xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision f5ad1c74)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
41 
42 #include "i915_drv.h"
43 #include "i915_gem_gtt.h"
44 #include "gvt.h"
45 
46 #define RING_CTX_OFF(x) \
47 	offsetof(struct execlist_ring_context, x)
48 
49 static void set_context_pdp_root_pointer(
50 		struct execlist_ring_context *ring_context,
51 		u32 pdp[8])
52 {
53 	int i;
54 
55 	for (i = 0; i < 8; i++)
56 		ring_context->pdps[i].val = pdp[7 - i];
57 }
58 
59 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
60 {
61 	struct execlist_ring_context *shadow_ring_context;
62 	struct intel_context *ctx = workload->req->context;
63 
64 	if (WARN_ON(!workload->shadow_mm))
65 		return;
66 
67 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
68 		return;
69 
70 	shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state;
71 	set_context_pdp_root_pointer(shadow_ring_context,
72 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
73 }
74 
75 /*
76  * when populating shadow ctx from guest, we should not overrride oa related
77  * registers, so that they will not be overlapped by guest oa configs. Thus
78  * made it possible to capture oa data from host for both host and guests.
79  */
80 static void sr_oa_regs(struct intel_vgpu_workload *workload,
81 		u32 *reg_state, bool save)
82 {
83 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
84 	u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
85 	u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
86 	int i = 0;
87 	u32 flex_mmio[] = {
88 		i915_mmio_reg_offset(EU_PERF_CNTL0),
89 		i915_mmio_reg_offset(EU_PERF_CNTL1),
90 		i915_mmio_reg_offset(EU_PERF_CNTL2),
91 		i915_mmio_reg_offset(EU_PERF_CNTL3),
92 		i915_mmio_reg_offset(EU_PERF_CNTL4),
93 		i915_mmio_reg_offset(EU_PERF_CNTL5),
94 		i915_mmio_reg_offset(EU_PERF_CNTL6),
95 	};
96 
97 	if (workload->engine->id != RCS0)
98 		return;
99 
100 	if (save) {
101 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
102 
103 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
104 			u32 state_offset = ctx_flexeu0 + i * 2;
105 
106 			workload->flex_mmio[i] = reg_state[state_offset + 1];
107 		}
108 	} else {
109 		reg_state[ctx_oactxctrl] =
110 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
111 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
112 
113 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
114 			u32 state_offset = ctx_flexeu0 + i * 2;
115 			u32 mmio = flex_mmio[i];
116 
117 			reg_state[state_offset] = mmio;
118 			reg_state[state_offset + 1] = workload->flex_mmio[i];
119 		}
120 	}
121 }
122 
123 static int populate_shadow_context(struct intel_vgpu_workload *workload)
124 {
125 	struct intel_vgpu *vgpu = workload->vgpu;
126 	struct intel_gvt *gvt = vgpu->gvt;
127 	struct intel_context *ctx = workload->req->context;
128 	struct execlist_ring_context *shadow_ring_context;
129 	void *dst;
130 	void *context_base;
131 	unsigned long context_gpa, context_page_num;
132 	unsigned long gpa_base; /* first gpa of consecutive GPAs */
133 	unsigned long gpa_size; /* size of consecutive GPAs */
134 	struct intel_vgpu_submission *s = &vgpu->submission;
135 	int i;
136 	bool skip = false;
137 	int ring_id = workload->engine->id;
138 
139 	GEM_BUG_ON(!intel_context_is_pinned(ctx));
140 
141 	context_base = (void *) ctx->lrc_reg_state -
142 				(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
143 
144 	shadow_ring_context = (void *) ctx->lrc_reg_state;
145 
146 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
147 #define COPY_REG(name) \
148 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
149 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
150 #define COPY_REG_MASKED(name) {\
151 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
152 					      + RING_CTX_OFF(name.val),\
153 					      &shadow_ring_context->name.val, 4);\
154 		shadow_ring_context->name.val |= 0xffff << 16;\
155 	}
156 
157 	COPY_REG_MASKED(ctx_ctrl);
158 	COPY_REG(ctx_timestamp);
159 
160 	if (workload->engine->id == RCS0) {
161 		COPY_REG(bb_per_ctx_ptr);
162 		COPY_REG(rcs_indirect_ctx);
163 		COPY_REG(rcs_indirect_ctx_offset);
164 	}
165 #undef COPY_REG
166 #undef COPY_REG_MASKED
167 
168 	intel_gvt_hypervisor_read_gpa(vgpu,
169 			workload->ring_context_gpa +
170 			sizeof(*shadow_ring_context),
171 			(void *)shadow_ring_context +
172 			sizeof(*shadow_ring_context),
173 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
174 
175 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
176 
177 	gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx",
178 			workload->engine->name, workload->ctx_desc.lrca,
179 			workload->ctx_desc.context_id,
180 			workload->ring_context_gpa);
181 
182 	/* only need to ensure this context is not pinned/unpinned during the
183 	 * period from last submission to this this submission.
184 	 * Upon reaching this function, the currently submitted context is not
185 	 * supposed to get unpinned. If a misbehaving guest driver ever does
186 	 * this, it would corrupt itself.
187 	 */
188 	if (s->last_ctx[ring_id].valid &&
189 			(s->last_ctx[ring_id].lrca ==
190 				workload->ctx_desc.lrca) &&
191 			(s->last_ctx[ring_id].ring_context_gpa ==
192 				workload->ring_context_gpa))
193 		skip = true;
194 
195 	s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca;
196 	s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa;
197 
198 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip)
199 		return 0;
200 
201 	s->last_ctx[ring_id].valid = false;
202 	context_page_num = workload->engine->context_size;
203 	context_page_num = context_page_num >> PAGE_SHIFT;
204 
205 	if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
206 		context_page_num = 19;
207 
208 	/* find consecutive GPAs from gma until the first inconsecutive GPA.
