", mkey); 363 __i915_active_fence_init(&ref->excl, NULL, excl_retire); 364 INIT_WORK(&ref->work, active_work); 365 #if IS_ENABLED(CONFIG_LOCKDEP) 366 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0); 367 #endif 368 } 369 370 static bool ____active_del_barrier(struct i915_active *ref, 371 struct active_node *node, 372 struct intel_engine_cs *engine) 373 374 { 375 struct llist_node *head = NULL, *tail = NULL; 376 struct llist_node *pos, *next; 377 378 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context); 379 380 /* 381 * Rebuild the llist excluding our node. We may perform this 382 * outside of the kernel_context timeline mutex and so someone 383 * else may be manipulating the engine->barrier_tasks, in 384 * which case either we or they will be upset :) 385 * 386 * A second __active_del_barrier() will report failure to claim 387 * the active_node and the caller will just shrug and know not to 388 * claim ownership of its node. 389 * 390 * A concurrent i915_request_add_active_barriers() will miss adding 391 * any of the tasks, but we will try again on the next -- and since 392 * we are actively using the barrier, we know that there will be 393 * at least another opportunity when we idle. 394 */ 395 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) { 396 if (node == barrier_from_ll(pos)) { 397 node = NULL; 398 continue; 399 } 400 401 pos->next = head; 402 head = pos; 403 if (!tail) 404 tail = pos; 405 } 406 if (head) 407 llist_add_batch(head, tail, &engine->barrier_tasks); 408 409 return !node; 410 } 411 412 static bool 413 __active_del_barrier(struct i915_active *ref, struct active_node *node) 414 { 415 return ____active_del_barrier(ref, node, barrier_to_engine(node)); 416 } 417 418 static bool 419 replace_barrier(struct i915_active *ref, struct i915_active_fence *active) 420 { 421 if (!is_barrier(active)) /* proto-node used by our idle barrier? */ 422 return false; 423 424 /* 425 * This request is on the kernel_context timeline, and so 426 * we can use it to substitute for the pending idle-barrer 427 * request that we want to emit on the kernel_context. 428 */ 429 __active_del_barrier(ref, node_from_active(active)); 430 return true; 431 } 432 433 int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) 434 { 435 struct i915_active_fence *active; 436 int err; 437 438 /* Prevent reaping in case we malloc/wait while building the tree */ 439 err = i915_active_acquire(ref); 440 if (err) 441 return err; 442 443 active = active_instance(ref, idx); 444 if (!active) { 445 err = -ENOMEM; 446 goto out; 447 } 448 449 if (replace_barrier(ref, active)) { 450 RCU_INIT_POINTER(active->fence, NULL); 451 atomic_dec(&ref->count); 452 } 453 if (!__i915_active_fence_set(active, fence)) 454 __i915_active_acquire(ref); 455 456 out: 457 i915_active_release(ref); 458 return err; 459 } 460 461 static struct dma_fence * 462 __i915_active_set_fence(struct i915_active *ref, 463 struct i915_active_fence *active, 464 struct dma_fence *fence) 465 { 466 struct dma_fence *prev; 467 468 if (replace_barrier(ref, active)) { 469 RCU_INIT_POINTER(active->fence, fence); 470 return NULL; 471 } 472 473 rcu_read_lock(); 474 prev = __i915_active_fence_set(active, fence); 475 if (prev) 476 prev = dma_fence_get_rcu(prev); 477 else 478 __i915_active_acquire(ref); 479 rcu_read_unlock(); 480 481 return prev; 482 } 483 484 static struct i915_active_fence * 485 __active_fence(struct i915_active *ref, u64 idx) 486 { 487 struct active_node *it; 488 489 it = __active_lookup(ref, idx); 490 if (unlikely(!it)) { /* Contention with parallel tree builders! */ 491 spin_lock_irq(&ref->tree_lock); 492 it = __active_lookup(ref, idx); 493 spin_unlock_irq(&ref->tree_lock); 494 } 495 GEM_BUG_ON(!it); /* slot must be preallocated */ 496 497 return &it->base; 498 } 499 500 struct dma_fence * 501 __i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) 502 { 503 /* Only valid while active, see i915_active_acquire_for_context() */ 504 return __i915_active_set_fence(ref, __active_fence(ref, idx), fence); 505 } 506 507 struct dma_fence * 508 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) 509 { 510 /* We expect the caller to manage the exclusive timeline ordering */ 511 return __i915_active_set_fence(ref, &ref->excl, f); 512 } 513 514 bool i915_active_acquire_if_busy(struct i915_active *ref) 515 { 516 debug_active_assert(ref); 517 return atomic_add_unless(&ref->count, 1, 0); 518 } 519 520 static void __i915_active_activate(struct i915_active *ref) 521 { 522 spin_lock_irq(&ref->tree_lock); /* __active_retire() */ 523 if (!atomic_fetch_inc(&ref->count)) 524 debug_active_activate(ref); 525 spin_unlock_irq(&ref->tree_lock); 526 } 527 528 int i915_active_acquire(struct i915_active *ref) 529 { 530 int err; 531 532 if (i915_active_acquire_if_busy(ref)) 533 return 0; 534 535 if (!ref->active) { 536 __i915_active_activate(ref); 537 return 0; 538 } 539 540 err = mutex_lock_interruptible(&ref->mutex); 541 if (err) 542 return err; 543 544 if (likely(!i915_active_acquire_if_busy(ref))) { 545 err = ref->active(ref); 546 if (!err) 547 __i915_active_activate(ref); 548 } 549 550 mutex_unlock(&ref->mutex); 551 552 return err; 553 } 554 555 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx) 556 { 557 struct i915_active_fence *active; 558 int err; 559 560 err = i915_active_acquire(ref); 561 if (err) 562 return err; 563 564 active = active_instance(ref, idx); 565 if (!active) { 566 i915_active_release(ref); 567 return -ENOMEM; 568 } 569 570 return 0; /* return with active ref */ 571 } 572 573 void i915_active_release(struct i915_active *ref) 574 { 575 debug_active_assert(ref); 576 active_retire(ref); 577 } 578 579 static void enable_signaling(struct i915_active_fence *active) 580 { 581 struct dma_fence *fence; 582 583 if (unlikely(is_barrier(active))) 584 return; 585 586 fence = i915_active_fence_get(active); 587 if (!fence) 588 return; 589 590 dma_fence_enable_sw_signaling(fence); 591 dma_fence_put(fence); 592 } 593 594 static int flush_barrier(struct active_node *it) 595 { 596 struct intel_engine_cs *engine; 597 598 if (likely(!is_barrier(&it->base))) 599 return 0; 600 601 engine = __barrier_to_engine(it); 602 smp_rmb(); /* serialise with add_active_barriers */ 603 if (!is_barrier(&it->base)) 604 return 0; 605 606 return intel_engine_flush_barriers(engine); 607 } 608 609 static int flush_lazy_signals(struct i915_active *ref) 610 { 611 struct active_node *it, *n; 612 int err = 0; 613 614 enable_signaling(&ref->excl); 615 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 616 err = flush_barrier(it); /* unconnected idle barrier? */ 617 if (err) 618 break; 619 620 enable_signaling(&it->base); 621 } 622 623 return err; 624 } 625 626 int __i915_active_wait(struct i915_active *ref, int state) 627 { 628 might_sleep(); 629 630 /* Any fence added after the wait begins will not be auto-signaled */ 631 if (i915_active_acquire_if_busy(ref)) { 632 int err; 633 634 err = flush_lazy_signals(ref); 635 i915_active_release(ref); 636 if (err) 637 return err; 638 639 if (___wait_var_event(ref, i915_active_is_idle(ref), 640 state, 0, 0, schedule())) 641 return -EINTR; 642 } 643 644 /* 645 * After the wait is complete, the caller may free the active. 646 * We have to flush any concurrent retirement before returning. 