1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "gem/i915_gem_pm.h" 39 #include "gt/intel_context.h" 40 #include "gt/intel_ring.h" 41 42 #include "i915_drv.h" 43 #include "i915_gem_gtt.h" 44 #include "gvt.h" 45 46 #define RING_CTX_OFF(x) \ 47 offsetof(struct execlist_ring_context, x) 48 49 static void set_context_pdp_root_pointer( 50 struct execlist_ring_context *ring_context, 51 u32 pdp[8]) 52 { 53 int i; 54 55 for (i = 0; i < 8; i++) 56 ring_context->pdps[i].val = pdp[7 - i]; 57 } 58 59 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 60 { 61 struct drm_i915_gem_object *ctx_obj = 62 workload->req->context->state->obj; 63 struct execlist_ring_context *shadow_ring_context; 64 struct page *page; 65 66 if (WARN_ON(!workload->shadow_mm)) 67 return; 68 69 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 70 return; 71 72 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 73 shadow_ring_context = kmap(page); 74 set_context_pdp_root_pointer(shadow_ring_context, 75 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 76 kunmap(page); 77 } 78 79 /* 80 * when populating shadow ctx from guest, we should not overrride oa related 81 * registers, so that they will not be overlapped by guest oa configs. Thus 82 * made it possible to capture oa data from host for both host and guests. 83 */ 84 static void sr_oa_regs(struct intel_vgpu_workload *workload, 85 u32 *reg_state, bool save) 86 { 87 struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv; 88 u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset; 89 u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset; 90 int i = 0; 91 u32 flex_mmio[] = { 92 i915_mmio_reg_offset(EU_PERF_CNTL0), 93 i915_mmio_reg_offset(EU_PERF_CNTL1), 94 i915_mmio_reg_offset(EU_PERF_CNTL2), 95 i915_mmio_reg_offset(EU_PERF_CNTL3), 96 i915_mmio_reg_offset(EU_PERF_CNTL4), 97 i915_mmio_reg_offset(EU_PERF_CNTL5), 98 i915_mmio_reg_offset(EU_PERF_CNTL6), 99 }; 100 101 if (workload->ring_id != RCS0) 102 return; 103 104 if (save) { 105 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 106 107 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 108 u32 state_offset = ctx_flexeu0 + i * 2; 109 110 workload->flex_mmio[i] = reg_state[state_offset + 1]; 111 } 112 } else { 113 reg_state[ctx_oactxctrl] = 114 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 115 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 116 117 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 118 u32 state_offset = ctx_flexeu0 + i * 2; 119 u32 mmio = flex_mmio[i]; 120 121 reg_state[state_offset] = mmio; 122 reg_state[state_offset + 1] = workload->flex_mmio[i]; 123 } 124 } 125 } 126 127 static int populate_shadow_context(struct intel_vgpu_workload *workload) 128 { 129 struct intel_vgpu *vgpu = workload->vgpu; 130 struct intel_gvt *gvt = vgpu->gvt; 131 int ring_id = workload->ring_id; 132 struct drm_i915_gem_object *ctx_obj = 133 workload->req->context->state->obj; 134 struct execlist_ring_context *shadow_ring_context; 135 struct page *page; 136 void *dst; 137 unsigned long context_gpa, context_page_num; 138 int i; 139 140 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 141 shadow_ring_context = kmap(page); 142 143 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 144 #define COPY_REG(name) \ 145 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 146 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 147 #define COPY_REG_MASKED(name) {\ 148 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 149 + RING_CTX_OFF(name.val),\ 150 &shadow_ring_context->name.val, 4);\ 151 shadow_ring_context->name.val |= 0xffff << 16;\ 152 } 153 154 COPY_REG_MASKED(ctx_ctrl); 155 COPY_REG(ctx_timestamp); 156 157 if (ring_id == RCS0) { 158 COPY_REG(bb_per_ctx_ptr); 159 COPY_REG(rcs_indirect_ctx); 160 COPY_REG(rcs_indirect_ctx_offset); 161 } 162 #undef COPY_REG 163 #undef COPY_REG_MASKED 164 165 intel_gvt_hypervisor_read_gpa(vgpu, 166 workload->ring_context_gpa + 167 sizeof(*shadow_ring_context), 168 (void *)shadow_ring_context + 169 sizeof(*shadow_ring_context), 170 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 171 172 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 173 kunmap(page); 174 175 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val)) 176 return 0; 177 178 gvt_dbg_sched("ring id %d workload lrca %x", ring_id, 179 workload->ctx_desc.lrca); 180 181 context_page_num = gvt->dev_priv->engine[ring_id]->context_size; 182 183 context_page_num = context_page_num >> PAGE_SHIFT; 184 185 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0) 186 context_page_num = 19; 187 188 i = 2; 189 while (i < context_page_num) { 190 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 191 (u32)((workload->ctx_desc.lrca + i) << 192 I915_GTT_PAGE_SHIFT)); 193 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 194 gvt_vgpu_err("Invalid guest context descriptor\n"); 195 return -EFAULT; 196 } 197 198 page = i915_gem_object_get_page(ctx_obj, i); 199 dst = kmap(page); 200 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst, 201 I915_GTT_PAGE_SIZE); 202 kunmap(page); 203 i++; 204 } 205 return 0; 206 } 207 208 static inline bool is_gvt_request(struct i915_request *rq) 209 { 210 return intel_context_force_single_submission(rq->context); 211 } 212 213 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id) 214 { 215 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 216 u32 ring_base = dev_priv->engine[ring_id]->mmio_base; 217 i915_reg_t reg; 218 219 reg = RING_INSTDONE(ring_base); 220 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 221 reg = RING_ACTHD(ring_base); 222 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 223 reg = RING_ACTHD_UDW(ring_base); 224 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 225 } 226 227 static int shadow_context_status_change(struct notifier_block *nb, 