209 	 * read from the continuous GPAs into dst virtual address
210 	 */
211 	gpa_size = 0;
212 	for (i = 2; i < context_page_num; i++) {
213 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
214 				(u32)((workload->ctx_desc.lrca + i) <<
215 				I915_GTT_PAGE_SHIFT));
216 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
217 			gvt_vgpu_err("Invalid guest context descriptor\n");
218 			return -EFAULT;
219 		}
220 
221 		if (gpa_size == 0) {
222 			gpa_base = context_gpa;
223 			dst = context_base + (i << I915_GTT_PAGE_SHIFT);
224 		} else if (context_gpa != gpa_base + gpa_size)
225 			goto read;
226 
227 		gpa_size += I915_GTT_PAGE_SIZE;
228 
229 		if (i == context_page_num - 1)
230 			goto read;
231 
232 		continue;
233 
234 read:
235 		intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size);
236 		gpa_base = context_gpa;
237 		gpa_size = I915_GTT_PAGE_SIZE;
238 		dst = context_base + (i << I915_GTT_PAGE_SHIFT);
239 	}
240 	s->last_ctx[ring_id].valid = true;
241 	return 0;
242 }
243 
244 static inline bool is_gvt_request(struct i915_request *rq)
245 {
246 	return intel_context_force_single_submission(rq->context);
247 }
248 
249 static void save_ring_hw_state(struct intel_vgpu *vgpu,
250 			       const struct intel_engine_cs *engine)
251 {
252 	struct intel_uncore *uncore = engine->uncore;
253 	i915_reg_t reg;
254 
255 	reg = RING_INSTDONE(engine->mmio_base);
256 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
257 		intel_uncore_read(uncore, reg);
258 
259 	reg = RING_ACTHD(engine->mmio_base);
260 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
261 		intel_uncore_read(uncore, reg);
262 
263 	reg = RING_ACTHD_UDW(engine->mmio_base);
264 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
265 		intel_uncore_read(uncore, reg);
266 }
267 
268 static int shadow_context_status_change(struct notifier_block *nb,
269 		unsigned long action, void *data)
270 {
271 	struct i915_request *rq = data;
272 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
273 				shadow_ctx_notifier_block[rq->engine->id]);
274 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
275 	enum intel_engine_id ring_id = rq->engine->id;
276 	struct intel_vgpu_workload *workload;
277 	unsigned long flags;
278 
279 	if (!is_gvt_request(rq)) {
280 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
281 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
282 		    scheduler->engine_owner[ring_id]) {
283 			/* Switch ring from vGPU to host. */
284 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
285 					      NULL, rq->engine);
286 			scheduler->engine_owner[ring_id] = NULL;
287 		}
288 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
289 
290 		return NOTIFY_OK;
291 	}
292 
293 	workload = scheduler->current_workload[ring_id];
294 	if (unlikely(!workload))
295 		return NOTIFY_OK;
296 
297 	switch (action) {
298 	case INTEL_CONTEXT_SCHEDULE_IN:
299 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
300 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
301 			/* Switch ring from host to vGPU or vGPU to vGPU. */
302 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
303 					      workload->vgpu, rq->engine);
304 			scheduler->engine_owner[ring_id] = workload->vgpu;
305 		} else
306 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
307 				      ring_id, workload->vgpu->id);
308 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
309 		atomic_set(&workload->shadow_ctx_active, 1);
310 		break;
311 	case INTEL_CONTEXT_SCHEDULE_OUT:
312 		save_ring_hw_state(workload->vgpu, rq->engine);
313 		atomic_set(&workload->shadow_ctx_active, 0);
314 		break;
315 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
316 		save_ring_hw_state(workload->vgpu, rq->engine);
317 		break;
318 	default:
319 		WARN_ON(1);
320 		return NOTIFY_OK;
321 	}
322 	wake_up(&workload->shadow_ctx_status_wq);
323 	return NOTIFY_OK;
324 }
325 
326 static void
327 shadow_context_descriptor_update(struct intel_context *ce,
328 				 struct intel_vgpu_workload *workload)
329 {
330 	u64 desc = ce->lrc.desc;
331 
332 	/*
333 	 * Update bits 0-11 of the context descriptor which includes flags
334 	 * like GEN8_CTX_* cached in desc_template
335 	 */
336 	desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
337 	desc |= (u64)workload->ctx_desc.addressing_mode <<
338 		GEN8_CTX_ADDRESSING_MODE_SHIFT;
339 
340 	ce->lrc.desc = desc;
341 }
342 
343 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
344 {
345 	struct intel_vgpu *vgpu = workload->vgpu;
346 	struct i915_request *req = workload->req;
347 	void *shadow_ring_buffer_va;
348 	u32 *cs;
349 	int err;
350 
351 	if (IS_GEN(req->engine->i915, 9) && is_inhibit_context(req->context))
352 		intel_vgpu_restore_inhibit_context(vgpu, req);
353 
354 	/*
355 	 * To track whether a request has started on HW, we can emit a
356 	 * breadcrumb at the beginning of the request and check its
357 	 * timeline's HWSP to see if the breadcrumb has advanced past the
358 	 * start of this request. Actually, the request must have the
359 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
360 	 * scheduler might get a wrong state of it during reset. Since the
361 	 * requests from gvt always set the has_init_breadcrumb flag, here
362 	 * need to do the emit_init_breadcrumb for all the requests.
363 	 */
364 	if (req->engine->emit_init_breadcrumb) {
365 		err = req->engine->emit_init_breadcrumb(req);
366 		if (err) {
367 			gvt_vgpu_err("fail to emit init breadcrumb\n");
368 			return err;
369 		}
370 	}
371 
372 	/* allocate shadow ring buffer */
373 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
374 	if (IS_ERR(cs)) {
375 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
376 			workload->rb_len);
377 		return PTR_ERR(cs);
378 	}
379 
380 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
381 
382 	/* get shadow ring buffer va */
383 	workload->shadow_ring_buffer_va = cs;
384 
385 	memcpy(cs, shadow_ring_buffer_va,
386 			workload->rb_len);
387 
388 	cs += workload->rb_len / sizeof(u32);
389 	intel_ring_advance(workload->req, cs);
390 
391 	return 0;
392 }
393 
394 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
395 {
396 	if (!wa_ctx->indirect_ctx.obj)
397 		return;
398 
399 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
400 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
401 
402 	wa_ctx->indirect_ctx.obj = NULL;
403 	wa_ctx->indirect_ctx.shadow_va = NULL;
404 }
405 
406 static void set_dma_address(struct i915_page_directory *pd, dma_addr_t addr)
407 {
408 	struct scatterlist *sg = pd->pt.base->mm.pages->sgl;
409 
410 	/* This is not a good idea */
411 	sg->dma_address = addr;
412 }
413 
414 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
415 					  struct intel_context *ce)
416 {
417 	struct intel_vgpu_mm *mm = workload->shadow_mm;
418 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
419 	int i = 0;
420 
421 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
422 		set_dma_address(ppgtt->pd, mm->ppgtt_mm.shadow_pdps[0]);
423 	} else {
424 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
425 			struct i915_page_directory * const pd =
426 				i915_pd_entry(ppgtt->pd, i);
427 			/* skip now as current i915 ppgtt alloc won't allocate
428 			   top level pdp for non 4-level table, won't impact
429 			   shadow ppgtt. */
430 			if (!pd)
431 				break;
432 
433 			set_dma_address(pd, mm->ppgtt_mm.shadow_pdps[i]);
434 		}
435 	}
436 }
437 
438 static int
439 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
440 {
441 	struct intel_vgpu *vgpu = workload->vgpu;
442 	struct intel_vgpu_submission *s = &vgpu->submission;
443 	struct i915_request *rq;
444 
445 	if (workload->req)
446 		return 0;
447 
448 	rq = i915_request_create(s->shadow[workload->engine->id]);
449 	if (IS_ERR(rq)) {
450 		gvt_vgpu_err("fail to allocate gem request\n");
451 		return PTR_ERR(rq);
452 	}
453 
454 	workload->req = i915_request_get(rq);
455 	return 0;
456 }
457 
458 /**
459  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
460  * shadow it as well, include ringbuffer,wa_ctx and ctx.