647 */ 648 flush_work(&ref->work); 649 return 0; 650 } 651 652 static int __await_active(struct i915_active_fence *active, 653 int (*fn)(void *arg, struct dma_fence *fence), 654 void *arg) 655 { 656 struct dma_fence *fence; 657 658 if (is_barrier(active)) /* XXX flush the barrier? */ 659 return 0; 660 661 fence = i915_active_fence_get(active); 662 if (fence) { 663 int err; 664 665 err = fn(arg, fence); 666 dma_fence_put(fence); 667 if (err < 0) 668 return err; 669 } 670 671 return 0; 672 } 673 674 struct wait_barrier { 675 struct wait_queue_entry base; 676 struct i915_active *ref; 677 }; 678 679 static int 680 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key) 681 { 682 struct wait_barrier *wb = container_of(wq, typeof(*wb), base); 683 684 if (i915_active_is_idle(wb->ref)) { 685 list_del(&wq->entry); 686 i915_sw_fence_complete(wq->private); 687 kfree(wq); 688 } 689 690 return 0; 691 } 692 693 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence) 694 { 695 struct wait_barrier *wb; 696 697 wb = kmalloc(sizeof(*wb), GFP_KERNEL); 698 if (unlikely(!wb)) 699 return -ENOMEM; 700 701 GEM_BUG_ON(i915_active_is_idle(ref)); 702 if (!i915_sw_fence_await(fence)) { 703 kfree(wb); 704 return -EINVAL; 705 } 706 707 wb->base.flags = 0; 708 wb->base.func = barrier_wake; 709 wb->base.private = fence; 710 wb->ref = ref; 711 712 add_wait_queue(__var_waitqueue(ref), &wb->base); 713 return 0; 714 } 715 716 static int await_active(struct i915_active *ref, 717 unsigned int flags, 718 int (*fn)(void *arg, struct dma_fence *fence), 719 void *arg, struct i915_sw_fence *barrier) 720 { 721 int err = 0; 722 723 if (!i915_active_acquire_if_busy(ref)) 724 return 0; 725 726 if (flags & I915_ACTIVE_AWAIT_EXCL && 727 rcu_access_pointer(ref->excl.fence)) { 728 err = __await_active(&ref->excl, fn, arg); 729 if (err) 730 goto out; 731 } 732 733 if (flags & I915_ACTIVE_AWAIT_ACTIVE) { 734 struct active_node *it, *n; 735 736 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 737 err = __await_active(&it->base, fn, arg); 738 if (err) 739 goto out; 740 } 741 } 742 743 if (flags & I915_ACTIVE_AWAIT_BARRIER) { 744 err = flush_lazy_signals(ref); 745 if (err) 746 goto out; 747 748 err = __await_barrier(ref, barrier); 749 if (err) 750 goto out; 751 } 752 753 out: 754 i915_active_release(ref); 755 return err; 756 } 757 758 static int rq_await_fence(void *arg, struct dma_fence *fence) 759 { 760 return i915_request_await_dma_fence(arg, fence); 761 } 762 763 int i915_request_await_active(struct i915_request *rq, 764 struct i915_active *ref, 765 unsigned int flags) 766 { 767 return await_active(ref, flags, rq_await_fence, rq, &rq->submit); 768 } 769 770 static int sw_await_fence(void *arg, struct dma_fence *fence) 771 { 772 return i915_sw_fence_await_dma_fence(arg, fence, 0, 773 GFP_NOWAIT | __GFP_NOWARN); 774 } 775 776 int i915_sw_fence_await_active(struct i915_sw_fence *fence, 777 struct i915_active *ref, 778 unsigned int flags) 779 { 780 return await_active(ref, flags, sw_await_fence, fence, fence); 781 } 782 783 void i915_active_fini(struct i915_active *ref) 784 { 785 debug_active_fini(ref); 786 GEM_BUG_ON(atomic_read(&ref->count)); 787 GEM_BUG_ON(work_pending(&ref->work)); 788 mutex_destroy(&ref->mutex); 789 790 if (ref->cache) 791 kmem_cache_free(global.slab_cache, ref->cache); 792 } 793 794 static inline bool is_idle_barrier(struct active_node *node, u64 idx) 795 { 796 return node->timeline == idx && !i915_active_fence_isset(&node->base); 797 } 798 799 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) 800 { 801 struct rb_node *prev, *p; 802 803 if (RB_EMPTY_ROOT(&ref->tree)) 804 return NULL; 805 806 GEM_BUG_ON(i915_active_is_idle(ref)); 807 808 /* 809 * Try to reuse any existing barrier nodes already allocated for this 810 * i915_active, due to overlapping active phases there is likely a 811 * node kept alive (as we reuse before parking). We prefer to reuse 812 * completely idle barriers (less hassle in manipulating the llists), 813 * but otherwise any will do. 814 */ 815 if (ref->cache && is_idle_barrier(ref->cache, idx)) { 816 p = &ref->cache->node; 817 goto match; 818 } 819 820 prev = NULL; 821 p = ref->tree.rb_node; 822 while (p) { 823 struct active_node *node = 824 rb_entry(p, struct active_node, node); 825 826 if (is_idle_barrier(node, idx)) 827 goto match; 828 829 prev = p; 830 if (node->timeline < idx) 831 p = READ_ONCE(p->rb_right); 832 else 833 p = READ_ONCE(p->rb_left); 834 } 835 836 /* 837 * No quick match, but we did find the leftmost rb_node for the 838 * kernel_context. Walk the rb_tree in-order to see if there were 839 * any idle-barriers on this timeline that we missed, or just use 840 * the first pending barrier. 