1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2019 Intel Corporation 5 */ 6 7 #include <linux/debugobjects.h> 8 9 #include "gt/intel_context.h" 10 #include "gt/intel_engine_heartbeat.h" 11 #include "gt/intel_engine_pm.h" 12 #include "gt/intel_ring.h" 13 14 #include "i915_drv.h" 15 #include "i915_active.h" 16 #include "i915_globals.h" 17 18 /* 19 * Active refs memory management 20 * 21 * To be more economical with memory, we reap all the i915_active trees as 22 * they idle (when we know the active requests are inactive) and allocate the 23 * nodes from a local slab cache to hopefully reduce the fragmentation. 24 */ 25 static struct i915_global_active { 26 struct i915_global base; 27 struct kmem_cache *slab_cache; 28 } global; 29 30 struct active_node { 31 struct rb_node node; 32 struct i915_active_fence base; 33 struct i915_active *ref; 34 u64 timeline; 35 }; 36 37 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node) 38 39 static inline struct active_node * 40 node_from_active(struct i915_active_fence *active) 41 { 42 return container_of(active, struct active_node, base); 43 } 44 45 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers) 46 47 static inline bool is_barrier(const struct i915_active_fence *active) 48 { 49 return IS_ERR(rcu_access_pointer(active->fence)); 50 } 51 52 static inline struct llist_node *barrier_to_ll(struct active_node *node) 53 { 54 GEM_BUG_ON(!is_barrier(&node->base)); 55 return (struct llist_node *)&node->base.cb.node; 56 } 57 58 static inline struct intel_engine_cs * 59 __barrier_to_engine(struct active_node *node) 60 { 61 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev); 62 } 63 64 static inline struct intel_engine_cs * 65 barrier_to_engine(struct active_node *node) 66 { 67 GEM_BUG_ON(!is_barrier(&node->base)); 68 return __barrier_to_engine(node); 69 } 70 71 static inline struct active_node *barrier_from_ll(struct llist_node *x) 72 { 73 return container_of((struct list_head *)x, 74 struct active_node, base.cb.node); 75 } 76 77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS) 78 79 static void *active_debug_hint(void *addr) 80 { 81 struct i915_active *ref = addr; 82 83 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref; 84 } 85 86 static const struct debug_obj_descr active_debug_desc = { 87 .name = "i915_active", 88 .debug_hint = active_debug_hint, 89 }; 90 91 static void debug_active_init(struct i915_active *ref) 92 { 93 debug_object_init(ref, &active_debug_desc); 94 } 95 96 static void debug_active_activate(struct i915_active *ref) 97 { 98 lockdep_assert_held(&ref->tree_lock); 99 if (!atomic_read(&ref->count)) /* before the first inc */ 100 debug_object_activate(ref, &active_debug_desc); 101 } 102 103 static void debug_active_deactivate(struct i915_active *ref) 104 { 105 lockdep_assert_held(&ref->tree_lock); 106 if (!atomic_read(&ref->count)) /* after the last dec */ 107 debug_object_deactivate(ref, &active_debug_desc); 108 } 109 110 static void debug_active_fini(struct i915_active *ref) 111 { 112 debug_object_free(ref, &active_debug_desc); 113 } 114 115 static void debug_active_assert(struct i915_active *ref) 116 { 117 debug_object_assert_init(ref, &active_debug_desc); 118 } 119 120 #else 121 122 static inline void debug_active_init(struct i915_active *ref) { } 123 static inline void debug_active_activate(struct i915_active *ref) { } 124 static inline void debug_active_deactivate(struct i915_active *ref) { } 125 static inline void debug_active_fini(struct i915_active *ref) { } 126 static inline void debug_active_assert(struct i915_active *ref) { } 127 128 #endif 129 130 static void 131 __active_retire(struct i915_active *ref) 132 { 133 struct rb_root root = RB_ROOT; 134 struct active_node *it, *n; 135 unsigned long flags; 136 137 GEM_BUG_ON(i915_active_is_idle(ref)); 138 139 /* return the unused nodes to our slabcache -- flushing the allocator */ 140 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags)) 141 return; 142 143 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence)); 144 debug_active_deactivate(ref); 145 146 /* Even if we have not used the cache, we may still have a barrier */ 147 if (!ref->cache) 148 ref->cache = fetch_node(ref->tree.rb_node); 149 150 /* Keep the MRU cached node for reuse */ 151 if (ref->cache) { 152 /* Discard all other nodes in the tree */ 153 rb_erase(&ref->cache->node, &ref->tree); 154 root = ref->tree; 155 156 /* Rebuild the tree with only the cached node */ 157 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node); 158 rb_insert_color(&ref->cache->node, &ref->tree); 159 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node); 160 161 /* Make the cached node available for reuse with any timeline */ 162 if (IS_ENABLED(CONFIG_64BIT)) 163 ref->cache->timeline = 0; /* needs cmpxchg(u64) */ 164 } 165 166 spin_unlock_irqrestore(&ref->tree_lock, flags); 167 168 /* After the final retire, the entire struct may be freed */ 169 if (ref->retire) 170 ref->retire(ref); 171 172 /* ... except if you wait on it, you must manage your own references! */ 173 wake_up_var(ref); 174 175 /* Finally free the discarded timeline tree */ 176 rbtree_postorder_for_each_entry_safe(it, n, &root, node) { 177 GEM_BUG_ON(i915_active_fence_isset(&it->base)); 178 kmem_cache_free(global.slab_cache, it); 179 } 180 } 181 182 static void 183 active_work(struct work_struct *wrk) 184 { 185 struct i915_active *ref = container_of(wrk, typeof(*ref), work); 186 187 GEM_BUG_ON(!atomic_read(&ref->count)); 188 if (atomic_add_unless(&ref->count, -1, 1)) 189 return; 190 191 __active_retire(ref); 192 } 193 194 static void 195 active_retire(struct i915_active *ref) 196 { 197 GEM_BUG_ON(!atomic_read(&ref->count)); 198 if (atomic_add_unless(&ref->count, -1, 1)) 199 return; 200 201 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) { 202 queue_work(system_unbound_wq, &ref->work); 203 return; 204 } 205 206 __active_retire(ref); 207 } 208 209 static inline struct dma_fence ** 210 __active_fence_slot(struct i915_active_fence *active) 211 { 212 return (struct dma_fence ** __force)&active->fence; 213 } 214 215 static inline bool 216 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 217 { 218 struct i915_active_fence *active = 219 container_of(cb, typeof(*active), cb); 220 221 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence; 222 } 223 224 static void 225 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 226 { 227 if (active_fence_cb(fence, cb)) 228 active_retire(container_of(cb, struct active_node, base.cb)->ref); 229 } 230 231 static void 232 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 233 { 234 if (active_fence_cb(fence, cb)) 235 active_retire(container_of(cb, struct i915_active, excl.cb)); 236 } 237 238 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx) 239 { 240 struct active_node *it; 241 242 GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */ 243 244 /* 245 * We track the most recently used timeline to skip a rbtree search 246 * for the common case, under typical loads we never need the rbtree 247 * at all. We can reuse the last slot if it is empty, that is 248 * after the previous activity has been retired, or if it matches the 249 * current timeline. 250 */ 251 it = READ_ONCE(ref->cache); 252 if (it) { 253 u64 cached = READ_ONCE(it->timeline); 254 255 /* Once claimed, this slot will only belong to this idx */ 256 if (cached == idx) 257 return it; 258 259 #ifdef CONFIG_64BIT /* for cmpxchg(u64) */ 260 /* 261 * An unclaimed cache [.timeline=0] can only be claimed once. 262 * 263 * If the value is already non-zero, some other thread has 264 * claimed the cache and we know that is does not match our 265 * idx. If, and only if, the timeline is currently zero is it 266 * worth competing to claim it atomically for ourselves (for 267 * only the winner of that race will cmpxchg return the old 268 * value of 0). 