461  * @workload: an abstract entity for each execlist submission.
462  *
463  * This function is called before the workload submitting to i915, to make
464  * sure the content of the workload is valid.
465  */
466 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
467 {
468 	struct intel_vgpu *vgpu = workload->vgpu;
469 	struct intel_vgpu_submission *s = &vgpu->submission;
470 	int ret;
471 
472 	lockdep_assert_held(&vgpu->vgpu_lock);
473 
474 	if (workload->shadow)
475 		return 0;
476 
477 	if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
478 		shadow_context_descriptor_update(s->shadow[workload->engine->id],
479 						 workload);
480 
481 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
482 	if (ret)
483 		return ret;
484 
485 	if (workload->engine->id == RCS0 &&
486 	    workload->wa_ctx.indirect_ctx.size) {
487 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
488 		if (ret)
489 			goto err_shadow;
490 	}
491 
492 	workload->shadow = true;
493 	return 0;
494 
495 err_shadow:
496 	release_shadow_wa_ctx(&workload->wa_ctx);
497 	return ret;
498 }
499 
500 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
501 
502 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
503 {
504 	struct intel_gvt *gvt = workload->vgpu->gvt;
505 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
506 	struct intel_vgpu_shadow_bb *bb;
507 	int ret;
508 
509 	list_for_each_entry(bb, &workload->shadow_bb, list) {
510 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
511 		 * is only updated into ring_scan_buffer, not real ring address
512 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
513 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
514 		 * in copy_workload_to_ring_buffer.
515 		 */
516 
517 		if (bb->bb_offset)
518 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
519 				+ bb->bb_offset;
520 
521 		/*
522 		 * For non-priv bb, scan&shadow is only for
523 		 * debugging purpose, so the content of shadow bb
524 		 * is the same as original bb. Therefore,
525 		 * here, rather than switch to shadow bb's gma
526 		 * address, we directly use original batch buffer's
527 		 * gma address, and send original bb to hardware
528 		 * directly
529 		 */
530 		if (!bb->ppgtt) {
531 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
532 							   NULL, 0, 0, 0);
533 			if (IS_ERR(bb->vma)) {
534 				ret = PTR_ERR(bb->vma);
535 				goto err;
536 			}
537 
538 			/* relocate shadow batch buffer */
539 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
540 			if (gmadr_bytes == 8)
541 				bb->bb_start_cmd_va[2] = 0;
542 
543 			ret = i915_vma_move_to_active(bb->vma,
544 						      workload->req,
545 						      0);
546 			if (ret)
547 				goto err;
548 		}
549 
550 		/* No one is going to touch shadow bb from now on. */
551 		i915_gem_object_flush_map(bb->obj);
552 	}
553 	return 0;
554 err:
555 	release_shadow_batch_buffer(workload);
556 	return ret;
557 }
558 
559 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
560 {
561 	struct intel_vgpu_workload *workload =
562 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
563 	struct i915_request *rq = workload->req;
564 	struct execlist_ring_context *shadow_ring_context =
565 		(struct execlist_ring_context *)rq->context->lrc_reg_state;
566 
567 	shadow_ring_context->bb_per_ctx_ptr.val =
568 		(shadow_ring_context->bb_per_ctx_ptr.val &
569 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
570 	shadow_ring_context->rcs_indirect_ctx.val =
571 		(shadow_ring_context->rcs_indirect_ctx.val &
572 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
573 }
574 
575 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
576 {
577 	struct i915_vma *vma;
578 	unsigned char *per_ctx_va =
579 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
580 		wa_ctx->indirect_ctx.size;
581 
582 	if (wa_ctx->indirect_ctx.size == 0)
583 		return 0;
584 
585 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
586 				       0, CACHELINE_BYTES, 0);
587 	if (IS_ERR(vma))
588 		return PTR_ERR(vma);
589 
590 	/* FIXME: we are not tracking our pinned VMA leaving it
591 	 * up to the core to fix up the stray pin_count upon
592 	 * free.
593 	 */
594 
595 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
596 
597 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
598 	memset(per_ctx_va, 0, CACHELINE_BYTES);
599 
600 	update_wa_ctx_2_shadow_ctx(wa_ctx);
601 	return 0;
602 }
603 
604 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
605 {
606 	vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
607 		workload->rb_start;
608 }
609 
610 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
611 {
612 	struct intel_vgpu_shadow_bb *bb, *pos;
613 
614 	if (list_empty(&workload->shadow_bb))
615 		return;
616 
617 	bb = list_first_entry(&workload->shadow_bb,
618 			struct intel_vgpu_shadow_bb, list);
619 
620 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
621 		if (bb->obj) {
622 			if (bb->va && !IS_ERR(bb->va))
623 				i915_gem_object_unpin_map(bb->obj);
624 
625 			if (bb->vma && !IS_ERR(bb->vma))
626 				i915_vma_unpin(bb->vma);
627 
628 			i915_gem_object_put(bb->obj);
629 		}
630 		list_del(&bb->list);
631 		kfree(bb);
632 	}
633 }
634 
635 static int
636 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload)
637 {
638 	struct intel_vgpu *vgpu = workload->vgpu;
639 	struct intel_vgpu_mm *m;
640 	int ret = 0;
641 
642 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
643 	if (ret) {
644 		gvt_vgpu_err("fail to vgpu pin mm\n");
645 		return ret;
646 	}
647 
648 	if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
649 	    !workload->shadow_mm->ppgtt_mm.shadowed) {
650 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
651 		return -EINVAL;
652 	}
653 
654 	if (!list_empty(&workload->lri_shadow_mm)) {
655 		list_for_each_entry(m, &workload->lri_shadow_mm,
656 				    ppgtt_mm.link) {
657 			ret = intel_vgpu_pin_mm(m);
658 			if (ret) {
659 				list_for_each_entry_from_reverse(m,
660 								 &workload->lri_shadow_mm,
661 								 ppgtt_mm.link)
662 					intel_vgpu_unpin_mm(m);
663 				gvt_vgpu_err("LRI shadow ppgtt fail to pin\n");
664 				break;
665 			}
666 		}
667 	}
668 
669 	if (ret)
670 		intel_vgpu_unpin_mm(workload->shadow_mm);
671 
672 	return ret;
673 }
674 
675 static void
676 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload)
677 {
678 	struct intel_vgpu_mm *m;
679 
680 	if (!list_empty(&workload->lri_shadow_mm)) {
681 		list_for_each_entry(m, &workload->lri_shadow_mm,
682 				    ppgtt_mm.link)
683 			intel_vgpu_unpin_mm(m);
684 	}
685 	intel_vgpu_unpin_mm(workload->shadow_mm);
686 }
687 
688 static int prepare_workload(struct intel_vgpu_workload *workload)
689 {
690 	struct intel_vgpu *vgpu = workload->vgpu;
691 	struct intel_vgpu_submission *s = &vgpu->submission;
692 	int ret = 0;
693 
694 	ret = intel_vgpu_shadow_mm_pin(workload);
695 	if (ret) {
696 		gvt_vgpu_err("fail to pin shadow mm\n");