841 */ 842 for (p = prev; p; p = rb_next(p)) { 843 struct active_node *node = 844 rb_entry(p, struct active_node, node); 845 struct intel_engine_cs *engine; 846 847 if (node->timeline > idx) 848 break; 849 850 if (node->timeline < idx) 851 continue; 852 853 if (is_idle_barrier(node, idx)) 854 goto match; 855 856 /* 857 * The list of pending barriers is protected by the 858 * kernel_context timeline, which notably we do not hold 859 * here. i915_request_add_active_barriers() may consume 860 * the barrier before we claim it, so we have to check 861 * for success. 862 */ 863 engine = __barrier_to_engine(node); 864 smp_rmb(); /* serialise with add_active_barriers */ 865 if (is_barrier(&node->base) && 866 ____active_del_barrier(ref, node, engine)) 867 goto match; 868 } 869 870 return NULL; 871 872 match: 873 spin_lock_irq(&ref->tree_lock); 874 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */ 875 if (p == &ref->cache->node) 876 WRITE_ONCE(ref->cache, NULL); 877 spin_unlock_irq(&ref->tree_lock); 878 879 return rb_entry(p, struct active_node, node); 880 } 881 882 int i915_active_acquire_preallocate_barrier(struct i915_active *ref, 883 struct intel_engine_cs *engine) 884 { 885 intel_engine_mask_t tmp, mask = engine->mask; 886 struct llist_node *first = NULL, *last = NULL; 887 struct intel_gt *gt = engine->gt; 888 889 GEM_BUG_ON(i915_active_is_idle(ref)); 890 891 /* Wait until the previous preallocation is completed */ 892 while (!llist_empty(&ref->preallocated_barriers)) 893 cond_resched(); 894 895 /* 896 * Preallocate a node for each physical engine supporting the target 897 * engine (remember virtual engines have more than one sibling). 898 * We can then use the preallocated nodes in 899 * i915_active_acquire_barrier() 900 */ 901 GEM_BUG_ON(!mask); 902 for_each_engine_masked(engine, gt, mask, tmp) { 903 u64 idx = engine->kernel_context->timeline->fence_context; 904 struct llist_node *prev = first; 905 struct active_node *node; 906 907 rcu_read_lock(); 908 node = reuse_idle_barrier(ref, idx); 909 rcu_read_unlock(); 910 if (!node) { 911 node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL); 912 if (!node) 913 goto unwind; 914 915 RCU_INIT_POINTER(node->base.fence, NULL); 916 node->base.cb.func = node_retire; 917 node->timeline = idx; 918 node->ref = ref; 919 } 920 921 if (!i915_active_fence_isset(&node->base)) { 922 /* 923 * Mark this as being *our* unconnected proto-node. 924 * 925 * Since this node is not in any list, and we have 926 * decoupled it from the rbtree, we can reuse the 927 * request to indicate this is an idle-barrier node 928 * and then we can use the rb_node and list pointers 929 * for our tracking of the pending barrier. 930 */ 931 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN)); 932 node->base.cb.node.prev = (void *)engine; 933 __i915_active_acquire(ref); 934 } 935 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN)); 936 937 GEM_BUG_ON(barrier_to_engine(node) != engine); 938 first = barrier_to_ll(node); 939 first->next = prev; 940 if (!last) 941 last = first; 942 intel_engine_pm_get(engine); 943 } 944 945 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers)); 946 llist_add_batch(first, last, &ref->preallocated_barriers); 947 948 return 0; 949 950 unwind: 951 while (first) { 952 struct active_node *node = barrier_from_ll(first); 