269 */ 270 if (!cached && !cmpxchg(&it->timeline, 0, idx)) 271 return it; 272 #endif 273 } 274 275 BUILD_BUG_ON(offsetof(typeof(*it), node)); 276 277 /* While active, the tree can only be built; not destroyed */ 278 GEM_BUG_ON(i915_active_is_idle(ref)); 279 280 it = fetch_node(ref->tree.rb_node); 281 while (it) { 282 if (it->timeline < idx) { 283 it = fetch_node(it->node.rb_right); 284 } else if (it->timeline > idx) { 285 it = fetch_node(it->node.rb_left); 286 } else { 287 WRITE_ONCE(ref->cache, it); 288 break; 289 } 290 } 291 292 /* NB: If the tree rotated beneath us, we may miss our target. */ 293 return it; 294 } 295 296 static struct i915_active_fence * 297 active_instance(struct i915_active *ref, u64 idx) 298 { 299 struct active_node *node, *prealloc; 300 struct rb_node **p, *parent; 301 302 node = __active_lookup(ref, idx); 303 if (likely(node)) 304 return &node->base; 305 306 /* Preallocate a replacement, just in case */ 307 prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL); 308 if (!prealloc) 309 return NULL; 310 311 spin_lock_irq(&ref->tree_lock); 312 GEM_BUG_ON(i915_active_is_idle(ref)); 313 314 parent = NULL; 315 p = &ref->tree.rb_node; 316 while (*p) { 317 parent = *p; 318 319 node = rb_entry(parent, struct active_node, node); 320 if (node->timeline == idx) { 321 kmem_cache_free(global.slab_cache, prealloc); 322 goto out; 323 } 324 325 if (node->timeline < idx) 326 p = &parent->rb_right; 327 else 328 p = &parent->rb_left; 329 } 330 331 node = prealloc; 332 __i915_active_fence_init(&node->base, NULL, node_retire); 333 node->ref = ref; 334 node->timeline = idx; 335 336 rb_link_node(&node->node, parent, p); 337 rb_insert_color(&node->node, &ref->tree); 338 339 out: 340 WRITE_ONCE(ref->cache, node); 341 spin_unlock_irq(&ref->tree_lock); 342 343 return &node->base; 344 } 345 346 void __i915_active_init(struct i915_active *ref, 347 int (*active)(struct i915_active *ref), 348 void (*retire)(struct i915_active *ref), 349 struct lock_class_key *mkey, 350 struct lock_class_key *wkey) 351 { 352 unsigned long bits; 353 354 debug_active_init(ref); 355 356 ref->flags = 0; 357 ref->active = active; 358 ref->retire = ptr_unpack_bits(retire, &bits, 2); 359 if (bits & I915_ACTIVE_MAY_SLEEP) 360 ref->flags |= I915_ACTIVE_RETIRE_SLEEPS; 361 362 spin_lock_init(&ref->tree_lock); 363 ref->tree = RB_ROOT; 364 ref->cache = NULL; 365 366 init_llist_head(&ref->preallocated_barriers); 367 atomic_set(&ref->count, 0); 368 __mutex_init(&ref->mutex, "i915_active", mkey); 369 __i915_active_fence_init(&ref->excl, NULL, excl_retire); 370 INIT_WORK(&ref->work, active_work); 371 #if IS_ENABLED(CONFIG_LOCKDEP) 372 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0); 373 #endif 374 } 375 376 static bool ____active_del_barrier(struct i915_active *ref, 377 struct active_node *node, 378 struct intel_engine_cs *engine) 379 380 { 381 struct llist_node *head = NULL, *tail = NULL; 382 struct llist_node *pos, *next; 383 384 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context); 385 386 /* 387 * Rebuild the llist excluding our node. We may perform this 388 * outside of the kernel_context timeline mutex and so someone 389 * else may be manipulating the engine->barrier_tasks, in 390 * which case either we or they will be upset :) 391 * 392 * A second __active_del_barrier() will report failure to claim 393 * the active_node and the caller will just shrug and know not to 394 * claim ownership of its node. 395 * 396 * A concurrent i915_request_add_active_barriers() will miss adding 397 * any of the tasks, but we will try again on the next -- and since 398 * we are actively using the barrier, we know that there will be 399 * at least another opportunity when we idle. 400 */ 401 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) { 402 if (node == barrier_from_ll(pos)) { 403 node = NULL; 404 continue; 405 } 406 407 pos->next = head; 408 head = pos; 409 if (!tail) 410 tail = pos; 411 } 412 if (head) 413 llist_add_batch(head, tail, &engine->barrier_tasks); 414 415 return !node; 416 } 417 418 static bool 419 __active_del_barrier(struct i915_active *ref, struct active_node *node) 420 { 421 return ____active_del_barrier(ref, node, barrier_to_engine(node)); 422 } 423 424 static bool 425 replace_barrier(struct i915_active *ref, struct i915_active_fence *active) 426 { 427 if (!is_barrier(active)) /* proto-node used by our idle barrier? */ 428 return false; 429 430 /* 431 * This request is on the kernel_context timeline, and so 432 * we can use it to substitute for the pending idle-barrer 433 * request that we want to emit on the kernel_context. 