697 		return ret;
698 	}
699 
700 	update_shadow_pdps(workload);
701 
702 	set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
703 
704 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
705 	if (ret) {
706 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
707 		goto err_unpin_mm;
708 	}
709 
710 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
711 	if (ret) {
712 		gvt_vgpu_err("fail to flush post shadow\n");
713 		goto err_unpin_mm;
714 	}
715 
716 	ret = copy_workload_to_ring_buffer(workload);
717 	if (ret) {
718 		gvt_vgpu_err("fail to generate request\n");
719 		goto err_unpin_mm;
720 	}
721 
722 	ret = prepare_shadow_batch_buffer(workload);
723 	if (ret) {
724 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
725 		goto err_unpin_mm;
726 	}
727 
728 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
729 	if (ret) {
730 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
731 		goto err_shadow_batch;
732 	}
733 
734 	if (workload->prepare) {
735 		ret = workload->prepare(workload);
736 		if (ret)
737 			goto err_shadow_wa_ctx;
738 	}
739 
740 	return 0;
741 err_shadow_wa_ctx:
742 	release_shadow_wa_ctx(&workload->wa_ctx);
743 err_shadow_batch:
744 	release_shadow_batch_buffer(workload);
745 err_unpin_mm:
746 	intel_vgpu_shadow_mm_unpin(workload);
747 	return ret;
748 }
749 
750 static int dispatch_workload(struct intel_vgpu_workload *workload)
751 {
752 	struct intel_vgpu *vgpu = workload->vgpu;
753 	struct i915_request *rq;
754 	int ret;
755 
756 	gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
757 		      workload->engine->name, workload);
758 
759 	mutex_lock(&vgpu->vgpu_lock);
760 
761 	ret = intel_gvt_workload_req_alloc(workload);
762 	if (ret)
763 		goto err_req;
764 
765 	ret = intel_gvt_scan_and_shadow_workload(workload);
766 	if (ret)
767 		goto out;
768 
769 	ret = populate_shadow_context(workload);
770 	if (ret) {
771 		release_shadow_wa_ctx(&workload->wa_ctx);
772 		goto out;
773 	}
774 
775 	ret = prepare_workload(workload);
776 out:
777 	if (ret) {
778 		/* We might still need to add request with
779 		 * clean ctx to retire it properly..
780 		 */
781 		rq = fetch_and_zero(&workload->req);
782 		i915_request_put(rq);
783 	}
784 
785 	if (!IS_ERR_OR_NULL(workload->req)) {
786 		gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
787 			      workload->engine->name, workload->req);
788 		i915_request_add(workload->req);
789 		workload->dispatched = true;
790 	}
791 err_req:
792 	if (ret)
793 		workload->status = ret;
794 	mutex_unlock(&vgpu->vgpu_lock);
795 	return ret;
796 }
797 
798 static struct intel_vgpu_workload *
799 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
800 {
801 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
802 	struct intel_vgpu_workload *workload = NULL;
803 
804 	mutex_lock(&gvt->sched_lock);
805 
806 	/*
807 	 * no current vgpu / will be scheduled out / no workload
808 	 * bail out
809 	 */
810 	if (!scheduler->current_vgpu) {
811 		gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
812 		goto out;
813 	}
814 
815 	if (scheduler->need_reschedule) {
816 		gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
817 		goto out;
818 	}
819 
820 	if (!scheduler->current_vgpu->active ||
821 	    list_empty(workload_q_head(scheduler->current_vgpu, engine)))
822 		goto out;
823 
824 	/*
825 	 * still have current workload, maybe the workload disptacher
826 	 * fail to submit it for some reason, resubmit it.
827 	 */
828 	if (scheduler->current_workload[engine->id]) {
829 		workload = scheduler->current_workload[engine->id];
830 		gvt_dbg_sched("ring %s still have current workload %p\n",
831 			      engine->name, workload);
832 		goto out;
833 	}
834 
835 	/*
836 	 * pick a workload as current workload
837 	 * once current workload is set, schedule policy routines
838 	 * will wait the current workload is finished when trying to
839 	 * schedule out a vgpu.
840 	 */
841 	scheduler->current_workload[engine->id] =
842 		list_first_entry(workload_q_head(scheduler->current_vgpu,
843 						 engine),
844 				 struct intel_vgpu_workload, list);
845 
846 	workload = scheduler->current_workload[engine->id];
847 
848 	gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
849 
850 	atomic_inc(&workload->vgpu->submission.running_workload_num);
851 out:
852 	mutex_unlock(&gvt->sched_lock);
853 	return workload;
854 }
855 
856 static void update_guest_pdps(struct intel_vgpu *vgpu,
857 			      u64 ring_context_gpa, u32 pdp[8])
858 {
859 	u64 gpa;
860 	int i;
861 
862 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
863 
864 	for (i = 0; i < 8; i++)
865 		intel_gvt_hypervisor_write_gpa(vgpu,
866 				gpa + i * 8, &pdp[7 - i], 4);
867 }
868 
869 static __maybe_unused bool
870 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m)
871 {
872 	if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
873 		u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32;
874 
875 		if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) {
876 			gvt_dbg_mm("4-level context ppgtt not match LRI command\n");
877 			return false;
878 		}
879 		return true;
880 	} else {
881 		/* see comment in LRI handler in cmd_parser.c */
882 		gvt_dbg_mm("invalid shadow mm type\n");
883 		return false;
884 	}
885 }
886 
887 static void update_guest_context(struct intel_vgpu_workload *workload)
888 {
889 	struct i915_request *rq = workload->req;
890 	struct intel_vgpu *vgpu = workload->vgpu;
891 	struct execlist_ring_context *shadow_ring_context;
892 	struct intel_context *ctx = workload->req->context;
893 	void *context_base;
894 	void *src;
895 	unsigned long context_gpa, context_page_num;
896 	unsigned long gpa_base; /* first gpa of consecutive GPAs */
897 	unsigned long gpa_size; /* size of consecutive GPAs*/
898 	int i;
899 	u32 ring_base;
900 	u32 head, tail;
901 	u16 wrap_count;
902 
903 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
904 		      workload->ctx_desc.lrca);
905 
906 	GEM_BUG_ON(!intel_context_is_pinned(ctx));
907 
908 	head = workload->rb_head;
909 	tail = workload->rb_tail;
910 	wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
911 
912 	if (tail < head) {
913 		if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
914 			wrap_count = 0;
915 		else
916 			wrap_count += 1;
917 	}
918 
919 	head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
920 
921 	ring_base = rq->engine->mmio_base;
922 	vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
923 	vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
924 
925 	context_page_num = rq->engine->context_size;
926 	context_page_num = context_page_num >> PAGE_SHIFT;
927 
928 	if (IS_BROADWELL(rq->engine->i915) && rq->engine->id == RCS0)
929 		context_page_num = 19;
930 
931 	context_base = (void *) ctx->lrc_reg_state -
932 			(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
933 
934 	/* find consecutive GPAs from gma until the first inconsecutive GPA.