228 unsigned long action, void *data) 229 { 230 struct i915_request *req = data; 231 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 232 shadow_ctx_notifier_block[req->engine->id]); 233 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 234 enum intel_engine_id ring_id = req->engine->id; 235 struct intel_vgpu_workload *workload; 236 unsigned long flags; 237 238 if (!is_gvt_request(req)) { 239 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 240 if (action == INTEL_CONTEXT_SCHEDULE_IN && 241 scheduler->engine_owner[ring_id]) { 242 /* Switch ring from vGPU to host. */ 243 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 244 NULL, ring_id); 245 scheduler->engine_owner[ring_id] = NULL; 246 } 247 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 248 249 return NOTIFY_OK; 250 } 251 252 workload = scheduler->current_workload[ring_id]; 253 if (unlikely(!workload)) 254 return NOTIFY_OK; 255 256 switch (action) { 257 case INTEL_CONTEXT_SCHEDULE_IN: 258 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 259 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 260 /* Switch ring from host to vGPU or vGPU to vGPU. */ 261 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 262 workload->vgpu, ring_id); 263 scheduler->engine_owner[ring_id] = workload->vgpu; 264 } else 265 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 266 ring_id, workload->vgpu->id); 267 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 268 atomic_set(&workload->shadow_ctx_active, 1); 269 break; 270 case INTEL_CONTEXT_SCHEDULE_OUT: 271 save_ring_hw_state(workload->vgpu, ring_id); 272 atomic_set(&workload->shadow_ctx_active, 0); 273 break; 274 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 275 save_ring_hw_state(workload->vgpu, ring_id); 276 break; 277 default: 278 WARN_ON(1); 279 return NOTIFY_OK; 280 } 281 wake_up(&workload->shadow_ctx_status_wq); 282 return NOTIFY_OK; 283 } 284 285 static void 286 shadow_context_descriptor_update(struct intel_context *ce, 287 struct intel_vgpu_workload *workload) 288 { 289 u64 desc = ce->lrc_desc; 290 291 /* 292 * Update bits 0-11 of the context descriptor which includes flags 293 * like GEN8_CTX_* cached in desc_template 294 */ 295 desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT); 296 desc |= workload->ctx_desc.addressing_mode << 297 GEN8_CTX_ADDRESSING_MODE_SHIFT; 298 299 ce->lrc_desc = desc; 300 } 301 302 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 303 { 304 struct intel_vgpu *vgpu = workload->vgpu; 305 struct i915_request *req = workload->req; 306 void *shadow_ring_buffer_va; 307 u32 *cs; 308 int err; 309 310 if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context)) 311 intel_vgpu_restore_inhibit_context(vgpu, req); 312 313 /* 314 * To track whether a request has started on HW, we can emit a 315 * breadcrumb at the beginning of the request and check its 316 * timeline's HWSP to see if the breadcrumb has advanced past the 317 * start of this request. Actually, the request must have the 318 * init_breadcrumb if its timeline set has_init_bread_crumb, or the 319 * scheduler might get a wrong state of it during reset. Since the 320 * requests from gvt always set the has_init_breadcrumb flag, here 321 * need to do the emit_init_breadcrumb for all the requests. 322 */ 323 if (req->engine->emit_init_breadcrumb) { 324 err = req->engine->emit_init_breadcrumb(req); 325 if (err) { 326 gvt_vgpu_err("fail to emit init breadcrumb\n"); 327 return err; 328 } 329 } 330 331 /* allocate shadow ring buffer */ 332 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 333 if (IS_ERR(cs)) { 334 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 335 workload->rb_len); 336 return PTR_ERR(cs); 337 } 338 339 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 340 341 /* get shadow ring buffer va */ 342 workload->shadow_ring_buffer_va = cs; 343 344 memcpy(cs, shadow_ring_buffer_va, 345 workload->rb_len); 346 347 cs += workload->rb_len / sizeof(u32); 348 intel_ring_advance(workload->req, cs); 349 350 return 0; 351 } 352 353 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 354 { 355 if (!wa_ctx->indirect_ctx.obj) 356 return; 357 358 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 359 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 360 361 wa_ctx->indirect_ctx.obj = NULL; 362 wa_ctx->indirect_ctx.shadow_va = NULL; 363 } 364 365 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 366 struct intel_context *ce) 367 { 368 struct intel_vgpu_mm *mm = workload->shadow_mm; 369 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm); 370 int i = 0; 371 372 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 373 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0]; 374 } else { 375 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 376 struct i915_page_directory * const pd = 377 i915_pd_entry(ppgtt->pd, i); 378 379 px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i]; 380 } 381 } 382 } 383 384 static int 385 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) 386 { 387 struct intel_vgpu *vgpu = workload->vgpu; 388 struct intel_vgpu_submission *s = &vgpu->submission; 389 struct i915_request *rq; 390 391 if (workload->req) 392 return 0; 393 394 rq = i915_request_create(s->shadow[workload->ring_id]); 395 if (IS_ERR(rq)) { 396 gvt_vgpu_err("fail to allocate gem request\n"); 397 return PTR_ERR(rq); 398 } 399 400 workload->req = i915_request_get(rq); 401 return 0; 402 } 403 404 /** 405 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 406 * shadow it as well, include ringbuffer,wa_ctx and ctx. 407 * @workload: an abstract entity for each execlist submission. 408 * 409 * This function is called before the workload submitting to i915, to make 410 * sure the content of the workload is valid. 