953 954 first = first->next; 955 956 atomic_dec(&ref->count); 957 intel_engine_pm_put(barrier_to_engine(node)); 958 959 kmem_cache_free(global.slab_cache, node); 960 } 961 return -ENOMEM; 962 } 963 964 void i915_active_acquire_barrier(struct i915_active *ref) 965 { 966 struct llist_node *pos, *next; 967 unsigned long flags; 968 969 GEM_BUG_ON(i915_active_is_idle(ref)); 970 971 /* 972 * Transfer the list of preallocated barriers into the 973 * i915_active rbtree, but only as proto-nodes. They will be 974 * populated by i915_request_add_active_barriers() to point to the 975 * request that will eventually release them. 976 */ 977 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) { 978 struct active_node *node = barrier_from_ll(pos); 979 struct intel_engine_cs *engine = barrier_to_engine(node); 980 struct rb_node **p, *parent; 981 982 spin_lock_irqsave_nested(&ref->tree_lock, flags, 983 SINGLE_DEPTH_NESTING); 984 parent = NULL; 985 p = &ref->tree.rb_node; 986 while (*p) { 987 struct active_node *it; 988 989 parent = *p; 990 991 it = rb_entry(parent, struct active_node, node); 992 if (it->timeline < node->timeline) 993 p = &parent->rb_right; 994 else 995 p = &parent->rb_left; 996 } 997 rb_link_node(&node->node, parent, p); 998 rb_insert_color(&node->node, &ref->tree); 999 spin_unlock_irqrestore(&ref->tree_lock, flags); 1000 1001 GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); 1002 llist_add(barrier_to_ll(node), &engine->barrier_tasks); 1003 intel_engine_pm_put_delay(engine, 1); 1004 } 1005 } 1006 1007 static struct dma_fence **ll_to_fence_slot(struct llist_node *node) 1008 { 1009 return __active_fence_slot(&barrier_from_ll(node)->base); 1010 } 1011 1012 void i915_request_add_active_barriers(struct i915_request *rq) 1013 { 1014 struct intel_engine_cs *engine = rq->engine; 1015 struct llist_node *node, *next; 1016 unsigned long flags; 1017 1018 GEM_BUG_ON(!intel_context_is_barrier(rq->context)); 1019 GEM_BUG_ON(intel_engine_is_virtual(engine)); 1020 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline); 1021 1022 node = llist_del_all(&engine->barrier_tasks); 1023 if (!node) 1024 return; 1025 /* 1026 * Attach the list of proto-fences to the in-flight request such 1027 * that the parent i915_active will be released when this request 1028 * is retired. 1029 */ 1030 spin_lock_irqsave(&rq->lock, flags); 1031 llist_for_each_safe(node, next, node) { 1032 /* serialise with reuse_idle_barrier */ 1033 smp_store_mb(*ll_to_fence_slot(node), &rq->fence); 1034 list_add_tail((struct list_head *)node, &rq->fence.cb_list); 1035 } 1036 spin_unlock_irqrestore(&rq->lock, flags); 1037 } 1038 1039 /* 1040 * __i915_active_fence_set: Update the last active fence along its timeline 1041 * @active: the active tracker 1042 * @fence: the new fence (under construction) 1043 * 1044 * Records the new @fence as the last active fence along its timeline in 1045 * this active tracker, moving the tracking callbacks from the previous 1046 * fence onto this one. Returns the previous fence (if not already completed), 1047 * which the caller must ensure is executed before the new fence. To ensure 1048 * that the order of fences within the timeline of the i915_active_fence is 1049 * understood, it should be locked by the caller. 1050 */ 1051 struct dma_fence * 1052 __i915_active_fence_set(struct i915_active_fence *active, 1053 struct dma_fence *fence) 1054 { 1055 struct dma_fence *prev; 1056 unsigned long flags; 1057 1058 if (fence == rcu_access_pointer(active->fence)) 1059 return fence; 1060 1061 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)); 1062 1063 /* 1064 * Consider that we have two threads arriving (A and B), with 1065 * C already resident as the active->fence. 