935 	 * write to the consecutive GPAs from src virtual address
936 	 */
937 	gpa_size = 0;
938 	for (i = 2; i < context_page_num; i++) {
939 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
940 				(u32)((workload->ctx_desc.lrca + i) <<
941 					I915_GTT_PAGE_SHIFT));
942 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
943 			gvt_vgpu_err("invalid guest context descriptor\n");
944 			return;
945 		}
946 
947 		if (gpa_size == 0) {
948 			gpa_base = context_gpa;
949 			src = context_base + (i << I915_GTT_PAGE_SHIFT);
950 		} else if (context_gpa != gpa_base + gpa_size)
951 			goto write;
952 
953 		gpa_size += I915_GTT_PAGE_SIZE;
954 
955 		if (i == context_page_num - 1)
956 			goto write;
957 
958 		continue;
959 
960 write:
961 		intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size);
962 		gpa_base = context_gpa;
963 		gpa_size = I915_GTT_PAGE_SIZE;
964 		src = context_base + (i << I915_GTT_PAGE_SHIFT);
965 	}
966 
967 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
968 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
969 
970 	shadow_ring_context = (void *) ctx->lrc_reg_state;
971 
972 	if (!list_empty(&workload->lri_shadow_mm)) {
973 		struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm,
974 							  struct intel_vgpu_mm,
975 							  ppgtt_mm.link);
976 		GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m));
977 		update_guest_pdps(vgpu, workload->ring_context_gpa,
978 				  (void *)m->ppgtt_mm.guest_pdps);
979 	}
980 
981 #define COPY_REG(name) \
982 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
983 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
984 
985 	COPY_REG(ctx_ctrl);
986 	COPY_REG(ctx_timestamp);
987 
988 #undef COPY_REG
989 
990 	intel_gvt_hypervisor_write_gpa(vgpu,
991 			workload->ring_context_gpa +
992 			sizeof(*shadow_ring_context),
993 			(void *)shadow_ring_context +
994 			sizeof(*shadow_ring_context),
995 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
996 }
997 
998 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
999 				intel_engine_mask_t engine_mask)
1000 {
1001 	struct intel_vgpu_submission *s = &vgpu->submission;
1002 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1003 	struct intel_engine_cs *engine;
1004 	struct intel_vgpu_workload *pos, *n;
1005 	intel_engine_mask_t tmp;
1006 
1007 	/* free the unsubmited workloads in the queues. */
1008 	for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
1009 		list_for_each_entry_safe(pos, n,
1010 			&s->workload_q_head[engine->id], list) {
1011 			list_del_init(&pos->list);
1012 			intel_vgpu_destroy_workload(pos);
1013 		}
1014 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
1015 	}
1016 }
1017 
1018 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
1019 {
1020 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1021 	struct intel_vgpu_workload *workload =
1022 		scheduler->current_workload[ring_id];
1023 	struct intel_vgpu *vgpu = workload->vgpu;
1024 	struct intel_vgpu_submission *s = &vgpu->submission;
1025 	struct i915_request *rq = workload->req;
1026 	int event;
1027 
1028 	mutex_lock(&vgpu->vgpu_lock);
1029 	mutex_lock(&gvt->sched_lock);
1030 
1031 	/* For the workload w/ request, needs to wait for the context
1032 	 * switch to make sure request is completed.
1033 	 * For the workload w/o request, directly complete the workload.
1034 	 */
1035 	if (rq) {
1036 		wait_event(workload->shadow_ctx_status_wq,
1037 			   !atomic_read(&workload->shadow_ctx_active));
1038 
1039 		/* If this request caused GPU hang, req->fence.error will
1040 		 * be set to -EIO. Use -EIO to set workload status so
1041 		 * that when this request caused GPU hang, didn't trigger
1042 		 * context switch interrupt to guest.
1043 		 */
1044 		if (likely(workload->status == -EINPROGRESS)) {
1045 			if (workload->req->fence.error == -EIO)
1046 				workload->status = -EIO;
1047 			else
1048 				workload->status = 0;
1049 		}
1050 
1051 		if (!workload->status &&
1052 		    !(vgpu->resetting_eng & BIT(ring_id))) {
1053 			update_guest_context(workload);
1054 
1055 			for_each_set_bit(event, workload->pending_events,
1056 					 INTEL_GVT_EVENT_MAX)
1057 				intel_vgpu_trigger_virtual_event(vgpu, event);
1058 		}
1059 
1060 		i915_request_put(fetch_and_zero(&workload->req));
1061 	}
1062 
1063 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
1064 			ring_id, workload, workload->status);
1065 
1066 	scheduler->current_workload[ring_id] = NULL;
1067 
1068 	list_del_init(&workload->list);
1069 
1070 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
1071 		/* if workload->status is not successful means HW GPU
1072 		 * has occurred GPU hang or something wrong with i915/GVT,
1073 		 * and GVT won't inject context switch interrupt to guest.
1074 		 * So this error is a vGPU hang actually to the guest.
1075 		 * According to this we should emunlate a vGPU hang. If
1076 		 * there are pending workloads which are already submitted
1077 		 * from guest, we should clean them up like HW GPU does.
1078 		 *
1079 		 * if it is in middle of engine resetting, the pending
1080 		 * workloads won't be submitted to HW GPU and will be
1081 		 * cleaned up during the resetting process later, so doing
1082 		 * the workload clean up here doesn't have any impact.