434 */ 435 __active_del_barrier(ref, node_from_active(active)); 436 return true; 437 } 438 439 int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) 440 { 441 struct i915_active_fence *active; 442 int err; 443 444 /* Prevent reaping in case we malloc/wait while building the tree */ 445 err = i915_active_acquire(ref); 446 if (err) 447 return err; 448 449 active = active_instance(ref, idx); 450 if (!active) { 451 err = -ENOMEM; 452 goto out; 453 } 454 455 if (replace_barrier(ref, active)) { 456 RCU_INIT_POINTER(active->fence, NULL); 457 atomic_dec(&ref->count); 458 } 459 if (!__i915_active_fence_set(active, fence)) 460 __i915_active_acquire(ref); 461 462 out: 463 i915_active_release(ref); 464 return err; 465 } 466 467 static struct dma_fence * 468 __i915_active_set_fence(struct i915_active *ref, 469 struct i915_active_fence *active, 470 struct dma_fence *fence) 471 { 472 struct dma_fence *prev; 473 474 if (replace_barrier(ref, active)) { 475 RCU_INIT_POINTER(active->fence, fence); 476 return NULL; 477 } 478 479 rcu_read_lock(); 480 prev = __i915_active_fence_set(active, fence); 481 if (prev) 482 prev = dma_fence_get_rcu(prev); 483 else 484 __i915_active_acquire(ref); 485 rcu_read_unlock(); 486 487 return prev; 488 } 489 490 static struct i915_active_fence * 491 __active_fence(struct i915_active *ref, u64 idx) 492 { 493 struct active_node *it; 494 495 it = __active_lookup(ref, idx); 496 if (unlikely(!it)) { /* Contention with parallel tree builders! */ 497 spin_lock_irq(&ref->tree_lock); 498 it = __active_lookup(ref, idx); 499 spin_unlock_irq(&ref->tree_lock); 500 } 501 GEM_BUG_ON(!it); /* slot must be preallocated */ 502 503 return &it->base; 504 } 505 506 struct dma_fence * 507 __i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) 508 { 509 /* Only valid while active, see i915_active_acquire_for_context() */ 510 return __i915_active_set_fence(ref, __active_fence(ref, idx), fence); 511 } 512 513 struct dma_fence * 514 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) 515 { 516 /* We expect the caller to manage the exclusive timeline ordering */ 517 return __i915_active_set_fence(ref, &ref->excl, f); 518 } 519 520 bool i915_active_acquire_if_busy(struct i915_active *ref) 521 { 522 debug_active_assert(ref); 523 return atomic_add_unless(&ref->count, 1, 0); 524 } 525 526 static void __i915_active_activate(struct i915_active *ref) 527 { 528 spin_lock_irq(&ref->tree_lock); /* __active_retire() */ 529 if (!atomic_fetch_inc(&ref->count)) 530 debug_active_activate(ref); 531 spin_unlock_irq(&ref->tree_lock); 532 } 533 534 int i915_active_acquire(struct i915_active *ref) 535 { 536 int err; 537 538 if (i915_active_acquire_if_busy(ref)) 539 return 0; 540 541 if (!ref->active) { 542 __i915_active_activate(ref); 543 return 0; 544 } 545 546 err = mutex_lock_interruptible(&ref->mutex); 547 if (err) 548 return err; 549 550 if (likely(!i915_active_acquire_if_busy(ref))) { 551 err = ref->active(ref); 552 if (!err) 553 __i915_active_activate(ref); 554 } 555 556 mutex_unlock(&ref->mutex); 557 558 return err; 559 } 560 561 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx) 562 { 563 struct i915_active_fence *active; 564 int err; 565 566 err = i915_active_acquire(ref); 567 if (err) 568 return err; 569 570 active = active_instance(ref, idx); 571 if (!active) { 572 i915_active_release(ref); 573 return -ENOMEM; 574 } 575 576 return 0; /* return with active ref */ 577 } 578 579 void i915_active_release(struct i915_active *ref) 580 { 581 debug_active_assert(ref); 582 active_retire(ref); 583 } 584 585 static void enable_signaling(struct i915_active_fence *active) 586 { 587 struct dma_fence *fence; 588 589 if (unlikely(is_barrier(active))) 590 return; 591 592 fence = i915_active_fence_get(active); 593 if (!fence) 594 return; 595 596 dma_fence_enable_sw_signaling(fence); 597 dma_fence_put(fence); 598 } 599 600 static int flush_barrier(struct active_node *it) 601 { 602 struct intel_engine_cs *engine; 603 604 if (likely(!is_barrier(&it->base))) 605 return 0; 606 607 engine = __barrier_to_engine(it); 608 smp_rmb(); /* serialise with add_active_barriers */ 609 if (!is_barrier(&it->base)) 