411 */ 412 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 413 { 414 struct intel_vgpu *vgpu = workload->vgpu; 415 struct intel_vgpu_submission *s = &vgpu->submission; 416 int ret; 417 418 lockdep_assert_held(&vgpu->vgpu_lock); 419 420 if (workload->shadow) 421 return 0; 422 423 if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated)) 424 shadow_context_descriptor_update(s->shadow[workload->ring_id], 425 workload); 426 427 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 428 if (ret) 429 return ret; 430 431 if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) { 432 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 433 if (ret) 434 goto err_shadow; 435 } 436 437 workload->shadow = true; 438 return 0; 439 err_shadow: 440 release_shadow_wa_ctx(&workload->wa_ctx); 441 return ret; 442 } 443 444 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 445 446 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 447 { 448 struct intel_gvt *gvt = workload->vgpu->gvt; 449 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 450 struct intel_vgpu_shadow_bb *bb; 451 int ret; 452 453 list_for_each_entry(bb, &workload->shadow_bb, list) { 454 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 455 * is only updated into ring_scan_buffer, not real ring address 456 * allocated in later copy_workload_to_ring_buffer. pls be noted 457 * shadow_ring_buffer_va is now pointed to real ring buffer va 458 * in copy_workload_to_ring_buffer. 459 */ 460 461 if (bb->bb_offset) 462 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 463 + bb->bb_offset; 464 465 if (bb->ppgtt) { 466 /* for non-priv bb, scan&shadow is only for 467 * debugging purpose, so the content of shadow bb 468 * is the same as original bb. Therefore, 469 * here, rather than switch to shadow bb's gma 470 * address, we directly use original batch buffer's 471 * gma address, and send original bb to hardware 472 * directly 473 */ 474 if (bb->clflush & CLFLUSH_AFTER) { 475 drm_clflush_virt_range(bb->va, 476 bb->obj->base.size); 477 bb->clflush &= ~CLFLUSH_AFTER; 478 } 479 i915_gem_object_finish_access(bb->obj); 480 bb->accessing = false; 481 482 } else { 483 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 484 NULL, 0, 0, 0); 485 if (IS_ERR(bb->vma)) { 486 ret = PTR_ERR(bb->vma); 487 goto err; 488 } 489 490 /* relocate shadow batch buffer */ 491 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 492 if (gmadr_bytes == 8) 493 bb->bb_start_cmd_va[2] = 0; 494 495 /* No one is going to touch shadow bb from now on. */ 496 if (bb->clflush & CLFLUSH_AFTER) { 497 drm_clflush_virt_range(bb->va, 498 bb->obj->base.size); 499 bb->clflush &= ~CLFLUSH_AFTER; 500 } 501 502 ret = i915_gem_object_set_to_gtt_domain(bb->obj, 503 false); 504 if (ret) 505 goto err; 506 507 ret = i915_vma_move_to_active(bb->vma, 508 workload->req, 509 0); 510 if (ret) 511 goto err; 512 513 i915_gem_object_finish_access(bb->obj); 514 bb->accessing = false; 515 } 516 } 517 return 0; 518 err: 519 release_shadow_batch_buffer(workload); 520 return ret; 521 } 522 523 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 524 { 525 struct intel_vgpu_workload *workload = 526 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 527 struct i915_request *rq = workload->req; 528 struct execlist_ring_context *shadow_ring_context = 529 (struct execlist_ring_context *)rq->context->lrc_reg_state; 530 531 shadow_ring_context->bb_per_ctx_ptr.val = 532 (shadow_ring_context->bb_per_ctx_ptr.val & 533 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 534 shadow_ring_context->rcs_indirect_ctx.val = 535 (shadow_ring_context->rcs_indirect_ctx.val & 536 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 537 } 538 539 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 540 { 541 struct i915_vma *vma; 542 unsigned char *per_ctx_va = 543 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 544 wa_ctx->indirect_ctx.size; 545 546 if (wa_ctx->indirect_ctx.size == 0) 547 return 0; 548 549 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 550 0, CACHELINE_BYTES, 0); 551 if (IS_ERR(vma)) 552 return PTR_ERR(vma); 553 554 /* FIXME: we are not tracking our pinned VMA leaving it 555 * up to the core to fix up the stray pin_count upon 556 * free. 557 */ 558 559 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 560 561 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 562 memset(per_ctx_va, 0, CACHELINE_BYTES); 563 564 update_wa_ctx_2_shadow_ctx(wa_ctx); 565 return 0; 566 } 567 568 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload) 569 { 570 struct intel_vgpu *vgpu = workload->vgpu; 571 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 572 u32 ring_base; 573 574 ring_base = dev_priv->engine[workload->ring_id]->mmio_base; 575 vgpu_vreg_t(vgpu, RING_START(ring_base)) = workload->rb_start; 576 } 577 578 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 579 { 580 struct intel_vgpu_shadow_bb *bb, *pos; 581 582 if (list_empty(&workload->shadow_bb)) 583 return; 584 585 bb = list_first_entry(&workload->shadow_bb, 586 struct intel_vgpu_shadow_bb, list); 587 588 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 589 if (bb->obj) { 590 if (bb->accessing) 591 i915_gem_object_finish_access(bb->obj); 592 593 if (bb->va && !IS_ERR(bb->va)) 594 i915_gem_object_unpin_map(bb->obj); 595 596 if (bb->vma && !IS_ERR(bb->vma)) { 597 i915_vma_unpin(bb->vma); 598 i915_vma_close(bb->vma); 599 } 600 i915_gem_object_put(bb->obj); 601 } 602 list_del(&bb->list); 603 kfree(bb); 604 } 605 } 606 607 static int prepare_workload(struct intel_vgpu_workload *workload) 608 { 609 struct intel_vgpu *vgpu = workload->vgpu; 610 struct intel_vgpu_submission *s = &vgpu->submission; 611 int ring = workload->ring_id; 612 int ret = 0; 613 614 ret = intel_vgpu_pin_mm(workload->shadow_mm); 615 if (ret) { 616 gvt_vgpu_err("fail to vgpu pin mm\n"); 617 return ret; 618 } 619 620 