1083 		 **/
1084 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
1085 	}
1086 
1087 	workload->complete(workload);
1088 
1089 	intel_vgpu_shadow_mm_unpin(workload);
1090 	intel_vgpu_destroy_workload(workload);
1091 
1092 	atomic_dec(&s->running_workload_num);
1093 	wake_up(&scheduler->workload_complete_wq);
1094 
1095 	if (gvt->scheduler.need_reschedule)
1096 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
1097 
1098 	mutex_unlock(&gvt->sched_lock);
1099 	mutex_unlock(&vgpu->vgpu_lock);
1100 }
1101 
1102 static int workload_thread(void *arg)
1103 {
1104 	struct intel_engine_cs *engine = arg;
1105 	const bool need_force_wake = INTEL_GEN(engine->i915) >= 9;
1106 	struct intel_gvt *gvt = engine->i915->gvt;
1107 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1108 	struct intel_vgpu_workload *workload = NULL;
1109 	struct intel_vgpu *vgpu = NULL;
1110 	int ret;
1111 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1112 
1113 	gvt_dbg_core("workload thread for ring %s started\n", engine->name);
1114 
1115 	while (!kthread_should_stop()) {
1116 		intel_wakeref_t wakeref;
1117 
1118 		add_wait_queue(&scheduler->waitq[engine->id], &wait);
1119 		do {
1120 			workload = pick_next_workload(gvt, engine);
1121 			if (workload)
1122 				break;
1123 			wait_woken(&wait, TASK_INTERRUPTIBLE,
1124 				   MAX_SCHEDULE_TIMEOUT);
1125 		} while (!kthread_should_stop());
1126 		remove_wait_queue(&scheduler->waitq[engine->id], &wait);
1127 
1128 		if (!workload)
1129 			break;
1130 
1131 		gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1132 			      engine->name, workload,
1133 			      workload->vgpu->id);
1134 
1135 		wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1136 
1137 		gvt_dbg_sched("ring %s will dispatch workload %p\n",
1138 			      engine->name, workload);
1139 
1140 		if (need_force_wake)
1141 			intel_uncore_forcewake_get(engine->uncore,
1142 						   FORCEWAKE_ALL);
1143 		/*
1144 		 * Update the vReg of the vGPU which submitted this
1145 		 * workload. The vGPU may use these registers for checking
1146 		 * the context state. The value comes from GPU commands
1147 		 * in this workload.
1148 		 */
1149 		update_vreg_in_ctx(workload);
1150 
1151 		ret = dispatch_workload(workload);
1152 
1153 		if (ret) {
1154 			vgpu = workload->vgpu;
1155 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1156 			goto complete;
1157 		}
1158 
1159 		gvt_dbg_sched("ring %s wait workload %p\n",
1160 			      engine->name, workload);
1161 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1162 
1163 complete:
1164 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1165 			      workload, workload->status);
1166 
1167 		complete_current_workload(gvt, engine->id);
1168 
1169 		if (need_force_wake)
1170 			intel_uncore_forcewake_put(engine->uncore,
1171 						   FORCEWAKE_ALL);
1172 
1173 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1174 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1175 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1176 	}
1177 	return 0;
1178 }
1179 
1180 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1181 {
1182 	struct intel_vgpu_submission *s = &vgpu->submission;
1183 	struct intel_gvt *gvt = vgpu->gvt;
1184 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1185 
1186 	if (atomic_read(&s->running_workload_num)) {
1187 		gvt_dbg_sched("wait vgpu idle\n");
1188 
1189 		wait_event(scheduler->workload_complete_wq,
1190 				!atomic_read(&s->running_workload_num));
1191 	}
1192 }
1193 
1194 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1195 {
1196 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1197 	struct intel_engine_cs *engine;
1198 	enum intel_engine_id i;
1199 
1200 	gvt_dbg_core("clean workload scheduler\n");
1201 
1202 	for_each_engine(engine, gvt->gt, i) {
1203 		atomic_notifier_chain_unregister(
1204 					&engine->context_status_notifier,
1205 					&gvt->shadow_ctx_notifier_block[i]);
1206 		kthread_stop(scheduler->thread[i]);
1207 	}
1208 }
1209 
1210 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1211 {
1212 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1213 	struct intel_engine_cs *engine;
1214 	enum intel_engine_id i;
1215 	int ret;
1216 
1217 	gvt_dbg_core("init workload scheduler\n");
1218 
1219 	init_waitqueue_head(&scheduler->workload_complete_wq);
1220 
1221 	for_each_engine(engine, gvt->gt, i) {
1222 		init_waitqueue_head(&scheduler->waitq[i]);
1223 
1224 		scheduler->thread[i] = kthread_run(workload_thread, engine,
1225 						   "gvt:%s", engine->name);
1226 		if (IS_ERR(scheduler->thread[i])) {
1227 			gvt_err("fail to create workload thread\n");
1228 			ret = PTR_ERR(scheduler->thread[i]);
1229 			goto err;
1230 		}
1231 
1232 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1233 					shadow_context_status_change;
1234 		atomic_notifier_chain_register(&engine->context_status_notifier,
1235 					&gvt->shadow_ctx_notifier_block[i]);
1236 	}
1237 
1238 	return 0;
1239 
1240 err:
1241 	intel_gvt_clean_workload_scheduler(gvt);
1242 	return ret;
1243 }
1244 
1245 static void
1246 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1247 				struct i915_ppgtt *ppgtt)
1248 {
1249 	int i;
1250 
1251 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1252 		set_dma_address(ppgtt->pd, s->i915_context_pml4);
1253 	} else {
1254 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1255 			struct i915_page_directory * const pd =
1256 				i915_pd_entry(ppgtt->pd, i);
1257 
1258 			set_dma_address(pd, s->i915_context_pdps[i]);
1259 		}
1260 	}
1261 }
1262 
1263 /**
1264  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1265  * @vgpu: a vGPU
1266  *
1267  * This function is called when a vGPU is being destroyed.
1268  *
1269  */
1270 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1271 {
1272 	struct intel_vgpu_submission *s = &vgpu->submission;
1273 	struct intel_engine_cs *engine;
1274 	enum intel_engine_id id;
1275 
1276 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1277 
1278 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1279 	for_each_engine(engine, vgpu->gvt->gt, id)
1280 		intel_context_put(s->shadow[id]);
1281 
1282 	kmem_cache_destroy(s->workloads);
1283 }
1284 
1285 
1286 /**
1287  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1288  * @vgpu: a vGPU
1289  * @engine_mask: engines expected to be reset
1290  *
1291  * This function is called when a vGPU is being destroyed.
1292  *
1293  */
1294 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1295 				 intel_engine_mask_t engine_mask)
1296 {
1297 	struct intel_vgpu_submission *s = &vgpu->submission;
1298 
1299 	if (!s->active)
1300 		return;
1301 
1302 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1303 	s->ops->reset(vgpu, engine_mask);
1304 }
1305 
1306 static void
1307 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1308 			     struct i915_ppgtt *ppgtt)
1309 {
1310 	int i;
1311 
1312 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1313 		s->i915_context_pml4 = px_dma(ppgtt->pd);
1314 	} else {
1315 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1316 			struct i915_page_directory * const pd =
1317 				i915_pd_entry(ppgtt->pd, i);
1318 
1319 			s->i915_context_pdps[i] = px_dma(pd);
1320 		}
1321 	}
1322 }
1323 
1324 /**
1325  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1326  * @vgpu: a vGPU
1327  *
1328  * This function is called when a vGPU is being created.