610 return 0; 611 612 return intel_engine_flush_barriers(engine); 613 } 614 615 static int flush_lazy_signals(struct i915_active *ref) 616 { 617 struct active_node *it, *n; 618 int err = 0; 619 620 enable_signaling(&ref->excl); 621 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 622 err = flush_barrier(it); /* unconnected idle barrier? */ 623 if (err) 624 break; 625 626 enable_signaling(&it->base); 627 } 628 629 return err; 630 } 631 632 int __i915_active_wait(struct i915_active *ref, int state) 633 { 634 int err; 635 636 might_sleep(); 637 638 if (!i915_active_acquire_if_busy(ref)) 639 return 0; 640 641 /* Any fence added after the wait begins will not be auto-signaled */ 642 err = flush_lazy_signals(ref); 643 i915_active_release(ref); 644 if (err) 645 return err; 646 647 if (!i915_active_is_idle(ref) && 648 ___wait_var_event(ref, i915_active_is_idle(ref), 649 state, 0, 0, schedule())) 650 return -EINTR; 651 652 flush_work(&ref->work); 653 return 0; 654 } 655 656 static int __await_active(struct i915_active_fence *active, 657 int (*fn)(void *arg, struct dma_fence *fence), 658 void *arg) 659 { 660 struct dma_fence *fence; 661 662 if (is_barrier(active)) /* XXX flush the barrier? */ 663 return 0; 664 665 fence = i915_active_fence_get(active); 666 if (fence) { 667 int err; 668 669 err = fn(arg, fence); 670 dma_fence_put(fence); 671 if (err < 0) 672 return err; 673 } 674 675 return 0; 676 } 677 678 struct wait_barrier { 679 struct wait_queue_entry base; 680 struct i915_active *ref; 681 }; 682 683 static int 684 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key) 685 { 686 struct wait_barrier *wb = container_of(wq, typeof(*wb), base); 687 688 if (i915_active_is_idle(wb->ref)) { 689 list_del(&wq->entry); 690 i915_sw_fence_complete(wq->private); 691 kfree(wq); 692 } 693 694 return 0; 695 } 696 697 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence) 698 { 699 struct wait_barrier *wb; 700 701 wb = kmalloc(sizeof(*wb), GFP_KERNEL); 702 if (unlikely(!wb)) 703 return -ENOMEM; 704 705 GEM_BUG_ON(i915_active_is_idle(ref)); 706 if (!i915_sw_fence_await(fence)) { 707 kfree(wb); 708 return -EINVAL; 709 } 710 711 wb->base.flags = 0; 712 wb->base.func = barrier_wake; 713 wb->base.private = fence; 714 wb->ref = ref; 715 716 add_wait_queue(__var_waitqueue(ref), &wb->base); 717 return 0; 718 } 719 720 static int await_active(struct i915_active *ref, 721 unsigned int flags, 722 int (*fn)(void *arg, struct dma_fence *fence), 723 void *arg, struct i915_sw_fence *barrier) 724 { 725 int err = 0; 726 727 if (!i915_active_acquire_if_busy(ref)) 728 return 0; 729 730 if (flags & I915_ACTIVE_AWAIT_EXCL && 731 rcu_access_pointer(ref->excl.fence)) { 732 err = __await_active(&ref->excl, fn, arg); 733 if (err) 734 goto out; 735 } 736 737 if (flags & I915_ACTIVE_AWAIT_ACTIVE) { 738 struct active_node *it, *n; 739 740 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 741 err = __await_active(&it->base, fn, arg); 742 if (err) 743 goto out; 744 } 745 } 746 747 if (flags & I915_ACTIVE_AWAIT_BARRIER) { 748 err = flush_lazy_signals(ref); 749 if (err) 750 goto out; 751 752 err = __await_barrier(ref, barrier); 753 if (err) 754 goto out; 755 } 756 757 out: 758 i915_active_release(ref); 759 return err; 760 } 761 762 static int rq_await_fence(void *arg, struct dma_fence *fence) 763 { 764 return i915_request_await_dma_fence(arg, fence); 765 } 766 767 int i915_request_await_active(struct i915_request *rq, 768 struct i915_active *ref, 769 unsigned int flags) 770 { 771 return await_active(ref, flags, rq_await_fence, rq, &rq->submit); 772 } 773 774 static int sw_await_fence(void *arg, struct dma_fence *fence) 775 { 776 return i915_sw_fence_await_dma_fence(arg, fence, 0, 777 GFP_NOWAIT | __GFP_NOWARN); 778 } 779 780 int i915_sw_fence_await_active(struct i915_sw_fence *fence, 781 struct i915_active *ref, 782 unsigned int flags) 783 { 784 return await_active(ref, flags, sw_await_fence, fence, fence); 785 } 786 787 void i915_active_fini(struct i915_active *ref) 788 { 789 debug_active_fini(ref); 790 GEM_BUG_ON(atomic_read(&ref->count)); 791 GEM_BUG_ON(work_pending(&ref->work)); 792 