1066 * 1067 * A does the xchg first, and so it sees C or NULL depending 1068 * on the timing of the interrupt handler. If it is NULL, the 1069 * previous fence must have been signaled and we know that 1070 * we are first on the timeline. If it is still present, 1071 * we acquire the lock on that fence and serialise with the interrupt 1072 * handler, in the process removing it from any future interrupt 1073 * callback. A will then wait on C before executing (if present). 1074 * 1075 * As B is second, it sees A as the previous fence and so waits for 1076 * it to complete its transition and takes over the occupancy for 1077 * itself -- remembering that it needs to wait on A before executing. 1078 * 1079 * Note the strong ordering of the timeline also provides consistent 1080 * nesting rules for the fence->lock; the inner lock is always the 1081 * older lock. 1082 */ 1083 spin_lock_irqsave(fence->lock, flags); 1084 prev = xchg(__active_fence_slot(active), fence); 1085 if (prev) { 1086 GEM_BUG_ON(prev == fence); 1087 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); 1088 __list_del_entry(&active->cb.node); 1089 spin_unlock(prev->lock); /* serialise with prev->cb_list */ 1090 } 1091 list_add_tail(&active->cb.node, &fence->cb_list); 1092 spin_unlock_irqrestore(fence->lock, flags); 1093 1094 return prev; 1095 } 1096 1097 int i915_active_fence_set(struct i915_active_fence *active, 1098 struct i915_request *rq) 1099 { 1100 struct dma_fence *fence; 1101 int err = 0; 1102 1103 /* Must maintain timeline ordering wrt previous active requests */ 1104 rcu_read_lock(); 1105 fence = __i915_active_fence_set(active, &rq->fence); 1106 if (fence) /* but the previous fence may not belong to that timeline! */ 1107 fence = dma_fence_get_rcu(fence); 1108 rcu_read_unlock(); 1109 if (fence) { 1110 err = i915_request_await_dma_fence(rq, fence); 1111 dma_fence_put(fence); 1112 } 1113 1114 return err; 1115 } 1116 1117 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb) 1118 { 1119 active_fence_cb(fence, cb); 1120 } 1121 1122 struct auto_active { 1123 struct i915_active base; 1124 struct kref ref; 1125 }; 1126 1127 struct i915_active *i915_active_get(struct i915_active *ref) 1128 { 1129 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1130 1131 kref_get(&aa->ref); 1132 return &aa->base; 1133 } 1134 1135 static void auto_release(struct kref *ref) 1136 { 1137 struct auto_active *aa = container_of(ref, typeof(*aa), ref); 1138 1139 i915_active_fini(&aa->base); 1140 kfree(aa); 1141 } 1142 1143 void i915_active_put(struct i915_active *ref) 1144 { 1145 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1146 1147 kref_put(&aa->ref, auto_release); 1148 } 1149 1150 static int auto_active(struct i915_active *ref) 1151 { 1152 i915_active_get(ref); 1153 return 0; 1154 } 1155 1156 static void auto_retire(struct i915_active *ref) 1157 { 1158 i915_active_put(ref); 1159 } 1160 1161 struct i915_active *i915_active_create(void) 1162 { 1163 struct auto_active *aa; 1164 1165 aa = kmalloc(sizeof(*aa), GFP_KERNEL); 1166 if (!aa) 1167 return NULL; 1168 1169 kref_init(&aa->ref); 1170 i915_active_init(&aa->base, auto_active, auto_retire, 0); 1171 1172 return &aa->base; 1173 } 1174 1175 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1176 #include "selftests/i915_active.c" 1177 #endif 1178 1179 static void i915_global_active_shrink(void) 1180 { 1181 kmem_cache_shrink(global.slab_cache); 1182 } 1183 1184 static void i915_global_active_exit(void) 1185 { 1186 kmem_cache_destroy(global.slab_cache); 1187 } 1188 1189 static struct i915_global_active global = { { 1190 .shrink = i915_global_active_shrink, 1191 .exit = i915_global_active_exit, 1192 } }; 1193 1194 int __init i915_global_active_init(void) 1195 { 1196 global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); 1197 if (!global.slab_cache) 1198 return -ENOMEM; 1199 1200 i915_global_register(&global.base); 1201 return 0; 1202 } 1203