1329  *
1330  * Returns:
1331  * Zero on success, negative error code if failed.
1332  *
1333  */
1334 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1335 {
1336 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1337 	struct intel_vgpu_submission *s = &vgpu->submission;
1338 	struct intel_engine_cs *engine;
1339 	struct i915_ppgtt *ppgtt;
1340 	enum intel_engine_id i;
1341 	int ret;
1342 
1343 	ppgtt = i915_ppgtt_create(&i915->gt);
1344 	if (IS_ERR(ppgtt))
1345 		return PTR_ERR(ppgtt);
1346 
1347 	i915_context_ppgtt_root_save(s, ppgtt);
1348 
1349 	for_each_engine(engine, vgpu->gvt->gt, i) {
1350 		struct intel_context *ce;
1351 
1352 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1353 		s->shadow[i] = ERR_PTR(-EINVAL);
1354 
1355 		ce = intel_context_create(engine);
1356 		if (IS_ERR(ce)) {
1357 			ret = PTR_ERR(ce);
1358 			goto out_shadow_ctx;
1359 		}
1360 
1361 		i915_vm_put(ce->vm);
1362 		ce->vm = i915_vm_get(&ppgtt->vm);
1363 		intel_context_set_single_submission(ce);
1364 
1365 		/* Max ring buffer size */
1366 		if (!intel_uc_wants_guc_submission(&engine->gt->uc)) {
1367 			const unsigned int ring_size = 512 * SZ_4K;
1368 
1369 			ce->ring = __intel_context_ring_size(ring_size);
1370 		}
1371 
1372 		s->shadow[i] = ce;
1373 	}
1374 
1375 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1376 
1377 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1378 						  sizeof(struct intel_vgpu_workload), 0,
1379 						  SLAB_HWCACHE_ALIGN,
1380 						  offsetof(struct intel_vgpu_workload, rb_tail),
1381 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1382 						  NULL);
1383 
1384 	if (!s->workloads) {
1385 		ret = -ENOMEM;
1386 		goto out_shadow_ctx;
1387 	}
1388 
1389 	atomic_set(&s->running_workload_num, 0);
1390 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1391 
1392 	memset(s->last_ctx, 0, sizeof(s->last_ctx));
1393 
1394 	i915_vm_put(&ppgtt->vm);
1395 	return 0;
1396 
1397 out_shadow_ctx:
1398 	i915_context_ppgtt_root_restore(s, ppgtt);
1399 	for_each_engine(engine, vgpu->gvt->gt, i) {
1400 		if (IS_ERR(s->shadow[i]))
1401 			break;
1402 
1403 		intel_context_put(s->shadow[i]);
1404 	}
1405 	i915_vm_put(&ppgtt->vm);
1406 	return ret;
1407 }
1408 
1409 /**
1410  * intel_vgpu_select_submission_ops - select virtual submission interface
1411  * @vgpu: a vGPU
1412  * @engine_mask: either ALL_ENGINES or target engine mask
1413  * @interface: expected vGPU virtual submission interface
1414  *
1415  * This function is called when guest configures submission interface.
1416  *
1417  * Returns:
1418  * Zero on success, negative error code if failed.
1419  *
1420  */
1421 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1422 				     intel_engine_mask_t engine_mask,
1423 				     unsigned int interface)
1424 {
1425 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1426 	struct intel_vgpu_submission *s = &vgpu->submission;
1427 	const struct intel_vgpu_submission_ops *ops[] = {
1428 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1429 			&intel_vgpu_execlist_submission_ops,
1430 	};
1431 	int ret;
1432 
1433 	if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1434 		return -EINVAL;
1435 
1436 	if (drm_WARN_ON(&i915->drm,
1437 			interface == 0 && engine_mask != ALL_ENGINES))
1438 		return -EINVAL;
1439 
1440 	if (s->active)
1441 		s->ops->clean(vgpu, engine_mask);
1442 
1443 	if (interface == 0) {
1444 		s->ops = NULL;
1445 		s->virtual_submission_interface = 0;
1446 		s->active = false;
1447 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1448 		return 0;
1449 	}
1450 
1451 	ret = ops[interface]->init(vgpu, engine_mask);
1452 	if (ret)
1453 		return ret;
1454 
1455 	s->ops = ops[interface];
1456 	s->virtual_submission_interface = interface;
1457 	s->active = true;
1458 
1459 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1460 			vgpu->id, s->ops->name);
1461 
1462 	return 0;
1463 }
1464 
1465 /**
1466  * intel_vgpu_destroy_workload - destroy a vGPU workload
1467  * @workload: workload to destroy
1468  *
1469  * This function is called when destroy a vGPU workload.
1470  *
1471  */
1472 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1473 {
1474 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1475 
1476 	intel_context_unpin(s->shadow[workload->engine->id]);
1477 	release_shadow_batch_buffer(workload);
1478 	release_shadow_wa_ctx(&workload->wa_ctx);
1479 
1480 	if (!list_empty(&workload->lri_shadow_mm)) {
1481 		struct intel_vgpu_mm *m, *mm;
1482 		list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm,
1483 					 ppgtt_mm.link) {
1484 			list_del(&m->ppgtt_mm.link);
1485 			intel_vgpu_mm_put(m);
1486 		}
1487 	}
1488 
1489 	GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm));
1490 	if (workload->shadow_mm)
1491 		intel_vgpu_mm_put(workload->shadow_mm);
1492 
1493 	kmem_cache_free(s->workloads, workload);
1494 }
1495 
1496 static struct intel_vgpu_workload *
1497 alloc_workload(struct intel_vgpu *vgpu)
1498 {
1499 	struct intel_vgpu_submission *s = &vgpu->submission;
1500 	struct intel_vgpu_workload *workload;
1501 
1502 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1503 	if (!workload)
1504 		return ERR_PTR(-ENOMEM);
1505 
1506 	INIT_LIST_HEAD(&workload->list);
1507 	INIT_LIST_HEAD(&workload->shadow_bb);
1508 	INIT_LIST_HEAD(&workload->lri_shadow_mm);
1509 
1510 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1511 	atomic_set(&workload->shadow_ctx_active, 0);
1512 
1513 	workload->status = -EINPROGRESS;
1514 	workload->vgpu = vgpu;
1515 
1516 	return workload;
1517 }
1518 
1519 #define RING_CTX_OFF(x) \
1520 	offsetof(struct execlist_ring_context, x)
1521 
1522 static void read_guest_pdps(struct intel_vgpu *vgpu,
1523 		u64 ring_context_gpa, u32 pdp[8])
1524 {
1525 	u64 gpa;
1526 	int i;
1527 
1528 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1529 
1530 	for (i = 0; i < 8; i++)
1531 		intel_gvt_hypervisor_read_gpa(vgpu,
1532 				gpa + i * 8, &pdp[7 - i], 4);
1533 }
1534 
1535 static int prepare_mm(struct intel_vgpu_workload *workload)
1536 {
1537 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1538 	struct intel_vgpu_mm *mm;
1539 	struct intel_vgpu *vgpu = workload->vgpu;
1540 	enum intel_gvt_gtt_type root_entry_type;
1541 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1542 
1543 	switch (desc->addressing_mode) {
1544 	case 1: /* legacy 32-bit */
1545 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1546 		break;
1547 	case 3: /* legacy 64-bit */
1548 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1549 		break;
1550 	default:
1551 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1552 		return -EINVAL;
1553 	}
1554 
1555 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1556 
1557 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1558 	if (IS_ERR(mm))
1559 		return PTR_ERR(mm);
1560 
1561 	workload->shadow_mm = mm;
1562 	return 0;
1563 }
1564 
1565 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1566 		((a)->lrca == (b)->lrca))
1567 
1568 /**
1569  * intel_vgpu_create_workload - create a vGPU workload
1570  * @vgpu: a vGPU
1571  * @engine: the engine
1572  * @desc: a guest context descriptor
1573  *
1574  * This function is called when creating a vGPU workload.