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT || 621 !workload->shadow_mm->ppgtt_mm.shadowed) { 622 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 623 return -EINVAL; 624 } 625 626 update_shadow_pdps(workload); 627 628 set_context_ppgtt_from_shadow(workload, s->shadow[ring]); 629 630 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 631 if (ret) { 632 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 633 goto err_unpin_mm; 634 } 635 636 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 637 if (ret) { 638 gvt_vgpu_err("fail to flush post shadow\n"); 639 goto err_unpin_mm; 640 } 641 642 ret = copy_workload_to_ring_buffer(workload); 643 if (ret) { 644 gvt_vgpu_err("fail to generate request\n"); 645 goto err_unpin_mm; 646 } 647 648 ret = prepare_shadow_batch_buffer(workload); 649 if (ret) { 650 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 651 goto err_unpin_mm; 652 } 653 654 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 655 if (ret) { 656 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 657 goto err_shadow_batch; 658 } 659 660 if (workload->prepare) { 661 ret = workload->prepare(workload); 662 if (ret) 663 goto err_shadow_wa_ctx; 664 } 665 666 return 0; 667 err_shadow_wa_ctx: 668 release_shadow_wa_ctx(&workload->wa_ctx); 669 err_shadow_batch: 670 release_shadow_batch_buffer(workload); 671 err_unpin_mm: 672 intel_vgpu_unpin_mm(workload->shadow_mm); 673 return ret; 674 } 675 676 static int dispatch_workload(struct intel_vgpu_workload *workload) 677 { 678 struct intel_vgpu *vgpu = workload->vgpu; 679 struct i915_request *rq; 680 int ring_id = workload->ring_id; 681 int ret; 682 683 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n", 684 ring_id, workload); 685 686 mutex_lock(&vgpu->vgpu_lock); 687 688 ret = intel_gvt_workload_req_alloc(workload); 689 if (ret) 690 goto err_req; 691 692 ret = intel_gvt_scan_and_shadow_workload(workload); 693 if (ret) 694 goto out; 695 696 ret = populate_shadow_context(workload); 697 if (ret) { 698 release_shadow_wa_ctx(&workload->wa_ctx); 699 goto out; 700 } 701 702 ret = prepare_workload(workload); 703 out: 704 if (ret) { 705 /* We might still need to add request with 706 * clean ctx to retire it properly.. 707 */ 708 rq = fetch_and_zero(&workload->req); 709 i915_request_put(rq); 710 } 711 712 if (!IS_ERR_OR_NULL(workload->req)) { 713 gvt_dbg_sched("ring id %d submit workload to i915 %p\n", 714 ring_id, workload->req); 715 i915_request_add(workload->req); 716 workload->dispatched = true; 717 } 718 err_req: 719 if (ret) 720 workload->status = ret; 721 mutex_unlock(&vgpu->vgpu_lock); 722 return ret; 723 } 724 725 static struct intel_vgpu_workload *pick_next_workload( 726 struct intel_gvt *gvt, int ring_id) 727 { 728 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 729 struct intel_vgpu_workload *workload = NULL; 730 731 mutex_lock(&gvt->sched_lock); 732 733 /* 734 * no current vgpu / will be scheduled out / no workload 735 * bail out 736 */ 737 if (!scheduler->current_vgpu) { 738 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id); 739 goto out; 740 } 741 742 if (scheduler->need_reschedule) { 743 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id); 744 goto out; 745 } 746 747 if (!scheduler->current_vgpu->active || 748 list_empty(workload_q_head(scheduler->current_vgpu, ring_id))) 749 goto out; 750 751 /* 752 * still have current workload, maybe the workload disptacher 753 * fail to submit it for some reason, resubmit it. 754 */ 755 if (scheduler->current_workload[ring_id]) { 756 workload = scheduler->current_workload[ring_id]; 757 gvt_dbg_sched("ring id %d still have current workload %p\n", 758 ring_id, workload); 759 goto out; 760 } 761 762 /* 763 * pick a workload as current workload 764 * once current workload is set, schedule policy routines 765 * will wait the current workload is finished when trying to 766 * schedule out a vgpu. 767 */ 768 scheduler->current_workload[ring_id] = container_of( 769 workload_q_head(scheduler->current_vgpu, ring_id)->next, 770 struct intel_vgpu_workload, list); 771 772 workload = scheduler->current_workload[ring_id]; 773 774 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload); 775 776 atomic_inc(&workload->vgpu->submission.running_workload_num); 777 out: 778 mutex_unlock(&gvt->sched_lock); 779 return workload; 780 } 781 782 static void update_guest_context(struct intel_vgpu_workload *workload) 783 { 784 struct i915_request *rq = workload->req; 785 struct intel_vgpu *vgpu = workload->vgpu; 786 struct intel_gvt *gvt = vgpu->gvt; 787 struct drm_i915_gem_object *ctx_obj = rq->context->state->obj; 788 struct execlist_ring_context *shadow_ring_context; 789 struct page *page; 790 void *src; 791 unsigned long context_gpa, context_page_num; 792 int i; 793 struct drm_i915_private *dev_priv = gvt->dev_priv; 794 u32 ring_base; 795 u32 head, tail; 796 u16 wrap_count; 797 798 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 799 workload->ctx_desc.lrca); 800 801 head = workload->rb_head; 802 tail = workload->rb_tail; 803 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF; 804 805 if (tail < head) { 806 if (wrap_count == RB_HEAD_WRAP_CNT_MAX) 807 wrap_count = 0; 808 else 809 wrap_count += 1; 810 } 811 812 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail; 813 814 ring_base = dev_priv->engine[workload->ring_id]->mmio_base; 815 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail; 816 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head; 817 818 context_page_num = rq->engine->context_size; 819 context_page_num = context_page_num >> PAGE_SHIFT; 820 821 if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0) 822 context_page_num = 19; 823 824 i = 2; 825 826 while (i < context_page_num) { 827 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 828 (u32)((workload->ctx_desc.lrca + i) << 829 