mutex_destroy(&ref->mutex); 793 794 if (ref->cache) 795 kmem_cache_free(global.slab_cache, ref->cache); 796 } 797 798 static inline bool is_idle_barrier(struct active_node *node, u64 idx) 799 { 800 return node->timeline == idx && !i915_active_fence_isset(&node->base); 801 } 802 803 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) 804 { 805 struct rb_node *prev, *p; 806 807 if (RB_EMPTY_ROOT(&ref->tree)) 808 return NULL; 809 810 GEM_BUG_ON(i915_active_is_idle(ref)); 811 812 /* 813 * Try to reuse any existing barrier nodes already allocated for this 814 * i915_active, due to overlapping active phases there is likely a 815 * node kept alive (as we reuse before parking). We prefer to reuse 816 * completely idle barriers (less hassle in manipulating the llists), 817 * but otherwise any will do. 818 */ 819 if (ref->cache && is_idle_barrier(ref->cache, idx)) { 820 p = &ref->cache->node; 821 goto match; 822 } 823 824 prev = NULL; 825 p = ref->tree.rb_node; 826 while (p) { 827 struct active_node *node = 828 rb_entry(p, struct active_node, node); 829 830 if (is_idle_barrier(node, idx)) 831 goto match; 832 833 prev = p; 834 if (node->timeline < idx) 835 p = READ_ONCE(p->rb_right); 836 else 837 p = READ_ONCE(p->rb_left); 838 } 839 840 /* 841 * No quick match, but we did find the leftmost rb_node for the 842 * kernel_context. Walk the rb_tree in-order to see if there were 843 * any idle-barriers on this timeline that we missed, or just use 844 * the first pending barrier. 845 */ 846 for (p = prev; p; p = rb_next(p)) { 847 struct active_node *node = 848 rb_entry(p, struct active_node, node); 849 struct intel_engine_cs *engine; 850 851 if (node->timeline > idx) 852 break; 853 854 if (node->timeline < idx) 855 continue; 856 857 if (is_idle_barrier(node, idx)) 858 goto match; 859 860 /* 861 * The list of pending barriers is protected by the 862 * kernel_context timeline, which notably we do not hold 863 * here. i915_request_add_active_barriers() may consume 864 * the barrier before we claim it, so we have to check 865 * for success. 866 */ 867 engine = __barrier_to_engine(node); 868 smp_rmb(); /* serialise with add_active_barriers */ 869 if (is_barrier(&node->base) && 870 ____active_del_barrier(ref, node, engine)) 871 goto match; 872 } 873 874 return NULL; 875 876 match: 877 spin_lock_irq(&ref->tree_lock); 878 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */ 879 if (p == &ref->cache->node) 880 WRITE_ONCE(ref->cache, NULL); 881 spin_unlock_irq(&ref->tree_lock); 882 883 return rb_entry(p, struct active_node, node); 884 } 885 886 int i915_active_acquire_preallocate_barrier(struct i915_active *ref, 887 struct intel_engine_cs *engine) 888 { 889 intel_engine_mask_t tmp, mask = engine->mask; 890 struct llist_node *first = NULL, *last = NULL; 891 struct intel_gt *gt = engine->gt; 892 893 GEM_BUG_ON(i915_active_is_idle(ref)); 894 895 /* Wait until the previous preallocation is completed */ 896 while (!llist_empty(&ref->preallocated_barriers)) 897 cond_resched(); 898 899 /* 900 * Preallocate a node for each physical engine supporting the target 901 * engine (remember virtual engines have more than one sibling). 902 * We can then use the preallocated nodes in 903 * i915_active_acquire_barrier() 904 */ 905 GEM_BUG_ON(!mask); 906 for_each_engine_masked(engine, gt, mask, tmp) { 907 u64 idx = engine->kernel_context->timeline->fence_context; 908 struct llist_node *prev = first; 909 struct active_node *node; 910 911 rcu_read_lock(); 912 node = reuse_idle_barrier(ref, idx); 913 rcu_read_unlock(); 914 if (!node) { 915 node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL); 916 if (!node) 917 goto unwind; 918 919 RCU_INIT_POINTER(node->base.fence, NULL); 920 node->base.cb.func = node_retire; 921 node->timeline = idx; 922 node->ref = ref; 923 } 924 925 if (!i915_active_fence_isset(&node->base)) { 926 /* 927 * Mark this as being *our* unconnected proto-node. 928 * 929 * Since this node is not in any list, and we have 930 * decoupled it from the rbtree, we can reuse the 931 * request to indicate this is an idle-barrier node 932 * and then we can use the rb_node and list pointers 933 * for our tracking of the pending barrier. 