1575  *
1576  * Returns:
1577  * struct intel_vgpu_workload * on success, negative error code in
1578  * pointer if failed.
1579  *
1580  */
1581 struct intel_vgpu_workload *
1582 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1583 			   const struct intel_engine_cs *engine,
1584 			   struct execlist_ctx_descriptor_format *desc)
1585 {
1586 	struct intel_vgpu_submission *s = &vgpu->submission;
1587 	struct list_head *q = workload_q_head(vgpu, engine);
1588 	struct intel_vgpu_workload *last_workload = NULL;
1589 	struct intel_vgpu_workload *workload = NULL;
1590 	u64 ring_context_gpa;
1591 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1592 	u32 guest_head;
1593 	int ret;
1594 
1595 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1596 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1597 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1598 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1599 		return ERR_PTR(-EINVAL);
1600 	}
1601 
1602 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1603 			RING_CTX_OFF(ring_header.val), &head, 4);
1604 
1605 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1606 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1607 
1608 	guest_head = head;
1609 
1610 	head &= RB_HEAD_OFF_MASK;
1611 	tail &= RB_TAIL_OFF_MASK;
1612 
1613 	list_for_each_entry_reverse(last_workload, q, list) {
1614 
1615 		if (same_context(&last_workload->ctx_desc, desc)) {
1616 			gvt_dbg_el("ring %s cur workload == last\n",
1617 				   engine->name);
1618 			gvt_dbg_el("ctx head %x real head %lx\n", head,
1619 				   last_workload->rb_tail);
1620 			/*
1621 			 * cannot use guest context head pointer here,
1622 			 * as it might not be updated at this time
1623 			 */
1624 			head = last_workload->rb_tail;
1625 			break;
1626 		}
1627 	}
1628 
1629 	gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1630 
1631 	/* record some ring buffer register values for scan and shadow */
1632 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1633 			RING_CTX_OFF(rb_start.val), &start, 4);
1634 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1635 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1636 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1637 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1638 
1639 	if (!intel_gvt_ggtt_validate_range(vgpu, start,
1640 				_RING_CTL_BUF_SIZE(ctl))) {
1641 		gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1642 		return ERR_PTR(-EINVAL);
1643 	}
1644 
1645 	workload = alloc_workload(vgpu);
1646 	if (IS_ERR(workload))
1647 		return workload;
1648 
1649 	workload->engine = engine;
1650 	workload->ctx_desc = *desc;
1651 	workload->ring_context_gpa = ring_context_gpa;
1652 	workload->rb_head = head;
1653 	workload->guest_rb_head = guest_head;
1654 	workload->rb_tail = tail;
1655 	workload->rb_start = start;
1656 	workload->rb_ctl = ctl;
1657 
1658 	if (engine->id == RCS0) {
1659 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1660 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1661 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1662 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1663 
1664 		workload->wa_ctx.indirect_ctx.guest_gma =
1665 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1666 		workload->wa_ctx.indirect_ctx.size =
1667 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1668 			CACHELINE_BYTES;
1669 
1670 		if (workload->wa_ctx.indirect_ctx.size != 0) {
1671 			if (!intel_gvt_ggtt_validate_range(vgpu,
1672 				workload->wa_ctx.indirect_ctx.guest_gma,
1673 				workload->wa_ctx.indirect_ctx.size)) {
1674 				gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1675 				    workload->wa_ctx.indirect_ctx.guest_gma);
1676 				kmem_cache_free(s->workloads, workload);
1677 				return ERR_PTR(-EINVAL);
1678 			}
1679 		}
1680 
1681 		workload->wa_ctx.per_ctx.guest_gma =
1682 			per_ctx & PER_CTX_ADDR_MASK;
1683 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1684 		if (workload->wa_ctx.per_ctx.valid) {
1685 			if (!intel_gvt_ggtt_validate_range(vgpu,
1686 				workload->wa_ctx.per_ctx.guest_gma,
1687 				CACHELINE_BYTES)) {
1688 				gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1689 					workload->wa_ctx.per_ctx.guest_gma);
1690 				kmem_cache_free(s->workloads, workload);
1691 				return ERR_PTR(-EINVAL);
1692 			}
1693 		}
1694 	}
1695 
1696 	gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1697 		   workload, engine->name, head, tail, start, ctl);
1698 
1699 	ret = prepare_mm(workload);
1700 	if (ret) {
1701 		kmem_cache_free(s->workloads, workload);
1702 		return ERR_PTR(ret);
1703 	}
1704 
1705 	/* Only scan and shadow the first workload in the queue
1706 	 * as there is only one pre-allocated buf-obj for shadow.
1707 	 */
1708 	if (list_empty(q)) {
1709 		intel_wakeref_t wakeref;
1710 
1711 		with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1712 			ret = intel_gvt_scan_and_shadow_workload(workload);
1713 	}
1714 
1715 	if (ret) {
1716 		if (vgpu_is_vm_unhealthy(ret))
1717 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1718 		intel_vgpu_destroy_workload(workload);
1719 		return ERR_PTR(ret);
1720 	}
1721 
1722 	ret = intel_context_pin(s->shadow[engine->id]);
1723 	if (ret) {
1724 		intel_vgpu_destroy_workload(workload);
1725 		return ERR_PTR(ret);
1726 	}
1727 
1728 	return workload;
1729 }
1730 
1731 /**
1732  * intel_vgpu_queue_workload - Qeue a vGPU workload
1733  * @workload: the workload to queue in
1734  */
1735 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1736 {
1737 	list_add_tail(&workload->list,
1738 		      workload_q_head(workload->vgpu, workload->engine));
1739 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1740 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1741 }
1742