I915_GTT_PAGE_SHIFT)); 830 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 831 gvt_vgpu_err("invalid guest context descriptor\n"); 832 return; 833 } 834 835 page = i915_gem_object_get_page(ctx_obj, i); 836 src = kmap(page); 837 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src, 838 I915_GTT_PAGE_SIZE); 839 kunmap(page); 840 i++; 841 } 842 843 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 844 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 845 846 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 847 shadow_ring_context = kmap(page); 848 849 #define COPY_REG(name) \ 850 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 851 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 852 853 COPY_REG(ctx_ctrl); 854 COPY_REG(ctx_timestamp); 855 856 #undef COPY_REG 857 858 intel_gvt_hypervisor_write_gpa(vgpu, 859 workload->ring_context_gpa + 860 sizeof(*shadow_ring_context), 861 (void *)shadow_ring_context + 862 sizeof(*shadow_ring_context), 863 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 864 865 kunmap(page); 866 } 867 868 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 869 intel_engine_mask_t engine_mask) 870 { 871 struct intel_vgpu_submission *s = &vgpu->submission; 872 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 873 struct intel_engine_cs *engine; 874 struct intel_vgpu_workload *pos, *n; 875 intel_engine_mask_t tmp; 876 877 /* free the unsubmited workloads in the queues. */ 878 for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) { 879 list_for_each_entry_safe(pos, n, 880 &s->workload_q_head[engine->id], list) { 881 list_del_init(&pos->list); 882 intel_vgpu_destroy_workload(pos); 883 } 884 clear_bit(engine->id, s->shadow_ctx_desc_updated); 885 } 886 } 887 888 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 889 { 890 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 891 struct intel_vgpu_workload *workload = 892 scheduler->current_workload[ring_id]; 893 struct intel_vgpu *vgpu = workload->vgpu; 894 struct intel_vgpu_submission *s = &vgpu->submission; 895 struct i915_request *rq = workload->req; 896 int event; 897 898 mutex_lock(&vgpu->vgpu_lock); 899 mutex_lock(&gvt->sched_lock); 900 901 /* For the workload w/ request, needs to wait for the context 902 * switch to make sure request is completed. 903 * For the workload w/o request, directly complete the workload. 904 */ 905 if (rq) { 906 wait_event(workload->shadow_ctx_status_wq, 907 !atomic_read(&workload->shadow_ctx_active)); 908 909 /* If this request caused GPU hang, req->fence.error will 910 * be set to -EIO. Use -EIO to set workload status so 911 * that when this request caused GPU hang, didn't trigger 912 * context switch interrupt to guest. 913 */ 914 if (likely(workload->status == -EINPROGRESS)) { 915 if (workload->req->fence.error == -EIO) 916 workload->status = -EIO; 917 else 918 workload->status = 0; 919 } 920 921 if (!workload->status && 922 !(vgpu->resetting_eng & BIT(ring_id))) { 923 update_guest_context(workload); 924 925 for_each_set_bit(event, workload->pending_events, 926 INTEL_GVT_EVENT_MAX) 927 intel_vgpu_trigger_virtual_event(vgpu, event); 928 } 929 930 i915_request_put(fetch_and_zero(&workload->req)); 931 } 932 933 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 934 ring_id, workload, workload->status); 935 936 scheduler->current_workload[ring_id] = NULL; 937 938 list_del_init(&workload->list); 939 940 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) { 941 /* if workload->status is not successful means HW GPU 942 * has occurred GPU hang or something wrong with i915/GVT, 943 * and GVT won't inject context switch interrupt to guest. 944 * So this error is a vGPU hang actually to the guest. 945 * According to this we should emunlate a vGPU hang. If 946 * there are pending workloads which are already submitted 947 * from guest, we should clean them up like HW GPU does. 948 * 949 * if it is in middle of engine resetting, the pending 950 * workloads won't be submitted to HW GPU and will be 951 * cleaned up during the resetting process later, so doing 952 * the workload clean up here doesn't have any impact. 953 **/ 954 intel_vgpu_clean_workloads(vgpu, BIT(ring_id)); 955 } 956 957 workload->complete(workload); 958 959 atomic_dec(&s->running_workload_num); 960 wake_up(&scheduler->workload_complete_wq); 961 962 if (gvt->scheduler.need_reschedule) 963 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 964 965 mutex_unlock(&gvt->sched_lock); 966 mutex_unlock(&vgpu->vgpu_lock); 967 } 968 969 struct workload_thread_param { 970 struct intel_gvt *gvt; 971 int ring_id; 972 }; 973 974 static int workload_thread(void *priv) 975 { 976 struct workload_thread_param *p = (struct workload_thread_param *)priv; 977 struct intel_gvt *gvt = p->gvt; 978 int ring_id = p->ring_id; 979 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 980 struct intel_vgpu_workload *workload = NULL; 981 struct intel_vgpu *vgpu = NULL; 982 int ret; 983 bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9); 984 DEFINE_WAIT_FUNC(wait, woken_wake_function); 985 struct intel_runtime_pm *rpm = &gvt->dev_priv->runtime_pm; 986 987 kfree(p); 988 989 gvt_dbg_core("workload thread for ring %d started\n", ring_id); 990 991 while (!kthread_should_stop()) { 992 add_wait_queue(&scheduler->waitq[ring_id], &wait); 993 do { 994 workload = pick_next_workload(gvt, ring_id); 995 if (workload) 996 break; 997 wait_woken(&wait, TASK_INTERRUPTIBLE, 998 MAX_SCHEDULE_TIMEOUT); 999 } while (!kthread_should_stop()); 1000 remove_wait_queue(&scheduler->waitq[ring_id], &wait); 1001 1002 if (!workload) 1003 break; 1004 1005 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n", 1006 workload->ring_id, workload, 1007 workload->vgpu->id); 1008 1009 intel_runtime_pm_get(rpm); 1010 1011 gvt_dbg_sched("ring id %d will dispatch workload %p\n", 1012 workload->ring_id, workload); 1013 1014 if (need_force_wake) 1015 intel_uncore_forcewake_get(&gvt->dev_priv->uncore, 1016 FORCEWAKE_ALL); 1017 /* 1018 * Update the vReg of the vGPU which submitted this 1019 * workload. The vGPU may use these registers for checking 1020 * the context state. The value comes from GPU commands 1021 * in this workload. 