934 */ 935 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN)); 936 node->base.cb.node.prev = (void *)engine; 937 __i915_active_acquire(ref); 938 } 939 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN)); 940 941 GEM_BUG_ON(barrier_to_engine(node) != engine); 942 first = barrier_to_ll(node); 943 first->next = prev; 944 if (!last) 945 last = first; 946 intel_engine_pm_get(engine); 947 } 948 949 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers)); 950 llist_add_batch(first, last, &ref->preallocated_barriers); 951 952 return 0; 953 954 unwind: 955 while (first) { 956 struct active_node *node = barrier_from_ll(first); 957 958 first = first->next; 959 960 atomic_dec(&ref->count); 961 intel_engine_pm_put(barrier_to_engine(node)); 962 963 kmem_cache_free(global.slab_cache, node); 964 } 965 return -ENOMEM; 966 } 967 968 void i915_active_acquire_barrier(struct i915_active *ref) 969 { 970 struct llist_node *pos, *next; 971 unsigned long flags; 972 973 GEM_BUG_ON(i915_active_is_idle(ref)); 974 975 /* 976 * Transfer the list of preallocated barriers into the 977 * i915_active rbtree, but only as proto-nodes. They will be 978 * populated by i915_request_add_active_barriers() to point to the 979 * request that will eventually release them. 980 */ 981 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) { 982 struct active_node *node = barrier_from_ll(pos); 983 struct intel_engine_cs *engine = barrier_to_engine(node); 984 struct rb_node **p, *parent; 985 986 spin_lock_irqsave_nested(&ref->tree_lock, flags, 987 SINGLE_DEPTH_NESTING); 988 parent = NULL; 989 p = &ref->tree.rb_node; 990 while (*p) { 991 struct active_node *it; 992 993 parent = *p; 994 995 it = rb_entry(parent, struct active_node, node); 996 if (it->timeline < node->timeline) 997 p = &parent->rb_right; 998 else 999 p = &parent->rb_left; 1000 } 1001 rb_link_node(&node->node, parent, p); 1002 rb_insert_color(&node->node, &ref->tree); 1003 spin_unlock_irqrestore(&ref->tree_lock, flags); 1004 1005 GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); 1006 llist_add(barrier_to_ll(node), &engine->barrier_tasks); 1007 intel_engine_pm_put_delay(engine, 1); 1008 } 1009 } 1010 1011 static struct dma_fence **ll_to_fence_slot(struct llist_node *node) 1012 { 1013 return __active_fence_slot(&barrier_from_ll(node)->base); 1014 } 1015 1016 void i915_request_add_active_barriers(struct i915_request *rq) 1017 { 1018 struct intel_engine_cs *engine = rq->engine; 1019 struct llist_node *node, *next; 1020 unsigned long flags; 1021 1022 GEM_BUG_ON(!intel_context_is_barrier(rq->context)); 1023 GEM_BUG_ON(intel_engine_is_virtual(engine)); 1024 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline); 1025 1026 node = llist_del_all(&engine->barrier_tasks); 1027 if (!node) 1028 return; 1029 /* 1030 * Attach the list of proto-fences to the in-flight request such 1031 * that the parent i915_active will be released when this request 1032 * is retired. 1033 */ 1034 spin_lock_irqsave(&rq->lock, flags); 1035 llist_for_each_safe(node, next, node) { 1036 /* serialise with reuse_idle_barrier */ 1037 smp_store_mb(*ll_to_fence_slot(node), &rq->fence); 1038 list_add_tail((struct list_head *)node, &rq->fence.cb_list); 1039 } 1040 spin_unlock_irqrestore(&rq->lock, flags); 1041 } 1042 1043 /* 1044 * __i915_active_fence_set: Update the last active fence along its timeline 1045 * @active: the active tracker 1046 * @fence: the new fence (under construction) 1047 * 1048 * Records the new @fence as the last active fence along its timeline in 1049 * this active tracker, moving the tracking callbacks from the previous 1050 * fence onto this one. Returns the previous fence (if not already completed), 1051 * which the caller must ensure is executed before the new fence. To ensure 1052 * that the order of fences within the timeline of the i915_active_fence is 1053 * understood, it should be locked by the caller. 