1022 */ 1023 update_vreg_in_ctx(workload); 1024 1025 ret = dispatch_workload(workload); 1026 1027 if (ret) { 1028 vgpu = workload->vgpu; 1029 gvt_vgpu_err("fail to dispatch workload, skip\n"); 1030 goto complete; 1031 } 1032 1033 gvt_dbg_sched("ring id %d wait workload %p\n", 1034 workload->ring_id, workload); 1035 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 1036 1037 complete: 1038 gvt_dbg_sched("will complete workload %p, status: %d\n", 1039 workload, workload->status); 1040 1041 complete_current_workload(gvt, ring_id); 1042 1043 if (need_force_wake) 1044 intel_uncore_forcewake_put(&gvt->dev_priv->uncore, 1045 FORCEWAKE_ALL); 1046 1047 intel_runtime_pm_put_unchecked(rpm); 1048 if (ret && (vgpu_is_vm_unhealthy(ret))) 1049 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1050 } 1051 return 0; 1052 } 1053 1054 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1055 { 1056 struct intel_vgpu_submission *s = &vgpu->submission; 1057 struct intel_gvt *gvt = vgpu->gvt; 1058 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1059 1060 if (atomic_read(&s->running_workload_num)) { 1061 gvt_dbg_sched("wait vgpu idle\n"); 1062 1063 wait_event(scheduler->workload_complete_wq, 1064 !atomic_read(&s->running_workload_num)); 1065 } 1066 } 1067 1068 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1069 { 1070 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1071 struct intel_engine_cs *engine; 1072 enum intel_engine_id i; 1073 1074 gvt_dbg_core("clean workload scheduler\n"); 1075 1076 for_each_engine(engine, gvt->dev_priv, i) { 1077 atomic_notifier_chain_unregister( 1078 &engine->context_status_notifier, 1079 &gvt->shadow_ctx_notifier_block[i]); 1080 kthread_stop(scheduler->thread[i]); 1081 } 1082 } 1083 1084 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1085 { 1086 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1087 struct workload_thread_param *param = NULL; 1088 struct intel_engine_cs *engine; 1089 enum intel_engine_id i; 1090 int ret; 1091 1092 gvt_dbg_core("init workload scheduler\n"); 1093 1094 init_waitqueue_head(&scheduler->workload_complete_wq); 1095 1096 for_each_engine(engine, gvt->dev_priv, i) { 1097 init_waitqueue_head(&scheduler->waitq[i]); 1098 1099 param = kzalloc(sizeof(*param), GFP_KERNEL); 1100 if (!param) { 1101 ret = -ENOMEM; 1102 goto err; 1103 } 1104 1105 param->gvt = gvt; 1106 param->ring_id = i; 1107 1108 scheduler->thread[i] = kthread_run(workload_thread, param, 1109 "gvt workload %d", i); 1110 if (IS_ERR(scheduler->thread[i])) { 1111 gvt_err("fail to create workload thread\n"); 1112 ret = PTR_ERR(scheduler->thread[i]); 1113 goto err; 1114 } 1115 1116 gvt->shadow_ctx_notifier_block[i].notifier_call = 1117 shadow_context_status_change; 1118 atomic_notifier_chain_register(&engine->context_status_notifier, 1119 &gvt->shadow_ctx_notifier_block[i]); 1120 } 1121 return 0; 1122 err: 1123 intel_gvt_clean_workload_scheduler(gvt); 1124 kfree(param); 1125 param = NULL; 1126 return ret; 1127 } 1128 1129 static void 1130 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s, 1131 struct i915_ppgtt *ppgtt) 1132 { 1133 int i; 1134 1135 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1136 px_dma(ppgtt->pd) = s->i915_context_pml4; 1137 } else { 1138 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1139 struct i915_page_directory * const pd = 1140 i915_pd_entry(ppgtt->pd, i); 1141 1142 px_dma(pd) = s->i915_context_pdps[i]; 1143 } 1144 } 1145 } 1146 1147 /** 1148 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1149 * @vgpu: a vGPU 1150 * 1151 * This function is called when a vGPU is being destroyed. 1152 * 1153 */ 1154 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1155 { 1156 struct intel_vgpu_submission *s = &vgpu->submission; 1157 struct intel_engine_cs *engine; 1158 enum intel_engine_id id; 1159 1160 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1161 1162 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm)); 1163 for_each_engine(engine, vgpu->gvt->dev_priv, id) 1164 intel_context_unpin(s->shadow[id]); 1165 1166 kmem_cache_destroy(s->workloads); 1167 } 1168 1169 1170 /** 1171 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1172 * @vgpu: a vGPU 1173 * @engine_mask: engines expected to be reset 1174 * 1175 * This function is called when a vGPU is being destroyed. 1176 * 1177 */ 1178 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1179 intel_engine_mask_t engine_mask) 1180 { 1181 struct intel_vgpu_submission *s = &vgpu->submission; 1182 1183 if (!s->active) 1184 return; 1185 1186 intel_vgpu_clean_workloads(vgpu, engine_mask); 1187 s->ops->reset(vgpu, engine_mask); 1188 } 1189 1190 static void 1191 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s, 1192 struct i915_ppgtt *ppgtt) 1193 { 1194 int i; 1195 1196 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1197 s->i915_context_pml4 = px_dma(ppgtt->pd); 1198 } else { 1199 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1200 struct i915_page_directory * const pd = 1201 i915_pd_entry(ppgtt->pd, i); 1202 1203 s->i915_context_pdps[i] = px_dma(pd); 1204 } 1205 } 1206 } 1207 1208 /** 1209 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1210 * @vgpu: a vGPU 1211 * 1212 * This function is called when a vGPU is being created. 1213 * 1214 * Returns: 1215 * Zero on success, negative error code if failed. 1216 * 1217 */ 1218 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1219 { 1220 struct drm_i915_private *i915 = vgpu->gvt->dev_priv; 1221 struct intel_vgpu_submission *s = &vgpu->submission; 1222 struct intel_engine_cs *engine; 1223 struct i915_ppgtt *ppgtt; 1224 enum intel_engine_id i; 1225 int ret; 1226 1227 ppgtt = i915_ppgtt_create(&i915->gt); 1228 if (IS_ERR(ppgtt)) 1229 return PTR_ERR(ppgtt); 1230 1231 i915_context_ppgtt_root_save(s, ppgtt); 1232 1233 for_each_engine(engine, i915, i) { 1234 struct intel_context *ce; 1235 1236 INIT_LIST_HEAD(&s->workload_q_head[i]); 1237 s->shadow[i] = ERR_PTR(-EINVAL); 1238 1239 ce = intel_context_create(engine); 1240 if (IS_ERR(ce)) { 1241 ret = PTR_ERR(ce); 1242 goto out_shadow_ctx; 1243 } 1244 1245 i915_vm_put(ce->vm); 1246 ce->vm = i915_vm_get(&ppgtt->vm); 1247 intel_context_set_single_submission(ce); 1248 1249 if (!USES_GUC_SUBMISSION(i915)) { /* Max ring buffer size */ 1250 const unsigned int ring_size = 512 * SZ_4K; 1251 1252 ce->ring = __intel_context_ring_size(ring_size); 1253 } 1254 1255 ret = intel_context_pin(ce); 1256 intel_context_put(ce); 1257 if (ret) 1258 goto out_shadow_ctx; 1259 1260 s->shadow[i] = ce; 1261 } 1262 1263 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1264 1265 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1266 sizeof(struct intel_vgpu_workload), 0, 1267 SLAB_HWCACHE_ALIGN, 1268 offsetof(struct intel_vgpu_workload, rb_tail), 1269 sizeof_field(struct intel_vgpu_workload, rb_tail), 1270 NULL); 1271 1272 if (!s->workloads) { 1273 ret = -ENOMEM; 1274 goto out_shadow_ctx; 1275 } 1276 1277 atomic_set(&s->running_workload_num, 0); 1278 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1279 1280 i915_vm_put(&ppgtt->vm); 1281 return 0; 1282 1283 out_shadow_ctx: 1284 i915_context_ppgtt_root_restore(s, ppgtt); 1285 for_each_engine(engine, i915, i) { 1286 if (IS_ERR(s->shadow[i])) 1287 break; 1288 1289 intel_context_unpin(s->shadow[i]); 1290 intel_context_put(s->shadow[i]); 1291 } 1292 i915_vm_put(&ppgtt->vm); 1293 return ret; 1294 } 1295 1296 /** 1297 * intel_vgpu_select_submission_ops - select virtual submission interface 1298 * @vgpu: a vGPU 1299 * @engine_mask: either ALL_ENGINES or target engine mask 1300 * @interface: expected vGPU virtual submission interface 1301 * 1302 * This function is called when guest configures submission interface. 1303 * 1304 * Returns: 1305 * Zero on success, negative error code if failed. 1306 * 1307 */ 1308 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1309 intel_engine_mask_t engine_mask, 1310 unsigned int interface) 1311 { 1312 struct intel_vgpu_submission *s = &vgpu->submission; 1313 const struct intel_vgpu_submission_ops *ops[] = { 1314 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1315 &intel_vgpu_execlist_submission_ops, 1316 }; 1317 int ret; 1318 1319 if (WARN_ON(interface >= ARRAY_SIZE(ops))) 1320 return -EINVAL; 1321 1322 if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES)) 1323 return -EINVAL; 1324 1325 if (s->active) 1326 s->ops->clean(vgpu, engine_mask); 1327 1328 if (interface == 0) { 1329 s->ops = NULL; 1330 s->virtual_submission_interface = 0; 1331 s->active = false; 1332 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1333 return 0; 1334 } 1335 1336 ret = ops[interface]->init(vgpu, engine_mask); 1337 if (ret) 1338 return ret; 1339 1340 s->ops = ops[interface]; 1341 s->virtual_submission_interface = interface; 1342 s->active = true; 1343 1344 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1345 vgpu->id, s->ops->name); 1346 1347 return 0; 1348 } 1349 1350 /** 1351 * intel_vgpu_destroy_workload - destroy a vGPU workload 1352 * @workload: workload to destroy 1353 * 1354 * This function is called when destroy a vGPU workload. 1355 * 1356 */ 1357 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1358 { 1359 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1360 1361 release_shadow_batch_buffer(workload); 1362 release_shadow_wa_ctx(&workload->wa_ctx); 1363 1364 if (workload->shadow_mm) 1365 intel_vgpu_mm_put(workload->shadow_mm); 1366 1367 kmem_cache_free(s->workloads, workload); 1368 } 1369 1370 static struct intel_vgpu_workload * 1371 alloc_workload(struct intel_vgpu *vgpu) 1372 { 1373 struct intel_vgpu_submission *s = &vgpu->submission; 1374 struct intel_vgpu_workload *workload; 1375 1376 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1377 if (!workload) 1378 return ERR_PTR(-ENOMEM); 1379 1380 INIT_LIST_HEAD(&workload->list); 1381 INIT_LIST_HEAD(&workload->shadow_bb); 1382 1383 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1384 atomic_set(&workload->shadow_ctx_active, 0); 1385 1386 workload->status = -EINPROGRESS; 1387 workload->vgpu = vgpu; 1388 1389 return workload; 1390 } 1391 1392 #define RING_CTX_OFF(x) \ 1393 offsetof(struct execlist_ring_context, x) 1394 1395 static void read_guest_pdps(struct intel_vgpu *vgpu, 1396 u64 ring_context_gpa, u32 pdp[8]) 1397 { 1398 u64 gpa; 1399 int i; 1400 1401 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1402 1403 for (i = 0; i < 8; i++) 1404 intel_gvt_hypervisor_read_gpa(vgpu, 1405 gpa + i * 8, &pdp[7 - i], 4); 1406 } 1407 1408 static int prepare_mm(struct intel_vgpu_workload *workload) 1409 { 1410 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1411 struct intel_vgpu_mm *mm; 1412 struct intel_vgpu *vgpu = workload->vgpu; 1413 enum intel_gvt_gtt_type root_entry_type; 1414 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1415 1416 switch (desc->addressing_mode) { 1417 case 1: /* legacy 32-bit */ 1418 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1419 break; 1420 case 3: /* legacy 64-bit */ 1421 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1422 break; 1423 default: 1424 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1425 return -EINVAL; 1426 } 1427 1428 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1429 1430 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1431 if (IS_ERR(mm)) 1432 return PTR_ERR(mm); 1433 1434 workload->shadow_mm = mm; 1435 return 0; 1436 } 1437 1438 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1439 ((a)->lrca == (b)->lrca)) 1440 1441 /** 1442 * intel_vgpu_create_workload - create a vGPU workload 1443 * @vgpu: a vGPU 1444 * @ring_id: ring index 1445 * @desc: a guest context descriptor 1446 * 1447 * This function is called when creating a vGPU workload. 