1054 */ 1055 struct dma_fence * 1056 __i915_active_fence_set(struct i915_active_fence *active, 1057 struct dma_fence *fence) 1058 { 1059 struct dma_fence *prev; 1060 unsigned long flags; 1061 1062 if (fence == rcu_access_pointer(active->fence)) 1063 return fence; 1064 1065 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)); 1066 1067 /* 1068 * Consider that we have two threads arriving (A and B), with 1069 * C already resident as the active->fence. 1070 * 1071 * A does the xchg first, and so it sees C or NULL depending 1072 * on the timing of the interrupt handler. If it is NULL, the 1073 * previous fence must have been signaled and we know that 1074 * we are first on the timeline. If it is still present, 1075 * we acquire the lock on that fence and serialise with the interrupt 1076 * handler, in the process removing it from any future interrupt 1077 * callback. A will then wait on C before executing (if present). 1078 * 1079 * As B is second, it sees A as the previous fence and so waits for 1080 * it to complete its transition and takes over the occupancy for 1081 * itself -- remembering that it needs to wait on A before executing. 1082 * 1083 * Note the strong ordering of the timeline also provides consistent 1084 * nesting rules for the fence->lock; the inner lock is always the 1085 * older lock. 1086 */ 1087 spin_lock_irqsave(fence->lock, flags); 1088 prev = xchg(__active_fence_slot(active), fence); 1089 if (prev) { 1090 GEM_BUG_ON(prev == fence); 1091 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); 1092 __list_del_entry(&active->cb.node); 1093 spin_unlock(prev->lock); /* serialise with prev->cb_list */ 1094 } 1095 list_add_tail(&active->cb.node, &fence->cb_list); 1096 spin_unlock_irqrestore(fence->lock, flags); 1097 1098 return prev; 1099 } 1100 1101 int i915_active_fence_set(struct i915_active_fence *active, 1102 struct i915_request *rq) 1103 { 1104 struct dma_fence *fence; 1105 int err = 0; 1106 1107 /* Must maintain timeline ordering wrt previous active requests */ 1108 rcu_read_lock(); 1109 fence = __i915_active_fence_set(active, &rq->fence); 1110 if (fence) /* but the previous fence may not belong to that timeline! */ 1111 fence = dma_fence_get_rcu(fence); 1112 rcu_read_unlock(); 1113 if (fence) { 1114 err = i915_request_await_dma_fence(rq, fence); 1115 dma_fence_put(fence); 1116 } 1117 1118 return err; 1119 } 1120 1121 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb) 1122 { 1123 active_fence_cb(fence, cb); 1124 } 1125 1126 struct auto_active { 1127 struct i915_active base; 1128 struct kref ref; 1129 }; 1130 1131 struct i915_active *i915_active_get(struct i915_active *ref) 1132 { 1133 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1134 1135 kref_get(&aa->ref); 1136 return &aa->base; 1137 } 1138 1139 static void auto_release(struct kref *ref) 1140 { 1141 struct auto_active *aa = container_of(ref, typeof(*aa), ref); 1142 1143 i915_active_fini(&aa->base); 1144 kfree(aa); 1145 } 1146 1147 void i915_active_put(struct i915_active *ref) 1148 { 1149 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1150 1151 kref_put(&aa->ref, auto_release); 1152 } 1153 1154 static int auto_active(struct i915_active *ref) 1155 { 1156 i915_active_get(ref); 1157 return 0; 1158 } 1159 1160 static void auto_retire(struct i915_active *ref) 1161 { 1162 i915_active_put(ref); 1163 } 1164 1165 struct i915_active *i915_active_create(void) 1166 { 1167 struct auto_active *aa; 1168 1169 aa = kmalloc(sizeof(*aa), GFP_KERNEL); 1170 if (!aa) 1171 return NULL; 1172 1173 kref_init(&aa->ref); 1174 i915_active_init(&aa->base, auto_active, auto_retire); 1175 1176 return &aa->base; 1177 } 1178 1179 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1180 #include "selftests/i915_active.c" 1181 #endif 1182 1183 static void i915_global_active_shrink(void) 1184 { 1185 kmem_cache_shrink(global.slab_cache); 1186 } 1187 1188 static void i915_global_active_exit(void) 1189 { 1190 kmem_cache_destroy(global.slab_cache); 1191 } 1192 1193 static struct i915_global_active global = { { 1194 .shrink = i915_global_active_shrink, 1195 .exit = i915_global_active_exit, 1196 } }; 1197 1198 int __init i915_global_active_init(void) 1199 { 1200 global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); 1201 if (!global.slab_cache) 1202 return -ENOMEM; 1203 1204 i915_global_register(&global.base); 1205 return 0; 1206 } 1207