1448 * 1449 * Returns: 1450 * struct intel_vgpu_workload * on success, negative error code in 1451 * pointer if failed. 1452 * 1453 */ 1454 struct intel_vgpu_workload * 1455 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id, 1456 struct execlist_ctx_descriptor_format *desc) 1457 { 1458 struct intel_vgpu_submission *s = &vgpu->submission; 1459 struct list_head *q = workload_q_head(vgpu, ring_id); 1460 struct intel_vgpu_workload *last_workload = NULL; 1461 struct intel_vgpu_workload *workload = NULL; 1462 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1463 u64 ring_context_gpa; 1464 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1465 u32 guest_head; 1466 int ret; 1467 1468 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1469 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1470 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1471 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1472 return ERR_PTR(-EINVAL); 1473 } 1474 1475 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1476 RING_CTX_OFF(ring_header.val), &head, 4); 1477 1478 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1479 RING_CTX_OFF(ring_tail.val), &tail, 4); 1480 1481 guest_head = head; 1482 1483 head &= RB_HEAD_OFF_MASK; 1484 tail &= RB_TAIL_OFF_MASK; 1485 1486 list_for_each_entry_reverse(last_workload, q, list) { 1487 1488 if (same_context(&last_workload->ctx_desc, desc)) { 1489 gvt_dbg_el("ring id %d cur workload == last\n", 1490 ring_id); 1491 gvt_dbg_el("ctx head %x real head %lx\n", head, 1492 last_workload->rb_tail); 1493 /* 1494 * cannot use guest context head pointer here, 1495 * as it might not be updated at this time 1496 */ 1497 head = last_workload->rb_tail; 1498 break; 1499 } 1500 } 1501 1502 gvt_dbg_el("ring id %d begin a new workload\n", ring_id); 1503 1504 /* record some ring buffer register values for scan and shadow */ 1505 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1506 RING_CTX_OFF(rb_start.val), &start, 4); 1507 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1508 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1509 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1510 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1511 1512 if (!intel_gvt_ggtt_validate_range(vgpu, start, 1513 _RING_CTL_BUF_SIZE(ctl))) { 1514 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start); 1515 return ERR_PTR(-EINVAL); 1516 } 1517 1518 workload = alloc_workload(vgpu); 1519 if (IS_ERR(workload)) 1520 return workload; 1521 1522 workload->ring_id = ring_id; 1523 workload->ctx_desc = *desc; 1524 workload->ring_context_gpa = ring_context_gpa; 1525 workload->rb_head = head; 1526 workload->guest_rb_head = guest_head; 1527 workload->rb_tail = tail; 1528 workload->rb_start = start; 1529 workload->rb_ctl = ctl; 1530 1531 if (ring_id == RCS0) { 1532 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1533 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1534 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1535 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1536 1537 workload->wa_ctx.indirect_ctx.guest_gma = 1538 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1539 workload->wa_ctx.indirect_ctx.size = 1540 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1541 CACHELINE_BYTES; 1542 1543 if (workload->wa_ctx.indirect_ctx.size != 0) { 1544 if (!intel_gvt_ggtt_validate_range(vgpu, 1545 workload->wa_ctx.indirect_ctx.guest_gma, 1546 workload->wa_ctx.indirect_ctx.size)) { 1547 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n", 1548 workload->wa_ctx.indirect_ctx.guest_gma); 1549 kmem_cache_free(s->workloads, workload); 1550 return ERR_PTR(-EINVAL); 1551 } 1552 } 1553 1554 workload->wa_ctx.per_ctx.guest_gma = 1555 per_ctx & PER_CTX_ADDR_MASK; 1556 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1557 if (workload->wa_ctx.per_ctx.valid) { 1558 if (!intel_gvt_ggtt_validate_range(vgpu, 1559 workload->wa_ctx.per_ctx.guest_gma, 1560 CACHELINE_BYTES)) { 1561 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n", 1562 workload->wa_ctx.per_ctx.guest_gma); 1563 kmem_cache_free(s->workloads, workload); 1564 return ERR_PTR(-EINVAL); 1565 } 1566 } 1567 } 1568 1569 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n", 1570 workload, ring_id, head, tail, start, ctl); 1571 1572 ret = prepare_mm(workload); 1573 if (ret) { 1574 kmem_cache_free(s->workloads, workload); 1575 return ERR_PTR(ret); 1576 } 1577 1578 /* Only scan and shadow the first workload in the queue 1579 * as there is only one pre-allocated buf-obj for shadow. 1580 */ 1581 if (list_empty(workload_q_head(vgpu, ring_id))) { 1582 intel_runtime_pm_get(&dev_priv->runtime_pm); 1583 ret = intel_gvt_scan_and_shadow_workload(workload); 1584 intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm); 1585 } 1586 1587 if (ret) { 1588 if (vgpu_is_vm_unhealthy(ret)) 1589 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1590 intel_vgpu_destroy_workload(workload); 1591 return ERR_PTR(ret); 1592 } 1593 1594 return workload; 1595 } 1596 1597 /** 1598 * intel_vgpu_queue_workload - Qeue a vGPU workload 1599 * @workload: the workload to queue in 1600 */ 1601 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1602 { 1603 list_add_tail(&workload->list, 1604 workload_q_head(workload->vgpu, workload->ring_id)); 1605 intel_gvt_kick_schedule(workload->vgpu->gvt); 1606 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]); 1607 } 1608